A VISUALIZATION TOOL TO STUDY THE MOTION
OF COMPLEX 3D OBJECTS IN SPACE

A Senior Honors Thesis
by
BITARATINDER SINGH SANDHU

Submitted to the Office of Honors Programs
& Academic Scholarships
Texas A&M University
in partial fulfillment of the requirements of the

UNIVERSITY UNDERGRADUATE
RESEARCH FELLOWS

April 2003

Group: Engineering & Physics 2

A VISUALIZATION TOOL TO STUDY THE MOTION
OF COMPLEX 3D OBJECTS IN SPACE

A Senior Honors Thesis

by
BHARATINDER. SINGH SANDHU

Submitted to the Office of Honors Programs
Academic Scholarships
Texas A&M University
in partial fulfillment for the designation of

UNIVERSITY UNDERGRADUATE
RESEARCH FELLOW

Approved as to style and content by:

=z 2 Hiod § Fodillms

7 Mancy M. Amato Edward A. Funkhouser
(Fellows Advisor) (Executive Director)

April 2003

Group: Engineering & Physics 2

it

ABSTRACT

A Visnalization Tool to Study The Motion
of Complex 3D Objects in Space. (April 2003)
Bharatinder Singh Sandhn

Department of Computer Science
Texas A&M University

Fellows Advisor: Dr. Nancy M. Amato
Department of Computer Science

Visualization is the process of mapping nimerical values onto perceptual dimen-
sions. Visualization is a way to show results in a manuner that is intuitive to humans.
Pictures and animations presented properly can be easier to understand than num-
bers generated by a computer program. Graphical representation of ideas and results
allows a larger audience to understand and appreciate them.

Motion planning consists of moving an object (robot) from one configuration
to another. In motion planning we are concerned with the path a robot takes to
reach the goal position. Even in non-robotic applications like protein folding, we are
concerned about the path the protein takes to fold to its native fold. Visualization
allows us to sce the robot interacting with its environment in the process of reaching
the goal. This enables us to determine the quality of paths. It also allows humans
to "tweak” the computer-generated paths to make them better by adding critical
nodes that the computer might have missed. For complex robots and environments,
visualization tools can help present the program output in a comprehendible format.

The main objective of this project is to create a visualization tool (Vizmo++) to
serve as an interface between motion planning algorithms and the researchers who use
and design them. Vizmo-++ will enable researchers to model their complex robots and

environments and to see the results of their motion planning algorithms interactively.

The software will simplify the construction of complex environments and will aid in
visualizing the "paths” taken by their robot from one configuration to another.
Vizmo++ is being designed in a highly extendable fashion to allow casy future
expansion. The user interface is being designed so that the software is intuitive to
use. Vizmo++ now allows researchers to study the solutions to complex motion
planning problems hy stepping through animations. It also enables them to save the
animation for use in movies and presentations. Scientists can now view the entire
path the robot takes to go from the start to the goal position. They can also change
the representation of the robot to a point or cube if so desired. Vizmo++ is currently
being enhanced to support a wider array of robots. In the future it will be possible to
assemble motion planning problem environments in Vizmo++. Ultimately, Vizmo++
will serve to create and present motion planning problems along with their solutions

in an easy to understand fashion.

ACKNOWLEDGMENTS

I would like to thank Dr. Nancy M. Amato, my advisor, for guidance. Thank
yon for your advice and constant encouragement.

T would also like to thank the members of the Parasol Motion Planning group for
their help and ideas: Burchan Bayazit. Nick Downing, Jinsuck Kim, Jyh-Ming Lien,
Marco Morales, Rick Stover, Guang Song, Aimee Estrada, Kasthuri Srinivasan, Rick

Stover, Xinyn Tang, Dawen Xie, Roger Pearce.

TABLE OF CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
LISTOF FIGURES
CIIAPTER
1 INTRODUCTION
A. Motion Planning
B. Configuration Space.
C. Probabilistic Roadmap Methods and Obstacle Based
PRM (OBPRM) Package
D. Visualization
11

1 VIZMO++ . .. oo o

A Frameworko L L oo
B. Incorporating Existing Technolog
C. Vizmo++ Components
D. Vizmo++ Programming Manual
1. The Plum Module
2. The Source Module
3. The GLModule
4. The Math Tool Module

v APPLICATION: CAMPUS NAVIGATOR

A. Components of the Campus Navigator
1. Overview of Campus Navigator

vii

CHAPTER. Page
2. The Campus Graph 19

3. The Roadmap Editor, 20

4. Campus Graph Query 21

5. Campus Path Visualization Via Vizmo++ 21

6. User Web Interface, 22

v CONCLUSIONS e 24

A. Summary of Work Done 24

B. Future Work oo oo 24
REFERENCES i i 26

LIST OF FIGURES

FIGURE

[

-1

10

11

OBPRM

OBPRM Motion Planning Package Framework

Sample Model Filefora3D Cube

Sample Environment File for three Multibodies
Sample Query File oo
Sample Map File 000
Sample Path File oo
Viemo 1.0

Vizmo++ Architecture oL

Vizmo-++ being used to analyze the solution of a motion planning
problem

Overview of Campus Navigator
Campus Navigator Prototype Interface using Vizmo++

Campus Navigator Prototype

vidi

CHAPTER 1

INTRODUCTION
Motion planning consists of moving an object (robot) from one configuration to an-
other. Recently, automatic motion planning has been applied to many areas such as
robotics, virtual reality systems and computer-aided design, and even computational
biology.

Several kinds of motion planners exist. Deterministic techniques work for cases
that are low dimensional and very simple [1] [2]. However, it is computationally
infeasible for deterministic techniques to perform motion planning for many realistic
situations [2]. To do motion planning for complex rohots in cluttered environments,
Probabilistic Roadmap Mecthods (PRMs) can be employed [3]. The Parasol Motion
Planning group at Texas A&M University has developed a number of PRM variants
for motion planning, e g.. obstacle-based PRM [4], medial axis PRM (3], closed chain

PRM [6], and Customizable PRM [7} to name just a few.

A. Motion Planning

A lot of research has been conducted in the area of automatic motion planning.
Motion Planning involves finding a collision free path to move an object from a start
configuration to a goal configuration. A configuration of a robot refers to a unique
position and orientation.

Since computers lack the intuition necessary to plan paths like humans, varions
computational techniques have been employed to solve motion-planning problems. A

deterministic motion planner is complete, i.e., it gnarantees that a solution will be

The journal model is IEEE Transactions on Automatic Control.

found if one exists. However they are only effective for simple motion planning prob-
lems, i.e, robots with a few degrees of freedom (dof) in uncluttered environments.
To solve more complex problems involving a large number of dof with cluttered en-
vironments containing narrow passages, various probabilistic algorithms have been
employed. While probabilistic algorithms are not complete (i.e., they are not guar-
anteed to find a solution if one exists,) they are more efficient at finding solutions to

harder motion planning problems.

B. Configuration Space

A configuration of a robot refers to a unique position and oricntation. The Configu-
ration Space (C-space) is a multi-dimensional space where the dimensions represent
the dof of the robot. Therefore, a configuration coutains all information required to
describe the robot’s position and orientation in the real world. A valid point is a
confignration where the object is not colliding with itself or an ohstacle. The configu-
ration of a single point in three-dimensional space has three dimensions - its location
along the x-axis, y-axis and z-axis. For a cube moving in three-dimensional space,
the C-space is 6 dimensional- its location along the x-axis, y-axis, z-axis, roll, pitch
and vaw angles. As a result, as the robot becomes more complex, more parameters

are needed to define its configuration.

C. Probabilistic Roadmap Methods and Obstacle Based PRM (OBPRM) Package

Probabilistic Roadmap Methods (PRMs) (3] can be employed to solve motion plan-
ning problems. Random configurations are generated and the collision free configura-
tions are retained. These free configurations are then connected using simple "local”

planners to form a roadmap. In the query phase, the start and goal configurations

are connected to the roadmap and the shortest path connecting the start and goal
configurations is extracted from the roadmap.

The Motion Planning group at Texas A&M University has developed a number of
PRM variants for motion planning, e.g., obstacle-based PRM (OBPRM) {4], medial
axis PRM [8], closed chain PRM [6], and Customizable PRM [7] to name just a few.
OBPRM is a variant of PRM wherc the nodes arc generated along the surface on the
C-obstacles. These correspond to configurations in which robot is in contact with an
environment obstacle (see Figure 1) This helps in finding paths in narrow passages

which is one of the major challanges in antomatic motion planning.

e ---@--._. PEEEEES M

Fig. 1. OBPRM generates and conneects free configurations along the C-obstacle sur-
faces.

The group utilizes an internally developed package that incorporates all these
algorithms. The basic framework of the package consists of three input files, two
output files and two programs (see Figure 2.) The input files include:

Model Files (*.g) : These files define the robot and obstacles in the workspace
in BYU (Brigham Young University) format. An example is shown in Figure 3.

Environment Files (*.env): are a collection of model files which together define

Input iles || Programs [T Outpu Files

Fig. 2. OBPRM Motion Planning Package Framework

the motion planning problem’s environment. An example is shown in Figure 4.

Query Files (*.query): This file contains the start and goal configuration of the
robot. An example is shown in Figure 5.

The model files and the environment file are fed into the obprm program and a
Map file is produced. See Figure 6.

Map Files (*map): The map file is produced by the OBPRM program and stores
the roadmap for a specific environment. Sce Figure 7.

The map file and the query file are fed into guery program and a Path file is
gencrated.

Path Files (*.path): The path file contains the path, a set of configurations
linking the start and goal configurations. See Figure 8.

As we can see from the figures, the formats of the files used are very hard to
understand. Therefore we need a way to visually present the numbers in these files

to human users.

o

Fig. 3. Sample Model File for a 3D Cube

1 8[12]36
1112

1 1 1
1 1|1
1(-1] 1
1 1
A1t
15

Fig. 4. Sample Environment File for three Multibodies
Multibody Active

4

FreeBody 0 cube.g 0 00000
Freebody 1 linkl.g

Frecbody 2 link2.g

Frecbody 3 link3.g
Connection

3

01 Actuated

D. Visualization

Visualization is the process of mapping numerical values onto perceptual dimensions
[9]. Visualization is a way to show results in a manner that is intuitive to humans.
Pictures and animations presented propertly are easier to understand than numbers
generated by a computer program. Graphical representation of ideas and results
allows a larger audience to understand and appreciate them.

In motion planning we are concerned with the path a robot takes to reach the

goal position. Even in non-robotic applications like protein folding, we are concerned

Fig. 5. Sample Query File

000000
205100208 0.5

Fig. 6. Sample Map File
Roadmap Version Number 061300
H##H#H#PREAMBLESTART #4444
.Jobprm -f narrow -cd RAPID -gNodes ...
#H#H#H# #PREAMBLESTOP## ###
f#HHHENVPILESTART #4444
narrow.cny
H 44 HHENVFILES TOD 44 44
H###HLPSTART #4444

about the path the protein takes to fold to its native fold [10]. Visualization allows us
to see the robot interacting with its environment in the process of reaching the goal.
This enables us to determine the quality of paths. Tt also allows humans to "tweak”
the computer-generated paths to make them better by adding critical nodes that the
computter might have missed. In the case of complex robots and/or environments it
becomes necessary for some kind of visualization tool to present the program output

in a comprehendible format.

Fig. 7. Sample Path File

VIZMO_PATH_FILE Path Version 20001129

1

763

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
-0.078307 0.002790 -0.060100 0.000005 0.000038 0.001176
-0.156614 0.005581 -0.120200 0.000009 0.000076 0.002352
-0.234922 0.008371 -0.180300 0.000014 0.000114 0.003527

CHAPTER 1I

PREVIOUS WORK

A, Vizmo 1.0

The Parasol Motion Planning group has utilized various visualization tools for motion
planning analysis. Visualization of robot paths was first accomplished by using Prod-
uct Vision (PV) [11], developed by GE at their Corporate Research and Development
Center. PV was used primarily for path animation of the robots. However, creation
and display of paths using PV was cumbersome. It was also slow and user response
and animation were not good [2]. Finally, it only applied to 3D rigid objects.
Vizmo 1.0 (See Figure 8) was created by Renu Isaac, Department of Computer
Science, Texas A&M University for an MCS project, under the guidance of Dr. Nancy
Amato. It is a display tool for paths representing a robot’s motion in an environment.
It allows designers to create and manipulate environments in 3D space. It also enables

the users to generate motion-planning queries and display the results on the screen.

B. Vizmo 1.0 Drawbacks

VIZMO 1.0 is still used in Motion Planning group. Ilowever its effectivencss in
visualization for the current research projects in the lab has heen severely hampered
due to its old design and constraints. The design of the software is not suitable
for easy extension. As a result it has become increasingly difficult to support new
rescarch topics robots such as deformable robots, articulated robats, proteins, neuron
and cortical network models. Tt cannot be used to view configuration spaces and it
is not easy to add support for haptic devices (virtual reality devices which provide

users with a sense of touch). VIZMO 1.0’s interface is also old and not very intuitive

to use. See Figure 8.

Fig. 8. Vizmo 1.0

CHAPTER III

VIZMO++
Vizmo++ has been designed to replace Vizmo 1.0 for use in animating motion plan-
ning problems. It has been designed in a manner to overcome the shortcomings of
Vizino 1.0. Tts design also allows for easy extenion for future needs. Vizmo++ will
enable researchers to view their complex robots and environments using this tool and
to see the results of their motion planning algorithms interactively. The software will
simplify the construction of complex environments and will aid in the visualization of
the paths taken by their robot to go from one configuration to another. Its intuitive

interface is easy to understand and use.

A, Framework

Vizino++ has been designed broadly with the two main component types [Loadable
and GLModel (see Figure 9.) The ILoadable module loads the different file formats
into internal data-structures and the GLModel module contains the data-structures
for visual representation of the objects read in from the files. The environment, object
and map loader modules inherit the ILoadable module. The environment loader
module reads in the environment file, the map loader module loads the map module,
and object loader modnle reads in the object files into internal data structures. The
bounding box and the path computed from query also inherit the ILoadable abstract
class.

To display the information in 3D format the Environment Model object. Map
Model object, Bounding Box Model object and Path Model object all inherit from
the GLModel abstract class. These object types contain functions to map the BYU

format into its corresponding 3D representation on screen. The Plum Object (named

11

after the fruit) is the all encompassing modnle and the functions in different modules
are invoked through the Plum object. Therefore the plum object acts like an interface
for all the underlying modules. The GUI and events are managed by the Vizmo++
module which uses Plum to display the 3D information.

This design is highly extensible. Support for new robot and environment, types
can be easily added by creating new classes that extend ILoadable and GLModel.
Also, all the functionality is divided between different modules and this makes it easy
to modify modules independently of the others. The Plum Object acts like a black
box and only permits valid function calls. This allows the developers to modify and

extend the GUI and event handling withont affecting the underlying architecture.

B. Tncorporating Existing Technologies

Vizmo++ utilizes existing and proven technologies to accelerate development time,
improve quality and reduce testing time. OpenGL (wuw.opengl.org) was used as the
3D engine and Qt (wwu.trolltech.com) was employed for developing the GUI

OpenGL has been used as the 3D rendering engine. OpenGL is a standard and
has heen employed in developing scientific and computer game software. Tt is frec and
is well supported over different platforms. It is also easy to use and its use facilitated
quick mapping of numbers from the files to 3D shapes on screen. It also has support.
for mouse events that were incorporated into Vizmo++ to make it interactive. The
use of OpenGL has helped Vizmo++ to create quality graphics at a fast pace. Finally,
Vizmo++ will be able to take advantage of future extensions of OpenGL and increase
its functionality and power. '

Qt. developed by Trooltech www.trolltech.com, is a powerful GUT library. It has

many prebuilt GUI components which are casy to add. It signals and slots mechanism

has been useful for increasing the interactivity of Vizmo++. The use of Qt for GUI

development has enhanced the Vizmo++ interface and has made it intuitive to use.

C. Vizmo++ Components

- Plum +—
s G
-

Vizmo +
UL Y P

Fig. 9. Vizmo++ Architecture

The motion-planning problem is usnally displayed in a 3D fashion projected onto
a 2D screen. The user can interact with the environment and its objects by clicking on
them. The mouse can be used to zoom in and out, to rotate the environment and to
select objects. This helps in a closer evaluation of the solutions found by the motion
planning algorithms. There is also support for bubble help (small help windows that
pop up when the user hovers over a button) to assist new users by displaying the
function of the buttons when they hover on top of them.

The user opens the environment through the file menu. When an environment
files is opened the corresponding roadmap and path files are opened too. The roadmap
and path can be displayed by either clicking on their icon in the icon tray or through

the menus. For perspective, an axis is displayed on the bottom right corner. The

13

colors of the objects can be changed along with their rendering. They can be rendered
as solid, wire frame or hidden. In this way, the bounding box can also be hidden if
desired. The objects and background color can also be changed. This can help
produce quality images for publications, presentations and demonstrations.

Vizmo++ also includes a tree view control system which presents a hierarchial
view of the objects. All the objects comprising the environment can be seen and
selected by clicking on the environment link. The individual objects can then be
selected by clicking on them. After an object is selected, its information is displayed
onto the screen and its appearance can then be altered. This mechanism provides an
easy and fast way to view and sclect various elements of the motion planning problem
and its solution.

To animate the solution found by the motion planning package, the path the
robot takes to go from the start configuration to the goal configuration can be played
back onscreen. Vizmo++ contains a VCR control panel that can be used for playback
purposes. It displays the total number of configurations in the path and the step
size (the number of configurations to skip during playback to control the speed of
animation). Users can also step through the configurations one at a time in any
direction. The motion of the robot can be played back in the two directions forward
and backward. There are two mechanisms to jump to a particular step: by entering
the step number in the Frame field or by moving the slider bar to the particular step.
Again, the slider bar can be used to closely examine the robot interacting with its
environment by moving it back and forth.

Vizmo++ also provides support for saving screenshots and movies of the motion
planning problem and its solution. It allows the user to either save the entire 3D
space or select a region to space. The user can save an image of a particular region

by drawing a rectangular box and then taking a screenshot. Also, the animation of

the solution can be saved to a file. Vizmo++ allows the user to specify the start
step, end step and the step size for the movie. While the movie is being saved, a
progress bar is displayed on the screen. Vizmo++ uses the convert application to
convert images from ppm format to various other formats like jpeg, giff, bitmap,
ete. supported by the convert application. Therefore, in the future convert can add
support for additional picture formats.

The toolbars and panel can be moved around, docked and customized by the
user. With the use of standard and established technologies like OpenGL and Qf,
Vizmo++ is portable and in particual can be run on windows and linux operating
systems. Its modular and extensible design allows it to be easily expandable for future
requircments. As a result of the improvements Vizmo++ is now used in the Motion
Planning group lab for visualization purposes. Figure 10 shows Vizmo4+ being nsed

to study the solution of a motion planning problem.

D. Vizmo++ Programming Manual

Vizmo++ contains the following main modules: Plum, Source, GL, and Math Tool

This section will describe these modules and show their inter-relation with each other,

1. The Plum Module

The Plum module forms the guts of Vizmo++. It contains the GLModel, ILoadable,
Environment, Map, Plum Utility and Plum State objects. 1Loadable and GLModel

are abstract classes inherited by Environment and Map objects. The Plum utility

object initiates the Environment and Map objects. The Environment object consists
of Environment Loader and Environment Model objects. The Environment Loader

object inherits from ILoadable and parses the environment file. The Environment

(¢) The Roadmap (d) Animation of the solution

Fig. 10. Vizmo++ being used to analyze the Solution of a Motion Planning problem

Model object inherits from GLModel and contains data structures for visual repre-
sentation for the motion planning environment objects. Similarly, the Map object
consists of the Map Loader and Map Model objects that inlerit from ILoadable and
GLModel respectively. The Plum State object contains the state information for the
Plum object. It contains object rendering information (i.c., if the objects are dis-
played in solid, wireframe or invisible mode) and their display color. It also contains
information about any errors that might have occurred during the parsing of files or
rendering of the objects. Overall the Plum module encapsulates the ILoadable and

GLModel parts of the Environment and Map objects and fasciliates communication

16

between them.

This design is casy to extend. When the files are parsed, a configuration ob-
ject corresponding to the motion planning problem is initiated. To add support for
new types of environments, only new configuration classes need to be created and
integrated into the Environment and Map objects. As a result, different motion
planning problem types remain isolated from cach other in code because of different
configuration classes. When parsing the environment and map file, the appropriate
configuration class is antomatically initiated. This design has resulted in a clean and

a highly extendable code.

2. The Source Module

The Source module includes the the main function and contains code to render the
robot and the bounding box. Tt also contains the GUI object. The GUI object
consists of various GUI element classes such as VCR control, snapshot toolbar and
tree view control. Each of the elements have their own classes and are initiated in
the main GUI class. Therefore, additional GUI elements can be added and existing
GUI elements can be modified independent. of each other making the code extensible.

The Qt libraries are used extensively in this module.

3. The GL Module

The GL module sets up the global 3D rendering environment by creating camera,
lights and the perspective axis. It also initializes the picking box which can be used
to select multiple objects. When a file is loaded the camera is focused so that the
bounding box appears centered on the screen. Lastly it enables mouse and keyboard

events. This module makes extensive use of the OpenGL libraries.

17

4. The Math Tool Module

The Math Tool module contains the code for performing various mathematical com-
putations. They include matrix operations, Euler Angle and other vector calculations
necessary for 3D visualization.

Thesc modules together make up Vizmo-++. Makefiles are provided that produce

the executables.

18

CHAPTER IV

APPLICATION: CAMPUS NAVIGATOR
There are a number of applications of motion planning research. One application
currently under development in the Parasol Lab is a campus path planner. This
program will allow users to find their way across the Texas A&M University campus.
Essentially, the campus navigator is similar to applications such as Yahoo! Map and
MapQuest in that it provides users with directions (and a image of the route) to get
from one location on campus to another.

However, the campus navigator goes beyond the simple point-to-point route plan-
ning of these existing map programs. The campus navigator is designed to allow much
more sophisticated queries tailored to the specific needs of the nser. For instance, the
campus navigator takes transportation mode changes into consideration. The user
can specify if she will be walking, riding a bike, driving a car, or willing to take the
bus.

As an example, consider a user wishing to find a route to get from a building on
main campus to a building on west campus. There are a number of ways to accomplish
this. One could simply walk to west campus. Using the campus navigator system,
the user can find which bus(es) to take, where and when they pick up, saving time
and effort. The system will take into account driving conditions (i.e. closed streets
due to construction), parking lots based on permit restrictions, and handicapped

accessibility to provide the best path for the user.

A, Components of the Campus Navigator

Currently, the campus navigator is under development. A prototype of the system

is expected to be ready by the end of the Spring 2003 semester. The next sections

Fig. 11. Overview of Campus Navigator

describe the four fundamental components of the campus navigator system.

1. Overview of Campus Navigator

Before delving into each of these components, an overview of the system as a whole
is in order. The user will interact with the system through a set of web pages. These
pages allow the user to specify the start location and destination. The user's selection
is sent to a program, query, that searches a preconstructed graph of campus (created
via the roadmap editor). This graph, which is stored in a database, contains all the
data needed by query to select a route that meets the user’s request [12].

The path resulting from query’s search of the graph is sent to Vizmo++. Using
a 3D model of campus and the path, Vizmo++ creates a JPEG image that depicts
the route through campus. This JPEG image is sent back to the user’s browser. In

addition to the image, a textual description of the route is provided.

2. The Campus Graph

The fundamental component of the campus navigator is a graph. As with many

motion planning problems, this application is built upon the idea of finding a path

20

through a graph. All the various constraints are expressed through propertics of the
vertices and weights on the edges of this graph. Vertices are used to represent. physical
places on campus such as buildings and parking lots. The edges of the graph are nsed
to represent streets and walking paths through campus.

For this application, the graph is stored in a database. The current implemen-
tation employs the open source MySQL database management system. There are a
number of reasons for storing the graph in a database. First, it allows concurrent
access to the graph from the various components of the system. Initial designs called
for the graph to be stored in a file, which is a customary storage medium for graphs.

Second, the database simplifies the sharing of data between the campus navigator
system components. As an example, the roadmap editor, query, and the web interface
nced to access building names. The roadmap editor uses the names to allow vertices to
be associated with buildings. Query employs building names when generating textual
directions, and the web interface needs the names to give the user a list of buildings to
choose from (for specifying start and/or destination). Each of these components are
currently implemented in disparate languages. The database provided the simplest

medinm through which all three pieces could access the same data.

3. The Roadmap liditor

Currently, the campus graph is constructed manually. This is somewhat ironic as
much of the work in motion planning is aimed at automatically creating a roadmap.
Automatic construction of the campus graph is not realistic as most autogeneration
techniques rely on randomly generating vertices and connecting those vertices with
edges. Random placement of vertices is not appropriate for this application. as ver-
tices need to be tied to specific points on campus. For instance, a vertex needs to be

associated with each building and parking lot.

21

To ease the construction of this large graph, a roadmap editor is currently under
development. This program allows the campus graph to be built over an image of the
campus. The user of this program can place vertices at each of the buildings, parking
lots, intersections, etc. on campus by simply clicking on the building, parking lot, or
intersection in the image. Then edges can be added for the streets and walking paths
between these vertices. All of this information is stored in the centralized database.

Even if the campus graph could be generated randomly, all the properties of the
vertices and edges of the graph wonld have to be manually specified. For instance,
for a vertex representing a parking lot, someone must specify which permits (student,
faculty/staff, etc.) are allowed to park in the lot. This is the second role of the
roadmap editor. It allows this information to be entered for all the parts of the

graph.

4. Campus Graph Query

The query program is responsible for finding routes through the graph that meet
the user’s request. The system uses Markov-like states and flexible goal states so
that general optimization criteria can be used (12] [13] [14]. This application employs
a modified Dijkstra’s algorithm, which enables one to consider more general opti-
mization criteria and relaxed definiations of the goal state, to find the optimal path
contained in the roadmap through campus [13] [14). Running as a service. the web
interface will send requests to query and receive the computed path for Vizmo++ to

display.

"

5. Campus Path Visualization Via Vizmo++

Vizmo++ is responsible for generating a picture of campus with the path overlayed.

After the user selects the start and goal points and query generates a path file,

22

Vizmo++ opens up a 3D model of the campus and the path file to begin creating the
snapshot. The camera then zooms onto the path and creates the image. This image

is sent back to the web server to be displayed on the user’s browser.

6. User Web Interface

Users of the campns navigator will interface with it via a set of web pages. Users
will sclect the start and destination via selection boxes populated by data from the
database. From the user selections, the web pages determine the vertices that corre-
spond to the selected locations. These so-called start and goal vertices are given to
query which finds the route. The web pages receive an image of the ronte from an

image gencrated by Vizmo++.

[——

[Eor—— i

[

Fig. 12. Campus Navigator Prototype Interface using Vizmo++

Initially, the web interface will provide simply a two dimensional map of campus
with the path overlayed. Similar to MapQuest and other programs, the campus

navigator web interface allows users to zoom in and out on the returned campus

23

ca | [
il J—
Fra—| !
ol 1

Fig. 13. Campus Navigator Prototype Interface

path. Ultimately, it is envisioned that users would be able to gencrate a movie,
allowing the user to "fly-throngh” a 3D model of campus along the path generated
by query.

The campus navigator is an interesting and useful application of motion planning
rescarch. Exploiting the technigues developed to plan the paths of robots, the campus
navigator aims to guide people around the large campus of Texas A&M University.
It is envisioned that this application would potentially be useful for cities. By taking
into consideration all the various modes of transportation such as buses and subways,
the campus navigator could be extended to a city navigator, allowing residents and

visitors to efficiently navigate the city.

24

CHAPTER V

CONCLUSIONS
Vizmo++ has been developed to animate the solutions found by the motion planning
algorithms developed at the Motion Planning group at Texas A&M University. The
Campus Navigator is being developed as an application that makes use of the rescach

done with Vizmo++- and the motion planning algorithms.

A. Summary of Work Done

The research focused on developing a 3D Visualization tool to study motion planning
problems. The solution developed, Vizmo-++, allows researchers to model robots and
environments and to see the results of their algorithms interactively. Vizmo++ has
been designed in a highly extensible fashion which will allow easy future extension.
The user interface is also very intuitive to use.

Campus Navigator is a tool to find directions for users on Texas A&M Campus.
Tt allows the users to customize the path by choosing varions modes of transportation
and by further tailortug the search, e.g., by specifying that they want to avoid dimly

lit paths after Hpm.

B. Future Work

Vizmo++ is designed to be used for visualizing all motion planning problems solved
in Motion Planning group. Too achieve this, it has to support articulated robots.
Articulated robots are composed of multiple links joined together. Then Vizmo++
can be used to model and view high dimensional objects.

Currently, Vizmo++ can only used be used to visualize the motion planning

problem and its solution. There is no integration with the OBPRM package. A Futnre
goal would be to allow the user to change the start and goal position. Vizmo++ should
then rerun the query program and display the new path file.

Other future work might include a robo cam where the camera is positioned
on the robot and users get an option for a view of the animation from the robots
perspective. Currently users can change the color of the objects; in the future they
should be also allowed to apply textures to the objects. Support for haptic devices will
add force feedback to the visualization. This can be used to position the individnal
nodes through the sense of touch. Also functionality for Visualization of 2D and 3D

C-space can be added in the future.

26

REFERENCES

(1] Y. K. Hwang and N. Ahuja, “Gross motion planning - a survey,” ACM Com-

puting Surveys, vol. 24, no. 3, pp. 219-291, 1992.

[2] J. C. Latombe, Robot Motion Planning, Kluwer Academic Publishers, Boston,

MA, 1991.

[3] L. Kavraki, P. Svestka, J. C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,” TEEFE

Trans. Robot. Automat., vol. 12, no. 4, pp. 566-580, August 1996.

[4] N. M. Amato, O. B. Bayazit, L. K. Dale, C. V. Jones, and D. Vallejo, “OBPRM:
An obstacle-based PRM for 3D workspaces,” in Proc. Int. Workshop on Algo-

rithmic Fonndations of Robotics (WAFR), 1998, pp. 155 -168.

{5] C. Holleman and L. Kavraki, “A framework for using the workspace medial axis
in prm planners,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2000, pp.

1408-1413.

[6] L. Ilan and N. M. Amato, “A kinematics-based probabilistic roadmap method
for closed chain systems,” Tech. Rep. TR 00-003, Department of Computer

Science, Texas A&M University, 2000.

{7) G. Song, S. L. Miller, and N. M. Amato, “Customizing PRM roadmaps at query
time,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2001, pp. 1500- 1505.

(8] S. A. Wilmarth, N. M. Amato, and P. F. Stiller, “MAPRM: A probabilistic
roadmap planner with sampling on the medial axis of the free space,” in Proc.

IEEE Int. Conf. Robot. Autom. (ICRA), 1999, pp. 1024-1031.

27

[9] Marchak et al., “The psychology of visualization,” IEEE Visualization 93, pages

351-54, pp. 351-54, 1993,

10] G. Song, S.L. Thomas, K.A. Dill, J.M. Scholtz, and N.M. Amato, *A path
8.

planning-based study of protein folding with a case study of hairpin formation

in protein G and L,” in Proc. Pacific Symposium of Biocomputing (PSB), 2003,

pp. 240-251.

{11} Renu Isaac, “A tool to visualize the motion of 3d objects in space,” Department

of Computer Science, Texas A&M University, May 1998.

[12] Roger Allan Pearce. “Optimal motion planning with constraiuts for mobile robot
navigation.” Senior Honors Thesis, University Undergraduate Fellows program,

Texas A& University, 2003.

[13] Nancy M. Amato Jinsuck Kim, Roger A. Pearce, “Feature-based localization
using scannable visibility sectors,” in Proc. IEEE Int. Conf. Robot. Autom.

(ICRA), 2003, To appear.

[14] Nancy M. Amato Jinsuck Kim, Roger A. Pearce. “Extracting optimal paths
from roadmaps for motion planning,” in Proc. IEEE Int. Conf. Robot. Antom.

(ICRA), 2003, To appear.

28

VITA

Bharatinder Singh Sandhu began his undergraduate studies in the Fall of 1999.
He is pursuing a Computer Engineering (Computer Science Track) Degree from the
Departhment of Computer Science at Texas A&M University.

He works as an undergraduate researcher with the Dunamic Spatial Modelling
for Tomorrow (DSMFT) group. DSMFT is a robotics group that specializes in motion
planning algorithms, graphics and robotics.

He is interested in robotics especially in the research done in robotics for graphics

and animation.

Permanent address:
515 Sector 16C
Chandigarh, India

The typist for this thesis was Bharatinder Singh Sandhu.

