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ABSTRACT 

Selective Anisotropic Growth of Zeolite Crystals. (April 2003) 

Tasha Desai 
Department of Chemical Engineering 

Texas A&M University 

Fellows Advisor: Dr Daniel F. Shantz 
Department of Chemical Engineering 

Prectse control over particle size and morphology is emerging as a critical issue 

in the design of nanostructured materials. The explosive growS of nanoparticle 

synthesis is a good example of this. As material chemists have developed the ability to 

synthesize discretely sized and shaped semiconducting and metal/metal oxide 

nanoparticles, new applications for these materials have emerged including catalysis, 

sensing, tags for biomolecules such as DNA, and components of colloidal arrays. While 

numerous advances have been made in nanoparticle synthesis, these have been generally 

restricted to matenals possessing relatively simple structures (fcc, bcc, hcp) with small 

unit cells. To date, the ability to modulate particle size and shape of more complex 

oxides such as zeolites has not been demonstrated. That is the goal of this work, to 

develop the ability to synthesize one- and two-dimensional particles of complex 

materials, which could be integrated into micro devices such as sensors and electronics. 

To achieve this end we are attempting to grow zeolite particles in the confined water 

spaces formed in water/surfactant systems, using these "nanoreactors** to modulate 

zeolite growth. 



Our work to date has focused on the synthesis of two dimensional (5x100x100 

nm') particles of ZSM-5 in the presence of sodium-AOT, an anionic surfactant that has a 

high propensiny for forming lamellar bilayer (L ) phases in solution. Our results from 

this system indicate that while we are forming high aspect ratio particles, they are in fact 

a sodium silicate phase, not the target phase ZSM-5. Current work is elucidating 

whether replacing the sodium with other cations such as tetrapropylammonium will give 

the desired ZSM-5 phase. Also, we are exploring the use of cationic surfactants that 

seem more promising for this application. If this approach is successful it opens new 

avenues to crystallizing complex solids with specific shape, size, or morphological 

properties, opening new applications for zeolite materials. 
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INTRODL)CTION 

Zeolites are a unique, technologically important class of materials related to 

the natural feldspars and feldsparthoids minerals [I, 22, 3]. Zeolites are microporous 

crystalline tectoaluminosilicates comprised of tetrahedral building units (TOo T = Al, 

Si) linked through bridging oxygen atoms. A rich diversity of three-dimensional 

structures exist in zeolitic materials because of the numerous ways to link these 

tetrahedra [37]. Zeolites, because they are crystalline, have well defined structures with 

uniform pore sizes between three to ten angstroms in diameter and can be made with a 

wide variety of framework compositions, ranging from a Si/AI = I to infinity. Zeolites 

containing aluminum (Al") possess anionic frameworks, resulting in the need for 

charge-compensating extra-framework cations. A wide range of cations including alkali 

metal and ammonium cations as well as transition metals can be utilized as extra- 

framework species. It is also possible to substitute other elements for framework 

aluminum and silicon atoms including titanium, iron, and gallium. 

All of these factors give considerable flexibility for tuning the chemical 

properties of zeolites and explain why zeolites have found widespread use in 

heterogeneous catalysis, adsorption and separation of gases, and ion-exchange 

operations [1, 3, I g, 22, 37]. Along these lines the first commercial application of 

zeolites was in 1954 by Union Carbide for use as drying agents. Zeolites were first 

This thesis follows the style and format of MLA Handbook for Writers of Research 

P~aers. (Gibaldi, Joseph. MLA Handbook for Writers of Research Pa ers. 4 ed. New 

York; The Modern Language Association of America, 1995. ) 



introduced commercially in industrial separations and catalytic applications m the late 

1950s and early 1960s. Currently, zeolites are used commercially in the separation of 

gases (e. g. pressure swing adsorption [32]), heterogeneous catalysis (e. g. FCC unit [28]), 

and in ion-exchange operations, replacing phosphate-based detergents. 

As described above, zeolites have found widespread industrial application and 

have substantially impact society. As one example, consider that the zeolite catalysts 

used today in fluidized catalytic cracking to produce gasoline are a factor of 3-4 times 

more efficien in terms of feedstock utilization as compared to the amorphous 

silica/aluminas used prior to zeolites. However, given the relatively mature nature of 

zeolite science, researchers are looking to expand the use of zeolites beyond the well- 

established areas of ion exchange, separations, and catalysis [7]. 

In the current work we are try to synthesize zeolite particles that possess 

extremely high aspect ratios, essentially two-dimenstonal particles. Our initial target is 

the synthesis of 100 x 100 x 5 nm" zeolite slabs. This would be substantial, as precise 

control over particle size and morphology is emerging as a critical issue in the design of 

nanostructured materials. The explosive growth of nanoparticle synthesis is a good 

example of this [11, 13]. As materials chemists have developed the ability to synthesize 

discretely sized and shaped semiconducting and metal/metal oxide nanoparticles new 

applications for these materials have emerged including catalysis, sensing, tags for 

biomolecules such as DNA, and components of colloidal arrays [21, 25, 27, 28]. While 

numerous advances have been made in nanoparticle synthesis, these have been generally 



restricted to materials possessing relatively simple structures (fcc, bcc, hcp) with small 

unit cells. With the exception of a recent report on the synthesis of ALPO&-5 fibers [40], 

the ability to exert precise control over the particle shape and size of matenals with 

larger/more complex unit cells (e. g. zeolites) has not been demonstrated. The ability to 

synthesize monodisperse two-dimensional particles of zeolites where the direction of 

crystal growth can be deliberately manipulated would be of great fundamental and 

practical interest to the materials chemistry and zeolite science communities. From a 

fundamental viewpoint, the molecular insights needed to make such advanced materials 

rationally would open new directions in materials research. Moreover, zeolite particles 

with high surface/volume ratios where discrete crystallographic faces are exposed would 

be model catalysts for zeolite scientists probing surface-mediated chemical reaction 

mechanisms proposed in the literature, such as pore-mouth selectivity [36]. The 

practical impact would lie not only in new materials for existing applications (i. e. 

catalysis, separations), but also for emerging areas such as microdevices, molecular 

electronics, and nanostructured materials [6, 35], Here we propose to achieve this end 

by coupling surfactant science with inorganic materials synthesis by using the well- 

defined aqueous domains that can be formed using water/oil/surfactant systems as 

confined spaces to assemble inorganic materials possessing complex structures. 

An example of one such application for the materials we plan to make in this 

work would be their integration into, microelectronics, or "lab-on-a-chip" devices. For 

instance, the zeolite particles made in this work could be patterned into the channels of a 



microreactor, shown in Figure 1, and used as catalysts, sensors, or absorbents in a 

"lab-on-a-chip" device. By aligning the pores of the zeolites in an axial orientation, a 

metal could be passed over the surface to form metal plates or wires. 

To achieve selective growth in one- or two- 

dimensions, the particles wtll be assembled in the presence 

of amphiphilic molecules such as surfactants. Nonionic 

alkyl poly (oxyethylene) surfactants and poly (oxyethylene) 

block copolymers are important families of surfactants and 

are widely used in "emulsifying, defoaming and 

antifoaming, coating, thickening, solubilizing, cleaning, 

lubricating, wetting, pharmaceutical, coal and 

petrochemical industries, and household applications" [41]. 

These surfactants have good interfacial stabilization Figure 1: Microreactor 
From Janicke, et al J. Catal. 
~ccc tet ztIz properties and the advantages of being low-cost, nontoxic, 

and biodegradable. Low molecular weight surfactants 

such as block polymers also have the advantage of permitting solution organization of 

larger structural features [41]. This characteristic was applied to zeolites in the hope of 

organizing the particles and growing the zeolites with the desired morpholotp. To 

facilitate this anisotropic crystal growth, we use water domains between surfactant 

bilayers, the size of which can hopefully be varied by adjusting the surfactant/water 

ratio. By using these "nanoreactors" to enhance the growth rate of zeolite particles in 



specific directions, we hope to grow particles with the desired morphology. 

Surfactants are a class of organic molecules with a hydrophobic (water fearing) 

tail group and a hydrophilic (water loving) head group. The amphiphilic nature of these 

molecules allows their aggregation state to be adjusted based on the amount of surfactant 

present, the surfactant/solvent ratio, and temperature. The surfactant used during this 

research was bis (2-ethylehexyl) sulfosuccinate sodium salt, or AOT (Figure 2) because 

of its ability to generate a lamellar structure in solution over a wide range of AOT/water 

ratios. By varying the amount of water in the system we can systematically vary the 

thickness of the water layer between the AOT layers. This should facilitate making 

particles of varying thickness in the short dimension. Based on studies in the literature 

varying the surfactant between 10-40~/o weight should enable us to vary the water layer 

thickness between 20 and 5 nm [2]. 



in this work, we have focused on the gmwth of ZSM-5 (Figure 3) in these 

confined aqlueous spaces, This material was chosen as its syntliesls has been extensively 

studied (4, t4, 162931, 33343g) and it is well known that it can be nucleated and 

crystalhzed from bulk solutions under very mild conditions. During this research, 

zeolites with the MF l framework were synthesized by miixiing tctrapropylammonium 

hydroxide (TPAOHj, which acts as the structure-directing agent, a silicon source, and 

water. ZSM-5 is a member of the the pentasil family, so named as their fratnework 

structures are built from Vive-membered riitgs [l 5Il 



Figure 3 — Ml'lframework — from the lnternat tonal Zeolite Assoetation (12/ 

Throughout the course of this research, I became familiar with different methods 

of synthesis as we attempted to make the thin plates of zeolite crystals. Using several 

methods of characterization, we have qualitative evidence that we are making high- 

aspect ratio particles. Moreover, we have some tentative evidence (by infrared 

spectroscopy) that these materials possess the same structural subunits as ZSM-5. 

However, characterizing these materials has proved much more difficult than initially 

anticipated. In addition, the use of this surfactant, AOT, has also hindered our progress, 

as it was difficult to remove it from the sample. To circumvent this problem, other 

methods of collection were used to facilitate the removal; however, the use of certain 

methods introduced other factors to the experimental setup, such as the problem of 

aggregation of the particles when using a centrifuge to collect the sample. Overall, I was 

able gain experience with several characterization methods and experimental setups as 

we found altemativcs to problematic procedures. 



EXPERIMENTAL METHODS 

Lxperimeiual Procedure 

To synthesize the zeolite nanoslabs, nine grams of tetraethyl orthosilicate is 

added to 7. 9 grams of a forty percent aqueous solution of tetrapropylammonium 

hydroxide in a teflon container. This solution undergoes vigorous stirring for thirty 

minutes at which time nine grams of water is added. Previous work [29] has shown that 

the resulting clear solutions contain uniform particles 2. 8 nm in size. Once the nanoslab 

mixture has been allowed to age for an hour at room temperature the appropriate amount 

of AOT is added under vigorous mixing After a homogeneous mixture is obtained, the 

container is put in a constant temperature bath or oven for the heating period. Initial 

attempts to recover the zeolite product will utilize filtration afler diluting the solutions 

with excess water so the surfactant content is less than one weight percent. 

The three synthesis parameters we varied are the surfactant/water ratio, 

temperature, and reaction period (vary between 1-3 days). Increasing the temperature 

should increase the rate at which the zeolite particles grow in size from the initial 

precursors. An added benefit of choosing AOT as our surfactant is that the lamellar 

microstructure is retained over a wide range of temperatures at the AOT/water ratios we 

are employing [2]. The water/AOT ratio is varied to determine if we can utilize varying 

the water layer thickness to control the thickness of the final material obtained. Overall, 

by analyzing these parameters, we hoped to assess how the synthesis temperature, 



synthesis duration, and AOT content influenced the assembly of the zeolite 

nanoparticles. 

Scanning Electron lirltcroscopy (SEM) 

One technique used to study the zeolite crystals is scanning electron microscopy. 

This technique can be used to characterize organic and inorganic materials and surfaces. 

The area to be examined is irradiated with a finely focused electron beam, which is 

either static or swept in a raster across the sample's surface. When the electron beam 

hits the surface, several different types of signals can be produced including secondary 

electrons and backscattered electrons. These signals can be used to determine many 

characteristics of the sample such as composition, surface topography, and 

crystallography [9]. 

There are several reasons that can explain the usefulness of the SEM including 

the high resolution that can be obtained. Most commercial instruments have a 

resolution on the order of ten nanometers with advanced instruments achieving 

resolutions better than two to five nanometers. In addition to high resolution, the SEM 

also produces a three-dimensional image of the sample, which is a "direct effect ol the 

larger depth of field, as well as to the shadow-relief effect of the secondary and 

backscattered electron contrast'* [9]. 
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Samples to be analyzed using scanning electron microscopy need not be made 

thin enough to transmit electrons, as SEM measures the backscatter of electrons and not 

the absorbance. SEM is also able to help characterize samples with pronounced 

topography, which makes it a versatile and powerful machine and therefore a major tool 

in research and technology [9]. 

To generate an image, the electron gun, at the top of the electron column, 

produces a source of electrons and accelerates them to an energy between one and forty 

keV. However, the diameter of the beam produced is too large to generate a sharp image 

at high magnification. Therefore, electron lenses are used in the microscope to reduce 

the beam diameter and place a smaller, focused electron beam on the sample [9]. 

The scanning electron microscope that will be used in the future to analyze the 

zeolite crystals uses a conventional triode electron gun, which consists of a tungsten wire 

filament as the cathode, a Wehneir cylinder of gfid cap, and an anode. Before an image 

can be generated, the filament must be saturated. The filament current is increased until 

the beam current reaches a point where it no longer increases, a condition that is known 

as saturation. Then the user can be sure that the electron gun is producing a stable beam 

current [9]. 

X-Ray Diffraction 

The first step in the characterization of any zeolite is verilying that the 

material synthesized is crystalline and contains no impurities. Diffraction techniques are 

the most suitable tool for studying the crystallinity of zeolites as they probe long-range 



order. Most zeolite syntheses do not provide crystals of sufficient size and quality for 

analysis using single-crystal techniques, so usually powder x-ray diflraction (PXRD) 

methods are employed. Here we use PXRD to identify the phase synthesized and verify 

it is a pure phase free of amorphous material. This ts done by assigning Miller indices to 

all of the reflections (peaks) in the XRD pattern and comparing the experimentally 

observed positions of these reflections to those for the known structure. A detailed 

discussion of the theory of scattering and diffraction is not given here, but can be found 

elsewhere [8, 10, 17, 19]. 

In x-ray diffraction, a packed sample is subjected to an x-ray beam, which 

interacts with the sample to produce a signal. Some of the photons may not appear in 

the transmitted beam due to transformations within the sample. For instance, some may 

have undergone scattered radiation by deviating from their course without a loss of 

energy. Others may have suffered a small loss of energy by a slight change of 

wavelength, which is called incoherent scattering. In addition, photons may be 

absorbed by atoms of the sample, which causes the atoms to be excited and eject an 

electron. Through this photoelectric elTect the atoms return to ground state and emit 

either another electron or X-photons whose wavelength is a characteristic of the sample 

[10]. 

X-rays are electromagnetic radiation with a wavelength much shorter than 

visible light. The x-ray source used in this work is CuKa which has a wavelength of I = 

1. 541 A. Crystalline materials possessing periodicity on this length scale will coherently 

1 =2d„„, sint9 
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scatter x-rays according to Bragg's law 

In Equation 1, il, is the x-ray wavelength, diii is the distance between planes 

with Miller indices hkl, and 8 is the angle of the incident x-rays. Figures 4 and 5 show a 

representation of the Bragg reflection process and a typical powder XRD pattern for a 

zeolite. Experimentally the x-ray wavelength and positions of the reflections are known 

so here we need to be able to assign all the reflections hkl values (i e. index the powder 

pattern). For materials of known structure, this is done by deconvoluting the PXRD 

peaks and comparing the positions of the observed reflections to the known values based 

on structures published tn the literature [24]. Further, the positions of the reflections can 

be calculated from Bragg's law using an appropriate expression for diri based on the 

symmetry and parameters of the unit cell. For the case of cubic sytnmetry with unit cell 

parameter II, the expression for daiI can be found from 

h'+k'+l 
l IaI 

a 
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dakl 

e 
' 

e 

Figure 4i Detailed geometry of Bragg reflectio. 7'he path difference between the two 
rays Ai and Az is tQAz ~ AzR) which is equal to 2daetsinH Adapted from 
reference /79/ 

10 20 30 40 
2 Theta, degrees 

50 

Figure 5i 7ypical PXAD panern of an as-synthesized zeiilite. 
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After all of the reflections are assigned Akl values, the unit cell parameters of 

the synthesized material are determined using a least-squares algorithm and compared to 

the reported values. If it is not possible to assign hkl values to all the observed 

reflections in the XRD pattern, then either the phase contains impurities or the symmetry 

is lower than expected. The structures of most zeolites are solved after the organic 

structure-directing agent is removed by exposure to air at higher temperatures 

(calcination), and it has been shown that the symmetry of the as-made material can be 

different (usually lower) than that of the calcined material. The presence of amorphous 

impurities is manifested as a broad featureless line in the range of 20-30 degrees 20 
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Infrared Spectroscopy 

Another characterization method employed was infrared spectroscopy. A beam 

of radiation in the infrared region of the electromagnetic spectrum is allowed to interact 

with the sample. The sample absorbs some of the wavelengths and allows others to 

continue through unchanged. All molecules have a certain amount of energy 

throughout their structure, which causes the bonds to stretch and contract and thus, 

vibrate. This energy is not continuously variable but is instead quantized; the molecule 

can stretch or bend only at specific frequencies. Therefore, when a molecule is 

irradiated with electromagnetic radiation, energy is only absorbed when the frequency of 

the radiation is the same as the frequency of the vibrational motion. 

As a molecule absorbs the radiation, the vibration increases in amplitude. By 

measuring the infrared spectrum, we are able to see the different motions a molecule has 

because each absorbed frequency corresponds to a specific molecular motion. 

Interpreting these motions allows us to see what bonds are present in the molecule. 
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RESULTS 

Each sample was prepared from a standard zeolite mixture. Nine grams of 

tetraethyl orthosilicate was added to a solution of 7. 9 grams of forty percent aqueous 

solution of tetrapropylammonium hydroxide, nine grams of water, and the appropriate 

amount of AOT. The solution was then allowed to mix for the necessary period of time 

before centrifuged at 2000 rpms for five minutes. Afterwards, the solution was filtered, 

and the solid was collected and allowed to dry before undergoing x-ray diffraction. The 

parameters varied during the course of this research were the reaction time, 

surfactant/water ratio, and temperature. 

The first set of samples was run at thirty-five weight percent AOT at fifty 

degrees Celsius The time that the sample was allowed to mix was varied. 

TABLE 1 

Varied Reaction Time 

; Sample Reaction Time Final Mass 

012 

014 

2 hours 

4 hours 

2. 23 grams 

3. 14 grams 

013 

011 

20 hours 

24 hours 

2. 54 tnnms 

3. 39 grams 
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Overall, by examining Table I, it appears that the longer the solution was allowed to stir, 

the greater the final mass of the sample. The discrepancy of the 4-hour sample could be 

due to contamination of the sample or failure to remove all of the surfactant from the 

sample. A representative x-ray diffraction pattern is shown below for the sample 

allowed to react for two hours. 

Sample TD-012 

Figure 6: X-ray diffraction for Sample TDOI2 

Through examination of the x-ray diffraction patterns of the samples (Figntre 6), 

one can conclude that the samples produced similar signals with only a slight difference 

in intensity of the peaks. Interpreting the x-ray diffraction results is not trivial; however, 

we can conclude that these materials are not amorphous silica. X-ray diffraction ran on 

amorphous silica does not exhibit the low angle-feature observed at a two theta value of 

7 degrees. Our hypothesis is that we have made small (less than twenty nanometers) 



particles of ZSM-5, hov:ever, additional expenments, such as scanning electron 

microscopy, are needed to validate this hypothesis. 

Upon running scanning eilectron microscopy on the sample reacted for two hours, 

we produced an image which allowed us to conclude that we were not making the 

Intended plates we had hope for (Figure 7). Wc were able to conclude that we were 

making small particles, but the characteristiics of the sample did not match what we had 

hypothesized. This could be due to several reasons such as the aggregation of the 

particles, the preparation of the sample before characterizing, or any residual surfactant 

on the sample. In addition, SEM is generally inconclusive duc to our inability to 

disperse the parhcles during synthesis, to the side effects of'the sputtering process, and 

to Instrumental himitations as a high accelerating voltage can lead to charging of the 

sample. 
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The next set of samples was run at thirty-five degrees Celsius for twenty-four 

hours with the surfactant/water ratio varied. 

TABLE 2 

Varied Surfactant/Water Ratio 

Sample Percent AOT Final Mass 

021 15 0 grams 

020 20 0. 25 grams 

018 35 2. 41 grams 

By comparing the data in Table 2, it can be concluded that the higher the weight percent 

of the AOT used, the larger the final mass of the sample would be. In addition, the size 

of the samples seemed to increase with an increase in percent AOT. This conclusion 

will be validated or invalidated with the results of the scanning electron microscopic 

image to be developed at a later date. 

The x-ray diffraction of these samples is similar to those in Figure 6. Based on 

the signals produced, one can conclude that the samples are of similar material as the 

positions of the peaks are relatively similar although the intensities vary (Figure 8). 
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TD-018 

2-Tt 

l'i gure 8: X-ray diffraction for 35 weight% AO1' sample 

Finally, various collection techniques were tested at two hours. 

TABLE 3 

Varied Collectton Techniques 

Sample Percent AOT Temperature (C ) Final Mass 

010 35 50 2. 39 grams 

012 

015 

35 

35 

50 

50 

2. 23 grams 

1. 63 grams 
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The first sample (010) was only filtered, sample 012 was centrifuged at 2000 rpms for 

five minutes, and sample 015 was centrifuged at 400 rpms for 30 minutes. It appears 

that there was little difference in the final mass for the first two samples, but the last 

sample had a final mass over half a grams less than the other two. This could have been 

caused by the inabihty for the particles to settle out of solution at such a low speed. 

Temperature was also varied, but the final mass of the samples did not change 

with temperature. Therefore, we can conclude that there is little correlation between 

temperature and sample mass. 

A colloidal zeolite solution was prepared for a basis for comparison. Dynamic 

light scattering was performed on the solution to determine the size of the particles. It 

can be concluded from the data that the particles have an average diameter of fiAeen 

nanometers. 

In addition, infrared spectroscopy was performed on the samples. The presence 

of a peak around 550 cm ' is consistent with silicate building units similar to that of 

ZSM-5 in the sample. 
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Figure 9: Infrared Spectrum of a cirlloidal zeolite sample 

0000 0000 0500 0 500 

l'igure IOi Infrared Spectrum of ZSM-5 made in the presence of AOT 
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By comparing the above spectrum with that of the colloidal zeolite solution, we have 

qualitative evidence that the materials we are synthesizing have similar structural units 

to that of ZSM-5. Therefore, we still retain the properties of a zeolite even with the 

addition of the surfactant. 

Experiments were also performed to examine different synthesis procedures. For 

instance, a nanoslab solution was made with 9 milliliters of water, 7. 9 tetrapropyl 

ammonium hydroxide, and 9 grams of teu'aethyl orthosilicate. Then 5. 71 grams of AOT 

(surfactant) was added to the solution to make a 40 weight percent AOT solution. As a 

comparison, another solution was made by placing the same amount of AOT in a llask 

and then adding water, tetrapropyl ammonium hydroxide, and tetraethyl orthosilicate. 

The previous solution, TD022, was filtered with 4000 milliliters of water, and the solid 

was recovered. However, the other sample, TD023, did not filter, and the sample 

collected retained the surfactant on it, which was evident in the infrared spectrum 

produced by the sample (Figure 11). 

16- 

15- 

14- 

13- 
AOT7 

12- 

\0- 

7- 

250D 2000 
W I ( 4) 

1500 5DD 

Figure I I: Infrared Spectrum of Sample 70023 
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The sample where I was able to remove all of the surfactant did not produce any peaks 

signifying the presence of AOT as seen in Figure 12. 

27 

23 

22 

21 

10- 

q054~ 
'5151r 

16 

15 

142 14'00WiiIiS 

3010 2500 2010 1500 

W I ( lj 
1000 50'0 

Figure l2: Infrared Spectrum for Sample 'ID022 

In addition, scanning electron microscopy was performed on the samples to produce an 

image of the particles. The sample made with the premade nanoslab solution appeared 

to be a cluster of round particles, which was not what we intended to synthsize (Figure 



I igu~v. /3r, h7 M of TJW22 (x3000) 

However the other sample was less distinguishable. The image was inconclusive as we 

are not sure if'the parncle was zeolite or surfactant. If it was a zeolite particle, it diid not 

form in the intended plate-like structure (Fitmre I4). 
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The effect of the ratio of tetrapropyl ammonium hydroxide was also examined. 

A solution with a TEOS: TPAOH:HiO ratio of 1:0. 18:20 was made and added to 

surfactant to synthesize a 35 weight percent AOT sample (TD024). A similar sample 

was made with a TEOS: TPAOH:HzO ratio of 1:0. 1:20 (TD026). Both samples were 

reacted for twenty-four hours at fift-five degrees Celsius. By studying the infrared 

spectrums, we can state that qualitatively there is no difference in the composition of the 

samples (Figure 15 and 16). 

212 

15 

14 

13 

122 

, J 

/ j I 

10 

5- 

7- 
5: 

3I 3040 

w w ( 42 

500 

Figure I5: Infrared Spectrum of TD024 
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Figure l6: tnPared Spectrum of TD026 

Similarities were also apparent in the scanning electron microscopy images 

produced by both samples (Figure 17 and 18). However, in both cases, round particles 

were made. We had hoped to make flat plates and can conclude that there is another 

factor that needs to be changed in the experimental procedure. 



M1; 
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SUMMARY 

Many problems were encountered throughout the course of this research, In the 

area of synthesis, we were unable to remove all of the surfactant during the washing of 

the sample. Therefore, the presence of AOT was evident in all of the characterization 

methods. In addition, it was much more diAicult to charactenze the samples than had 

been expected. The samples charged when subjected to the electron beam with scanning 

electron microscopy, making it difficult to obtain high quality images. The difficulty 

with SEM was due to our inability to effectively disperse the particles, which caused us 

to not get high-resolution images of the individual particles. In order to make good 

images, we need to use another instrument such as field emission SEM. With this 

instrument we can get much better images of samples, even when poorly dispersed. As 

an example, the sample shown in Figure 19 is a FE-SEM of zeolites made in the 

presence of DODAB. Fven though this sample is poorly dispersed, the resolution/image 

quality is much higher than previous samples. The surfactant led to the presence of 

sodium in the sample and the formation of sodium silicate phases. This also led to 

inconclusive infrared spectrums as the peak at 580 wavenumbers could be due to the 

presence of this silica. 



Figure l9: FE-SAMofsample in rhe preeenee of 
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Nonionic Surfactants 

O~H 
Cq2E5 (C~2 hydrophobic tail, 5 ethylene oxide units) 

Cationic Surfactants 

e 
N Br 

Didodecyldimethylammonium Bromide: (C~2)2N'(CH3)~Br 

N Br 

Dioctadecyldimethylammonium Bromide: (C~g)qN'(CH3)28r 

Figure 20i, '"iurfactants to be used tn the future 
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