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ABSTRACT

A Distributed Control System for Low-Pressure Plant Growth Chambers.
(December 2002)
Denise Lynn Brown, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Ron Lacey

This research focuses on the design and development of a control system for
hypobaric plant growth chambers. The chambers will be used to determine the effects of
reduced pressure on plant processes and growth. There are two low pressure plant
growth systems discussed. The first system consists of two growth chambers that are
controlled by a single computer. The contro] algorithms for measuring and controlling
pressure and measuring temperature inside the chambers are written in LabVIEW. This
system has no gas concentration measurement or control.

The second system has six growth chambers. The pressure and gas
concentrations within each chamber are controlled by PIC16F877 microcontrollers. The
microcontrollers also monitor and record temperature. The setpoints for pressure,
oXygen concentration, and carbon dioxide concentration are entered into a LabVIEW
program on the main computer, and the data is sent to the microcontrollers via serial
communication by this same program. Once the microcontrollers have finished
adjusting the pressure gas concentrations based on the setpoints and the current
conditions, each microcontroller returns values for pressure, temperature, and the

amount of each of the three component gases (nitrogen, oxygen, and carbon dioxide)



added. These values are read by the LabVIEW program on the computer and stored in
files for analysis. The concentrations of the component gases are measured by a process
gas chromatograph.

The two-chamber system has limited usage because of a lack of gas control.
Tests of the larger system showed that the system can maintain setpoint pressures in the
chambers for long durations. The microcontrollers properly adjust gas concentrations
using the gas addition algorithm based on setpoints and current concentrations in the
chamber. The system will be used to determine the effects of various pressures and gas

concentrations on plant processes and development.
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INTRODUCTION

The future of manned space exploration will rely on life support systems capable
of sustaining human activity both onboard spacecraft and on planetary bases with
minimum need of resupply from earth. Such a life support system must be able to
recycle air and water as well as provide food for a human crew. Higher plants have the
capability of recycling both air and water and can provide food as well as psychological
benefits for the crew.

Operating spacecraft and planetary bases at reduced pressures reduces the
structural requirements as well as the need for resupply of air, water, and nutrients
However, the response of plants to reduced pressure is undetermined, and previous
experiments show conflicting results. There are few systems in existence capable of
reliable, extensive testing of plant growth in reduced pressures. The few systems that do
exist are not well documented and cannot be reproduced from available documentation.

There have been three low-pressure plant growth (LPPG) systems at Texas A&M
University. The first system, the Generation I LPPG system, was built in the early
1980s, and no documentation exists. The second system is the Generation II LPPG
system, which is the upgraded Generation I system. The Generation IIl LPPG system is
a new, larger LPPG system designed to have none of the limitations of the older systems.
This research had two goals: first, to quickly redesign and repair the old low-pressure
plant growth system that was already at the university in order to begin obtaining plant

This thesis follows the style and format of the Journal of Life Support and Biosphere
Science.



data, and second, to design a new, modular, and easily expandable LPPG system with
more capabilities. Both systems were to be fully documented so that the design would
be available to other researchers involved in testing plant growth in hypobaric

conditions.



REVIEW OF LITERATURE

Advanced Life Support

Long-duration manned missions will require a life support system capable of
sustaining human activity both aboard spacecraft and on planetary surfaces with little or
no need for resupply from earth. The physiochemical systems currently employed
cannot meet the demands of a long-term mission because of their finite capacity for
resource conversion. Thus, the idea of using higher plants in a bioregenerative life
support system was born. Higher plants possess the ability to recycle air and water and
can provide food as well as psychological benefits for the crew. NASA has been
working toward the goal of designing a fully functional system to support the plants and
reduce mass costs associated with long duration missions. (2, 21)

According to the NASA-JSC Advanced Life Support System Support Program
Plan (2), an advanced life support system must provide the means to recycle resources
with minimum need for resupply. Such a system must monitor and control
environmental conditions for both the crew and the plants. The conditions for the two
might differ on a planetary base, with separate modules for plant production and crew
(11).  Such a life support system should be self-controlled and require little
maintenance to increase crew productivity and safety (2).

Much of the advanced life support research has focused on a Mars planetary
base. Martian atmospheric pressure is less than 1/150 that of earth and consists of 95%
CO,. The temperature on the surface of Mars is between —143°C and 17°C. There is

virtually no oxygen or water on Mars, unless it is contained within silicon rocks or



underground. (10, 16) Erecting a greenhouse on Mars massive enough and airtight
enough to withstand the pressure differential between normal earth atmospheric pressure
and Mars atmospheric pressure would be prohibitively expensive, difficult to maintain
and repair, and difficult to transfer to the Martian surface (3).

Payload considerations also influence the design of a life support system. The
cost of moving one pound from the Earth’s surface to orbit has been estimated at
$10,000. Equivalent system mass is the meter by which various scenarios are compared.
Thus, the lighter the materials needed to construct the system, the less of a mass cost
accrued by the system. To help reduce mass costs of a life support system and promote
ease of construction and maintenance, maintaining the plant growth module of a
planetary base at pressures lower than normal earth atmospheric pressure has been
considered. This would reduce the mass of a structure needed to withstand the
difference between the internal pressure of the structure and the external pressure of the
atmosphere of the planet and reduce the amount of gas needed to replace gas lost
through leaks and extravehicular activities (EVAs).

Such a plant growth module should be able to maintain a suitable environment
for growing plants, which includes a temperature between 15°C and 30°C, providing
light levels that will promote plant growth, maintaining a suitable atmosphere with the
proper mixture of gases at an acceptable pressure, and having low mass but sufficient

volume for growing of plants (10).



Plant Growth Requirements

Plants require light in wavelengths of 400 — 700 nm for photosynthesis. This
light is referred to as photosynthetically active radiation (PAR). (20) Plants require
irradiation levels of about 400 pmol m™ 5! for C; plants and more than 500 pmol m™” s
for C4plants (13).

Plant growth is affected by the concentration of both carbon dioxide and oxygen.
How the concentration of CO; affects the plant depends on the type of carbon cycle
within the plant. Cj plants carry out photosynthesis using the Calvin cycle, but Cq plants
concentrate carbon dioxide in bundle sheath cells with an additional reaction before
carrying out the Calvin cycle. Photosynthesis in C4 plants is saturated at a partial
pressure of 20 Pa CO, while photosynthesis in C3 plants continues to increase at that
level. (20)

The partial pressure of oxygen can limit plant growth. The lowest viable partial
pressure of O is in the range of 5 to 10 kPa, below which no plant growth can occur (15,
18). Consequently, the lowest practical total pressure at which plants can be grown
without medifying the O concentration is 23 to 48 kPa.

Plant growth and development can be hindered by atmospheric contaminants.
For example, ethylene is a biologically active plant hormone which can trigger a number
of physiological reactions, such as leaf senescence (20), and can be toxic at

concentration levels as low as 50 to 100 ppb (22).



Plants also require water and nutrients for growth and development. These, too,
must be maintained at acceptable levels in a plant growth module. Plants can be grown
either in solid media or hydroponically.

The effects of reduced pressure on plant growth are still largely undetermined,
though several experiments analyzing plant response to reduced pressure have been
performed. Most of this research has focused on the effects of reduced pressure on the
physiological processes of the plants.

Low-Pressure Plant Growth Research

Most low-pressure plant growth experiments have focused on the effects of low
pressure on net photosynthesis and dark respiration. There has also been some research
conducted to determine germination and growth of plants in simulated Martian
atmospheres.

Schwartzkopf and Mancinelli (18) attempted to germinate plants in a simulated
Martian atmosphere. Their research showed that plant germination was suppressed in
low pressures at elevated levels of CO,. It also demonstrated the necessity of O for
plant germination. From their research, it was concluded that pure Martian atmosphere
was not conducive to plant growth. Later studies focus on higher pressure and oxygen
levels and lower CO; levels.

Corey, et al. (7) used a plant volatiles chamber at Ames Research Center to study
CO; exchange in lettuce plants at both ambient pressure and 51 kPa. They found
increased photosynthesis rates at the reduced pressure and decreased dark respiration

rates, though the results seemed to be because of the decrease in oxygen partial pressure



occurring at reduced pressure. Carbon dioxide uptake was constant regardless of total
pressure.

Daunicht and Brinkjans (8) studied photosynthesis and transpiration rates and
morphogenic response of plants at low pressure. They compared photosynthesis rates at
three different pressures — 100 kPa, 70 kPa, and 40 kPa - with equal CO, concentrations
at each pressure and found that photosynthesis rates increased by 2% to 12% at 70 kPa
as compared to 100 kPa, but that photosynthesis rates at 40 kPa and 100 kPa were nearly
identical. Plant growth parameters such as leaf area and length of stem were adversely
affected at the two reduced pressures. Another set of experiments increased the level of
CO; at the three pressures and found decreased transpiration rate at lower pressures
while dry matter production increased at lower pressures. Plant growth parameters
responded positively to an enriched CO, atmosphere at lower pressures. A final set of
experiments compared plant growth parameters at 100 kPa and 40 kPa with a carbon
dioxide partial pressure of .04 kPa at both pressures and found that plant growth was
inhibited at the lower pressure.

Using the variable pressure growth chamber (VPGC) at Johnson Space Center,
Corey, et al. (5) developed a method of measuring leak rates and gas exchange rates at
101.3 kPa and 70 kPa. Photosynthesis and dark respiration were measured at both
pressures. They found that the VPGC had a very high leak rate that must be
compensated for in future reduced pressure plant research using the VPGC. Leak
corrections ranged from 9% down to 3% of the changes in photosynthesis rates over the

test period and from 19% down to 4% of the changes in dark respiration rates over the



test period. These results allowed the VPGC to be used for plant growth at reduced
pressures as long as the high leak rate of the chamber (1.16 to 2.36 chamber
volumes/day) was taken into account in measurements of gas exchange rates.

Corey, et al. (6) then studied the effects of reduced pressure and reduced oxygen
on photosynthesis and respiration of wheat using the VPGC. Tests were conducted at
101 kPa and 70 kPa. Photosynthesis rates were higher at reduced pressure than at
ambient pressure while dark respiration rates were unaffected. Reduced oxygen partial
pressure resulted in increased photosynthesis rates regardless of pressure, though the
response also depended on the ratio of the partial pressure of oxygen to the partial
pressure of carbon dioxide. As this ratio increased, the rate of photosynthesis decreased
linearly. Again, dark respiration rates were unaffected.

LPPG Research Systems and Limitations

In spite of the seeming abundance of systems available for studying the effects of
low pressure on plant growth, there is little documentation on any of the systems used
for the research reported. Also, each system had limitations that severely limited the
range of experiments that could be performed in them. There was a definite lack of a
fully documented low-pressure plant growth system capable of adequately measuring
and controlling pressure and gas concentrations.

Limitations included a lack on environmental control as in the study of
germination and growth of wheat in a simulated Martian atmosphere (18). The other

systems had similar drawbacks.



The plant volatiles chamber (PVC) used by Corey, et al. (7) had a low leak rate
(<1% chamber volume per day). Pressure in the PVC was adjusted manually using a
vacuum pump and a valve. Data was collected with an Everex 80286 PC, which was out
of date even at the time of the experiment. The data was collected with an Opto 22
Optomux I/O hardware interface, which is a pre-packaged analog or digital /O unit that
acts as a slave to a PC, and controlled using Paragon 500 software. The Optomux
hardware was effective, but bulky and not easy to modify. Carbon dioxide
concentrations were measured with an infrared gas analyzer. There was no mention of
oxygen concentration measurement, nor is the program algorithm given.

The LPPG system used by Daunicht and Brinkjans (8) was an open system that
was constantly ventilated with outside air to remove excess CO; and ethylene and to
maintain a constant oxygen concentration. A mass flow controller and a mechanical
precision vacuum controller were used to control pressure. but no specifications were
given. Carbon dioxide was added in pulses which were electronically recorded, and
concentration of CO, was measured using an unspecified infrared gas analyzer. No
measurement or control of oxygen concentration was available. No analysis of system
performance was given.

The VPGC at Johnson Space Center that was used for research by Corey, et al.
(5.6) had excessively high leak rates that required extra tests and compensation
equations to determine accurate gas exchange rates. There was no mention of how
oxygen concentration measurements were made or what system was used for CO,

injection to the system. There was also no mention of how pressure was measured and



controlled in the VPGC. Because of the high leak rate, the VPGC could not be operated
at pressures much lower than 70 kPa.

Schwartzkopf, et al. (17) designed a system of four low atmospheric pressure
plant growth chambers. The chambers operated at pressures as low as 1 kPa with a leak
rate of 1% of chamber volume per hour. Gases (nitrogen, oxygen, and carbon oxide)
‘were injected using an unspecified on-line gas composition system. Data collection was
handled by an Opto 22 interface hardware and an Apple Macintosh II CX computer.
The-type of sensors used for pressure, temperature, and gas concentrations were not
discussed. There was no analysis of system performance.

Simpson and Young (19) devised a plant growth structure for a Martian derived
atmosphere. It could operate at pressures from 133 Pa to 101.3 kPa. There was no
control for oxygen and carbon dioxide concentrations, nor was the means of data
collection described.

Goto (11) used an environmental control system for plant growth that operated at
pressures down to 10 kPa. Gas concentrations were controlled separately, though there
was no description of how this is accomplished. The types of sensors were not
described. Again, no analysis of system performance was available. The control
hardware and algorithms were not mentioned.

In the above system descriptions, there was very little data on system design or
performance. Many of the systems that are documented used older technology and were
severely limited. Expansion and upgrades would be difficult. Another drawback is that

for most of the systems mentioned, there was no ambient pressure chamber, just a low-



pressure chamber. The ambient pressure ‘control’ groups were often placed in open air
with no control of conditions whatsoever. Control algorithms were not given for any
LPPG system in existence. It was also impossible to perform dynamic experiments in

the aforementioned systems (setpoints must remain static during tests).

Data Acquisition and Control in Closed Environment Systems

There have been papers published on the design of systems for monitoring and
controlling closed environments. Kacira and Ling (12) discussed the design and
development of an automated system for continuous monitoring of plant growth. Most
of the paper was dedicated to visual monitoring of plant growth, but there was also some
discussion of using a distributed system approach and the necessary sensors and data
acquisition hardware. A multifunction data acquisition card was used to read analog
signals from two data loggers. However, there were no specifics about the software used
to collect data and no circuit diagrams.

Chun and Mitchell (4) reported on dynamic optimization of crop photosynthetic
rate in a closed-environment system for crop growth. They used feedback control to
adjust the levels of photosynthetic photon flux (PPF) and carbon dioxide concentration.
In this way, the optimal amount of PPF and CO; for the crop at that stage of growth
could be supplied to produce desired results. such as to produce a specific amount of
oxygen or to transpire a certain weight of water. Two Minitron II systems were used to
maintain the other variables and adjust PPF and CO; concentration. Unfortunately, no
specifics on this system were published in the paper and no specifications for the

Minitron system could be located. (4)



Dynamic control strategies have also been applied to other closed environment
systems, such as aquatic systems. Acevedo and Waller (1) developed a model for a
simple trophic system containing zooplankton and algae. They then developed a control
strategy to maintain a steady state animal population at a certain stage of development
by controlling the food supply. The goal was to be able to harvest the animal population
at a steady sustainable rate. The models and approaches could also be applied to other
closed environment systems such as life support systems.

An optimal control strategy for crop growth in advanced life support systems was
developed by Fleisher and Baruh (9). They developed a mathematical model of a
feedback control loop to compensate for the effects of environmental disturbances by
adjusting PPF. Two crop growth models were considered and two control laws were
applied to each model. Several simulations of various conditions were performed to test
the control laws. The approach proved to be a potentially useful method of controlling
crop growth.

However. it is important to note that most of the dynamic control models have
only been tested in simulations. The only system that has dynamic variable control
capability is that used by Chun and Mitchell (4). No fully documented low-pressure
plant growth system has been developed and used in determining plant response to low-
pressure. There is a definite need for a system that allows dynamic control of growth

conditions for dynamic testing.



OBJECTIVES

The following objectives were developed to meet the needs for both an

immediately operational LPPG system and a new larger, automated LPPG system, both

fully documented:

1. Redesign and restore the Generation II LPPG system

a.

d.

Replace and repair the sensors and data acquisition hardware as

needed

. Develop a control program for the system

Allow for update of setpoints without shutting down the system
during experiments

Record real time pressure and temperature data during experiments

2. Design a control system for the Generation IIl LPPG system

a.

b.

Make a modular system that is easily expanded

Allow for update of setpoints without shutting down the system
during experiments

Measure and control pressure and the concentration of oxygen and

carbon dioxide in each growth chamber

. Record real time pressure, temperature, oxygen concentration, and

carbon dioxide concentration data

3. Perform system analysis on Generation III system

a.

Check system components to ensure proper operation

b. Perform shakedown tests on system



GENERATION II LOW-PRESSURE PLANT GROWTH SYSTEM

System Description

The Generation II LPPG system is an upgrade of the original Generation I LPPG
system. No documentation or schematics of this original system exist. When work
began, it was discovered that in addition to needing a new control program, most of the
sensors and circuitry needed to be replaced, as well as the data acquisition hardware. A
description of the system including the modifications follows.

Physical Design

The Generation II LPPG system consists of 2 cylindrical growth chambers, a
low-pressure chamber and an ambient-pressure chamber. Both growth chambers consist
of a cylindrical body fitted into two flat end plates. The cylinders are housed in a small
environmental growth chamber that provides lighting and temperature control. Because
there are only two cylinders, results cannot be repeated within an experiment; several
repetitions of the same experiment must be run sequentially to produce a statistically
sound data set. Figure 1 shows a picture of the system.

The atmosphere in the low-pressure chamber is evacuated with a rotary vane
vacuum pump (D5E, Leybold Vakuum GmbH, Cologne, Germany). A complex
network of stainless tubing delivers gases to and from the chambers and also carries
samples to the gas concentration analyzers. These samples must be pressurized up to
ambient pressure and pushed through the analyzers with nitrogen gas. Figure 2 shows a

schematic of the system.



Figure 1. Generation Il LPPG System
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Sensors

The pressure sensors from the original system no longer functioned when the
upgrades were begun, and the oxygen sensors could not operate at reduced pressure
below 70 kPa. Thus it was decided to replace these sensors and to repair the circuits for
still-functioning sensors.

Pressure Sensor

Pressure in each chamber is measured by a K-2 pressure transducer from
Asheroft (Dresser Instruments, Addison, TX). The transducers output 4-20 mA in direct
proportion to the pressure and have a range of vacuurn to 200 kPa .

Temperature Sensor

Temperature is measured using a thermistor in an operational amplifier circuit.
The circuit will be discussed below in the analog signal conditioning section.

Infrared Gas Analyzer

In the original LPPG system, carbon dioxide concentration was measured using
an 880A infrared gas analyzer (IRGA) from Rosemount Analytical (Orville, OH). The
IRGA outputs a signal between 0 and 5 volts that is proportional to the concentration of
carbon dioxide gas in the sample. It has a range of 0 to 2000 ppm. The IRGA was to be
used in the Generation 1I system as well. However, the analyzer could never output a
reliable or accurate measurement of carbon dioxide even when calibrated. At length,
because of time constraints, it was decided to forego measuring carbon dioxide

concentration in the Generation II system.



1.

Par ic Oxygen Analy

A 775R paramagnetic oxygen analyzer (Rosemount Analytical, Orville, OH) was
chosen to replace the original voltaic oxygen sensors. It outputs a voltage between 0 and
5 volts that is proportional to the oxygen concentration in the sample. The analyzer has
a range of 0% to 25%. However, like the IRGA, the oxygen analyzer would never
output accurate measurements, and so it was decided to forego measuring oxygen
concentration, as well.

Mass Flow Controllers

Three mass flow controllers (MFCs) (DFC2600, Aalborg Instruments and
Controls, Inc., Baden, Germany) measure and control the flow rate of air, nitrogen, and
carbon dioxide into the growth chambers. Each outputs a signal between 0 and 5 volts
that is proportional to the flow rate of the gas through the controller. Also, each MFC
requires an analog signal from an outside source between 0 and 5 volts to set the valve
inside the controller to a certain position. The position of the valve determines the flow
rate allowed through the controller.

Computer and Data Acquisition Hardware

Three multifunction data acquisition cards from National Instruments (Austin,
TX) were installed in a PC to send and receive signals from the sensors and other
hardware. The NI PCI-6503 is a digital /O card with 24 digital channels that can be
configured as either digital inputs or digital outputs. The NI PCI-6023E is the analog
input card, which has 16 analog input channels. The NI PCI-6713 has 8 analog output

channels. The control program for the entire system is run on a single computer.
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Signal Conditioning
Analog Signals

The analog signals in the system consist of the pressure transducer output, the
temperature sensor circuit output, the output from the two gas analyzers, and the inputs
from and outputs to the MFCs. Some of the temperature sensor and pressure transducer
signals require amplification and/or conversion before being input into the appropriate
card.
Pressure Sensor

The pressure transducer outputs 4 to 20 mA. However, the data acquisition card
can only read voltages between ~10 and 10 volts. Thus the output from the transducer
must be converted a voltage and then amplified. This is accomplished using the simple
operational amplifier circuit shown in Figure 3(a).
Temperature Sensor

Thermistors are semiconductor devices that change resistance as temperature
changes. To measure temperature in each chamber, a thermistor was put into the
feedback portion of an op amp circuit supplied with 10 V. The output of the circuit
changes as a function of the resistance of the thermistor, which is a function of
temperature. Figure 3(b) shows the temperature sensor circuit.
Digital Signals

There are several solenoid valves that must be opened and closed using digital
signals, and the vacuum pump that pulls down the pressure in the low-pressure chamber

is turned on and off using a digital signal as well. Because the digital I/O card can only
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supply a 5 V signal at a few milliamps, some means of amplifying the digital signals is
needed. Two National Instruments ER-16 electromechanical relay accessory boards
provide amplification for the 24 digital signals. These. in turn, actuate larger mechanical
relays that can provide the AC power required by the solenoid valves and the vacuum
pump.
Control Program

The original program for the Generation I system was written in the C
programming language. Variables were hard coded and to change setpoints or other
operating parameters, the program had to be shut down, modified, recompiled, and the
restarted before changes could take effect in the system. For the new Generation II
system program, it was desirous to change setpoints without having to shut down a
running experiment. To this end, LabVIEW (National Instruments, Austin, TX) was
chosen. LabVIEW is a graphical programming development environment designed for
data acquisition and control applications. It easily interfaces with National Instruments
data acquisition cards. One of its key features is the ability to update setpoints and other
variables without having to stop the control program. Also, LabVIEW comes with a
wide variety of instrument drivers in several libraries, which are software routines that
carry out specific tasks, anything from adding two numbers to reading analog and digital
inputs to complex data analysis. LabVIEW software routines are called virtual
instruments, or VIs, and a VI embedded within another V1 is referred to as a subVI of

that V1.
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The control program for the Generation Il LPPG system was intended to
maintain pressure in each chamber at the setpoint pressure and control oxygen and
carbon dioxide concentrations. However, as mentioned, the difficulties in successfully
measuring the concentrations of oxygen and carbon dioxide prevented full application of
the control program. Still, the system could be used for other tests. To this end, several
small subVIs were written. These VIs perform common tasks that are frequently used in
the various experiments.

The VIs can be performed in any order desired as long as the correct inputs are
supplied. Some of them require a setpoint and/or digital port configuration information.
Others require no inputs and only output a value, such as the current temperature. Most
of the VIs used in the various control programs require several inputs and outputs, and as
long as the inputs are all supplied to the VI, it can carry out its task. The subVIs within a
Vlare connected to one another using ‘wires’ that diagram data flow.

Generation II SubVIs

The subVIs are chamber-specific because the pressure and temperature sensors
for each chamber have unique calibration equations and because the same type of signal
for each chamber has a unique analog or digital channel. The more common subVTs are
described below and some of the experimental programs are discussed.

Low Pressure VI

The Low Pressure VI reads the pressure from the pressure transducer on the low-

pressure chamber and compares it to the setpoint pressure, which is input by the user in

the LabVIEW front panel. If the pressure is greater than the setpoint plus 2.5%, the
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subVI sends a high signal to the appropriate solenoid valves and turns on the vacuum
pump. The program then continually monitors the pressure in the chamber. Once the
setpoint is reached. the VI sends out a low signal to the valves and to the pump, thus
closing off the valves and shutting the pump off.

If the pressure is less than the setpoint minus 2.5%, the VI sends a high signal to
a different set of solenoid valves and opens the valve on the air mass flow controller,
allowing pressurized air from a tank to enter the chamber. Again, the VI continually
monitors pressure, and when the setpoint is reached, the valves are closed, stopping air-
flow into the chamber. Notice there is a 5% dead band about the pressure setpoint. This
is to prevent excessive cycling of the vacuum pump.
Ambient Pressure VI

The Ambient Pressure VI performs the same functions for the ambient-pressure
chamber that the Low Pressure VI performs for the low-pressure chamber. The only
differences between the two programs are the analog input channel read for the sensor,
the digital outputs that are changed to open valves, and the calibration equation used to
convert the voltage read from the pressure transducer to a pressure. In all other respects,
the programs are identical.

Both the pressure VIs record the pressure in the chamber before adjusting it to
meet setpoint conditions. It is displayed on the front panel of each subVI and also saved

ina file. This data can later be analyzed as necessary.
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Temperature V1

This VI reads the voltage from the temperature sensors in each chamber and
converts it to a temperature in Celsius. The temperature in each chamber is displayed on
the front panel and also recorded in a file.
Single Chamber Flush VI

The Single Chamber Flush VI recycles the air in a single growth chamber. This
means that it removes a certain amount of air from the chamber and replaces it with
compressed air from a tank. The VT first opens the appropriate solenoid valves and turns
on the vacuum pump for a certain amount of time. This time is adjustable in the front
panel of the program. The time between flushes is also adjustable. The program records
the pressure both before air is pulled out and after the valves have been closed and the
pump turned off. These values are used to determine the amount of air that was removed
from the chamber.

The Single Chamber Flush VI can be easily modified to flush either chamber.
Only the analog input channel read and digital channels for the solenoid valves must be
changed and the appropriate calibration input to accomplish this.

There are several other subV1s that perform various functions, such as saving
numbers to files, converting between units, and other small tasks, but these are not

discussed here.



Generation IT VIs

The VIs discussed above are subVIs in the larger programs that operate the
Generation II system. Combinations of those and other software routines form the VIs
written for the various experiments.
Main VI

The Generation II system has been used to run several tests in an effort to
determine the effects of reduced pressure on plant growth. This most commonly used VI
simply reads temperature and records and controls pressure in each chamber for the
duration of an experiment while other portable equipment is used to measure
photosynthesis and other variables of interest in the plant. It is a combination of the Low
Pressure, Ambient Pressure, and Temperature VIs.
Two Chamber Flush V1

In the course of the above experiments, which were run for short durations, it
was discovered that a plant hormone, ethylene, builds up in the growth chambers and
thus a new set of programs was needed to recycle air in the chambers to prevent the
buildup of this hormone. The Single Chamber Flush VI was the first program used for
this purpose, and was added into the main VI for several experiments to compare
cthylene levels between a flushed chamber and a chamber in which air was not recycled.

Eventually, a program was needed to flush both chambers. This VI does that. It
contains the Single Chamber Flush subVI, which is set to flush the low-pressure

chamber. The low-pressure chamber is flushed first, and the amount of gas removed is



27

GENERATION III LOW-PRESSURE PLANT GROWTH SYSTEM

System Description
Background

The Generation II system cannot produce replicable experiments in the sense that
there is only one control and one experimental chamber. There is no gas concentration
measurement or control in the system, thus the effects of gas concentration on plant
growth cannot be determined using the older system. Expanding the system to include
more growth chambers is not possible because of the small size of the room in which the
two cylindrical growth chambers are housed and the integrated nature of the control
system — one control program on one computer monitors and controls conditions in both
chambers.

Thus the Generation II1 LPPG system was conceived to be modular, easily
expanded, and allow for replicability within each experiment. It was also to have gas
concentration control for carbon dioxide and oxygen.

The Generation IIl LPPG system is located in a large growth room in the
Norman Borlaug Center for Southem Crop Improvement. The room provides lighting
and temperature control, including photoperiod and light intensity control. There is no
temperature control in the system other than that supplied by the growth room.

Physical Design

The Generation III LPPG system has six cylindrical growth chambers. Each
chamber has a volume of 55.3 liters. Gases and water are added and removed via five

vacuum feedthroughs. The temperature sensor signal passes out of the chamber through



calculated. Then the same molar percentage of gas is removed from the ambient-
pressure chamber.
Discussion

The LabVIEW control programs can control and monitor conditions in both
cylindrical growth chambers. Using LabVIEW allows for real time update of setpoints
during system operation. The control programs for each experiment can be easily
modified and adjusted using the set of subVls already written, which would allow a large
variety of experiments to be run.

The Generation II LPPG system is adequate for short experiments to determine
the effect of reduced pressure on plants as long as each chamber is flushed and supplied
with fresh air to eliminate the effect of gas concentrations on plant growth and external
equipment is used to measure photosynthesis rate, transpiration rate, etc. However, the
lack of gas concentration measurement and control prevents the system from being
useful in a full range of tests to determine the effects of reduced pressure on plant
growth and limits the types of experiments that can be run. These limitations are

eliminated in the Generation III Low-pressure Plant Growth System.
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a vacuum-rated electrical feedthrough. The chambers are mounted in pairs on wire racks
and all of the power supplies, sensors, and circuitry associated with each chamber are
mounted on the bottom of that rack. The six chambers share a rotary vane vacuum pump
(BD-20A, Bestech, North Bergen, NJ), which is used to evacuate gases from each of the
six chambers. Figure 4 shows a photograph of the Generation III LPPG system. A
schematic of the system is shown in Figure 5. For a more detailed description of the
design of the growth chambers, refer to ‘Engineering Design of a Hypobaric Plant
Growth Chamber’ (14).
Sensors
Pressure Sensor

The pressure inside each chamber ranges from a slightly above vacuum to
atmospheric pressure, which is 101.3 kPa. Thus a transducer that would produce a linear
output over that range is desirable. The sensor needs to output a voltage between 0 and
5 volts, which is within the range of many data acquisition devices. Thus an Ashcroft K-
2 pressure transducer (Dresser Instruments, Addison, TX) with a range of 0 to 101.3 kPa
and an output range of 1 to 5 volts was chosen.
Temperature Sensor

The thermistor circuit in the Generation I system measures temperature
accurately, but for the Generation I system, a different approach has been taken.
LM35DT precision centigrade sensors that output 10 mV/°C are used. (National
Semiconductor Corporation, Santa Clara, CA) The sensor’s output is highly unstable

unless the output and ground are tied together in a voltage divider circuit recommended



Figure 4. Generation III LPPG System
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by the manufacturer. The output must also be amplified, as it is too small to accurately
read with most data acquisition devices. To give the sensors more thermal mass, they
are mounted on the metal plant stands in the chambers using thermal tape. The result is
a highly stable, accurate measurement of temperature in each chamber.

Mass Flow Controllers

The environment inside each chamber will consist of three gases: nitrogen,
oxygen, and carbon dioxide. These gases are added into the chambers in their pure form
from three gas tanks. To this end, there are three MFCs for each set of two chambers.
(1179, MKS Instruments, Andover, MA) One is calibrated for nitrogen, one for oxygen,
and one for carbon dioxide. The MFCs have an accuracy of 1% FS. The MKS MFCs
were chosen because of the wide range of flow rates available and because of their
accuracy.

Each MFC outputs a signal between 0 and 5 volts that is proportional to the flow
rate of gas through that MFC. And like the Aalborg controllers, an analog signal
between 0 and 5 volts must be input to the controller to set the desired flow rate.

Gas Chromatograph

Because of the problems with the IRGA and the paramagnetic oxygen analyzer, a
new approach to measuring gas concentrations in the chambers was needed. Gas
chromatography has been used in many fields to measure the concentration of organic
compounds. The theory can also be applied to a variety of gases. Thus a process gas

chromatograph was designed specifically for the low-pressure application. (GCX,
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Rosemount Analytical, Orville, OH) The GCX measures the concentration of carbon
dioxide, oxygen, and nitrogen in each chamber.
Gas Chromatography

Chromatography refers to a group of methods that involve transport of a sample
through a column. The column contains a partitioning agent that can be either solid or
liquid supported by a solid. This partitioning agent is the stationary phase. The sample
can be either a liquid or a gas and is referred as the moving phase. The transport of the
sample through the column results in separation of the components of the sample
because of the selective retention exerted by the portioning agent. Light molecules
travel through the column more quickly than heavier molecules. The different
components segregate into separate bands at the exit of the column. There the individual
bands are directed to a detector to determine the relative concentration of each
component, and the time it takes the component to travel through the stationary phase is
used to identify the component. The GCX uses a thermal conductivity detector.
GCX Operation

The GCX has six sample streams - one for each chamber - and one calibration
stream. It analyzes the six streams in order and stores the concentrations of oxygen,
nitrogen, and carbon dioxide in both a chromatogram and in the modbus. (Modicon 584,
Schneider Electric, Paris, France) The sgventh stream has also been configured as a
“dummy” stream that is used for timing purposes. The dummy stream brings in air from

a compressor, but no data from that stream is used except when stream seven is
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configured as the calibration stream. A manual valve selects the stream source for the
7" stream.

All GCX setup and configuration functions as well as calibrations are handled by
the GCX maintenance software. This software interfaces with the GCX and allows
access to GCX status, chromatograms, analysis results and chromatograms, and is used
to program operation parameters into the GCX.

The process GCX designed for use in the Generation III LPPG system can
analyze samples at pressures ranging from 25 kPa to atmospheric pressure. The full-
scale range of measurement varies for each component. The GCX can measure up to
100% nitrogen, 30% oxygen, and 1% carbon dioxide.

Modbus Protocol

The GCX normally outputs a chromatogram and gas concentrations to the
computer using the human-machine interface software provided by the manufacturer.
However, this software does not allow the concentration values to be read and stored in
an individual file for each concentration. Thus, the gas concentrations must be read
from the GCX using Modbus Protocol. Modbus Protocol is a messaging structure used
to establish master-slave communication between intelligent devices. Commands are
sent from the computer, which is the master device, to the GCX, which is the slave
device, in a specific format, and the GCX returns information based on that command.
The hardware in a device that communicates using this protocol is usually referred to as
amodbus. The modbus in the gas chromatograph is a Modicon 584. (Schneider

Automation, Inc. Paris, France)
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The GCX modbus communicates using half-duplex RS-422 carried on full-
duplex wiring. The signal is converted to RS-232 and input into a serial port on the
computer (PC). Commands are also sent from the PC to the GCX using this serial port.
The modbus commands can be in one of two formats — referred to as framing — ASCII
and RTU. The type of framing dictates the format of the data sent to and from the
modbus. The default framing for the GCX is RTU.

As mentioned above, Modbus Protocol is a messaging structure, and the framing
is part of that structure. In a way, the protocol resembles a very simple programming
language. Commands are in the form of numerical function codes. Each function code
tells the modbus to perform a specific action. The most commonly used function codes
request data from the slave device. Data is stored in registers in the slave device. Some
different function codes refer to different data registers. The GCX uses an abbreviated
version of Modbus protocol — not all commands are available. The function codes that
will be used on this project simply request that the modbus return data from specific
registers. Table 1 shows the available function codes.

Each sample stream on the GCX has a corresponding counter register which
increments by one every time the GCX finishes a sample for that stream. (Stream
numbers correspond to chamber numbers: stream 1 is the sample from chamber 1, and so
on.) The computer polls this register (function code 03), and if it has changed from its
previous value, the computer then asks the GCX to send the new concentrations for that

stream (function code 04), which are stored in 3 other registers — one register per
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Table 1. GCX Modbus Function Codes. The four function codes allowed on the GCX
are listed below along with a description of the commands.

Function Code Name GCX Function Description
02 Read Digital Registers Used to read digital status from GCX
03 Read Output Registers Used to read GCX status information stored
in 16-bit registers. This register contains the
stream data counters
04 Read Input Registers Used to read GCX analysis results, which is

stored in 16-bit registers

08 Loop Back Test Used for diagnostic purposes; returns the
contents of the received message.
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component gas. The counters for each stream are stored in holding registers. The gas
concentrations are stored in input registers.

Once the computer receives the data from the GCX input registers, it must
convert those numbers to a useable form. The numbers stored in the modbus are
integers from 0 to 4095 that represent a percentage of the full-scale concentration for
that gas.

For example, if, for oxygen concentration of chamber 1 the modbus returns the
value 678, this represents an oxygen concentration between 0 and 30%. Thus 678 is

equal to 4.97%. An example is shown below.

%_0, N
30% 4095
%_0, _ 678
30% 4095
* 9,
" 0,~TH o

Carbon dioxide and nitrogen concentration are calculated in a similar manner. Carbon
dioxide has a range of 0 to 1% and nitrogen can be between 0 and 100%.

Tables 2 and 3 show an example of a modbus command sent to the GCX to
return the oxygen concentration for chamber 1 and the reply.
Signal Conditioning

There is very little signal conditioning required for most of the sensors. Every
analog input in the system passes through a low-pass filter, which eliminates transient

voltage spikes. The pressure transducer and MFC outputs do not require further
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Table 2. Example of a Modbus Command. The command includes the device address,
the function code, the starting address of the register to be read, the number of registers
to be read, and an error code.

Address Function Code  Address of Starting  Number of Registersto CRC
Register Read

$01 $04 $01 $01 FXXXX

Table 3. Example of Modbus Reply. The Modbus reply includes the device address, the
function code, the data requested, and an error code.

Address Function Code Register Data CRC

$01 $04 14 $XXXX
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adjustment before being read. However, the temperature sensor and the digital signals to
the vacuum pump do require some amplification. Each analog signal passes through a
low pass filter before being input into the microcontroller to filter out transient voltage
spikes. Diagrams and schematics of the pressure transducer and mass flow controller
signals are shown in Appendix B.
Temperature Sensor

As mentioned above, the temperature sensor signal is not stable unless it is part
of a voltage divider circuit. The circuit used in this system is one of those recommended
by the manufacturer. The sensor output must also be amplified. This is accomplished
using a simple non-inverting operational amplifier circuit. The op amp is an LM358
(National Semiconductor, Santa Clara, CA). Figure 6 shows the temperature sensor
circuit and the sensor range available with that circuit.
Vacuum Pump Signal

The vacuum pump requires 15 amps to run, and the inrush current is many times
greater. Operating such a large pump with a small TTL signal requires a large relay
capable of supplying a lot of current. To prevent the high power levels from harming the
data acquisition and control devices, two relays are used in series. The first relay isa
small optoisolated relay (AQV251, NAiS, Osaka, Japan). It isolates the digital signal
used to turn the pump on and off from the AC signal necessary to operate the pump. The
relay requires an input between 3 and 32 V DC for a high signal and outputs 5 V, and at

low, it outputs zero, or ground. The relay isolates the control signal from the pump.
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The second relay that actually operates the pump is a solid-state relay (D2450,
Crydom, SanDiego, CA). This relay takes the signal from the small relay and converts it
into an AC signal with enough current to activate the pump. The relay can supply up to
50 amps. Because of the high operating current of the pump, the relay must be mounted
on a massive heat sink. A schematic of the circuit is included in Appendix B.
Additional Hardware

Experiments in the Generation II system showed that condensation builds up
inside the growth chambers. A large refrigeration unit (JT500, Koolant Koolers, Inc.,
Kalamazoon, MI) and a cooling coil are used to remove excess water from the chambers
and condense water vapor out of the humid atmosphere within the cylinders. The
condensation removal loop is coupled with an ethylene filter. Currently, potassium
permanganate is used to remove excess ethylene from within the growth chambers. This
loop is under manual control, but in the future, it will be automated.

Microcontroller

The Generation II system has as single computer controlling both growth
chambers. This approach was not practical for a larger system with more variables and
more chambers. Thus, a means of controlling each chamber individually in a distributed
control system was necessary. Each chamber could be controlled using a
microcontroller. That microcontroller (MCU) monitors and controls pressure and gas
concentration levels in each chamber and records the temperature in the chamber.

A microcontroller to control all of the conditions in a chamber to satisfaction

required five analog input channels: pressure, temperature, oxygen mass flow rate,
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carbon dioxide mass flow rate, and nitrogen mass flow rate. It also required at least 3
digital outputs for activating solenoid valves and operating the vacuum pump and one
digital input. The digital input was needed to read a pin on the MCU that shares the
MFCs to determine if the MFCs were already in use. A means of communicating with
the GCX and with a computer was necessary, thus the MCU needed to be capable of
serial communication. The MFCs each require an analog signal between 0 and 5 volts to
set the flow rate through the controller. Microcontrollers cannot output a true analog
signal except at 5 volts, but a pulse width modulation (PWM) signal can emulate an
analog signal, so a microcontroller with three PWM channels was desirable. The
program necessary to control conditions in the chamber was complex, so adequate
programming space was needed. Because the gas concentration calculations require
many equations and good accuracy, a compiler with floating-point math capability was
needed. For ease of programming, a compiler that uses a high level programming
language was desirable.

The PIC16F877 MCU ((Microchip Technology, Inc., Chandler, AZ) met most of
these requirements, and had other benefits as well. It has eight 10-bit A/D converters, 33
digital /O channels, RS-232 capabilities, 2 PWM channels, and 8k of program space.
The chip also has flash program memory, which means it can be programmed multiple
times. A third party C compiler from Custom Computer Services (Brookfield, WI)
allows floating point math and has several useful built in commands for serial
communication and A/D conversion. A schematic of the chip including channel

assignments and the serial conversion chip is included in Appendix B.
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Computers

There are two computers in the control system for the Generation III system.
One of them is devoted wholly to running the GCX-HMI maintenance software. This
was necessary because any other actions at the computer communicating with the GCX
will interrupt communication between the PC and the GCX. This computer is used to
check GCX diagnostics while it is running, and to perform the manual calibrations of the
GCX.

The other computer acts as a switchboard and control panel. It directs data to
and from the microcontrollers and reads the component concentrations for the GCX
modbus. Programming the pressure and gas concentration setpoints into the
microcontrollers would mean that to change those setpoints, the microcontrollers must
be removed from the system, reprogrammed with the new setpoints, and then reinserted
into the system. However, as in the Generation II system, real time update of setpoints is
desirable to perform dynamic testing of conditions in the growth chambers. Thus
setpoints are input by a user into the main PC and sent to the microcontrollers via serial
communication.

Device Network

There are several devices involved in the control system for the six growth
chambers. These devices do not all need to communicate with each other, but they do all
communicate with the main PC. Figure 7 shows the communication network between
devices. The main computer sends setpoints to each of the six microcontrollers via RS-

232 serial protocol. It also receives pressure and temperature data the same way. The
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computer communicates with the GCX modbus using the same serial protocol. The RS-
422 signal from the GCX is converted to RS-232 using a 4850T9L serial converter
(B&B Electronics, Ottowa, IL).

There are seven serial ports needed for all of the serial communication between
devices. These serial ports are provided by an NI PCI-232/16 serial expansion card
(National Instruments, Austin, TX). The card and the included breakout box have 16
available serial ports, and it requires only one interrupt address from the PC to runall 16
ports.

Software

There are three different sets of software used in the control system for the
growth chambers. As mentioned before, the GCX has maintenance software, the GCX-
HMI software. Special software was used to compile and load the MCU programs. The
main computer runs several LabVIEW programs to operate the entire LPPG system and
pass data between the MCUs and the GCX.

Microcontroller Software

The PIC MCUs are programmed in an integrated development environment
(IDE) known as MPLAB. (Microchip Technology, Inc., Chandler, AZ) MPLAB has an
assembly compiler, a simulator, debugger, and other features. It also interfaces with the
PICSTART PLUS programmer (Microchip Technology. Inc., Chandler, AZ) that is used
to program the chips. The MCU operating program is written in C. The third party

compiler used to compile the C code for the chips also works within MPLAB.
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Program Overview

The program for each microcontroller is responsible for maintaining setpoint
conditions within its associated chamber. Because the MCUs have limited storage
space, pressure, temperature, and volume of gas added to each chamber are returned to
the computer at the end of each program loop.

None of the three controlled variables are independent variables. Each is linked
to the other two controlled variables and to chamber temperature as well. Thus there is a
single control algorithm for all three controlled variables — pressure, carbon dioxide
concentration, and oxygen concentration.

Program Algorithm

The program for each chamber is identical to that of the other chambers except
for the calibration equations for the pressure transducer and temperature sensor that are
particular to that chamber. The control algorithm is an infinitely repeating loop that first
receives the setpoints and gas concentrations from the main computer and then adjusts
the pressure and gas concentrations to reach those setpoints.

To do this, the MCU first reads the voltage from the pressure transducer,
converts it to a pressure in kilopascals, and compares that value to the pressure setpoint.
If the setpoint pressure is much lower than the current pressure, the MCU sends out two
high digital signals to turn on the vacuum pump and open a solenoid valve, allowing the
pump to draw down pressure in the chamber. When the setpoint is reached. the pump is

shut off and the valve closed.
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If the pressure is equal to or lower than the setpoint, the MCU proceeds to the gas
concentration section of the program. It reads the voltage from the temperature sensor
and converts that value to a temperature in degrees Celsius. It then calculates the total
number of mols of gas in the chamber using the ideal gas law. The values of pressure

and temperature used in the calculation are those read from the sensors on the chamber.
PV
n_gas_total = —
RT

The mols of each component gas present in the chamber is then calculated based on the

concentration of that gas returned by the gas chromatograph, which is in percent form.

n_gas_total

n_gasli]= _[ga;([)i]]

1
The MCU then calculates the number of mols of gas needed in the chamber to reach the
setpoint pressure. This is also obtained using the ideal gas law, with the setpoint

pressure as an input.

set

n as Sef"P V
~ B = T

The next step is to determine the ‘pivot gas’. If the number of mols of each gas
currently in the chamber is assumed to be the number of mols of that gas present at the
setpoint concentration of that gas, a value for the total number of mols of gas in the
chamber necessary for that to be the case is obtained. This is done for each of the three

gases.

n_ gasfi]
( gasli]l, ]
100

n_gas_set[i]=
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The gas that requires the greatest number of mols of total gas in the chamber is the “pivot
gas’ and the other 2 gases are added to balance the concentrations in the appropriate
proportions. If the total number of mols of gas required in the chamber to reach the
pressure setpoint (#_gas_sef) is greater than that needed for any of the 3 gases to reach
setpoint concentration (n_gas_set{i]), then there is no pivot gas per se and all three gases
are added. For clarification, please refer to Figure 8, which is a flow diagram of the
control algorithm.

Once the pivot gas is determined, the number of mols of each gas to be added to
the chamber is calculated and then converted to a volume using the molecular weight
and density of that gas at standard temperature and pressure.

n_add[i]= %n _gas _set[pivot _gas]—n_ gas(i]

v_addi]="=0dAMW i)
Ali

The proper amount of each gas is added one at a time through the mass flow controllers,
which measure mass flow in standard cubic centimeters per minute. A digital signal
opens the gas inlet valve to the chamber and a PWM signal is sent to each mass flow
controller in turn. This signal tells the control valve in the MFC how far to open and
controls the flow rate of gas into the chamber.

Each MFC sends an analog signal back to the MCU that is directly proportional
to the flow rate of gas through that MFC. A trapezoidal integration over time converts
the flow rate provided by this signal into a volume added. When the correct amount of

cach gas has been added, the PWM signal to its MFC is shut off and the next MFC is
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engaged until all three (or two) gases have been added. When all three gases have been
added, the valve is closed. The MCU then again checks pressure and draws the pressure
back down to setpoint if it is too high. After all adjustments are made, the MCU sends
the final pressure and temperature back to the computer for storage in a file.

Each microcontroller carries out the control algorithm independently of any other
microcontroller. There is no communication between MCUS except during the addition
of gases. Each set of two chambers has but one set of mass flow controllers. Thus the
MCUs turn a digital pin ‘high’ while adding gas, and the other MCU on that rack waits
to add gas if the corresponding pin on its partner is high. In this way, an accurate
amount of each gas is added to each chamber without interference from the
microcontroller of the chamber sharing the mass flow controllers.

The C code used to implement the control algorithm is given in Appendix A.
LabVIEW Programs

The LabVIEW programs for the Generation III system are concerned mainly
with communication. The MCU programs send data to the MCUs and receive data in
return. The GCX program communicates with the modbus on the GCX. It sends
commands to the modbus requesting specific data and waits for a response.

Serial communication in LabVIEW can be accomplished in two ways: by using
the basic serial commands or by using LabVIEW Virtual Instrumentation Software
Architecture (VISA) commands. The MCU communication programs use VISA. VISA
is a set of software routines for configuring, programming, and troubleshooting

instrumentation systems comprised of VXI, VME, PXI, GPIB, and/or serial interfaces.
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Communication with the GCX modbus could also be achieved using VISA
commands, but it would require extensive formatting of the data and special attention to
timing. Instead, the PC communicates with the modbus using BusVIEW, which is
software designed to communicate with industrial controllers. (Software Engineering
Group, Wayland, MA) Installing BusVIEW adds a set of software routines for
communicating with the modbus to the LabVIEW virtual instrument library. To use
these VIs to communicate with the GCX,, the correct serial settings, the type of framing
desired, and the address of the GCX must be setup in the BusVIEW Control Panel.
Overview

There are six VIs that communicate with the six MCUs. Each VI is specifictoa
certain growth chamber and named accordingly. There is one GCX communication VI.
As seen in the communication network diagram, the PC is the central switchboard that
relays data between the GCX and the MCUs and stores data from each for analysis.

An important part of this data relay relies on global variables. Global variables
are variables that can be accessed by several different VIs running at the same time. The
concentrations of nitrogen, oxygen, and carbon dioxide in each chamber are global
variables. The GCX VI writes to these variables, and the various MCU programs read
the value of the appropriate global variables when sending data to the MCUs.
MCU/Chamber VIs

Each chamber has a LabVIEW program that sends setpoints and gas

concentration values to its MCU and reads the data from that MCU at the end of each
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program loop. There are two main communication subVIs in each chamber V1, the Send
Data VI and the Receive Data V1.
Send Data VI

The Send Data VI sends the pressure setpoint, oxygen concentration setpoint,
carbon dioxide setpoint, and the gas concentrations to the MCUs via RS-232 serial
communication. Because the MCUs cannot easily convert a string of characters
representing a floating point number into an actual number for use in calculations, the
oxygen setpoint and the oxygen and nitrogen concentrations are multiplied by a factor of
10 and the carbon dioxide concentration is multiplied by 1000. After converting the
concentrations, the VI uses VISA commands to send the setpoints and the latest gas
concentration variables from the GCX to the MCU. Figure 9 shows a picture of the front
panel of a chamber VI and Figure 10 shows the program. The only difference between
the programs for the various chambers is the string used to identify the serial port used.
The correct string for the serial port for the appropriate chamber is selected in the VISA
Resource subVI, This subVI has one input (the chamber number) and outputs the
correct serial port address string.
Read Data VI

The Read Data VI waits for data from the MCU. It reads the pressure,
temperature, and amount of each gas added from the appropriate serial port and saves
that data in files.

There were some difficulties in reading data from the microcontrollers. The

VISA Read VI is supposed to read until it gets the number of character specified, the



Figure 9. Send Data VI Front Panel
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timeout value is reached, or a termination character is received. However, the VI does
not wait for these conditions before terminating the read operation. Thus, the Number of
Bytes Available at Serial Port setting in the VISA property node was included in the
program along with a short time delay and the property node and read operation are
placed in a loop that repeats until data is received. The VISA Read VI is accessed only
after the program has detected data at the serial port. At that point, the V1 reads all of
the characters from the port. Because the read operation can occur while the MCU is
still sending data, the serial port is read again, and then all of the data is then sorted and
stored in the appropriate files using the File subV1. Figure 11 shows the front panel of
the Read Data VI and the program is shown in Figure 12.
Chamber VIs

The six chamber VIs contain an infinite loop that first reads the current gas
concentrations from the appropriate global variables for the chamber and then sends that
data and the user-input setpoints using the Send Data VL. The VI then reads data back
from the MCU using the Receive Data VI. Figure 13 shows the front panel for the
Chamber 1 V1. There is a ten minute minimum time between loops.
GCX VI

There is one main GCX VI, called Save GCX Data, but in it are several smaller
subVIs that carry out essential tasks, such as reading certain registers in the GCX
modbus. The first loop of the Save GCX Data VI sets the global variables that contain
the gas concentrations for each chamber to the default values of 21% oxygen, 1000 ppm

carbon dioxide, and 78.9% nitrogen. The program then waits for half an hour before



W 11 |

Blo Edk Qperate Project Windows Help

1) [13pt Applcation Fork |

4

Figure 11. Receive Data VI Front Panel

% R X

L4l ]

Figure 12. Receive Data VI Program Diagram

54



Elo Edt Operste Project windows Lielp

»

35

Figure 13. Chamber 1 VI Front Panel

7



56

polling the GCX modbus for the stream 1 component concentrations. This is
accomplished by reading the appropriate modbus channel using the Read Input Register
VI. The Save GCX Data V1 repeats this process for each of the sample streams in an
infinite loop. The loop repeats every 30 minutes. For a flow diagram of the Save GCX
Data VI program algorithm, refer to Figure 14.

Because all of the communication with the GCX is through a single serial port,
multiple programs cannot be used to read GCX data. LabVIEW programs take sole
possession of a serial port and do not allow any other application, including another
LabVIEW program, to access the serial port. The front panel of the Save GCX Data VI
is shown in Figure 15.

System Performance

Once the Generation [1I LPPG system construction was completed, several tests
to check that the various system components functioned correctly were run. The first
step was to calibrate the sensors.

Sensor Calibrations

Both the pressure and temperature sensors required calibration. Small C
programs were loaded onto the MCUs to read the sensors and return data to the PC.
Pressure

Two C programs were written for the pressure calibration. One program took
pressure readings while evacuating the chamber, and the other took pressure readings

while increasing pressure in the chamber. Both programs returned the 10-bit number
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output by the A/D converter to the PC, where the values were stored in a file. In this
way, variations in the A/D converter on the MCU could be taken into account.

The two sets of data were compared to manual pressure readings from a calibrated
vacuum gauge (Dresser [nstruments, Addison, TX) taken as the programs were running.
To eliminate error from the pressure transducer signal settling time, a small time delay
between changing the pressure in the chamber and reading the pressure was built into
both programs. The pressure was stepped up or stepped down in small increments
during both tests. The procedure was repeated twice for each chamber and as both sets
of data were nearly identical, no more repetitions were deemed necessary.

The two calibration programs were necessary to determine if there was hysteresis
in the data. Only chambers 2 and 4 showed any indication of possible hysteresis, but at
this time, there were problems identified with heating in the chamber 4 MCU that were
later eliminated. This eliminated the variation in the pressure transducer readings for
chamber 4. At a later date, a statistical analysis on the data for chamber 2 will be
performed to determine if there are hysteresis effects and these will be accounted for is
necessary. The heating had caused the A/D output of the chip to increase with time.
Figures 16-21 show the calibration results for the pressure transducers on the six
chambers including the calibration equations. The C code for the pressure calibrations is
given in Appendix A.

Temperature
The temperature sensors, while pre-calibrated to output 10 mV/°C, required

calibration. This was due both to the stabilizing circuit offset and range limitation, and
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also to the amplifier circuit. As with the pressure calibration, the 10-bit number output
by the A/D converter on the MCU was recorded and used to form the calibration
equations. The temperature in the growth room was recorded using a pre-calibrated type
T thermocouple temperature sensor. The 10-bit number was plotted versus actual room
temperature to find the calibration equations. The C program for temperature calibration
is in Appendix A. See Figures 22-27 for the temperature sensor calibration results,
including the calibration equations.
MFCs

The three MFCs that are shared between each set of two chambers must be
calibrated for the appropriate gas. These calibrations were performed by the
manufacturer and the calibration gas was specified when the MFCs were ordered.
GCX

The GCX must also be calibrated periodically. The calibration gas contains with
precisely measured amounts of the three component gases: nitrogen, oxygen, and carbon
dioxide. The calibration gas and the air for the dummy cycle are on the same stream.
The flow source is selected by a manual vaive. The calibration procedure is initiated in
the GCX-HMI software. Usually, the GCX must run through the calibration sequence
two or more times before accurate readings are obtained.

System Checks

Several components of the system had to be checked as the system was being

built. Serial communication between the PC and the MCUs was tested early in the
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verified the correct flow rates were used and read by the MFCs because the amount of
gas added is determined by a trapezoidal integration of the flowrate over time. If the
amount of gas added is correct, then the flowrates that are the basis of the calculation
must also be correct. (The other variables in the equation are time and several
constants). A test similar to this was performed to check that the MCUs would add the
correct amount of gas based on gas concentration conditions and setpoints.

The final test was to determine how accurate the addition of each gas to the
chamber was. The amount of each gas added to the chamber was compared to the
amount of gas that was supposed to be added. Both of these values were returned by the
MCUs.

All of these tests were run on Chamber 2. Because same program and hardware
are used for all chambers, only one chamber was necessary for testing. Program changes
made as the result of these tests were implemented in the program on every MCU.
Modbus Communication

The final system check involved the GCX modbus. To first check
communication between the modbus and PC, a short VI was written that performed a
loopback test. This is function code 08. After communication was established, the
GCX was turned on and allowed to run while several VIs read both the input and
holding registers associated with each chamber. The gas concentrations returned to the
PC were stored in files and later compared to concentrations saved in the GCX-HMI

software.
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System Shakedown

Once the system checks were used to verify that the various compenents of the
system were working properly, a shakedown test was performed on chambers 3 and 4.
The control programs for the two chambers were started up and allowed to run for 22
hours. During this test, the pressure and temperature data returned by the MCUs were
recorded by the computer and plotted versus time to determine whether or not the system
could maintain the pressure setpoint. For this test, the values for current gas
concentrations and setpoint concentrations were programmed to be equal for the duration
of the test. The pressure was set to 70 kPa for both chambers.
Results

The system checks both helped to determine the best way do accomplish the
desired tests and later showed that the equipment worked properly. The most essential
checks were those of the MCU program and of the modbus communication. The system
shakedown tests were the final step in design of the LPPG system.
System Checks
MCU Program and MFCs

The calculations performed within the MCU program were checked. The
microcontroller C compiler does not do math in the same way as typical compilers and
many variables had to be forced to floating point type to get accurate values from the
equations. With these corrections, it was found that the MCUs determined the correct
amount of gas to add based on the pressure and gas concentrations currently in the

chambers and the setpoints.
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process by sending several characters to the MCU and then having it send those same
characters back. Also, sensor outputs were checked using a voltmeter to determine if the
output was reasonable before the calibrations were performed. The main system checks
revolved around the MCU gas concentration calculations and the GCX.

MCU Program and MFCs

The MFCs and MCU program were checked simultaneously because the
measured amount of each gas added to the chamber depends on the flow rate for that gas
returned by its MFC. If the MFC reading was inaccurate for any gas, then the amount of
gas the MCU believed it added (based on the flow rates of the gases) and amount of gas
actually added (based in pressure in the chamber before and after gas addition) would
not agree. But before this could be tested, other system checks were performed.

The first step was to check the MCU calculations for the amount of each gas to
add. These calculations use the current conditions in the chamber and setpoints. The
second step was to check the amount of gas actually added to each chamber versus the
amount of gas that should have been added. To do this, a chamber was pulled downto a
certain pressure, and then the pressure setpoint was raised. The MCU would then add
gases in the appropriate concentrations to raise the pressure in the chamber. The
pressures before and after addition of the gases were recorded. The MCU also returned
the amount of each gas added. These amount of gas added based on pressure change
was compared to the amount of gas added as reported by the MCU to check both the
accuracy of the flow rates returned by the MFCs (which are set to certain values in the

program) and to determine if the MCUs were adding the correct amount of gas. This test
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The amount of gas added calculated by the MCU agreed with the amount of gas
that must have been added to account for the pressure difference at that temperature.
Table 4 shows for the results from this test. There are several tests where the difference
between the MCU value and the PC value are very large. It was determined that this
was because the pressure reading used for the MCU calculations was not the same
pressure value returned by the MCUs.

Pressure is read several times in the program. The correct reading had to be used
in the calculations for the amount of gas added based on pressure. This problem was
corrected and additional tests were run. The error was still large in some instances, and
the MCU was programmed to return the pressure value as a 10-bit number instead of in
kilopascals. The computer then converted this number to kPa and the converted number

was used in the CPU calculations. As a more precise pressure reading was used to check

the error d d until it was almost nonexistent. When the MCU returns

a value for pressure in kilopascals or temperature in Celsius, this number has been

rounded and is not as precise as the temperature measurement used in the MCU

Iculations. The spreadst used for the calculations are in Appendix C.
During the combined MFC and MCU program tests, the microcontroller returned 2
values for each gas: the amount of gas it was supposed to add, and the amount of gas
actually added. There was always a difference between these numbers. The largest
error was for carbon dioxide. This is understandable since carbon dioxide concentration
is normally measured in parts per million, whereas oxygen and nitrogen concentration

are measured as percentages. So though the CO; error looks large, it is in fact extremely
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Table 4. Percent Difference Between the Amount of Gas Added Calculated by the MCU

and the Amount of Gas Added Based on Pressure Difference. These numbers were
compared to determine if the MCUs were adding the correct amount of each gas.

Pressures CPUvalues _ MCUvalues % of Total Gas Added % Difference
50 v_add[1] 10198 1.0675 01998 467%
60 v_add2] 00055 00053 00010 291%

v_add[3] 4.4084 42702 07992 3.14%

601 v_add[1] 10910 10841 0.1998 063%
Y v_addf2} 00054 00054 00010 0.63%
v_add[3) 43643 43369 07992 0.63%

) v_add[1] 10198 10743 01998 5.34%
80 v_add[2] 00055 00053 00010 252%
v_add[3) 44084 42977 07992 251%

551 v_add[1] 05400 05382 01998 033%
60 v_add[2] 00027 00027 00010 037%
v_add3] 21601 21530 07992 033%

601 v_add[1] 03196 02601 01998 1863%
3 v_add[2] 00016 00013 00010 1865%
v_add[3] 12784 10403 07992 1863%

632 v_add[1] 03086 02995 01998 295%
66 v_add[2] 00015 00015 0.0010 294%
v_add3] 12344 11979 0.7992 295%

664 v_add[1] 03967 04226 01998 551%
70 v_add[2] 00020 0.0021 00010 650%
v_add[3] 15870 16904 07992 551%

702 v_add(1] 10799 10743 01998 052%
80 v_add[2] 00054 00053 00010 053%
v_add[3] 43202 42977 07992 0.52%

70 v_add(1]} 10799 09420 01998 1277%
30 v_add[2] 00054 00047 00010 1278%
v_add(3] 43202 37684 07992 1277%

74 v_add[1] 08894 08891 01998 003%
8 v_add[2] 00044 0.0044 00010 005%
v_add(3] 35579 35567 07992 003%

7145 v_add(1] 09423 09420 01998 003%
80 v_add[2] 00047 00047 00010 004%
v_add[3] 37697 3.7684 07992 003%
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small: a percentage of 1%. (The maximum measurable concentration of CO; is 1%.)
The results are shown in Table 5, and because the control program is identical on all of
the MCUs, it can be deduced that the results are similar for all of the chambers.
Modbus Communication

The initial modbus communication tests showed that not all of the components
for all of the streams were being updated in the modbus. The stream 1 components and
the nitrogen concentration for stream 5 were being updated in the modbus registers, but
no other stream data was updated. This problem was solved by activating the modbus in
the GCX-HMI software, which was overlooked during initial setup. The values read by
LabVIEW from the modbus were then compared to the values saved by the GCX
maintenance software. Tables 6, 7, and 8 show this data. Carbon dioxide showed the
largest error between the GCX software concentration and the modbus concentration.
The difference between the two numbers can be attributed to how data is stored in the
modbus. The GCX maintenance software shows a concentration with a 4-decimal place
precision for each component gas. However, the modbus only stores an integer between
0 and 4095 that represents a concentration. This integer is converted to a concentration
in the Save GCX Data VI. The converted concentrations only agree with the GCX
concentrations for the three significant digits. This was an acceptable degree of error in
the gas concentrations.

System Shakedown

The pressure shakedown tests showed that the system could maintain pressure

over a 22 hour period. Figure 28 shows the pressure vs. time graph for chambers 3 and



Table 5. Percent Difference Between the Amount of Gas to Add and the Amount
of Gas Added. The MCUs return the amount of each gas that needs to be added to reach
setpoint conditions, and the actual amount of gas added. These numbers were compared
to determine if the MCUs were adding the correct amount of each gas.

79

02

€02

N2

Liters to
Add

Liters
Added

Percent
Difference

Liters to
Add

Liters
Added

Percent
Difference

Liters to
Add

19413
27392
3 8009
0.9254
1.0743
09420
0.8891
09420
10675
10841
10743
05382
0.2601
02995
0.4226

19413
27392
38009
09253
1.0743
0.9420
0.8891
09420
10874
10841
10743
05382
02601
02995
0.4226

0000013
0000006
0.000001
0.000028
0.000022
0 000035
0000038
0000028
0000030
0000016
0000021
0000032
0.000131
0.000040
0.000083

0.0038
0.0046
0.0054
00047
00044
0.0047
00050
00053
00054
00053
0.0027
0.0013
0.0015
0.0021

0.0038
00046
0.0053
0.0047
0.0044
0.0047
00050

0002646
0.001859
0.002812
0.003634
0.003398
0.000428
0002220
0002452
0003343
0001874
0002994
0 000000
0.012105
0.003337

37017
42978
3.7684
3 5567
37684
3.9917
4.2702
4 3369
42977
21530
10403
11980
1.6904

Liters
Added
37017
42077
37684
3.5567
37684
39917
42702
43369
42077
21530
1.0403
11979
16904

Percent
Difference
0.000007
0.000009
0 000005
0.000007
0.000002
0000001
0 000005
0.000009
0.000003
0.000011
0.000021
0 000016
0.000014

Average
error

0 000032

0 003086

0.000008




Table 6. Percent Difference Between GCX-HMI Software Oxygen Concentration and GCX Modbus Oxygen Concentration.
The oxygen concentrations from each of the six chambers as shown in the GCX-HMI software are labeled as 1 to 6. The
corresponding Modbus reading is shown in the following column.

Percent Percent Percent nt Percent Percent

1 modbus Difference 2 modbus Difference 3 modbus Difference 4 _modbus Difference 5 modbus Difference 6 modbus Difference
21919 21921 001% 21.956 21954 001% 21949 21947 001% 21971 21.941 014% 21993 21953 0.18% 21993 21862 059%
21832 21833 001% 21854 21.857 002% 21949 21855 043% 21941 21849 042% 21956 21908 021% 21956 21826 059%
21854 21855 001% 21.839 21.836 001% 21854 21814 018% 21846 21832 006% 21912 21807 048% 21912 21827 039%
21861 21860 000% 21846 21.844 001% 21817 21829 006% 21832 21860 013% 21810 21837 0 13% 21810 21855 021%
21833 21837 001% 21.846 21847 000% 21832 21865 0.15% 21861 21840 010% 21839 21.827 005% 21 839 21847 004%
21780 21778 001% 21846 21850 002% 21868 21.785 038% 21839 21812 012% 21824 21771 024% 21824 2182 001%
21802 21803 000% 21846 21832 006% 21.788 21.806 008% 21810 21822 006% 21773 21759 006% 21773 21.746  012%
21766 21764 001% 21832 21813 0.08% 21.810 21.757 024% 21.824 21806 008% 21758 21795 017% 21758 21780 010%
21766 21804 018% 21810 21761 022% 21758 21.767 004% 21802 21773 0.13% 21795 21.749 0.21% 21795 21749 021%
21802 21736 0.30% 21758 21792 0.16% 21766 21741  011% 21.773 21742 0.14% 21751 21784 0.15% 21.751 21763 0.06%
Average 005% 006% 017% 0.14% 019% 023%

08



Table 7. Percent Difference Between GCX-HMI Software Nitrogen Concentration and GCX Modbus Nitrogen Concentration.
The nitrogen concentrations from each of the six chambers as shown in the GCX-HMI software are labeled as 1 to 6. The
corresponding Modbus reading is shown in the following column.

Percent Percent Percent Percent Percent Percent
1___modbus Difference 2 modbus Difference 3 modbus Difference 4  modbus Difference 5 modbus Difference 6  modbus Difference

78559 78548 001% 78657 78651 001% 78559 78568 019% 78633 78517 015% 78535 78544 001% 77998 78493 064%
78388 78.393 001% 78462 78473 001% 78559 78407 019% 78510 78481 004% 78535 78464 009% 78486 78463 003%
78388 78386 000% 78437 78430 001% 78413 78452 005% 78486 78414 009% 78462 78412 006% 78462 78.353 014%
78437 78434 000% 78388 78388 0.00% 78462 78554 012% 78413 78552 018% 78413 78580 021% 78364 78529 021%
78510 78507 000% 78388 78500 026% 78559 78580 003% 78559 78479 0.10% 78584 78432 019% 78535 78456 010%
78462 78464 000% 78584 78580 000% 78584 78567 002% 78486 78561 010% 78437 78512 010% 78.462 78456 001%
78388 78380 001% 78584 78484 013% 78559 78485 009% 78559 78472 011% 78510 78499 001% 78462 78467 0.01%
78437 78448 001% 78486 78512 003% 78486 78495 001% 78462 78481 002% 78510 78424 011% 78462 78414 006%
78437 78448 001% 78510 78543 004% 78486 78502 0.02% 78486 78494 001% 78413 78449 005% 78413 78426 002%
78437 78435 000% 78.535 78497 005% 78510 78503 001% 78486 78384 013% 78437 78425 0.02% 78437 78425 002%
Average 0.01% 005% 007% 0.08% 009% 0.12%

18



Table 8. Percent Difference Between GCX-HMI Software Carbon Dioxide Concentration and GCX Modbus Carbon Dioxide
Concentration. The carbon dioxide concentrations from each of the six chambers as shown in the GCX-HMI software are
labeled as 1 to 6. The corresponding Modbus reading is shown in the following column.

Percent Percent Percent Percent Percent Percent

1 modbus Difference 2  modbus Diference 3 modbus Difference 4  modbus Difference 5 modbus Difference 6  modbus Difference
0037 0037 107% 0040 0040 050% 0042 0042 000% 0039 0040 178% 0037 0038 243% 0036 0038 585%
0038 0038 078% 0040 0040 074% 0042 0042 000% 0040 0040 101% 0038 0038 026% 0038 0039 236%
0038 0038 026% 0041 0041 049% 0042 0043 287% 0040 0039 201% 0038 0039 236% 0039 0038 281%
0039 0039 1.04% 0041 0041 000% 0043 0042 118% 0039 0033 026% 0039 0038 206% 0038 0039 236%
0038 0038 026% 0041 0041 000% 0042 0043 190% 0039 0040 178% 0038 0039 183% 0039 0039 004%
0038 0038 026% 0042 0041 1.20% 0043 0044 353% 0040 0040 050% 0039 0039 104% 0039 0039 026%
0038 0039 104% 0041 0041 000% 0044 0043 160% 0040 0040 074% 0039 0040 309% 0039 0039 076%
0039 0039 076% 0041 0041 049% 0043 0044 304% 0040 0041 174% 0040 0039 152% 0039 0040 308%
0039 0040 178% 0041 0042 169% 0044 0044 045% 0041 0040 244% 0039 0040 303% 0040 0039 323%
0040 0039 250% 0043 0042 1.18% 0044 0044 069% 0041 0041 123% 0040 0040 050% 00Q40 0040 101%
Average 098% 0683% 153% 135% 182% 218%

8
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Figure 28. Pressure vs. Time for Shakedown Test Without Gas Addition
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4. Chamber 3 started at 50 kPa and the system raised the pressure to 70 kPa. Chamber 4
was at 70 kPa at the start of the test. Pressure stayed close to the setpoint for the
duration of the test. There are some variations in temperature in the chambers. These
can be explained by looking at the graph of chamber temperatures for the duration of the
test. Figure 29 shows the temperature in both chambers versus time.

The chamber temperature oscillates over a small range during the day. This is
because the temperature control on the growth room is simple on/off control. Room
temperature changes by small amounts as the air handling system comes on and shuts
off. This has some slight effect on chamber pressure. In a fixed volume with a fixed
amount of gas present, pressure decreases as temperature decreases and increases when
temperature increases. However, if the temperature drops a significant amount, the
chamber pressure will drop by a larger amount. During the night, chamber temperature
drops and continues dropping until the lights in the chamber come back on.

Consequently, the pressure in the chambers drops over night as well. This is the
small depression in the chamber pressure graph. If pressure changes too much, the
MCUs will compensate by adding gases. The temperature and pressure graphs show
that the system can correctly maintain pressure for several hours. It can compensate for
temperature effects on pressure if the effects are great enough to move chamber pressure

beyond the dead band around the setpoint.
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Figure 29. Temperature vs. Time for Shakedown Test Without Gas Addition
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Discussion
System Checks

The system checks were a necessary step in start-up and development of the
system. The tests exposed problems that needed to be corrected and allowed evaluation
of various components of the entire LPPG system. The checks became part of the
design process and verified proper operation of the system.
System Shakedown

The shakedown test shows that the system can maintain the pressure setpoint for
several hours at a time. This is just a preliminary test. More tests at various pressures
will be performed, and the gas concentration control portion of the system will be
implemented in future tests. The gas concentration shakedown tests cannot yet be
implemented due to problems maintaining serial communication between the PC and
MCU when the amount of each gas added is returned by the MCU in addition to the

pressure and temperature.
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CONCLUSIONS AND FUTURE RESEARCH
Conclusions

The Generation II LPPG system is sufficient for running short-term tests as long
as the atmosphere in the two chambers is recycled to prevent a build-up of ethylene and
to replenish oxygen and carbon dioxide. The system can also be used to determine the
effect of a non-replenished environment on plants. However, the lack of gas control
limits the applications of this system.

The Generation III LPPG system has control over oxygen and carbon dioxide gas
concentrations as well as pressure. Humidity and ethylene are removed from the
chamber environment during the course of experiments. Long-term plant response tests
can be conducted in the Generation IIl system. During these tests, pressure and gas
concentrations can be adjusted, allowing implementation of various combinations of
pressure and gas concentrations over the duration of the test. The system will be capable
of dynamic adjustment of all relevant variables during experiments. However, some
changes will have to be made before the full range of low pressure experiments can be
run,

Future Research
Engineering

There are some changes that will be made to the Generation III system. The gas
addition algorithm on the MCUs will be changed so that gases are added in small
amounts in the correct proportions to prevent the pressure in the chambers from reaching

levels much higher than atmospheric pressure. The current algorithm can result in large
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amounts of gas added to the chamber, sometimes raising pressure inside the chambers to
two or three times atmospheric pressure. Because of the limited program space on the
MCUs, this portion of the program will probably have to be moved to the PC and the
LabVIEW chamber VIs will send the amount of each gas to add to the MCUs. The other
solution is to find a new MCU with more program space and a new compiler with
floating point math capability.

The prototype boards and circuits will be replaced by printed circuit boards. This
will eliminate the possibility of a wire coming loose and impairing system operation. It
will also provide the option of ordering extra boards so that damaged circuit boards can
be removed and immediately replaced by a working board. This will decrease system
down time should repairs need to be made.

Backup power will be provided to the MCUs, the GCX, and both computers to
prevent them from being reset during the frequent power outages in the growth room. In
this way, tests can continue to run even during power failure.

The serial communication algorithms will be fine tuned to prevent loss of
communication between the PC and MCUs. At this point, when the gas addition
portion of the MCU algorithm is used, the PC and MCU lose communication. This is
because the MCU does not send the same number of characters every time. The number
representing the volume of gas added will be formatted so that it always has the same
number of characters. Zeroes will be used as place holders to the left of decimal. If this

cannot be fit on the MCU with the existing program, then the calculation of how much
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of each gas to add will be moved to the LabVIEW chamber VIs and the volume to add
will be sent with the pressure setpoint.

Tests will be conducted to model how plants affect carbon dioxide and oxygen
concentrations in the chambers. If there is a large impact on concentrations over short
periods of time, the GCX sampling frequency can be increased to sample each chamber
every 15 minutes. Should this frequency still not be high enough to compensate for the
amount of oxygen and carbon dioxide evolved by the plant, data from experiments with
plants in the chamber will be used to create models of gas concentration values versus
time. These models will then be incorporated into the LabVIEW chamber VI programs
and setpoints will be adjusted to compensate for plant effects on gas concentrations over
time. The MCU program execution frequency can be increased if necessary.

Plant Research

The system can maintain pressure and gas concentrations for plant experiments.
The experiments run using the Generation III LPPG system will determine plant
response to various combinations of pressure and oxygen and carbon dioxide
concentrations. Models of ethylene production under various pressures and gas
concentrations can also be developed. Both long term and short term tests with some of
NASA’s candidate crops, such as wheat and lettuce, will be conducted. This data will be

used in the design a plant growth module for an extraplanetary habitat.
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Microcontroller Program

/*
NASA low pressure plant growth chamber pressure
and gas concentration control program for PIC16F877
by. Andrew Hensley & Denise Brown

*

#include <16F877.H>

#DEFINE CHAMBER_6 // chamber number to program the microchip for
#DEFINE V_Chamber 55 3 / volume of chamber in liters
#DEFINE GasConst 8.314// L-kPa/mol-K

#DEFINE rho N2 125  // density in grams/liter

#DEFINE rtho_O2 1.43  // density in grams/liter

#DEFINE rho_CO2 1,98 // density in grams/liter

#DEFINE MW_N2 28.01 // mollecular weight in 1

gt
#DEFINE MW_02 32.0 // mollecular weight in grams/gr 1
#DEFINE MW_CO2 44.01 // mollecular weight in grams/gram-mol

#fuses HS,NOWDT.NOPROTECT.PUT,BROWNOUT

#use delay(clock=10000000)
#use 15232(baud=9600, xmit=PIN_C6, rcv=PIN_C7)

/* function prototypes */

void setup(void);

long getsetpt(void);

long getpressure(void);

long gettemperature(void);

long suck_air(long setpt);

long kPa2long(long p_kPa);

float long2kPa(long p_long);

float long2cel(long t_long);

float add_gas(int gas_number, float volume_to_add);
long check_way_over_p_set(long p_10bit, long p_set},
float calemols(int gas_number, float n_gas, long conc);
/Mloat find_max_mols2set(float p_kPa_set,float t_cel, float n_O2, float n_CO2, float n_N2, long O2_set,
long CO2_set, long N2_set),

main()

1* declare variables */

mt i,pivot_gas; /it =8 bit unsigned

long p_10bit,t_10bit,pmax, // long = 16 bit unsigned

long p_kPa_set,02_set,CO2_set,02_conc,CO2_conc,N2_conc; 1/ inputs
long p_set,N2_set; // derived inputs

float t_cel,p_kPa; // float = 32 bit floating point

float n_gas,n_02,n_N2,n_CO2,n_gas_set[4],n_add[4], /! float =32 bit fp

float v_add[4],volume_added;
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setup(); // set up timers, ADC, etc... see comments below

* begin mam loop */

while(1)

{

/* get setpoints from GC computer */

OUTPUT_BIT(PIN_B7,1}: // debugging info -- high when waiting for setpoints
p_kPa_set = getsetpt();  // get pressure setpoint in kPa

02_set = getsetpt(); J/ get oxygen setpoint (parts per thousand)

CO2 _set = getsetpt();  // get carbon dioxide setpoint (ppm)

02_conc =getsetpt();  // get oxygen concentration from g (parts per thousand)
CO2_conc = getsetpt(); // get carbon dioxide concentration from gc (ppm)

N2_conc = getsetpt(), // get nitrogen concentration from gc (parts per thousand)
OUTPUT_BIT(PIN_B7,0); /i debuggng info -- low when done reading setpoints

printf("%lu\t%lu\elu\t”,p_kPa_set,02_set,CO2_set). // debug
prntf("%luM%lut%luMt",02_conc,CO2_conc,N2_conc), 1/ debug

/* convert to usable units */

p_set=kPa2long(p_kPa_set): /isetpoint pressure in terms of a 10-bit number
N2_set = 1000 - O2_set - CO2_set/1000,

Jicalculate nitrogen setpomt (parts per thousand)

/* read pressure and temperature */
p_10bit=getpressure();
t_10bit=gettemperature(),

/% 1f pressure is >> than setpoint, adjust pressure */
p_10bit=check_way_over_p_set(p_I0bit,p_set).

/* convert pressure and temperature for use in ideal gas eqn */
p_kPa=long2kPa(p_10bit); // convert pres to kPa float
t_cel=long2cel(t_10bit); // convert temp to celsius float

printf("%lu\t",p_l0bit); // debugging

/* adjust concentrations (] */
/1 gas #1 = Oxygen

/ gas # arbon Dioxide
/1 gas #3 = Nitrogen

J/ find total number of mols of gas in chamber by 1deal gas law
n_gas=p_kPa*V_Chamber/(GasConst*(t_cel+273 15)); /1 n=P*VAR*T)

/I find number of mols of each component by concentration * total mols
n_02=calcmols(1,n_gas,02_conc);
n_CO2=calcmols(2,n_gas,CO2_conc),
n_N2=calemols(3,n_gas,N2_conc);

// find the maximum number of mols needed by any gas to bring it to setpont 1f that gas
/fis pivot gas
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/Ipressure setpoint
n_gas_set[0]=(float)p_kPa_set*V_Chamber/(GasConst*(t_cel+273.15));

n_gas_set[1]=(float)n_O2/((float)02_set/1000); 1/ oxygen
n_gas_set[2]=(floatyn_CO2/(CO2_set/1000000 0); // carbon dioxide
n_gas_set[3]=(floatn_N2/((float)N2_set/1000),  // nitrogen

pivot_gas=0;  //reset max
for(i=1,i<4,i++){
1fin_gas_set[i]>n_gas_set[pivot_gas])
pivot_gas=i;
}

/I calculate how many mols of each gas to add

//mew oxygen setpoint minus existing oxygen mols
n_add[1]=((float)O2_set/1000*n_gas_set[pivot_gas])-n_O2;
/mew CO2 setpoint minus existing CO2 mols
n_add[2]=(CO2_set/1000000.0*n_gas_set[pivot_gas])-n_CO2;
//mew nitrogen setpoint minus existing nitrogen mols
n_add[3]=((float)N2_set/1000*n_gas_set[pivot_gas])-n_N2;

// calculate how much volume that 1s at STP

v_add[1]=n_add[1*MW_0O2/tho_02; // volume oxygen to add
v_add[2]=n_add[2]*MW_CO2/tho_CO2, // volume carbon dioxide to add
v_add[3]=n_add[3]*MW_N2/rho_N2, 1/ volume nitrogen to add
// add non-pivot gasses to chamber

volume_added=0; Hreset

OUTPUT_BIT(PIN_B6,1); // debuggng nfo -- high when adding gasses

for(i=l:i<4;i++)

1f(1!=pivot_gas)
{ volume_added=add_gas(i,v_add[1]);
printf(“%f\t”,volume_added);

i
else
printf(**0.000000\");
}
OUTPUT _BIT(PIN_B6,0); // debugging info -- low when not adding gasses

/* adjust pressure ¥/

pmax=1.025*p_kPa set; //temporarily storing dead band above set pomnt [kPa] in pmax
/lconvert pmax [kPa] to pmax {long] for comparison to p_10bit

pmax=kPa2long(pmax);

p_l0bit=getpressure():  //check pressure now that gasses have been added
printf("%Ilult",p_10bit); // debugging

if(p_10bit>pmax)/Af pressure is above setpoint + margin, draw down to setpoint
p_10bit=suck_air(p_set);
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/* read pressure and temperature agamn */
p_10bit=getpressure();
// this shouldn't be necessary because pressure was measured in suck_air()

t_10bit=gettemperature();

OQUTPUT _BIT(PIN_C5,1),
/1 debugging nfo -- high when about to write data, stays high if program reaches this
// point

/* send data to computer */
_kPa=long2kPa(p_10bit);
t_cel=long2cel(t_10bit);

//put tabs between outputs
printf("%6 1ft%6.11\t",p_kPa,t cel);

voud setup()
{

/* configure analog inputs */

SETUP_ADC( ADC_CLOCK_INTERNAL );
SETUP_ADC_PORTS(ALL_ANALOG);

//RAO RA1 RA2 RA3 RA5 REO RE1 RE2 Ref=Vdd

/fse this command before using READ_ADC() to read channel 0 (pressure):
set_adc_channel( 0 );

/! Channel 0, RAO, Pin 2, Chamber 1 Pressure

/{ Channel 1, RAI, Pm 3, Chamber 1 Temperature

// Channel 2, RA2, Pin 4, Oxygen Flow Controller

// Channel 3, RA3, Pm 5, Carbon Dioxide Flow Controller
// Channel 4, RAS, Pin 7, Nitrogen Flow Controller

/* configure digital I/O */

// RD3, Pin 19, vacuum pump on/off switch on=high output

/f RD1, Pin 20, vacuum pump valve open=high output

// RD2, Pin 21, gas m valve open=high output

// RBI, Pin 34, valve-open signal pin open=high output

/I RB2, Pin 35, valve-open check pin open=high input

// RB4, Pin 37, CO2 flow controller (PWM egiv.)  open=high output

/* old demultiplexing idea -- not used right now */

// RB4, Pin 37, PWM demultiplexer -> 02 on=high output

// RB3, Pin 38, PWM demultiplexer -> CO2 on=high output

7* configure PWM */

SETUP_CCP1(CCP_PWM); // setup comparator 1 to PWM mode
SETUP_CCP2(CCP_PWM); 1/ setup comparator 2 to PWM mode

SETUP_TIMER_2(T2_DIV_BY_1,255,1); // PWM uses timer 2
/I RC2, Pin 17, PWMI -- demultiplexed oxygen and carbon dioxide flow controllers
/I RC1, Pin 16, PWM2 -- nitrogen flow controller
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/fuse command. SET_PWM1_DUTY(value) for PWM]1 (10-bit value max) (an 8-bit value will be
Heft justified)

/luse command: SET_PWM2_DUTY (value) for PWM2 (10-bit value max) (an 8-bit value will be
Heft justified)

/* initialize both PWM channels to 0 */

SET_PWMI_DUTY(0);

SET_PWMI1_DUTY(0);

}
long getsetpt()
{
char thous,hunds,tens,ones;
long setpt=0;
/* this subroutine expects to receive a 4 digit number converted to a 4 char string
with leading spaces if the number requires fewer digits to represent it */
thous=getc();  //thus will wait for the RS232 input indefinitely
hunds=getc();
tens =getc():
ones =getc(),
Af{thous>47)
setpt=1000 0*(thous-48); //48 is the ascii value of '0'
1fthunds>47)
setpt+=100 0*(hunds-48);
if(tens>47)
setpt+=10 0*(tens-48);
if{ones>47)
setpt+=ones-48,
return setpt;
}

long suck_air(setpt)
{

int i
long p=1024,p_sum=0;
OUTPUT_BIT(PIN_D3,1); /fvac pump on
DELAY_MS(500), /ldelay .5 sec to suck air out of lines
OUTPUT_BIT(PIN_D1,1); fopen vacuum pump valve
SET_ADC_CHANNEL(0); //ADC set to read pressure
DELAY_US(1); /hwait for ADC to be ready
while(p>setpt)
{
_sum=0;
for(i=0;i<20;i++)
p_sum+=READ ADC(); //averaging out pressure transducer A/D

p=p_sum/20;
OUTPUT _BIT(PIN_D3,0); /fvac pump off
OUTPUT_BIT(PIN_D1,0); flclose chamber out valve
return p;
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long kPa2long(p_kPa)
{

long p;

//infel:t formula here to convert from kPa to 10-bit value representing calibrated pressure sensor's
Hfoutput as will be read by the A/D converter taking into account the reference voltages supplied
//pressure 1 kPa = 48.292*V - 48.173 where V=voltage. we're using a 16-bit (long) variable to
{/hold the value from a 10-bit A/D converter on chip. So for a voltage from 0 to 5 V, we will get
/fan integer from 0 to 1023 from the A/D converter (because we'll be using 0 & 5V as
fireference)

/Ire-arranging the above equation and including the integer to voltage conversion (5/1023) we get:

#IFDEF CHAMBER _1

p=(p_kpa+43.273)/.2448; /fchamber #1
#ENDIF
#IFDEF CHAMBER_2

p=(p_kPa +44.962/.2491; Jichamber #2
#ENDIF
#IFDEF CHAMBER _3

p=(p_kPa +43.772)/.2451, fichamber #3
#ENDIF
#IFDEF CHAMBER_4

p=(p_kPa +45.62)/.245; /fchamber #4
#ENDIF
#IFDEF CHAMBER _5

p={p_kPa + 28.892)/.2223; /fchamber #5
#ENDIF
#IFDEF CHAMBER 6

p=(p_kPa +43.343)/.2459; /fchamber #6
#ENDIF

return p;

}
float long2kPa(p_long)
{

float p_kPa,

/finsert formula here to convert from 10-bit value to kPa. 10-bit value represents calibrated
ifpressure sensor's output as will be read by the A/D converter taking into account the reference
/Ivoltages supphed

#IFDEF CHAMBER _1

p_kPa=0.2448*p_long - 43.273;  //chamber #1
#ENDIF
#IFDEF CHAMBER 2

p_kPa=0.2491%p_long - 44.962;  //chamber #2
#ENDIF
#IFDEF CHAMBER 3

p_kPa=0.2451*p_long - 43.772,  //chamber #3
#ENDIF
#IFDEF CHAMBER _4

p_kPa=0.245*p_long - 45.62; //chamber #4
#ENDIF
#IFDEF CHAMBER _5



p_kPa=0.2223*p_long - 28.892;
#ENDIF
#IFDEF CHAMBER _6
p_kPa=0.2459*p_long - 43.343;
HENDIF
return p_kPa:
}

float long2cel(t_long)
{

floatt_cel=0.0;

/finsert formula here to convert from 10-bit value to celsius. 10-bit value represents calibrated
/ithermistor's output as will be read by the A/D converter taking into account the reference

{fvoltages supplied

#IFDEF CHAMBER _1
t_cel=.0856*t_long - 10.811;

H#ENDIF

#IFDEF CHAMBER _2
t_cel=081*t_long - 7 3106,

#ENDIF

#IFDEF CHAMBER _3
t_cel=.0933*t_long - 13.175;

#ENDIF

#IFDEF CHAMBER _4
t_cel=.0883*t_long - 11.587;

#ENDIF

#IFDEF CHAMBER _5
t_cel=.0859*t_long - 10.528;

#ENDIF

#IFDEF CHAMBER_6
t_cel=.0941*t_long - 12.566;

#ENDIF

return t_cel,

}

float add_gas(gas_number, volume_to_add)
€

/* This subroutine should check which gas is to be added, and how much to add, then
* open the appropriate valves for the appropriate amount of time (with feedback) to
+

0 50.

* gas #1 = Nitrogen

* gas #2 = Carbon Dioxide
* gas #3 = Oxygen

*

/* declare variables */

nt g=0,q_prev=0,dt=0,mfc_channel,valve_pm,PWM1duty, PWM2duty,flowscale=1;

long loopcount=0;
float volume_added=0,

I/chamber #5

/chamber #6

//chamber #1

/lchamber #2

/fchamber #3

//chamber #4

/fchamber #5

/Ichamber #6

99
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if(volume_to_add<0.0000001) 1/if no gas is supposed to be added, skip rest of subroutine

return 0.0;
7* wait for other MCU to finish using its gas inlet valve */
while(INPUT(PIN_B2)),

OUTPUT_BIT(PIN_B!,1); J/declare gas inlet valves in use by you
/* set which pins to use based on gas # */
if(gas_number == 1){ //Oxygen
mfc_channel=4; /fthe channel that the A/D converter will read to find flowrate
PWMIduty=0; // not using PWM2
PWM2duty=255; /1 open MFC all the way = 1000 ml/min
}
if{gas_number == 2){ //Carbon Dioxide
mfc_channel=3; //the channel that the A/D converter will read to find flowrate

OUTPUT_BIT(PIN_B4.1);
/fopen MFC all the way = 500 ml/min !!!carbon dioxide flow controller differenet flow

/frate
PWMIduty=0; //mot using PWMI1
PWM2duty=0; //not using PWM2
flowscale=2; /faccount for flowrate being half of normal by dividing by
/flowscale
3
1f{gas_number == 3){ //Nitrogen
mfc_channel= 2; Ilthe channel that the A/D converter will read to find flowrate
PWM1duty=255; ! open MFC all the way = 1000 ml/min
PWM2duty=0; // not using PWM2

}

SETUP_COUNTERS(RTCC_INTERNAL,RTCC_DIV_32);
//there are problems if this counter resets, messes up dt

SET_ADC_CHANNEL(mfc_channel); Ifready to read MFC

OUTPUT_BIT(PIN_D2,1); J/open gas in valve
DELAY_MS(10), /iwait 10 milliseconds for any air in the line to dram
ito chamber

SET_PWMI_DUTY(PWMIduty); //begin to let appropriate flow of gas through 02 MFC
SET_PWM2_DUTY(PWM2duty); //begin to let appropriate flow of gas through N2 MFC
SET_RTCC(0); /freset clock to zero

1* trapezoidal integration to control volume_added */
while(volume_added < volume_to_add)

{
q_prev=g; /fsaving prev q for trap ntegration
d=GET_RTCC(); //change in time = clock value b/c we reset each loop
SET_RTCC(0); /freset clock to zero
q=READ_ADC(), //read MFC -- flow rate
™ constant below (8.3660131E-10) arrived at by:
RTCC cnts*A/D flowrate | 32 instr cycles | 4 clkeyeles | 1s | 1 min { I Liter/minute

|} RTCC count |instrcycle | 10°7 clkcycles [60s  |255 A/D value
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*
volume_added+=((8 366013 1E-10)*((float)q+(float)q_prev)2.0*(float)dt)/(float)flowscale,
//volume = flow rate * time (trapezoidal integration)
loopcount++;
}
* close out valves, etc.. return to base state */
SET_PWMI_DUTY(0), Ifclose 02 MFC internal valve
SET_PWM2_DUTY(0); //close N2 MFC internal valve
OUTPUT_BIT(PIN_B4,0); /fclose CO2 MFC if it was open
DELAY_MS(10); //wait 10 milliseconds for any air in the line to dram
//to chamber
OUTPUT_BIT(PIN_D2,0), /fclose gas in valve
OUTPUT_BIT(PIN_B1,0); //declare gas inlet valves no longer in use by you
" printf("%u\t%u\t%u\t%lu\t",q,q_prev,dt,loopcount); //debugging
4 printf("%f liters of gas number %u added, %f liters requested\t”, volume_added, gas_number,
volume_to_add); //debugging notes
return volume_added,
}
long getpressure()

/* This subroutine reads the appropriate A/D channel and retumns pressure as a 10-bit number (long) */

}

int i;
long p_10bit,p_sum=0;
SET_ADC_CHANNEL(0),
DELAY_US(1),
for(i=0,i<50;i++)
p_sum+=READ_ADC(); /faveraging out pressure transducer A/D to be more accurate
p_10bit=p_sum/50,

return p_10bit;

long gettemperature()

/* This subroutine reads the appropriate A/D channel and returns temperature as a 10-bit number (long) */

int i,
long t_10bit,t_sum=0,

SET_ADC_CHANNEL(1);
DELAY_US(1);
for(i=0;i<10;i++)

t_sum+=READ_ADC(); //averaging out thermistor A/D to be more accurate
1_10bit—t_sumy/10,

return t_10bit;



long check_way_over_p_set(p_10bit, p_set)

{
/* This subroutine checks if pressure 1s >> than setpoint, then adjusts pressure if it is */
if((p_10bit>p_set)&&((p_10bit-p_set)>150))
p_10bit=suck_air(p_set),
return p_10bit,
H

float calemols(gas_number,n_gas,conc)

float n_mols;
n_mols=((float)conc/1000)*n_gas,
if(gas_number—2)
n_mols/=1000; // carbon dioxide concentration was in ppm not parts per thousand

return n_mols,

H
Calibration Programs

Decreasing Pressure
#include <16F877 H>

#fuses HS,NOWDT,NOPROTECT,PUT,BROWNOUT

#use delay(clock=10000000)
#use r$232(baud=9600, xmit=PIN_C6. rcv=PIN_C7)

/* function prototypes */
long getpressure(void);
long gettemperature(void);

main()
{

/* declare variables */

nt i,; //int =8 bit unsigned
long p_10bat,t_10bit,; // long = 16 bit unsigned

setup(); // set up timers, ADC, etc... see comments below
y_10bi p ),  /hread heric pressure
printf(“%lu\n”,p_l0bit)  //output to computer

while(p_10bit>200) Hcontinue loop until pressure drops below 30kPa
/fthe value will vary for each chamber
//the 10-bit number used is based on previous tests

OUTPUT_HIGH(PIN_D1}), //open vacuum valve
DELAY_MS(100); /fpull air out of lines
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OUTPUT_HIGH(PIN_DO); Jiturn on pump
DELAY_MS(2000); /Neave pump on for 2 seconds
OUTPUT_LOW(PIN_DI); fIclose valve
OUTPUT_LOW(PIN_DO); ffearn off pump
DELAY_MS(1000); /fwart for pressure transducer to settle
/fpressure transducer has a second order response
p_10bit=getpressure(); /fread pressure
printf{(“%lu\n”,p_10bit) /fsend to computer
}

}

void setup()

{

7* configure analog inputs */

SETUP_ADC( ADC_CLOCK_INTERNAL );
SETUP_ADC_PORTS(ALL_ANALOG),

// RAO RA1 RA2 RA3 RA5 REO RE1 RE2 Ref=Vdd

ffuse this command before using READ_ADC() to read channel 0 (pressure)
set_adc_channel( 0 );

// Channel 0, RAQ, Pin 2, Chamber 1 Pressure

// Channel 1, RA1, Pin 3, Chamber 1 Temperature

/ Channel 2, RA2, Pin 4, Oxygen Flow Controller

// Channel 3, RA3, Pin 5, Carbon Dioxide Flow Controller
// Channel 4, RAS, Pin 7, Nitrogen Flow Controller

7* configure digital VO */

/I RDO, Pin 19, vacuum pump on/off switch on=high output

// RD1, Pin 20, vacuum pump valve open=high output

// RD2, Pin 21, gas in valve open=high output

// RB1, Pin 34, valve-open signal pin opx output

// RB2, Pm 35, valve-open check pin open=high mput

// RB4, Pin 37, CO2 flow controller (PWM egiv.) open=high output

/* old demultiplexing idea -- not used right now */

// RB4, Pin 37, PWM demultiplexer -> 02 on=high output

// RBS, Pin 38, PWM demultiplexer > CO2 on=high output

/* configure PWM */

SETUP_CCPI{CCP_PWM); 1! setup comparator 1 to PWM mode
SETUP_CCP2(CCP_PWM), // setup comparator 2 to PWM mode

SETUP_TIMER_2(T2_DIV BY 1,255,1); // PWM uses timer 2

//RC2, Pin 17, PWM] -- demultiplexed oxygen and carbon dioxide flow controllers

//RC1, Pin 16, PWM2 -- mitrogen flow controller

/fuse command: SET_PWM1_DUTY/(value) for PWM1 (10-bit value max) (an 8-bit value will be
/left justified)

/fuse command: SET_PWM2_DUTY (value) for PWM2 (10-bit value max) (an 8-bit value will be
Hleft justified)



}

104

/* mitialize both PWM channels to 0 */
SET_PWM1_DUTY(0);
SET_PWMI_DUTY(0);

long getpressure()

/* This subroutine reads the appropriate A/D channel and returns pressure as a 10-bit number (long) */

}

int i;
long p_10bit,p_sum=0,
SET_ADC_CHANNEL(0);
DELAY_US(1),
for(i=0;i<50;i++)
p_sum+=READ_ADC(). //averaging out pressure transducer A/D to be more accurate

p_10bit=p_sum/50,

return p_10bit;

long gettemperature()

/* This subroutine reads the appropriate A/D channel and returns temperature as a 10-bit number (long) */

inti,
long t_10bit,t sum=0,

SET_ADC_CHANNEL(1);
DELAY_US(1);
for(i=0;i<10;i++)
t_sum+=READ_ADC(), //averaging out thermistor A/D to be more accurate
1_10bit=t_sum/10;

return t_10bit,

Increasing Pressure

#include <16F877.H>

#fuses HS,;NOWDT,NOPROTECT,PUT,BROWNOUT

#use delay(clock=10000000)
#use rs232(baud=9600, xmit=PIN_C6. rcv=PIN_C7)

/* function prototypes */
long getpressure(void),
long gettemperature(void);
long suck_air(long setpt);
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main()
{
/* declare variables */
mti,; /int =8 bit unsigned
long p_10bit.t_10bit,; // long = 16 bit unsigned
setup(), // set up timers, ADC, etc... see comments below
suck_air(200) Jfpull pressure down to 30 kPa
p_10bit=getpressure(),  //read lowest pressure
printf(“%lu\n”,p_10bit)  /foutput to computer
while(p_10bit<400) flcontinue loop until pressure reaches atmospheric
£
OUTPUT_HIGH(PIN_D2), flopen gas in valve — which lets air out of chamber
DELAY_MS(2000), //let air enter chamber for 2 seconds
OUTPUT_LOW(PIN_D2); flclose valve
DELAY_MS(1000); /fwait for pressure transducer to settle
flpressure transducer has a second order response
p_10bit=getpressure(); /iread pressure
printf(“%lu\n”,p_10bit) //send to computer
}
}
voud setup()
{

/* configure analog inputs */

SETUP_ADC( ADC_CLOCK_INTERNAL ),
SETUP_ADC_PORTS(ALL_ANALOG);

// RAO RA1 RA2 RA3 RA5 REO RE1 RE2 Ref=Vdd

/tuse this command before using READ_ADC() to read channel 0 (pressure):
set_adc_channel( 0 );

// Channel 0, RAQ, Pin 2, Chamber 1 Pressure

// Channel 1, RAL, Pin 3, Chamber 1 Temperature

// Channel 2, RA2, Pin 4, Oxygen Flow Controller

// Channel 3, RA3, Pin 5, Carbon Dioxide Flow Controller
/{ Channel 4, RAS5, Pin 7, Nitrogen Flow Controller

/* configure digital I/O */

/f RDO, P 19, vacuum pump on/off switch on=high output

/{ RD1, P 20, vacuum pump valve open=high

// RD2, Pin 21, gas in valve open=hif output
/{ RBI, Pin 34, valve-open signal pin open=hif output

// RB2, Pin 35, valve-open check pin open=high input
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// RB4, Pin 37, CO2 flow controller (PWMeqiv)  open=high output

/* old demultiplexing idea -- not used right now */

// RB4, Pin 37, PWM demultiplexer -> 02 on=high output

// RBS, Pin 38, PWM demultiplexer -> CO2 on=high output

/* configure PWM */

SETUP_CCP1(CCP_PWM); // setup comparator 1 to PWM mode
SETUP_CCP2(CCP_PWM); // setup comparator 2 to PWM mode

SETUP_TIMER_2(T2_DIV_BY_1.255,1); / PWM uses timer 2

//RC2, P 17, PWMI -- demultiplexed oxygen and carbon dioxide flow controllers

//RCI1, Pin 16, PWM2 — nitrogen flow controller

/fuse command: SET_PWMI1_DUTY (value) for PWMI1 (10-bit value max) (an 8-bit value will be
Neft justfied)

/fuse command: SET_PWM2_DUTY{(value) for PWM2 (10-bit value max) (an 8-bit value will be
/MNeft justified)

/* initialize both PWM channels to 0 */

SET_PWMI_DUTY(0),

SET_PWMI_DUTY(0),

long suck_air(setpt)
(

int1;
long p=1024,p_sum=0;
OUTPUT _BIT(PIN_D3,1); /fvac pump on
DELAY_MS(500); //delay 5 sec to suck air out of lines
OUTPUT_BIT(PIN_D1,1); //open vacuum pump valve
SET_ADC_CHANNEL(0); //ADC set to read pressure
DELAY_US(1): /hwait for ADC to be ready
while(p>setpt)
{
p_sum=0;
for(i=0;1<20:i++)
p_sum+=READ_ADC(); //averaging out pressure transducer A/D
p=p_sum/20;
}
OUTPUT_BIT(PIN_D?3.0); /fvac pump off
OUTPUT_BIT(PIN_D1,0); /fclose chamber out valve
Teturn p;
}
long getpressure()
{

/* This subroutine reads the appropriate A/D channel and returns pressure as a 10-bit number (long) */
int 1;
long p_10bit,p_sum=0;
SET_ADC_CHANNEL(0),
DELAY_US(1);
for(i=0;i<50;i++)
p_sum+=READ_ADC(): //averaging out pressure transducer A/D to be more accurate



}

107

p_10bit=p_sum/50;

return p_10bit;

long gettemperature()
{

/* This subroutine reads the appropriate A/D channel and returns temperature as a 10-bit number (long) */

inti,
long t_10bit,t_sum=0;

SET_ADC_CHANNEL(1);
DELAY_US(1);
for(i=0;i<10;1+-+)
t_sum+=READ_ADC(); //averaging out thermistor A/D to be more accurate
€_10bit=t_sum/10:

return t_10bit;

Temperature

#include <16F877.H>

#fuses HS,NOWDT,NOPROTECT,PUT,BROWNOUT

#use delay(clock=10000000)
#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7)

/* function prototypes */
long gettemperature(void);

maimn()

{

/* declare variables */

inti,; //int =8 bit unsigned
long p_10bit,t _10bit,, // long = 16 bit unsigned
setup(); // set up timers, ADC, etc... see comments below

/lthe chip will be reset whenever temperature changes and will output 10 ten-bit numbers

t_10bit=gettemperature(); /fread temperature
printf(“%hu\n” t_10it), /foutput to computer
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void setup()
{

/* configure analog inputs */

SETUP_ADC( ADC_CLOCK_INTERNAL );
SETUP_ADC_PORTS(ALL_ANALOG),

//RAO RA1 RA2 RA3 RA5 REO RE1 RE2 Ref=Vdd

fluse this command before using READ_ADC() to read channel 0 (pressure):
set_adc_channel( 0 );

/f Channel 0, RAO, Pin 2, Chamber 1 Pressure

// Channel 1, RA1, Pin 3, Chamber 1 Temperature

// Channel 2, RA2, Pin 4, Oxygen Flow Controller

// Channel 3, RA3. Pin 5, Carbon Dioxide Flow Controller
// Channel 4, RAS5, Pin 7, Nitrogen Flow Controiler

/* configure digital 1/O ¥/
// RDO, Pin 19, vacuum pump on/off switch on=high

// RDI, Pin 20, vacuum pump valve open=high

/{ RD2, Pin 21, gas m valve open=high output

// RB1, Pin 34, valve-open signal pin opel output

/f RB2, Pin 35, valve-open check pin open=] mput

// RB4, Pin 37, CO2 flow controller (PWM eqiv.)  open=high output

/* old demultiplexing idea -- not used right now */

// RB4, Pin 37, PWM demultiplexer -> 02 on=high output

// RBS, Pin 38, PWM demultiplexer -> CO2 on=high output

/* configure PWM */

SETUP_CCP1(CCP_PWM): // setup comparator 1 to PWM mode
SETUP_CCP2(CCP_PWM); // setup comparator 2 to PWM mode

SETUP_TIMER_2(T2_DIV_BY_1,255,1); // PWM uses timer 2

//RC2, Pin 17, PWMI -- demultiplexed oxygen and carbon dioxide flow controllers

// RC1, Pm 16, PWM2 -- nitrogen flow controller

/fuse command: SET_PWMI1_DUTY(value) for PWM1 (10-bit value max) (an 8-bit value will be
eft yustified)

/fuse command: SET_PWM2_DUTY (value) for PWM2 (10-bit value max) (an 8-bit value will be
/left justified)

/* mitialize both PWM channels to 0 */

SET_PWMI1_DUTY(0);

SET_PWMI1_DUTY{(0);

long gettemperature()

/* This subroutine reads the appropriate A/D channel and returns temperature as a 10-bit number (long) */
inti,
long t_10bit,t_sum=0;

SET_ADC_CHANNEIL(1);
DELAY_USs(1),



for(i=0,i<10,1++)
t_sum+=READ_ADC(),
t_10bit=t_sumv/10,

return t_10bit;

//averaging out thermistor A/D to be more accurate

109



APPENDIX B: GENERATION III LPPG SYSTEM WIRING

DIAGRAMS

110



Ashcroft K-2
Pressure
Transducer

Vout=1-5V
|
Out = 33pF
- !
K- |
cc 2 Vi I
o
[, i
15V DC i

Figure B-2. Pressure transducer wiring. Vo goes into the MCU.
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Figure B-3. Temperature sensor and signal conditioning circuit. Vo goes to the MCU.
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Note there are 33 pF
capacitors between all
analog inputs and GND to
filter out power spikes and
other transients

MAX 233A
Chip

- ,,,,T i

Figure B-1. Schematic of MCU and MAX233A serial conversion chip and associated

wiring. All analog and digital signals are labeled.
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valve wiring ground
SSR ‘ Solenoid valve
T sgrat O azsgé?cvm
from pin D—’T
D1 ;
idec
RSSDN-10A
110VAC A 1 s
GND
@
Gas inlet
valve wiring
. dgital
ground
SSR Solenoid valve
TTL signal Asco
from pin D2 8262G90VM
} -
idec
RSSDN-10A
110vAC (U AC
© - oND
(b)

Figure B-4. Wiring schematics for solenoid valves. (a) Vacuum pump solenoid valve
and associated relay. (b) Gas inlet solenoid valve and associated relay.
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e [}
Large Vacuurn Pump
Wiring
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Figure B-5. Schematic of relay wiring for vacuum pump. Two relays are necessary to
operate the vacuum pump.
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Setpoints Constants Tnal Data - Pressure Change
Pressure 50 V_chamber 604
0z 200 R 8314 Pressures CPU valuss MCU values % composition % dif
co2 1000 T 219 50 v_add(l) 101984 1067457 1998% 467%
Nz 799 tho_02 143 60 v_add] 0005473 0005314 010%  291%
thoCO2 198 v_addl3] 4408402 4270152 7992%  314%
Current tho_N2 125
Pressure 71449 MW_02 a2 601  v_addit] 1090964 1084101 1998%  063%
02 200 MW_CO2 4401 70 v_edd2] 0005418 0005384 010%  083%
coz 1000 MW_N2 2801 v_add[3] 4364318 4336862 7992%  063%
N2 799
70 v_eddl] 101984 1074315 1998%  -534%
Calculations 80  v_add2] 0005473 0005335 010%  252%
77582 v_addl3) 4408402 4297731 7992%  251%
n_02 03518
n_Co2 00018 551  v_add[1] 0538972 0538188 1998%  033%
n_Nz 14056 60  v_addf] 0002682 0002672 010%  037%
v_add(3d] 2160117 215298 79R%  033%
n_gas_sell0] 19698
n_gas_sef[1] 17592 601  v_addil 0319575 028005 1998% 1863%
n_gas_sell?] 17592 8 v_eddi2} 0001587 0001291 010% 1865%
n_gas_salf3] 17592 voaddl] 1278437 1040312 7992% 1863%
n_gas pvol 19698 632 v_add[1] 0308555 0209453 1998%  295%
66 v_add2) 0001532 0001487 010%  294%
naddlt] 00421 v_addiy) 1234353 119794 7902%  295%
naddiz] 00002
nsddlz] 01682 664  v_add[1] 0396714 0422556 1998% 651%
70 v_add2] 000197 0002098 010% 650%
v_addl1] 09423 v_edd[3) 1587025 1690404 799% £51%
v_add[2] 00047
v_add[3] 37697
NEW PROGRAM
601  v_add[1] 109098403 092533 1998%  1518%
70 v_add[2) 000541817 0004595 010% 1519%
v_add[3] 436431782 3701713 7992%  1518%
702 v_add[f] 107984418 1074315 1998%  062%
80  v_addf2 000536344 0005335 010%  053%
Vv_add[3] 43202338 4297718 7992%  052%
70 v_add[l] 107994419 0842007 1998% 1277%
10-bit to kPa conversion 80  v_add[2] 000536344 0004678 010% 1278%
494 10-bit v_add[3] 43202338 3768427 7992% 1277%
7144852209 kPa
714 v_add[1] 088938446 0089083 1998%  003%
80  v_add2] 000441704 0004415 010%  005%
v_add[3] 355791425 355671 7992%  003%
7145  v_addl] 034232601 0842007 1996%  003%
80 v_oddl2] 000467997 0004678 010%  004%
v_add[3] 376970284 3768427 7902%  003%

Figure C-1. Spreadsheet used to calculate the amount of each gas to added to the
chamber. This value was compared to the values of gas added returned by the MCU. As
the pressure reading became more accurate and more precise, the difference between the
two values for each gas decreased.



Gas Addition Calculation Worksheet

LabVIEW Setpoints
Setpoints

Pressure 1013 kPa
02 21 %
[le7] 400 ppm
N2 7896 %
MCU Setpoints

Setpoints

Pressure 101 3 kPa
02 210 ppt
co2 400 ppm
N2 7896 ppt
n_gas 2259903 mols
n_02 0 47458 mols.
n_C02 0002938 mols
n_N2 1762724 mols
n_gas_set[0] 2 259903 mols
n_gas sei{1] 2259903 mols
n_gas_seff2] 7.344684 mols
n_gas_sef(3] 2.232427 mols
n_pivot_gas 7.344684 mols
n_add[1} 1.067804 mols
n_add[2) 0 mols.
n_add[3} 4.036638 mols.
v_add[1] 23.89492 L
v_add[2] L
v_add[3] 9045299 L

Constants
Current Conditions V_chamber
Pressure 101 3 kPa R
02 2% tho_O2
C0o2 013% tho_CO2
N2 78 % tho_N2
MW_02
MW_CO2
Current Conditions. MW_N2
Presswe 1013 kPa
02 210 ppt Temperature
co2 1300 ppm
Nz 780 ppt
Final Pressure
n_total 7.364345 mols
add_time[1] 23 89492 min
add_time[2] 0 min
add_tme[3] 80 45299 min
total 114.3479 min
1905798 he
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5531
8314 L-kPa/mol-
143 gL

1.98 gL

1.25 gl
32 g/gmol
44.01 gigmol
2801 glgmol

25¢C

330 1063 kPa

Figure C-2. Spreadsheet used to determine the correct amount of each gas to add to the
chamber based on current conditions and setpoints. This spreadsheet was used to
determine the total number of moles of gas to add, the time it would take to add the gas at
the appropriate flowrate, and the final pressure after gas addition.
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