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ABSTRACT

Parallelization for Geophysical
Waveform Analysis. (April 2002)
Derek Edward Kurth
Department of Computer Science
Texas A&M University

Fellows Advisor: Dr. Nancy M. Amato
Department of Computer Science

The use of parallel processors can be a very effective method for improving
the running time of large or complex calculations. The Standard Template Adaptive
Parallel Library (STAPL) is being developed by Dr. Lawrence Rauchwerger at Texas
A&M University to aid the parallel programmer by providing standard implementa-
tions of common parallel programming tasks.

Our research involves using STAPL to apply parallel methods to a problem that
has already been solved sequentially: Seismic ray tracing. In short, we are modelling
the paths of seismic waves as they travel through a known earth model (i.e., an carth
region whose properties we know how to model mathematically). By studying the
solution to this problem, it is hoped that a more difficult problem may one day be
solved: Given the source and end locations of scismic waves, their travel times from
source to end location, and their initial and final amplitudes, determine the properties
of the earth region through which they traveled.

Parallel methods apply well to this problem and are important because, for
complex earth models, the computation costs can grow very large. Our early results
have shown that a parallel version of the ray tracing code running on 8 processors ran
5 times as fast as the original sequential version. We hope to optimize the program

for multiple platforms and hardware configurations. To assist in the design and



understanding of the algorithms, we are also developing a visualization tool.
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CHAPTER I

INTRODUCTION

“All T wanted to say,” bellowed the computer, “is that my circuits
are now irrevocably committed to calculating the answer to the Ultimate
Question of Life, the Universe, and Everything.” He paused and satisfied
himself that he now had everyone’s attention, before continuing more
quietly. “But the program will take me a little while to run.”

Fook glanced impatiently at his watch.

“How long?” he said.

“Seven and a half million years,” said Decp Thought.

— The Hitchhiker’s Guide to the Galaxy, [1]

Even hundreds or thousands of years probably seems like a long time to wait for
the solution to a single problem, let alone seven and a half million years. But with
technological growth on a steady incline, mankind is becoming capable of studying
more and more complex problems at a growing rate. One of our greatest weapons
against computationally complex problems is the ability to divide a computation and
have multiple computers work together to determine the solution. This approach
is called parallel computing, and it will ccrtainly show itself to be an important
paradigm to embrace as we attempt to solve more complex problems in the futurc.

Another sort of obstacle that comes up frequently in scientific computing is what
is often referred to as “rcinventing the wheel.” In developing computer programs to

perform a desired computation, a researcher may spend too much time writing code
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that has already been written - code to search a list of numbers, or to store data in
a certain way, for example. These kinds of routine processes can be time consuming
to code, and rewriting such ubiquitous functions robs researchers of time that could
be spent attacking the real problem.

The solution to the problem of reinventing the wheel is what is known as a
code library. A code library is a collection of functions and data structures that are
already written and thoroughly tested. Such code is written in a generic way, allowing
application to virtually any computational task.

In the C++ programming language, the most thoroughly tested and standard-
ized library is called STL, the Standard Template Library. [9] And, as a result of
research conduncted under Dr. Lawrence Rauchwerger at Texas A&M University, a
new C-++ library is being developed that includes parallel versions of STL functions
and constructs and some additional parallel constructs. This new library is called
STAPL, the Standard Template Adaptive Parallel Library. [2]

The goal of my research as an Undergraduate Research Fellow has been to use
STAPL to solve a large and computationally complex problem from the field of Geo-

physics. This problem is known as Seismic Ray Tracing.



CHAPTER II

SEISMIC RAY TRACING
A Texas oilman goes to see his dentist for a routine checkup. “Everything looks fine,”
the dentist tells him.

“Go ahead and drill anyway,” says the oilman. “I feel lucky today.” [4]

While this kind of dental practice is probably a bad idea, you can imagine that
this oil investor would like to have reliable, scientifically obtained information about
the location of oil in the Earth, just as the dentist can determine the presence of
cavitics in his mouth before drilling. Seismic ray tracing may one day be able to
provide that kind of information about the contents of the Earth.

Seismic ray tracing is a key method for earth modeling and data analysis in
Geoscientific fields [3]. To understand the concept of seismic ray tracing, imagine
some source of seismic waves sitting on the surface of the Earth. Once waves leave
the source, they may be bent by the different material layers of the Earth as they
travel, until some of them are directed back towards receivers on the Earth’s surface.
"This situation is pictured in Fig. 1. In our code, we are interested in utilizing a new
class of ray tracing solutions known as the wavefront construction approach, which
will make the final product a unique and useful tool for geoscientists. (7, 8, 11}

The problem we are currently solving is this: given a known earth model (i.e., a
section of earth that we know how to model mathematically), determine how waves
propagate through the model. We are able to do this by solving a system of differential
equations ("ray tracing equations”) which lead to knowledge of the ray paths through
the medium, wave amplitudes along the path, and the travel time of a particular ray
to a particular point. It is hoped that through study of the way the Earth can be

modelled in this manner, eventually the problem of modelling an unknown earth



Fig. 1. Ray Tracing: A seismic wave source is located on the surface of carth. Seismic
Tays travel through the interior of earth, bending as they travel duc to the various
media and cventually bounce back to the surface of earth where they are detected

by receivers (called geophones).
region can be solved by ray tracing methods. This method is useful for both isotropic

(uniform in all directions) and anisotropic models, since it has been shown [10] that

ray tracing methods are useful in estimating anisotropic properties.

A.  The Wavefront and Interpollation

At any point in time, the location of all of the rays propogating through the earth
model constitutes the wavefront. This can be thought of as a mesh of points in
three dimensions identifying all of the ray locations at that time. A very important
thing to consider is whether the number of rays present in the system is sufficient to
accurately describe the earth model. We may begin our ray calculations with fewer
than 10 rays, and as they travel through the earth their paths may spread so far
apart that it is difficult to say with accuracy how rays between them would behave.
If the situation reaches this point, we interpolate, adding rays to the system to
describe it more accurately. To test whether interpolation is necessary, we compute

a value called the paraxial correction to travel time [6] for a point midway between



two adjacent rays in the wavefront. If this value is too great, we will add a ray at
that midpoint, and we perform this test for all sets of adjacent rays (it is actually
performed on ”"patches” of four rays at a time, as shown in Fig. 2) in the wavefront
before proceeding to the next timestep to calculate the next wavefront. This ensures
that at any point in time, the model is accurately described by the rays before the
next wavefront is calculated.

A) B)

Fig. 2. (A) Schematic illustration of a portion of a wavefront mesh, with one inter-
polated cell (gray lines). (B) Logical topology of the mesh in the algorithm,
where each ray and wavefront surface element is uniquely related to a pair of
take-off angles. The grey lines indicate the new boundaries of the interpolated
patch on the wavefront surface. (5]

The main action the code takes is to compute where rays will be at the next
time step and to interpolate when necessary. There are two important parameters
involved in this process: frontDTau and dTestTau. The value of frontDTau defines
the timestep between two wavefronts, so it essentially defines how often a wavefront
should be calculated. Calculating the positions of all the rays in a wavefront for
the next timestep can be a computationally intensive process, so it is important to
choose a value for frontDTau that will be small enough that the wavefronts describe
the model well, but large enough that the program is not performing this calculation

excessively. Note also that the Runge Kutta method used to calculate the positions
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Fig. 3. (a) Increasing the valuc of frontDTau causcs the wavefront to be computed less
frequently, so the time taken by the CPU decreases. Increasing this value too
much, however, will lead to an inaccurate model of the earth structure due to
lack of information about the wavefront. (b) Increasing the value of dTestTau
increases the amount of error allowed before interpolation will occur, so this
also decreases CPU time. Clearly, increasing this value too much will introduce
undesireable error.

of rays in the next wavefront will be more accurate the smaller frontDTau is. The
graph in Fig. 3 illustrates the increase in computation time as frontDTau is made
smaller (that is, the computation occurs more frequently).

The value of dTestTau defines the maximum error in travel time prediction before
interpolation should occur. What this means is, when the program is testing whether
to interpolate, it will look at two points in the wavefront and compute the paraxial
correction to travel time of a point between those two (this is related to the travel
time to the midpoint). If the error in this computation is greater than dTestTau,
interpolation occurs as shown in Fig. 3(b). DBasically, in a quadrilatcral formed
by 4 rays in the wavefront, rays for the midpoints of the cdges of the interpolated
quadrilateral are added, as is a ray in the center of the quadrilateral. “Because the
interpolation is based on the travel time error, which in turn is directly related to the

curvature of the wavefront between rays, the mesh will automatically be refined in



arcas where the wavefront changes most rapidly.” [5]

B. Reviewing the Sequential Code

In the earliest stage of this research we received code to perform the seismic ray tracing
algorithm sequentially (that is, on a single processor). This code was developed under
Dr. Rick Gibson of the Texas A&M Geosciences department. Our first task was to
compile and run this code on several hardware platforms (HP, SGI, ctc). Then, we
began studyign how best to parallelize it.

As T mentioned earlier, the STAPL library is a parallel version of the sequential
library called STL. Sequential code written using STL can be automatically trans-
formed into parallel code by replacing STL components with STAPL components.
However, this incredible usefulness requires that you write your original code using
STL. The code we received did not make full use of STL constructs and functions, so
we were first required to rewrite some portions of the code to use STL so that STAPL
would produce the best results.

Once the code was reengineered in this way, we began looking at which arcas of
the code would benefit the most from parallelization. To do this, we ran a software
profiling program called CXPerf, provided by HP with the HP-UX platform, on the
code. This type of profiling software analyzes code as it runs to determine how often
each function is called, how much time each function takes, and other statistical data
that help identify the time sinks (the most time-consuming portions) of the code.

As may be clear from the previous section, the most important and CPU-intensive
calculations performed by this code involve deciding when to interpolate and comput-
ing the attributes of the interpolated rays. In the initial steps, there may be only a

few rays (less than ten for many test cases). However, as these rays disperse through



the media, interpolation will need to occur to maintain an accurate model. When
the program completes, there may be hundreds or thousands of rays, so it is clear
that the computational complexity can grow rather dramatically as interpolation is
necessary.

With that in mind, we look at the results of our profile of the code. We discov-
ered that there are two main time sinks in the computation, with the first step taking
approximately 40% of the time and the second step taking approximately 55% of the
time. These two steps in the calculations arc implemented in two functions in the
RayField class, the class which contains the wavefront information for each time step
of the simulation. Setting up the new rays is done in the RayField constructor. Test-
ing the wavefronts and interpolating when necessary is done in the InterpolateFront ()
function in the RayField class. We quickly noticed that 95.58% of the processing
time came from the InterpolateFront() function. But, if we neglect the time taken for
the functions that InterpolateFront() calls, it uses only 0.6% of the CPU time. So,
it is obvious that InterpolateFront() calls many functions which are CPU intensive.
In particular, a function called PatchTest(} uses 81.81% of the CPU time. The five

most CPU-intensive functions from the code arc shown in the bar graph in Fig. 4.
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Fig. 4. This graph represents the five most CPU intensive functions from the ray trac-
ing code. The lighter bars represent the percent of the total running time that
each function takes including child functions that are called. The darker bars
exclude these child functions.
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CHAPTER IIL

PARALLELIZATION
“Modern 3-D seismic surveys produce large volumes of . . . data that require very rapid
processing methods” [5], so we turn to parallelization. The idea behind parallelizing
this code is that since the interpolation calculations are so complex, and the number
of rays to calculate can increase exponentially as interpolation occurs, we will try to
find an efficient way to divide these calculations among multiple processors running
simultaneously.

As it turns out, this is theoretically rather easy. The calculations for each ray can
be performed completely independently from calculations for the other rays, so they
can easily be divided among the available processors. With the code now running
using STL constructs and functions, we were able to parallelize it using STAPL.

Code written using STL can very easily be translated to its parallel analogue.
STL is composed of three basic units: containers, algorithms and iterators. STL
containers are converted to pContainers in STAPL, algorithms are converted to pAl-
gorithms, and iterators are converted to a new STAPL construct called pRanges. This
automatic conversion saves the programmer from much of the complexity of parallel
programming, since parallel code written without STAPL would require the program-
mer to develop parallel containers, algorithms, and iterators - a hefty task. STAPL
provides the option for either automatic or manual parallelization. Automatic par-
allelization is performed during a pre-processing phase in which the STL constructs
are directly replaced by their parallel equivalents. Although manual parallelization
is faster in some cases, when we tried parallelizing the ray tracing code manually
we obtained running time results that were virtually identical to those obtained via

automatic parallelization.
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Before Translation (STL) | After Translation (STAPL)

#include<start_translation>
accumulate(x.begin(),x.end(),0); --> pi accumulate(x.begin(),x.end(),0);

for_each(x.begin(),x.end(),foo); --> pifor_each(x.begin(),x.end(),fo0);

#include<stop_translation>

Table I. Automatic parallelization of the code: Before and after STAPL translation
A.  Automatic Parallelization

Automatic parallelization is performed during a preprocessing phase which converts
the STL constructs to their parallel equivalents. To parallelize a single function or a
portion of a function, two pre-processing tags are added to the program:
‘#include<start_translation>’ is inserted immediately before the section of code
that should be parallelized, and ‘#include<stop_translation>’ is inserted at the
end of this code section. These include statements cause any STL function between
them to be replaced by the equivalent STAPL function. An illustration of STL to

STAPL conversion is shown in Table 1.



CHAPTER IV

RESULTS AND DISCUSSION

12

To study the speedup obtained by STAPL we varied the number of processors and

recorded the resulting running times of the program. The program was run for a

homogeneous, anisotropic earth model with a range of values for the input parameters.

The experiments were done in dedicated mode on an HP V2200 machine with 16 PA-

8200 CPU’s running in 4GB of physical memory in the PARASOL Laboratory in

the Department of Computer Science at Texas A&M University. The results of the

experiments are summarized in Table II. The speedup obtained for some input sizes

is shown in Tables II and III and in Figures 5-8. All times reported are the minimum

over five executions of the experiment.

CPU Threads | 1600 Rays | 2500 Rays { 3600 Rays | 4900 Rays | 6400 Rays | 7225 Rays
1 282.3 497.8 555.3 780.4 1089.5 12895
2 165.4 287.8 3154 4407 365.6 663.7
3 145.6 265.3 2719.5 390.2 51211 604.7
4 102.3 190.7 196.7 277.2 3846 421.2
6 67.8 114.3 127.6 1711 230.1 265.8
8 56.0 98.2 106.5 145.4 194.6 2276

Table Il. The time (in seconds) taken by the program for different number of processors

used (rows}, for various input sizes (columns)




CPU Threads | 1600 Rays | 2500 Rays | 3600 Rays | 4900 Rays | 6400 Rays | 7225 Rays
1 1 1 1 1 1 1
2 1.71 1.73 176 1.77 171 1.94
3 1.94 1.87 1.98 2.00 213 213
4 2.76 261 2.82 2.81 2.83 3.06
6 4.16 4.35 4.35 4.56 473 4.85
8 5.04 5.07 5.21 5.37 5.60 5.66
Table Ill. Speedup obtained by STAPL for different number of processors used (rows), for

various input sizes (columns})

CPU Treads vs. Speedup for 1500 Rays

/

/

/./'

i ]
CPU Threads

Fig. 5. Speedup of RayField code with STAPL for an input size of 1600 Rays

‘We note that STAPL was able to attain scalable speedup. As seen in Table 111

and Figures 5-6, when 8 processors were used we were able to attain a speedup of

approximately 5.5. Performance gains remained consistent for various input param-

cters.

STAPL was able to get better performance improvements for larger input sizes.

The performance improvement with eight processors for various input sizes (number of

rays) is given in Figure 8. The speedup was highest when 7225 rays were used. As the
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CPU Threats vs. Spaedup for 4300 Rays.
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Fig. 6. Speedup of RayField code with STAPL for an input size of 4900 Rays

number of rays increases, the computation required at each time step increases. The
greater the computation done in each time step is, the lower the fractional overhead

involved in parallclization will be.



CPU Thieads vs. Speedup for 7225 Rays
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Fig. 7. Speedup of RayFicld code with STAPL for an input size of 7225 Rays

Number of Rays vs. Spesedua for @ CPU Threads

Speedup (for 8 CPU Threads)
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Number of Rays

Fig. 8. Comparison of speedup obtained for various input sizes using 8 CPU threads
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CHAPTER V

VISUALIZATION

‘With the the ray tracing code successfully parallelized, we look to visualization as
a means to improve user-friendliness and to identify areas for improvement of the
algorithm. Before the development of the visualization tool, the code would output a
cryptic textual representation of the rays, which left much to be desired when it came
to interpreting the data. Now that a 3-dimensional view of the wavefront is available,
it is easy to view how the wavefront changes over time, and particularly we can see
when and where interpollation is occuring.

‘Whenever interpollation occurs, we are improving the model at the cost of in-
creased running time. Therefore, if we can identify areas where interpollation is
occuring needlessly, we will be able to fine-tune our algorithm (or perhaps just choose
better test paramcters) to reduce uneccessary interpollations. With the current vi-
sualization tool, we are able to see the wavefront for cach time step, so we can see
when rays are added to the system. Then we can consider the model analytically to
determine whether more rays are really justified.

An example image of the wavefront as shown in our visualization package is
pictured in Fig. 9. The code for this package was written by Dr. Gibson and his
students; my work with it has been in improving certain parts of the design, such as
allowing the ability to load wavefront information from a file rather than rerunning
the program (which can take a while for large models) every time you wish to view
the wavefronts. It is hoped that these types of improvements will lead to more rapid

analysis of the algorithmn’s behavior so that improvements can be made.



Fig. 9. Visualization of the wavefront at a particular timestep.
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CHAPTER VI

CONCLUSION
Parallelization of the ray tracing code has led to significant speedup, and for relatively
little effort. That effort could have been minimized further if the sequential code had
originally made full use of STL. Likewise, further improvements to the ray tracing
algorithm will hopefully be made as a result of a fast and versatile visualization
package. Ultimately, we hope that the study of how the Earth can be modeclled using
ray tracing will provide insight into how wave data can be best used to predict the

internal structure of unknown sections of the Earth.
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