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ABSTRACT 

Parallel Detection and Elimination of Strongly Connected Components for 

Radiation Transport Sweeps (December 2001) 

William Clarence McLendon III, B. S. , Texas ARM University 

Chair of Advisory Committee Dr Lawrence Rauchwerger 

Discrete ordinate methods are commonly used to simulate radiation transport 

for fire or weapons modeling. The computation proceeds by sweeping the flux across 

a grid. A particular cell can not be computed until all the cells immediately upwind 

of it are finished. If the directed dependence graph for the grid cells contains a cycle, 

then sweeping methods will deadlock. This can happen in unstructured giids and 

time-stepped problems where the grid is allowed to deform. We describe a parallel 

algorithm to detect and break these cycles present in the directed dependence graphs 

of these grids as well as an implementation and experimental results on shared and 

distributed memory machines. 
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CHAPTER I 

INTRODUCTION 

Detailed multi-physics simulations are computationally expensive problems and 

thus require enormous computational resources, if they are to be executed in practi- 

cal time. Such large computational platforms usually consist of distributed parallel 

systems which have to execute the codes in fully parallel mode to ensure scalable 

performance. In this thesis we will consider a prototypical radiation transport solver 

used in an ASCI multi-physics code, such as SnRad [11] from Sandia National Lab- 

oratories In this module the transport equations are solved using a sweep method 

Sweep methods used in radiation transport discritize the radiation field by angle, and 

flux propagation is computed for a set of discrete directions or ordinates. The com- 

putation for each angle is performed by sweeping the flux across a grid, i. e. , a finite 

element mesh commonly used for fluids or shock hydrodynamics inodeling. Radiation 

enters a mesh cell via faces whose outward normals point upwind, and exits through 

downwind faces. This implies an order of computation on the grid cells which, for a 

single ordinate direction, is represented as a directed dependence graph. Two exam- 

ple meshes arid their associated dependence graphs for a particular angle are shown 

in Fig. 1. 

Each of the (typically several hundred) ordinate directions induces an associated 

dependence graph. Sweeping methods will deadlock if any of the dependence graphs 

contains a cycle [11], such as the one in the dependence graph for the twisted mesh 

shown in figure I-B. Such situations occur frequently in 3-D unstructured grids and 

This thesis follows the style and format of the IEEE/ACM Transactions on Net- 
Ql 0 cking. 



in multi-physics problems where the underlying "object" that was meshed deforms 

over time. 

To avoid deadlock, cycles in the set of ordinate dependence graphs must be 

detected and broken before the sweep can be performed. For example, key edges 

from these cycles can be removed eliminating the cycles and the transport sweep 

could use data from a previous iteration. This would allow a sweep to execute to 

completion without a deadlock. Since the mesh elements (vertices of the dependence 

graph) are distributed across processors, we require a scalable parallel algorithm for 

cycle detection. 

The number of cycles can be exponential in the number of vertices but the number 

of strongly connected components (SCCs) is at most linear in the number of vertices 

since a vertex is in at most one SCC. Therefore we are interested in finding all SCCs 

of a directed graph. A strongly connected component of a directed graph, G = (V, E), 
is defined ss a maximal set of vertices, U L: V, such that for every pair of vertices u 

and ti in U, we have both u ~ ti and v ~ u [4], where u ~ v means a directed path 

exists from u to ti. 
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Fig. 1. Graph creation from meshes. (A) An unstructured finite-element mesh (left) 
and its associated acyclic dependence graph for the angle shown (right). 
(B) A twisted ring of mesh elements that induces a cycle for the shown angle (left), and its 
dependence graph for the angle shown (right). A sweeping method will deadlock when it 
encounters a cycle such as this. 



A. Previous Work 

Tarjan's classic serial algorithm for detection of SCCs runs linearly with respect to 

the number of edges and uses depth-first search [13]. However, depth-first search is 

known to be difficult to parallelize. The special case of lexicographic depth first search 

is P-Complete [9; 12], which in practical terms means it is unlikely that a scalable 

parallel algorithm exists. 

There are some parallel algorithms for detecting SCCs that do not rely on depth 

first search. Gazit and Miller have an NC algorithm which can be used for locating 

SCCs that uses matrix multiplication [6]. Vishkin and Cole [3] and Amato [1] have 

proposed optimizations or extensions of this algorithm, but they still require O(n ) 

processors and O(log n) time where n is the number of vertices in the graph. An NC 

algorithm developed by Kao for planar graphs was developed requiring O(log u) time 

and n/logn processors [8]. Another efficient parallel algorithm for planar graphs is 

due to David Bader [2]. However our graphs arise from 3D finite element meshes 

and are non-planar. There are also some parallel algorithms for related problems in 

directed graphs [7; 10], but they are not well suited for our application either due to 

their complexity or because they do not directly compute SCCs. 



B. Outline of Thesis 

This thesis is organized as follows. In Chapter II we present the ModifiedDCSC 

algorithm for finding strongly-connected components. We also present a modification 

that allows the elimination of them via edge breaking. In Chapter III we describe 

our implementation of ModifiedDCSC to detect and eliminate SCCs for radiation 

transport sweeps on 3D unstructured meshes. We present optimizations made to the 

code specific to the radiation transport problem. Experimental results are presented 

in Chapter IV for various tests performed. Finally, conclusions are presented in 

Chapter V. 



CHAPTERII 

THE MODIFIED DCSC ALGORITHM 

A. Detecting Strongly-Connected Components 

The Divide-and-Conquer Strong Components (DCSC) algorithm of Fleischer et al. [5] 

is a divide — and — conquer approach for finding strongly connected components in a di- 

rected graph without using depth-first search. The main idea of DCSC is to recursively 

partition the directed dependence graph (DDG), G = (V, E), so that all SCCs will 

be entirely contained within a partition. The recursion stops when partitions contain 

either single vertices or SCCs. The partitioning is based on the following Lemma [5]: 

Lemma I Let G = (V, E) be a directed graph, unth v E V a vertex zn G, and let 

Pred(G, v) and Succ(G, v) denote the set of predecessors and successors of v m G, 

respectively. Then, the unzque SCC containing v in G, denoted SGC(G, v), if one 

ezists, is Pred(G, v) ASucc(G, v). Moreover, any SCC of G zs a subset of Pred(G, v), 

Succ(G, v), or Rem(G, v) = V — (Pred(G, v) USucc(G, v)). 

The DCSC algorithm [5] initiates partitioning with a randomly chosen vertex 

v C V, which we refer to as the pivot. The expected serial complexity of DCSC is 

shown to be O([V[ log [V~) when all vertices in G have constant degree. The meshes 

we are interested in have a bounded number of faces and therefore have a bounded 

number of edges as well, so this property holds. 

The ModifiedDCSC algorithm we propose, outlined in Fig. 2, improves on the 

basic algorithm by performing a filtering or trzmming step at the beginning of each 

recursive step which reduces the size of the graph that must be processed. In par- 

ticular, trimming performs a topological traversal of G, and all vertices visited by 

this traversal are removed from G. Recall that a topological traversal begins from all 



vertices with in-degree zero, visits vertices after all their ancestors have been visited. 

It produces a linear ordering (a topological sort) of the vertices of G such that all 

edges are directed left to right. Thus, no vertices on a cycle, or vertices reachable 

from a cycle, will be visited by a topological traversal. 

Algorithm: ModifiedDCSC(G) 

1. IF G is empty THEN return 
2. trim() G in forward direction 
3. IF G is not empty THEN 

4. trim() G in backward direction 
5. Select pivot v from the live vertices of G 
6. mark Pred(G, v) and Succ(G, v) in G 
7. SCC(G, v) = Pred(G, v) tlSucc(G, v) 
8. DO in parallel: 
9. ModifiedDCSC( Pred(G, v) — SCC(G, v) ) 
10. ModifiedDCSC( Succ(G, v) — SCC(G, v) ) 
11. ModifiedDCSC( Rem(G, v) ) 
12. ENDIF 

Fig. 2. Algorithm ModifiedDCSC. 

Trimming the graph is performed by the trim() routine in parallel, which is 

listed in Figure 3. We can perform this trimming in both the forward direction and 

reverse direction of the DDG simultaneously to achieve greater parallel efficiency. 

In figure 4 the mark() routine is listed. It represents the DCSC phase of the 

ModifiedDCSC algorithm. Prior to the execution of mark(), the pivot vertex v is 

selected at random from G. Starting from v, mark() traverses G in breadth-first 

order in both forward and backward directions. It finishes when all the predecessors 

and successors of v have been visited and colored. A vertex is colored as predecessor or 

successor depending upon how it was reached during this traversal. Vertices visited by 

following a directed edge in the forward direction are colored as successors. Vertices 

visited by following an edge backwards are colored as predecessors. 



Algorithm: trim() 

INPUT: DDG, G 
OUTPUT: DDG, G, with 0 or more vertices removed 
1. push all vertices wrtb indegree of 0 into work queue, Q 
2. WHILE terminate == false DO 

3. WHILE Q is not empty DO 

4. pop a vertex o from Q 
5. mark o as dead 
6. FOR every child u of v DO 

7. IF u is local THEN 

8. decrement indegree of u by 1 
9. IF indegree of u == 0 THEN push u onto Q 
10. ELSE (u is on another processor, p, ) 
11. Send informatxon about u to p, 
12. ENDDO 

13. ENDDO 

14. IF there are messages waiting THEN 

15. Receive all incoming messages 
16. decrement indegree for every vertex received 
17. IF indegree == 0, push vertex onto Q 
18. ELSE 
19. terminote = Is Terminated() 
20. ENDDO 

Fig. 3. Algorithm trim() in parallel. 



Algorithm: mark 

INPUT: DDG, G 
OUTPUT: DDG, G, with vertices colored 
1. FOR every pivot node, v, DO 

2. push {v, forward) and {v, backward) onto Q 3. WHILE terminate == false DO 

4. WHILE Q is not empty DO 

5. pop {v, dir) from Q 
6. IF dir == forward THEN v. forward-msrk = true 
7. ELSE 
8. v. backward-mark = true 
9. IF der == forward THEN 

10. FOR every child u of v DO 

11. IF u is local THEN 

12. IF u. forward-mark == false THEN 

13. push {u, forward) onto Q 
14. ELSE (u is on processor p;) 
15. Send u and dir to p, 
16. ELSE (d == backward) 
17. FOR every parent u of v DO 

18. IF u is local THEN 

19. IF u. backward-mark == false THEN 

20. push {u, backward) onto Q 
21. ELSE (u is on processor p, ) 
22. Send u and dir to p, 
23. ENDDO 

24. ENDDO 

25. IF there are messages waiting THEN 

26. Receive all incoming messages: {v, dtr) 
27. IF dtr == forward AND v. forward-mark == false THEN 
28. push {v, forward) onto Q 
29. ELSE IF v. backward-mark == false THEN 

30. push {v, backward) onto Q 
31. ELSE 

32. terminate = IsTerminated() 
33. ENDDO 

Fig. 4. Algorithm mark() in parallel 



Based on Lemma 1, once G has been colored we can partition it into four regions: 

Pred(G, v) — Vertices jrorn tohtch the pivot v can be reached along some path. 

Succ(G, v) — Vertices that can be reached along a path from the pivot v. 

Rem(G, v) - Vertices that are netther predecessors nor successors of v (the remain- 

der). Notice that these vertices will not have been visited by any previous trim() 

or mark() yet in any previous recursive step. 

SCC(G, v) - Vertices that are both predecessors and successors, the (unique) SCC 

containing v. SCC = Pred(G, v) fl Succ(G, v). 

These partitions can be considered as independent graphs in terms of cycles. 

The vertices in SCC(G, v) are removed from G and Pred(G, v), Succ(G, v), and 

Rem(G, v) are recursively searched by ModifiedDCSC for additional SCCs. 

In figure 3 line 19 and figure 4 line 32 there are references to a routine called 

IsTerrntnated(). This checks to see if the termination condition has been met. For 

both trim() and mark() to exit, each routine must meet the following exit conditions: 

~ No processor has any remaining work. 

~ No processor has any unreceived messages. 

Termination detection adds overhead but it is required because we do not know 

beforehand how much of the graph will be traversed. The trim and mark routines 

may not visit all the nodes in the graph. In fact, unless the graph is acyclic the trim 

will be stopped at some point by a SCC. 

The listings in figures 3 and 4 show that we loop until no more work remains 

locally, then we checks for incoming messages bringing work from an off-processor 

source. If additional work is picked up a processor will resume processing locally. 
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Once there is no more local work and there are no messages bring incoming work, we 

check to see if the termination condition has been met. These routmes will not exit 

unless the termination conditions are satisfied. 

We can use different termination detection methods in these routines depending 

upon need and the machine architecture. For example, in a shared memory envi- 

ronment where all processors can "see" the whole address space, each processor can 

directly check the work queue to determine if any work remains globally. However, in 

a distributed memory environment each processor can see only its own local address 

space, and thus cannot read the status of other processors' work directly. Processors 

must explicitly communicate their status in distributed memory so that all processors 

can know when to terminate. We used a token-passing scheme in our implementation 

and have found it to be adequate. 

Figure 5 illustrates the execution of ModifiedDCSC on an example graph shown 

in panel A which contains two cycles In Fig. 5-B, the effect of trimming is shown; 

vertices in the shaded region are removed by trim() in the forward and backward 

directions. In this example the entire graph cannot be 'seen' during the trim due to 

the blocking effects of the SCCs on trim(). After trim() terminates, the remaining 

graph will enter the DCSC phase of the code. 

In the DCSC phase, a pivot vertex, n is selected as shown in Fig. 5-C, (a), as the 

shaded vertex. ModifiedDCSC then calls mark() to color the predecessors and 
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successors of v as Pred(G, v) and Succ(G, u), respectively. After mark() finishes a 

strongly connected component, SGG(G, v), is reported if found, and its vertices are 

removed from G. 

The remaining vertices are partitioned according to their colors and considered as 

independent sub-graphs since, by Lemma 1 any remaining SCCs are wholly contained 

inside these partitions. Figure 5-C, (b), shows the coloring and partitioning of G after 

mark() has completed; in Fig. 5-C, (c), the SCC is shown as the nodes meeting 

the criteria in lemma 1. Finally, ModifiedDCSC may be recursively applied to thc 

remaining sub-graphs of G, Fig 5-C, (d). 

This example finishes with a second recursive step, shown in Figure 5-D. Vertices 

from the remaining partitions which are removed during trim() are shaded in (a) The 

only remainmg vertices after trim() will be on the cycle, thus the pivot node selected 

prior to mark() will be part of the cycle. Finally, during mark() the each of the 

remaining vertices will be colored as both predecessor and successor, identifying the 

SCC. After mark() completes, the SCC is reported and removed from G. Since there 

are no longer any vertices left in G, ModifiedDCSC terminates and returns the two 

SCCs it found. 



Example graph with cycles Graph after TRIM Phase 

(shaded nodes are removed by trim) 

(A) 

Steps of the ModifiedDCSC Algorithm Second recursive step of ModifiedDCSC 

(a) (b) 

(a) 

(c) (d) 

(C) (D) 

Fig. 5. ModifiedDCSC applied to an example graph. 



B. Eliminating SCCs with ModifiedDCSC 

We have now seen how ModifiedDCSC detects the SCCs in a graph in parallel. Recall 

that the motivation behind development of ModifiedDCSC was to enable radiation 

transport sweeps to work on unstructured 3D grids without deadlocking. To accom- 

plish this, we must not only detect but also eliminate the SCCs from the DDGs. We 

can modify ModifiedDCSC to allow the elimination of SCCs from graphs by remov- 

ing, or cutting, certain edges in G. The output of ModifiedDCSC can then include 

the list of SCCs found as well as a list of edges in G, which if broken will make G 

acyclic. 

The listing in figure 6 illustrates the new ModifiedDCSC algorithm with our 

SCC elimination steps included. To remove SCCs, we insert an additional step in 

ModifiedDCSC after the detection of a SCC. Instead of removing SCG(G, v) from G, 

we remove an edge from SCC(G, v) and carry the SCC into the next recursive step 

as an additional partition of G. 

If the edge broken removes the cycle, then trim() will remove the vertices in the 

SCC during the next recursive call to ModifiedDCSC. If removing the edge does not 

eliminate the SCC, then the next call to trim() during the next level of recursion 

will not fully eliminate the SCC. In this case some more vertrces will be removed 

from the SCC and a new strongly connected component, SCC', will remain such 

that SCC' C SCC. This can happen for SCCs that are complicated with many 

cycles. We can continue removing an edge from the SCC with each recursive call to 

ModifiedDCSC until all of the cycles are gone and all vertices are removed by trim(). 

Often the SCCs contain single-cycles and will be eliminated by the first edge cut since 

a simple cycle can be broken by cutting any edge in the cycle. 

Due to the divide-and-conquer nature of the DCSC method, removing the strongly 



connected components can be performed concurrently with the detection of new SCCs. 

This method allows SCC' to be considered as a fourth type of graph. SGC' is re- 

cursively searched in the same manner as the other partitions of G. Any SCCs found 

within SCC' during subsequent recursive calls are not reported by ModifiedDCSC 

because they have already been reported as part of SCC originally. 

Edges broken via this process are reported in addition to the original SCCs found. 

The transport solver in a multiphysics application, such as SnRad [11], equipped with 

the knowledge of the SCCs and a list of edges that can be broken to allow a successful 

sweep can now be performed without deadlock by handling the cycles appropriately. 



Algorithm: ModifiedDCSC J3reakSCC(G) 

1. IF G is empty THEN return 
2. trim() G in forvard direction 
3. IF G is not empty THEN 

4. trim() G in backvard direction 
5. Select pivot v from the live vertices of G 
6. mark Pred(G, v) and Succ(G, v) in G 
7. SCC(G, v) = Pred(G, v) 6 Suoc(G, v) 
7a. SCC'(G, v) = SCC(G, v) - I edge 
8. DO in parallel: 
9. Modif iedDCSCBreakSCC( Pred(G, v) — SCC(G, v) ) 
10. Nodif iedDCSCBreakSCC( Succ(G, v) — SCC(G, v) ) 
11. Nodif iedDCSCBreakSCC( Rem(G, v) ) 
lla. ModifiedDCSC J3reakSCC( SCC'(G, v) ) 
12. ENDIF 

Fig. 6. Algortthm ModifiedDCSC J3reakSCC. Simple modification 
to ModifiedDCSC allowing SCC elimination by edge removal. Line 7a 
selects one edge from each SCC and removes it to create SCC'. Then in 
line lla, we recurse on SCC' as a fourth partition. 



CHAPTER III 

IMPLEMENTATION 

Our implementation of ModifiedDCSC is written in the C programming language 

and the Message Passing Interface (MPI) communications library. MPI was chosen 

because it performs well and it is portable across all parallel machines. This code is 

targeted for CPlant and ASCI Red at Sandia National Laboratories, both of which 

are massively parallel distributed memory platforms. 

Most of the development wss performed on a Hewlett Packard V-Class server at 

Texas AkM University. This machine is a 16-processor ccUMA SMP running 200 

MHz PA-RISC processors. 

Our implementation of ModifiedDCSC is optimized for the detection and elim- 

ination of strongly connected components occurring in DDGs resulting from 3D un- 

structured grids. Specifically we are interested in grids used by radiation transport 

calculations. This specialization allows several optimizations, which will be discussed 

in this chapter 

A. Constructing the Directed Dependence Graph 

The multiphysics code uses a finite element mesh for its computation. We need to 

convert this mesh, M, into a directed dependence graph (DDG) for every ordinate 

vector. We briefiy illustrated this construction in figure 1. 

The method used to determine the orientation of each directed edge for every 

vertex is shown by the listing in figure 7. We also show a small example of how two 

adjacent mesh cells are changed into a graph with their edge directed according to 

an ordinate vector in figure 8. 



Algorithm: CreateDDG 

INPUT: Finite element mesh M 
ordinate vector d. 

OUTPUT: DDG, G. 
1. FOR every cell, u C M DO 

2. Add vertex u to G 
3. ENDDO 

4. FOR every cell, u C M DO 

5. FOR every face, f C u shared with adjacent cell v DO 

6. r7 = outward face normal of f 
7. IF j d&s THEN 

8. Add directed edge uv to G 
11. ENDIF 

12. ENDDO 

13. ENDDO 

Fig. 7. Constructing the DDG from an input mesh. The algorithm used to 
compute the DDG from the input mesh for each ordinate angle d. s represents an 
error tolerance for the dot-product computation. 



Fig. 8. DDG construction from a mesh. Construction of a directed dependence graph 
from a mesh. Adjacent cells u and v in (a) are represented as vertices u and v in (b). 
The shared face f represents an edge connecting u and v in the DDG. Edge uv is directed 
according to the relationship between the outward face normal j(f) of u. If the ordinate 
vector d makes an angle of less than 90 degrees with d, then the edge is directed as uv (c). 
If d is orthogonal to ri then there is no edge uv. 
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B. Searching Over Many Ordinate Angles Simultaneously 

Sweeping methods such as those commonly used in radiation transport involve a finite 

element grid being swept over a set of discrete ordinate angles. These ordinate angles 

can be visualized as starting from many points distributed in 3D space around the 

mesh. This 3D volume around the mesh is typically divided into 8 regions, called 

octants, which are divided by the x, y, and z axis planes. 

A topological traversal of this kind is not fully parallel. It is limited to the 

length of the longest critical path between the starting vertices and the last vertex 

traversed. During each step along this critical path, available parallelism is limited to 

the number of vertices having an indegree of zero. The amount of available parallelism 

is dependent upon the characteristics of the input graph. 

In our application every ordinate angle produces a DDG which is independent 

froin the DDGs of other angles. Searching many DDGs simultaneously allows us to 

exploit additional parallelism because there are more vertices available at each step. 

The DDGs are distributed in the same manner as the finite element mesh which 

they represent. Searching multiple angles simultaneously also allows many additional 

starting points for trim() since our angles are spread evenly in 3D around the mesh. 

This also increases the parallel efficiency of our implementation by getting more pro- 

cessors involved in the computation more quickly. Transport sweeps typically take 

advantage of this parallelism as well 

C. Taking Advantage of Paired Ordinates and Load Balancing 

Another optimization related to radiation transport calculations which we can take 

advantage of is ordhnate pairing. We say that two ordinates, di and dz are paired if 
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Recall from Chapter III Section A that an edge in the DDG is constructed for 

each cell face by comparing the outward face normal of the cell face to the ordinate 

angle. In the case where dt — — — ds, all edges in G(d&) will be directed opposite of 

those in G(ds). There are also no additional edges added or removed between dt and 

ds as well. This means that an SCC found in G(dq) also exists in G(Q) because the 

cycles are preserved with their directed edges simply reversed. 

ModifiedDCSC for radiation transport sweeps can take advantage of this fact 

by only searching one ordinate angle for every pair given in the input. When the 

ordinates are spread out evenly in 3D space and every ordinate is part of a pair. In 

that case, ModifiedDCSC only needs to search half of the actual ordinates given and 

reports the SCCs for both ordinates in each pair. This decreases the amount of work 

ModifiedDCSC is required to do by half, reducing the overall time to solution. 

In our application, graphs are statically distributed and are not redistributed. 

The ordinate angle's relation to the mesh determines the starting vertex for trim(). 

We can achteve better performance when the angles are evenly distributed around 

the mesh. When selecting an angle from a pair, we pay attention to which octant 

the angles are in. We obtain better performance if the angles used are spread evenly 
~ 4 over all 8 octants. The selection of angles for ModifiedDCSC is performed to keep 

the number of angles in each octant as equivalent as possible. 

D. Storing the DDG 

There are different ways the DDGs for our problem could be represented in a data 

structure. One method is to traverse the mesh directly, computing the edge directions 

each time a face boundary is traversed. The second method is to store a DDG for 

every ordinate angle directly in a more complete graph data structure, such as an 
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adjacency list representation. Each method has its advantages and disadvantages. 

Traversing the mesh directly uses much less memory and hss better memory 

reuse than storing the graph. This becomes especially apparent when the input 

involves many hundreds of ordinate angles. Only one data structure is stored that 

represents the DDGs for all the input angles. This improves locality as well as using 

far less memory. There are some significant disadvantages to this approach which 

come directly from the recursive partitioning nature of the ModifiedDCSC algorithm. 

ModifiedDCSC can traverse an edge many times throughout the course of execution 

as the marking step finds the predecessors and successors of each subsequent pivot 

node. Computing the edge direction each time this occurs becomes expensive for 

problems in which there are many recursive steps performed. 

If recomputing the edge direction with each traversal becomes too time consum- 

ing we can compute the edges once for every angle and store each one as a separate 

DDG. Storing the DDGs for all the angles increases the memory requirements for 

ModifiedDCSC. Though in the context of a radiation transport code which stores 

flux for every cell, angle and energy group this is not the dominant memory cost. 

The advantage of this is mostly in lowering the overall execution time by only com- 

puting the expensive dot product once per edge for every angle. 

An early implementation of ModifiedDCSC adopted the first scheme in which 

we performed the SCC search directly on the mesh. Experiments run on ASCI Red 

showed better speedups, reaching 200+ on 256 processors. The execution time, how- 

ever was observed to be significantly longer than when we precompute the edge direc- 

tion and store the individual graphs. Because of this, in the current implementation 

we opt to store the complete graph using an adjacency list representation with ghost 

nodes to reduce overall execution time. 
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CHAPTER IV 

EXPERIMENTAL RESULTS 

We present experimental results obtained on a HP V2200 Exemplar server and on 

ASCI Red. The HP is a 16 processor ccUMA SMP machine maintained by the 

PARASOL laboratories in the Computer Science department of Texas ASM Univer- 

sity. The processors are PA-RISC running at 200MHz. ASCI Red is a 9280 processor 

supercomputer maintained at Sandia National Laboratory. ASCI Red uses 333 MHz 

Intel Pentiums with a high bandwidth, low latency interconnection network. 

We conducted experiments to show the impact of the addition of trim() to the 

DCSC algorithm. Experiments were also performed to test the scalability and perfor- 

mance of ModifiedDCSC with a variety of meshes as well as progressively deformed 

meshes. On both platforms, we use the same MPI distributed memory code without 

machine specific modifications. 

A. Effectiveness of trim() in Elimination of Work 

Our ModifiedDCSC algorithm [5] benefits greatly from the addition of the trim step. 

By trimming out nodes that can be easily determined as not part of any SCCs, 

the overall problem size is reduced. DCSC benefits from this reduced problem size 

because the set of possible vertices from which the pivot is selected is reduced, thus 

giving a higher probability of the pivot being part of a SCC. 

We ran experiments to show the benefit of trimming the graph to the Modified- 

DCSC method. Figure 9 and figure 10 illustrate a comparison of the total number 

of recursive steps taken and the amount of work (vertices + edges) at each step by 

ModifiedDCSC both with and without trim() enabled. 

The mesh used for figure 9 is a deformed brick mesh, d-04, which is a 30 x 30 x 30 
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cell brick mesh with corner nodes deformed to produce cycles. There are many SCCs 

of varying complexity and size well distributed throughout the mesh. 

Figure 10 is executed on a mesh called s20, which represents the volume around 

a submarine hull. This mesh contains roughly 40, 000 cells and has very few cycles. 

For s20, we expect that ModifiedDCSC will complete very quickly with few recursive 

calls. 

We can observe that with trim() disabled, ModifiedDCSC will be called recur- 

sively many more times than if trim() is enabled. Also, we see that the percentage 

of vertices removed during each recursive step is much more when trim() is enabled, 

even in a graph with an artificially large number of SCCs. 

The addition of trimming to ModifiedDCSC is a very practical improvement to 

the DCSC method. It results in a reduction of the number of iterations to solution 

as well as the amount of work per iteration. The raw execution time benefits from 

this improvement as well. 
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Effects of TRM on the Recursion amount of DCSC 
mesh: d-04, 60 angles checked 
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Fig. 9. Impact of trim() on a mesh with many SCCs. 

Effects of TRM on the Recursion amount of DCSC 
mesh: s20, 60 angles checked 
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Fig. 10. Impact of trim() on a mesh with few SCCs. 



B. Varied Geometries 

The meshes listed in Table I are of different geometries, representing several difFerent 

physical models we can use to test ModifiedDCSC. Tables II and III show the exe- 

cution time and speedup achieved on ASCI Red for these meshes. The data shown 

in these tables are the results for a 120 ordinate problem which resulted in an actual 

search of 60 angles due to angle pairings. 

Figures 11 and 12 show the scalability of ModifiedDCSC on these meshes for 

the HP-V2200 and ASCI Red to 16 and 64 processors, respectively. For these and 

subsequent speedup curves, we normalized against the single processor run time of 

ModifiedDCSC. In our experiments, the single processor ModifiedDCSC was usually 

at least as fast as Tarjan's serial algorithm for these problems. 

Figure 12 on shows that an increased number of SCCs (b42000, b64000, and 

warpcyl) reduces scalability. As we have shown in Chapter IV, Section A, meshes 

with few SCCs benefit much more from trim(). Since BFS is not fully parallel, our 

parallel efficiency is expected to be better when the number of recursive steps is kept 

at a minimum. 
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Table I. Characteristics of meshes used in varied mesh experiments. These meshes 
were used to test ModifiedDCSC with some varied geometries. 
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Scalability of ModifiedDCSC on 16-Procesor HP V-Class 
60 Angles Checked for SCCs 

f6 
~ -8 s20 ~ b42000 ~ b64000 
~ - sphere2 ~ warpcyl 
— - ideal 

Number of Processors 

16 

Fig. 11. Scalability of ModifiedDCSC on HP-V2200 for various meshes. This graph 

shows the scalability of ModifiedDCSC searching the DDGs of several meshes of different 

geometries. 



Scalability of ModifiedDCSC on ASCI Red 
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Fig. 12. Scalability of ModifiedDCSC on ASCI Red for various meshes. This graph 
shows the scalability of ModifiedDCSC searching the DDGs of several meshes of difFerent 
geometries. 
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C. Progressively Deformed Meshes 

Multi-physics codes operate on meshes which can be slowly deformed at every time- 

step which would require ModifiedDCSC to also be run every time-step before physics 

sweeps are attempted. Deformed meshes typically contain more cycles and thus Mod- 

ifiedDCSC's performance can be reduced. We simulated these changes by progres- 

sively increasing the magnitude of deformation of node positions in the mesh. For this 

purpose we generated a 30 x 30 x 30 brick mesh and moved the corner nodes of the 

cells randomly. The magnitude of deformation was increased in increments of 10% of 

the distance to the nearest corner node in a cell. Table IV shows mesh information 

for this test and the increasing number of SCCs as the magnitude of deformation is 

increased. 

Table IV shows that increasing the displacement of corner nodes corner nodes in 

mesh cells causes the number of SCCs to increase as well as the average number of 

nodes contained in each SCC. This implies that as a mesh is increasingly deformed, 

the connectivity of the resulting DDG is more complex resulting in more SCCs which 

are larger and contain multiple internal cycles. The larger number of SCCs in these 

meshes also increases the amount of time ModifiedDCSC requires to compute the full 

SCC search. 

Table V shows the execution time for these meshes, and table VI contains the cor- 

responding speedups. These measurements are for 120 ordinate angles, searching 60 

angles due to removal of redundant angles due to ordinate pairing. Figures 13 and 14 

show measured scalability on the HP V2200 and ASCI Red. 

These results confirm our earlier observation of the impact trim() has on the 

overall execution of ModifiedDCSC. As the number and density of SCCs increase, 

ModifiedDCSC benefits less from trimming, resulting in lower performance. 



Table IV. Mesh characteristics as a function of deformation. 
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Fig. 13. Scalabtlity of ModifiedDCSC on HP-V2200 for deformed meshes. 
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Fig. 14. Scalability of ModifiedDCSC on ASCI Red for deformed meshes. 



D. Edge Breaking to Remove SCCs 

Recall that in order for a transport sweep to complete we must also give the solver 

some information about the SCCs that is useful for it. We decided that we would 

like to break certain edges in the DDG to eliminate the SCCs. Recall that the SCC 

elimination method we chose to implement involved breaking some edge from each 

SCC during each recursive step until the whole SCC is eliminated. 

Usually when breaking edges from a graph to eliminate SCCs we wish to choose 

the edges to break based on some criteria. Typically this involves attaching some 

weight to the edges and trying to maximize or minimize the total weight of cut edges. 

In this case the edges we cut correspond to finite element faces and we would like 

to minimize the error induced from the cut edges on the transport solver. Minimizing 

the flux through the cell faces will result in a smaller error for the solver, so we can 

select edges that will minimize this parameter. 



35 

CHAPTER V 

CONCLUSION 

We have presented the ModifiedDCSC algorithm and a parallel implementation that 

ofFers a scalable method for detecting the strongly-connected components which arise 

in sweep calculations for radiation transport. 

The addition of the trim step to this algorithm is shown to offer a significant 

bonus to the execution of the DCSC algorithm. Aggressive trimming reduced the 

amount of recursion required to find the SCCs in our input graphs. We have also 

shown that in graphs with few cycles, the addition of trim() allows ModifiedDCSC 

to complete the SCC search in nearly linear time. 

We studied the sensitivity of this algorithm to various characteristics of the input 

meshes. Not surprisingly, scalability is negatively influenced by the number and 

density of SCCs of the graph. However, our tests on up to 64 processors of a parallel 

machine show the overall scalability is reasonable, even for meshes with an artificially 

large number of SCCs. Moreover, the run times for DCSC are very small compared 

to actual physics sweeps, making this a useful tool in practice. 

ModifiedDCSC can also be easily modified so that it can eliminate SCCs from 

graphs by cutting certain edges. Our implementation includes this addition to break 

the SCCs in order to provide information to transport sweeps. This will allow them 

to sweep an unstructured 3D finite element mesh containing cycles to completion 

without a deadlock. 

This implementation of ModifiedDCSC is now part of a radiation transport pack- 

age in use at Sandia National Laboratories. 
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