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ABSTRACT 

Nonlinear Adaptive Internal Model Control Using Neural Networks. 

(August 2001) 

Amit Krushnavadan Gandhi, B. E. , University of Bombay 

Chair of Advisory Committee: Dr. Aniruddha Datta 

The IMC structure, where the controller implementation includes an explicit 

model of the plant, has been shown to be very effective for the control of the sta- 

ble plants typically encountered in process control. A nonlinear internal model con- 

trol(NIMC) strategy based on neural network models is presented for SISO processes. 

The nonlinearities of the dynamical system are modelled by neural network architec- 

tures. Recurrent neural networks can be used for both the identification and control 

of nonlinear systems. Identification schemes based on neural network models are de- 

veloped using two different techniques, namely, the Lyapunov synthesis approach and 

the gradient method. Both identification schemes are shown to guarantee stability, 

even in the presence of modelling errors. 

The NIMC controller consists of a model inverse controller and a robust filter 

with single adjustable parameter. Using the theoretical results, we show how an 

inverse controller can be produced from a neural network model of the plant, without 

the need to train an additional network to perform the inverse control. 

This NIMC approach is currently restricted to processes with stable inverses and 

with relative degree equal to one. Computer simulations demonstrate the proposed 

design procedure. 
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CHAPTER I 

INTRO DU CTIOiU 

The Internal Model Control (IMC) structure continues to be a very popular one in 

process control applications [1] [2]. This structure, in which the controller includes an 

explicit model of the plant, is particularly appropriate for the design and implemen- 

tation of controllers for open-loop stable systems. The fact that many of the plants 

encountered in process control happen to be open-loop stable possibly accounts for 

the immense popularity of IMC among practicing engineers. 

Although many processes exhibit significant nonlinear behavior, most controller 

design techniques are based on linear models. Controller design for nonlinear models 

is considerably more difficult than for linear models. Uovel techniques in adaptive 

control of nonlinear systems were facilitated by advances in geometric nonlinear con- 

trol theory and, in particular, feedback Iinearization methods [3]. During the last few 

years, adaptive nonlinear control has evolved as a vigorous control strategy leading 

to global stability results for a reasonably large class of nonlinear systems. 

The emergence of the neural network paradigm as a powerful tool for learning 

complex mappings from a set of examples has generated a great deal of excitement 

in using neural network models for identification and control of dynamical systems 

with unknown nonlinearities. Due to their approximation capabilities as well as their 

inherent adaptivity features, artificial neural networks present a potentially appealing 

alternative to modeling of nonlinear systems. More precisely, it is shown that there 

exists a set of weights such that for a given input, the outputs of the real system and 

the proposed neural network model remain arbitrarily close over a finite interval of 

The journal model is IEEE Transactions on Automatic Control. 



time. During the past few years, numerous models for the practical identification of 

nonlinear dynamical systems were proposed and later used for the design of controllers 

[4]. Extensive simulation studies carried out have shown that these proposed models 

have been particularly effective for the identification and control of nonlinear systems. 

We present a design procedure, based on stability theory, for modeling, identi- 

fication and adaptive control of continuous-time nonlinear dynamical systems using 

neural network architectures. The techniques developed here share some fundamental 

features with the parametric methods of both adaptive nonlinear control as well as 

adaptive control theory. 

The control strategy considered in this paper is that of Internal Model Control 

(IMC). The applicability of IK~IC to nonlinear systems control has been demonstrated 

by Economou et al. [5]. The motivating factor for using recurrent neural networks for 

IMC, is that if a network can model the input-output relationship of a system, it can 

also surely model the inverse of this relationship, and the production of an inverse 

model is of great importance when using IMC. By using the Hirschorn inversion 

theorem, the left inverse of a recurrent neural network is the same network, but with 

the requirement of a different input [6]. 

We demonstrate how recurrent neural networks and their inverses can be used in 

the IMC of a nonlinear system. The system under consideration is that of penicillin 

fermentation and the recurrent networks used are Radial Basis Function (RBF) net- 

works. The relevant theories about recurrent neural networks and their inverses are 

reviewed and the stability of the overall IMC system, including the recurrent neural 

networks, is analyzed. 

The Thesis is organized as follows. Chapter II describes the IMC structure for 

stable plants and mentions its advantages for nonlinear systems. In Chapter III. we 

talk about modeling of dynamical systems by neural networks and the conditions to 



be satisfied both by the system and the neural networks. In Chapter IV, we introduce 

the architecture of Radial Basis Function (RBF) Networks and show that the outputs 

of a real system and those of the neural network converge. In Chapter V, we deal with 

Identification of dynamical systems. In particular we discuss the RBF network model 

considered and the Lyapunov synthesis approach for identifying the states. Then we 

go on to identify thc output, of the system using the gradient method. Chapter VI 

deals with Plant Inversion. We first discuss a few key terms and then move on to talk 

about the Hirschorn Inverse theorem for constructing the left inverse of the system. 

Chapter VII supports our design with a simple simulation example. Chapter VIII 

concludes the thesis by summarizing the main results and outlining the directions for 

future research. 



CHAPTER II 

INTERNAL MODEL CONTROL 

The IMC structure is well known and has been shown to underlie a number of control 

design techniques of apparently difi'erent origin. IMC has been shown to have a 

number of desirable properties; a detailed analysis has been given by Morari and 

Zafiriou [1]. The IMC structure provides a direct method for the design of nonlinear 

feedback controllers. 

A. The IMC Structure 

Consider the nonlinear IMC structure shown in Fig. 1. Here the nonlinear oper- 

ators denoted by P, M snd C represent the plant, plant model and the controller 

respectively. The operator F denotes a filter. The double lines used in the block di- 

agram emphasize that the operators are nonlinear and that the usual block diagram 

manipulations do not hold. 

B. Properties of the IMC Structure for Nonlinear Systems 

The attractive characteristics of IMC are the consequences of three properties which 

we will now state [5]. 

1. Property Pl (Stability). Assume that C and P are input-output stable and 

that a perfect model of the plant is available, i. e. , M = P. Then the closed-loop 

system is input-output stable. 

2. Property P2 (Perfect Control). Assume that the inverse of the model 

operator M exists, that C = M, and that the closed-loop system is input- 

output stable with this controller. Then the control will be perfect, i. e. , y = r. 



Fig. 1. Nonlinear IMC Structure 

3. Property P3 (Zero Offset). Assume that the inverse of the steady-state 

model operator Mr exists, that the controller satisfies C~ = Mr, and that the 

closed-loop system is input-output-stable with this controller. Then offset free 

control is attained for asymptotically constant inputs. 

These properties provide the non-linear analogue of the desirable linear internal model 

control properties. The importance of nonlinear internal model control is that it 

provides a direct and transparent method for nonlinear control system design. 

For nonlinear systems, general guidelines are not available on how to design a 

feedback controller for which the closed-loop system is stable, even less for which 

the overall control structure has some desired performance characteristics. The IMC 

formalism is aimed at alleviating this problem at least for systems which are input- 

output stable (or stabilizable by output feedback) and systems which do not exhibit 

multiple output steady states. Under these assumptions, if a good model of the plant 



is available, P2 prescribes exactly the structure and parameters of the controller which 

will result in "perfect control", i. e. , exact set point following despite unmeasured dis- 

turbances. Moreover, Pl guarantees the stability of the closed-loop nonlinear control 

system. The underlying idea is that as far as the design is concerned, IMC transforms 

the problem into a feedforward control problem, which can be solved even for nonlin- 

ear systems. But on the other hand, ITIC preserves all the important characteristics 

of feedback control, in particular the suppression of unmeasured plant disturbances 

as properties P2 and P3 show. 

It is intuitively obvious that a feedback controller with infinite gain is necessary 

to achieve the performance stipulated in P2. Therefore it is evident from this inter- 

pretation that the control system suggested in P2 ivill suffer from stability/sensitivity 

problems. The closed-loop system can be unstable if the compensator is not correct 

(the model of the plant is not exact). At this point in the IMC design procedure, we 

can back off from the "perfect" controller in an orderly fashion and reduce the gain to 

improve the robustness characteristics. This is accomplished by employing the IMC 

filter F in series with the controller C. 

The primary reason for including this filter is to introduce robustness in the IMC 

structure in the face of modeling errors, by appropriately reducing the loop gain. It 

also serves a number of other functions. The input space of the inverse operator M 

is defined to be the range of the operator M: consequently the operator M is not 

defined for inputs outside the range of M. However, there is no assertion that the 

error signal e will belong to this space. In this case, the filter is used to project e to 

the appropriate space. Finally, the filter smoothes out noisy and/or rapidly changing 

signals in order to reduce the transient response of the IMC controller (or, using linear 

systems terminology, it makes the controller "proper"). 



We propose a two step procedure for using neural networks directly within the 

ITIC structure. The first step involves training a network to represent the plant 

response. This network is then used as the plant model operator M in the control 

structure of Fig. l. 

Following standard IMC practice (guided by property P2 above) we select the 

controller as the plant inverse. The second step in the procedure is to train a second 

network to represent the inverse of the plant. 



CHAPTER III 

MODELING OF DYNAMICAL SYSTEMS BY UEIIRAL NETWORKS 

Artificial Neural Networks are computational paradigms which implement simplified 

models of their biological counterparts, biological neural networks. Neural Networks 

are better interpreted as versatile mappings represented by the composition of many 

basic functions structured in a parallel fashion. They have the following characteris- 

tics [7]: 

1. Can make use of readily available process data; 

2. Are easy to apply; and 

3. Can be used across a broad spectrum of process applications. 

As a result Artificial Neural Networks can be used for modeling and control of dy- 

namical systems. 

A. Stone-Weierstrass Theorem 

A generalization of Weierstrass's theorem due to Stone, called the Stone-Weierstrass 

theorem forms the starting point for all the approximation procedures for dynamical 

systems. 

Theorem 1 Storze-Weiezstrass (B]i Let bt be a compact metric space. If 'P is a 

subalgebra of C(H, IR) uihzch contains the constant functions and separates points of 

bt then P zs dense in C(bt, R). 

In the problems of interest to us we shall assume that the plant P to be identified 

belongs to the space 7o of bounded, continuous, time-invariant and causal operators. 



By the Stone-Weierstrass theorem, if P satisfies the conditions of the theorem, a model 

belonging to 'P can be chosen which approximates any specified operator P c 'P. 

The recurrent neural network is an alternative to the feedforward neural net- 

work. It was introduced by Hopfield [9I. Recurrent neural networks are feedforward 

neural networks with feedback connections. The introduction of feedback enables the 

description of temporal behaviour and hence the capacity to directly account for the 

dynamics of nonlinear systems. Recurrent neural networks also have the ability to 

model nonlinear functions, an ability which makes them attractive for use in nonlinear 

control strategies. 

B. Neural Network Requirements 

One of the basic requirements in using neural network architectures to represent, identify 

and control nonlinear dynamical systems is the capability of these architectures to 

accurately model the behavior of a large class of dynamical systems that are en- 

countered in science and engineering problems. The input-output, response of neural 

networks, whether static or recurrent, is determined by the values of a set of param- 

eters which are referred to as weights. Therefore the representation capabilities of a 

given network depend on whether there exists a set of weight values such that the 

neural network configuration approximates the behavior of a given dynamical system. 

The terms "weights" and "parameters" are used interchangeably. 

We consider the problem of constructing a neural network architecture that is 

capable of approximating the behavior of continuous-time dynamical systems, whose 

input-state-output representation is described by 
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where u E 7Z is the input, z E 7V is the state, y C 7Z is the output and t C 74+ 

is the temporal variable. The input u belongs to a class II of (piecewise continuous) 

admissible inputs. By adding and subtracting Az, where A is a Hurwitz or stability 

matrix (i. e. , has sll of its eigenvalues in the open left-half complex plane), (3. 1) 

becomes 

i = Az+g(z, u), y = h(z, u) (3. 2) 

where g(z, u): = f (z, u) — Az. Based on (3. 2), we construct a recurrent network 

model by replacing the mappings g and h by feedforward (static) neural network 

architectures [10], denoted by Nr and Nz respectively. Therefore we consider the 

model 

i = Ai+g(i u gs) 

y = h(i, u, &s) 

i(0) = * 

(3. 3) 

where g and h are the outputs of the static neural networks Nr and Nz respec- 

tively, while gs and Oq denote the adjustable weights of these networks. z and y 

denote the state and output respectively of the recurrent network model. 

Corresponding to the Hurwitz matrix A, we let W(s): = (sI — A) r be an n x n 

matrix whose elements are stable transfer functions and s denotes the differential 

(Laplace) operator. Based on this definition of W(s) as a stable filter, a block diagram 

representation of the recurrent network model described by (3. 3) is depicted in Fig. 

2. This interconnection of static neural nets and dynamic components is proposed 

for modeling the input-output response of the general dynamical system described by 

(3. 1). If we suppose that the real system and the proposed model are initially at the 

same state (i. e. , i = z ), then we need to determine whether there exist weights 8', 
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Fig. 2. A Recurrent Neural Network for Modeling a Dynamical System 

8„* such that the input-output behavior (u ~ y) of the neural network model (3. 3) 

approximates, in some sense, the input-output behavior (u 1 y) of the real system 

(3. 1). This leads to the validity of the proposed model. 

C. Conditions on the System and the Neural Network Topologies 

We impose the following mild assumptions on the system to be approximated [10]: 

(Sl) Given a class ld of admissible inputs, then for any u E- M and any finite initial 

condition z the state and output trajectories do not escape to infinity in finite 

time, i. e. , for any finite T ) 0 we have )z(T)j+ ~y(T)~ ( oo. 

(S2) The vector fields f: R + ~ R" and h: R" ~ ~ R" are continuous with 

respect to their arguments. Furthermore, f satisfies a local Lipschitz condition 

so that the solution z(t) to the differential equation (3. 1) is unique for any finite 

initial condition z and u c Ll. 

The above assumptions are required in order to guarantee that the solution to the 

system described by (3. 1) exists and is unique for any finite initial condition z and 

any admissible input u 6 H. 
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We will also assume that the static neural network topologies 1V;, i = 1, 2, that 

are used to represent the mappings g and 6 satisfy the following conditions: 

(Nl) Given a positive constant e and a continuous function f: C ~ Rr, where C c 7V 

is a compact set, there exists a weight vector 0 = 0' such that the output f (X, 0) 

of the neural network architecture N, with n* nodes (where n' may depend on 

e and f) satisfies 

max~f(X, 0*) — f(X)~ & e 

(N2) The output f(X, 0*) of the neural network architecture N, is continuous with 

respect to its arguments for all finite (X, 0). 

We next describe Radial Basis Function (RBF) networks which satisfy conditions 

(Nl), (N2). 



CHAPTER IV 

RADIAL BASIS FUNCTION NEURAL NETWORKS 

Radial basis function networks have increasingly attracted interest for engineering 

applications due to their advantages over traditional multilayer perceptrons, namely 

faster convergence, smaller extrapolation errors, and higher reliability. Radial Basis 

Function networks were introduced to the neural network literature by Broomhead 

et al. [11] and have since gained significance in the field due to several application 

and theoretical results [12] [13]. Radial basis function (RBF) networks have a static 

Gaussian function as the nonlinearity for the hidden layer processing elements. The 

Gaussian function responds only to a small region of the input space where the Gaus- 

sian is centered. The key to a successful implementation of these networks is to find 

suitable centers for the Gaussian functions. This can be done with supervised learn- 

ing, but an unsupervised approach usually produces better results. Recently, RBF 

networks have also been considered in adaptive control of nonlinear dynamical sys- 

tems [14]. 

A. Architecture 

The input-output response (z ~ y) of a RBF neural network (shown in Fig. 3) with 

m inputs, n outputs and n' hidden, or kernel units, is characterized by 

(4. 1) 

where z C R is the input, ( E R" is the output of the hidden layer, y c R" is 

the output of the network; A c R"""' is the weight matrix, while ci c 7Z and a, & 0 



Fig. 3. Block Diagram Representation of a Radial Basis Function Neural Network 

are the center and width (or smoothing factor) of the ith kernel unit respectively. The 

Euclidean or a weighted Euclidean norm [. ] is often used. The continuous function 

g: [0, oo) ~ R is the activation function which is usually chosen to be the Gaussian 

function g(P): = e S . Depending on the application, the centers c, and/or widths 

a, of the network can either be adjustable (during learning) or they can be fixed. 

It has recently been shown that under mild assumptions RBF neural networks are 

capable of universal approximation, i. e, approximation of any continuous function 

over a compact set to any degree of accuracy [15]. Since Gaussian RBF networks 

satisfy (Nl), (N2) they are good candidates for modeling nonlinearities of dynamical 

systems. 

B. Learning Paradigm 

Using Assumptions (Sl)-(S2), (Nl)-(N2), the following theorem [10] establishes the 

capabilities of the proposed recurrent network architecture depicted in Fig. 2 to ap- 

proximate the behavior of the real system over a finite interval of time. 



Theorem 2 Suppose x(0) x(0) = x and u c U c R where 5t is some compact 

set. Then given «) 0 and a finite T ) 0, there exist rveight values H*, Ha such that 

for all u C W the outputs of the real system and the recurrent neural network model 

satisfy 

max ly(t) — y(t)I & ~ 
~«[o, rl 

(4. 2) 

Proof There exists a unique solution x(t) to (3. 1) such that Ix(t) — xal & k for all t c 

I0, T], where k is some positive constant. Let IC be the compact set defined as 

I'C. = {(x, u) c R +: Ix — x'I & k+ «, u c ti) 

By Assumption (N2), g, h are continuous functions and therefore they satisfy a Lip- 

schitz condition in the compact domain l'C, i. e. there exists constants ls, ta such that 

for all (x„u), (xz, u) E K 

lg(*:, H. ) — g(, , H, )I & l, ]x- 
Ih(x„u, Ha) — h(xz, u, Ha) I 

& lalxr — xzl 

(4. 3) 

(4. 4) 

If we let e, : = x — x then from (3. 1) and (3. 3) we obtain 

e, = Ae, +g(x, u) — g(x, u, H;) e, (0) = 0 (4. 5) 

Based on Assumption (NI), the weight set H* in (4. 5) is chosen such that 

max lg(x. , u) — g(x. , u, H, ")I & «, 
finv)«K 

(4. 6) 



where cs ) 0 is a constant to be chosen later. 

its solution, 

e, (t) = f e 6 'l[g(z(z), u(r)) — g(z(r), u(r), e")] dr 
gp 

rt 
= J e"" '[g(z(r), u(r)) — g(*(~), u(~):es)]dr+ 

0 
t 
"6-'l[g( (. ), (. ), e;) — g(z(r), (r), e, ")] d 

0 
(4. 7) 

Since A is a Hurwitz matrix there exist positive constants c, cr (that depend on A) 

such that I[e~'II & ce for all t & 0. Based on the constants c, cr, ts, ts„e let es in 

(4. 6) be chosen as 

eq 
— — e ' &0 -u, ia 

2cts 
(4. 8) 

First consider the case that Iz(t) — z" 
I 

& k + e for all t C [0, T], which implies that 

(z, u) C K in that interval. In this case, starting from (4. 7), taking norms on both 

sides and using (4. 3), (4. 6), (4. 8), the following inequalities hold for t c [0, T]: 

rr 
I'. (t)I & J I[e ' 'II. Ig(z(r), u(z)) — g(z(r), u(r), e;)I dr+ 

0 

s 

t 
Ile"" ' ll Ig(*(~), u(z), e, ") — g(z(r) u(z) e, ")I de 

0 
rL rt 

J ce 0 l. e dc+ J ce "' '. ls]e, (w)[dr 
n 2cla o 

r ~l 
2ls 
— e + cl e ' ' Ie, (z)]dr 'J 

Therefore by using the Bellman-Gronwall Lemma [16] we obtain 
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Note that from (4. 4) it can be assumed without loss of generality that ls ) 1 and 

therefore (4. 9) implies that Ix(t) — x 
I 

& k+ e/2. Now suppose (for the sake of 

contradiction) that (x, u) does not belong to K for all t C [O, T]. Then, by the 

continuity of x(t), there exists a T*, where 0 & T* & T, such that Ix(T*) — xo 
I 

= k+ e 

Therefore, if we carry out the same analysis for t c [0, T*] we obtain that in this 

interval Ix(t) — x 
I 

& k+ e/2, which is clearly a contradiction. Hence (4. 9) holds for 

all t E [0, T]. 

Now consider the difference in outputs. By taking norms we obtain 

y(t) — y(t)l = lh(x u) — h(* u fts)l 

lh(* u) — h(x, u, 8)l + Ih(x u 0", ) h(x u;Ili')I 

Again by Assumption (Nl) we can choose 8& such that 

max h(x, u) — h(x, u, 0"„) 
lz, uIEK 2 

Therefore using (4. 4) and (4. 9) we obtain 

ly(t) — y(t)l & — + Is le*(t)I e 'r7t c [0:T! 

which concludes the proof. 

Based on the above result, we will assume in the subsequent sections that the 

nonlinear dynamical system to be identified and/or controlled is represented by a 

recurrent network configuration with static neural networks replacing the unknown 

nonlinearities. Thus, the real system is psrameterized by neural network models with 

known underlying structure and unknown parameters or weights. In order to ac- 

count for modeling inaccuracies arising, for example, from having insufficient number 
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of adjustable weights, we will allow the presence of modeling errors, which appear 

as additive disturbances in the differential equation representing the system model. 

AVe develop parameter update laws for stable identification using various techniques 

derived from the Lyapunov synthesis approach. 
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CHAPTER V 

IDENTIFICATION 

A. State Estimation 

In this section we consider the identification of nonlinear systems of the form 

i = f(z)+g(z)u 

y = h(z) (5. 1) 

where u c R is the input, y c R is the output, z c Z" is the state, which is assumed 

to bc available for measurement, h is a scalar field and f, g are smooth vector fields 

defined on an open set of R" 

The problem of identification consists of choosing an appropriate identification 

model and adjusting the parameters of the model according to some adaptive law 

such that the response z of the model to an input signal u (or a class of input 

signals) approximates the response x. of the real system to the same input. Since 

a mathematical characterization of a system is often a prerequisite to analysis and 

controller design, system identification is important not only for understanding and 

predicting the behavior of the system, but also for obtaining an effective control law. 

1Ve will assume that the state z(t) is bounded for all admissible bounded inputs 

u(t). Note that even though the real system is bounded-input bounded-state (BIBS) 

stable, there is no apriori guarantee that the output z of the identification model 

or that the adjustable parameters in the model will remain bounded. Stability of 

the overall scheme depends on the particular identification model that is used as 

well on the parameter adjustment rules that are chosen. This section is concerned 

with the development of identification models, based on RBF neural networks, and 
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CHAPTER V 

IDENTIFICATION 

A. State Estimation 

In this section we consider the identification of nonlinear systems of the form 

(5. 1) 

where u c R is the input, y c R is the output, z c R" is the state, which is assumed 

to be available for measurement, h is a scalar field and f, g are smooth vector fields 

defined on an open set of R" 

The problem of identification consists of choosing an appropriate identification 

model as in Fig. 4 and adjusting the parameters of the model according to some 

adaptive law such that the response z of the model to an input signal u (or a class 

of input signals) approximates the response z of the real system to the same input. 

Since a mathematical characterization of a system is oi'ten a prerequisite to analysis 

and controller design, system identification is important not only for understanding 

and predicting the behavior of the system, but also for obtaining an effective control 

law. 

We will assume that the state z(t) is bounded for all admissible bounded inputs 

u(t). Note that even though the real system is bounded-input bounded-state (BIBS) 

stable, there is no apriori guarantee that the output s of the identification model 

or that the adjustable parameters in the model will remain bounded. Stability of 

the overall scheme depends on the particular identification model that is used as 

well on the parameter adjustment rules that are chosen. This section is concerned 
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Real System 

e, 

Identification Model ll 

Fig. 4. A General Configuration for Identification of Nonlinear Dynamical System 

with the development of identification models, based on RBF neural networks, and 

the derivation of adaptive laws that guarantee stability of the overall identification 

structure. 

The unknown nonlinearities f(z) and g(z) are parameterized by static neural 

networks with outputs f(z, gr) and g(z, 8&) respectively, where 8r c R"r, 8s c 'R" 

are the adjustable weights and nr, n~ denote the number of weights in the respective 

neural network approximation of f and g. 

, z = f(*, 8*, )+ g(*, 8 ) u+ [f(z) — f(*, 8;) J+ [g(z) — g(z, 8*) Ju (fi. 2) 

~here 8&, 8* denote the optimal weight values (in the L -norm sense) in the approx- f) g 

imation of f(z) and g(z) respectively, for z belonging to a compact set X c R". 

We will consider "optimal" weights 8&, 8s that belong to the convex compact 
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sets 8(Mr), 8(Mv) respectively, where My, Ms are design constants and B(M):= 
(8: ]8[ & M) denotes a ball of radius M. In the adaptive law, the estimates of 8&, 8*, 

which are the adjustable weights in the approximation networks, are also restricted to 

8(Mr), 8(Ms) respectively, through the use of a projection algorithm. The optimal 

weight vector 8& thus minimizes 
[ f(z) — f (z, 8r) [ for z 6 Z C 7V; i. e. , 

8& 
'. — — arg min sup] f(z) — f(z, gr) ] 

&res(~r) (*ex 
(5. 3) 

Similarly, 8* is defined as 

8s:= arg min I sup[g(z) — g(z, gs) [ 
oats(Mgl lxcx 

(5. 2) is now expressed as 

i = f(z, gr) + g(z, 8, *) u+ v(t) (5. 5) 

where v(t) denotes the modeling error, defined as 

v(t):= [f(&(t)) — f(*(t), 8, *) ]+ [g(z(t)) — g(z(t), 8;) ] u(t) 

The modeling error v(t) is bounded by a constant vs where 

Since by assumption, u(t) and z(t) are bounded, the constant vs is finite. The value 

of vs depends on many factors, such as the type of neural network that is used, the 

number of weights and layers, as well as the "size" of the compact sets Z, 8(Mr), 

5(Ms). However, a very attractive feature of our synthesis and analysis procedure is 

that, we do not need to know the value of vs. 

By replacing the unknown nonlinearities with feedforward neural network models, 

we have essentially rewritten the system (5. 1) in the form (5. 5), where the parameters 
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//&, //' and the modeling error v(t) are unknown, but the underlying structure of f 
and 7/ is known. Based on (5. 5), we now develop and analyze an identification scheme 

using Gaussian RBF networks. 

1. RBF Network Models 

The Network Architectures employed for modeling f and g are RBF networks. There- 

fore the functions f and f/ take the form 

f = W~*r/r (z) f/ = Wz r/z($) (5. 6) 

where Wr*, Wz are n x nr and n x nz matrices respectively, representing the optimal 

weight values, subject to the constraints [[Wr*[[r & Mn [[Wz*[[F & Mz. The norm [[. [[F 

denotes the Frobenius matrix norm [17], defined ss [[A[[+ . — — P, " [au[ = tr (AA ), 
where tr. denotes the trace of a matrix. The constants nr, nz are the number of kernel 

units in each approximation and the vector fields r/r(z) c R"', r/z(z) c 7Z"', which 

we refer to as regressor s, are Gausssian type of functions, defined element-wise as 

i=1, 2, nI 

r/z(z) e 
— I* — w~l'/~2g j=1, 2, n2 

We assume that that ctn cz/, crt;, az/ are chosen apriori and kept fixed during adap- 

tation of Wr, Wz. By substituting (5. 6) in (5. 5) we obtain 

x: Wr rh (s) + Wz r/z($) u + v (5. 7) 

Based on the RBF network model described by (5. 7), we next develop parameter up- 

date laws for stable identification using various techniques derived from the Lyapunov 

synthesis approach. 
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rl2 W2 

Fig. 5. A Block Diagram Representation of the Identification Model Developed Using 

RBF Networks 

2. Lyapunov Synthesis Approach 

The RBF network model (5. 7) is rewritten in the form 

i = — rid + err + W; rlr (x) + W2' r)2(s) u + v (5. 8) 

where rr ) 0 is a scalar (design) constant. Based on (5. 8) we consider the identification 

model 

i = — rrr+ err+ Wi ilt(r) + Wsrla(z) u (5. 9) 

where Wi, W2 are the estimates of Wi*, W2 respectively, while i is the output of the 

identification model. The RBF filtering model is depicted in Fig. 5. As can be seen 
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from the figure, this identification model consists of two RBF network architectures 

in parallel and n first order stable filters h(s) = I/(s+ n). 

If we define e, := a — s, the state error, and ztz . : Wz Wz, zfzz . ': Wz Wz", 

the weight estimation errors, then from (5. 8) and (5. 9) we obtain the error equation 

e', = — cze, + zt zh (a) + d s zis(x) u — v (5. 10) 

The Lyapunov synthesis method (18] consists of choosing an appropriate Lya- 

punov function candidate V and selecting weight adaptive laws so that the time 

derivative V satisfies V & 0. An adaptive law for generating the parameter estimates 

W, (t), Ws(t) is developed by considering the Lyapunov function candidate 

V( e* 0'z; 02) = 
2 

le*I' + IIV z lls' + Ild'z IIF 

r — e e + tr(zii141 ) + — tr( zfzses 
2 20'z 2+z 

(o. 11) 

where pz, 0z are positive constants referred to as learzzirzg rates or adaptzve gains. 

Using (5. 10), the time derivative of V in (5. 11) is expressed as 

V = e. e. i — tr(z(z4, }i — tr(y, y, ) 
. r I, r 1 

~2 

— ere e, +rig (Pze, +rlz zfzqe, u — v e, + — tr(C'zzzfzz ) + — tr{rfzszfz ) 
Yl 72 

Using properties of the trace, such as 

zlzz)z, e, = tr/zl, d, e, ) = tr(e, rl, P, ) 



we obtain 

— rr e, [ + tr 
~ 

e rli dr + — 
@radii 

~ 
+ tr ~e, uris 4s + — 4iseis t 

— n e 
'7l /2 

— a[e [ + — tr J(ate, q, + dq) q', r + — tr ((fise~uiI~ + 4q) ebs ) — v e 
fl J 

(5. 12) 

Since Wi*, Wz* are constant, we have that Wi = 4, and Wq = 4is. Therefore it is clear 

from (5. 12) that if the parameter estimates Wi, Wq are generated according to the 

adaptive laws 

T 
Wi = — Pre rh, T 

Ws = — Pie, uris (5. 13) 

then (5. 12) becomes 

V = — o [e, [ — v e & — rr fe [ + vs [e, [ (5. 14) 

If there is no modeling error (i. e. , vs=0), then from (5. 15) we have that V is negative 

sernidefinite; hence stability of the overall identification scheme is guaranteed. How- 

ever in the presence of modeling error, if [e, [ & vs/o then it is possible that V & 0, 

which implies that the weights Wi(t), Ws(t) may drift to infinity with time. Therefore 

we confine Wq and Wq so that [[Wi [[F & rtf, and [[Wq[(s & Mq through the use of a 

Projection Algorithm [19] [20] as: 

Wi 
— q, e, rI, if [[Wr[[s & Mi or ( [[Wr[[r = M, and e, Wrrlr & 0 ) 

T( — pre ih) if [[Wq[[s = Mi and e, Wrqr & 0. 

(5. 15) 



Ws 
if Ilw, ll, & M»r ( Ilw, ll, = M, and e. 'w, n, u & 0) 

Pt — ~, e, uq, ') if IIW, lie = Ms and e'Wsnsu & 0. 

(5. l6) 

where P( ) denotes the projection onto the supporting hyperplane, defined as 

e, Wrrh T 
qo( — Pre rh ):= — Pre, q, + 06 

* „W 
z, e, Wsqsu T 

72e uris ) . /2e u92 + '72 s W2 

(5. 17) 

(5. 18) 

Therefore, if the initial weights are chosen such that llwr(0) IIF & Mr, IIN's(0) lls & Ms 

then we have llwr(t)llz & Mr, llwz(t)lls & Ms for all t ) 0. 

YVith the adaptive laws (5. 15), (5. 16), (5. 12) becomes: 

e, W rt z „e, Wzrtsu ( T 1 ( 
-ale*I — o e*+ r'I 

II II' 
'd'r)+ s'"'( IIWI' 

w, d 

evW eTW u 
' 

IlwsllF 

where I, ", Is are indicator functions defined as I, * = 1 if IIW, lie = Mr and e, Wrrtr & 0 

are satisfied and I, " = 0 otherwise (and correspondingly for Is). As the following 

Lemma shows, additional terms introduced by the projection can only make V more 

negative, which implies that the projection modification guarantees boundedness of 

the weights without affecting the rest of the stability properties established in the 

absence of projection. 

Lemma 1 Based on the adapttve lauts (5. 15), (5. 15) the following inequalities 

hold: 

(i) Ir' (e, Wrrh/IIWrllF) tr(wrdr ) & 0. 

(ii) Is (e, W$77su/IIWslls) tr(Wzihs ) & 0 
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Proof We prove part (i), since the proof of part (ii) follows from the same rea- 

soning. Suppose IW, ~)F = 1ldr and e, "W~rh & 0. If that is not the case then I; = 0 

and the inequality holds trivially. The term tr ( Wrd 
& ) can be expressed as 

tr(Wrier ) = tr((d, +W;)dz ) 

tr — P, re + — rbrd'r + W, d'r 

2 
Ild'rll'F + 

2 
IIWrl 'F + 

2 
IIWr*llF 

Therefore 

eT 
tr(Wld' ) =, (e* ~&gr) (lid rllz ™r IIWr II+ ) 2 Mr 

Since the optimal weights Wr' satisfy ~~Wr j~e & Mr (~~a')r ~i~i~+Mr ~)Wr ~~~ ) is positive 

and therefore 

erW 

which concludes the proof. 

Now, using Lemma 1, (5. 19) becomes 

V & — o/e, 
/ 

— e, v & — rr[e, 
/ 

+ vo/e, 
/ 

(5. 20) 

Based on (5. 20), we next summarize the properties of the weight adaptive laws (5. 15), 

(5. 16) . 

Theorem 3 The weight adaptive laws given by (5. 15), (5. 16) guarantee the followrng 

properti es: 

(a) For vp = 0 (no modeling error), we have 

~ e, z, @r, dz E L, e, E Lz. 
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~ lirnt e, (t) = 0, lirn, tpz(t) = 0 lim, tbz(t) = 0. 

(b) For supt&s]v(t)] & vo zoe have 

~ e, x oil, dzz 6 L 

~ there exzst constants kz, kz such that 

f 
t rt 
Ie*(r)l'dr «z+kz J Io(r)]sdr 

0 0 

Proof: 

(a) With vo = 0, (5. 20) becomes 

V& — rz]e] &0 (5. 21) 

Hence V E- L, which from (5. 11) implies e„pz, tie C L . Furthermore, x = e + x 

is also bounded. Since V is a non-increasing function of time and bounded from below 

the lim, V(t) = V exists. Therefore by integrating (5. 20) from 0 to oo we have 

2 1 
]e, (r)]'dr & — [V(0) — V ] & oo 

0 Q 

which implies that e, E Lz. By the definition of the Gaussian radial basis function, 

the regressor vectors zh(x) and zlz(x) are bounded for all x and by assumption u is 

also bounded. Hence from (5. 10) we have that e, E- L . Since e c Lz A L and 

e', c L, using Barbalat's Lemma [21] we conclude that lim, e, (t) = 0. Now, 

using the boundedness of zh(t) and the convergence of e, (t) to zero, we have that 

Oiz — — IVz also converges to zero. Similarly, zbz — t 0 as t ~ cx;. 

(b) With the projection algorithm, it is guaranteed that ]]Wz]]s & Mz, ]]Wz]]r & Mz. 

Therefore the weight estimation errors are also bounded, i. e. Qz, ebz C L . From 

(5. 20) it is clear that if ]e, ] ) zte/zr then V & 0 which implies that e, E L and 

consequently x c L . In order to prove the second part, we proceed to complete the 



square in (5. 20): 

& — — Ie-] — — 
~le*] + — e ~ 

Q 0 Q 0 2 T 

— — Is*I + — l~l 
Q 0 I 
2 2Q 

Therefore, by integrating both sides and using the fact that V E I we obtain 

f 
t 

Ie*(T) Iz« — ]V(o) — V(t)]+ —, J l~(T)]'dr 
0 Q Q' 0 

rt 
kl+kz J v(t)] dr 

0 

where kl . . = 2/Q (V(0) — supt&0 V(t)) and ks . = I/Q . 

B. Output Identification 

The output of our system is 

y = h(z) (5. 22) 

The unknown nonlinearity h(z) is parameterized by a static neural network with 

output h(z, Hs) where Hs E 7Z"„are the adjustable weights and ns denote the number 

of weights in the approximation of h. By adding and subtracting the term h (5. 22) 

can be rewritten as 

y = h(, Hs) + [h( ) — h(z, H"„) ] (5. 23) 

where Hs denotes the optimal weight values (in the L -norm sense) in the approxi- 

mation of h(z), for z belonging to a compact set X c R". 

We will consider "optimal" weights H„* that belong to the convex compact set 

8(Ma), where Ms is a design constant and 8(M):= $H: ]H] & M) denotes a ball of 

radius M. In the adaptive law, the estimates of H„", which are the adjustable weights 
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in the approximation networks, are also restricted to 8(Mq), through the use of a 

projection algorithm. The optimal weight vector 0& thus minimizes 
i h(z) — h(z, 0q) 

for z C E C 7Z"; i. e. , 

0& . — — arg min sup 
i h(z) — h(z, 0q) i anus(Mll latex 

(5. 24) 

(5. 23) is now written in compact form as 

y = h(z, 0„*) + d(t) (5. 25) 

where d(t) denotes the modeling error, defined as 

d(t) = [h(*(t)) -h(*(t), 0. *)] 

The modeling error d(t) is bounded by a constant dc where 

dc . '— — sup (h(z(t)) — h(z(t), 0&', )) 
r. ) 0 

Since by assumption z(t), y(t) is bounded, the constant dc is finite. Based on (5. 25), 

we again develop and analyze an identification scheme using Gaussian RBF networks. 

1. RBF Network Models 

The Network . 4rchitecture employed for modeling h is a RBF network. Therefore the 

function h takes the form 

h = Ws ris(z) (5. 26) 

where Ws is a 1 x n matrix representing the optimal weight values, subject to the 

constraint iiWs*iiF ( Ms. By substituting (5. 26) in (5. 25) we get 

y = W, 
* 

qs(z) + d (5. 27) 



Based on the RBF network model described by (5. 27), we next formulate parameter 

update laws for stable identification using the Gradient Method. Based on (5. 27) we 

consider the identification model 

y = Ws ris(z) (5. 28) 

where Ws is the estimate of Ws', while y is the output of the identification model. XVe 

now define e„:= y — y, the output error, and ds:= Ws — Ws', the weight estimation 

error. Then from (5. 27) and (5. 28) we obtain the error equation 

W, 
* 

n, (r)+d — Wa ys(r) 

Ws res(x) — Ws rls(r) — W, ys(r) + Ws rls(s) + d 

43 ri (r) + Ws [rl (s) — ris(i) ] + d 

— di, ns(x) + d (5. 29) 

v here d = Ws' [tis(r) — tls(x)] + d 

Approximating [rls(r) — ys(t) ] to the first order: 

- les(*) — ys(~)I = 
I 

Let dc be an upper bound on d, 

Ildsll = IIWs II II d 
'll ]le*I] + ]ldll 

Since IIWs Ilr & Ms, e, E I~, If~a, 'll is finite (q is a Gaussian Function) and d is 

bounded by dc, therefore da is also finite. 



2. Parameter Projection 

An effective method for eliminating parameter drift and keeping the parameter esti- 

mates within some apriori bounds is to use the gradient projection method to con- 

strain the parameter estimates to lie inside a hounded convex set in the parameter 

space [22]. Consider the adaptive law: 

Ws = Pse„gs(x) (5. 30) 

Since ds 
. . —— Ws — Ws*, 

. . d's = Ws 

i. e. ds — — ~sesame(i) 

Applying the gradient projection method, we obtain 

use qs(i ) if {[[We[[+ & Ms) or {[[Ws[[r = Ms and e„Wsrls & 0) 
d[s — — Ws —— 

0 if {[[W, [[s = Ms and e„Wsx)s & 0) 

(5. 31) 

Ke choose our Lyapunov function candidate as 

2; 
whose time derivative V along (5. 31) is given by 

— e„+ e„d if{[[Ws[[F & Ms) or {[[Ws[[F = Ms and e„Wats & 0) V= (5. 32) 
0 if{[[Ws[[r = Ms and e„Wats & 0) 

V = — e + end & — e„+ ca[de 



Using completion of squares, 

C2 -e'+ ~e jdp 2" 

e2 ( 'JJ 

2 

1 — r dp — — (e — dp)(e — dp) 2 

2 
dp +— 

2 

e dp 
2 2 

V & — — "+ — iyt &0 
2 2 

' (5. 33) 

Thus we have its, Ws C L and ep, Ws q L 

A bound for e„ in m. s. s. may be obtained by integrating both sides of (5. 33) to get 

f 
t+T 

e„d2. & dp T+ 2(V(t) — V(t+ T)) 
t 

Vt & 0 and any T & 0. 
— 2 Because V E L, it follows that e„E- S(dp ). 

We have thus identified the output y of the plant. 



CHAPTER VI 

PLANT INVERSION 

We now perform a thorough study of both the theoretical and the practical imple- 

mentation aspects of operator inversion. A Control System is invertible when the 

corresponding input-output map is injective. Thus. , given an output function one 

can, in theory recover the control which was applied [6]. 

A. Nonlinear Invertibility 

We now list the conditions for the invertibility of nonlinear systems followed by a brief 

discussion of some of the terms, before we proceed to derive the nonlinear inverse 

operator. 

1. Invertibility Conditions 

The nonlinear system (5. 1) is said to be invertible at xc c M if whenever ul and u2 

are distinct admissible controls, y(-, ul, xs) g y(, u2, xs) [23]. The condition for the 

invertibility of a nonlinear system, is that the relative order of the system should be 

finite, i. e. o ( oo. Clearly, invertibility at xs is equivalent to the input-output map 

described by (5. 1) being injective. Thus, given the output y(. ) for a system which 

is invertible at xs, one can, in theory, determine the control which was applied. If a 

system is invertible at xc it is natural to look for a second system which acts as a left- 

inverse for the original system. The left-inverse system is a nonlinear system which, 

when driven by appropriate derivatives of y(, u, xc), produces u(. ) as its output. 

The important consequence of this definition is that, given a nonlinear map from u 

to y, the inverse map can be obtained by differentiating this mapping until the oth 

derivative of y is linear with respect to u. Thus the left-inverse system provides a 
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practical method for determining u( ), and has many applications. 

2. Zero Dynamics 

The Dynamics describing the "internal" behavior of the system when input and initial 

conditions have been chosen in such a way as to constrain the output to remain 

identically zero are called the zero dynamics of the system. 

The zero dynamics of a nonlinear system are the dynamics of a minimal-order 

realization of its inverse. There is no direct method for quantifying the behavior of the 

inverse dynamics. One approach to determine the stability of the inverse system is to 

analyze the unforced inverse dynamics, called the zero dynamics [7]. For example, in 

the case where the system output is constrained to a constant value (setpoint) - which 

can be assumed to be zero without loss of generality — the stability of the closed-loop 

system in which the inverse is employed as the controller is completely determined 

by the stability of these internal dynamics. 

The concept of zero dynamics allows a classification of nonlinear systems into 

minimum phase and nonrninimum phase [24]. A nonlinear system is called minimum 

phase if its zero dynamics is asymptotically stable around the origin. Otherwise, it is 

called nonminimum-phase. 

3. Relative Order 

The relative order of the nonlinear system (5. 1) is the smallest integer rr for which 

LsL& b(z) g 0 and LsL& h(z) = OVz in some neighborhood of the defined operat- 

ing point zs. 

A useful interpretation of the relative order for nonlinear systems can be obtained 



by calculating derivatives of the output: 

dh t)h dx 
y = — = — — = Lfh(i) 

dt Bx dt 

y' = Lth(r) 

da — rr 
Lf 'h, (i) 

da 
Lyh(z) + L&Ly h(x) u 

Thus for finite relative order o, the first rr — I derivatives of y, with respect to time, 

are just functions of the state vector z, while the crth derivative of y, also with respect 

to rime, is a function of the input u, i. e. the relative order o is exactly equal to the 

number of times one has to differentiate the output y(t) at time t = tc in order to 

have the value u(ts) of the input explicitly appearing. 

From the above definitions, it is clear that if no integer o exists, then the system 

is of infinite relative order. In general horvever, the (finite) relative order of a system 

is bounded by the dimension of the state space of the system [3]. This concept of 

relative order allows one to determine whether the mapping between the input and 

out, put is one to one. 

For our system with Relative Order I, 

Lsh(*) j 0 



Now, 

ah 
Lth(s) = — f(*) as 

3 191 W W 
as 

ah 
Lgh(s) = — g(s) 

r ays 
Ws — Wg rig 3 as 

Lth(s) + LgLyh(s)u 

r a7/3 r ays 
Ws Wrglr + W, Wgygu 

B. Inverting Recurrent Neural Networks 

We consider the left inverse of the nonlinear system (5. 1) that reconstructs the input 

from the plant output, its derivatives, and the state variables of the inverse (Fig. 6). 

Using the concept of relative order, Hirschorn [6] was able to construct a state- 

space realization of the process inverse. His major result is summarized in the follow- 

ing theorem: 

Theorem 4 Hirschorn Inversion Theorem: The inverse of a dynamical nonlinear 

system given by (5. 1) is as follows: 

Z = f (Z) + g(Z) u' (6 1) 

where 

~s, . — L~ h(Z) 

Lg L~~ 
' h(Z) 

(6-2) 

where u' is the input to the left inverse system, and Z is the state of the inverse. 

f(. ), g(. ) and h(. ) are the same asin the original system and L&h(Z) and LgL& 'h(Z) 



are Lze derivatives. rz is the relative order of the system. 

Thus the inverse of the recurrent neural network is the network itself. 

For cz = 1, 

~s, 
— Lgh(Z) 

Lsh(Z) 

Lsh(Z) g 0 

m Ws — Wzziz g 0 r &ps 

OX 

IWs s' Wzztz+ Ws s Wzqzu] — Ws s' W eh 

Ws ss Wzzh 
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CHAPTER VH 

SIMULATIONS 

An important bioengineering process is the fermentation of penicillin. The dynamics 

of a continuous glucose-fed system can be modeled as (25]: 

Xl = p(X2 Xl) Xl Xl D 

Xz — — — o(Xz, Xq) Xr + (Sp — S) D 

P = 7r(Xz) Xt — KP — DP 

(7. 1) 

where Xq is the cell mass concentration, P is the penicillin concentration, Sp is 

the glucose feed concentration, and D is the dilution rate of glucose added to the fer- 

menter. The parameters y, (Xz, Xq), x(Xz) and o (Xra X~) are the specific growth rate, 

specific product formation rate, and specific substrate utilization rates, respectively, 

and are given by empirical expressions: 

p(Xz, X, ) KX, +Xz 

w(X, ) 
Kp + Xz(1 + Xz/Kr ) 
1 1 

o(Xz, Xp) = — p(Xz, X, ) + — rr(Xz) + m 
Yss Yps 

The parameter K is the degradation constant of penicillin. 

The dilution rate D is the most convenient manipulated input for the system. 

The cell mass concentration Xq can be very accurately estimated on-line through OOz 

and Oz measurements and atom balances. So, X, is a natural output for the system. 

With u = D as input and y = Xr as output, the input-output relationship in a 



40 

continuous penicillin fermenter is described by: 

Xt p(Xs, X, )X, — Xt 
+ Q 

dt Xs 0'(Xs) Xy)Xy SF S 

y = Xt (7. 2) 

We now compute the Hirschorn inverse of (7. 1). Since Lvh(Xr, Xq) = — Xr g 0, 

it follows that the relative order of (7. 1) is 1. Thus, the Hirschorn inverse can be 

calculated via: 

z f ( z ) + ( z ) 
d y / d t — L f h ( Z ) 

Lsh(Z) 
dy/dt — Lf h(Z) 

Lsh(z) 

Substituting the particulars f, g, and h, we obtain the following inverse of (7. 1) 

d Zr P(zs, Zr)zq — Zr dy/dt — y(Z2 Z&)zr + 
dt 

Z2 — o(Zs, Zi)Z& SF — S — Zl 

dy/dt — p(zs, Zr)Zt 
— Zl 

(7. 3) 

We first simulate the Dynamical System using the parameters in Table I and get the 

States as in Fig. 6. We then estimate the states using Neural Networks whose weights 

are updated by Adaptive Laws as in Fig. 7. We have plotted the estimated States 

in Fig. 8, and the error between the actual and estimated states in Fig. 9. We then 

simulate the inverse of the system and fitting everything in the IMC framework and 

with a setpoint of 1. 6, we plot the diagram in Fig, 10. 
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Trajectories of Estimated States 
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Fig. 7. Estimated States 
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Comparing Actual States and their estimates 
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Fig. 8. Comparing Actual and Estimated States 
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x10 Errors in estimating States 
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Fig. 9. Error in Actual and Estimated States 



Inverse Controller with Plant and Setpolnt = 1. 6 
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Fig. 10. Output of the Resulting IMC System 



The following set of parameters were used for the simulations: 

0, = 0. 092 

K = 0. 15 

y, „= 0. 005 

Ks — — 0. 0002 

Kg — — 0. 1 

K=004 

m = 0. 014 

Sr = 0. 1 

Y„= 0. 45 

Y, s — — 0. 9 

Pp — — 0. 33 

Xr = 1. 5302 (Initial Condition) 

X2 = 0. 17459 (Initial Condition) 

Table I. Parameter Values for Simulations 



CHAPTER VIII 

COUCLIIDING REMARKS 

In this thesis, an IMC based adaptive control scheme was designed and presented 

for single-input single output, first order minimum phase nonlinear systems by using 

Neural Networks. We used Radial Basis function Neural Network Architectures for 

identifying and controlling dynamical systems v'ith unknown nonlinearities. The 

Uonlinear IMC controller consists of a model inverse controller and a robustness filter 

with a single tuning parameter. The inverse controller of the IMC strategy was 

produced using the Hirschorn inversion theory [6][24]. This is in marked contrast to 

other procedures for establishing the inverse of a neural network model [26] [27], since 

usually a separate training scheme is used. 

The principal motivation for undertaking such a study was the immense popu- 

larity of IMC in industrial applications, on one hand, coupled with the capability of 

Neural Networks to uniformly approximate continuous nonlinear functions. Although 

we have considered RBF networks, other neural network architectures like multilayer 

networks with sigmoidal type of activation functions can also be used. In view of the 

flexibility that neural networks provide in modeling poorly understood processes, the 

proposed NIMC strategy is potentially applicable to a wide class of process control 

problems. 

In addition to RBF networks, there are, of course, other representations that can 

be used for approximating static maps. Considerably more studies, both of theoretic 

and of practical nature, need to be performed before it is clear which architecture is 

best for approximating different classes of functions. The factors that influence how 

well a network is constructed, such as the number of weights and number of layers, 

are chosen for the most part by trial and error or other ad-hoc techniques. Also, 



the position of the centers and widths of the RBF networks were assumed. Further 

research is required for effectively choosing these quantities and to provide stability 

guarantees of new recurrent neural network architectures, if any. 
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