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ABSTRACT

Using Spheres 1o Improve
Motion Planning Algorithms, (April 2001}
Shawna Lyan Miller
Departent of Computer Science

Texis A& University

Fellows Advisor: Dro Naney Mo Amano
Departiment of Computer Science

Mation planming algorithims abin to solve the problem of finding a collision-free
path to move an ohject between start and goal positions in an environment.  An

envivonment consists of ohstacles thar the object st avoid. A\ useful alstraction

ix the abject’s configuration space (Caspacel. Each poiut n the Caspace represents a
mmique position and ovientation of the vbject o the environment. A valid poind is a
configuration wheve the object is not colliding with tself or an obstacte. The C-space
consists of all possible pasitions and orfentations, valid or not. Although the robot is
simuplified to a single point. the shstacles beeone very complicated in the Cospace, It
is 100 exprusive to compute e,

Prababilistic voadinap methods are one tvpe of method 10 solve motion plan
ning problems. They nse vandowization to overcome this diffienlty. The roadmap

represents collision-free paths that the objeet can navigate. The basic probabilistic

roadurap method generares nodes through wniform random sampling in the C-space.
Vartations of the probabilistic roadinap method wse different methods vo generate aud
comect roadmap nodes

Probabilistic voadmaps work well in many applications. but iy sowe situations

they can be ineflicient and unsnecessful, Onr rescarch provides an oprilization of

these algorithms using C-space spheres. Spheres. centered at cach confignration in



the roadimap. define free arens of the Cespace. The radius of a sphere is the node’s
C-spave clearance.

Intersecting spheres identity good pairs of nodes for conneetion, Sinee an edge

copnecting thie two nodes Hes entirely inside botle sphieres. It is antomatically known
ti be colliston-free. Cespace olistacles are not explicitly computed. so the C-space
clearance must be approxinated. Interseering spherves no longer identify collision-free
cdges bhut now onlv likelv edges. Verifving that the edge is valid can be postponed until
query time, In practice, most edges identified by interseering spheres are collision-free
This could dramartically reduce the tuning time of the algarithin

These spheres also aid iu expanding the roadmap. The roadimap is expanded
by generating new nodes whose spheres rersect the spheres of existing nodes. This

keeps the vumber of connected components small and gives good coverage of C-space.
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CHAPTER |

INTRODUCTION
Automartic motion planning has been an expanding arca of rescarch over the past
several vears i computer seience. Tnirs simplest forn. motion plauning deals with
liding a collision-free path to move an object between astart and a goal 11 Mihongh

this is a very simple problem for humans. computers lack the intuition nee

vy 1o

Motion planning has manv applications in roboties

solve these problems casily
computer anituation. computer-aided design. virtual veality systems. and computa-
tional bivlogy.

A complete motion planning algorithm exists that is guaranteed 1o find a collision-
{ree path provided there is one. but it is computativually expensive and impractical
for even the simplest applications 11 Many other algorithgs have been developed
that are guaranteed to be fast but ave not guaranteed to find a pathi. The goa) of
current vesearch is to find an algorithnr that provides a good balance betwoeen speed
and completeness.

There are several different classes of motion planning algorithms. One class of

algorithins in particalar. the Probabilistic Readmap Method aud irs vartations, uses

randomization to build a voadisp for the vobot "3, 131 Onee the roadmap is built. it
can be nsed to find paths for multiple queries (pairs of start and goal confignrations).
Anotlir advantage of these methods is thar they ave weneral. They can be applied to

any ype ol robot and to awy covironment. These two chavacteristios make this class

of wlgorithios very artracrive,

The journal moded s IEEE Trausactions on Auromatic Control.



CHAPTER 1T

PREVIOUS WORK
As the robot's degrees of frecdom [dof  inerease and the robot heconies more complex.
s does the motion planning problent. A useful abstraction is the robot’s configuration
space (C-space) (6] whose dimension equals the robot’s number of dol. A configuration
consists of the robot’s position and orienration in the envivomuent and any othe

pataneters required to completely deseribe the tobor. For example. the configuration

of wsinple poine robot i three-dinensional space Tas divee dingensions: s {is position

aong 1he X=axis. veaxts, and zaxis. The conbgnrarton of a robor with volime hias s
dimensions: its position along the x-axis, v-axis. and z-axis and its rotation about

. Tor an articulated robot the dimension icreases further. For example. a

cach

is.

robut with 4 links has a 9-dimensional configuration: the position along the
veaxts. and z-axis. the rotation about each axis tor the base link. and three joint
angles for the remaining three links. Clearly, as the robot hecomes wore complex. it
TeqUINes IOIe parameters.

A configuration is considered collision-free or valid if the robot is not in-collision
with itself or any orher abstacle i the enviromment. Otherwise. the configuration is
considered invalid. The Cospace consists of all possible confisurations. vidid o not

Cospace abstracts the vobut down 1o o single point but transforins the obstacies
into very complicated objects in Cospace The C-obstaclis are so complex that it
wonld be computationally expensive and impractical to compute then. This. cou-
pled withe the high-dimensionality of Cospace. makes a complete solution to the mo-
tion planning problem slow and impractical. Many solutions use randomization o

avercatue this difficulry.



A Probabilistic Ruadmap Method 1 PRA

Soe of the most promising algorithms use randon sampling to generate a roadmap
i Cospace. Probabilistic Roadmap Methods (PRAL) were developed independently
v Kavraki and Latombe ar Stanford University and Overmars and Svestka at Utrechr
UCniversity fu the Netherlands 3040 50 The roadmap is a graph in the free regions
of the Cospace. Each node in the graph correspunds 1o a valid configuration of the
robot in the workspace. Each edge conuecting two nodes represents a collision-free
parh between the two nodes

reated. the motion planning problent decomposes into a

Onve a roadmap is ¢

simpler one of connecting the start and the goal configurations to the roadnap and
searching the roadmap for a path between thenn As ong as they are both conneeted
by edges to the smme conuected commponent of the roadmap. a path can easily be
found. If they are not. the algorithun fails 1o find a path.

PR ave huilt in two phases: node generation and connection. The basic PRM
algorithm generates nodes unitormly at vandom in C-space. Edges are connected by

sisedded

chiecking the node’s £ closest neighbors. If there exises aovalid parh, the e

16 the roadmap.

The basic PRM wlgorithin provides a uniform distribution of nodes quickly. but

s, Because nodes are randomly generated,

it struggles o find nodes i narrow passag
the probabilite that PR will generate nodes i narrow passages 1s small. PRMs ave
good at finding paths very quickly. but tend to fall whew the path st pass throngh

a HAITUW Dassage.



B. Obstacle-Based Probabilistic Roadmap Method (OBPRAL

I order to overcome this weakness of PRAS. Obstacle-Based Probabilistic Roadmap
Method {OBPRAD. developed by Amato and others at Texas A& University (7 8]
generates nodes around the surface of obstacles. The resulting roadnap is densest
where narrow corridors typieally lieo see Figure 1. The key to rhe success of this
method s a good distribution of nodes around cach obstacle in C-space. Sinee the C-
obstacles are never explicitly compnted. this i3 impossible 1o guarantee and diffienlt
to achieve. Despite this shorteoning, OBPR performs surprisinglv well and can

solve many diffienlt problems with narrow passages.

Fig. 1. OBPRAM generates nodes near the C-obstacle surfaces ta obtain nodes in narrow

passages.

¢ Medial Axis Probabilistie Roadmap Method (MAPRAS

Another vaviation propused Ly Wilnwrth, Mnato and Stiller at Texas ACM Uni-
versity also biases node generation. Medial Axis Probabilistic: Roadmap Merhod

[MAPRM) 9. 10) randomly generates configurations and pushes them onto the me-



cial axis al rhe fee Cospaces see Fignee 20 A conligiration has maxima cleacance
when the distances to the clusest 2 (or morer Coobstacles ave equal. The medial axis

the set of all such configurations, By pushing thens onto the medial a roaduiap

nodes lie along the center of passages. The key strength of this method is that it uses
every configurition genevated. free amd m-collision. Free nodes are pushed direetiy
o the medial axis. In-collision nodes are first pushed ont of the C-obstacle towards
the neavest free space boundary and then pushed ro the medial axis. MAPRM gen-
erates nodes in narrow passages with « higher probability than random sampling
The weakpess of this method is that it does not guarantee the connectivity of the

voiudniap. Like the basic £RM it atienps 1o conueet cach node with nearby ones

Fig. 2. MAPRAM generates nodes on the medial axis ol the free space to bias the

sampling towards narrow passages



Do Luwy PRM

Maost of the titne spent in building a voadmap is consumed in the connection phase,

In fact. the connection phase can take up to 98% of the total runuing time [
The motivation of Lazy PRM 111 s to reduce the thne spent in the connection phase
and thereby iucrease the efficiency of the algorithm. Like PRA nodes are generated
nuilormly ot randonn. Lazy PR then assumes that all nodes and all possible edges
are valid and adds them to the soadmap. Sinee the nodes and edges are not checked
for collision. the running time dramaticaliv drops. In the query phase. the start and
goal vonfignraiions are connected to the roadmap. and a shortest path is extracted.
Lach node and edge iu the path is then checked for collision. 1f a node or edge is
found invalid tor in-collision?. it is thrown away and a new shortest path is extracted.
This process repeats undl either a collision-free path s found. or the stact and goal
configurations are no longer conuected throngh the roadmap

A similar approach. Fuzzy PRM. was independently proposed by Niclsen and
Ravraki {12, [t only sdds valid nodes to the roadmap and adds all possible cdges.
Tnstead of initially assnming all edges ave collision-free. as Lazy PRM, Fuzzy PRA
assighs cach edge woweight, This weight corresponds to the probabilive that the edge is
collision-free. The probability is based on the distance between the twe confignrations
During the query phase. the path with the highest probability (instead of the shorrest
path) is extracted. Each edge along that patl is placed in a priority queue. The edge
with the lowest prohability is checked at a slightlv higher resolution. 1 the edge is
found to be in-collision. 1t s thrown away and « new patl is extracted. 1t the edge
iy uot found to be in-collision. it is inserted back nto the priorite guene with aonew
ihigher) probability. This process repeats until a valid path is found. or the start and

goal are no longer conunected through the roadmap.



E.  Customizable PRAM (C-PRAM)

Customizable PRM (C-PRM) builds & coarse roadniap by only partially checking the
edges 137 Like Lazy PRAL and Fuzzg PRAL it postpones complete edge validation

nntil the query phase. The advantage of onr wiethod over Lezy PRM and Fuzzy PRAM

is that the roadmap is more vepresentarive of the trine roadmap. sinee it partially vali-
dates edges dnriug the construetion phase. This even holds tme for coarse validations
like simply checking the midpoint.

The main contribution of vur method is the roadmap can be customized for
multiple requivements fconstraints. These constraiuts include maintainivg a specilied

clearance, minimizing the rotation about a certain axis. or restricting the number of

sharp turns. Other constraints specific to the application can be added to the basic
framework easily. Our approach produces efficient results in a wide range of problems.
Because the patlt can be restricted to meet certain constraints. C-PRA makes PRM

a move feasible solution v practical applications.



CHAPTER HI

BASIC ALGORITHN
The hasic PR has difficulry finding a solution when the path must pass through
a narrow passage. Variations like OBPRA and MAPRAM (ind maore nodes in narrow
passages. but the roadmap may comntain many connected components. Our algo-
rithii attelmpts t use the strength of OBPRM and MAPRM to find kev nodes while
maintaining the connectivity of the roadmap. The algorithm generates several seed
nodes, cither by OBPRAM or MAPRM. and “grows” the nodes into a roadmap. As the
roadmap grows. the validity of the edges is approximared by C-space spheres. This
algorithm applies the C-PRAM philosophy by postponing couplete edge validation un-
til the query phase. The user mav alse impose corfain reguitemenis/constraints on

the solution path as implemented by (-PRAM.

A C-Space Spheres

Fach configuration bas a clearance i the Cospace. the distance to the closest (-
obatacle. This elearance. oo defines a spheres withh radius oo centered at the given
confignration. sce Figure 3. Because the radius is the minimum distance to anv C-
obstacle. everything inside the sphere is automatically known to be collision-free. The
sphere can be thought of as a bubble of free configurations in the C-space. When
two spheres intersect. w straight line connecting their conters is entirely cantained
inside the union of borh spheres. Thus, C-space spheves provide for automatic sode
connection: If thie spheres intersect. a straight-line edge between the two centers is
known 1o be collision-free and can be added to the roadmap withont checking each
point alonyg the edge for collision. see Figure 4.

Because obstacles in the C-space ave complicated and expensive to compure, a



Fig. 3. A Cespace sphere is centered at the node with radius ¢ where ¢ is the node’s

C-spact clearance.

o

Figo 1 When two Cespace spheres ntersect. a straight line edge between them is aun-

-
/

tomatically known to be collisivn-free.




configuration’s exact clearance cannot be easily determined. Although caleulating the
actual clearance is time consuming and impractical. approximating the clearance is
not. This approximate clearance can still be used to define C-space spheres. Instead
of intersecting spheres indentifing automatic connections. they identify “good™ can-
didares for connection. This way, only those pairs of configurations that have a good
prohability of being conmected are atrempred. This veduces the nnmber of calls to the
collision detection package by weeding out unlikely pairs. This is similar in approach

to Lazy PRA and Fu PRA except approximating edge validiry is different.

To approximate the actual C-space clearance. we compute the C-space clear-

The smallest elearance is then assuned

ance ju A random directions. see Figure
to be the actual C-space clearance. Althongh the clearance is only an approxina-
tion. experiments show that it is a good one. In particular, we have found accurate

approximations using as few as 3 or 3 directions.

B. Roadmap Expansion

One concern of most PRAS 35 conmectivite. The roadmap must represent the con-
nectivity of the C-space for the algorithm to perform well. To maintain conuectivity
in the roadmap. the existing roadmap is expanded or grown out into the C-space. In
order to keep the roadmap from becoming oo dense. only new nodes, or nodes that

liave not been expanded yet. are expanded

'Luzy PRA does not approximate edge validity and initally assuwmes all edges wo
be collision-free. Fuzzy PRM approximates edge validity through probabilities,




Fig. 5. To approximate the C-space clearance. several ravs are chosen at random.
Then. the clearance along each ray is computed. The swallest clearance is

wken to be the approximarte C-space clearance of the node,
To expand a node. first a direction i3 selected. This may he done in several
different ways:
® Scleet a direction at random.
o Sclect a direction away from the nearest C-obstacle
e Compute the average direction of the /i closest neighbors and seleet a divection
opposite 1o it

Then o new uode s placed on the surtace of the Cospace sphere o the selected

divection. This new node is pushed ourwards in one of two ways:
e The simplest method pushes the new node outwards along the generated diree-
tion until just before the spheres are no longer intersecting.
e The second method pushies the node to the medial axis
Thus. the new nodes have maxinmn clearance and are more likelv to intersect othe

spheres.



Pushing the new nodes ourward allows for maxinuun coverage of the C-space
while maintaining connectivity.  For each node. several new nodes mayv be pushed
outward. This process is repeated several times until the roadmap adeqately fills

the free Cospace. see Figure 6,

RV

Fig. 6. The seed nodes are shown in black. Afrer the first level of expansion. the gray

nodes are added to the roadmap. After the second level of expansion. the
white nodes are added 1o the roadmap. s the roadmap expauds. it fills the

free reglons of the C-space.



CHAPTER IV

EXPLERINENTAL RESULTS
We will study several representative environments, We will then use the results from

these cuvirontenrs to show proof of coucept.

AL Sandwich Environmenm

The first environment consists ol two parallel plates. and rhe vobot is a small cube
{Fignre 7). The goal is ta move the robot out from inbetween the two plates. This is

asimple environment becanse it is not cluttered and the robot is a simple rigid body.

e

Fig. 7.

We ran our algorithm starting with 20 seed nodes. The roadmap went rhrough
3 levels of expanston, and during cach level we expanded each new node twice, In
all onr experiments. we chose o expand the node in the opposite divection of the
nearest C-obstacle. Preluninary testing showed that a purelv randoni divection was
ineffective. We have not vet implemented pickiug a direction away from the & closest

neighbors,



We expanded the roadmap with two pushing methods: straight-line {Line) and
medial axis (MA). We also used two different values for n. the number of directions
to check when approxinating the C-space clearauce. namely 3 and 7. In previous
testing. we fouud that n < 3 produced maccurate approximations and > 10 was

inethcient. Finallv, we implenented the algorithng i vwo ditferent ways:
o Validate all edges before adding them to the roadmap (like most 27247 methods)

o Postpone complete edge validation until the query phase (like Lazy PRM. Fuzzy

PRAM. and C-PRAM).

The vesules ave given in Table L

Table I. Sandwich Environment Results

‘ Seed | Pushing | ‘Check‘ Runnmg Solved
! Nodes Method n . Edges ' Nodes Edgcs‘CCs Time(sec) Quely

20 0 NMA 3 Y 110 120 2 288 | Y
| \ !

T n MA 3 y o " T Y
A A Ty 156 ) Vo
0 A TN T o T v

20 Line T3 Y T I8 [ 189 Y
X Line 3 X 130 | 1 ‘ Y
7 Y

20 . Line Y o200 [ 230 [ 63 T
[ 20 7 T [7] N |20 ¢ 230 : b4 Y

B, House Environment

This environment consists of a house and a table (Figure 8). The goal is to move
the table from outside the house to inside one of the rooms. This cnvironment is still
uncluttered. but now the robot (table) must fit through a smaller passage.

Tesring was done similarly to Section A above, This time we started the roadmap

with 30 seed nodes fustead of 20, The results are given below in ‘Fable 11




Fig. 8.

Table 11 House Environment Results .
"Sced  Pushing Check I ] Running | Solved
Node< Methed | n ‘ Edges i Nodes Edges CC's Tll)le 5(.‘(,) Qucrx :

TMA [u] | 6473 30 B Iy
IR RE 502 | 01, 2 ] 5791 o1 | N |
; Jo MA— T Y 610 739 5T LTl N
[ 50 MA T 739 5 87.64 N
5 [ Line [3 692 11 2209 Y
Line |3 > 707 6 2152 | N
k. : L
50 [ TLine 7 Y ’M,QI g 50.09 ‘ N j
5 Lize” ¢ N G R T

C. City Enviromment

The city environnient' consists of several buildings. and the 1obot is a helicopter
(Figure 9j. This environment is more cluttered than the previons twa. and the robot
is slightv more complivated. These two factors led to the Tonger numing, dues. The

results ae given in Table T

IThis envivonment was provided by LAAS-CNRS in Toulouse, France.
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la (h)

ble I11 (m Environment Results o
Seed | Pushing Check | I I I " Running | Solved |
Nudes I\Iethod , Edges  Nodes | Edges | CC’s | Time(sec) [gucrv |

Line

Line
Line




CHAPTER V

ANALYSIS

In this section we analvze and interpret the experimental resnits decribed in Chap-

ter 1V and some additional experiments decribed bere to study particnlar

Ao Nude Generation Methods

f aur algorithm, the seed nodes can be generated by many different merhods. The
node generation wmethod greatly effects the quality of the resulting roadmap. Consider
the house envivonment. As before. we want 1o move the table from outside the honse
to side one of the rooms. We ran the algorithm several different vimes. Bach time,
we began the roadmap with 50 seed nodes genevared by PRM QBPRM. or MAPRM.
Table IV clearly shows that roadmap guality heavily depends npon the quality of the
seed nodes.

Given the same initial pavameters (ie.. same number of seed nodes, pnshing
wethudd PR aud MAPRM were able to solve the query. but OBPRM was not
Sinee GBPRM geucrates nodes close 1o the surfaces of C-obstacles, the corvespading
spheres will be very small. The roadinap was not able to expand out into the C-space
very far. Since it poorly represented the eonnectivity of the Cespace. it was unable
solve the query

Although both PRAL and MAPRM were suceessful. the quality of the roadnap
built by MAPRM seed nodes 1s berter, Firse, YA PR found wore edges than PRAL
1 also did this in a shorter smmount of thne. Since the seed nodes le ou the medial axis,
thielr clearances {and spheres) are larger. This allows MAPRA to expand farther into

the Cespace faster than PR, Clearly. MAPRM is the best choice for most situations,



Table IV, Comparison of Node Generation Methods

"Generation | Pushing | T T . Running | Solved !
! Method | Method | Nodes | Edges | CC's | |
PRM T MA 505 1 G T
"‘PF\/“\"L;I',%,""T'M?T*T*
TTOBPRM 1 MA | 56 [ 9 ]
TTOBPEM | Lime | 530 [ 545 | 27 ]
TUMAPRM ] 5 IR
= | 603 | 11 1

13 Pushingz Methods

Ditlerent pushing methods also effect the roadmap. 1o all owr experiments, we used
two pushing methods: straight-line (Line) and medial axis (MA). Straight-line is a
more naive approach: it is guick to compute but not very intelligent. Medial axis,
on the other hand. s more mtethgent. but slower to compure. The effeets of these
methods can be seen in Tables I 1L aud 1L given previonsly i Chapter IV,

We would expect the MA push 1o be better since the nodes will lie ou the medial
axis, However, the new splieres may not connect to the seed sphere any longer. Our
results are inclonclusive at this point but we believe the MA push shonld perform

berter if used properly. We will invesrigate this in furure work.

C. Appreximate Edge Validation

Postponing complete edge validation until the query phase teunds to juerease the
number of edges, decrease the number of connected components, and reduce the time
to build w roadmap (see Chapter IV, Tables L IL and ). The speed-up between
the two technignes was not as much as initially expected. Further investigation

showed that the buttleneck of the algorithm s in computing the approximate (-
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space clemranve. This i computed many times when building the voadmap {more
than any other function). therefore it dominates the nming time, By optimizing
this function. the running time for the algorithm would dramatically decrease. This
will be a focus of future research.

We alxo applied the C-PRM approach 1o the ity environment (Section ). \We
constrained the helloprer's rotation about the o and ¢ axes 1o produce a more realistic
pitth, We allowed amaxinm tilt of 907 from horizontal. We applied this approach
1o several different PRM algorithms: PRM. MAPRM. and our algorithm. OBPRM

could not build a successful roadimap. The results ave shown in Table V.

‘ } | T Running [Solved |
 Algorithm | Nodes | Edges ( CC’s | Time(scc) | Query
Spheres | 1567 T 324 |2 T 88792 1Y
CPRM 8000 4954 (46 | 312077 | N |
TTAAPRMTTIST0 T A835 W | 376cl | N

Table V. Finding Constrained Patlis
SRS Sl o

Our algorithm was the onlv one that could solve the query. PRM and WA PRM
were [ivst rune with 5000 nodes. We doubled the unmber of nodes and allowed them to
run overnight. Both algorithms comld not finish building a roadmap in this amount
of time. Given enough time. they could finish building the roadmap and possibly
solve the query. but these results would clearly be inefficient awd impractical. Our
algorithm was the onfv one that conld find a successful path i a rensonable amount
of time. Also note. that the same roadmap that our algorithin generated was able ro
solve nwiltiple queries in a coustrained situation.

Figures 10 and 11 show snapshots from the paths found by our algorithm. The
uncenstrained path (Figure 101 required the heliocoprer w iy upside-dowi, very

unrealistic. The constrained path (Figure 11 prodieed mueh more realisitie vesults



() Le) f)
Fig. 10. Snapshots of rhe path found for the helicopter flving in the c¢ity environment
when its orientation was not resuricted. In {h) and {d). the helicopter’s tilt is

greater than 907,

1y (el ()

Fig. 110 Snapshots of the path found for the helicopter fiving i the ciiy enviromnem
when its orientation was vestricted. fuall cases. the helicpoter’s il is less
than 90°.



. Spheres vs. Other PRM Algorithms

Again, we used the hause environment 1o compare onr algorithm with ather PRJ
For cach algorithni, we built the smallest roadmap possible that would still solve the
queryt. The results are given in Table VL

CTable VT Algorithm Comparison on House Enivironment
' Method | Nodes  Edges | CC’s  Running Time(sec) !

TTPRM T o 596 1 17.32
TOBPRM T 592 308

l l
! I
(MAPRM T 20 ) 18
i_Spheres F 26

PRAM vequired the largest roadmap at 700 nodes. This is because random sain-
pling is not biased wowards narrow passages like the other algorithms. OBPRM ve-
quired a snialler roadmap. 522 nodes. but threw away 978 nodes to generate them,
Our algorithin was able to solve the query using 28 nodes. MAPRI required only 28

wides to sobve the guers. Te also built the roadsag i the shovtest amonit of thue

FThe guery i the sauie as before: move the table from outside the house o inside

oue of the rooms.
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CHAPTER VI

CONCLUSIONS

We designed aud tmplemented a new method for building probabilistic readmaps. It

is based on spheres approximaring the clearance in C-space. 1t uses pace spheres
to approximate edge validation and expand the roadmap.

Tarerseeting spheres identify “good™ candidates for edge commection. and they are
added to the roadmap as approximaie edges, Then uew spheres are generated pear

carrent spheres aud pushed ontward. Thus, the roadmap expands out into C-space

while mmaiutaining connectiviey,

A Smomary of Results

Owr solution is general and van be applied to many sttuations. The method ieself s
also general. Seed nodes are created by many different node generation techunigues
(PRM. OBPRM, MAPRML e1e.). As new generation techuiques are developed they
can be castly added 1o our basic framework. Different pushing methods {like straight
line and medial axis) can also be pasily added to improve roadmap guality.
Experimental vesults show our altorithm's poremiial. There are some eases.
specifically finding constrained paths. where ave algorithm sutperforms existing algo-
rithus, Our algorithm was able o find solution paths when other algovithms failed

o do $6 I a reasanable amount of time.

B Future Work

One weakness of our algorith s speed. In arder 1o reduce the running times. we

woutld like ro further oprimize the approximate C-space clearance computation. Sinee



this computation dominates the running time, speeding 1t up would greatly improve
the algorithm’s total speed.

As mentioned in Chapter [0 Seetion B. only two expansion directions are car-
vently implemented: selecting a randons direction and selecting a divection oppusite
of the nearest C-ubstacle. We wonld Jike 1o tnuplenient the thivd option. selecting a
divection away from the nearest neighbors. This would keep the roadmap from be-
coming dense and enconrage the roadmap to expand ontward into unexplored regions

of the Cespace.
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