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ABSTRACT 

Chaos in a Rotor System Supported by Ball Bearings. 

(April 2001) 

James Robert Fisher 
Department of Mechanical Engineering 

Texas A&M University 

Fellows Advisor: Dr. Sherif Noah 
Department of Mechanical Engineering 

Nonlinearities in a system are often thought of as 

unimportant and negligible. It is only recently that many 

of the impacts of nonlinearities in a system are being 

fully realized. One of these impacts is chaos. Chaos is a 

bounded steady state behavior that appears to be random, 

yet has some sort of order associated with it. Much work 

has been carr. ied out in observing chaos analytically, 

however there is little experimental work in existence. In 

addition, there has been little work applied to observing 

chaos in rotor systems. Further, there has been little 
work carried out in the area of chaos control, of which 

only a small portion has been applied to rotor systems. 



Originally, the goal of the research described in this 

paper was to control the chaotic response observed 

previously in a rotor system by Ortiz (Ortiz 2000I. 

However, it soon became clear that the chaotic response was 

not as strong as previously believed, and may have been 

attributed to extraneous conditions. The goal then became 

to exploit other nonlinearities to observe a chaotic 

response. 

This work was successful. The same rotor system used 

by Ortiz in his research was used again for this research. 

Chaos was observed by examining the case where the bearings 

supporting the rotor vibrate in their mounts. By loading 

the rotor and examining its response at various speeds, it 
was discovered that a chaotic response was observed. As 

the rotor speed increases, the response alternates between 

"chatter" and chaotic behavior. A control was also 

attempted using an attempt of Occasional Proportional 

Feedback as described by Barr, Myneni, Corron, and Pethel, 

but work was unsuccessful. 
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INTRODUCTION 

Chaotic behavior is usually thought of as something 

that is far-fetched and rarely observed in any real or 

useful system. It is only recently that Engineering 

Science is beginning to take the effects of nonlinearities 

and chaos seriously. The fact remains that chaotic 

behavior is something that can be observed in many of the 

systems that we consider very stable and linear. Sometimes 

this behavior is fortunately negligible, but other times, 

this behavior can result in a crisis in the system in which 

ultimately failure and injury can ensue. Specifically, 

this is the case in rotordynamics. A simple ball-bearing 

supported shaft in rotation can experience chaotic behavior 

due to many factors that are often neglected or considered 

unimportant. Two major factors which contribute to chaotic 

behavior during normal operation of the rotor are the 

internal clearances in the ball bearings and the ball 

contact stresses. The ball bearings have small clearances 

between their contact with the shaft and the outer casing. 

This thesis follows the style and format of the 
JOurna1 of Vibrati on and Contro1. 



This means that not every ball is in contact with the shaft 

at once. This causes the balls to vibrate in the bearing 

and in turn perturb the system. These perturbations can 

lead to bifurcations and chaos. Additionally, the contact 

stresses on the balls (Hertz) are extremely nonlinear. 

This in turn can result in an exhibition of chaotic 

behavior in the rotor. In this paper, another cause for 

nonlinearity is examined. Many times in operation, the 

outer casing of a bearing will deform due to vibration and 

wear. As time goes on, the entire bearing begins to 

vibrate when the rotor is in operation. This vibration is 

very nonlinear because there are many contact points. This 

vibration of the bearing is expected to result in chaotic 

behavior in the rotor at various speeds. 



OB JECTIVE 

There were two main objectives to this research in the 

beginning. The first objective was to reproduce and prove 

results found previously in this system by Ortiz (Ortiz 

2000). The second major objective of this research is to 

further implement a fast chaos control method as described 

by Barr, Nyneni, Corron, and Pethel (Bar 1999). However, 

the results previously obtained were unable to be clarified 

as being as chaotic as was originally believed. In 

addition, this meant that the control met. hod would be 

useless. Therefore, the new objective of the research 

became creating a more definitive chaotic response in the 

system. 



EXPERIMENTAL SETUP 

The system previously used by Steven Ortiz (Ortiz 

2000) was again used in an attempt to build off of his 

results. The rotor assembly used to do the testing is a 

Bently Nevada system as shown below in Figure l. 

Proximity Probes 
Flexible 

Connector and 
Notch Channel 

Bearing mount Bearing mount DC tytot 

Figure 1: Rotor Setup for Experiment 

This consists of a shaft mounted between two ball bearings 

as shown below. The shaft is turned using a DC motor. The 

shaft is mounted flexibly to the motor. This means that 

the effects seen by the proximity probes (which will be 

explained later) are due only to the shaft' s vibration in 

the bearings and not due to any type of mounting problem 

between the shaft and the motor. It also means that the 



motor has only a very small longitudinal force transfer to 

the shaft and that the only reaction transferred is the 

torque reaction between the rotating motor and the shaft. 

As mentioned previously, proximity probes are used to 

measure the displacement of the shaft in the ball bearings. 

These probes operate on an eddy current principle. These 

probes are attached to a Proximitor which demodulates the 

signal. The ProximitorOR produces a negative output voltage 

that is proportional to the distance of an object from the 

probe. As the object gets closer to the probe, the voltage 

tends toward zero, and as the object moves away from the 

probe, the voltage goes toward infinity. The positioning 

of the probes can be seen in Figure l. 
These voltages were read digitally using a computer 

equipped with an Analog/Digital Card. MATLAB Simulink was 

used to interface with the data acquisition card and obtain 

the data. A Simulink model was compiled containing the 

data acquisition cards and the sample rates. Additionally, 

this model was used to make Poincare maps and a controller 

to control the ensuing chaos as well. The controller will 

be discussed in more detail later in the report. The 

Simulink model is shown below: 
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Figure 2: Simulink Model for Data Acquisition 

This model was then compiled using MATLAB' s Real Time 

Workshop. This creates and executes a program to interface 

with the card and collect data that runs exterior to 

MATLAB. To be able to collect this data and save it for 

later use, a program called dSpace is used. This program 

links into the C-code being executed in the system and 

compiles a trace file of the data, or a recording of the 

voltages from the analog input channels of the A/D card. 

Each trace of the data can be saved in a separate file for 

processing. For this experiment, three voltages were 

recorded. The displacement of the rotor in the x- 

direction, the displacement of the rotor in the y- 



direction, and a "notch" channel. The notch channel is 

used to determine the velocity of the rotor. The rotor 

setup has a closed loop velocity control, however, the 

rotor does not give any external information about its 

velocity. A knob on the speed control is used to select a 

velocity and this velocity is matched using the control 

system. However, the velocity cannot be known exactly just 

by looking at the knob setting. To know the velocity of 

the rotor, the "notch" channel is used. On the motor, 

there is a disc with a notch cut into it. A probe is 

placed in position to measure the distance from the disk to 

itself. When the notch is encountered, the probe has a 

voltage difference across it of well under -10 V. Since 

the A/D card used only measures -10/10 V, this shows up as 

-10 V. The number of times the notch channel is passed can 

be divided by the time it takes for the revolutions to get 

the rotational speed of the rotor. This is how the speed 

of the rotor is determined. This means that the sample 

rate needs to be fairly high to be able to make sure that 

the occurrence of a notch in the "notch" channel is 

recorded. For this experiment, the sample rate used was 4 

kHz. This means that even at the rotor's maximum speed 



(12000 rpm or 200 Hz), 20 samples per revolution can be 

recorded. 



TESTING FOR CHAOS 

At the onset of the research there were two main 

goals. The first was to reproduce previous results and the 

second was to control ensuing chaos. This section of the 

report describes the methodology employed in testing for 

chaos. Testing a signal for chaos is by no means an exact 

science. There are many factors that go into understand 

whether or not a signal is chaotic and there is no fool- 

proof method for knowing exactly whether a signal is 

chaotic or not. The main characteristic of chaos to look 

for is a broadband frequency spectrum. A chaotic signal is 

made up of many different unstable orbits of many different 

frequencies superimposed onto one another. This means that 

the signal will exhibit a broadband frequency 

characteristic when the signal is examined in the frequency 

domain. To look at this characteristic, the 2'ourier 

Transform is used. The formulation for a Fourier Transform 

is made up of a summation of t. he frequency terms found in 

the signal. This summation is given below: 
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Usually a Radix-2 algorithm is employed to make the 

process of finding each of these terms very quick. To know 

which frequencies are dominant, we simply examine the 

magnitude of the X(e) term at each frequency. A broadband 

frequency has many values of X(ro) which are high in 

comparison to the dominant frequencies. Examples of this 

can be found in the results section. 

In addition, to determine whether a signal is chaotic 

or not, it is important to look at the signal itself and 

examine its attributes. A chaotic signal will start with 

one orbit, and then suddenly change into another one. 

After "jumping" from orbit to orbit, it will later come 

back and nearly repeat itself. One way to confirm that a 

signal is chaotic is to look for places in a candidate 

signal where the signal nearly repeats. In other words, 

you are testing the ergocity of the signal. 

Poincare maps are also used to look for chaotic 

attractor. The data is plotted at once per cycle for the 

slowest revolution present in the system. If the system is 

behaving periodically, there will be one point on the map. 

If the system is behaving quasiperiodically, there will be 

some sort of structure, such as a ring. Einally, if chaos 
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is present, there will be structure present, but there will 

be no repetition. This can demonstrate the structure of a 

chaotic attract. or. 

Phase portraits are also used. In this system, x 

versus y is plotted. For an equilibrium point solution, 

the phase portrait will show one point. For a periodic 

solution, there will be a ring. For a quasiperiodic 

solution, there will be some sort of complex structure that 

results in a closed loop of some sort. F' or chaos, there 

will be a bounded result that never repeats exactly. You 

will end up with an infinite amount of lines that seem to 

follow some sort of quasiperiodic pattern. 

Finally, another method employed is a method de~eloped 

by Yang, Suh, and Chan, which is in the process of being 

published. This method employs the use of wavelets to 

approximate a signal. The energy of each waveform is then 

found using the wavelet approximation. 13y examining the 

energy path a, . d following the energy for each cycle, 

another means of detecting chaos is found. 
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RESULTS 

The original intent of this paper was to reproduce the 

previous results found by Ortiz (Ortiz 2000). This however 

proved to be a major complication. The tests were 

performed in the same manner as those done previously on 

the same rotor system, and data was collected at the same 

parameter values for the system, Chaos was previously 

reported as being obtained at a rotor speed of 6710 rpm. 

The system was tested at similar rotational speeds and 

similar results to those previously found were recorded. 

However, further testing and examination of this data shows 

that it is very doubtful that the data was in fact chaotic. 

Figure 3 below shows the signal value versus time as well 

as a frequency spectrum of the signal obtained by computing 

a Fast Fourier Transform. 
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Figure 3: Signal and Frequency Spectrum at 6792 rpm 

Additionally, it was found that a large amount of the 

signal characteristics were in place because of outside 

influences. In other words, some of the signal transitions 

that were shown in the previously mentioned paper were not 

in fact due to the rotor system, but due to other things in 

the experimental area vibrating with the system. To 

alleviate this, the large masses were placed on the rotor 

assembly and the rotor was mounted on rubber blocks to keep 

vibrations from the outer elements from affecting the 

rotor. 



The discovery that the previous response was not in 

fact as chaotic as previously thought meant that the rotor 

had to be tested in other ways to find a chaotic response. 

Different nonlinearities were examined, including puttinq 

mass on the rotor and an imbalance on the rotor. Adding 

imbalance to the rotor would lead to chaotic behavior, 

however, with the equipment and its sensitivity, a speed to 

where this was possible could not be reached without 

damaging the system. Finally, the nonlinearity associated 

with the bearings rattling was examined. Nhen a fast 

enough speed is reached, the bearing casing begins to 

vibrate inside the bearing mount. This vibration is 

strongly nonlinear, and under the right conditions, can be 

chaotic. F' or an unloaded rotor, this takes place at very 

high speeds, which are close to the maximum velocity of the 

rotor, so it is difficult to study this behavior 

completely. Because of this, the rotor was loaded with a 

mass. This caused the bearings to vibrate freely after 

only about. 4000 rpm as opposed to 11000. 

Nith the bearings vibrating there were two main types 

of responses observed, chaos and chatter. Chatter occurs 

when the system has several dominant frequencies at which 

it is vibrating. During this behavior, there are several 
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definite single frequency noises that can be heard while 

the rotor is turning. In addition, a look at the 

frequency spectrum reveals that this is the case as well. 

Finally, observation of the response reveals that there is 

a definite periodic nature to the signal that is repeated 

throughout it. 
In this system, chatter and chaos are intermittent. 

When the bearing first begins to rattle free at about 4000 

rpm, the signal is chatter. Then, as speed increases to 

about 7500 rpm, the signal turns chaotic. Additionally, at 

about 8500 rpm, the signal goes back to chatter, and again 

as speed is increased, back to chaos. Eventually, the ball 

bearing vibration ceases as speeds of over about 11000 rpm 

are reached. Shown here are some of the results obtained 

from 4000 to 7500 rpm. 
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Figure 5: Response and Fourier Spectra at 7213 rpm 

As demonstrated in these plots, there are several 

large frequency spikes in the frequency spectrum. This is 

a strong indicator that these responses are in fact 

chatter. This is especially true with the response at 7213 

rpm. As in the paper by Ortiz, Poincare maps were 

indeterminate. The maps revealed no real attractors or 

characteristics of the signal. Additionally, the phase 

space plots are indeterminate as well. These plots 



18 

revealed the periodic or quasiperiodic nature of the 

solutions, but no real structure that could shed light onto 

whether or not the signal was chaotic. The probes used in 

this experiment are fairly noisy, so it is difficult to use 

the phase portraits to determine any specific orbits. This 

also created problems in attempting to control any chaotic 

response, which will be discussed in more detail later. 

Some example phase portraits are shown below: 
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Figure 6: Phase portrait at 6792 rpm (non chaotic) 
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Pigure 7: Phase portrait at 8145 rpm (chaotic response) 

The other type of behavior observed in this range is 

the chaotic response. This response differs from the 

chatter response in that while there are a large number of 

frequencies present in the signal, only one or so dominate. 

The result is a broad band of low magnitude E'ourier 

coefficients with maybe one or two peaks. Additionally, 

upon examining the signal, it is clear that the signal 

repeats in some stages, but that there is no clear periodic 

behavior. In other words, the signal exhibits an ergotic 
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response. The chaotic response is observed for a range 

from about 7500 rpm to 8500 rpm. The responses and Fourier 

Spectra are shown below: 
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Figure 10: Time and frequency response at 8474 rpm 

After 8500 rpm, the response changed from chaotic to 

chatter again. This can be observed by looking at emerging 

peaks in the following Fourier Spectra. 
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Figure ll: Response and frequency spectrum at 8900 rpm 

Finally, at about 10000 rpm, the response changed back 

to chaotic. This chaotic response, however, is very weak, 

and eventually as speed is increased, settles into a 

periodic response. The response is given below: 
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CONTROLLING CHAOS 

As the original intent of this paper was in fact to 

control the chaos resulting from a previous experiment, a 

great deal of time and investigation was spent on examining 

the responses found in this paper and on using a method to 

control the resulting chaotic behavior. The methodology 

employed to attempt this control is a form of Occasional 

Proportional Peedback, or OPF, as described by Barr, 

Myneni, Corron, and Pethel (Barr 1999). This method is an 

adaptation of OGY that can be used on very fast chaotic 

systems. The method requires much less calculation and CPU 

time, and is also very simple to implement. The met. hod can 

even be implemented using an analog controller. This makes 

it very attractive for use in many systems. 

The method itself is very simple. Using a phase 

portrait, a window is placed at a certain location that 

determines if the controller is on or off. If the 

controller is on, the system is perturbed with some 

constant perturbation, y; otherwise there is no 

perturbation. The controller seeks to perturb the system 

into a stable orbit. This was performed successfully by 
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Barr, Myneni, Corron, and Pethel (Barr 1999). A schematic 

of how this can work is shown below. 

Control 
Window 

Desired 
Orbit 

Figure 13: Schematic of Control Method 

As shown above, when the signal enters the window it 
is perturbed so that it is forced into the orbit just below 

the window. This orbit can be of any period. The MATLAB 

Simulink implementation of this controller used for 

experimentation is shown below: 

Figure 14: Simulink Model for Controller 
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There were several difficulties encountered while 

implementing this controller. The first major problem 

involved the dependence on the controller to state space. 

As shown previously, in Figure 7, there is a large amount 

of noise present in the x-y plot of the response. For the 

controller to work, it would have to be given very accurate 

results, else it would perturb when it was not supposed to, 

ruining the intended effect of the controller. 

Conventional noise reduction techniques such as filters 

cannot be employed because they remove many components that 

contribute to the chaotic response of the signal. There 

are many met. hods that have been proposed for noise 

reduction in chaotic time series data, however these 

methods mostly involve processing the data after all of it 
has been collected. Few to none of the methods can be 

implemented on a real time system. So, even if chaotic 

noise reduction was employed, it could not be done in order 

to feed values to the controller, so it would be of no use. 

In addition, the phase portraits used examined the x-y 

plane in search of a chaotic phase portrait. However, many 

papers that demonstrate analytically the chaotic behavior 

in ball bearings demonstrate a chaotic phase portrait by 

examining the displacement of the shaft versus its speed in 
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the displacement direction. The speed in x-y plane of a 

shaft, however, is not something that can be easily 

measured. This means that the most realist. ic phase 

portrait that can be used to control chaos, the x-y plane, 

is most likely not one that is useful. 

Finally, the method of perturbation might be 

problematic as well. For this experiment, the system was 

perturbed physically using a piezoelectric actuator that 

perturbed the shaft when the controller was on. In most 

chaos control schemes, the control is used to modify the 

value of some parameter on which the chaos of the system 

depends. For this system, that would be speed of the 

rotor. However, the rotor speed is not controllable for 

the system studied, and so it was thought that perturbing 

the system by physically displacing the rotor in some 

method might be the best possible solution. 

Naturally the question of is it possible for this type 

of control to work for this system arises. The answer to 

this, despite the problems observed, is yes. The only 

finding determined by this paper is the fact that the work 

that has been done on the system thus far has not been 

successful. It is clear, however, that in order for the 
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control to be successful, some of the problem areas 

described above must be solved. 
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CONCLUSION 

The previous results obtained on the Bently Nevada 

rotor system when examined more thoroughly shed doubt on 

whether the system behaved chaotically in its normal 

behavior. Therefore, other nonlinearities in the system 

were studied more closely to draw out a stronger chaotic 

behavior in the system. Chaos was found that by examining 

the case where the bearings begin to vibrate in their 

mounts for a loaded rotor. Fast Fourier Transforms yielded 

broadband frequency behavior for the system proving the 

chaotic behavior in the system. It was found that periodic 

behavior is exhibit. ed For speeds up to about 4000 rpm. 

Chatter was observed from 4000 rpm to 7500 rpm. Chaos was 

observed from 7500 rpm to 8500 rpm. After 8500 rpm is 

reached, the behavior turns to chatter until about 10000 

rpm, where it returns to chaos. After about 11000 rpm, the 

behavior once again turns periodic in nature. 
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