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ABSTRACT 

Nuclear transfer is fast becoming an alternative method for reproduction, and it is 

useful in producing genetically identical animals. This study was designed to develop 

and characterize a cell line which may be possible to use in nuclear transfer in felines. 

Cells which are useful for nuclear transfer must be synchronized with the oocyte being 

fused in order to prevent possible aneuploidy due to high MPF in oocytes arrested in 

metaphase II. Granulosa cells were collected from cat ovaries and grown in culture. 

After a few passages, cells were analyzed by using flow cytometry (FACS) to evaluate 

their stage in the cell cycle and their ploidy. Cells from passages up to passage 2 were 

analyzed as well as freshly collected granulosa cells. Also, serum-starved cells and cells 

from passage I were compared. It was found that the freshly collected cells had the 

highest percentage of cells in GO/Gl (89'/o), suggesting they may be useful for nuclear 

transfer. However, cells in culture exhibited the highest number of cells in GO/Gl at 

passage 2. Also, serum starved cells were significantly more synchronized in GO/Gl 

than regularly fed cells, as expected (85N compared to 70'/o). It appears as though cells 

in passage 2 which have been synchronized using serum-starvation are the best 

candidates for nuclear transfer. Serum-starved cells from passage 2 are currently being 

used in nuclear transfer. 
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INTRODUCTION 

Purpose: The purpose of this project is to develop and characterize a somatic cell line 

which can be used for feline nuclear transfer. 

Hypothesis: The nuclear transfer of a somatic cell to an enucleated oocyte will result in 

an embryo reaching the blastocyst stage in the domestic feline. 

Nuclear transfer has been performed in numerous mammalian species, including 

cattle' ' ' ' ' ', rabbits' ", sheep ' ' ', mice', and pigs ' . However, ithas yet to 

be performed with felines, with whom a few other reproductive techniques have been 

performed successfully. These include embryo transfer", superovulation, embryo 

recovery, in vitro fertilization, embryo growth in vitro, and transplantation 28 ~ ~ ~ ~ 2 28 28 

Nuclear transfer simply entails the removal of the nucleus from a mature oocyte 

(referred to as the cytoplast) followed by the fusion of a diploid cell (referred to as the 

karyoplast) with the oocyte. After fusion is induced by an electric pulse, cleavage and 

formation of an embryo result. Upon reaching the blastocyst stage, the embryo can be 

transferred to a recipient mother, who will carry it to term. Because all chromosomal 

DNA came from the cell donor, the newborn animal should be genetically identical to 

the donor of the karyoplast. 



Several possible benefits may result from feline nuclear transfer. In particular, 

numerous genotypically identical animals are useful for research. The lack of genetic 

variability among these animals helps to develop control groups with the use of fewer 

test subjects. Cats are especially useful in several areas ofbiomedical research for 

humans. In particular, they are useful for research in the areas of HIV and neurological 

disorders. 

Another advantage of nuclear transfer in the domestic feline is the possibility of 

serving as a model for other feline species. Endangered feline species might benefit 

from this technology. While the use of nuclear transfer to propagate endangered species 

may reduce genetic variability, many endangered feline species reproduce from a rather 

small gene pool as it is. Through the use of selection with nuclear transfer, animals with 

traits which will aid them in the wild may be proliferated. 

Granulosa cells were cultured in this experiment. The cells were characterized 

by observing the number of embryos resulting from nuclear transfer and a method of 

flow cytometry called Fluorescence-Activated Cell Sorter (FACS) to observe ploidy and 

cell cycle stage. Flow cytometry has previously been shown to be a good method for 

characterization of granulosa cells in cattle Blondin, et al. , 1996)'. 



BACKGROUND 

Granalosa Cell Characterization 

Granulosa cells have previously been cultured in humans ", cattle' ' ' 

pigs, mice ' ' ', and rats' . Granulosacells have, in fact, beenextensively cultured 9 ~ l0, 13, 23, 29 

in cattle for numerous purposes. They have also been shown to display some unusual 

properties across different species. In particular, Evagelatou, Peterson, and Cooke 

(1997) used FACS to analyze human granulosa cells. They were interested in assessing 

the percentage of ovarian cells collected which were actually leukocytes. They found 

that between 15-60'10 of granulosa cells collected were leukocytes, which was a curious 

result". However, Spanel-Borowski and Ricken (1997) had reported earlier that year 

that bovine granulosa cell cultures contained macrophage-like cells after day 10 of 

culture. These cells were identified as macrophages through immunolabeling for CD14, 

CD18, or CD45 (all surface molecules for different varieties of macrophage cells). They 

hypothesized that ovarian macrophages may be involved in basal membrane degradation 

after follicular rupture or possibly angiogenesis during follicle/corpus luteum 

development . Evagelatou, et al. (1997) found that macrophages most likely interact 

with ovarian cells through several possible methods, such as cytokine secretion in order 

to increase I lbeta-hydroxysteroid dehydrogenase activity (involved in ovarian 

steroidogenesis) ", 



How can one cell type suddenly develop into another as reported by Spanel- 

Borowski, et al. (1997)? Lavranos, O' Leary, and Rodgers (1999) gave evidence that 

bovine granulosa cells exhibit properties of stem cells and tumor cells, which may 

indicate why they have been useful in nuclear transfer' . Like Spanel-Borowski, et al. 

(1997), they reported that granulosa cells can divide without anchorage — a classic stem 

cell property. They also observed that follicular granulosa cells can divide uninhibited 

by contact with each other. To test the hypothesis that granulosa cells arise from a 

population of stem cells, they examined cell cycles and telomerase expression in 

granulosa cells from follicles in various stages of development. Telomerase is an 

enzyme which prevents shortening of chromosome ends (telomeres) over time during 

cell division. It is a key element which allows stem cells and cancer cells to divide 

indefinitely. They found that telomerase RNA was detected in growing follicles but not 

in primordial follicles. They also found that telomerase activity was increasingly higher 

in granulosa cells taken from follicles at earlier stages of development. 

Earlier the same team had shown that division of these anchorage-independent 

granulosa cells which exhibited stem cell properties were stimulated by insulin-like 

growth factors (IGF) as well as inhibited by insulin-like growth factor binding protein 1 

(IGFBP-I)' . IGF-1 receptors were also shown to be present on human granulosa cells 

by De Neubourg, et al. (1998) . Thus, it seems possible that the presence of these IGF-1 

receptors indicates similar development of granulosa cells from stem cell-like cells to the 

bovine development reported by Spanel-Borowski, et al. (1997). 



Other groups have characterized granulosa cells, many reporting sub-populations 

of the cells and differentiation during follicular development. Prior to ovulation, 

cumulus cells release hyaluronic acid in response to gonadotropins which causes them to 

form a mucus-like matrix. This process, termed mucification, distinguishes cumulus and 

mural granulosa cells. Mural granulosa cells ultimately become luteal cells 

Schuetz, et al. (1996) found that mouse cumulus granulosa cells have alterations 

intheir cell cycle during expansion and mucification . Kerketze, etal. (1996) observed 

several different sub-populations of granulosa cells in developing rat follicles using flow 

cytometry and lectin binding. They found two populations of granulosa cells which they 

referred to as "small" and "large. '* Not surprisingly judging from other characterization 

of granulosa cells, they found that granulosa cells exhibited cellular heterogeneity in rat 

follicles, different ratios of which exist depending on the stage of follicular development 

and location within the follicle', Duda, Gasinska, and Gregoraszczuik (1999) separated 

porcine granulosa cells into two subpopulations based on the amount of binding among 

cells. The two populations, weakly associated and tightly bound, were analyzed using 

flow cytometry. They found that the tightly bound subpopulation had lost mitotic 

potential and were more differentiated (thus making them less desirable for nuclear 

transfer). They also observed more apoptosis among the weakly-associated, less 

differentiated subpopulation . 

Mural granulosa cells and cumulus granulosa cells have been shown by Eppig. , 

et al. (1997) to differ somewhat in structure and function as well. They hypothesized 

that murine oocytes helped to establish granulosa cell heterogeneity in pre-ovulatory 



follicles. They distinguished mural granulosa cells phenotypically on the basis of 

leutenizing hormone receptors, which are present on mural granulosa cells but not on 

cumulus granulosa cells. They found that after removing the oocytes from cumulus- 

oocyte complexes that cumulus granulosa cells began to express LH receptors. They 

concluded that oocytes suppress LH receptor expression through paracrine signals and 

thus are responsible for granulosa cell differentiation into cumulus complexes' . 

Schuetz, et al. (1996) also observed cumulus cell differentiation in response to 

exposure to various hormones, including FSH, DBcAMP, and EGF in vitro. They found 

that both FSH and DBcAMP suppressed S phase in cumulus granulosa cells and retarded 

their proliferation. They also noted that these hormones promoted secretion of 

hyaluronidase and subsequent mucification of cumulus cells . Their data support the 

theory that DBcAMP somehow controls cumulus cell mucification through mediation of 

F SH. 

Nuclear Transfer 

Earlier experiments involving nuclear transfer involved the use of blastomeres as 

karyoplasts. Willadsen (1986) first used blastomeres for nuclear transfer in sheep, 

resulting in several live births '. Prather, et al. (1987) used blastomeres to successfully 

produce calves '. Also, Prather, Sims, and First (1989) produced pigs with this 

procedure as well . Several groups began using later-stage embryonic cells for nuclear 

transfer in different mammalian species. Inner cell mass cells, in particular, were used 

successfully. These cells belong to one of two cell types found in blastocyst-stage 



embryos. Thus, they were more differentiated than those cells which had previously 

been used for the procedure. Sims and First (1993) used cultured inner cell mass cells 

for nuclear transfer in cattle, which resulted in several live births. Wilmut, et al. (1996) 

also used inner cell mass cells successfully in sheep. Several other groups tried to use 

ICM cells for nuclear transfer in cattle and pigs, but were unsuccessful 

The turning point in nuclear transfer technology was when Wilmut, et al. (1997) 

reported the live birth of Dolly, a sheep produced from nuclear transfer using a 

mammary epithelial cell as the karyoplast' . This paper was the first instance of a 

differentiated somatic cell being used for nuclear transfer. It had previously been 

thought that differentiated cells could not be used in nuclear transfer because of DNA 

modifications, such as DNA methylation histone binding, and chromosome shortening 

due to lack of telomerase activity. 

Wilmut overcame the difficulties of using a differentiated karyoplast through cell 

cycle synchrony'. The cell cycle consists of four phases: Gl, S, G2, and M. Gl is a 

growth phase in which cells are diploid prior to DNA synthesis. The S-phase is the 

phase in which DNA synthesis takes place. Cells in S-phase vary from 2N to 4N 

depending upon the stage of replication. Once DNA synthesis is complete, cells enter 

G2, another growth phase in which DNA has been fully replicated and in which the cells 

are 4N. Cells then proceed into mitosis, in which DNA is segregated and the cells 

divide' . 

Maturation Promoting Factor (MPF) is found in the cytoplasm during mitosis and 

is known to be the cause of several mitosis-related events. These include nuclear 



envelope breakdown, chromosome condensation, mitotic spindle formation, and 

transcription inhibition . MPF is composed of a cyclin (cyclin B) and a polypeptide 

(cdc2). Cyclins act within the cell cycle to ensure that each step is completed before 

progression to the next step of the cycle. MPF activity itself is controlled by two 

separate factors: cdc25 and weel. Active cdc25 is a protein which promotes the 

transition from G2 to M. Active weel prevents the transition from G2 to M. MPF is 

activated by a predominance of cdc25, which occurs at late G2. If MPF is present in the 

cell under any circumstances, it will cause the events of mitosis regardless of which 

stage of the cell cycle the cell exists. Therefore, in nuclear transfer, the cytoplast and the 

karyoplast must be in synchrony or aneuploidy could result' . 

Two methods are possible to ensure cell cycle synchrony. In one method, the 

cytoplast can be activated before fusion with the karyoplast in order to reduce MPF 

within the cytoplast, allowing the karyoplast to undergo normal mitosis without 

interference due to mixed messages from the cytoplast. In another method, the 

karyoplast's cell cycle can be controlled through the use of serum starvation. Oocytes 

are arrested and Metaphase II of meiosis until fertilization occurs. Karyoplasts which 

exist in Gl of the cell cycle may be fused with oocytes at MII, and normal development 

will ensue . Wilmut, et al. (1997), however, induced the cells to enter GO through serum 

starvation. GO is referred to as the "quiescent" state of cells which never enter Gl. 

Wilmut suggests that these cells are more easily reprogrammed in the cytoplasm of the 

egg because they are in an inactive state 32 



Quiescence occurs when a cell is subjected to unfavorable conditions. There 

exists a critical point in Gl phase when a cell is committed to enter S phase. However, it 

may exit the cell cycle in the event of unfavorable conditions. This occurrence has been 

documented in vivo for somatic cell types that are prepared for differentiation. 

Basically, the cell maintains viability while refraining from activities leading to 

division 

Use of Granulosa Cells in Nuclear Transfer 

Granulosa cells have been used successfully in nuclear transfer in several 

species, bovines and mice in particular. Wells, Misica, and Tervit (1999) cultured 

bovine mural granulosa cells which were later used for nuclear transfer . However, 

they recloned using embryonic blastomeres resulting from nuclear transfer with mural 

granulosa cells. They obtained blastocysts with significantly more embryos fused with 

recloned embryonic blastomeres than those fused with the granulosa cells. Of the 

embryos transferred, 10'/0 derived from mural granulosa cells survived to day 180 of 

pregnancy, while none survived to day 100 from the recloned group. Ten calves were 

delivered from the recipients of the embryos constructed with mural granulosa cells. 

Colles and Barnes (1994) had less success using cumulus granulosa cells in 

bovine nuclear transfer . Judging from the success ratios of nuclear transfer using 5 

cumulus vs. mural granulosa cells as well as the variation in differentiation in granulosa 

cells which has been observed, it is likely mural granulosa cells are less differentiated 
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than cumulus granulosa cells, although Wakayama, Zuccotti, Johnson, and Yanagimachi 

used cumulus cells for nuclear transfer successfully in mice (1996) 

Kato, et al. (1999) in Nara, Japan compared the development of embryos 

produced by nuclear transfer with follicular epithelial cells (preovulatory granulosa 

cells) and cumulus granulosa cells in mice . They used serial nuclear transfer in which 13 

embryos were allowed to develop to the two-cell stage and then blastomeres were taken 

and used in a second nuclear transfer. Their success rate was significantly higher with 

the folliculuar epithelial cells than with the cumulus granulosa cells. With follicular 

epithelial cells used as karyoplasts, 34'/o of the nuclear transfer developed into 

blastocysts, and four living fetuses (25'/o of those transferred) resulted from transfers by 

day 10. 5. However, those with cumulus granulosa cells numbered 20'/o, and none 

transferred developed into fetuses. Schuetz, et al. (1996) reported that significantly 

fewer cumtdus cells in mice were in S phase compared to pre-ovulatory granulosa cells, 

indicating the cells were more rapidly dividing and in the process of differentiating 
23 

They also observed that an inverse relationship exists between proliferation and 

differentiation, leading them to conclude that cumulus cells in Graafian follicles are 

more differentiated. They contended that the fact that cumulus granulosa cells have a 

limited lifespan in vivo lends to the idea that they are terminally differentiated. Thus, it 

is likely that follicular epithelial cells (pre-ovulatory cumulus cells) were more 

successful in nuclear transfer than cumulus granulosa cells because of their less 

differentiated state. 
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MATERIALS AND METHODS 

Cell Collection: 

Ovaries were collected from a spay and neuter clinic, and granulosa cells were 

retrieved by aspirating follicles with a 25 gauge needle. Cells were centrifuged and 

washed once in Dulbecco's Modified Eagle's Medium (DMEM/F12 medium; Gibco 

10565-018) supplemented with 1. 0 mM pyruvate, 10'/0 Fetal Bovine Serum (FBS; 

Hyclone SH 30070-02), and penicillin/streptomycin (1'/0 P/S; Gibco 15140-122). 

Cell Ctdtttresi 

Cells were grown in Dulbecco's Modified Eagle's Medium (DMEM/F12; Gibco 

10565-018) supplemented with 1. 0 mM pyruvate, 10'/0 Fetal Bovine Serum (FBS; 

Hyclone SH 30070-02), and penicillin/streptomycin (1'/0 P/S; Gibco 15140-122). 

Cultures were maintained for four days in an incubator with a temperature of 38. 5'C and 

a humidified atmosphere with 5'to carbon dioxide in air. Cells were rinsed in Ca"Mg 

free Dulbecco's Phosphate-Buffered Saline (PBS; Gibco 14190-151) and exposed to 10x 

trypsin-EDTA (Sigma T4174) for 30 seconds to release the cells from the culture flask 

and then diluted with 25'/e FBS in culture medium. One million cells/mL were 

cryopreserved at day 4 of early passages in 10'/0 dimethyl sulfoxide (DMSO; Sigma 

D5879) in DMEM/F12 by cooling at -1'C/min to -80'C. Frozen cells were thawed and 

cultured 1 day prior to experimental use. Granulosa cells were serum-starved one day 

prior to nuclear transfer and also one day prior to serum-starved cell cycle analysis. 



Figure l. Morphology of feline granulosa cells at passage I. 
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Serum-starved cells were kept in culture medium containing 0. 5'ta FBS. Figure I shows 

cell morphology of feline granulosa cells in culture. 

FACS: 

Cells were released from the flask with 10x trypsin-EDTA and diluted with 25'/0 

FBS in DMEM/F12. One million cells were washed in 5 mL of Dulbecco's Phosphate 

Buffered Saline (PBS; Gibco 14287-098). Cells were then resuspended in 500NL of 

PBS and fixed by the drop-wise addition of 4. 5 mL 70'/0 ethanol (-20'C) while gently 

vortexing and stored overnight at -20'C. Fixed cells were centrifuged to pellet and 

washed once in PBS. Cells were then resuspended in propidium iodide/ Triton X-100 

staining solution with RNase A (PI/RNase Staining Buffer; Phoenix ABPR19) and 

protected from light until analysis. DNA analysis was performed using a FACScan flow 

cytometer (Roger Smith, Texas A&M University) emitting a 488-nm argon ion laser 

line. Cellular debris and aggregated nuclei or clumps were omitted from the analysis 

through use of gating, which is based on pulse area vs. pulse width. Data were shown as 

a histogram based upon the intensity of fluorescence. 

Oocyte Collection and Culture: 

Ovaries were collected from a spay and neuter clinic, and oocytes were retrieved 

from the ovaries using light microscopy. The ovaries were sliced with a scalpel blade 

and then minced laterally. Only Grade I Cumulus-Oocyte Complexes (those with 
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uniformly dark cytoplasm, and eccentrically located germinal vesicle, and five or more 

cumulus oophorus cell layers) were used. Usable oocytes were collected in a 10mm dish 

of TL HEPES (100mM NaC1 (Sigma S5886), 3. 1 mM KC1 (Sigma P5405), 25 mM 

NaHCO3 (Sigma S5761), 0. 29 mM NaH2PO4~H20 (Sigma S9638), 10 mM HEPES 

(Sigma H3375), 21. 6 mM Na Lactate (Sigma L4263), 1 pL/mL phenol red (Sigma 

P0290), 2. 1 mM CaC12~2H20 (Sigma C7902), 0. 5 mM MgC12~6H20 (Sigma M2393), 

and 3 mg/mL bovine serum albumin fraction V (BSAV; Sigma A9647)) and evaluated 

for quality. Oocytes were washed three times in TL HEPES and then matured in 50 liL 

drops of culture medium under mineral oil (Sigma M8410). Culture medium consisted 

of Dulbecco's Modified Eagle's Medium (DMEM; Gibco 11971-025) containing 0. 026g 

pyruvate, 0. 292 g L-glutamine, 0. 4'/0 BSA (Sigma), penicillin/streptomycin (1/0 P/S; 

Gibco 15140-122), 21tg luteinizing hormone (Sioux Biochemical 720), 21ig follicle 

stimulating hormone (Sioux Biochemical 710), and 2pg of estradiol. Oocytes were 

cultured for 24 h in a 38. 5'C humidified incubator with 5'/0 COz in air 

Nuclear Transfer 

Matured oocytes are being exposed to 0. 2'/0 hyaluronidase (Sigma H3506) for 5 

minutes and then vortexed for 30 seconds. Finally, they are being exposed to 0. 5'/0 

pronase (Sigma P6911) for 2 minutes. After removal of the cumulus cells, oocytes are 

being placed in 5 lig/mL cytocholasin B (Sigma C6762) and 5 lig/mL Hoescht 33342 

(Sigma B2261) for 20 minutes. Oocytes are then being enucleated using a beveled glass 

pipette and an inverted microscope. UV light is being used to check for the presence of 
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DNA and ensure enucleation. A somatic cell is being placed within the perivitelline 

space of each oocyte . 

Fusion 

Each unit formed is being immersed in 25 ttg/mL phytohemagluttanin (Sigma 

L9132) and then Zimmerman's cell fusion medium (ZCFM; 0. 28M sucrose (Sigma), 

0. 5mM Mg(C2H302)~4H20 (Sigma), 0. 1 mM Ca(C2Hs02)2 (Sigma), 1. 0 mM K2HPO4 

(Mallinckrodt), 0. 1 mM glutathione (Baker), 0. 01 mg/mL BSAV). After equilibration, 

the units are then being fused in a 3. 2 mm fusion chamber containing ZCFM. Electric 

pulses of 1. 5 kV/cm and 220 microsecond-volts will be generated. The fused units are 

being rinsed in phytohemagluttanin and placed in M199E containing 10'/0 FBS and 1'/0 

P/S. 

Activation 

Units are being activated for 2-5 hours after fusion by exposure to TL HEPES 

supplemented with 0. 001 mg/mL bovine serum albumin — fatty acid free (BSAFAF; 

Sigma), 1'/0 P/S, and 5 ltM ionomycin (CalBiochem). They are then being washed with 

TL HEPES containing 30 mg/mL BSAFAF and 1'/0 P/S for 4 minutes. Fused units are 

being washed again with TL HEPES containing 3 mg/mL BSA V with 1 /0 P/S. 



Embryo Development 

Embryos will be grown for 7 days in M-199 with 10'ro FBS, 0. 36g/L of pyruvate, 

and 1'/o P/S. They will be incubated at 38. 5'C at 5'roCO2. Light microscopy will be 

used to detect blastocyst formation. Ratios of blastocyst formation to cells fused will be 

calculated and reported. 
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Figure 2. Representative cell cycle analyses from freshly collected feline granulosa cells 

(A), primary cell line (B), passage 1 (C), and passage 2 (D). The data show a frequency 

distribution of the fluorescence intensity (channels) of the nuclei recorded at the 

wavelength of propidium iodide (575 nm). 
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Figure 3. A comparison of FACS results of feline granulosa cells analyzed from freshly 

collected cells, the primary cell line, passage l, and passage 2. A significantly larger 

proportion of freshly collected cells and cells from the second passage were found to be 

in GO/Gl. 
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RESULTS 

Cell Cycle Analyses 

Flow cytometry (FACS) was used to determine proportions of cells at various 

stages of growth and ploidy. Cells from different passages up to passage 2 as well as 

freshly collected cells were compared. Also, cells within the same passage were divided 

into serum-starved and regularly fed cultures and compared. 

The results from cells in different passages as well as freshly collected cells are 

shown in Figure 2. Figure 3 shows a comparison of the data. Data from Figure 3 show 

that cells with the highest percentage in GO/Gl (around 89'to) were those in the freshly 

collected cells. Only approximately 4'to were in S phase, while around 6'ro were in 

G2/M. 

Cells in culture displayed significantly different results until P2. Those collected 

from the primary cell line were found to have around 55'yo in GO/G 1 while showing 21'ro 

in S-phase and 24'/o in G2/M phases. Also, cells from the first passage had close to 61'/0 

in GO/Gl, 20 yo in S-phase, and round 19'10 in G2/M. However, cells from the second 

passage had around 83'lo in GO/Gl, around 6'to in S-phase, and around 10'10 in G2/M. 

Serum-starved cells from the first passage were compared to regularly fed cells. 

Results from this comparison are shown in Figure 4. Serum-starved cells showed 

significantly more cells in GO/Gl (around 85 yo), as expected. Only approximately 59'0 

of serum-starved cells were in S-phase, and around 10'yo were in G2/M. Regularly fed 
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cells showed 70'/o in GO/G 1, 14'/o in S, and around 16'/o in G2/M. No cells analyzed 

exhibited aneuploidy. 

Nuclear Transfer 

Cells from passage 2 are being serum-starved and used in nuclear transfer. Cells 

from P2 and not earlier passages are more likely to result in blastocyst formation judging 

from the cell cycle analysis. Serum-starvation will aid in sending cells into GO/Gl and 

thus will increase the likelihood of blastocyst formation using granulosa cells. 
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Figure 4. Representative cell cycle analyses from serum starved cells from passage l 

(A) and regularly fed cells from passage l (B). 



CONCLUSIONS 

Judging from the comparison of freshly collected cells to cultured granulosa 

cells, it is apparent why Wakayama, et al. (1998) achieved higher rates of embryos 

which developed to term using freshly collected cumulus granulosa cells in nuclear 

transfer . A higher proportion of freshly collected granulosa cells were found to be in 

GO/Gl than serum-starved cells or cells from any passage up to passage 2. Thus, freshly 

collected cells were more likely to be synchronized and as a result more useful for 

nuclear transfer. However, in culture, it is probably better for cells in passage 2 to be 

used for nuclear transfer after being subjected to serum starvation based on cell cycle 

analyses. Feline granulosa cells from passage four slowed to almost no division and 

began to exhibit signs of aneuploidy (such as multiple nuclei) as well as unusual 

morphology, thus indicating that feline granulosa cells in culture for over a month are 

not suitable for nuclear transfer. 

It is likely that cells collected were a heterogenous population of granulosa cells 

in various stages of differentiation. Separation based upon location of cells within the 

follicles was difficult due to the small size of the follicles themselves. However, it is 

also likely that after a couple passages the cells became a homogenous population 

because of subjection to the same conditions and lack of hormonal control though 

interaction with oocytes. 

Because granulosa cells exhibit stem cell properties in other species ', it is 11, 17 

likely they have been useful in nuclear transfer because they are less differentiated than 



23 

other somatic cells. The next step for characterization of feline granulosa cells after 

nuclear transfer may be to detect stem cell properties such as telomerase activity. Feline 

granulosa cells may be tested for telomerase to show whether they are similar to other 

species in the same respect. If telomerase activity is found, it can be concluded that 

feline granulosa cells do display stem cell properties. This analysis will help to 

determine their potential to be used successfully in nuclear transfer. 
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