
Creating a Methodology and Tool to Capture and Resolve

Conflicts in Developing Software Requirements:

Requirement Lifecycle Modeling Views Manager (RLMV).

A Senior Thesis

By

LEEHA RAE-LYN HERRERA

Submitted to the Office of Honors Programs
& Academic Scholarships

Texas A&M University
In partial fulfillment of the requirements of the

UNIVERSITY UNDERGRADUATE
RESEARCH FELLOWS

April 2000

Group:
Computer Science

Creating a Methodology and Tool to Capture and Resolve

Conflicts in Developing Software Requirements:

Requirement Lifecycle Modeling Views Manager (RLMV).

A Senior Thesis

By

LEEHA RAE-LYN HERRERA

Submitted to the Office of Honors Programs
& Academic Scholarships
Texas A&M University

In partial fulfillment of the requirements of the
For the Designation of

UNIVERSITY UNDERGRADUATE
RESEARCH FELLOWS

Approved as to style and content by:

William ively
(Fellows Advisor)

Edward A. Funkhouser
(Executive Director)

April 2000

Group: Computer Science

ABSTRACT

Creating a Methodology and Tool to Capture and Resolve Conflicts

in Developing Software Requirements.

Requirement Lifecycle Modeling Views (RLMV), (April 2000)

Leeha Rae-Lyn Herrera
Department of Computer Science

Texas A&M University

Fellows Advisor: Dr. William Lively
Department of Computer Science

Requirements management has been a traditionally overlooked aspect in designing software based systems.

This lack of emphasis on managing requirements has lead to a large percent of projects either failing to

meet all the needs of the customer, or in extreme cases, being cancelled when budgets or schedules have

been exceeded. Companies could potentially save time and money by ensuring that requirements are

accurately represented in each phase of development.

The purpose of my research is to design a tool that will aid in tracing requirements throughout the software

development lifecycle. The tool, named Requirement Lifecycle Modeling Views (RLMV), follows the

architecture, as defined in The Unified Modeling tzrnguage Users Guide, for modeling software-intensive

systems. This architecture is based on five views which are the use case view, design view, process view,

implementation view, and deployment view. These views work together to define the modeling of a

system by representing different aspects of the system, as it is developed. RLMV works with existing

software tools created by a corporation named RationaL The tool itself is implemented using Java and

Oracle.

RLMV is designed to trace pre-defined requirements to modeling diagrams created for each of the

five views. Though the tool was designed to work with Rational Requisitepro and Rational Rose,

it is generalized enough to work with most software designing tools. In this manner, a user can

select a requirement and display the names of diagrams and files, for each phase of development,

associated with that requirement. The benefit to RLMV is that a user can actively trace the

requirement through development to ensure that each requirement is being satisfied and prevent

deviations.

TABLE OF CONTENTS

ABSTRACT

TABLE OF CONTENTS. tv

Page

LIST OF FIGURES. .

LIST OF TABLES. .

INTRODUCTION. .

vt

Requirements. .

Requirements Management.

PROBLEM. . . „

SOLUTION. . . „

Overview
Relational Database Design. .
Code Implementation. .

User Interface.

4
9
13
13

FUTURE IMPROVEMENTS. 16

CONCLUSION. 17

REFERENCES.

APPENDIX A. 19

LIST OF FIGURES

FIGURE

I Requirement View implemented in RLMV.

PAGE

2 Revision View implemented in RLMV.

3 Use Case View implemented in RLMV.

4 Design View implemented in RLMV.

5 Component View implemented in RLMV.

6 Deployment View implemented in RLMV.

7 RLMV when first started. 14

8 Dialog Box prompting user to enter requirement ID. . . . 15

LIST OF TABLES

TABLES PAGE

1 Description of Requirement View Database Table.

2 Description of UseCase View Database Table. 10

3 Description of Design View Database Table.

4 Description of Process View Database Table.

5 Description of Component View Database Table. , 12

6 Description of Deployment View Database Table. . . . 12

7 Description of Revision View Database Table. . . . 13

INTRODUCTION

The software industry was grown drastically within the last few decades to the point where billions of

dollars a year are spent on software projects around the world (Krishnan and Kellner, 1999). The

competition between companies is ever present and the ability to produce a quality product in a timely

manner can determine the overall fate of a company.

Despite the pressure to perform, the software industry has been reluctant to adjust to the growing

complexity of projects and implement beuer practices of managing project requirements and resources. It

was estimated that a majority of the most expensive projects will "eventuaBy be canceged for being out of

control" (Willerton, 1999). According to the Chaos Study published by the Standish Group, the trend for

complete project failure has been reduced from 40% in 1997 to 26% in 1999 (Reel, 1999). However, the

number of projects that exceed cost and schedule or fail to satisfy customer needs has increased from 33%

to 40%. The study indicates that the completion rate has increased due to companies producing smaller

more manageable projects, not because management practices have improved. This can be seen by the

lack of resource management that has caused an increase in failure to meet budget or schedule.

The Chaos Study pointed out a glaring problem in the software industry, failure to implement all

functionality. During the creation of a project, all stakeholders (parties that have interests tied to the

success of the project) must work together to establish the conditions that the project must meet. The

engineers take the information gathered from such meetings and produce the specific requirements for a

project.

Requirements

Every project has requirements that it must conform to. A requirement is a concise statement that defines

what a system will do. According to The IEEE Standard Glossary of Software Engineering Terminology

(1997), the definition of a requirement is as follows:

1. A condition or capability needed by a user to solve a problem or achieve an objective.

2. A condition or capability that must be met or possessed by a system or system component to

satisfy a contract, standard, specification, or other formally imposed document.

3. A documented representation of a condition or capability as in 1 or 2.

Other definitions of a requirement focus on the fact that a requirement specifies what a system should do

without referring to how it will be implemented (Sommerville and Sawyer 1997). A requirement serves as

a guiding post or general blue print for which the development of a system must follow.

The problem with finding one universally accepted definition of a requirement is that no such definition

exists. "The real requirements actually reside in people's minds" and documenting requirements is an

attempt to model or represent their ideas IWiegers, 1999). This is why it is paramount "that all project

stakeholders arrive at a shared understanding of the terms used to describe" a requirement.

Requirements Management

Once a project's requirements have been stated, some system of managing those requirements must be

implemented. Project failure to produce all functionality is usually caused by poor management of the

project's requirements. Requirements management is a term to describe how a team handles the

requirements of a project during the lifecycle of the project. It can be defined as a two-part definition.

Requirements management is "a systematic approach to eliciting, organizing, and documenting the

requirements of the system, " as well as, "a process that establishes and maintains agreement between the

customer and the project team on the changing requirements of the system" (Oberg, Probasco, and

Ericsson 1998).

The overall success of a project largely depends on how the initial stages of a project are carried out. If

care is taken to ensure requirements are clearly stated, documented, and managed the success rate of a

project will be increased. It is rare to have a project succeed where the requirements were poorly defined

despite almost flawless execution of design, implementation, and testing. Engineers must not only build

quality projects but must build quality projects that satisfy the customer's need.

PROBLEM

The initial phases of a project directly determine the success of a project. As Fredrick Brooks stated in

"No Silver Bullet: Essence and Accidents of Software Engineering" (1987):

The hardest single part of building a software system is deciding precisely what to build. No

other part of the conceptual work is as difficult as establishing the detailed technical

requirements, including all the interfaces to people, to machines, and to other software

systems. No other part of the work so cripples the resulting system if done wrong. Not other

part is more difficult to rectify later.

As a project progresses in development the cost to correct a problem or defect increases dramatically

(Arthur, Groner, Hayhurst, and Holloway, 1999). It is therefore beneficial to carefully manage

requirements during the initial phases of development and screen out errors. This would prevent time and

money from being wasted due to problems compounding as the project grows in complexity.

Several problems arise in managing requirements. Organizations tend to "struggle with the elicitation,

specification, and management of requirements" (Weiger and Card, 1999). Problems like these can cause

a vague understanding of the requirements, which leads to failure to implement all functionality. This also

goes hand and hand with managers not accurately understanding the system, which causes poor

estimations for resources and leads to projects going over budget and schedule.

The industry has been slow to change and at best may only implement partial strategies (Moitra, 1999).

Any solution to better handle system requirements has to be easily adapted to a wide variety of projects

and work environments, easily implemented without high demands of time to learn or interface with, and

cost effective. As with any aspect of life, human nature usually dictates that if an action or process is too

hard or complicated it will not be used. The goal of designing software development tools is to find a

balance between providing a tool that provides enough functionality to be useful and not overwhelming

the user and making the tool burdensome.

SOLUTION

Overview

The focus of this research is concentrated on tracing requirements through the development of a project by

documenting the associations of requirements with the phases of project modeling. This will help

engineers check their designs to ensure that all requirements are satisfied and avoid costly deviations. By

being able to follow the development of a project, managers could have more documented information to

base decisions on managing resources and make better estimations.

The tool implemented in this research is named Requirement Lifecycle Modeling Views Manager

(RLMV). RLMV follows the architecture, as defined in The Unified Modeling Language Users Guide, for

modeling software-intensive systems. This architecture is based on five views: a use case view, a design

view, a process view, a implementation view, and a deployment view. In addition to these five views, I

added two additional views a requirement view and a revision view. All these were used together to

define the modeling of a system by representing different aspects of the system, as it is developed.

H.
a~su~ (=, t t+PMme

Fig. 1. The Requirement View implemented in RLMV

The Requirement View was created to contain fields that store the basic information of a requirement such

as identification number, name, description, file location, owner, priority, and status (Fig. I). The purpose

of this view is to store the general characteristics of requirement in one easy to access location.

The Revision View was added to provide some revision control. Most projects go through revision or

changing requirements (Fig. 2). Carefully controlled and managed revision can be healthy as the project

adjusts to better meet customer needs. However changes in requirements that is unmanaged can lead to

project failure though the requirements had been clearly defined in the beginning. One way to avoid run

away feature creep, or prevent the loss of crucial requirements is to document changes and have it

controlled by a small group. This view allows old requirements to be linked to revised requirements so

that no requirement is deleted after it has been specified, The fields in this view include the identification

of the revised requirement, who is responsible for making the decision, the status of the decision, and an

area provide to record related notes. By doing this, users can refer to the history of a revision if problems

and review the rationale for change.

Fig. 2. The Revision View in RLMV

The purpose of the Use Case View is to describe "the behavior of the system as seen by its end users,

analysts, and testers" (Booch, Jacobson, and Rumbaugh, 1999). It does not specify the organization of the

project but instead "specifies the forces that shape the system's architecture. " To trace a requirement

through this view associations between specific use case diagrams, sequence diagrams, and collaboration

diagrams should be made (Fig. 3).

Fig. 3. The Use Case View in RLMV

The Design View helps to form the vocabulary of the project by defining the names of classes to be

implemented (Booch, Jacobson, and Rumbaugh, 1999). This view addresses the functionality of the

project through the services it provides the users. The fields in the design view include the package the

requirement is implemented in, class diagrams, object diagrams, statechart diagrams, and the file that these

diagrams are found in (Fig 4).

The Process View is identical to the Design View in the fields that it contains. The purpose of the process

view differs, though, in that it addresses the dynamic functions of a project. This functions include

". . . performance, scalability, and throughput" of the project (Booch, Jacobson, and Rumbaugh, l999).

Fig. 4. The Design View in RLMV

The Component view, which can be referred to as the implementation view, "encompasses the

components and files that are used to assemble and release the physical system" (Booch, Jacobson, and

Rumbaugh, 1999). The focus of this view is on the ". . . configuration management of the system's

releases. " The diagrams associated with each requirement for this view are the component diagrams (Fig

The Deployment view addresses the "nodes that form the system's hardware topology on which the

system executes" (Booch, Jacobson, and Rumbaugh, 1999). It describes the "distribution, delivery, and

installation of parts that make up the physical system. " The diagrams that relate to this view are

deployment diagrams (Fig 6). It is possible that multiple requirements share the same diagrams, especially

in the deployment view.

By associating each requirement to elements in each view, the development of a project is forced to

strictly adhere to the specified requirements. A more in-depth description of each field in the views can be

found it the Relational Database subheading where fields are represented by columns in database tables.

Fig. 5. The Component View inRLMV

Fig. 6. The Deployment View m RLMV

Relational Database Design

The database backbone for RLMV was designed in Oracle, A relational database was created following

the structure of the seven views chosen to represent the development of a requirement, the Requirement

View, UseCase View, Design View, Process View, Component View, Deployment View, and Revision

View. All tables use the ID column as the key, which represents the requirement identification. The ID

must be a unique combination of letters and numbers that is expected to be assigned by Rational

RequisitePro or by other similar tools during the documentation of the requirements.

The Requirement View represents the general information of a requirement gathered at the analysis phase.

The columns defined for the table are the ID, Name, Description, File Name, Owner, Priority, and Status,

as seen in Table 1. The columns used in the table are fairly generalized and self-explanatory. For the

Priority and Status column, no range of values is enforced by the database. Appropriate values for the

Priority column would include a number range and for the Status column values such as, opened, revised,

and closed. It is ultimately the responsibility of the project team to establish appropriate values and to

adhere to them.

TABLE 1 Description of the Requirement View Database Table

Name Null? Type Description

ID Not VARCHAR2(16) Requirement id specified by

Null RequisitePro

NAME

DESCRIPTION

FILE NAME

OWNER

Null VARCHAR2(32) any string up to 24 characters

Null VARCHAR2(64) any string up to 64 characters

Null VARCHAR2(64) name and or path of the

RequisitePro File

Null VARCHAR2(16) name of individual responsible

PRIORITY Null VARCHAR2(8)

for requirement

priority of requirement, no

default range of values

STATUS Null VARCHAR2(16) stage or status of the requirement

no default range of values

The Use Case View table contains columns to record the names and location of use case, sequence, and

cogaboration diagrams, shown in Table 2. A use case diagram "shows a system in terms of the external

users of the system, known as actors" (Pooley and King 1999). They address the static view and help to

organize and model the system's behaviors (Booch, Jacobson, and Rumbaugh, 1999).

10

Sequence and collaboration diagrams are interaction diagrams, which describe the dynamic view. A

sequence diagram "emphasizes the time-ordering of messages" and a collaboration diagram "emphasizes

the structural organization of the objects that send and receive messages. " These two types of diagrams

can be transformed into other giving them isomorphic properties.

TABLE 2 Description of the UseCase View Database Table

Name Null? Type Description

ID Not VARCHAR2(16) requirement id specified by

Null RequisitePro

USE DIAGRAM

SEQUENCE DIAGRAMI

Null VARCHAR2(32) name of Use Case Diagram

Null VARCHAR2(32) name of Sequence Diagram

SEQUENCE DIAGRAM2

COLLABORATION DIAGRAMI

Null VARCHAR2(32)

Null VARCHAR2(32)

name of Sequence Diagram

name of Collaboration Diagram

COLLABORATION DIAGRAM2 Null VARCHAR2(32) name of Collaboration Diagram

FILE NAME Null VARCHAR2(64) name and or path of the file

containing the diagrams

The Design View and Process View tables contain columns to record the names and locations of the

package the requirement is found in and class, object, and state diagrams, shown in Table 3 and Table 4.

The Package column represents the name of the collection that the "model elements may be grouped into,

representing modules or libraries" (Pooley and King, 1999). In Rational Rose the packages designated

are often User Services, Business Services, and Data Services. The class diagram columns represent

diagrams that describe "a set of classes, interfaces, and collaborations and their relationships" (Booch,

Jacobson, and Rumbaugh, 1999). Object diagrams show "static snapshots of instances of the things found

in class diagrams" from the "perspective of real or prototypical cases. " The statechart diagrams of a

requirement represent a state machine that consists of "states, transitions, events, and activities" and

emphasizes the "event-ordered behavior of an object. " The difference in diagrams between the two views

is that the diagrams in Design View represent the static aspects of the system and those in the Process

View represent the dynamic aspects.

TABLE 3 Description of the Design View Database Table

Name Null? Type Description

ID Not VARCHAR2(16) requirement id specified by

Null RequisitePro

PACKAGE

CLASS DIAGRAMI

CLASS DIAGRAM2

OBJECT DIAGRAM

STATE DIAGRAM

FILE NAME

Nug VARCHAR2(32)

Null VARCHAR2(32)

name of a Class Diagram

name of a Object Diagram

Null VARCHAR2(32) name of a State Diagram

Null VARCHAR2(64) name and or path of the file

containing the diagrams

Null VARCHAR2(32) name of the Package or Tier the

requirement is grouped into

Null VARCHAR2(32) name of a Class Diagram

TABLE 4 Description of the Process View Database Table

Name Null? Type Description

ID Not VARCHAR2(16) requirement id specified by

Null RequisitePro

PACKAGE

CLASS DIAGRAMI

CLASS DIAGRAM2

OBJECT DIAGRAM

STATE DIAGRAM

FILE NAME

Null VARCHAR2(32)

Null VARCHAR2(64)

name of a State Diagram

name and or path of the file

containing the diagrams

Null VARCHAR2(32) name of the Package or Tier the

requirement is grouped into

Null VARCHAR2(32) name of a Class Diagram

Null VARCHAR2(32) name of a Class Diagram

Null VARCHAR2(32) name of a Object Diagram

The Component View table contains columns to record the name and location of the package and

component diagrams of a requirement, as seen in Table 5. The package column in this view is the same as

those in the Design View. Component diagrams describe the "organization and dependencies among a set

of components" that show "the static implementation view of a system" (Booch). Component diagrams

usually contain one or more classes, interfaces, or collaborations. The Deployment View tables, seen in

Table 6, builds upon the Component View in that deployment diagrams show the "configuration of run-

time processing nodes and the components that live on them. " As components contain one or more

classes, nodes in deployment diagrams contain one or more components.

12

TABLE 5 Description of the Componet View Database Table

Name Null? Type Description

ID Not VARCHAR2(16) requirement id specified by

Nug RequisitePro

PACKAGE

COMPONENT DIAGRAMI

COMPONENT DIAGRAM2

FILE NAME

Null VARCHAR2(32) name of the Package or Tier the

requirement is grouped into

Null VARCHAR2(32) name of a Component Diagram

Null VARCHAR2(32) name of a Component Diagram

Null VARCHAR2(64) name and or path of the file that

contains the diagrams

TABLE 6 Description of the Deployment View Database Table

Name Null? Type Description

ID Not VARCHAR2(16) requirement id specified by

Null RequisitePro

PACKAGE

DEPLOYMENT DIAGRAMI

DEPLOYMENT DIAGRAM2

FILE NAME

Null VARCHAR2(32) name of the Package or Tier the

requirement is grouped into

Null VARCHAR2(32) name of a Deployment Diagram

Null VARCHAR2(32) name of a Deployment Diagram

Null VARCHAR2(64) name and or path of the file

containing the diagrams

The Revision View table contains columns thai link a requirement, to a requirement that has replaced it,

Table 7. The columns contain information on the revised requirement identification number, the party

responsible for allowing the revision, and the status of the request for revision. The Notes column is

available for team members to document comments associated with the history of the revision.

13

TABLE 7 Description of the Revision View Database Table

Name Null? Type Description

ID

REVISED ID

AUTHORIZED BY

STATUS

NOTES

Not VARCHAR2(16)

Null

Null VARCHAR2(16)

Null VARCHAR2(32)

Null VARCHAR2(16)

requirement id specified by

RequisitePro

requirement id specified by

RequisitePro that reflects the

changes made

name of a party responsible for

revision control

status or stage of revision

Null VARCHAR2(128) related comments

Code Jnrp(ernenrarion

The tool was implemented in Java using Swing and JBDC (Appendix A contains a complete copy of the

code). Most of the interface structure was built with JFrames, JDialog, JTabbedPages, and JPanel. In

designing the different views a base class was used, Views, were the name of the table in the database

associated with the view along with its column names and values were defined when the object is

instantiated. A class named Requirementlnfo then called a View for each of the views used in the

interface. When a Requirementlnfo object is created it creates each view and specifies the table and

column names needed through private strings within the class.

All connections to the Oracle database using JDBC where handled in the DbActions class (designed after

the DbActions classes used by Chris Wurts and Tom Woods in their implementation of LCAM, 1998).

This class is called each time a connection is made. The View class calls the DbActions class in i(s

methods that make changes to a requirement's information in the database and to retrieve information to

display.

To create the views that a user interfaces with a JTabbedPages was loaded into a JPanel. Each view was

created by a JPanel that the JTabbedPages displayed. This area of code still lacks completion but the basic

framework has implemented. Currently each panel has a separate class to deal with the specific names of

fields to be displayed and retrieved. This is awkward and a design for a basic JPanel class, which is given

the specific information for each view at creation, has been designed but not full implemented.

14

User Interface

To start the tool, the user must go to a command prompt and start the program and type the Java command

for execution. A window then appears with a menu bar with 3 options, File, Requirement, and Help

(FIG. 7).

To add a requirement, the New option must be selected under the Requirement menu. This will open a

new JPanel with a JTabbedDialog inside it. Each tab contains one of the seven views that I implemented.

The only field that must be correctly completed to add a requirement to the database is the ID field, which

serves as a key to all the database tables. The user fills the desired information out and selects the OK

option on the panel. This then opens a connection to the database and adds the requirement to all the

necessary tables.

Fig. 7. RLMV when first started

To edit a requirement, the Edit option must be selected under the Requirement menu. This will open a

JDialog, which will prompt the user to enter an ID for an existing requirement (Fig. 8). When the OK

button is selected the tool opens a connection to the database and runs a query on the Requirement View

table. If a requirement by the given ID exists the tool continues by opening a new JPanel with a

JTabbedPages with the seven views. The same JPanel and JTabbedPages class used in adding a new

requirement is called and appears the same except in two main differences. The ID field is non-editable

since it serves as the key value for the database tables and once a requirement is added it cannot be

removed, only links to revised requirements can be made, and the values for fields that been pre-defined

15

are displayed. While editing the values the user can select the Reset button which wiH clear all field

values for that page, except for ID value. When all the necessary changes are made the user then selects

the Submit button and a connection to the database is opened and SQL update commands are made to

change the values of the fields. The frame is then closed and the user is returned to the initial window.

To display a requirement, the Display option must be selected under the Requirement menu. This will

open a new JDialog, which will prompt the user to enter an ID for an existing requirement. When the OK

button is selected the tool opens a connection to the database and runs a query on the Requirement View

table. If a requirement by the given Id exists the tool continues by opening a new JPanel with a

JTabbedPages with the 8 views. The same JPanel and JTabbedPages class used in adding a new

requirement is caged and appears the same except in one main difference. Though the fields look editable,

no changes are made to the requirement in the database. This option is for viewing information in a read

only manner. To exit this option the user selects OK and the I'rame is then closed and the user is returned

to the initial window.

Fig. 8, Dialog Box prompting user to enter a requirement ID

To exit the application the user can either select the Exit option in the File menu or double click on the

corner of the window in the standard MS Windows manner.

l6

FUTURE IMPROVEMENTS

With the limitations of time and resources, RLMV lacks considerable functionality that could allow it to

be more user friendly and offer better requirements management. RLMV does not take advantage of the

capability of automation between itself and Rational RequisitePro and Rose. The tool could gather

information for requirements such as identification number, name, description, priority, and ownership by

specifying a specific RequisitePro file. This would make the tool more attractive to engineers and more

likely to be implemented by removing the tedious busy work of filling out information that should have

already been documented. RLMV could also automate the ability to bring up diagrams for each view by

one click instead of having the user open up the application and file to view the diagram.

RLMV could also provide graphs and charts given stakeholders a quick way of checking on the overall

progress of a project. The graphs could include information on how many requirements are in a particular

stage or have a particular priority. This information could be used to better manage schedule and budget.

The possibility of presenting information in a manner easier for users to access and manipulate must also

be considered. Research would have to be conducted in how humans organize information so it could be

replicated as much as possible, instead of humans havmg to conform to ways that computers store

information.

The biggest area for improvement though, is not functionality but in testing. RLMV has not be formally

reviewed or used by a team of software engineers. All the benefits it was designed to offer have not been

verified. On the onset of this research, the tool had been planned to be used and tested by a Software

Engineering class in the Department of Computer Science at Texas A&M University. The class would

have been divided into two groups, one usmg RLMV to complete the class project and one control group

that would not use the tool. Comparisons would have been conducted between the two groups, analyzing

overall documentation, shared understanding of the stated requirements, time for completion, and number

of defects within the project. Personal interviews would have also been conducted on the team members

that worked with RLMV to document the functionality from a user's perspective. The results gathered

would have then been reviewed and possible changes to RLMV would have been considered. Due to time

constraints, these tests were not realized and it is crucial that before any further functionality is added,

RLMV go through such tests.

17

CONCLUSION

The basic idea that RLMV was built on was that if engineers were given an easy to use way of

documenting the progress of a requirement, they could ensure that the requirement was being fulfilled.

Thought must be given in defining the association between requirements and the models of a project, if

inconsistencies or holes arise they should be easily detected. RLMV displays all information for a

requirement in a well-organized manner, which allows all stakeholders to easily follow the progress of a

requirement.

The direct benefits of implementing RLMV in a software project include complete requirement

traceability throughout the development of a project, limited revision control management, and the ability

to work in conjuncture with software tools already in use. Indirectly the benefits lead to a more organized

and documented project where all stakeholders have access to the same information, which can ensure

agreement. More importantly, by directly relating requirements to the modeling of a project, team

members can ensure that all requirements are accurately being satisfied. All these factors could lead to

more successful projects by reducing resources spent on correcting errors in later, more costly, phases of

development while at the same time producing projects that implement all required functionality.

Software companies could potentially save large amounts of money and create a more professional

industry that customers can rely on.

The bottom line is that "software still takes too long to develop, costs too much, and does not work well

when eventually delivered" (Fitzgerald and O'Kane, 1999). A standard process needs to be implemented

to give structure and discipline to a field that has been characterized as chaotic and unpredictable.

Whether teams decide to implement RLMV or other software development tools, the need for tools that

follow an accepted standard is evident. Until the development of software is seen as a process that can be

controlled and monitored, the industry will lack true professionalism in delivering quality products in a

timely manner (Krishman and Kellner, 1999).

REFERENCES

Arthur, James, Groner, Markus, Hayhurst, Kelly, and Holloway, C. 1999. Evaluating

the effectiveness of independent verification and validation. IEEE Computer. (Oct.),
79-83.

Booch, Grady, Rumbaugh, James, and Jacobson, Iver. 1999. The Unified Modeling

Language User Guide. Addison Wesley Longman, Inc. Reading, MA.

Fitzgerald, Brian, and O'Kane, Tom. 1999. A longitudinal study of software process
improvement. lEEE Software. (May/June), 37-45.

Krishnan, M. S and Kellner, Marek I. 1999. Measuring process consistency:
implications for reducing software defects. /EEE Transactions on Software
Engineering. 25, 6 (Nov/Dec.), 800-815.

Moitra, Deependra. 1999. Software Engineering in the small. lEEE Computer. (Oct.),
39-40.

Oberg, Roger, Probasco, Leslee, and Ericsson, Maria . 1998. Applying requirements

management with use cases. Technical Paper TP505. Rational Software Corporation.

Pooley, R. and King, P. 1999. Unified modeling language and performance
engineering. /EEE Proceeding Software. 146, I (Feb.), 2-11.

Reel, John S. 1999. Critical success factors in software projects. lEEE Software. (May/June), 18-23.

Sommerville, Ian, and Sawyer, Pete. 1997. Requirements Engineering: A good
Practice Guide. John Wiley ik Sons. Chichester, England.

Wiegers, Karl E. 1999. Software Requirements. Microsoft Press, Redmond, WA.

19

APPENDIX A

//Title: Req Tool
//Version:

//Copyright: Copyright (c) 1999
//Author: Leeha Herrrera
//Company: Dept Computer Science
//Description: Requirements Lifecycle Modeling Views Manager
// Creates the main appication by calling the BaseFrame

import tool. *;

import javax. swing. UIManager;
import java. awt. *;

public class RLMV (
boolean packFrame = false;

//Construct the application
public RLMVO (

BaseFrame frame = new BaseFrame0;
//Validate frames that have preset sizes
//pack frames that have useful preferred size info, e. g. from their layout
if (packFrame)

frame. pack();
else

frame. validate();
//Center the window
Dimension screenSize = Toolkit. getDefaultToolkit0. getScreenSize0;
Dimension frameStze = frame. getSize0;
if (frameSize. height & screenSize. height)

frameSize. height = screenSize. height;
if (frameStze. width & screenSize. width)

frameSize. width = screenSize. width;
frame. setLocation((screenSize. width — &ameSize. width) / 3, (screenSize. height — frameSize. height) / 3);
frame. setVisible(true);

//Main method
public static void main(String[] args) (

try (
UIManager. setLookAndFeel(UIManager. getSystemLookAndFeelClassName0);

)
catch(Exception e) (

)
new RLMV0;

)

)

20

//Title: BaseFrame
//Description: Creates the main window with a menu bar, for the tool

package tool;

import java. awt. *;
import java. awt. event. *;
import javax. swing. *;

public class BaseFrame extends JFrame (
//create all the items for the menu bar
JMenuBar menuBarl = new JMenuBar();
JMenu menuFile = new JMenu();
JMenultem menuFileExit = new JMenultem();
JMenu menuHelp = new JMenu();
JMenultem menuHelpAbout = new JMenultem();
JToolBar toolBar = new JToolBar();
1Button jButton I = new JButton();
JButton jButton2 = new JButton();
JButton jButton3 = new JButton();
Imagelcon image l;
Imagelcon image2;
Imagelcon image3;

//Items specified for the Requirement option in the menu

JMenu menuRequirement = new JMenu();
1Menultem menuReqNew = new JMenultem();
JMenultem menuReqEdit = new JMenultem(),
JMenultem menuReqDisplay = new JMenultem();
//

BorderLayout borderLayoutl = new BorderLayout();

//Construct the frame
public BaseFrame() (

enableEvents(AWTEvent. WINDOW EVENT MASK);
try (
jbInit();

)
catch(Exception e) (

e. printStackTrace();

)

)

//Component initialization
private void jblnit() throws Exception (

imagel = new Imagelcon(tool. BaseFrame. class. getResource("openFile. gif'));
image2 = new Imagelcon(tool. BaseFrame. class. getResource("closeFile. gif'));
image3 = new Imagelcon(tool. BaseFrame. class. getResource("help. gif"));
this. getContentpane(). setLayout(borderLayout1);
this. setSize(new Dimension(500, 300));
this. setTitle("Requirement Lifecycle Modeling Views Manager — RLMV");

//prepare items to be added to menu and assign listners to detect user selection
menu File. set Text("File");
menuFileExit. setText("Exit");
menuFileExit. addActionListener(new ActionListener() (

public void actionPerformed(ActionEvent e) (
fileExit actionPerformed(e);

)

))

menuHelp. setText("Help");
menuHelpAbout. setText(" About");
menuHelpAbout. addActionListener(new ActionListener() (

public void actionPerformed(ActionEvent e) (
helpAbout actionPerformed(e);

));

menuRequirement. set Text("Requirement");
menuReqNew. setText("New");
menuReqNew. addActionListener(new ActionListener () (

public void actionPerformed (ActionEvent e) (
reqNew actionPer formed(e);

)
));

menuReqEdit. setText("Edit");
menuReqEdit. addActionListener(new ActionListener () (

public void actionPerformed (ActionEvent e) (
reqEdit actionPerformed(e);

)
));

menuReqDisplay. setText("Display");
menuReqDisplay. addActionListener(new ActionListener () (

public void actionPerformed (ActionEvent e) (
reqDisplay actionPerformed(e);

)
));

//add items to menu
jButtonl. setlcon(imagel);
jButtonl. setToo(TipText("Open File");
jB utton2. setlcon(image2);
jButton2. setToolTipText("Close File");
jButton3. setlcon(image3);
jButton3. setToolTipText("Help");
toolBar. add()Buttonl);
too lB sr. add(jB utton2);
toolBar. add(jButton3);
menuFile. add(menuFileExit);
menuHelp. add(menuHelpAbout);
menuRequirement. add(menuReqNew);
menuRequirement. add(menuReqEdi t);

22

menuRequirement. add(menuReqDisplay);
menuBar1. add(menuFile);
menuBar1. add(menuHelp);
menuBar1. add(menuRequirement);
//add menu to frame
this. set)MenuBar(menuBarl);
this. getContentPane(). add(toolBar, BorderLayout. NORTH);

)

//File
~
Exit action performed

public void fileExit actionPerformed(ActionEvent e) (
System. exit(0);

)

//Help
~

About action performed
public void helpAbout actionPerformed(ActionEvent e) (

//Requriement
~
New action performed

public void reqNew actionPerformed(ActionEvent e) {
//create the panel to hold the tabbedpages
PanelFrame panelFrame = new PanelFrame("Requirement Display — Edit Requirement");
//create the requirement contain group for the requirement that will be added

ReqViews reqView = new ReqViews();
Dimension screenSize = Toolkit. getDefaultToolkit(). getScreenSize();
Dimension frameSize = panelFrame. getSize();
if (frameSize. height & screenSize. height)

frameSize. height = screenSize. height;
if (frameSize. width & screenSize. width)

frameSize. width = screenSize. width;
panelFrame. setLocation((screenSize. width - frameSize. width) /2, (screenSize. height-

frameSize. height + 45) / 2);
//Load the TabbedPages into the panel, send info about whether a new

//requirement is being created or not
panelFrame. getContentPane(). add(new GetReqTabbedPages(panelFrame, false, reqViews),

BorderLayout. CENTER);
panelFrame. setVisible(true);
panelFrame. repaint();

)

//Requriement (Edit action performed
public void reqEdit actionPerformed(ActionEvent e) (

//create the panel to hold the tabbedpages
PanelFrame panelFrame = new PanelFrame("Requirement Display — Edit Requirement");
//create the dialog box to prompt user for requirement ID
ReqNameDialog reqNameD = new ReqNameDialog(this, "Requirement Name", true);
reqNameD. setLocationRelativeTo(this);
reqNameD. setVisible(true);
//create the requirement contain group for the requirement that will be added

ReqViews reqView = new ReqViews();
//if string is valid ID store ID value in reqView
reqView = reqNameD. getValidatedReq();

23

if (reqView!= null) (//If requirement exists display
//Center the window
//load all stored info from tables to reqView
reqView. retrieveA!1();
Dimension screenSize = ToolkiugetDefaultToolkit(). getScreenSize();
Dimension frameSize = panelFrame. getSize(),
if (frameSize. height & screenSize. height)

frameSize. height = screenSize. height;
if (frameSize. width & screenSize. width)

frameSize. width = screenSize. width;
panelFrame. setLocation((screenSize. width - frameSize. width) / 2, (screenSize. height-

frameSize. height+ 45) / 2);
panelFrame. getContentPane(). add(new GetReqTabbedPages(panelFrame, true, reqView),

BorderLayout. CENTER);
panelFrame. setVisible(true);
panelFrame. repaint();

)

)

//Requriement) Display action performed
public void reqDisplay actionPerformed(ActionEvent e) (

//create the panel to hold the tabbedpages
PanelFrame panelFrame = new PanelFrame("Requirement Display — DISPLAY ONLY NO

CHANGES");
//create the dialog box to prompt user for requirement ID
ReqNameDialog reqNameD = new ReqNameDialog(this, "Requirement Name", true);
reqNameD. setLocationRelativeTo(this);
reqNameD. setVisible(true);
//create the requirement contain group for the requirement that will be added

ReqViews reqView = new ReqViews();
//if string is valid ID store ID value in reqView
reqView = reqNameD. getValidatedReq();
if (reqView!= null) (

//Center the window
//Load all stored info from tables to reqView
reqView. retrieveA!1();
Dimension screenSize = Toolkit. getDefaultToolkit(). getScreenSize();
Dimension frameSize = panelFrame. getSize();
if (frameSize. height & screenSize. height)

frameSize. height = screenSize. height;
if (frameSize. width & screenSize. width)

frameSize. width = screenSize. width;
panelFrame. setLocation((screenSize. width — frameSize. width) / 2, (screenSize. height-

frameSize. height+ 45) /2);
panelFrame. getContentPane(). add(new GetReqTabbedPages(panelFrame, true, reqView),

BorderLayout. CENTER);
panelFrame. setVisible(true);
panelFrame. repaint();

)

)
//Overridden so we can exit on System Close
protected void processWindowEvent(WindowEvent e) (

super. processWindowEvent(e);

24

if(e. getID() =- WindowEvent. WINDOW CLOSING) (
fileExit actionPerformed(nuB);

)

)

)

//Title: PanelFrame
//Version:
//Copyright. Copyright (c) 1999
//Author. Leeha Herrrera
//Company: Dept Computer Science
//Description: Creates a basic frame for which the TabbedPages will be loaded

// into

package tool;

import java. awt. ";
import javax. swing. JFrame;

public class PanelFrame extends JFrame (

// BorderLayout borderLayout I = new BorderLayout();
public PanelFrame(String s) (
enableEvents(AWTEvent. WINDOW EVENT MASK);
try (
jblnit(s);

catch(Exception e) (
e. printStackTrace();

)

)

//Component initialization
private void jblnit(String s) throws Exception (
// this. getContentPane(). setLayout(borderLayoutl);
this. setSize(new Dimension(500, 500));
this. setTitle(s);

)

//Title: ReqNameDialog
//Description: Creates a dialog box which is used to prompt a user for a

// requirement ID. If the ID is valid it will close and pass the

// value on

package tool;

import java. awt. *;
import java. awt. event. v;

import javax. swing. *;
import javax. swing. border. s;
import java. beans. *; //Property change stuff

public class ReqNameDialog extends JDialog (
private String typedText = null;
private JOptionPane optionPane;
private ReqViews req = new ReqViews();

//Returns Requirement that was requested in dialong box
public Requirement getValidatedReq() (

return req;
)

public ReqNameDialog(Frame frame, String title, boolean modal) (
super(frame, title, modal);
try (
jblnit();

)
catch (Exception e) (
e. printS tackTrace();

)

pack();
)

public ReqNameDialog(Frame frame, String title) (
this(frame, title, false);

)

public ReqNameDialog(Frame frame) (
this(frame, "", false);

)

private void jblnit() throws Exception (

final String msgStringl = "Enter Requirement Name (used in RequisitePro)";
final JTextField textField = new JTextpield(10);
Object[] array = (msgStringl, textField);

final String btnString I = "Enter";
final String btnString2 = "Cancel";
Object[) options = (btnStringl, btnString2);

26

optionPane = new JOptionPane(array,
JOptionpane. QUESTION MESSAGE,
JOptionPane. YES NO OPTION,
null,

options,
options[0]);

setContentPane(optionPane);
setDefaultCloseOperation(DO NOTHING ON CLOSE);
addWindowListener(new WindowAdapter() (

public void windowClosing(WindowEvent we) (
/a
* Instead of directly closing the window,
* we' re going to change the JOptionPane's
* value property.
a/

optionPane. setValue(new Integer(
JOptionPane. CLOSED OPTION));

textField. addActionListener(new ActionListener() (
public void actionPerformed(ActionEvent e) (

optionPane. setVal ue(btnString I);
)

));

optionPane. addPropertyChangeListener(new PropertyChangeListener() (
public void propertyChange(PropertyChangeEvent e) (

String prop = e. getPropertyName();

if (isVisible()
&& (e. getSource() == optionpane)
&& (prop. equals(JOptionPane. VALUE PROPERTY)

~~

prop. equals(JOptionPane. INPUT VALUE PROPERTY))) (
Object value = optionPane. getValue();

if (value == JOptionpane. UNINITIALIZED VALUE) (
//ignore reset
return;

// Reset the JOptionPane's value.
// If you don't do this, then if the user
// presses the same button next time, no
// property change event will be fired.
optionPane. setValue(

JOptionPane. UNINITIALIZED VALUE) ',

if (value. equals(btnString1)) {
typedText = textField. getText();

String ucText = typedText. toLowerCase();
/* Search for Requriement. ID*/

boolean found = reqView. req. searchKey(uc Text);

27

if (found) (
// we' re done; dismiss the dialog
setVisible(false);

) else (
// text was invalid
textField. selectAll();
JOptionpane. showMessageDialog(

ReqNameDialog. this,
"Sorry, V'" + typedText+ 'T' "

+ "is not a valid Requirement IDAn",
"Please enter requirement ID. ",

JOptionPane. ERROR MESSAGE);
typedText = null;

)
) else (// user closed dialog or clicked cancel

typedText = null;

setVisible(false);

)
)

));

28

//Title: GetReq TabbedPages
//Description: Creates a new tabbedPages which is used to display the views

// of a requirement. If the requirement is new if creates blank
// text fields, if it is old it creates uneditable field for the ID

package tool;

import java. awt. *;
import java. awt. event. *;
import java. utiL*;
import javax. swing. *;

public class GetReqTabbedPages extends JPanel (

JTabbedPane jTabbedPanel = new JTabbedPane();
JPanel panel 1 = new JPanel();
JButton ok = new JButton();
JButton cancel = new JButton();

//Strings used as Titles for each Panel
String reqTitle ="Requirement Description";
String useTitle ="Use Case View";
String designTitle ="Design View";
String process Title ="Process View";
String compTitle ="Component View";
String deployTitle ="Deployment View";
String revTitle = "Revision View";

//creates panels for each view
GetReqlnfoPanel reqPanel;
UseCasePanel usePanel;
DesignPanel designPanel;
ProcessPanel processPanel;
ComponentPanel compPanel;
DeployPanel deployPanel;
Revisionpanel revPanel;

JPanel jPane)4 = new JPanel()I
GridBagLayout gridBagLayoutl = new GridBagLayout(),
GridLayout gridLayoutl = new GridLayout();

// private Requirement req = new Requirement();

public GetReqTabbedpages(/Frame frame, boolean old, ReqViews reqView) (
try (

jblnit(frame, old, reqViews);

)
catch (Exception e) (

e. printStackTrace();
l

)

29

private void jbInit(final JFrame frame, boolean old, final Requirement req) throws Exception (
//add Ok button
ok. set Text("Submit");
ok. addActionListener(new ActionListener () (

public void actionPerformed (ActionEvent e) (

ok actionPerformed(e, frame, req);
)
));

//add cancel button
cancel. set Text("Cancel");
cancekaddActionListener(new ActionListener () (

public void actionPerformed (ActionEvent e) (
cancel actionPerformed(e, frame);

)
));

//set grid for frame

gridLayoutl . setH gap(4);
jPane14. setLayout(gridLayout1);
this. setLayout(gridBagLayout1);
this. add(jPane14, new GridBagConstraints(0, 1, 1, 1, 0. 0, 0. 0

, GridBagConstraints. EAST, GridBagConstraints. NONE, new Insets(8, 0, 8, 8), 0, 0));
jPane14. add(ok, null);
jPane14. add(cancel, nuB);
this. add(jTabbedPanel, new GridBagConstraints(0, 0, I, 1, 1. 0, 1. 0

, GridBagConstraints. CENTER, GridBagConstraints. BOTH, new Insets(8, 8, 0, 8), 0, 0));
//init tabbed panels
reqPanel = new GetReqlnfoPanel(old, reqView);
usePanel = new UseCasePanel(old, reqView);
designPanel = new Designpanel(old, reqView);
processPanel = new ProcessPanel(old, reqView);
compPanel = new ComponentPanel(old, reqView);
deployPanel = new DeployPanel(old, reqView);
revPanel = new Revisionpanel(old, reqView);

//add tabbed panels to frame
jTabbedpanel. add(reqPanel, reqTitle);
jTabbedPanel. add(usePanel, useTitle);
jTabbedPanel. add(designPanel, designTitle);
jTabbedPanel. add(processPanel, processTitle);
jTabbedPanel. add(compPanel, compTitle):
jTabbedPanel. add(deployPanel, deployTitle);
jTabbedPanel. add(revpanel, revTitle);
this. setVisible(true);

)

/* When the user selects OK store all information and close the Frame*/
void ok actionPerformed(ActionEvent e, final JFrame frame, ReqViews reqView) (

req. addA11(reqPanel. getKey(), reqPanel. getFields(), usePanel. getFields(),
designPanel. getFields(), processPanel. getFields(),
compPanel. getFields(), deployPanel. getFields(), revPanel. getFields());

frame. setVisible(false);
frame. dispose();

)

30

void cancel actionperformed(ActionEvent e, final JFrame frame) (
frame. setVisible(false);
frame. dispose();

//Tide: GetReqInfoPanel
//Version:
//Copyright: Copyright (c) 1999
//Author: Leeha Herrrera
//Company: Dept Computer Science
//Description: Creates the individual panels that are called by GetReqTabbedPages

package tool;

import java. awt. *;
import java. awt. event. s;
import javax. swing. JPanel;
import javax. swing. ";

public class GetReqlnfoPanel extends JPanel (
GridBagLayout gridbag = new GridBagLayout();
GridBagConstraints c = new GridBagConstraints();

JButton reset = new JButton("RESET");
//name of fields to be displayed
private String[] labels = ("ID:", "Name:", "Description:", "RequisitePro File, "Owner:", "Priority:",

"Status:" j;
//labels used to diplay the text name of field.
private JLabel idLabel = new JLabel();

//text fields user enters information into
private JTextField idField = new JTextField(16);
private JTextField nameField = new JTextField(32);
private JTextField descripField = new JTextField(64);
private JTextField fileField = new JTextField(64);
private JTextField ownerField = new JTextField(16);
private JTextField priorityField = new JTextField(8);
private JTextField statusField = new JTextField(16);

private static int numFields = 7;

JLabel label;
public GetReqlnfoPanel(boolean old, final ReqViews reqView) (

uy (
jblnit(old, reqView);

)
catch(Exception ex) (

ex. printStackTrace();

)
)

private void jblnit(boolean old, final ReqViews reqView) throws Exception (
this. setLayout(gndbag);
c. weightx = 0. 5;
c. insets = new Insets(7, 20, 0, 20);

//ADD LABELS
c. anchor = GridBagConstraints. WEST;

32

for (int i=0; i&numFietds; i++) (
label = new JLabel(labels[i]);
addltem(label, O, i, 0);

)
//ADD TEXTFIELDS
if(old) (//should Id field be editable — if old then no

idLabel = new JLabel("test123");
addItem(idLabel, 1, 0, 0);

else (
addltem(idField, 1, 0, 75);

]

addItem(nameField, l, 1, 150);
addItem(descripField, 1, 2, 250);
addItem(fileField, 1, 3, 250);
addltem(ownerField, 1, 4, 150);
addltem(prioritypield, 1, 5, 75);
addltem(statuspield, 1, 6, 75);

//ADD RESET BUTTON
c. anchor = GridBagConstraints. SOUTHEAST;
addltem(reset, l, numFields, 0);

reset. addActionListener(new ActionListener () (
public void actionperformed (ActionEvent e) [

setld(null);
setName(null);
setDescrip(null);
setFile(null);
setOwner(null);

]
]);

this. setVisib(e(true);

//returns all fields in a string[]
public String[] getFields() [

String[] values = new String[7], '

]

public Stung getldO (

Stnng value;
value = idField. getTexti 0
return value;

public void setld(String value) [

33

idField. set Text(value);
)

public String getName() (
String value;
value = nameField. getText();
return value;

public void setName(String value) (
nameField. setText(value);

)
public String getDescrip() (

String value;
value = descripField. getText();
return value;

)

public void setDescrip(String value) (
descripField, setText(value);

)
public String getFile() (

String value;
value = fileField. getText();
return value;

l

public void setFile(String value) (
fileField. setText(value);

)

public String getOwner() (
String value,
value = ownerField. get Text();
return value;

)

public void setOwner(String value) (

ownerField. setText(value);

public String getpriority() (
String value;
value = priorityField. getText();
return value;

public void setpriority(String value) (
priorityField. setText(value);

public String getStatus() (

String value;

34

value = statusField. getText();
return value;

)

public void setStatus(String value) (
statusField. set Text(value);

private void addftem (JComponent f, int x, int y, int padx) (
c. gridx = x;
c. gridy = y;
c. ipadx = padx;
gridbag. setConstraints(f, c);
this. add(f);

)

//Title: ReqViews
//Description: A class that calls the Views class to create each

// of the 7 views implemented by the tool.
// The specific information for each view and its corresponding database

// table is contained in private strings.

package tool;
import java. sql. *;

public class ReqViews (
//create each of the 7 views

public View req;
public View usecase;
public View design;
public View process;
public View comp;
public View deploy;
public View revision;

/8

Initiates each view with the appropriate information
v/

public ReqViews() (
req = new View(req Table, reqKeyCol, reqCols);
usecase = new View(use Table, useKeyCol, useCols);
design = new View(desTable, desKeyCol, desCols);
process = new View(procTable, procKeyCol, procCols);
comp = new View(comp Table, compKeyCol, compCols);
deploy = new View(dep Table, depKeyCol, depCols);
revision = new View(revTable, revKeyCol, revCols);

/* Given a string that represents the requirement ID this method will search

for that requirement in the database. If found it will retrieve all available
information and store it in the proper views. */

public boolean searchAII(String key) {
boolean found = false;
found = this. req. searchKey(key);
this. usecase. searchKey(key);
this. design. searchKey(key);
this. process. searchKey(key);
this. comp. searchKey(key);
this. deploy. searchKey(key);
this. revision. searchKey(key);
this. key = key;
return found;

/* Given a string that represents the requirement ID this method will search
for that requirement in the database. If found it will retrieve all available
information and store it in the proper views. */

public boolean retrieveAll() (

36

boolean found = false;
found = this. req. searchKey(this. key);
this. usecase. searchKey(this. key);
this. design. searchKey(this. key);
this. process. searchKey(this. key);
this. comp. searchKey(this. key);
this. deploy. searchKey(this. key);
this. revision. searchKey(this. key);
return found;

)

/" Given the information for each view in a string array this method will caB
the appropriate views method to store the inforation in the database /

public void addAII (String key, String[] u, String[] ds, String[] p,
String[] c, String[] dp, String[] r,) [)

private String key;

//Table names and Columns
private String req Table = "Requirement View";
private String reqKeyCol ="Id";
private String[] reqCols =("Name", "Description", "File Name", "Owner", "Priority", "Status");

private String useTable = "Usecase View";
private String useKeyCol ="Id",
private String[] useCols =["Use Diagram", "Sequence Diagraml", "Sequence Diagram2",

"Collaboration Diagram2", "Collaboration Diagraml", "File Name");

private String desTable = "Design View";
private String desKeyCol ="Id";
private Strmg[] desCols =("Package", "Class Diagraml", "Class Diagram2",

"Object Diagram", "State Diagram", "File Name");

private String procTable = "Process View";
private String procKeyCol ="Id";
private String[] procCols =("Package", "Class Diagraml", "Class Diagram2",

"Object Diagram", "State Diagram", "File Name");

private String compTable = "Component View";
private String compKeyCol ="Id";
private String[] compCols =("Package", "Component Diagram 1", "Componet Diagram2",

"File Name");

private String dep Table = "Deployment View";
private String depKeyCol ="Id";
private String[] depCols =("Package", "Deployment Diagraml", "Deployment Diagram2",

"File Name");

private String revTable = "Revision View";
private String revKeyCol ="Id";
private String[] revCols =["Revisied Id", "Authorized By", "Status",

"Notes");

37

private String doc Table = "Documents";
private String docKeyCol ="Id":
private String[] docCols =I "Documentl", "Document2", "Document3",

"Document4");

//Title: View
//Description: A class contains variables to be added to a database table and retrieved from

package tool;

import java. sql. *;

public class View (

/* Creates a view with the stores the given strings to asscess the associated
database tablev/

public View(String table, String keyCol, String[] cols) (
this. table = table;
this. num = cols. length;
this. fields = new String[num];
this. keyCol = keyCol;
this. cols = new String[num];
for (int i=0; i & num; i++) [

this. cols[i] = cols[i];
)

)

public View(String table, String keyCol, String[] cols, String key,
String[] field) (

this. table = table;
this. num = cols. length;
this. keyCol = keyCol,
this. key = key;
this. fields = new String[this. num];
this. cols = new String[this. num];
for (int i=0; i & num; i++) (

this. cols[i] = cols[i];
if (i &= field. length)

this. fields[i] = "";
else this. fields[i] = field[i];
System. out. println(fields[i]);

)
)

/*returns a string array containing the names of all the fields*/
public String[] getpields() (

return this. fields;

)

/* returns a string array containing all the column names of the table*/

public String[] getCols() [
return this. cols;

/"returns the key column name which for all views is the requirement ID */

public String getKeyCoID [
return this. keyCol;

39

/v returns the key value which for all views is the requirement ID*/

public String getKeyO [
return this. key;

/*opens a connection to the database and adds the information already

stored in the class*/
public void addViewDb() (

DbActions job = new DbActions();
Connection con = job. getConnection();
String insert = "INSERT INTO " + this. table + " VALUES (";
int i;
insert+=" "'+ this. key+ "', ":
System. out. println(insert);
for (i=0; i & num-I; i++) (
insert += " " + this. fields[i] + "', ";
]
insert+= " "' + this. fields[i] + "')";
System. out. println(insert);

try(
job. update(con, insert);
con. close();

]
catch(Exception excep) (

System. out. println("Error '+ excep);
]

/"opens a connection to the database and adds the information set to the

method*/
public void addViewDb(String k, String[] field) (

DbActions job = new DbActions();
Connection con = job. getConnection();
//copy values from field to this. fields, if value does not exist assign it ""

for (int i=0; i & num; i++) (
if (i &= field. length)
this. fields[i] = "";

else this. fields[i] = field[i];
]
this. key = k;

//Create String to use for SQL command

String insert = "INSERT INTO " + this. table + " VALUES ("',
insert+=" "'+ this. key+ "', ";

int i;
for (i=0; i & num-I; i++) [

insert+=" "'+ this. fields[i] + "', "

]
insert+=" "'+ this. fields[i] + "')";

40

System. out. println(insert);
try[
job. update(con, insert);
con. close();

)
catch(Exception excep)(

System. out. println("Error " + excep);

/*opens a connection to the database and updates the values to the

public void updateViewDb(String[] f) (
DbActions job = new DbActions();
Connection con = job. getConnection();
String update l = "UPDATE " + this. table+ " SET ";
String update2 = " WHERE " + this. keyCol + " = "' + this. key +
String changes = "null";
int c = 0;
int s;
for (int iW; i# i++) (

if((s = this. fields[i]. compare To(f[i])) != 0) [
this. fields[i] = f[i]
if(c ==0) [

changes = this. cols[i] + " = ";
changes += ""' + this. fields[i] + ""';
C++;

)
else (

changes += ", " + this. cols[i] + "= ";
changes += ""' + this. fields[i] + ""';
c++;

)

)
)
//Send Command to DB
try(
if (!(changes. equals("null"))) (

System. out. println(updatel + changes + update2);
job. update(con, update(+ changes + update2);

)
con. close();

)

given string[]*/

catch(Exception excep)(
System. out. println("Error" + excep);

/* opens a connection to the database and executes a query for the given ID
if found it will store appropriate values a/

public boolean searchKey(Strtng key) [
boolean found = false;
DbActtons job = new DbActions();

Connection con = job. getConnection();
String q = "SELECT * from " + this. table + " WHERE " + this. keyCol + " = "' +

key+ ""',

try[
Statement stmt = con. createStatement();
System. out. println(q);
ResultSet rs = stmt. executeQuery(q);
rs. next();
int c;
System. out. println(rs. getString(this. table));
System. out. println(rs. getString(keyCol));
if ((c = key. compareTo(rs. getString(keyCol))) == 0) [//result set id = key

this. key = key;
for (int i = l; i& num+i; i++) [

this. fie(ds[i-l] = rs. getString(i+ i);
System. out. println(rs. getString(i));

]
found = true;
con. close();

]
]
catch(Exception excep) [

System. out. println("Error " + excep);
System. out. println("Error Requirement Name not found");

]
return found;

]

private String table;
private String keyCol;
private String key;
private String[] fields;
private String[] cols;
private int num;

]

NNINIIIININNNINNIINIIIIINNINI II

A1I482I 5 IOOLI4

