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ABSTRACT 

The Effects of the iroi and troi' Mutations on Neural Stem Cell Development and 

Proliferation in Drosophila melanogaster Embryos. (April 2000) 

Mardelle Renee Atkins 

Department of Genetics 
Texas A&M University 

Fellows Advisor: Dr. Sumana Datta 

Department of Biochemistry 

The locus terribly reduced optic lobes or troi, is an X-linked homeobox gene 

involved in the control of neuroblast proliferation in Drosophila melartogasrer larvae. It 

is known that rrol acts in a pathway to counteract cell cycle repressors via the induction 

of cyclin E expression. The goal of the project is to use immunohistochemical methods 

to attempt to establish a phenotype for irol in the embryonic stage of development. 

Using the anti-engrailed and anti-fasciclin III antibodies, the developing nervous 

system can be examined for physical differences between different alleles and the 

wildtype embryos. 
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Introduction 

Background and significance: 

Normal development occurs through the interaction of many signals. These 

interactions direct cells to divide at appropriate times and to divide the appropriate 

number of times. Terribly reduced optic lobes (trol) is a developmental signal found in 

Drosophila melanogaster that causes the precursor cells of the nervous system to begin 

division (Datta, 1995). Mutations in troi interfere with normal nervous system 

development (Datta, 1995). 

Every system of an organism has precursor, or stem, cells. Stem cells are 

undifferentiated cells that undergo a process of asymmetric cell division. With each 

division, a stem cell reproduces itself and gives rise to a daughter cell. This daughter 

cell differentiates during subsequent divisions to form specific cell types. For example, 

in the Drosophila nervous system the stem cells, or neuroblasts, give rise to daughter 

cells called ganglion mother cells (GMC). The GMC's divide to give rise to either 

neurons or glial cells (Campus-Ortega, 1993). This ability of stem cells to give rise to 

several different cell types within their systems is referred to as mulnpotence. 

This thesis follows the style of the journal Development. 



Neuroblast 

GMC secondary 
neuroblast 

O neuron neuron 

Figl: Neuroblasts undergo asymmetric division to form neuroblasts and ganglion mother 

cells (GMC's). The GMC's divide to form neurons. 



The ability of stem cells to divide indefinitely to regenerate specific kinds of 

tissues is creating hope for their usage in treatment of severe tissue damage and some 

degenerative disorders, including Tay Sachs (Flax, et. al. , 1997, Bjornsonn, et. ak 1999). 

In order to be able to effectively use these kinds of cells in treatments, we must be able 

to regulate when they divide, how often they divide, and what cell types are formed. In 

order to control these activities we must be able to use developmental signals correctly. 

Drosopltila melanogster provides a well-characterized system for studying development 

and has been shown to have close homologies to higher organisms with respect to early 

developmental signals. rrol is one signal in a pathway that controls division of distinct 

neuroblast populations in D. melanogaster, and its study will be helpful to better 

understanding the mechanisms which control stem cell division. 

Characterization of troh 

rrol has been shown through genetic analysis to be a locus on the X chromosome 

of Drosophila melanogaster (Datta and Kankel, 1992). It is proposed that trol is a 

homeobox gene. Homeobox genes are a class of developmental genes that function as 

transcription factors helping to regulate development. The function of a homeobox gene 

may change depending on the region of expression or the stage of development at which 

the gene is being expressed. 



Mutations in the rrol locus are homozygous lethal, with the exception of the 

irol allele which is only semi-lethal (Datta, 1992, Caldwell and Datta, 1998). tro/ has 

been found to induce the initiation of neuroblast proliferation in the larval stages of 

development (Datta, 1995). Mutations within the trol locus result in larval lethality or 

severe structural brain defects in adults (Datta and Kankel, 1992). 

troi works in a developmental pathway to oppose the actions of a cell cycle 

repressor gene anachronism (ana) (Datta, 1995). The proposed mechanism for this 

induction is that rrol increases cyclin E expression. This hypothesis is supported by the 

ability to rescue irol mutants by induced cyclin E expression (Caldwell and Datta, 1998). 

Examination of different trol mutant (troP') alleles shows a high level of lethality in 

embryogenesis with few to none of the larvae hatching (Caldwell and Datta, 1998). 

Hypothesis: 

This project proposes that trol is acting as a regulatory signal not only during 

larval development but also during embryogenesis; and that mutations in irol somehow 

disrupt the pathways that lead to normal embryonic nervous system development. As a 

result of this disruption there is a high level of lethality witnessed in severe loss of 

function mutants between the embryonic and larval stages. To test this hypothesis, 

CNS and PNS development in wildtype and mutant embryos were examined using 

fluorescent immunohistochemistry. Using these methods, a phenotype may be 



established to show that mutations in the rrol locus cause a proliferation defect in D. 

melanogaster embryos. A more direct analysis is not possible at this time because rrol 

has not yet been cloned. 

If trol function proceeds by the same mechanism in embryos and larvae, then it is 

expected that the wildtype number of neuroblasts will be present in early stage trol 

embryos. Also, the number of neurons formed, and neuroblasts formed in subsequent 

divisions, will be decreased because ana repression will not have been overcome and 

proliferation will not have been initiated. If this is not the case, the results may indicate 

that the role played by rrol in embryonic development may be different from that in the 

larval stages. This would not refute the role of rrol in D. melanogaster development, 

because it is congruent with the theory that rrol is a homeobox gene. It is not uncommon 

for homeobox genes to be expressed at different stages of development and to have 

different target cells, or different functions within the same cell subset dependent upon 

their temporal expression. 



Materials and Methods 

Alleles: 

Three different mutant alleles were examined: trol', troP, and troP'. rrol' is the 

least severe of these rnutants and rrol' is the most severe. troP is a naturally occurring 

severe partial loss-of-function mutation identified by Sumana Datta (Datta, 1992). troP' 

was induced by radiation (Datta, 1992). trod' was induced in 1998 by a chemical 

mutagenesis using diepoxybutane (Caldwell and Datta, 1998). 

Stocks and crosses: 

There are two markers being used in this cross to help distinguish the mutant 

flies at all stages of development. Yellow (y) causes a phenotype in mutant larvae of 

golden brown mouthhooks as opposed to black in their wildtype siblings. The P- 

galactosidase (lacz) insert in the fushi tarazu (frz) locus gives a clear, easily 

distinguishable banding pattern in the wild type embryos (see Fig 2) when stained with 

anti-g-galactosidase, while the mutant shows no staining. 



ig, 2 lacz staining of a wildtype embryo 

The crosses used were ytrot"'w/fm 7eftzlacz females X fm 7eftzlacz males. This 

cross gives four progeny classes: fm 7eftzlacz/fm 7eftzlacz females, fm 7eftzlacz males, 

ytrol 'wfm 7eftzlacz females, and ytrol 'w males. Only this final class, lacking the 

normal X chromosome with the lacz marker will exhibit the mutant phenotype. All 

other progeny classes will show wildtype patterns of development. 

Table 1: Resulting Phenotypic Classes. 

Only the ytrot 'w males will show a mutant staining phenotype. 

fm7eAzlacz 

ytrol 'w/fm7eAzlacz 

females 

males ynol 'w/fm7eftzlacz Fm7eAzlacz/fm7eAzlacz 

frn7eftzlacz male ytrol 'w male 



Collection of embryos: 

Embryos were collected from egg lay plates made with apple juice agar and 

sprinkled with yeast. The egg lays were incubated at 25'C. Initially embryos were 

collected after 12 to 14 hours of incubation. In later stages of the experiment they were 

incubated with the parents for 2 hours, then removed from the parent stock and allowed 

to age at 25'C to 3-5 or 7-9 hours before being collected. Embryos were nansferred to 

small, mesh-bottomed collection baskets with I X Triton/NaCI and then dechorionated in 

505o bleach for 2-4 minutes. Embryos were then washed with water and transferred to 

Eppendorf tubes for fixation. The protocols for collection, fixation and staining were 

obtained from Brad Jones in Bill McGinnis's lab (personal correspondence). 

Fixing of embryos: 

Embryos were fixed for 20 minutes on a shaker in I:1 heptane: paraformaldehyde 

fix. Replacing first the paraformaldehyde fix (aqueous) layer with methanol, shaking 30 

seconds, then replacing the heptane with methanol devitellinized the embryos. The 

methanol wash was repeated three times. Embryos were allowed to then set at room 

temperature in methanol for 20-30 minutes before being stored at — 20 'C or labeled 

with antibodies. 



Antibody labeling procedure: 

The primary antibodies were incubated with the embryos in PBNT (1X 

Phosphate Buffered Saline+ 0. 1/o TWEEN 80+ 1/o Normal Goat Serum) either 

overnight at 4'C or 4 hours at room temperature, Monoclonal mouse anti-4D9 (anti- 

engrailedl invecred) was used at a 1:1 dilution (Patel, et. al. , 1989); monoclonal mouse 

anti-7G10 (anti-fasci clirt III) at 1:1000 (Patel, et. al. , 1987) and rabbit anti-l)-galactosidase 

were added to all preps at a 1:5000 dilution. The primaries were removed by washing 

three times for fifteen minutes each in 1X PBS. After completing the third wash, wash 

once with PBNT at 4'C for 30 minutes, and then return the samples to 1X PBS for 15 

minutes. The secondary antibodies were incubated for an identical time period and that 

was followed by the same wash protocol. The secondary antibodies used were Alexa 

488 goat anti-mouse conjugated monoclonal antibody (a FITC analog), and Alexa 594 

goat anti-rabbit conj ugated monoclonal antibody (a Texas Red analog). Whole mount 

preparations were then made of the embryos using a Dako Corporation aqueous 

mounting media for fluorescence containing NaN&. 



Microscopy: 

Slides were viewed using a Zeiss compound microscope and photographed using 

a Hamamatsu camera system, then transferred to and processed using Adobe PhotoShop 

5. 0 for Macintosh. 

Results 

Antibody Specificity: 

BP106, 4D9 and 7G10 were all obtained from Corey Goodman at the University 

of California at Berkeley. 22C10 was obtained from Seymour Benzer at the CalTech. 

BP106; anti-Nettrotactin recognizes neurotactin, a surface glycoprotein with 

homolgy to serine esterases. This antigen is expressed throughout embryogenesis in 

different tissues. It is expressed in restricted region during the blastodermal phase, and 

heavily stains the ventral furrow. Expression includes nearly all cells when gatrulation is 

complete, and expression is later confined to the developing nervous system (Hortsch, et. 

al. , 1990). My initial work with this antibody was unsuccessful. The fluorescence 

shown was expressed overwhelmingly in the gut and ectoderm. This fluorescence did 

not suit my purposes for identification because it very strongly resembled 

autofluorescence. 



4D9: anti-engrailedlinvecred recognizes the engrailed/invected gene products. 

These two genes are homeobox genes expressed throughout development. In the 

embryo, 4D9 stains the nuclei of all row 6 and 7 neuroblasts, and one neuroblast of row 

1 as well as the nuclei of a small subset of neurons (Patel, et. al. , 1989). 

7G10: anti-fascichn III recognizes the fasciclin III antigen. This antigen is a 

surface glycoprotein expressed on several cell types transiently over the course of 

Drosophila development. The 7G10 antigen is found to be regionally expressed on a 

subset of neurons and axon pathways during 10-13 hours of development (axon 

outgrowth), can be used to trace neuroblast lineages, and in late embryonic development 

can be used to examine morphogenesis through its epidermal staining pattern (Patel, et. 

al. , 1987). 

MAb22C10: 22C10 stains a subset of the CNS neurons and all PNS neurons by 

staining the cytoplasm and the inner surface of the cell membrane. (Patel, 1994) 

My initial screens across 0-14 hours of development were done primarily on 22C10. 

The antibody worked well, but is not expressed at the early stages that the project ended 

up focussing on. As a result I have no data to show for the 22C10 staining. 
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Table 2: Summary of Antibody functions 

Antibody 

Anti-Neurotactin 

Anti-engrailed/ 

inverted 

Anti-fasciclin III 

MAb 22CIO 

Numerical 

abbreviation 

BP106 

4D9 

7G I 0/ 2D9 

22C 10 

Reactive agat'nst 

Drosophila 

neurotactin 

Engrailed and 

invected gene 

products 

Fasciclin III 

Cytoplasm and 

inner surface of cell 

membrane of 
neuron sets 

Expression pattern 

Most cells by end of 
gastrulation, 

strongly in nervous 

systetn later in 

develo ment 

CNS neuronal 

subset, medkan 

neuroblast progeny, 

and small set of 
PNS neurons 

Subset of neurons 

and axons in CNS 

Stain a subset of 
CNS neurons and 

all PNS neurons 



Flg. 3 Wttdtype staining with 4D9 in 0-2 hours 
devvlopmetst. Stahune shows only t-2 rows af cells 
ptsssertt in segments t-S. 

Flg, 4%"ttdtyp«expression of 4D9 ia a 3-5 hour old 

embryo. dorsal view. Observs. ' in this imag« that in 

segm«nts 4 and 5 no more than 2-3 rows of no arobtasts 
silo'w stalnlBg. 



Flg, 5 trol4 staiaing in 3-5 hour otd embryo. 
The pattern of 4-5 toms ot cells staining in 

toms four aad five has been observed tepeatcdly 
for this allele. 

Fig. it ttrtt4 staining 'm 0-2 hour old embryo. Although the 
l'irst segment is not m fccus. it is clearly btuader than tbe 
single celt tow of the wildtype sibtina. Also, irtsegtrauus 
3 and 6. rows 2-3 cells thick can be seen. This width 
estceeds the t-3 iMt width ot' the wild type rows. 



Fig. 7 This is adorsat view of arrrsfaf embryo at 0-2 hours 

development. %bile from a slightlv different angle than 

thc wild type 'unage &I=tg 3 t. the presence ot' 3 bc U wws or 
more uniformly thtuugh out Use embryo slav a morc 
severe defect than thc corresponding truly stain'mg 

pattern t Fig 6). 



Ftg. 8 7GIO staining 
of wildtype (top) aud 

(roid (bottom) 
embryos ages 3-S hrs. 
lu these images, the 
reproducible staiuiug 

pattern 

is observed. 
lu the wildtype em- 

bryo the involution 

of the body segments 
stains smoothly 

producing a curved 

line, whereas the mutant 

has a break in the staining 
at the roost interior 

point of each involution. 
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Discussion 

Most of the work done in this project has been on the 0-5 hours stage of 

development. At this time, repeatable results have been obtained using the 4D9 and 

7G10 MAb's. Further work needs to be done to characterize the development throughout 

the embryonic development. Also, staining experiments with rrol' need to resume. Due 

to difficulty with my stocks, the results from this allele were too few to establish any 

repeatability. 

In embryos stained with 4D9 it appears that mutations in the trol locus do 

generate a phenotypic difference between wildtype and mutant embryos. In embryos 0-5 

hrs old, the number of rows of neurons per seginent stained in the embryo by the 

antibody increase in number from the wildtype number of 1-2 through 2-5 for irol' and 

3-5 for trol'. It is encouraging that we are seeing this increase in severity of the 

phenotype as the severity of the allele increases. At the present time, the result is 

repeatable, but the number of high quality images obtained is too small to give a good 

statistical analysis. However, at this point it should be easier to get images conducive to 

this analysis because I now know what segments are of more importance, and which 

focal plane must be clear. 



These results suggest an excess of neurons is being formed. These preliminary 

results may indicate one of two possible explanations for the defect. There tnay be a 

defect in neuroblast proliferation, i. e. for some reason the neuroblasts are dividing 

excessively. The other option is that rrol is acting in the embryo to cause a more 

generalized initiation of mitosis, and as a result mutations in troi lead to generalized cell 

cycle defects. To determine which of the hypotheses are correct, first, the number of 

neuroblasts being formed must be carefully examined. Careful sampling during 

neuroblast delamination may provide an answer when stained with either anti-eng railed 

(anti-eng) or anti-horse radish peroxidnse (and-HRP). If neuroblast proliferation 

appears normal, it may become practical to establish an in vitro culture system to 

directly measure the change in rates of division between wildtype and mutant cell 

populations. 

The staining observed in the 7G10 embryos initially appeared to contradict these 

findings, because a loss of cells staining is observed. Upon closer examination of the 

staining function of 7G10 however, it became clear that this is not the case. According 

to Pate), Snow and Goodman, during the early stages of development and neurogenesis, 

most central nervous system (CNS) staining is obscured by staining of the ectoderm in 

patches which align with the segmental grooves (1987). Apparently we are seeing the 



loss of ectodermal cells, and an increase in neurons, and as a result it is likely that 

observation of the number of neuroblasts being formed is going to increase. This would 

indicate that rrol is having some effect on the fate of the neuroectodermal progenitor cell 

proliferation and differentiation so that there is a change of fate taking place. Once 

again, initial experiments in determining if this is actually what we are observing should 

center on determining the number of neuroblasts heing formed in the early divisions of 

neurogenesis. 

Conclusions 

Mutations in the trol locus do appear to be having an effect on the development 

of the embryonic nervous system, and at this point preliminary evidence indicates a 

more generalized cell cycle defect, or a potential change of fate for neuroectodermal 

cells is occurring. Work should continue at this point to first establish the statistical 

validity of the phenotypes observed, and then work should focus on the numbers of 

neuroblasts found at different stages of embryogenesis. Increases or decreases in the 

numbers of neuroblasts formed between wildtype and mutant strains will further clarify 

the role of trol in the developing embryo. 
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