
PASSIVE LOCALIZATION OF ACOUSTIC SOURCES IN MEDIA

WITH NON-CONSTANT SOUND VELOCITY

A Thesis

by

THOMAS SCOTT BRANDES

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 1998

Major Subject: Interdisciplinary Engineering

PASSIVE LOCALIZATION OF ACOUSTIC SOURCES IN MEDIA

WITH NON-CONSTANT SOUND VELOCITY

A Thesis

by

THOMAS SCOTT BRANDES

Submitted to Texas A@M University
in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Approved as to style and content by:

Robert H. Benson
Chair of Committee)

William E, Evans
(Member)

Karan L. Watson
(Member)

Joseph . r an

(em r)

Karan L. Watson
(Head of Department)

May 1998

Major Subject: Interdisciplinary Engineering

ABSTRACT

Passive Localization of Acoustic Sources in Media

with Non-Constant Sound Velocity. (May 1998)

Thomas Scott Brandes, B. S. , Georgia Institute of Technology

Chair of Advisory Committee: Dr. Robert Benson

There is a growing concern about the effects of low frequency sounds (LFS) on

marine mammals. One way to assess these effects on marine mammals involves the

study of disturbance reactions. Detailed research of disturbance reactions of submerged

marine mammals requires 3-dimensional localization and tracking of the animals. An

acoustic source is localized passively with the use of travel time differences (TTD) of a

signal's reception received by multiple hydrophones at known positions. An initial

approximation of source position is found using straight-line paths of sound propagation

between source and receiver. An algorithm is then used to iteratively pinpoint source

position in a medium with a non-constant sound speed. This algorithm calculates direct

eigenrays connecting the approximate source position and each of the four buoys. These

eigenrays are used to generate a set of TTD values that are subtracted from TTD values

recorded in the field, giving TTD differences (TTDF). Ti = travel time to buoy i.

TTDi; = Ti- T;. TTDF;= TTD'i; — TTDi;. The depth coordinate of the source position is

adjusted until TTDFi = 0. Then one of the horizontal components of the source position

is adjusted until TTDF i = + TTDFi. Then the other horizontal component of the source

position is adjusted until TTDFi =+ TTDFi. This process is repeated until TTDFs -- 0

after adjusting both horizontal components of the source position. Five hydrophone

array configurations are tested, each with 30 pseudo-randomly generated source

positions. Average errors of the 150 source position calculations, (x, y, depth) in meters,

are (+1. 58, +1. 70, 210. 44) for the straight-line, and (+0. 72, +0. 83, +1. 10) for the

algorithm. On average, the algorithm improves the source depth calculation by an order

of magnitude.

This dissertation is dedicated
lo my Parents.

ACKNOWLEDGMENTS

I would like express my deepest gratitude to my family, who has given enduring

support in my scholastic pursuits. I would like express my sincere thanks to Dr. Robert

Benson for his encouragement and guidance in this project. I would also like to thank

the other members of my committee, Dr. Bill Evans, Dr. Joseph Morgan, and Dr. Karan

Watson for making my degree in this field possible. A special thanks to Troy Sparks for

directing much of the field work that my project is a part of. I am grateful to Dr. Rainer

Fink and John T. Willis for substantial work on buoy design and construction. I would

like to thank Stewart Robinson for helping with the setup of field operations. I would

like to thank Brad Dawes, Kristie Jenkin, and Susan Eckelman for helping with the field

work on the R/V Acadiana. I would like to thank Francisco '*Paco*' Ollervides, Sarah

Stienessen, and Suzanne Yin for helping with the field work on the BP oil rig. I would

like to thank the Office of Naval Research for funding this project, and British Petroleum

for providing an oil platform in the Gulf of Mexico for this project. The research vessel

Acadiana from Cocodrie, LA was provided by the Louisiana Universities Marine

Consortium.

TABLE OF CONTENTS

Page

ABSTRACT. .

DEDICATION.

ACKNOWLEDGMENTS . .

TABLE OF CONTENTS . .

vi

Vii

LIST OF FIGURES. ix

LIST OF TABLES.

LIST OF SYMBOLS. xl

INTRODUCTION 4 BACKGROUND. .

Documented disturbance reactions. . .
Current work at Texas A&M.
This project. .

2
4
6

MATHEMATICAL SETUP.

The inverse problem.
Mathematical setup of the straight-line model.
Straight-line programming specifics.
Problems created by non-constant sound speed.
The forward problem. .
Mathematical setup of the ray-tracing model.
Ray-tracing programming specifics,
Mathematical significance of hyperbolas.
The TTDF algorithm. .
Example of one iteration. .

METHOD OF TESTING.

8
8

11
11
12
12
14
16
19
24

28

RESULTS. . . 33

Page

CONCLUSION. . 37

REFERENCES. 38

APPENDIX A. FLOW CHART OF THE PROGRAM. 41

APPENDIX B. SOURCE POSITION PROGRAMMING CODE . . 42

SCR. H. .
SCR M. CPP
SCR HYP. CPP
SCR ARC. CPP.

42
44
52
69

APPENDIX C. SAMPLE INPUT FILE FOR BUOY POSITIONS AND
TTD VALUES

APPENDIX D. SAMPLE INPUT FILE FOR SOUND SPEED VS.
DEPTH PROFILE.

77

78

APPENDIX E. SAMPLE OUTPUT FILE. . 79

VITA. 80

LIST OF FIGURES

FIGURE Page

1 Diagram of the field setup of the sonobuoys and a whale. . .

2 Typical sound speed vs. depth profile for the Pacific and Atlantic,

low latitudes (40').

3 Ray path calculations with the ray-tracing program for the corresponding
profile on the right. 15

4 Ray path calculations with the ray-tracing program with another profile,
on the right. 15

5 A hyperbola. 17

6 The intersection of hyperbolas generated with constant sound speed. . 18

7 Shift in the hyperbola with a change in sound speed. . . 20

8 Interaction of hyperbolas with TTDFi = TTDFz. 22

9 Interaction of hyperbolas with TTDFi -- -TTDFt.

10 Iterations using matched TTDF values. .

11 Square array configuration with 30 test points.

12 Wide rhomboidal array configuration with 30 test points,

23

25

30

31

13 Narrow rhomboidal array configuration with 30 test points. . .

14 Wide trapezoidal array configuration with 30 test points.

31

32

15 Narrow trapezoidal array configuration with 30 test points. . . 32

LIST OF TABLES

TABLE Page

I Average errors in the source position calculations of both the straight-

line model and the TTDF algorithm for all 5 array configurations. 34

LIST OF SYMBOLS

x, y
z
t

T,

+p

tl
Sp

s
c
cp

g
e
n

horizontal distances (m)
depth (m)
travel time (sec)
travel time to receiver i (sec)

travel time difference (TTD) between receiver l and receiver i (sec)
position vector of receiver i

position vector of the source
approximate position vector of the source
sound speed (m/s)
sound speed at beginning of layer (m/s)
change in sound speed with respect to depth (m/s)
grazing angle (rad)
number of receivers

INTRODUCTION & BACKGROUND

Recently, there has been an increased interest in the effects of man-made noise

on marine mammals. Concerns over the effects of noise on marine mammals initially

became focused with the U. S. Marine Mammal Protection Act (MMPA) of 1972, which

established a moratorium on harassment, hunting, killing, and the capturing of marine

mammals. Interactions involving human generated noise have drawn attention because

the MMPA treats noise related disturbances as a form of harassment and thus a violation

of the act. Currently, there is particular interest in the acoustic effects of military and

industrial operations and research activities in the oceans of the world (Richardson et al. ,

1995).

Most human activities in the offshore environment produce low-frequency sound

(LFS) between 5 Hz and 500 Hz. Most LFS in the ocean is generated by ship traffic

(Urick, 1983) and little is known about its effect on marine mammals (Richardson et al. ,

1995). However, highly visible research activities are attracting the attention of

environmental groups (Herman 1994, Holing 1994, NRC/OSB 1994), particularly when

research involves acoustic tomography. Acoustic tomography measures physical

properties of ocean sections such as sound speed, density, salinity, and temperature.

This field is of particular concern for MMPA regulators since these researchers in

acoustic tomography usually use LFS projected into the deep sound channel. Depending

on the initial source level of these signals, they can be heard by marine mammals

The Journal of the Acoustical Society of America is selected as the model for style and

format.

entering the deep sound channel thousands of kilometers away. An example of current

research of this nature is the Acoustic Thermometry of Ocean Climate (ATOC) project

to monitor temperature trends in the Pacific Ocean. In this project, coded signals

centered around 75 Hz are periodically projected into the deep sound channel at a source

level around 195 dB rel IliPa from Hawaii and Central California. These signals are

received at various sites in the North Pacific as well as New Zealand (Richardson et al,

1995).

Documented disturbance reactions

In evaluating whether or not a marine mammal is disturbed by a stimulus, a set of

recognizable disturbance reactions are sought. These reactions usually involve cessation

of feeding, resting, vocalizing, or social interaction, and the onset of alertness or

avoidance (Richardson et al. 1995). For whales, avoidance includes hasty diving or

swimming away. Sperm Whales (Physerer macrocephalus) are of particular concern

because of their endangered status. Although no studies on sperm whale hearing have

been published (Richardson et al. , 1995), some insight into their hearing range comes

from examining the frequency range in which they vocalize. Sperm whale clicks have a

frequency range from & 100 Hz to 30 kHz, with the highest energy in the 2 kHz - 4 kHz

and 10 kHz -16 kHz bandwidths. Their clicks are repeated at rates from 1 to 90 per

second (Watkins and Schevill 1977, Watkins et ak 1985, Watkins 19SO).

There is some information about sperm whale reaction to human generated

sound. Watkins and Schevill (1975) found that nearby sperm whales temporarily

interrupted their sound production without exception when exposed to a short sequence

of pulses at 6-13 kHz. Additionally, they found that the duration of the whale's silence

was correlated with received levels of the pulsed sounds. Similarly Bowles et al. (1994)

noticed that sperm whales stopped calling when exposed to seismic pulses, even though

these seismic pulses where only 10-15 dB above the ambient noise level, and generated

over 300 km away. Watkins et al. (1985) found that sperm whales not only ceased

clicking, but also scattered away from loud sonar pulses from military submarines.

These signals were between 3. 25 kHz -8. 4 kHz and were in a sequence of

4 - 20 pulses at a rate of I - 5 per minute. Similarly Mate et al. (1994) suggests that

sperm whales moved over 50 km away from an active seismic exploration vessel in the

Gulf of Mexico. However, Mate based his observations on a single event. More

recently, investigations suggest that sperm whales frequently do not cease vocalizations

in the presence of very loud seismic pulses (Norris, 1997). Additionally, Backus and

Schevill (1966) found that sperm whales did not cease calling while exposed to continual

pulsing from an echo sounder at 12 kHz, and one whale even adapted its clicks to match

the echo sounder pulses.

In a study using LFS transmissions similar to the ATOC signal, all sperm whales

encountered ceased calling during the sound transmissions, and were not heard again for

36 hours after the transmission ended (Bowles et al. 1994). These signals were centered

around 57 Hz with an output level of 220 dB rel I Itpa, and emitted in the deep sound

channel for one of every three hours for a period of days. Much more research into the

effects of sound, particularly of continuous low frequency sound, on sperm whales is

needed in order to have a more accurate understanding of whether or not sperm whales

are significantly disturbed by human generated noise.

Current work at Texas A8cM

There is a project currently underway at Texas ARM University's Center for

Bioacoustics to study the behavioral responses of sperm whales to ATOC-like LFS

transmitted for intervals lasting several minutes. The protocol for this study requires that

behavioral responses be measured by tracking the whale's movements underwater. One

way to do this is by analyzing travel time differences of a whale's vocalization received

at four separate hydrophones (Fig. 1). Each of the four hydrophones is attached to its

own free-drifting sonobuoy. Each sonobuoy collects audio from its hydrophone, GPS

data on its current position, and time. From this, a time of arrival for a particular sperm

whale click received at a particular location is recorded. Similar studies have

successfully located source position of a whale with similar data (Watkins and Schevill

1972, Cummings and Holliday 1987, Freitag and Tyack 1993).

The characteristics of sperm whale vocalizations (" clicks") allow measurement

of arrival times. For example, the frequencies at which their clicks have their highest

power are 2 kHz - 4 kHz and 10 kHz - 16 kHz, which are both in a frequency range

easily detected. Since sperm whale clicks have a source level between 160-180 dB rel

1 ltPa (Levenson 1974, Watkins 1980), the animals can be detected from approximately

water are detectable by hydrophone up to 15 km away from the whale (Watkins and

Moore 1982). Furthermore, sperm whale clicks appear to be emitted omnidirectionally

4 Sonobuoys

Sound paths

Whale

FIG. 1. Diagram of the field setup of the sonobuoys and awhale. All four sonobuoys

are at the surface. Only direct eigenrays between the whale and each buoy are used.

11 km (Norris et al. . 1996). Likewise, Watkins (1980) detected sperm whale clicks at a

distance of 10 km from the whale, and estimates that sperm whale clicks made in deep

(Watkins and Schevill 1974, Watkins 1980). Lastly, sperm whale clicks are heard most

frequently during diving and foraging behavior (Whitehead and Weilgart 1991).

This project

The goal of this project is to develop computer software to passively locate

sperm whales using vocalizations recorded at known locations. Rudimentary algorithms

to do this type of analysis have been written and implemented before (Watkins and

Schevill 1972, Cummings and Holliday 1987, Spiesberger and Fristrup 1990, Freitag

and Tyack 1993). Previous methods used a ray-tracing model and assumed a straight-

line propagation path for sound. The propagation path for sound (in the ray-tracing

model) is linear only in a medium of constant sound speed. In the ocean, sound speed is

not constant and is dependent on temperature, pressure, and salinity. Sound wave fronts

in the "real" ocean propagate in arced paths (Urick 1983, Clay and Medwin 1977). Even

though sound speed is a function of several parameters, the sound speed versus depth

profile for a particular region of the ocean varies only seasonally, and sound speed varies

little along a horizontal plane (Urick 1983), Fig. 2. Therefore, a representative sound

speed versus depth profile can be used throughout the study area for a particular

calculation. The algorithm used in this project starts with a straight-line ray-tracing

model for the propagation of sound, and adds in the complexity of a depth dependent

sound speed to more accurately predict the locations of whales.

Sound Speed (m/s)

1510 1520 1530 1540

1000

2000

3000

4000

5000

FIG. 2. . Typical sound speed vs. depth profile for the Pacific and Atlantic low I
'

d

(40') (Urick 1983 . () (ric 3). This is the profile used for all calculations in the project. The list

of data points used for this profile is given in Appendix D.

MATHEMATICAL SETUP

In this section, the three main mathematical approaches used in this project are

explained. They consist of a straight-line model, a ray-bracing model for arced paths,

and hyperbolic considerations. Each of these three areas is presented in sections

involving introductory thoughts, mathematical setup, and then programming specifics.

The inverse problem

In this project, only the sonobuoy positions and the relative arrival times of a

signal are known, and they constitute the sum of the data for a particular event. The

properties of the propagation model for this signal are unknown, meaning that the

signal's source location, the sound speed, and the travel time of the signal to each of the

buoys are unknown. This setup, where the goal is to describe the properties of a

propagation model corresponding to specific data collected from a propagating wave, is

termed the inverse problem. Since the primary focus of the software for this project is to

find the signal's source location, a solution to the inverse problem is sought. The

simplest propagation model is one in which the propagation path between source and

receiver is a straight-line, and this is the starting point.

Mathematical setup of the straight-line model

The path of same phase loci on a wave front, termed a "ray", is a straight-line in

a medium with a constant sound speed. Here, lines are described by vectors and these

vectors are arranged in linear equations describing the system. A sufficiently large

group of linear equations is then used to solve for previously unknown values.

The initial time the signal is transmitted is not known. The separation in time

between reception of the signal at various receivers is measured. Instead of dealing with

the four unknown transmission times between the source and each receiver, it is best to

describe each of these times as a sum of the unknown travel time to the first receiver, Ti,

with the known time delay between the reception of the signal at the first receiver and

the reception at the ith receiver, tn. This difference, T, - Ti = tu, is termed the travel

time difference (TTD). In this way, all unknown propagation times are described in

terms of only one variable, the travel time to the first receiver. Therefore, the basic

relation II r;- s, II
= c T; can be written for the straight-line path from the source to every

ith receiver (II a II
= a). Here, the sound speed is c, the source position is

s, = (s„, s, y, s„), and the receiver position is r;= (r;„riy, ra); I = I, 2, , n where n is the

number of hydrophones. Now, T; is replaced with Ti + tn and with a vector identity, it

follows that,

Ila-bII = IIaII + IIbII -2(ab„+ayiyy+aiy)

r; - s, II
= c (Ti + f i;) '

2rasoo+2riyioy+2rasoz+2Ti Cue = -c ru + II ri II'

i = I, 2, , n-l, since these equations are with respect to receiver Rn This becomes a set

of n-1 linear equations of the form Ax = b. x = [s„s~ s„Tt] and is the vector of

unknowns for which a solution can be found. A is a matrix with its ith row of the form

[2ra 2' 2ra 27nc] . 2

and b is a column matrix with its ith row of the form

[-c'7l/'+ ll rl II']

In this system of n-I equations, there are four unknown values. Since there are only four

buoys used in this project, there is a set of only three equations. The problem of too

many unknowns to solve for is remedied by setting all four hydrophone at the same

depth, 9. 75 m in this project.

A lack of precision in measured arrival time of clicks along urith errors in the

measured positions of the buoys, make an exact solution problematic. Use of these raw

data will lead to a non-solvable set of equations. To correct for this problem, a least

squares approximation to calculate the closest solution, x is used. Then the equation set

A Ax = A b solves for the least squares solution, x, where x is still of the same form

as x, and its elements represent the closest solution, in the event of a nonexistent exact

solution (Strang, 1993).

Straight-line programming specifics

Since the straight-line calculations require a constant sound speed, and an

average sound speed along a propagation path depends on the source depth, multiple

calculations of a straight-line solution are made, each one using a more accurate sound

speed based on the previous calculation. A weighted average of sound speed, from the

sound speed versus depth profile for depths ranging between the hydrophone depth and

the previously calculated source depth, is used for each source depth calculation.

Initially, an average sound speed is calculated for a source at a depth of 100m.

Subsequent calculations of average sound speed and source position are made until

consecutive calculations of source position vary little.

Problems created by non-constant sound speed

The previous formalism works only for a constant sound speed; not only does a

non-constant sound speed create an extra variable to solve for, but it also creates an

arced propagation path between source and receiver. The equation of an arced path is

straight forward, providing the radius of curvature remains constant. This requires that

Jc
the change in sound speed with respect to depth, — — = c ', remains constant. This

works for small changes in depth, but not overall with c = c(z) as in Fig. 2. Continuing

on in this way, solving sets of equations for each increment of depth preserving a

constant c ' is quite involved, so another approach is taken.

The forward problem

In the inverse problem, data collected from wave propagation are used to

determine the particular model for the propagation of this wave. This set up can be

reversed, where the model for wave propagation is known, and data about this wave

propagation are calculated by using the model. This set up is termed the forward

problem. To apply the forward problem methodology to this project, a source location

has to be known. With both a known starting point (the source position) and an end

point (a particular buoy position), a depth dependent sound speed is used to calculate the

actual path of the direct eigenray connecting these points. In this way the direct eigenray

between the source and each buoy is found. As mentioned previously, a ray is formed

by the path of same phase loci on a wave front (ray paths are shown in Fig. 2 and 3).

An eigenray is a ray that connects two points, usually a source and receiver. Eigenrays

that do not have reflected paths are termed direct eigenrays.

Mathematical setup of the ray-tracing model

The method of calculating the path of these rays is termed ray-tracing. The

typical ray-tracing model works on the principle that a ray will have a uniform arc in a

medium with constant c ' (Urick, 1983, Clay and Medwin, 1977). A depth dependent

sound speed is incorporated by discretizing the sound speed profile into a piecewise

continuous profile of constant c ' segments. The ray paths are then calculated

piecewise. Each segment of the arc has a particular radius of curvature, based on the

particular c ' for that depth. In this formalism, it is also necessary to keep up with the

13

initial and final grazing angles of the arc in each segment. The equations of time and

position for the arced paths in each region of constant c ' follow:

C„ x = x, + " (sinef — sinO, .) gcos8, .

Cn
2 2

p
+ "

(c o s Of — c 0 s I 9,) gcos8,
dc

g = —; c, = sound speed at the beginning of the layer; 8= grazing angle; t = time;
dz

x = distance along the water surface; z = depth.

Once a direct eigenray is found, its time of propagation is calculated. Subtracting

the propagation time to each buoy from the propagation time to the first buoy (the first

buoy to receive the signal) yields a set of TTD values. These calculated TTD values are

compared with actual TTD values collected in the field to give information on the

accuracy of the source position used in this calculation. The initial source position used

in this calculation is the one calculated by the straight-line model mentioned earlier.

Subsequent adjusnnents in source position are made by examining the differences in the

calculated and actual TTD values. The method for source position adjustments is

understood once further mathematical significance of the TTD values and how they

correspond to hyperboloids is made.

Ray-tracing prograinming specifics

Examples of calculated rays corresponding to particular sound speed versus

depth profiles are shown in Fig. 3 and 4. In Fig. 3, rays at a variety of initial grazing

angles are calculated, originating near the deep sound channel axis. In Fig. 4, ray paths

are shown from two different starting depths to show two different features. Near the

surface, rays with a shallow grazing angle reflect along the water surface in a path that is

termed a surface duct. Rays with large enough grazing angles, as well as rays

originating deeper, are reflected along the bottom and (or) the surface. With this type of

sound speed versus depth profile, no deep sound channel is present. The ray paths

presented in Fig. 3 and 4 correspond well with ray paths in similar set ups (Urick, 1983,

Clay and Medwin, 1977). In the ray-tracing program, the sound speed versus depth

profile is read in as a file of data points. The list of points is used to calculate discrete

intervals of constant c ' . In this way, the resolution of arc segments is dependent upon

the number of points included in the sound speed versus depth profile.

Horizontal Distance (m) Sound Speed (m/s)

ts. 10000 15000 20000 25000 30000 199 1530

1000

2000
-15 '

-25 '

3000

9000

Depth (m) Empt h(rri)

5000

FIG. 3. Ray path calculations with the ray-tracing program for the corresponding

profile on the right. Rays with initial grazing angles of -7', 7, -15, and 15 at 800m
are internally refracted, revealing a deep sound (SOFAR) channel. The ray with an

initial grazing angle of -25 ' at 800m has bottom and surface reflections.

Horizontal Distance (m)

0 oo 25

Sound Speed (m/s)

140 150 2

1000 15' -tos'
00
Depth(m)

2000 00

3000 00

tooo Depth (m)

5000 5 00

FIG. 4. Ray path calculations with the ray-tracing program with another profile, on the

right. Initial grazing angles of -7', and -9 at 50m reveal surface ducts. Initial grazing

angle of -10. 5
' at 50m, and 15', 7', and -15 ' at 2000m show surface and bottom

reflected paths.

Mathematical significance of hyperbolas

The solution set of possible source positions corresponding with a single TTD

between two sonobuoys is described by a hyperboloid, providing the sound speed is

constant. The mathematical reasoning for this is best shown in the 2-dimensional case.

A hyperbola is the locus of points P in a plane such that the difference

PFj PF2 between the distances from P to two distinct points Fi and F2

is a constant. (Shenk, 1988) (Fig. 5).

This definition is applied to the setup with Fi and Fz each representing a sonobuoy

position and with the constant distance
~
PF, - PF,

~

representing TTD * c. In this way,

hyperbolas corresponding to each TTD are set up, and their intersection represents the

source position. Since this method uses a constant sound speed, it will not provide an

exact solution (Fig. 6). In this project, 3-dimensions are used, so the surfaces are

hyperboloids. Three hyperboloids are required for a single point solution. Solving a set

of three generalized hyperboloids is quite involved, since they are each required to be on

independent axes. Calculating a solution in this way is further complicated by the depth

dependent sound speed, which needs to be transformed into piecewise continuous

constant fragments.

-10

FIG. 5. A hyperbola. The hyperbola 9x - 16y = 144 with foci Fz and Fz.
P is an arbitrary point on the hyperbola.

18

Horizontal Distance

— 20 -1B

Scalculated

-16

— 4

— 14 -12 -10 r r — 6

r
r r r r — 2
r r r r r r r r r rr

rr
6

rr rr
r r r r r r

r

~ Sactuai

Depth

— 10[

FIG. 6. The intersection of hyperbolas generated with constant sound speed. The

hyperbolas generated with constant sound speed intersect near, but not on, the actual

source position.

The TTDF algorithm

There is another way to approach a solution to this problem. Instead of

calculating the source position exactly, use an approximate calculation of source

position, S, and adjust it to a good approximation to the actual position. This process is

now described. S is found with the straight-line model. Once S is found, the ray-tracing

model is used to find eigenrays between S and each of the buoys. This provides a set of

TTD values corresponding to S and the array. Since the source position is not exact,

these calculated TTD values will differ from the TTD values corresponding to S, . This

difference, TTDs, „, ~d - TTD i„, i, is termed the TTD difference (TTDF).

A hyperbola is closer to its axis with an increase in TTD" c. The TTDF

represents a shift in TTD*c. Correspondingly, a hyperbola with a positive TTDF is

closer to its axis than a hyperbola with TTDF = 0 (Fig. 7). With the understanding of

how the TTDF value shifts a hyperbola, adjustments to S can now be considered. When

working in 2 dimensions, only 2 hyperbolas are needed. They provide a TTDF 1 and

TTDF2, each representing shifts in a hyperbola. The goal is to minimize the TTDF, 's in

order to work with hyperbolas with very little shift from the actual hyperbolas. From

Fig, 6, the calculated source position needs to be adjusted until it corresponds with the

actual source position. It is logical to adjust one coordinate of S, x or z, at a time.

20

Horizontal Distance

TTD + shiR

— 10 -6 ~ I
r I

I
r I

I

r
r -4

r
r r

r -6
r

r
r

-8

r -10
r

r
TTD - shift

Depth

FIG. 7. Shift in the hyperbola with a change in sound speed. The central hyperbola gets
closer to its axis with an increase in TTD*c, and further away with a decrease in TTD~c.

Adjusting a coordinate of S until TTDF1 = TTDFa is an option which provides a

stopping point. This situation is shown in Fig. 8. The actual hyperbolas are solid lines,

where as the approximations are dashed. Notice that the intersection of hyperbolas

formed by the TTDF 's is always in front of or behind both of the actual hyperbolas.

Furthermore, the solution set of all possible intersections with TTDF1 = TTDFq forms a

line intersecting the actual solution and approximately normal to the hyperbolas at that

point.

Once one of the coordinates is adjusted to where TTDF1 ~ TTDFq, the next step

is to adjust the other coordinate to where TTDF1 = -TTDFq. A diagram of this

interaction is shown in Fig. 9. In this case, notice that the intersection of hyperbolas

formed by the TTDF's will always be in between the two actual hyperbolas and that the

solution set of all possible intersections with TTDF1 = -TTDFq forms a curve in between

the actual hyperbolas and intersecting the solution.

22

Horizontal Distance

— 20 — 18 -16 — 14 — 12 10 r rr

— TTD

- - TTD+TTDF

r r r r

r

Scelculeted r
Seteuel

rr
r

Depth

-10

Horizontal Position

-20 -18 — 16

(-) Solution set of
TTDFt = TTDF2

— 14 -21 -10

Depth

TTD,

TTDd

— 10

FIG. g. Interaction of hyperbolas with TTDF t - -TTDF2. (Top) From Fig. 6, the Sx
coordinate is adjusted. The actual solution hyperbolas have solid lines. The shifts in the

hyperbolas due to the TTDF's are represented with dashed lines. The intersection of the
dashed lines will always be either in front of or behind both hyperbolas, depending on

the TTDF sign (+ in this example). (Bottom) The dotted line nearly perpendicular to the

hyperbolas corresponds to the solution set of TTDF t = TTDF2.

23

Horizontal Distance

-20 — 18 -16 -14 -12 -10

— TTD

- - TTD+TTDF

, r r r r
sa~. ai

Depth

r
&r

2

Horizontal Position

-10

-20 -18 — 16 -14 "12 — 10
r r

r r
(-) Solution set of
TTDF) = -TTDF2 Depth

— 8
I

TTDq r
TTDg

FIG. 9. Interaction of hyperbolas with TTDF &
= -TTDF2. (Top) From the stopping

position in Fig. 8, the Sz coordinate is adjusted. The actual solution hyperbolas have

solid lines. The shifts in the hyperbolas due to the TTDF's are represented with dashed

lines. The intersection of the dashed lines will always be in between the 2 actual

hyperbolas. (Bottom) The dotted line in between the hyperbolas corresponds to the

solution set of TTDF ~
= -TTDF2.

By adjusting the coordinates in successive order in this fashion, the actual

solution is approached iteratively without the need of any equations involving

hyperbolas (Fig. 10). However, this method can lead to divergence, If so, a convergent

solution is found by reversing the coordinate adjusted when finding TTDFi = TTDF2 or

TTDFi = -TTDF2. This method for finding a solution for source position is termed the

"TTDF algorithm".

For the 3-dimensional case, first adjust the depth coordinate so that TTDFi -- 0.

Then, adjust x and y to get TTDF i = TTDFi and TTDFi = -TTDF2 as explained earlier.

All three coordinate adjustments are repeated during each iteration. After a number of

iterations, all three TTDF's approach 0, indicating the source position is nearly on all

three hyperboloids, and corresponds well with the actual solution. This method

circumvents using involved mathematics to find a solution.

Example of one iteration

To better explain the TTDF algorithm, a numerical example of one iteration is

given. For a particular buoy arrangement, the following TTD values are measured for a

single event, where TTDi; = Ti — T„ the delay in arrival times of a signal received by 2

buoys: TTDii = 0. 104 175 s, TTDis = 0. 196 795 s, TTDi4 0. 348 067 s

With these TTD values and the buoy positions, the straight-line calculation for source

position is, (x, y, depth), S = (105. 31, 34. 30, 78. 90) with respect to buoy 1, the first

25

Horizontal Position

— 20 4 -18

scatuulalad

— 16 — 14 — 12 -10 r
r r

/
/ r

r r

Depth

Sadual

r
r r

TTD,

TTDF, = -TTDF/

TTDa

TTDFl= TTDFa — 10

FIG. IO. Iterations using matched TTDF values. S„l, „l«d = the starting point. The
dotted line nearly perpendicular to the hyperbolas corresponds to the solution set of
TTDF l = TTDF1. The dotted line in between the hyperbolas corresponds to the solution

set of TTDFt = -TTDF2. The solid lines are the actual hyperbolas corresponding to the

actual TTD values. The source position is adjusted from Sdala„l«d in the x direction until

TTDFt = TTDF1. Then the z coordinate is adjusted until TTDFt = -TTDF2. This is

repeated until TTDF l = TTDFq = 0, indicating that the source position corresponds with

the intersection of the hyperbola, and in its correct location.

26

buoy to receive the signal. From this initial approximation of the source position, an

eigenray between this source position and each of the 4 buoys is calculated. The travel

time along each eigenray is calculated, and these 4 travel times are used to calculate a set

of TTD values corresponding to this approximate source position. They are:

TTD'i2 = 0. 105 998 s, TTD'33 0. 199 111 s, TTD'i4 = 0. 350 716 s

Now TTDF values, difference in calculated and actual TTD values, can be calculated for

this approximate source location. They are, TTDF, = TTD'i, — TTDi;, .

TTDFi = 0. 001 823 s, TTDF3 = 0. 002 316 s, TTDF3 = 0. 002 649 s

This is the starting point for the TTDF algorithm. The following format is now used to

keep track of values throughout a series of calculations:

Sx Sy Sz

TTDFi TTDF3 TTDF3

We start with:

105. 31 34. 30 78. 90

0. 001 823 0. 002 316 0. 002 649

The first step is to adjust the Sz coordinate until TTDF3 = 0. This corresponds with the

intersection of the hyperboloid formed with buoys 1 and 4.

We now have:

105. 31 34. 30 89. 90

-0. 000 100 -0. 000 064 0. 000 000

27

Now, adjust Sx until TTDF t = -TTDFq. This puts the source calculation in between the

hyperboloid formed by buoys 1 and 2, and the hyperboloid formed by buoys 1 and 3

(Fig. 9). Adjusting Sx TTDF~ ~ TTDFt leads to divergence.

We now have:

105. 06 34. 30 89. 90

0. 000 086 -0. 000 086 -0. 000 018

Now, adjust Sy until TTDFt - -TTDFq. This puts the source calculation either in front of

or behind both the hyperboloid formed by buoys 1 and 2, and the hyperboloid formed by

buoys 1 and 3 (Fig. 8),

We now have:

105. 06 34. 51 89. 90

-0, 000 080 -0. 000 080 -0. 000 111

These three steps complete one iteration. Notice that the TTDF values after one full

iteration are all smaller than before the iteration, indicating that the calculated source

position after one iteration is more accurate than before the iteration. This process is

now continued by adjusting Sz until TTDFq - -0. These iterations will continue until

TTDFs & 0. 000 000 49 (sec) after the Sy adjustment.

28

METHOD OF TESTING

In testing the accuracy of the TTDF algorithm's calculation of source position, 5

array configurations of hydrophones were tested, each with 30 pseudo-randomly

generated source positions (Fig. 11 - 15). These source positions were used to calculate

accurate TTD values that were used by the TTDF algorithm to solve for source position.

The calculated TTD values are analogous to the actual field data used by the TTDF

algorithm. In this way, the source position calculations from the TTDF algorithm can be

compared with an accurate value of source position.

The calculation of TTD values associated with a particular source position and

set of hydrophone locations is done with the ray-tracing method described earlier. A

non-constant sound speed is used, based on a sound speed vs. depth profile. Eigenrays

between the source and each receiver are calculated. In this way, propagation time for

each eigenray is calculated and the corresponding TTD values are found. Even though

the TTDF algorithm for locating source position uses this same ray-tracing model, it

does not lead to circular reasoning. Only the data available in the field is used by the

TTDF algorithm, and the ray-tracing model is used only for directional shifts in the

source position calculation; it does not calculate a value for source position. The only

confounding of the accuracy of calculations with this method is due to inaccuracies in

the ray-tracing model. Such inaccuracies would be introduced by a medium with

variation in the sound speed vs. depth profile in the horizontal plane.

29

Five hydrophone array configurations were tested. In these configurations, each

buoy was several hundred meters apart, A basic shape for an array is a square; an array

in a line does not provide a unique solution, even with the straight-line method.

Subsequent array configurations were chosen based on drift possibilities. The two ways

a square configuration is likely to drift apart form either a rhomboidal or trapezoidal

shape. Two cases of each are included, with different degrees of dispersal.

Each configuration was tested with 30 pseudo-randomly generated source

positions. The 30 points were generated with a pseudo random number generator in the

C programming language. All the sound propagation models where written in the C

programming language. The points were generated to have a depth of 20m - 4000m and

have direct eigenrays to each buoy. The horizontal coordinates of each point where

generated in 3 categories. Of the 30 points, 5 points were generated to be within 500 m

of the array, 10 points within 1500 m, and 15 points within 5000 m of the array. This

break down was chosen in order to have a higher density of points close to the array,

which corresponds with expected field conditions.

30

400

200

-4000 -2000 2000 4000

-200
Array shape

-400

FIG. 11. Square array configuration with 30 test points. Sonobuoys at the corners.

Distances in meters

40

20

-4000 -2000 2000 '4000

Array shape

-40

FIG. 12. Wide rhomboidal array configuration with 30 test points. Sonobuoys at the

corners. Distances in meters.

400

200

-6000 -4000 -2000 2000 4000

Array shape

-40

FIG. 13. Narrow rhomboidal array configuration with 30 test points. Sonobuoys at the

corners. Distances in meters.

32

400

200

-4000 -2000 2000 4000

-200
Array shape

-400

FIG. 14. Wide trapezoidal array configuration with 30 test points. Sonobuoys at the

corners. Distances in meters.

400

200

-4000 -2000 2000' 4000
Array shape

-200

-400

FIG. 15. Narrow trapezoidal array configuration with 30 test points. Sonobuoys at the

corners. Distances in meters

33

RESULTS

Of the 150 generated data point, the average errors for the source position

calculation with the TTDF algorithm are, (x, y, depth) in meters, (+ 0. 72, + 0. 83, + 1. 10),

and for the straight-line approximation (+ 1. 58, + 1. 70, + 10. 44). Overall, the TTDF

algorithm reduced the straight-line approximation's error in horizontal positioning (x, y)

by a factor of 0. 5, and reduced the error in depth by an order of magnitude (Table I). For

all 150 points tested, the TTDF algorithm lead to a more accurate calculation of source

position than the straight-line approximation. Surprisingly, of the five array

configurations, the square configuration did not yield the lowest error for either the

straight-line approximation or the TTDF algorithm. Instead, the two rhomboidal

configurations provided the best results for the TTDF algorithm, with average errors of

(+ 0. 18, + 0. 17, + 0. 25) m for the wider configuration, and (+ 0. 11, + 0. 17, + 0. 17) m for

the narrower one. For the straight-line approximation, the wide rhomboidal

configuration provided the smallest average error, with errors of

(+ 0. 24, + 0. 32, + 9. 44) m. The worst configuration of the five for the TTDF algorithm

was the narrow trapezoidal shape, with average errors of (2 1. 37, + 1. 42, + 2. 29) m. For

the straight-line model, the greatest average error was generated with the narrow

rhomboidal shape, with an average error of (+ 3. 51, + 3. 32, + 10. 59) m.

34

Table I. Average errors in the source position calculations of both the straight-line model

and the TTDF algorithm for all 5 array configurations.

Array
configuration

Number of
data points

Straight line

(x, y, depth) m

TTDF algorithm

(x, y, depth)m

Square
(Fig. 11)

30 (+ 1. 20, + 0. 70, t 11. 20) (+ 1. 20, + 0. 70, + 1. 86)

Wide
rhomboidal
(Fig. 12)

30 (+ 0. 24, + 0. 32, t 9. 44) (+ 0. 18, + 0. 17, + 0. 25)

Narrow
rhomboidal
(Fig. 13)

30 (+ 3. 51, + 3. 32, + 10. 59) (z 0. 11, + 0. 17, + 0. 17)

Wide
trapezoidal
(Fig. 14)

30 (+ 1. 58, k 2. 75, + 10. 28) (+ 0. 80, + 1. 67, + 0. 91)

Narrow
trapezoidal
(Fig. 15)

30 (+ 1. 37, + 1. 42, + 10. 70) (+ 1. 37, + 1. 42, + 2. 29)

AH five
configurations

150 (+ 1, 58, 2 1. 70, + 10. 44) (+ 0. 72, + 0. 83, + 1. 10)

35

DISCUSSION

The calculations of the 150 source positions tested indicate that the TTDF

algorithm yields a more accurate calculation than the straight-line approximation,

Without exception in the points tested, the TTDF algorithm produced a more accurate

calculation for source depth, usually with an improvement by an order of magnitude

over the straight-line approximation. Surprisingly, 58 of the data sets used lead to an

unavoidable divergence after the initial source depth correction. However, this does not

present a problem for this project. When this divergence occurs, the calculations are

stopped, and the depth corrected source position is used. Since no horizontal corrections

are used, the x & y straight-line components are kept. For the data sets this case applies

to, the average source position errors are (+1. 44, + 1. 48, + 1. 32)m, where as the straight-

line error in the depth coordinate is +10. 10 m. Of the 58 data sets stopped after an initial

depth correction, 22 are from the square array configuration. This disproportional

amount suggests geometric reasons behind this divergence.

The ideas behind geometric dilution of precision (GDOP) of array

configurations, a calculation used by the Global Positioning System (GPS), might

provide a way to determine volumes within which the TTDF algorithm would expect to

have convergent solutions. The GDOP concept provides an error coefficient in position

calculations, based entirely on the geometric orientation of satellites (Parkinson 1996,

Spilker 1996). This GDOP value is used to select the best configuration of satellites

available at the time, for a particular position calculation. The GDOP value is calculated

36

with the unit vectors from the ground position to each of the satellites. GDOP values

decrease (less error) as the position is surrounded more completely by satellites, as the

volume wedge formed by the position and all the satellites gets larger. With the

sonobuoy array, GDOP values could be found, possibly indicating source positions

likely to lead to divergence using the TTDF algorithm, making the algorithm more

efficient.

To a certain degree, the resolution of the source position calculation is user

defined. In the calculations included in this paper, the stopping condition of

TTDFs & 0. 000 000 49 sec is used. This value is set arbitrarily; it roughly corresponds to

the limiting resolution of the equipment used in the signal analysis. This value could be

increased to speed up the calculation of source position. In doing so, the average errors

in source position will increase. However, they should not be greatly effected, and

would be no worse on average than the average errors generated in the previously

described case, where only the initial depth correction is used.

A typical source position calculation with full iterations takes from 2 to 20

minutes with a Pentium 166MHz personal computer. The straight-line calculation is

done almost immediately, and the first calculation of depth correction takes 5 to 30

seconds. This research is set up to post-process the data, calculating whale positions

once back in the lab. In a situation where source accuracy on the order of + a few meters

is sufficient, the source position calculation after only the first depth correction could be

used for systems intended for nearly real time calculations of source position, while in

the field.

37

CONCLUSION

The TTDF algorithm provides a more accurate calculation of source position

than the straight-line approximation, reducing the error in the calculation of horizontal

positioning by a factor of 0. 5, and reducing the error in depth by an order of magnitude.

The rhomboidal array configurations provide the lowest average source position

calculation errors. In some cases, the TTDF algorithm leads to an unavoidable

divergence, likely due to geometric orientation of the source and the array. In these

cases, the algorithm is designed to stop after the initial depth correction, preventing

divergence. With this depth correction, the source position calculation improves the

error in the depth coordinate by nearly an order of magnitude. Since this algorithm

provides a more accurate calculation of source position than the straight-line

approximation, the goals of this project are met.

38

REFERENCES

Backus, R. H. and Schevill, W. E. (1966). "Physeter clicks, " in Whales, Dolphins, and

Porpoises, edited by K. S. Norris. (Univ. of Calif. , Berkeley, CA), pp. 510-527.

Bowles, A. E. , Sumultea, M. , Wursig, B, , DeMaster, D. P. , and Palka, D. (1994).
"Relative abundance and behavior of marine mammals exposed to transmissions from

the Heard Island Feasibility Test, " J. Acoust. Soc, Am. 96(4), 2469-2484.

Clay, C. S. and Medwin, H, (1977). Acoustical Oceanography, Principles and
Applications. (John Wiley and Sons, New York).

Cummings, W. C. and Holliday, D. V. (1987). "Sounds and source levels from

bowhead whales off Pt. Barrow, Alaska, " J. Acoust. Soc. Am. 82(3), 814-821,

Freitag, L. E. and Tyack, P. L. (1993). "Passive acoustic localization of the Atlantic

bottlenose dolphin using whistles and echolocation clicks, " J. Acoust. Soc. Am. 93(4,
Pt. I), 2197-2205.

Herman, L. M. (1994). "Hawaiian humpback whales and ATOC: A conflict of
interests, " J. Environ. Devel. 3(2), 63-76.

Holing, D. (1994). "The sound and the fury: Debate gets louder over ocean noise

pollution and marine mammals,
" Aicus J. 16(3), 18-23.

Levenson, C. (1974). "Source level and bistatic target strength of the sperm whale

(Physeter catodon) measured from an oceanographic aircraft, " J. Acoust. Soc. Am.

55(5), 1100-1103.

Mate, B. R. , Stafford, K. M. , and Ljungblad, D. K. (1994). "A change in sperm whale

(Physeter macrocephalus) distribution correlated to seismic surveys in the Gulf of
Mexico, " J. Acoust. Soc. Am. 96(5, Pt. 2), 3268-3269.

Norris, J. C. (1997). Personal Communication, Texas AtlcM Univ. , Galveston, TX.

Norris, J. C. , Evans, W. E. , Benson, R. , Sparks, T. D. (1996). "Acoustic surveys, "
pp.

133-187, "Distribution and abundance of cetaceans in the north-central and western

Gulf of Mexico, final report. Volume II: Technical report, " edited by Davis, R. W. and

Fargion, G. S. U. S. Department of the Interior, Minerals Mgmt. Services, Gulf of
Mexico OSC Region, New Orleans, LA. 357p.

39

NRCIOSB. (1994). Low-Freguency Sound and Marine Mammals/Current Knowledge

and Research Needs. U. S. Natl. Res. Counc, , Ocean Stud. Board, Committee on Low-

Frequency Sound and Marine Mammals. Green, D. M. , DeFerrari, H. A. , McFadden,

D. , Pearse, J. S. , Popper, A. N. , Richardson, W. J. , Ridgway, S. H. , and Tyack, P. L, ,
(Natl. Acad. Press, Washington, DC.) 75p.

Parkinson, B. W. (1996). "GPS error analysis, " in Global Positioning System: Theory

and Applications, vol 1. Progress in Astronautics and Aeronautics, edited by
Parkinson, B. W. , and Spilker, J. J. Jr. , (Am. Inst. of Aeronautics and Astronautics,

Inc. , Washington, DC) 163, pp. 469-483.

Richardson, W. J. , Greene, C. R. Jr. , Malme, C. I. , and Thomson, D. H. (1995). Marine
Mammals and Noise (Academic Press, Inc, San Diego, CA).

Shenk, A. (1988). Calculus and Analytic Geometry. (Scott, Foresman and Co. ,
Glenview, IL).

Spiesberger, J. L. and Fristrup, K. M. (1990). "Passive localization of calling animals

and sensing of their acoustic environment using acoustic tomography,
" Am. Nat.

135(1), 107-153.

Spilker, J. J. Jr. (1996). "Satellite constellation and geometric dilution of precision",
Global Positioning System: Theory and Applications, vol 1. Progress in Astronautics
and Aeronautics, edited by Parkinson, B. W. , and Spilker, J. J. Jr, (Am. Inst. of
Aeronautics and Astronautics, Inc. , Washington, DC) 163, pp. 177-208.

Strang, G. (1993). Introduction to Linear Algebra. (Wellesley, Cambridge, MA).

Urick, R. J. (1983). Principles of Underwater Sound, 3" ed. (McGraw-Hill, New

York).

Watkins, W. A. (1980). "Acoustics and the behavior of sperm whales, " in Animal

Sonar Systems, edited by R. G. Busnel, . and J. F. Fish (Plenum, New York). pp. 283-
290.

Watkins, W. A and Moore, K. E. (1982). "An underwater acoustic survey for sperm

whales (Physeter catodon) and other cetaceans in the southeastern Caribbean, "
Cetology 46, 1-7.

Watkins, W. A. and Schevill, W. E. (1972). "Sound source location by arrival-times on

a non-rigid three-dimentional hydrophone array,
" Deep-Sea Res. 19(10), 691-706.

40

Watkins, W. A. and Schevill, W. E. (1974). "Listening to Hawaiian spinner porpoises,

Stenella cf. longirosrris, with a three-dimensional hydrophone array,
" J. Manunal.

55(2), 319-328.

Watkins, W. A. and Schevill, W, E. (1975). "Sperm whales (Physerer carodon) react to

pingers,
" Deep-Sea Res. 22(3), 123-129.

Watkins, W. A. snd Schevill, W. E. (1977). "Sperm whale codas, " J. Acoust. Soc. Am.

62(6), 1485-1490.

Watkins, W. A. , Moore, K. , and Tyack, P. (1985). "Sperm whale acoustic behaviors in

the southeast Caribbean, " Cetology 49, 1-15.

Whitehead, H. and Weilgart, L. (1991). "Patterns of visually observable behaviour and

vocalizations in groups of female sperm whales, " Behaviour 118(3/4), 275-296,

41

APPENDIX A

FLOW CHART OF THE PROGRAM

read~osition

read~reft]e

file size

file size

t]ow

call

loop

I
I

set coords

iterative st line

find source

-J
uiitil no data
sets are left

avg c

straight line gauss elim

until Sz n+1 Sz n

find Sx sig find ttds

adjust Sz find ttds find theta

P--- — — J u — -J
until ttdfi2] = 0 until all 4 eigenrays are

swap rows

mult by const

subtr rows

are~ ath arc segment

C- ------- ----- -I
founo unttt etgenray Is Tound

find Sy sign find ttd

start find source adjust Sz

(tf diverging)

or

set coords

adjust Sx find ttds
4 I untill ttdfic] z ttdfll]

adjust Sy find ttds

untgl ttdfic] + ttdfil]

iterative st line
adjust Sz

find Sx sign

find source fully

adjust Sx

adjust Sy

find source fully untill i ttdfl2] (
&. 49 ttsec

42

APPENDIX B

SOURCE POSITION PROGRAMMING CODE

SCR. H

This 0++ code is set vp to run as a "project" with several
programs. These programs are "src m. cpp", "src hyp. cpp", and
src arc. cpp", and should be set vp in this order. They all call the
header file "src. h".

This program returns the calculated position of a signal 's
source, based on signal reception times at fovr known locations. This
de Ca is read in as "posi Cion(47 [5] [100] w from the file poinCed to by
"i fp" in "read posi ti on", and inclvdes multiple even Cs. Propagation
for sovnd underwater is determined using a sovnd speed vs. depth
profile read in as "profile(3] (100]" from the file pointed to by "ifp"
in "read profile". The ovtpvt of this program is sent to both Che
screen and the file pointed to by "ofp" in "main". All these file
names are input by the user.

*/

¹include &stdio. h&
¹include &math. h&

¹define PI 3. 14159265
¹define DEPTH 9. 75 //hydrophone depth (m), 32 feet

int file size (void);
void find source (int)

double abs (double); //retvrns the absolute valve of a nvmber.
void adjust sz (int); //adj vsCs the source position 's z coordinate
void adjust sx(int); //adj vsts the source position 's x coordinate
void adjust sy (int); //adj vsts the sovrce position 's y coordinaCe
void arc path(double, double, double); //calcvlates actual arced path

// r ontpvts it to file '~ofpl
double arc seg(double, double, double, double, double, double, double);

//calculates the exact end or Che last arced
// segmenC sets all final valves of a ray

double avg c(double); //retvrns a weighted average sound speed for a

// depth interval
//ovCpvCs the number of data pts. in a file.
//Controls the flow for finding the source
// position using arced pa ths.

void find source fully(int); //finished finding the source position
// wi th arced paths

double find sx sign (int); //finds the direction to shift sx on the x
// axis

double find sy sign (int); //finds the direction to shift sy on the y
// axis

void find theta (double, douhle, double, double); //i tera ti vely finds
// the initial angle
// of a specific
// ei gen ra y

43

void find ttds (int); //Finds the difference between calculated and
// measured TTDs.

void gauss elim(void); //puCs eqn matrix in a lower block 0's form

void iterative str line(int); //finds the straight line solution for
// source posi Ci on iteratively, with a
// weighted sound speed

void mult by const (int, double);//multiplies a const a matrix row
void read position(char *); //reads in position & time data to

// posi ti on (4] (5] (100]
//r eads in the velocity profile to
// profi le (3] (100]

void set coords(int); //sets the coordinates from deg a min to meters
double sq(double); //returns the square of the input number
void start find source(int); //completes 2 iterations of finding the

// source wi th ar ced pa ths.
double straight line (double, int); //calculates strai ght line solution,

// reCurns Tl
void subtr rows (int, int); //suhtracts Che 2 rows in a matrix
void swap rows (int, int); //swaps rows wi thin a maCrix

44

SCR M. CPP

See more complete program decripti on in "src. h ".
program, all the global variables are defined, overall
is set vp, all files are read in or out, all ovtpvt to
contr oled, and a straight-line solution is calculated.
included are: abs, avg c, file size, gauss elim, i terat
mult by const, read~osi Cion, read~refile, set coords,
straight line, subtr rows, k swap rows.

In thi s
control of flow
the screen zs

Sub routines
ive str line,

sq~

][include "src. h"

double profile [

r[4] [3],
s [3],
tl,
are[4]

ttdf [3],

time 1,
time 2,
stl [3],
Ctdf1 [3] I
time totl
sx sign,
sy sign,
sol sign,

eqn[3] [4]
position

3] [100], //sound veloci ty profile
// (data type) (de Ca poinC I j
// data type (Oj = c, sound speed (m/s)
// data type (1 J = z, depth (+m)
// data type (2) = g, slope of the segment of z vs. c
//x, y, a z coordinates (m) for each bvoy
// (bouy ()J, (coordinate)
//x, y, & z coordinates (m) for source approximation
//time for si gnal to geC to recei ver 1
//end-point data for ei gen ray; (Oj = final
// distance (x),
// (1 J = final depth (z), (2) = final time(t),
// (3) = final angle (th)
//difference in Che time travel difference
// calculated and in data file between
//buoys 1 6 2 (Oj, 1 a 3 (lj, and I a 4 (2)
//TTDF3 afCer i teration 1
//TTDF3 afCer i terati on 2
//first source posi tion calculation
//TTDFs for the firsC source position calcvlaCi on
//time sum used to estimate accuracy
//direcCion to adjust sx on x axis
//direction to adjust sy on y axi s
//solution set sign, indicates solution seC
// TTDFl = TTDF2 or TTDF1 = — TTDF2
//eqva ti on matrix

[4] [5] [100]; //posi ti on and time data (receiver gj,
// (data type J, (data set gj
// de Ca type (Oj = degrees latitude
// data type (1 J = minutes 1st. (w/ decimal seconds)
// data type (2) = degrees longitvde
// data type (3 J = mi no Ces long. (w/ decimal seconds)
// data type (4) = time travel difference wrt buoy

int pos max,
prof max;

//Che nvmber of data sets in a position file
//the number of data sets in a sound profile file

FILE *ifp, //*ifp = input file pointer (sound speed — depth profile)
// (posi Ci on and time data Cable)

45

*ofp, //*ofp = output file pointer (file contains points along
// arc path)

*ofp2; //output file of source positions

int main(void)

int i;
char file name[50];

//data set counter
//file name entered by user

Xq'

s = (%. 2f, %, 2f, ~. 2f) 1n", s [0], s [1]

0]

printf("&s%s%s&s%s",
"1nWhen entering file names, include file type (N". txtK") if any
"Rnlf the file is not in the working directory, ",
"Kninclude the path and use 1"/1" in place of 1"11%". 1n",
"1"C:/temp/file. txt1" instead of 5"C:Ngtemp11file. txt1" gnawn",
"Enter POSITION & TIME data file name: ");

scanf(" %s", &file name);
read position(file name); //reads in the position & time data
printf("1nEnter the SOUND SPEED vs. DEPTH profile file name: ")
scanf(" %s g &file name);
read profile(file name); //reads in the profile
printf("RnEnter file name for data output: ");
scanf(" Ss", &file name);
printf("1n");
printf("&sSshn",

"Coordinates (x, y, depth) meters, where latitude direction is
"1nand longitude is y. 1n");

ofp2 = fopen(file name, "a");
fprintf(ofp2, "%siskin",

"Coordinates (x, y, depth) meters, where latitude direction is
"quand longitude is y. Kn");

fclose(ofp2);
for (i = 0; i &= pos max; ++i)(//for all data sets

ofp2 = fopen(file name, "a");
printf("Data Point %d . . . ", i t 1);
fprintf(ofp2, "Data Point Sd . . . ", i + 1);
set coords(i);
iterative str line (i);
printf("lnStraight line s = (%. 2f, %. 2f, %. 2f)", s[0], s[1],

s[2] t DEPTH);
fprintf(ofp2, "Xnstraight line s = (%. 2f, %. 2f, 5. 2f) ", s[0],

s[1], s[2]t DEPTH);
find source(i);
printf("NnCalculated

s[2] + DEPTH);
printf(" ttdfl 8f, ttdf2 &f, ttdf3 ~f1n", ttdf[0], ttdf[1],

ttdf[2]);
printf("With respect to 1n &. lf deg Sf min Latitude1n",

position[0][0][i], position[0][1][i]);
printf(" %, 1f deg &f min Longitude1n1n",

position[0][2][i], position[0][3][i]);
fprintf(ofp2, "KnCalculated s = (%. 2f, %. 2f, %. 2f)hn", s[

s[1], s[2] + DEPTH);
fprintf(ofp2, " ttdfl ~f, ttdf2 %f, ttdf3 &f1n", ttdf[0],

46

ttdf [1], ttdf [2]);
fprintf(ofp2, "With respect to Kn %. 1f deg &f min Lattitudehn",

position[0][0][i], position[0][1][i]);
fprintf(ofp2, " %. 1f deg %f min Longitudehngn",

position[0][2][i], position[0][3][i]);
fclose(ofp2);

)
return 0;

void read position(char *file name) //reads posi tion & time data into
// posi ti on (4] (5] (1 00]

int i, j; //loop covnters

ifp = fopen(file name, "r");
pos max = file size()/20 — 1;
ifp = fopen(file name, "r");

//number of data sets

for (i = 0; i &= pos max;
for (j = 0; j &= 3; ++

fscanf(ifp, "%1f",
fscanf(ifp, "Klf",
fscanf(ifp, "%1f",
fscanf(ifp, "&lf",
fscanf(ifp, "Slf",

)
)
fclose(ifp);

)

++i) (

j) (
&position
&position
&position
&position
&position

//read
//read
(j] (0] [
[j) [1] (
(j] [2] (

[j 1(3] (
(j] (4] (

in each data set
in for each buoy
i]); //degrees latitude
i]); //minutes latitude
i]); //degrees 1ongi tvde
z]); Ilminv tee longi tvde
i]); //time travel

I/ difference

int file size(void) //retvrns the nvmber of (float) data points in a
I/ file

int counter = 0,
char ch;

c; //integer value of character
//character

while ((c = getc
ch = c;
if (cb == 46)

counter

(ifp)) != EOF)

/I ch == 46 is
counter + 1;

fclose(ifp);
return counter;

void read profile(char wfile name) //reads the sound speed — depth
// profile from ifp into
// profi le(3 J (100]

(
int i;
ifp = fopen(file name, "r");
prof max = file size()/2 — 1;

47

ifp = fopen(file name, "r")

for (i = 0; i &= prof max; tti) (//read ln va1ues from profile file
fscanf(ifp, "%1f", &profile [0][i]); //read in sound speed
fscanf(ifp, "%1f", aprofile [1][i]); //read in depth

)

for (i = 0; i &= prof max-1; +ti) //calculate slope values
profile[2] [i] = (profile[0][i] -profile[0] [i+1])

/ (profile [1] [i] -profile [1] [i+1]);
fclose(ifp);

)

void set coords (int i) //set the buoy coordinates in Cartesian
// coordinates from hat — Lon GPS coordinates
// 1 = data set number

r [0] [01
r (0] [1]
r [01 [2]
r [1] [01

r[1] [1]

r[1] [2]
r(2] [01

r(2) [1]

r(2] [2]
r (3] (0]

r[3] [1]

r(3][2]

0. 0;
0. 0;
0. 0;
(position[1] [0] [i] — position [0] [0] [i])
(position[1][1][i] — position[0][1][i])
(position[1][2][i] — position[0][2][i])
(position[1][3][i] — position[0][3][i])
0. 0;
(position[2][0][i] — position[0][0][i])
(position[2][1][i] — position[0][1][i])
(position[2][2][i] — position[0] [2][i])
(position[2] [3] [i] — position [0] [3] [i])
0. 0;
(position[3] [0] [i] — position [0] [0] [i])
(position[3][1][i] — position[0][1][i])
(position[3][2][i] — position[0][2][i])
(position[3][3][i] — position[0][3][i])
0. 0;

* 60 * 1852
* 1852;
* 60 * 1852
* 1852'

* 60 * 1852
* 1852;
* 60 * 1852
* 1852;

* 60 * 1852
* 1852;
* 60 * 1852

1852;

void iterative str line (int i)
(

//finds str line sol 'n with accurate c
// 1 = data set number.

double z temp=0. 0, //temporary depth
c; //sound speed

c = avg c(100. 0); //initial value of sound depth ls 100 m

s [2] = straight line(c, i);
while (abs(z temp — s [2]) & . 01) (//continue until there is little

z temp = s [2]; // change
c = avg c(s[2]);
s[2] = straight line(c, i);

double avg c (double z) //returns average c; z = maximum depth

48

double z temp,
weighted c = 0

total z = 0. 0,
c stop,
c avg;

int i = 0, j; //loop

//temporary depth
0, //reset the running total

// speed
//reset the running total
//sound speed at stopping
//average sound speed for

counters

of weighted sound

depth
depth
an in ter val

while (profile[1] [i] & z) //count out the number of data points ta
i += 1; // use

for (j=l; j &= i — 1; +tj)(//for each interval between data points
z temp = profile [1] [j] — profile [1] [j — 1];
c avg = (profile[0][j — 1] + profile[0][j]) /2;
weighted c t= z temp * c avg;
total z t= z temp;

)
c stop = profile[0] [i — 1] + profile[2] [i-1]

* (z — profile [1] [i-1]);
z temp = z — profile [1] [i-1];
c avg = (profile [0] [i — 1] + c stop) /2;
weighted c += z temp * c avg;
total z t= z temp;
return weighted c / total z;

double straight line(double c, int m) //calculates straight line
// soluti on, returns s [2 J
// c = sound speed
// m = data set number

int i, j, k;
double a [3] [3],

at[3][3],
b [3],
ata(3)(3),
atb[3],
sum,
r length;

//counters
//matrix A

//matrix A transpose
//vector b
//matrix At * A

//vector At * b
//summation during matrix multiplication
//length oX' the pasi Cion vector af a buoy

// make matrix A

/ /
a[0] [0] = r[1] [0];
a[0] [1] = r[1] [1];
a[0] [2] = position[1][4][m] * sq(c)
a[1] [0] = r[2] [0];
a[1] [1] = r[2] [1];
a[1] [2] = position[2][4][m] * sq(c)
a[2] [0) = r(3] [0];
a[2] [1] = r[3] [1];
a[2][2] = position[3][4][m] t sq(c)

// make vector b

49

for (i = 0; i &= 2; tti)(
r length = sqrt (sq(r[i t 1] [0]) t sq (r [i t 1] [1])

+ sq(r[i t 1][2]));
b[i] = . 5 * sq(r length) — . 5 * sq((c w position[i t 1][4][m]))

// make A transpose
/ /
for (i=O; i&=2; ++i)(

for (j=0; j&=2; ++j)
at [j] [i] = a[i] [j]

make At * A

for (i=0; i&=2; ++i)(
for (j=0; j&=2; ++j)

sum = 0. 0;
for(k=0; k&=2; ++k)

sum = sum + at[i][k] * a[k][j]
ata[i][j] = sum;

// make At * b
/ /
for (i=O; i&=2; +ti)(

sum = 0. 0;
for(k=0; k&=2; ++k)

sum = sum + at[i] [k] * b [k]
atb[i] = sum;

/ /
// make equation matrix
/ /
for (i=0; i&=2; ++i)(

for (j=0; j&=2; ++j)
eqn[i][j] = ata[i][j];

eqn[i] [3] = atb[i];

gauss elim(); //puts egn matrix in a lower block 0's form
tl = eqn[2][3] / eqn[2][2];
s[1] = (eqn[1][3] — tl * eqn[1][2]) / eqn[1][1];
a [0] = (eqn [0] [3] — s[1] * eqn[0] [1] — tl * eqn[0] [2]) / eqn[0] [0];
a [2] = sqrt (sq((c * tl))

— sq(a [0]) — sq(a [1]));
return s[2];

50

double sq(double x)

x=xwx;
return x;

//returns the square of the input (x)

double abs (double x)
(

if(x & 0)
x = — x;

return x;

//returns the absolute value of the input (x)

void gauss elim(void) //puts eqn matrix in a lower block 0's form

int row, //zow number
col=0, I/col umn n umber
rent, //row counter

//counter
double cnst; //constant used in making a pivot

++row) (for (row = 0; row &= 2;
rent = row;
while (rent & 2) (

if (eqn[rcnt][col]
break;

else
rent = rent t 1 I/go down one row

//search for a nonzero pivot element
0. 0)

/Inonzer o pivot is found

if (row != rent) //if nonzero pivot is on another row (rent)
swap rows(row, rent);

for (j=row; j&=2; ++j) (//make pivot = 0
cnst = 1/eqn[j][col];
mult by const(j, cnst);
eqn[j][col] = 1. 0;

)
for (j=row + 1; j&=2;

subtr rows(j, row)
col = col + 1;

++j) //make all elements below pivot

void swap rows (int rent, int row) //swap the rows in a matrix;
// want pivot on the row rent

int j; I/column
double temp; //temporary value holder

for (j=0; j &= 3; ttj) (
temp = eqn[rcnt][j];
eqn[rcnt] [j] = eqn[row] [j]
eqn[row][j] = temp;

)

void molt by const (int i, double cnst) //multiply a row of a matrix by
// a co~steat. i is the row
// cast is the constant

int j; //col umn ¹

for(j = 0; j& 3; ttj)
eqn[i] [j] = eqn[i] [j] w cnst;

)

void subtr rows(int i, int row) //subtract rows of a matrix.
// i=¹ of all subsequent rows;
// row = row number

int j; //column number

for (j = 0; j&=3; ++j)
eqn[i][j] = eqn[i][j] — eqn[row][j]

52

SCR HYP. CPP

See more complete program descripti on in "src. h". This program
handles the iterative calculation of the source position using TTD's
corresponding to hyperboloids. The subroutines included in thi s
program are: adj ust sx, adj ust sy, adjust sz, find source,
find source fully, find sx sign, find sy sign, find theta, find ttds,
start find source.

— */

¹include "src. h"

void find source(int m) //This subroutine controls Che flow for
// calculating the source posi ti on using
// arced paths.
// m = data set number

extern double time 1,
time 2,
sx sign,
sy sign,
sol sign;

//ttdf/ZJ after first iteration
//C tdf (2 J af ter second i tera Li on
//direction to shift sx to find soluti on
//direction to shifC sy to find solution
//order of adj usting sx 6 sy with
// corresponding solution sets

sol sign = 1. 0; //ini tialize
adjust sz (m);
sx sign = find sx sign(m);
sy sign = find sy sign(m);
start find source(m); //go through the first two iterations
if (abs (time 2) & abs (time 1)) (//apparent divergence

time 2 = 1. 0; //reset
set coords(m);
iterative str line (m);
sol sign = -1. 0; //go the other direction
sx sign = find sx sign(m);
sy sign = find sy sign(m);
find source fully(m);

else(//calculati on is converging
adjust sz (m);
find source fully(m);

void start find source (int m) //goes through the first two i tera Ci ons
// wi thout any changes.

(

extern double time 1,
time 2,
ttdf [3],
s [3),
ttdf [3],

//t tdf (2 J af ter fi rst i tera Cion
//ttdf [2] after second iterati on
//differences in calculated & recorded TTDs
//current source position
//differences in calculaCed b recorded TTDs

53

st 1 [3], //first source posi ti on eel cula Ci on
ttdf1 [3], //TTDFs for the first source posi Cion

// calcvlation
time totl; //time sum vsed to estimate accuracy

int i; I/loop counter

adjust sz (m); I/first iteration
adjust sx(m);
adjust sy(m);
time 1 = ttdf [2];
for(i=0; i&= 2; ++i) (//save these values as temporary I

stl [i] = s [i];
ttdf1 [i] = ttdf [i];

)
time totl = abs (ttdf [0]) + abs (ttdf [2])

adjust sz (m);
adjust sx (m);
adjust sy (m);
time 2 = ttdf [2]

)

//second i ter a ti on

void find source fully (int m) //continue to solve For the sovrce
// location, and also check for
// di vergence again. lf there is
// divergence in both directions, start
// over and stop sf Cer one iteration.
// m = data set number

extern double ttdf[3], //di fferences in calculated a recorded TTDs
s [3], I/current source posi ti on
time 1, IICtdf(2] after first iteration
time 2, //ttdf(2j after second iteration
stl [3], //first source posi tion calculation
ttdf1 [3], //TTDFs for the firsC source position

// calculation
time tati, //time sum vsed to estimate accuracy
sx sign, //direction to shift sx to find solution
sy sign, //directi on to shift sy to find solution
sol sign; //order of adj usting sx a sy with

// corresponding solution sets
double time 3, /Ittdf(01 after first iteration

time 4, //ttdf (OJ after fourth i Cerati on
st2 [3], /Ifi rst sovrce position calculation in Chi s

// svbrouCine
ttdf2[3], //TTDFs for the firsC source position calculation

// here
time tot2; //Cime sum vsed to estimate accuracy

int i, //loop counter
cnt = 0; //i teration number counter

adjust sz (m)
adjust sx(m)
adjust sy (m)

54

time 1 = ttdf[2];
for(i=O; 1(= 2; t+i)(

st2[i] = s[i];
ttdf2[i] = ttdf[i]

//save these valves as Cemporary 2

)

time tot2 = abs(ttdf [0]) + abs(ttdf [2])

while(abs(ttdf [2]) & . 00000049) (//stopping condition,
// . 49 mi crosecond accuracy

adjust sz(m);
adjust sx(m);
adjust sy(m);
cnt t= 1;
if (cnt == 1)(//second iteration in this subroutine

time 2 = ttdf[2];
time 3 = ttdf[0];
if (abs (time 2) & abs (time 1)) (//provi des a second check for

// divergence
calcvlation if (time totl & time tot2) (//use the closes

s [0] = st2 [0];
s [1] = st2 [1];
s [2] = st2 [2];
ttdf [0] = ttdf2 [0];
ttdf [1] = ttdf2 [1];
ttdf [2] = ttdf2 [2];
break; //stop this iterative calculation

)
else (//use Che other cal cvlati on

s [0] = st 1 [0];
s [1] = stl [1];
s [2] = stl [2];
ttdf [0] = ttdf1 [0];
ttdf [1] = ttdf1 [1];
ttdf[2] = ttdfl[2];
break; //stop this i ter a Ci ve ca 1 cul a ti on

)

)
if (cnt == 2) (//third iteration in this subroutine

time 4 = ttdf[0];
if (abs (time 4) & abs (time 3)) (//provides a third check for

// divergence
if (time totl & time tot2) (//use the closest calcvlation

s [0] = st2 [0];
s [1] = st2 [1];
s [2] = st2 [2];
ttdf [0] = ttdf2 [0];
ttdf [1] = ttdf2 [1];
ttdf [2] = ttdf2 [2];
break; //stop this iCerative calcvlation

else (//use the oCher calcvlation
s [0] = st 1 [0];
s [1] = stl [1];

s [2]
ttdf [0]
ttdf [1]
ttdf[2]
break;

stl [2];
ttdf1 [0];
ttdf1 [1];
ttdfl[2];

/Is tap this iterative ca l cu la ti on

void adjust sz (int m) //adj ust the Sz coordinate until it matches the
// hyperboloid corresponding to TTD3

extern double ttdf [3], //differences in calculated & recorded TTDs
s [3]; //current source position

double time; //ttdf (2] = t (3] — t (0] — posi ti on(3] (41 (m j 2

// calculated — data

find ttds(m);
time = ttdf[2];
if (time & 0. 0) (//positive time difference

while (time & 0. 0) (//while too shallow,
s [2] += 1. 0; //adjust sz
find ttds (m); //find new eigenrays
time = ttdf[2];

)
s [2] — = 1. 0; //back up one step
find ttds(m);
time = ttdf[2];

make deeper

while (time & 0. 0)(//while
s[2] t= . 1;
find ttds(m);
time = ttdf[2];

)
a[2] -= . 1; //back up one
find ttds(m);
time = ttdf[2];

too shallow, make deeper

step

while (time & 0, 0) (//while
s[2] += . 01;
f ind ttds (m);
time = ttdf [2];

)

s [2] — = . 01; //back up one
find ttds(m);
time = ttdf[2] l

taa shallow, make deeper

step

while (time & 0. 0) (//while
s [2] t=, 001;
find ttds (m);
time = ttdf [2];

)

too shallow, make deeper

56

s [2] -= . 001; //back up cne step
find ttds (m);
time = ttdf [2];

while (time & 0. 0) (//while too shallow, make deeper
s[2] t= . 0001;
find ttds(m);
time = ttdf[2];

)
s [2] — = . 0001; //back up one step
find ttds(m);
time = ttdf[2];

)
else(//negati ve time difference

while (time & 0. 0) (//while too deep, make shallower
s[2] -= 1. 0;
find ttds(m);
time = ttdf[2];

)
s [2] += 1. 0; //back up one step
find ttds(m);
time = ttdf[2];

while (time & 0. 0) (//while
s[2] — = . 1;
find ttds (m);
time = ttdf[2];

)

s [2] t= . 1; //back up one
find ttds (m);
time = ttdf[2];

too deep, make shallower

step

while (time & 0. 0)(//while
s[2] -= . 01;
find ttds(m);
time = ttdf[2];

)
s [2] t= . 01; //back up one
find ttds(m);
time = ttdf[2];

too deep, make shallower

s tep

while (time & 0. 0) (//while
s[2] -= . 001;
find ttds(m);
time = ttdf[2];

too deep, make shallower

//back up one step s[2] += . 001;
find ttds(m);
time = ttdf[2]

while (time & 0. 0)(//while too deep, make shallower
s[2] -= . 0001;
find ttds(m);
time = ttdf[2];

57

)
s [2] += . 0001; //back up one step
find ttds (m);
time = ttdf [2];

double find sx sign (int m) //find direction towards line of solutions
// m = solution set number

extern double ttdf [3],
s [3],
sol sign

double timel,
time2,

//differences in calculated S recorded TTDs
//current source position
//order of adjusting sx & sy with
// correspording solution sets

//ttdf Cime after first iteration
/lttdf Cime after second i teration
// time needs Co approach 0. 0

sign = 1, 0; //direction Co shift sx

if(abs(s[0]) & 1000. 0)(// [sx[& 10000
s[0] -= . 1; //adjust sx
find ttds(m);
timel = ttdf [0] t sol sign * ttdf [1]; //indi cates distance from

/lthi s solution set
s [0] -= . 1; //adjvsC sx
find ttds (m);
time2 = ttdf[0] t sol sign * ttdf[1]

a[0] += . 2;
find ttds(m);

else(// I s [0])

s [0] — =, 01;
find ttds(m);
timel = ttdf[0]

s [0] -=, 01;
find ttds(m);
time2 = ttdf[0]

//back up 2 steps

1000. 0
//adjust sx

+ sol sign * ttdf [1]; //indi caCes distance from
// this soluti on set

//adjust sx

+ sol sign * ttdf[l]

s[0] += . 02; //back up 2 steps
find ttds(m);

if (timel & time2) //if getting further away from solution sec,
sign = -1. 0; // then switch direcCi ons

return sign;

double find sy sign (int m) //find the direction towards line of
// solutions m = solution sec number

extern douhle ttdf[3],
s[3],
sol sign;

//differences in calculated a recorded TTDs
//current source position
//order of adjusting sx a sy wi th

58

double timel,
time2,

// corresponding solution sets
//ttdf Cime after first iteration
//ttdf time after second iteration
// Cime needs to approach 0. 0

sign = 1 . 0; //di recCi on to shi f t sx

if(»s(s(0])»000 0) (// Isyl & 10000
a [1] -= . 1; //adj usC sy
find ttds (m);
timel = ttdf [0] — sol sign * ttdf fl]; //indicates distance from

// thi s solution set
s [1] — = . 1; //adjust sy
find ttds(m);
time2 = ttdf[0] — sol sign * ttdf[1.]

s[1] += . 2;
find ttds(m)

//back up 2 steps

1000. 0
//adjust sy

else(I/I syl
a[1] -= . 01;
find ttds(m);
timel = ttdf[

s[1] -= . 01;
find ttds(m);
time2 = ttdf[

0] — sol sign * ttdf [1]; //indi cates di stance from
/I this solution set

//adjust sy

0] — sol sign * ttdf [1]

s[1] += . 02; I/back up 2 steps
find ttds (m);

) if (timel & time2) //if getting further away from solution set, then
sign = -l. 0; // switch direcCions

return sign;

void adjust sx (int m) //adj ust sx until intersection wi th solution set
// TTDF1 = TTDF2 or TTDF1 = -TTDF2 is found.
// m = de Ca set number

extern double

double time;
int cnt=0,

stop = 0;

ttdf [3], //differences in calcuiated a recorded TTDs
s [3], //curren t sour ce position
sx sign, //direction to shift sx to find solution
sol sign; //order of adjusting sx & sy with

// corresponding solution sets
//indi cates distance from soiu Cion set
//iteration number
//stop = 0 -& continue, 1 — & stop

time = ttdf [0] + sol sign * ttdf [1];
if (time & 0. 0) (I/on one side of the solution set

while (time & 0. 0) (I/whi ie on this side
s [0] — = sx sign* 1. 0; //ad just sx
find ttds (m); //find new eigenrays
time = ttdf [0] + sol sign * ttdf [1];

59

cnt +=1;
if (cnt &= 20)(//going the wrong direction on x axis

stop = 1; //need to change directi on and bypass all
// subsequent steps in this subroutine.

s[0] += sx sign*(cnttl)"1. 0;
sx sign *= — 1. 0; //change direction
find ttds(m);
time = ttdf[0] + sol sign w ttdf[1];
break;

)

cnt = 0; //reset
s[0] += sx sign* 1. 0; //back vp one step
find ttds(m);
time = ttdf[0] + sol sign * ttdf[1] l

while ((time & 0. 0) as (stop == 0)) (//while on this side
s [0] — = sx sign* . 1; //adjust sx
find ttds (m);
time = ttdf [0] + sol sign * ttdf [1];
cnt +=1;
if (cnt &= 20)(//redundant check — & going the wrong direction

// on x axis
stop = 1; //need to change direction
s[0] += sx sign*(cnt+1)w. l;
sx sign *= -1. 0; //change direci tion
find ttds(m);
time = ttdf[0] + sol sign * ttdf[1];
break;

)
cnt = 0; //reset
s[0] += sx sign* . 1; //back up one setp
find ttds(m);
time ttdf[0] + sol sign * ttdf[1];

)
s [0] t= sx sign* . 01;
find ttds(m);
time = ttdf[0] + sol sign * ttdf[1]

//back up one step

if (stop == 0)(//if progressing properly
while (time & 0. 0) (//whi le on this side

s [0] -= sx sign* . 01; //adjust sx
find ttds (m);
time = ttdf [0] + sol sign * ttdf [1];

while (time & 0. 0) (//while on this side
a[0] — = sx sign* . 001; //adjust sx
find ttds(m);
time = ttdf[0] t sol sign * ttdf[1];

)

s [0] t= sx sign* . 001; //back up one step
find ttds(m);
time = ttdf[0] + sol sign * ttdf[1];

while (time & 0. 0) (//while on thi s side
s [0] — = sx sign* . 0001; //adjust sx
find ttds(m);
time = ttdf[0] t sol sign * ttdf[1];

s[0] += sx sign* . 0001; //back up one step
find ttds(m);
time = ttdf[0] + sol sign * ttdf[1];

)
else(// time i s negative

while (time & 0. 0) (//while on this side
s[0] += sx sign* 1. 0; //adj ust sx
find ttds(m); //find new eigenrays
time = ttdf[0] t sol sign * ttdf[1];
cnt a=1;
if (cnt &= 20) (//going the wrong directi on on x axis

stop = 1; //need to change direction and bypass all
// subsequnt steps in Chi s subroutine

s [0] -= sx sign* (cnt

el�)

*1, 0;
sx sign "= -1. 0; //change direction
find ttds(m);
time = ttdf[0] + sol sign * ttdf[1];
break;

)

)
cnt = 0; //reset
s[0] — = sx sign* 1. 0; //back up one step
find ttds(m);
time = ttdf[0] + sol sign * ttdf[1];
while ((time & 0. 0)aa(stop == 0))(//while on this side

s[0] += sx sign* . 1; //adjust sx
find ttds(m);
time = ttdf[0] + sol sign * ttdf[1];
cnt a=1;
if (cnt &= 20) (//redundant check -& going the wrong di recti on

// on x axis
stop = 1; //need to change direction
s[0] -= sx sign*(cnt+1)*. 1;
sx sign *= -1. 0; //change direction
find ttds(m);
time = ttdf[0] + sol sign * ttdf[1];
break;

)
)

cnt = 0; //reset
s[0] — = sx sign* . 1; //back up one step
find ttds(m);
time = ttdf[0] + sol sign * ttdf[1];
if (stop == 0) (//i f progressing properly

while (time & 0. 0) (//while on this side

s [0] t= sx sign* . 01; //adjust sx
find ttds(m);
time = ttdf[0] + sol sign * ttdf[1];

s[0] -= sx sign* . 01; //back vp one step
find ttds(m);
time = ttdf[0] + sol sign * ttdf[1]r

while (time & 0. 0) (//while on this side
s [0] += sx sign* . 001; //adjvst sx
find ttds(m);
time = ttdf[0] t sol sign * ttdf[1]r

)
s [0] -= sx sign* . 001; //back up one step
find ttds(m);
time = ttdf[0] t sol sign * ttdf[1];
while (time & 0. 0) (//while on this side

s [0] += sx sign* . 0001; //adjust sx
find ttds(m);
time = ttdf [0] + sol sign * ttdf [1];

)
s [0] — = sx sign* . 0001; //back up one step
find ttds (m);
time = ttdf [0] + sol sign * ttdf [1];

)

)
if (stop == 1)

adjust sx(m); //call again, going the other direction on x axis

void adjust sy (int m) //adjust sy vntil intersection with solvtion set
// TTDF1 = — TTDF2 or TTDF1 = TTDF2 is found.
// m = daCa set number

(
extern double ttdf [3], //differences in calculated a recorded TTDs

s [3], /Icurrent source posi Ci on
sy sign, //direction to shift sy to find solvtion
sol sign; //order of adj usting sx & sy with

// corresponding sol v ti on sets
double time; //indicates distance from solv Cion set
int cnt= 0, I/i Ceration number counter

stop = 0; //stop = 0 -& continue, 1 -& stop

time = ttdf [0] — sol sign w ttdf [1];
if (time & 0. 0)(

while (time & 0. 0) (//while on this side
a[1] — = sy sign*1. 0; //adjust sy
find ttds(m); //find new eigenrays
time = ttdf[0] — sol sign w ttdf[1];
cnt += 1;
if (cnt &= 20) (//going the wrong direction on y axis

stop = 1; //need Co change di rection and bypass a11
// subseqvent steps in this subroutine

s [1] += sy sign* (cnt+1) "1. 0;
sy sign *= -1. 0; //change direction
find ttds(m);
time = ttdf[0] — sol sign * ttdf[1];
break;

)

cnt = 0; //reset
s[1] += sy sign*1. 0; //back vp one step
find ttds(m);
time = ttdf[0] — sol sign * ttdf[1];
while ((time & 0. 0) && (stop == 0)) (//whi le on this side

s [1] — = sy signa. 1; //adjust sy
find ttds(m);
time = ttdf[0] — sol sign * ttdf[l];
cnt += 1; if (cnt &= 20) (//redundant check — & going the wrong direction

// on y axis
stop = 1; //need to change direction
s [1] t= sy sign* (cnttl) *, 1;
sy sign *= — 1. 0; //change direction
find ttds(m);
time = ttdf[0] — sol sign * ttdf[1];
break;

)

cnt = 0; //reset
s[1] += sy sign*. 1; //back up one step
find ttds(m);
time = ttdf[0] — sol sign * ttdf[1];

if (stop == 0)(//if progressing properly
while (time & 0. 0)(//while on this side

s[1] -= sy sign*. 01; //adjust sy
find ttds(m);
time = ttdf[0] — sol sign * ttdf[1];

)
s [1] t= sy sign*. 01; //back up one step
find ttds(m);
time = ttdf[0] — sol sign * ttdf[1];

)
s[1] t= sy sign*. 001;
find ttds(m);
time = ttdf[0] — sol sign * ttdf[1]

//back up one step

while (time & 0. 0) (//whi le on this side
s[1] -= sy sign*. 001; //adjust sy
find ttds(m);
time = ttdf[0] — sol sign * ttdf[1];

while (time & 0. 0) (//while on this side
s [1] -= sy sign*. 0001; //adjust sy
find ttds(m);

63

time = ttdf [0] — sol sign * ttdf [1]
)
s [1] += sy sign*. 0001; //back up one step
find ttds(m);
time = ttdf[0] — sol sign w ttdf[1];

)
else(// negative time

while (time & 0. 0) (//while on this side
s [1] += sy sign*1. 0; //adjust sy
find ttds(m); //find new eigenrays
time = ttdf [0] — sol sign * ttdf [1];
cnt += 1;
if (cnt &= 20) (//going the wrong direction on y axi s

stop = 1; //need to change direction and bypass all
// subsequnt steps in this subroutine

s[1] -= sy sign*(cnttl)*1. 0;
sy sign *= -1. 0; //change direction
find ttds(m);
time = ttdf[0] — sol sign * ttdf[1];
break;

)
cnt = 0; //reset
s[1] — = sy sign*1. 0; //back up one step
find ttds(m);
time = ttdf[0] — sol sign * ttdf[1];

while ((time & 0. 0)&&(stop == 0))(//while on this side
s[1] t= sy sign*. 1; //adjust sy
find ttds(m);
time = ttdf[0] — sol sign * ttdf[1];
cnt += 1;
if (cnt &= 20)(//redundant check — & going the wrong direction

// on y axis
stop = 1; //need to cha~ge direction
s [1] — = sy sign* (cntt1) *. 1;
sy sign *= -1. 0; //change direction
find ttds(m);
time = ttdf[0] — sol sign * ttdf[1];
break;

cnt = 0; //reset
s[1] -= sy sign*. 1; //back up one step
find ttds(m);
time = ttdf[0] — sol sign * ttdf[1];

if (stop == 0) (//if progressing properly
while (time & 0. 0) (//while on this side

s [1] += sy signa. 01; //adjust sy
find ttds (m);
time = ttdf [0] — sol sign * ttdf [1];

64

s [1] — = sy sign*. 01; //back up ane step
find ttds(m);
time = ttdf[0] — sol sign * ttdf[1])

while (time & 0. 0) (//whi le on this side
s [1] t= sy sign*. 001; //adjust sy
find ttds(m);
time = ttdf[0] — sol sign * ttdf[1];

)
a[1] -= sy sign*. 001) //back up one sCep
find ttds(m);
time = ttdf[0] — sol sign * ttdf[1];
while (time & 0. 0)(//while on this side

s[1] += sy sign*. 0001; //adjust sy
find ttds(m);
time = ttdf[0] — sol sign * ttdf[1];

)
s [1] -= sy sign*. 0001; //back up one step
find ttds(m);
time = ttdf[0] — sol sign * ttdf[1];

)

) if (stop == 1)
adjust sy(m); //call again, going the oCher direction on y axis

void find ttds (int m) //This svbrouCine calcvlates all three TTDs,
// based on the esCimated source position.
// m = data set number.
// The eigenrays are calculaCed from the buoys
// Co the source.

(
extern double

double x max,
zf,
tbi,
zz
t [4];

s [3], //cvrrent source posi tian
are[4], //data on endpoints of the last ray calculated
ttdf [3], //differences in calculated a recorded TTDs
r[4] [3], //buoy position in Cartesian coordinates
position[4][5][100]; //array of data from the

// sonobuays
//maximum horizontal distance far a ray
//depth af the source
//ini tial grazing angle far the ray
//ini tial depth of Che ray (hydrophone depth)
//array to store the travel Cimes of each ray

zi = DEPTH; //buoy depth
zf = s [2]; //not including hydrophone depth adj vstment

// Path Co bvoy 1
/ — — — — — — —— /================
x max = sqrt (sq(r[0] [0] — a [0]) + sq(r [0] [1] — s[1]));
thi = -stan (zf / x max); //ini tial guess
find theta(x max, zi, thi, zf); //iteratively finds eigenray

t [0] = arc [2];

// Path to buoy 2
I == — — — — — ——
x max = sqrt (sq(r [1] [0] — s [0]) t sq(r [1] [1] — s [1]));
thi = -atan(zf / x max); //ini rial guess
find theta(x max, zi, thi, zf); I/iteratively finds eigenray
t [1] = arc [2];

// Path to buoy 3
/ — — — — — — —— /================
x max = sqrt (sq(r [2] [0] — s [0]) + sq(r [2] [1] — a [1]))(
thi = -atan(zf / x max); //ini tial guess
find theta (x max, zi, thi, zf); //iterati vely finds eigenray
t[2] = are[27;

// Path to buoy
/ — — — — — — —— /================
x max = sqrt (sq(r [3] [0] — a [0]) t sq(r[3] [1] — s[1]));
thi = -atan(zf / x max); //ini Cial guess
find theta (x max, zi, thi, zf); //i terati vely finds eigenray
t [3] = arc [2];

ttdf [0] = t [1] -t [0] — position[1] [a] [m]; //calculated value — data
ttdf [1] = t[2] — t[0] — position[2] [4] [m];
ttdf [2] = t [3] -t [0] — position [3] [4] [m];

)

void find theta (double x max, double zi, double thi, double zf)
//This subroutine i terati vely finds the ei genray beginning at
// (x=0, zi) and ending at (x max, zf) . An ini tial begining grazing
// angle (thi) is used, and then adjusted i tera ti vely until the exact
/I ei genray is found.

extern double are[4]; //end — point data on the last ray calculated
double z temp; //temporary z

arc path(x max, zi, thi)
z temp = arc [1];

)
thi -= . 1* (PI/180); //go back one step
arc path(x max, zi, thi);
z temp = are[1];

//calculate ray with these parameters
/I= the final depth of the ray just
I/ calculated

if(z temp — zf & . 00001)(//if last ray ended too deep
while(z temp & zf) (//while calculated ray ends too deep,

// decrease the initial grazing angle
I/ (0 at horizontal)

thi t= . 1*(PI/180);
arc path(x max, zi, thi);
z temp = are[1];

66

while(z temp & zf) (//while calculated ray ends too deep,
thi t= . 01*(PI/180); // decrease the initial grazing angle
arc path(x max, zi, thi);
z temp = are[1];

)
thi -= . 01*(PI/180);
arc path(x max, zi, thi)
z temp = are[1];

//go back one step

while(z temp & zf)(//while calculated ray ends too deep,
thi += . 001*(PI/180); // decrease the initial grazing angle
arc path(x max, zi, thi);
z temp = are[1];

)
thi -= . 001*(PI/180); //go back one step
arc~ath(x max, zi, thi);
z temp = are[1];

while(z temp & zf)(//while calculated ray ends too deep,
thi t= . 0001*(PI/180); // decrease the initial grazing angle
arc path(x max, zi, thi);
z temp = are[1] l

)
thi -= . 0001"(PI/180);
arc path(x max, zi, thi)
z temp = are[1];

//go back one step

while(z temp & zf) (

thi += . 00001*(PI/180))
arc path(x max, zi, thi)
z temp = are[1];

)
thi -= . 00001*(PI/180);
arc path(x max, zi, thi)
z temp = are[1];

//while calculated ray ends too deep,
// decrease the initial grazing angle

//go back one step

while(z temp & zf) (

thi t= . 000001w(PI/180);
arc path(x max, zi, thi)
z temp = are[1];

)
thi -= . 000001*(PI/180);
arc path(x max, zi, thi);
z temp = are[1];

while(z temp & zf) (

thi t= . 0000001*(PI/180)
arc path(x max, zi, thi)
z temp = are[1];

)
thi — — . 0000001w(PI/180);
arc path(x max, zi, thi);
z temp = are[1];

//while calculated ray ends Coo deep,
// decrease the initial grazing angle

//go back one step

//while calculated ray ends too deep,
;// decrease the initial grazing angle

//go back one step

67

while(z temp & zf) (
thi += . 00000001*(PI/180)
arc~ath(x max, zi, thi);
z temp = are[1];

)

thi -= . 00000001*(PI/180);
arc path(x max, zi, thi);

//while calculated ray ends too deep,
;// decrease ini tial grazing angle

//go back one step

)
else if (z temp — zf & —. 00001)

while(z temp & zf) (//whi
thi -= . 1*(PI/180); // in
arc path(x max, zi, thi);
z temp = are[1];

(//i I last ray ended too shallow
le calculated ray ends too shallow,
crease the initi al grazing angle

// (0 at horizontal)

thi += . 1*(PI/180);
arc path(x max, zi, thi)
z temp = are[1];

//go back one step

whzle(z temp & zf) (//whi le calculated ray ends too shallow,
thi -= . 01* (PI/180); // increase the ini ti al grazing angle
arc~ath (x max, zi, thi);
z temp = are[1];

)

thi += . 01*(PI/180);
arc path(x max, zi, thi)
z temp = etc[1];

//go back one step

while(z temp & zf)(//while calculated ray ends too shallow,
thi -= . 001*(PI/180); // increase the initial grazing angle
arc path(x max, zi, thi);
z temp = are[1];

)
thi += . 001*(PI/180);
arc path(x max, zi, thi);
z temp = are[1];

//go back one step

while(z temp & zf) (
thi -= . 0001*(PI
arc path(x max,
z temp = etc[1];

)

thi += . 0001"(PI/18
arc path(x max, zi,
z temp = are[1];

0); //go back one step
thi);

//while calculated ray ends too shallow,
/180);// increase the initial grazing angle
zi, thi);

while(z temp & zf)(//while calculated ray ends too shallow,
thi -= . 00001*(PI/180); // increase the initial grazing angle
arc path(x max, zi, thi);
z temp = are[1]1

)

thi += . 00001*(PI/180) z //go back one step
arc path(x max, zi, thi);
z temp = are[1];

while(z temp & zf)(

thi -= . 000001*(
arc path(x max,
z temp = are[1];

//while calculated ray ends too shallow,
// increase the initial grazing angle

PI/180);
zi, thi);

)
thi t= . 000001*(PI/
arc path(x max, zi,
z temp = are[1];

) 80); //go back one step
thi);

while(z temp & zf) (

thi -= . 0000001*
arc path(x max,
z temp = are[1];

//while calculated ray ends too shallow,
// increase the initial grazing angle

(PI/180);
zi, thi);

)

thi t= . 0000001*(PI
arc path(x max, zi,
z temp = are[1];

/180); //go back one step
thi);

while(z temp & zf) (//while calculated ray ends too shallow,
// increase the initial grazing angle

thi -= . 00000001*(PI/180);
arc path(x max, zi, thi);
z temp = are[1];

)
thi += . 00000001*(PI/180); //go back one step
arc path(x max, zi, thi);

)

)

69

SCR ARC. CPP

See more complete description of program in "src. h". This
program calculates the eigenrays for particular end point parameters.
The data points along the ray path are output as a file named
"ray~ath" into the working directory. This program can be used as
stand-alone ray tracing program. The subroutines included are;
ar cdeath, & arc seg.

w/

()include "src. h"

void arc path (double x max, double zi, double thi)

extern double profile [3][100]; //array of sound speed — depth
// profile da ta

extern int prof max; //the nvmber data point in the profile
extern FILE *ofp; //outpvt file pointer; file is for data

// points along the arced path
double g, //slope dz/dc

Ci~ //initial sound speed (for an arc segment)
cf, //final sound speed
xi //i ni ti a l x
xf, //fi n a l
zf, //final z
thf, //theta final
thl, //last (previovs) theta
tht, //constant theta used when g = 0
ti = 0. 0, //initial time
tf, //final time
xtemp, //temporary x
thtemp, //temporary theta
ztemp, //temporary z
t temp, //temporary time
c temp; /!temporary sound speed

int i, //integer loop counter
cnt = — 1; //place covnter for within the sound speed — depth

// profi le
enum boolean (false, true);
typedef enum boolean boolean;
boolean ref = false; //refraction

ofp = fopen("ray path", "w");
xi = 0. 0; //starting point is always = 0

fprintf (ofp, "%f tfNn", xi, — zi);//starting point
for (i = 0; i &= prof max; +&i) (//find the proper starting

if(profile[1][i] & zi) // point in the profile,
cnt = cnt+ 1; // depending on initi al depth

) if (cnt
cnt = 0;

1) //zi == 0 = surface

70

I/initial propagation step
/— /= — — — — — — — — — — ——

g = profile[2] [cnt];
if (thi & 0) (//propagation towards the surface

zf = profile[1][cnt];
cf = profile[0][cnt];
ci = cf t g"(zi — zf);
cnt = cnt — 1;
if (g&-0. 0005)(//*" * +th -g 2nd quadrant are

thl = acos (ci/cf);
if (thi &= thl) (//s** refraction

thf = 0;
zf = zi t ci/(g*cos (thi)) * (1 — cos (thi));
xf = xi t ci*(— tan(thi))/g;
cf = ci — g*(zi -zf);
tf = ti + 1/(2*g) * (log((ltsin(thf))/(1 — sin(thf)))

log((ltsin(thi))/(1-sin(thi))));
if (xf & x max) (//over shot

thf = arc seg(thi, g, ti, x max, xi, zi, ci);
xf = x max;
ref = false;

else (//continue on
fprintf(ofp, "%f %f4n", xf, -zf);
ref = true;

)

else //*** no refraction
thf = acos (cf/ci*cos (thi));

)
else // +tn +g 4th quadrant arc, no refraction

thf = acos(cf/ci*cos(thi));
) if (thi & 0) (//propagation towards the bottom

zf = profile [1] [cnt t 1];
cf = profile[0] [cnt + 1];
ci = cf + g*(zi — zf);
cnt = cnt + 1;
if (g&0. 0005)(II — th +g 3rd quadrant arc

thl = -acos (ci/cf);
if(thi &= thl)(I/refraction

0;
zf = zi t ci/(g*cos (thi))

* (1 — cos (thi));
xf = xi t ci*(-tan(thi))/g;
cf = ci — g*(zi — zf);
tf = ti + 1/(2*g) * (log((1+sin(thf)) /(1 — sin (thf)))

log((1+sin(thi))/(1 — sin(thi))));
if (xf & x max) (//over shot

thf = arc seg(thi, g, ti, x max, xi, zi, ci);
xf = x max;
ref = false;

7)

)
else //continue on

fprintf(ofp, "Sf %fhn", xf, — zf)
ref = true;

)
)
else //no refracti on

thf = — acos (cf/ci*cos (thi));
)

else // — th -g 1st guadrant arc, no refraction
thf = — acos(cf/ci*cos(thi));

) if (ref == true)(//second part of refreacted arc
xtemp = xf — xi;
xi = xf;
ztemp = zi;
zi = zf;
thtemp = thi;
t temp = tf — ti;
ti = tf;
if (thi&0) //use sturf for tni&0 (now towards the bottom)

cnt = cnt t 2;
if (thi&0) //use stuff for thi&0 (now towards the surface)

cnt = cnt — 2;
xf = xi f xtemp;
zf = ztemp;
thf = — thtemp;
tf = ti + t temp;
if (xf & x max) (/lover shot

thf = arc seg(thi, g, ti, x max, xi, zi, ci);
xf = x max;

else //con ti n u e on
fprintf(ofp, "%f %fan", xf, -zf);

)
)
else(//ref == false

i. f (((g & 0. 0005)ll(g &- 0. 0005)) as (thi!= 0))(
//n o refraction

xf = xi t ci/ (gwcos (thi))
* (sin(thf) — sin(thi));

t f = ti + 1/ (2*g) * (log ((1+sin (thf)) / (1-sin (thf)))

log ((1+sin (thi)) / (1 — sin (thi))));
if (xf & x max) (//over snot

thf = arc seg(thi, g, ti, x max, xi, zi, ci);
xf =xmax;

)
else //contznue on

fprintf(ofp, "%f %fYn", xf, -zf)
)

) if ((thi == 0)) (
zf = zi;
xf = x maxi
tf = xf/ci;

//propgation entirely in the horizontal

72

fprintf (ofp, "%f %f4n", xf, — zf);
if' ((g &= 0. 0005) && (g &= — 0. 0005)) (//na change in sound speed

zf (thi&0) /I through this interval
tht = -thi;

else
tht = thi;

xf = xi + (zf — zi)/tan(tht);
tf = ti + 2*(xf — xi) / (ci + cf);
if (xf & x max) (//aver shot

thf = arc seg(thi, g, ti, x max, xi, zi, ci);
xf = x max;

else //continue on
fprintf (ofp, "5f &fan", xf, — zf);

)
)

)
thi = thf;
xi = xf;
zi = zf;
ti = tf;
ref = false;

// all subsequent steps of propagation
/— /= — — — — — — — — — — — — — — — — ——

while((xi &= 0) &&(xf & x max)) (

II ane arc segment to top or to bottom
/—
while((zi & 0) && (zi & profile[1] [prof max]) && (xi &= 0)

&& (xf & x max))(
g = profile[2] [cnt];
if (thi & 0) (//propagation towards the surface

zf = profile[1][cnt];
cf = profile[0][cnt];
ci = profile[0][cnt+1];
cnt = cnt — 1;
if (g&-0. 0005)(// +th -g 2nd quadrant arc

thl = acos (ci/cf);
if(thi &= thl)(I/refraction

thr = 0;
zf = zi + ci/(g*cos(thi))*(1 — cos(thi));
xf = xi + ci*(-tan(thi))/g;
cf = ci — g"(zi -zf);
tf = ti + 1/(2*g)

* (log ((1+sin (thf)) / (1 — sin (thf)))

log ((i&sin(thi)) / (1-sin(thi))));
if (xf & x max) (//over shot

thf = arc seg(thi, g, ti, x max, xi, zi, ci)

73

xf =xmax;
ref = false;

)
else (//conti nue on

fprintf(ofp, "%f %fNn", xf, — zf)
ref = true;

else //no refraction
thf = acos(cf/ci*cos(thi));

)
else // +th +g 4th quadrant arc, no refraction

thf = acos(cf/ci*cos(thi));
) if (thi & 0) (//propagati on towards the bottom

zf = profile[1](cnt t 1];
cf = profile(0](cnt + 1];
ci = profile[0](cnt];
cnt = cnt t 1;
if (g&0. 0005)(// — th +g 3rd quadrant arc

thl = -acos (ci/cf);
if (thi &= thl) (//refracti on

thf = 0;
zf = zi t ci/(g*cos (thi)) t (1 — cos (thi));
xf = xi t ci*(-tan(thi))/g;
cf = ci — g*(zi — zf);
tf = ti + 1/(2*g) * (log((ltsin(thf))/(1-sin(thf)))

log((1+sin(thi))/(1-sin(thi))));
if (xf & x max) (//over shot

thf = arc seg(thi, g, ti, x max, xi, zi, ci);
xf = x max;
ref = false;

)
else (//continue on

fprintf (ofp, "tf %fin", xf, -zf);
ref = true;

)

else //no refracti on
thf = — acos (cf/ci*cos (thi));

)
else // -th — g 1st quadrant arc, no rerracti on

thf = — acos(cf/ci*cos(thi));
) if (ref == true) (//second part of refreacted arc

xtemp = xf — xi;
xi = xf;
ztemp = zi;
zi = zf;
thtemp = thi;
t temp = tf — ti;
ti = tf;
if (thi&0) //use stuff for thi &0 (now towards the bottom)

cnt = cnt + 2;

74

if (thi&0) //use stuff for thi&0 (now towards the surface)
cnt = cnt — 2;

xf = xi f xtemp;
zf = ztemp;
thf = — thtemp;
tf = ti + t temp;
if (xf & x max) (//over shot

thf = arc seg(thi, g, ti, x max, xi, zi, ci);
xf = x max;

else (//continue on
fprintf (ofp, "&f &fhn", xf, — zf)

)
else(//ref == false

if (((g & 0. 0005))((g &- 0. 0 005)) && (thi!= 0)) (
//no refraction

*(sin(thf) — sin(thi));
(1+sin(thf))/(1-sin(thf)))
-sin(thi))));
shot
ti, x max, xi, zi, ci);

xf = xi + ci/ (g*cos (thi))

tf = ti + 1/(2*g) * (log(
log((1+sin(thi))/(1

if (xf & x max) (//over
thf = arc seg(thi, g,
xf = x max;

)
else //continue on

fprintf(ofp, "Sf &fhn", xf, — zf)
)

)
if ((thi == 0)) (//propaga tion entirely in the horizontal

zf = zi;
xf = x max;
tf = ti 4 (xf-xi)/ci;
fprintf(ofp, "&f %fhn", xf, -zf);

if ((g &= 0. 0005) && (g &= — 0. 0005) J (//no change in sound
// speed through this inter val

if(thi&0)(
tht = -thi;
c temp = profile[0][cnt+1];

)

else (
tht = thi;
c temp = profile[0][cnt]

)
xf = xi + (zf — zi)/tan(tht);
tf = ti t (xf — xi) / c temp;
if (xf & x max) (// over shot

thf = arc seg(thi, g, ti, x max, xi, zi, ci)
xf = x max;

)
else (//continue on

fprintf (ofp, "& f %fhn", xf, — zf)
)

)

75

)

thi = thf;
xi = xf;
zi = zf;
ti = tf;
ref = false;

) //end while loop due to surface or bottom reflection or
// x = xmax

if (cnt &= prof max)
cnt = pzof max-1;

if (cnt &= 0)
cnt = 0;
thi = -thi; //change direction at interface

) if (thi & 0) (//pzopagat
zf = pzofile [1] [cnt+1];
cf = profile [0] [cnt+1];
ci = profile[0][cnt];
thf = — acos(cf/ci*cos
cnt = cnt tl;

ion towards the bottom

(thi));

)
if (thi == 0) (//propga t

zf = zi;
xf = x max;
tf = ti + (xf — xi)/ci
fprintf(ofp, "Rf Sf4n"
g = 0;
thi =. 0001;

ion entirely in the horizontal

xf, — zf)

) if ((g &= 0. 0005) aa (g &= -0. 0005)) (//no change in sound speed
// through this interval

if(thi&0) (

tht = -thi;
c temp = profile[0] [cnt t 1]

)
else (

tht = thi;
c temp = profile[0][cnt]

/Ido one step so zi not = 0 or z max to continue propagation loop
if (xi & x max)(

g = profile[2][cnt];
if (thi & 0)(//propagation towards the surface

zf = profile[1][cnt];
cf = profile[0][cnt];
ci = profile[0][cnttl];
thf = acos(cf/citcos(thi));
cnt = cnt — 1;

xf = xi + (zf — zi) / tan(tht);
tf = ti + (xf — xi) / c temp;
if (xf & x max) (//over shot

thf = arc seg(thi, g, ti, x max, xi, zi, ci)

76

xf = x max;
)
else (//con ti n ue on

fprintf(ofp, "af 5fNn", xf, -zf)

)
else (//g != 0

xf = xi + ci/(g*cos(thi))*(sin(thf) — sin(thi));
tf = ti t I/(2*g) * (log((1+sin(thf))/(1-sin(thf)))

log((1tsin(thi))/(1-sin(thi))));
if (xf & x max) (//over shot

thf = arc seg(thi, g, ti, x max, xi, zi, ci);
xf = x max;

)
else //con ti nue on

fprintf(ofp, "%f %f1n", xf, -zf)

zi = zf;
xi = xf;
thi = thf;

)

) //end hig while loop since x &= xmax
fclose(ofp);

double arc seg(double thi, double g, double ti, double x max,
double xi, double zi, double ci)

//returns theCa final after calculating tf, xf, and zf.
// This function calculates data for the last segment of
// the arced path

extern double arc [4]; //glohal array for storing end poin C data for
// eigen ray

extern FILE *ofp; //output file for daCa points along arced paCh

double tf, //final time
xf, //final x
zf, //final depth
thf; //final theCa

thf = asin(sin(thi) + g * cos(thi) * (x max — xi) / ci);
tf = ti + I/ (2*g) * (log ((Itsin(thf)) / (1 — sin (thf)))

log ((I+sin (thi)) / (1-sin (thi))));
xf = xi t ci/ (g*cos (thi))

* (sin(thf) — sin(thi));
zf = zi + ci/(g*cos (thi)) *(cos (thf) — cos(thi));
arc [0] = xf;
arc [I] = zf;
are[2] = tf;
are[3] = thf;
fprintf (ofp, "%f %fNn", xf, -zf);
return thf;

77

APPENDIX C

SAMPLE INPUT FILE FOR BUOY POSITIONS AND TTD VALUES

Format:

Buoy l
Buoy 2
Buoy 3
Buoy 4

Latitude Longitude

Degrees Minutes Degrees Minutes TTDwjihjjgpyj(s)

Each block of data for all 4 buoys is a data set for one event. The Buoys are numbered

in order of signal reception.

This file contains four data sets. A Maximum of 99 data sets can be read in as one file.

File starts here:

28. 000000 26. 000000 88. 000000 31. 000000 0. 000000
28. 000000 26. 107991 88. 000000 31. 161987 0. 059143
28. 000000 26. 269978 88. 000000 31. 134989 0. 133572
28. 000000 26. 323974 88. 000000 31. 323974 0. 285751

28. 000000 26. 000000 88. 000000 31. 000000 0. 000000
28. 000000 26. 107991 88. 000000 31. 161987 0. 201277
28. 000000 26. 269978 88. 000000 31. 134989 0. 254535
28. 000000 26. 323974 88. 000000 31. 323974 0. 468107

28. 000000 26. 000000 88. 000000 31. 000000 0. 000000
28. 000000 26. 107991 88. 000000 31. 161987 0. 175250
28. 000000 26. 269978 88. 000000 31. 134989 0. 294576
28. 000000 26. 323974 88. 000000 31. 323974 0. 454781

28. 000000 26. 000000 88. 000000 31. 000000 0. 000000
28. 000000 26. 107991 88. 000000 31. 161987 0. 212361
28. 000000 26. 269978 88. 000000 31. 134989 0. 336213
28. 000000 26, 323974 88. 000000 31. 323974 0. 521846

78

APPENDIX D

SAMPLE INPUT FILE FOR SOUND SPEED VS. DEPTH PROFILE

Format:

Point l
Point 2

Sound Speed(m/s) Depth(m)

This file contains 20 points. 99 data points is the maximum allowable. Data points must

be input in incremental order (rom surface to bottom. The first data point must be the

sound speed at the surface, and the last needs to be the sound speed at the bottom. Depth

is positive.
File starts here (Data points in figure 2):

1540. 0 0. 0
1535. 0 34. 5

1527. 9 69. 0
1516. 1 103. 5
1503. 3 113. 9
1499. 3 172. 5
1495. 7 300. 15
1492. 75 379. 5

1485. 3 517. 5

1481. 9 621. 0
1480. 0 803. 85
1480. 4 914. 3
1481. 5 1017. 8
1484. 6 1214. 4
1488. 0 1386. 4
1492. 6 1610. 7
1505. 6 2562. 4
1516. 75 3338. 1

1536. 6 4476. 1

1544. 4 4928. 1

79

APPENDIX E

SAMPLE OUTPUT FILE

Coordinates are with respect to buoy l.
File starts here:

Coordinates (x, y, depth) meters, where latitude direction is x,
and longitude is y.

Data Point 1 . . .
Straight line s = (50. 93, 9. 86, 546. 87)
Calculated s = (50. 87, 9. 83, 557. 25)
ttdf1 0. 000000, ttdf2 0. 000000, ttdO 0. 000000

With respect to
28. 0 deg 26. 000000 min Latitude

88. 0 deg 31. 000000 min Longitude

Data Point 2 . . .
Straight line s = (-488. 64, -1388. 89, 1008. 57)
Calculated s = (-483. 58, -1379. 02, 1010. 60)
ttdf1 0. 000000, ttdf2 0. 000000, ttdf3 0. 000000
With respect to
28. 0 deg 26. 000000 min Latitude
88. 0 deg 31, 000000 min Longitude

Data Point 3 . . .
Straight line s = (-1311. 90, -876. 63, 1441. 44)
Calculated s = (-1309. 58, -875. 05, 1449. 17)
ttdfl 0. 000000, ttdl2 0. 000000, ttdl3 0. 000000
With respect to
28. 0 deg 26. 000000 min Latitude

88. 0 deg 31. 000000 min Longitude

Data Point 4 . . .
Straight line s = (-4783. 53, -3929, 27, 2764. 45)
Calculated s = (-4699. 77, -3860. 63, 2724. 42)
ttdf1 0. 000000, ttdf2 0. 000000, ttdf3 0. 000000
With respect to
28. 0 deg 26. 000000 min Latitude

88. 0 deg 31. 000000 min Longitude

80

VITA

Thomas Scott Brandes was born in Cincinnati, OH on August 6, 1971. After

growing up in Atlanta, GA and getting a high school diploma from the Marist School in

Dunwoody, GA, he graduated with a B. S. in Physics from the Georgia Institute of

Technology in 1993. He began graduate school in the physics department at Texas

A&M University in 1994, and switched to the interdisciplinary engineering department

to work in the field of bioacoustics in 1995. His permanent address is: 3894 Vicar Ct. ,

Atlanta, GA 30360.

lllillllllllllllllllllllllllIIIIIIIIIIIIIIIIIIIllllllllllilliii(ill
A14823588881

