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Rapid failure analysis and continuous monitoring of the fabrication line are required 

in order to maximize the slope of the semiconductor manufacturing yield ramp. Metrology 

costs are the fastest rising expense occurring in the fabrication line. In addition, many of 

the defects can only be detected using electrical methods. Hence the use of simulation- 

based models for defect diagnosis is on the increase. We have used an already available 

methodology of defect-fault dictionary building and have observed the effects of certain 

noise sources such as line width variation, sample size and bridge resistance on yield 

learning, and determined how to account for them. 

In this research we will show that since line width variation is not random on a 

few wafer samples, its effect on defect Pareto predictions is profound and must be 

corrected. We will show that a linear model is sufficient to correct for the sensitivity of 

defect density to line width variation and shall also confirm this experimentally. 



We have examined the effect of various defect sample sizes on the resolution of 

the defect-fault dictionary and hence on the diagnosibility. We will show that the 

dictionary construction costs can be reduced by using relatively small sample sizes 

without a significant reduction in Pareto accuracy. We shall also show that a distribution 

of bridge resistance does not effect the Pareto accuracy. 

Our observations and correction model allow us to make accurate defect Pareto 

predictions in the presence of these noise sources. 
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I. INTRODUCTION 

An important element of a semiconductor product life cycle and time-to-market 

is the yield learning period. As shown in the Figure 1, yields are low in the development 

phase, then grow quicldy and stabilize in the production phase. This growth of yields 

should be quick in order to maximize profits and these yields should be maintained once 

achieved. 

Rapid yield learning is the set of those activities which are aimed at increasing the 

slope of the yield ramp and maintenance of high yields. Yield learning can be successfully 

performed if it is accompanied by yield monitoring [1, 2, 3, 4, 5] during all phases of VLSI 

manufacturing. Whenever any variation of defect density is observed, then an appropriate 

corrective procedure should be applied at that particular phase of manufacturing. 

The journal model is IEEE Transactions on Computer-Aided Design of Integrated 
Circuits and Systems. 



Yield Product life cycle 
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Figure I: Typical yield learning curve 

A. Yield Loss 

It is not possible to obtain 100% yield even when all the processing parameters 

are within the desired range wherein the circuit would perform satisfactorily. The reason 

for this yield loss is a set of yield detractors. These detractors can be local [6, 7, 8, 9] or 

global. Local defects include spot defects [6, 10] and oxide pinholes and they affect the 

topology of the circuit and are dominant in causing functional yield loss. Hence local 

defects are called catastrophic defects. 



Global detractors influence all the IC elements across the die in a similar way and 

are called parametric, global and systematic defects. We shall assume that local defects 

primarily cause functional failures and global defects cause parametric faults even though 

there is some interaction between the two types of yield detractors. However it is 

assumed in this research that these dependencies are negligible and parametric defects are 

detected in the rudimentary stages of manufacture and corrected [11]. 

From Figure I we see that systematic defects are the primary cause of yield loss in 

the development phase, whereas spot defects are dominant in the yield learning and 

volume production phases. Yield loss due to processing issues should be addressed in 

terms of efficient process monitoring, thus increasing the slope of the yield ramp and 

maintaining high yields once reached. 

B. Research Goals 

Previous research [I] has shown that indirect measurement of defect densities, can 

be performed using production functional testing data. This scheme is based on previous 

work on functional yield modeling with the DEFAM and VLASIC simulators [11, 12, 13]. 

These simulators help in yield learning by predicting the circuit fault probabilities and the 

functional yield on the basis of certain defect models, thus relating the yield loss to certain 

process phases. 



Functional yield monitoring is achieved by using the simulators to build a 

probability map between defects and test vector failures [I]. Fault simulation is performed 

using the fault list genemted by the defect simulators with the production functional test 

set. This helps us to obtain the Irequencies of possible patterns of circuit failures. 

Observed failure patterns along with the defect to test failure probability matrix are used 

to estimate different types of defect densities. This provides information about the 

catastrophic defects during the yield ramp, and volume production thereby allowing more 

e fflcient yield enhancement and maintenance. 

In this research we shall show that for different types of circuits and technology 

considered a typical range of line width variation would have a significant influence on the 

predicted defect Paretos and therefore must be filtered out. The effect of simultaneous 

multiple line width variation on predicted defect density is also examined. 

We shall analyze whether we can reduce the dictionary construction cost by using 

a relatively small defect sample sizes. The effects of various sample sizes on the defect to 

fault dictionary resolution and the diagnosibility of circuits are explored. 

Bridging failures are the most common faults present in mature CMOS integrated 

processes. Hence the detection of faults introduced by bridging defects is required in order 

to perform an acceptable IC test. We shall examine whether bridge resistance affects the 

Pareto accuracy. 

Our general approach to these problems will be to run some initial experiments, 

postulate an answer, confirm with experiments, and generalize to all designs. 



C. Thesis Outline 

The rest of the thesis is organized as follows. The background section II briefly 

describes the defect, fault simulations and process monitored oriented testing. Section III 

introduces the overall defect monitoring methodology used in our research and the 

application of VLASIC and IRSIM simulators with respect to this methodology is 

explained. Section IV gives in detail all the steps involved in this experimentation (details 

of defect and fault simulation and Pareto extraction) plus the procedure we have adopted 

to perform yield learning with variations in line width, sample size and bridge resistance. 

Section V describes the experimental results and section VI concludes. 



II. BACKGROUND 

Realistic defect ex''acnon and simulation [2, 6, 7, 10, 11, 12, 13] employ techniques 

which establish relationship between disturbance manifestation and its origin and physical 

characteristics. In the ensuing sections we will briefly review theories and concepts relating 

to defect and fault simulation, process monitoring oriented testing and direct measurement 

of yield loss. 

A. Defect Simulation 

Analytical approaches have been developed in the past to predict the number of 

circuit faults on any chip. However these analytical models found limited use in the VLSI 

industry because of the fact that they are unable to accurately model the relationship 

between physical causes of the yield loss and the resultant circuit failures. The majority of 

the models [11, 14, 15] depend on the chip size and the defect density distributions, but not 

on the layout. To accurately model yield loss and thereby esflmate the manufacturability 

of an IC design, several soflware tools for defect and yield simulation have been developed 

[11, 12, 13, 16, 17, 18, 19, 20, 21, 23, 24]. 



Prior to chip fabrication, yield loss is predicted by automatic extraction of circuit 

faults caused by catastrophic defects. VLASIC employs a Monte Carlo method of 

generating, placing and analyzing defects on a chip layout. Defect random number 

generators are used to create and place defects on the layout with the desired diameter and 

spatial distribution. 

VLASIC models defects resulting from extra or missing material as circles. A I/x 

distribution [21] is used for defect size variation for extra and missing material defects. 

Defects are placed uniformly within a die. After placement of defects is accomplished, 

VLASIC performs fault analysis to determine if a defect has caused any circuit faults [11]. 

B. Fault Simulation 

IRSIM [25] is a switch-level fault simulator which is used in this research to 

observe the effect of defects on given circuits. IRSIM uses a resistive switch model to 

approximate timing and voltage division, and incremental simulation to minimize the effort 

to resimulate in the presence of small circuit changes. The switch model assumes the 

switch is in the X state when the control voltage V is Vc & V &Vn. Therefore resistive 

bridges can generate X values. 



C. Process Monitoring Oriented Testing 

The idea of using the relation between the disturbance manifestation and the 

physical origin of the defects has been extensively used for process monitoring using 

SRAM cells as test structures [2, 18, 26, 27). A framework for the systematic analysis of 

yield losses has been suggested in [2]. The classification is hierarchical in the form of a tree 

wherein every node represents a group of reasons having certain similar characteristics, the 

ensuing levels have these categories of reasons further divided into sub categories. The vital 

elements of this classification are global and local disturbances. Examples for this kind of 

yield diagnosis framework are available in [28]. A process monitoring oriented testing 

scheme based on this framework has been proposed in [29]. 

A defect localization methodology has been suggested in [30]. The set of defects 

targeted for localization are limited to include only those defects that cause unique similar 

node faults. It has also been shown that a small number of randomly selected tests can 

provide good diagnostic resolution among the two node bridging defects. The levels of 

diagnostic resolution are greatly improved by observing abnormal IDDQ currents during 

test [31]. The efficiency and quality of SRAM based process monitoring techniques was 

evaluated in [27, 32]. 



III. METHODOLOGY 

The failure patterns of production test vectors can be utilized to predict the reason 

for failure of chips at the functional tester. Figure 2 shows such a defect monitoring 

methodology [1]. Provided the test vector, circuit structure details and layout are known, 

defect statistics can be estimated with the help of a probability matrix. The probability 

of failure (POF) matrix helps us to map from test failure to defects by relating defects to 

faults and faults to test failures. Failure patterns are also collected from the production 

functional tests and the frequency of each pattern is counted. The individual defect 

densities can be estimated by d = P't, where P is the POF mauix, t is the failure 

pattern frequencies observed from the production test and d is defect densities. 

Defect 
Smulatr on 

Defect 
fa ultlist 

Fault 
Smulation 

Failure 
Patterns 

Make POF 
matrix 

POF 
matrix SVD 

Layout 
Test 

vect ors 
Pat tern 
library 

Invert ed 
mat rix 

Defect 
Density Cal. 

Process 
Lines 

Fabricated 
chips 

Functional 
tester 

Bad 
chips 

Failure 
paN em 
count er 

Patt em 
counts 

Defect 
pareto 

Figure 2: Defect monitoring methodology 
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The upper portion of Figure 2 to the POF matrix step indicates the mapping 

procedure from defects to faults and faults to test failures. In our research the mapping 

between defects to faults was done using the defect simulator VLASIC [16]. Given a 

circuit layout and the defect types the simulator generates a fault list with frequencies 

proportional to the critical areas [11]. A switch level simulator IRSIM [25] for voltage 

based testing is used to map from faults to test failures. 

As every fault has a corresponding output pattern, we can classify and combine 

the results from fault simulation. Ideally, test failure patterns corresponding to different 

faults should be distinguishable but in reality this is not the case. Therefore the testing 

method may need to be modified in order to obtain a set of failure patterns with good 

diagnosibility. We can satisfy this need by observing the test procedure until certain 

stopping criteria are met. The terminology for describing the stopping criteria are shown 

in Table I, with examples in Table 2. 

We have used stopping criteria ln, lp, 2n and 2p in our research. The ln criteria 

states that the failure pattern is the number of the first failed vector. The 2n criteria refers 

to a failure pattern composed of the first two failed test vector numbers. The lp method 

refers to a failure pattern composed of the number of the failed vector plus the output 

pattern. 
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Previous research [I] shows relatively little benefit to using more complex 

stopping criteria, and in particular, recording more failing vectors is more effective than 

Iddq testing. Table 3 shows the results obtained by applying three types of stopping 

criteria to the voltage tests for benchmark circuit c17 (ln, lp and 2n). The more complex 

criteria cause the failure patterns to split apart, resulting in better diagnosability. The 

column under the heading counts gives the total number of defects causing a particular 

failure pattern. 

A POF matrix can be generated by counting the frequency of each pattern in the 

fault simulations. Figure 3 illustrates a sample POF matrix with the ln criteria applied for 

c17. The first row of the POF matrix is for the type of defects and the second gives us the 

number of each type of defect placed on the chip during defect simulation (100, 000 of 

each type induced for this example). The types of defects [12] that we have used in this 

research are extra metall (POSMF), extra meta12 (POSMS), extra poly (POSPG) and 

poly-metall, metall-meta12 oxide pinholes (PIN I and PIN2). The last two columns of the 

matrix refer to the count of a failure pattern and its pattern as given in the example. Each 

element of the matrix refers to the probability that a defect of that type causes a 

corresponding failure pattern. The diagnosibility of the POF matrix increases as the 

number of unique failure patterns increases. 
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POSMF 

100, 000 

0. 00876 

0. 00267 

0. 00073 

0. 00286 

0. 00099 

0. 00004 

POSPG POSMS 

100, 000 100, 000 

0. 01240 0. 00782 

0. 00683 0. 00121 

0. 00012 0. 00000 

0. 00280 0. 00252 

0. 00089 0. 00147 

0. 00035 0. 00014 

PINI 

100, 000 

0. 00607 

0. 00513 

0. 00000 

0. 00045 

0. 00075 

0. 00000 

PIN2 

100, 000 

0. 02042 

0. 00953 

0. 00147 

0. 00251 

0. 00645 

0. 00148 

COUNT 

5, 547 

2. 537 

232 

1, 114 

1, 055 

201 

ID 

Figure 3: POF matrix with criterion 1n. 

When the frequency of each pattern is obtained from the production test, the 

defect statistics of the fabrication line are estimated in the form of a Pareto chart [33]. The 

procedure for analysis is shown in Figure 2. 

The individual defect densities can be estimated by d = P'. t where P is the POF 

manix, t is the patterns observed from the production testing and d is the defect density. 

Figure 4 shows a Pareto chart in which defect types are classified and plotted in 

descending order of their defect densities. This Pareto shows the predicted defect density 

E(x) (defects/cm ), and upper and lower confidence limits (CL). 
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Certain failure patterns can be caused by more than one type of defect, so there 

would be no direct way to distinguish between defect types. Usually the POF matrices do 

not have an inverse, because the number of failure patterns greatly exceeds the number of 

defect types. Therefore it is necessary to use singular value decomposition (SVD) 

methods I'34, 35] in order to find the least square fit for the POF inverse. 

PARETO C17 1P - DEFECTS 1500000 

160 

140 

120 

100 

80 

60 

40 

20 

& UPPER CL 

~ E(X) 
fa LOWER CL 

Defect Type 

Figure 4: Pareto chart 



Table I: Stopping criteria terminology 

ID Criteria 

prefix-number Stop at the number-th test vector. 

n Record the failing test vector number. 

Record the failing test number and output values. 

z Perform an IDDQ current testing at final failing test. 

Record the failing test number, output pattern and 

IDDQ result. 

Perform an IDDQ current testing at every failing test. 

Record the failing test number, output pattern and 

IDDQ result. 

x, h, l, r 

m, o, u 

Interpret each intermediate voltage value as an X, 

logical high, logical Iow or random value (default: X). 

Interpret each oscillating output as a special mark, 

value at specific time or random value (default: special 

mark). 

postfix-number Categorize faulty IDDQ current values in number 

different levels. 
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Table 2: Examples of stopping criteria 

Sample Effect 

ln Stop at the first failure. Record the test number. 

lp Stop at the first failure. Record the test number and the output. 

lz3 Stop at the first failure. 

Perform an IDDQ current testing at the failing test. 

Record the test number, output and IDDQ test. 

Keep intermediate voltages as X. 

Categorize IDDQ current values in 3 different levels. 

k n Run test vectors until k-th failure. Record all k failing test 

numbers. 

k p 

k z5 

Run test vectors until k-th failure. 

Record all failing k test numbers and output values. 

Keep intermediate voltages as X. 

Run test vectors until k-th failure. 

Perform an IDDQ current testing at each failing test. 

Record all failing k test numbers and outputs and the IDDQ result 

in 5 different levels. Keep intermediate voltages as X. 

all n Run all test vectors. Record all failing test numbers. 

all p Run a/I test vectors. Record all failing test numbers and output 

values. 

Keep intermediate voltages as X. 
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Table 3: Failure patterns with different criteria 

Criterion ln 

Pattern Count 

Criterion 2n 

Pattern Count 

Criterion lp 

Pattern Count 

1: 5, 547 1:2 

1:3 

1:4 

1:5 

1:6 

3, 980 

883 

597 

86 

1-00: 

1-10: 

1-1 1: 

1-OX: 

1-1 x: 
1-Xl: 

1-XX: 

2, 115 

1. 915 

395 

1, 031 

79 

2, 537 153 2-01: 1009 

232 

1, 114 

1, 055 

201 

2:3: 

2:4: 

2:5: 

2;6: 

3 4. 

4:5: 

4:6: 

5;6: 

925 

798 

639 

22 

232 

180 

432 

502 

854 

201 

201 

2-1 I: 

2-OX: 

3-01; 

4-00: 

4-1 1: 

4-XX: 

5-00: 

5-01: 

5-10: 

6-11: 

608 

378 

542 

232 

682 

431 

596 

201 

258 

201 
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IV. EXPERIMENTAL DETAIL 

The detailed procedures for the different experiments carried out in this research are 

explained in this chapter. The following sections describe the benchmark circuits, defect 

statistics, and tools with algorithms. We then decide the procedure for considering line 

width variation, defect sample size, and bridging resistance 

A. Benchmarks 

Table 4 gives us gives us the details of the benchmarks such as layouts, test vectors 

. As shown in the table we have considered MCNC CMOS standard cell layouts of the 

ISCAS 85 benchmarks [36]. In order to maintain similar testing and process environments 

the test vectors that are used in production testing have been applied to the simulation. 

ATALANTA [37] an automatic test pattern generator for combinational circuits for stuck- 

at faults is used in our experiments. Other test vectors can also be supplied so long as 

they have sufficient fault coverage. Certain faults cannot be detected by the stuck at fault 

test set even in the gate level circuits, however most of two node bridging faults can be 

detected by these test sets if combined with IDDQ testing. A test set that gives a 

satisfactory stuck-at fault coverage can give good diagnostic resolution when combined 

with IDDQ testing [38], hence a production test set that is developed to optimize the 

stuck-at fault coverage can be used itself as a diagnostic test set. 
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Table 4: Benchmarks 

Circuit 

Layout area (cm ) 

No. of primary inputs 

No. of primary outputs 

No. of nodes 

c17 

0. 00015928 

20 

c432 

0. 00600288 

36 

402 

No. of transistors 26 728 

No. of test vectors 56 

B. VLASIC (Defect Simulator) 

Five different types of several million defects are introduced into the layouts. 

Figure 5 shows the flowchart for the defect simulations and the label mapping [1]. 
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A layout when given will be read into the MAGIC layout editor to extract into a 

CIF format for ENTICE and VLASIC and into EXT format for IRSIM. The CIF layout is 

fed into the ENTICE circuit extractor, so that all the net geometry is extracted containing 

all the net numbers. 

The ENTICE file is fed into VLASIC to generate a fault list. VLASIC determines 

the probability that each defect type causes a fault. We assume that defects within a cell 

will have a uniform spatial distribution and do not interfere with one another (all defects 

being sampled equally). 

We must map each electrical node in the circuit between defect and fault 

simulations. The mapping is done by giving the node labels from the circuit extractors 

universal labels. Figure 5 shows that the node labels f'rom IRSIM and VLASIC are 

compared and a mapping table is created. This table is then utilized to convert each label in 

the IRSIM simulation and command files, and the VLASIC defect to fault lists. The next 

step is to supply the defect to fault list to the fault simulation phase. 
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defect -fault list 

Converted RSIM 
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Figure 5: Defect simulation and label mapping [1] 
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C; IRSIM (Fault Simulator) 

Figure 6 shows the procedure for conducting the fault simulations for each fault in 

the defect to fault list for a given stopping criterion [I]. We have considered bridging faults 

since they are more common and easier to simulate. A Similar methodology can also be 

applied to other fault models. The circuit is modified corresponding to the characteristics 

of each bridging fault as shown in the defect to fault list generated by the defect simulator. 

Then simulation is carried out with a set of test vectors to determine the failure patterns 

for a particular fault type with a given stopping criterion. Consider the case where the ln 

stopping criteria is applied. In this case the output is checked serially until we get the first 

failing vector. When the first failing vector is detected, the test vector ID is recorded. In the 

worst case the testing will continue until all the vectors in the test set are exhausted and 

that fault would be marked as undetected. 
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Yes 
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IRSIM 

IRBM 

Stopping criterion Read the stopping criterion 

Combine results 

Yes 

Continue? 

Failure pattern 

Figure 6: Fault simulation flow chart [1] 
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D. Intermediate Voltage Values 

Our failure pattern dictionary could consist of unrealistic failure patterns due to 

inaccurate fault simulations [1]. An 'X' value is used to represent intermediate voltage 

values on a primary output in voltage testing. However the production test results will not 

contain X values. 

We could deal with these 'X' values in the following ways: 1) match them to a 

close pattern or 2) discard them or 3) convert them to a new pattern. When the simulator 

observes oscillations at the output then the output should be either categorized as 

undetected or detected (with a particular output value) at a certain time interval. In our 

research we will consider these 'X' values as new patterns. 

E Calculation of Defect Density 

Figure 7 shows the flowchart for the defect density calculation [1]. When the 

stopping criterion is specified the test results from the fault simulations are categorized to 

obtain the failure patterns and the POF matrix. The same criteria are also applied to the 

production testing to obtain similar failure patterns. When a failure pattern from the 

production testing matches a pattern in the dictionary, its count is recorded to produce a 

count of failure patterns. 
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Figure 7: Defect density calculation [1J 
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If an unmodeled pattern occurs it is discarded or it is matched to a closer pattern 

or it is converted to a new pattern. This count vector which is obtained by matching the 

results fiom the production test and simulation is multiplied by the inverted POF matrix 

(obtained from simulation), to give us the defect density Pareto . 

We use the same notation as [1]. 

Sets are denoted by capital letters, matrices and row vectors are shown in bold 

face capital letters, column vectors are represented by bold face lower case letters, and 

scalars correspond to lower case letters. The transpose of a vector v is denoted v'. Also 

we assume that there are m different defect types and k different failure patterns. Thus M 

= {i: i = 1, 2, . . . , m} represents the set of defect types and K = {j: j = 1, 2, . . . , k} the set of 

failure patterns. 

Pareto = [Paretot, Pareton . . . , Paretoa . . . , Pareto ], 

Where, 

Pareto; = [min{de d'j c dj t c M j c K} d'Q max{ dj cia F d;, i e M, j s K}] 

d, = P'. q; 

dp = P'. q, , 

T q„= [pj, pn. . . , p, 2 c„. . . , pj], 
T q0= [pnpn" pj, . . . , pk] 

c, = zn„nA (p, (1- pj)/n), 
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zu, n = the (1-a/'2) quantile of an unit normal variate, 

= the significance level, 

Pj 

p-I 

the number of bad chips sampled, 

i'j I Zj i'j 

roundoff(tj), 

the count vector of the failure patterns from t = P d, 

the POF matrix, 

the inverted POF manix, 

the defect count vector. 

When a random count vector of defect densities d with m different types and a 

POF matrix P are given, a sample of failure pattern counts t with k different types is 

generated. After calculating the 95% confidence interval of each failure pattern tj, an 

estimate of defect densities d„ is computed by multiplying the inverted POF matrix P ' and 

the pattern count vector q using the upper or lower limits, +cj and -c, . The worst values 

from k different estimations of defect densities are selected as the confidence limits of the 

calculated values. This calculation gives a Pareto of defect densities, upper and lower 

confidence limits. Note that since each confidence limit is computed separately, it is 

conservative. 
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F. Line Width Variation 

Given below in bold letters is the procedure for line width, sample size and bridge 

resistance variation and subsequent steps of experimentation and result collection. As we 

can see the defect monitoring methodology discussed in chapter III is presented here with 

some modifications. The details of defect and fault simulations can be obtained from the 

Figures 5 and 6 respectively. Prior to defect simulation the defect statistics and size are 

altered so that the desired number of defects are placed on the chip and required line 

widths are obtained. 

The defect size is biased up to simulate larger line width and down to simulate 

smaller line width. The line widths are varied by up to 30'/o of the minimum line widths as 

specified by the design rules (this is 300 centimicrons for metall and metal2 and 200 

centimicrons for poly). The variation in line widths that we have applied to our layouts 

are +/- 80 centimicrons. These variations are applied to the metall, meta12 and poly layers. 

Note that besides changing the probability of intralayer shorts line width variation wiII 

cause the POF to vary for pinholes, 'interlayer shorts. 
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The following is the procedure for experiments conducted for the line width 

variation case: 

l. Vary the line width of any one layer by+/- 80 centimicrons in steps of 4 

centimicrons. 

2. Perform defect and fault simulations for each step with suitable sample 

size, default bridge resistance setting (100Q) and ln, lp, 2n and 2p 

stopping criteria. 

3. Draw plots with the 40 data points obtained for each layer, for each 

criteria. 

4. Apply linear regression to get a best fit curve for the plots drawn. Hence 

this is a linear modeL 

5. Analytical explanation and theory. 

6. From the analytical study we find that cross terms are negligible, so an 

additive linear model is adequate. 

7. Confirm this by conducting experiments with simultaneous variation of 

line widths for more than one layer at a time. 
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G. Defect Sample Size 

In the earlier experiments concerned with line width variation we could select a 

suitable defect sample size which would be one that would minimize the affect of sampling 

noise in the plots obtained and give us a linear model. Defect sample sizes affect the 

overall Pareto accuracy. A larger sample size would imply a decrease in the mean error, 

and variance in the POF mauix entries. 

The following is the procedure for the defect sample size estimation: 

1. Conduct experiments with different defect sample sizes for a particular 

circuit at nominal line width and bridge resistance . 

2. Obtain the Paretos and study the affect of defect sample size variation 

on mean error and confidence interval length. 

3. Observe that an increase in defect sample size would imply a decrease in 

the confidence interval, mean error and variance in the POF matrix 

entries. 

4. Observe that beyond a particular defect sample size the number of test 

failures that could be added to the POF matrix decreases significantly. 

5. Perform an analytical study of results obtained. 
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6. We can say that if experiments were conducted with a defect sainple size 

X then with a sample size Y (where Y& Xl the number of failures added 

to the POF matrix would help us to estimate a suitable defect sample 

size. 

7. The suitable defect sample size would be one that would help diagnose 

most of the bad chips, with the confidence interval due to the finite 

number of bad chips greater than the interval due to defect sampling 

noise. 

H. Bridge Resistance 

Bridge resistance variation is random within a wafer. Low resistances will cause 

test failure pattern 1. High resistances will not cause a test failure. It is sometimes 

possible for intermediate resistances to cause other test failure patterns, due to different 

gate logical thresholds. These patterns may alias to another defect type, reducing the 

effectiveness of the POF matrix, and resulting in larger confidence intervals than predicted 

for a POF matrix built with only low-resistance bridging faults. 
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The following is the procedure for analyzing bridge resistance variation and its 

effect: 

1. Postulate that a distribution in bridging resistance has little effect on 

Pareto accuracy. Explain why this is so using a theoretical analysis. 

2. Run simulations with a distribution of bridge resistance to confirm this. 

3. Any variation if observed is explained to be due to the Monte Carlo 

nature of simulations only and not due to bridge resistance distribution. 
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V. EXPERIMENTAL RESULTS 

The procedures described in the earlier chapters are carried out and results are 

obtained at the different stages of experimentation. A benchmark layout was first input 

to the circuit extractor which extracts the connectivity of the circuit and labels all the 

geometry, then the resulting file was given to VLASIC (defect simulator). As many as 1 

defect/gm were introduced into the layout. Whenever any circuit fault occurred, the 

defect simulator extracted it and classified it according to the fault type. Thus a defect to 

fault list was obtained. Then fault simulations were carried on to get a relationship 

between circuit faults and failure patterns. We have limited ourselves to the 

consideration of bridging faults in this research. Voltage testing was applied for the 

detection of these faults. A probability matrix was generated by combining the 

relationship between defects to faults, faults to failure patterns and a given stopping 

criteria. Then a Pareto showing the defect densities was obtained by multiplying the 

inverse of the POP matrix and the count vector. Table 5 shows the number of faults 

generated for the defect simulation (with the specified number of defects) for the 

benchmark circuits. 



33 

Table 5: Fault statistics following defect simulation 

Layout name cl7 c432 

¹ Total defects induced 79, 640 3, 001, 440 

% Killer defects 2. 86% 3, 65% 

¹ Total faults generated 

¹ Bridging faults 

2274 

2060 

507 - 109644 

314 111 100236 

20691 

12909 5488 

¹ Open faults 129 118 5010 4342 

¹ new gate device faults 85 75 4398 3440 

CPU time for simulation 0: 00: 21 0: 27: 11 

The three columns in Table 5 correspond respectively to the total number of killer 

defects which landed in the critical area for each defect type in the layout given and 

caused a circuit fault, the number of unique faults which caused an electrical fault in the 

same set of two or more nodes. 

For the case of line width variation for metall, meta12 and poly the defect size is 

biased up to simulate larger line width and down to simulate smaller line width. the line 

widths are varied by upto 30% of the minimum line widths. Then defect and fault 

simulations were carried out followed by generation of Paretos for different defect types. 

Simulations were carried out with varying defect sample sizes to overcome the noise 

problem. 
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The POF matrices obtained for the simulations carried out with different defect 

sample sizes were analyzed. A distribution of bridge resistance was applied to the 

benchmarks and the effects of this on POF matrices and Paretos was studied. 

A. Line Width Variation 

Pattern sensitivity, random process variations and limitations in lithography optics 

cause line widths to deviate as much as 30/o Irom the nominal. This in turn causes an 

effective variation in the critical area for extra material defects to cause shorts, and thus the 

corresponding values in the POF matrix, The technology with which we are working is X = 

2 microns and the minimum spacing and width of the metal lines is 3 microns. In our 

experiments we have varied the line widths fiom +80 centimicrons through -80 

centimicrons, which is roughly 30 '/a of the minimum width/spacing. The line widths are 

varied by varying the defect bias in VLASIC. Increasing the bias is equivalent to increasing 

line width, reducing the bias is equivalent to reducing the line width. The variation of these 

widths can be understood as moving the edges of the layout. Therefore a + 88 centimicron 

bias (-88 centimicron decrease in the line width) would be the same as moving all the edges 

of the polygons into the interior by 44 centimicrons. 
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Then defects are placed and the corresponding electrical faults are recorded. Only 

defects with edges in the region swept by the changing line widths can be affected by a 

change in line width. Thereafter the fault simulation is carried out and the mapping from 

faults to failure patterns is completed. From this defect to fault, fault to failure pattern 

dictionary the POF matrix is generated, and eventually the Pareto generated. The Pareto 

obtained gives us the variation in the predicted defect density for each defect type after 

alteration of the line widths. The line widths are varied individually for each defect type 

and the results are observed. Then variation of more than one defect type is carried out 

simultaneously and the effect of this variation on the defect densities is studied. 

We try to check for cross terms that could exist when more than one defect type is 

simultaneously varied and whether they are negligible enough to overlook them. 

Figures 8-22 show the sensitivity of defect density to line width variation and the 

corresponding X variable line fit plots for different layers (circuit c17). 
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Figure 8(a) Predicted POSMF (first metal) defect density vs. metal 1 line 

width variation (+80 to -80 centimicrons) for circuit c17 with a chip sample size of 

1000 and stopping criterion 1n. 
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Figure 8(b) X variable line fit plot for curve shown in Figure S(a) with 

correlation 0. 9925. 
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Figure 9(a) Predicted POSPG (poly) defect density vs. metal 1 line width 

variation (+80 to -80 centimicrons) for circuit c17 with a chip sample size of 1000 

and stopping criterion ln. 
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Figure 9(b) X variable line fit plot for curve shown in Figure 9(a) with 

correlation 0. 8164. 
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Figure 10(a) Predicted POSMS (second metal) defect density vs. metal 1 

line width variation (+80 to -80 centimicrons) for circuit c17 with a chip sample 

size of 1000 and stopping criterion 1n. 
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Figure 10(b) X variable line fit plot for curve shown in Figure 10(a) with 

correlation 0, 9652 . 
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Figure 11(a) Predicted PIN1 (metal 1-poly pinhole) defect density vs. metal 1 

line width variation (+80 to -80 centimicrons) (or circuit c17 with a chip sample 

size of 1000 and stopping criterion ln. 
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Figure 11(b) X variable line fit plot for curve shown in Figure 11(a) with 

correlation 0, 2937. 
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Figure 12(a) Predicted PIN2 (metal 1-metal2 pinhole) defect density vs. 

metal 1 line width variation (+80 to -80 centimicrons) for circuit c17 with a chip 

sample size of 1000 and stopping criterion la. 
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Figure 12(b) X variable line ftt plot for curve shown in Figure 12(a) with 

correlation 0. 8757. 
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Figure 13(a) Predicted POSMF (first metal) defect density vs. poly line 

width variation (+80 to -80 centimicrons) for circuit c17 with a chip sample size of 

1000 and stopping criterion 1n. 
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Figure 13(b) X variable line fit plot for curve shown in Figure 13(a) with 

correlation 0. 9725. 
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Figure 14(a) Predicted POSPG (poly) defect density vs. poly line width 

variation (+80 to -80 centimicrons) for circuit c17 with a chip sample size of 1000 

and stopping criterion 1n. 
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Figure14(b) X variable line fit plot for curve shown in Figure 14(a) with 

correlation 0. 6006. 
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Figure 15(a) Predicted POSMS (second metal) defect density vs. poly line 

width variation (+80 to -80 centimicrons) for circuit c17 with a chip sample size of 

1000 and stopping criterion 1n. 
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Figure 15(b) X variable line fit plot for curve shown in Figure 15(a) with 

correlation 0. 8495. 
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Figure 16(a) Predicted PIN1 (metal I-poly pinhole) defect density vs. poly 

line width variation (+80 to -80 centimicrons) for circuit c17 with a chip sample 

size of 1000 and stopping criterion 1n 
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Figure 16(b) X variable line fit plot for curve shown in Figure 16(a) with 

correlation 0. 1950. 



45 

4. 8 
4. 6 

x 44 
ttt 4. 2 

3. 8 
0 co co cr ol 0 co 4 co co 0 Dl 
co Co cc 'e co ol Dl O CD 

Line Width Bias 

Figure 17(a) Predicted PIN2 (metal I-metal2 pinhole) defect density vs. 

poly line width variation (+80 to -80 centimicrons) for circuit c17 with a chip 

sample size of 1000 and stopping criterion 1n. 
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Figure 17(b) X variable line ftt plot for curve shown in Figure 17(a) with 

correlation 0. 6974. 
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Figure 1S(a) Predicted POSMF (first metal) defect density vs. metal 2 line 

width variation (+80 to -80 centimicrons) for circuit c17 with a chip sample size of 

1000 and stopping criterion 1n. 
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Figure 18(b) X variable line fit plot for curve shown in Figure 18(a) with 

correlation 0. 9858. 
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Figure 19(a) Predicted POSPG (poly) defect density vs. metal 2 line width 

variation (+80 to -80 centimicrons) for circuit c17 with a chip sample size of 1000 

and stopping criterion ln. 
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Figure 19(b) X variable line fit plot for curve shown in Figure 19(a) with 

correlation 0. 3819. 
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Figure 20(a) Predicted POSMS (second metal) defect density vs. metal 2 

line width variation (+80 to -80 centimicrons) for circuit c17 with a chip sample 

size of 1000 and stopping criterion ln. 
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Figure 20(b) X variable line ftt plot for curve shown in Figure 20(a) with 

correlation 0, 9698. 
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Figure 21(a) Predicted PINI (metal 1-poly pinhole) defect density vs. metal 2 

line width variation (+80 to -80 centimicrons) for circuit c17 with a chip sample 

size of 1000 and stopping criterion 1n 
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Figure 21(b) X variable line fit plot for curve shown in Figure 21(a) with 

correlation 0. 5829. 
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Figure 22(a) Predicted PIN2 (metal 1-metal 2 pinhole) defect density vs. 

metal 2 line width variation (+80 to -80 centimicrons) for circuit c17 with a chip 

sample size of 1000 and stopping criterion ln 
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Figure 22(b) X variable line fit plot for curve shown in Figure 22(a) with 

correlation 0. 7403. 
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The curves as shown in these figures are essentially linear with a very small 

quadratic factor. Note that some curves have significant noise, this is due to the nominal 

Pareto we have used in our simulation experiments. This Pareto causes first metal to have 

the most defects then second metal, poly, pin 1 and pin2. This explains the increasing noise 

in curves for layers in the following order first metal, second metal, poly, pinl and pin2. 

We observe a shift in the slopes of some curves, making them piecewise linear. This can be 

explained as follows: if we have two parallel lines, and they are spaced 3 um apart for 

length Ll, and 4 um apart for length L2, then as the defect size rises (our bias value), the 

critical area will first appear in the 3 um section, rises from 0 with slope Ll from 3 um to 4 

um, and then after 4 um, the slope rises as Ll+L2. Similarly when the defect is shrinking. 

The lines in the layouts are 3 um wide except at contacts where they are 4 um 

wide, then assuming the contacts are centered, and spacing is 7 um center to center (4 um 

contact+ 3 um space), we have two spacings - 3 um and 4 um. However if we just make 

small changes around a given defect size, we essentially stay on the same section and same 

slope, but farther away we add or drop critical areas, changing the slope. 

Now this discussion has been in the context of critical area at a defect size. 

However we must consider the entire distribution of sizes. The defect density is actually a 

convolution of the defect size distribution with the critical area as a function of defect size. 
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Assuming the defect size distribution is 1/x~3 and the critical area function is 

approximately piecewise linear as described above, then the result is piecewise quadratic. 

Changing the bias is effectively shifting the size distribution relative to the critical area 

function, and so can be approximated as piecewise linear. But as noted above, the range of 

variation is small enough that a linear model is sufficient 

A method of best curve fitting by linear regression was applied. From these plots 

for all the three cases of varying different layer widths we observe experimentally that a 

linear model is sufficient as shown by the high correlation values. 

Another design (ISCAS 85 benchmark circuit c432) was also considered to confirm 

the validity of the linear model. 

Figures 23-37 show the sensitvity of defect density to line width variation and the 

corresponding X variable line fit plots for different layers (circuit c432). 
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Figure 23(a) Predicted POSMF (first metal) defect density vs. metal 1 line 

width variation (+80 to -80 centimicrons) for circuit c432 with a chip sample size of 

1000 and stopping criterion 1n. 
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Figure 23(b) X variable line fit plot for curve shown in Figure 23(a) with 

correlation 0. 9811. 
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Figure 24(a) Predicted POSPG (poly) defect density vs. metal 1 line width 

variation (+80 to -80 centimicrons) for circuit c432 with a chip sample size of 1000 

and stopping criterion ln. 

0. 

-Y 
- Predicted Y 

-100 
X Variable 1 

50 100 

Figure 24(b) X variable line fit plot for curve shown in Figure 24(a) with 

correlation 0. 7617. 
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Figure 25(a) Predicted POSMS (second metal) defect density vs. metal 1 

line width variation (+80 to -80 centimicrons) for circuit c432 with a chip sample 

size of 1000 and stopping criterion 1n. 
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Figure 25(b) X variable line fit plot for curve shown in Figure 25(a) with 

correlation 0, 9728. 
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Figure 26(a) Predicted PIN1 (metal I-poly pinhole) defect density vs. metal 

1 line width variation (+80 to -80 centimicrons) for circuit c432 with a chip sample 

size of 1000 and stopping criterion ln. 
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Figure 26(b) X variable line fit plot for curve shown in Figure 26(a) with 

correlation 0. 4020. 
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Figure 27(a) Predicted PIN2 (metal 1-metal 2 pinhole) defect density vs. 

metal 1 line width variation (+80 to -80 centimicrons) for circuit c432 with a chip 

sample size of 1000 and stopping criterion ln 
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Figure 27(b) X variable line fit plot for curve shown in Figure 27(a) with 

correlation 0. 7778. 
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Figure 28(a) Predicted POSMF (first metal) defect density vs. poly line 

width variation (+80 to -80 centimicrons) for circuit c432 with a chip sample size of 

1000 and stopping criterion ln. 
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Figure 28(b) X variable line fit plot for curve shown in Figure 28(a) with 

correlation 0. 7979. 
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Figure 29(a) Predicted POSPG (poly) defect density vs. poly line width 

variation (+80 to -80 centimicrons) for circuit c432 with a chip sample size of 1000 

and stopping criterion ln. 
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Figure 29(b) X variable line fit plot for curve shown in Figure 29(a) with 

correlation 0. 1503. 
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Figure 30(a) Predicted POSMS (second metal) defect density vs. poly line 

width variation (+SO to -80 centimicrons) for circuit c432 with a chip sample size of 

1000 and stopping criterion 1n. 
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Figure 30(b) X variable line ftt plot for curve shown in Figure 30(a) with 

correlation 0. 6520. 
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Figure 31(a) Predicted PINI (metal 1-poly pinhole) defect density vs. poly 

line width variation (+80 to -80 centimicrons) for circuit c432 with a chip sample 

size of 1000 and stopping criterion In. 
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Figure 31(b) X variable line ftt plot for curve shown in Figure 31(a) tvith 

correlation 0. 0207. 
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Figure 32(a) Predicted PIN2 (metal 1-metal 2 pinhole) defect density vs. poly 

line width variation (+80 to -80 centimicrons) for circuit c432 with a chip sample 

size of 1000 and stopping criterion ln. 
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Figure 32(b) X variable line fit plot for curve shown in Figure 32(a) with 

correlation 0, 2006. 
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Figure 33(a) Predicted POSMF (first metal) defect density vs. metal 2 line 

width variation (+80 to -80 centimicrons) for circuit c432 with a chip sample size of 

1000 and stopping criterion 1n. 
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Figure 33(b) X variable line fit plot for curve shown in Figure 33(a) with 

correlation 0. 9575. 
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Figure 34(a) Predicted POSPG (poly) defect density vs. metal 2 line width 

variation (+80 to -80 centimicrons) for circuit c432 with a chip sample size of 1000 

and stopping criterion ln. 
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Figure 34(b) X variable line fit plot for curve shown in Figure 34(a) with 

correlation 0. 3583. 
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Figure 35(a) Predicted POSMS (second metal) defect density vs. metal 2 

line width variation (+80 to -80 centimicrons) for circuit c432 with a chip sample 

size of 1000 and stopping criterion ln. 
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Figure 35(b) X variable line fit plot for curve shown in Figure 35(a) with 

correlation 0. 8648. 
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Figure 36(a) Predicted PIN1 (metal 1-poly pinhole) defect density vs. metal 2 

line width variation (+80 to -80 centimicrons) for circuit c432 with a chip sample 

size of 1000 and stopping criterion ln. 
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Figure 36(b) X variable line fit plot for curve shown in Figure 36(a) with 

correlation 0. 0185. 
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Figure 37(a) Predicted PIN2 (metal I-metal 2 pinhole) defect density vs. 

metal 2 line width variation (+80 to -80 centimicrons) for circuit c432 with a chip 

sample size of 1000 and stopping criterion 1n. 
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Figure 37(b) X variable line fit plot for curve shown in Figure 37(a) with 

correlation 0. 7395. 
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Experiments were conducted to study the effects of cross terms when line widths 

of multiple defect types were simultaneously varied. We found that the cross term factor 

was negligible and the resultant Figures 38-42 confirmed a linear relationship. 
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Figure 38(a) Predicted POSMF (first metal) defect density vs. metal 1 and 

metal 2 line width variation (+80 to -80 centimicrons) for circuit c17 with a chip 

sample size of 1000 and stopping criterion 1n. 
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Figure 38(b) X variable line fit plot for curve shown in Figure 38(a) with 

correlation 0. 9978. 
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Figure 39(a) Predicted POSPG (poly) defect density vs. metal 1 and metal 2 

line width variation (+80 to -80 centimicrons) for circuit c17 with a chip sample 

size of 1000 and stopping criterion ln. 
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Figure 39(b) X variable line fit plot for curve shown in Figure 39(a) with 

correlation 0. 9179. 
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Figure 40(a) Predicted POSMS (second metal) defect density vs. metal 1 

and metal 2 line width variation (+80 to -80 centitnicrons) for circuit c17 with a 

chip sample size of 1000 and stopping criterion 1n. 
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Figure 40(b) X variable line fit plot for curve shown in Figure 40(a) with 

correlation 0. 9856. 
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Figure 41(a) Predicted PINI (metal I-poly pinhole) defect density vs. metal I 

and metal 2 line width variation (+80 to -80 centimicrons) for circuit c17 with a 

chip satnple size of 1000 and stopping criterion ln. 
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Figure 41(b) X variable line fit plot for curve shown in Figure 41(a) with 

correlation 0. 4522. 
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Figure 42(a) Predicted PIN2 (metal 1-metal 2 pinhole) defect density vs. 

metal 1 and metal 2 line width variation (+80 to -80 centimicrons) for circuit c17 

with a chip sample size of 1000 and stopping criterion 1n. 
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Figure 42(b) X variable line fit plot for curve shown in Figure 42(a) with 

correlation 0. 9599. 
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Analysis of the behavior of the Pareto prediction 

The following is an analysis of the behavior of the Pareto prediction done to 

confirm the additive linear behavior seen on the examples: 

h(x) 

Pro bab ili t y 
/critical area 

C(x) 

(mX-mS) 

I I 
I 

I I 
I 

I I I 

S Defect Size 

Figure 43: Critical area and defect size curves 

The Figure 43 gives us the critical area vs. defect size curves, a convolution of these 

curves gives the probability of a particular defect type to cause a failure. 

S is the nominal spacing between the lines of a particular layer. 

m is the sensitivity of defect density of the layer whose line widths are being 

varied. 

h(X) = A/ X is the defect size function. 

C(X) = m X-m S is the critical area function. 
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=& J, A (mX-mS)/X dX [defect size X critical area] (3) 

=&Am. f, X/X dX-A. mS J, l/X'dX 

=& P = Am/2S (4) 

=& BP/BS = -Am/2 S 

Therefore using (4) and (5) for our case where the defect density of a particular 

layer is sensitive to line width variation of any layer. 

We get: 

Pijt=Cije + Nijl Xi 

Where, 

X; is the shift from the nominal spacing 

C; j g 
= A m/ 2. S 

N;jg = -Am/2 S 

(7) 

P;jj, is an entry in the POP matrix. 

i is the defect type whose probability to cause a failure pattern is being 

considered. 

k is a test failure pattern. 

j is the layer whose line widths are being varied. 

Now let us a consider a case where two defect types have caused two fault types. 
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We get a POF matrix P of the form: 

CI 'i + NI ~ . XI Q ~ 
+ NP 'i . XP 

CIP + N)P. X) QP+ NPP. XP 

In the above POF matrix we have not applied the general description given by the 

subscripts in the equation (6) for the entries of the POF matrix. We have assumed for 

simplification purposes that each layer is affected by line width variations in the same 

layer only. 

In the POF matrix subscripts I 2 attached to the C and N terms refer to the efFect 

of line width variation of layer I on intralayer I shorts thus causing a failure pattern 2. 

We have obtained the above expression for probability of a particular defect type 

to cause a certain failure pattern. Intuitively we know that the line width variation in any 

one layer cannot alter the critical area for another layer. However changes in line width 

variation alter the overlap area in the case of pinhole defects. Hence the piecewise linear 

behavior of the results obtained for pinhole defects for line width variation of any layer 

can be explained. 
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Let d be the defect density vector and dn ds be the densities for the two defect 

types. 

cl1 

d2 

We get the test count vector from t = P d. 

Let the elements of P be expressed as: 

P1 P2 

P3 P4 

Then t can be written as: 

P1. d1 + P2. d2 

P3. d1 + P4. d2 

By applying elementary matrix operations we get P ' as shown below: 

P4 - P3 

1. 4 3. 2 1 4 3 2 

P2 P1 

P1. P4-P3. P2 P1. P4-P3. P2 
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The defect density vector d can be obtained by performing P' t to give: 

P4(PI . d)+Pp. d2) PS (PS. c(]+P4. dp) 

P). P4-PS. PP 

-Pg(P~. c(~+Pp. tip) +P)(PS. dt+P4. dp) 

Pt. P4-PS. PP 

Substituting the values of Pn Pq, P& and P4 we get di '. 

d2. N21. N22. X2 -d1. N12 . Xt +(dt. NI 1 . N22-d2. Nt 2. N22)Xt. ++[( C22. N11-2C12 Nt 2)dt 

d2 C22 k 21X1+((C11 22+C22 21 21 N22) 1 2 12 22l 2+( 11 C22 C12 ) 1+ 

(C21 C22-CI2. C22) d2 

N11 N 2 X1 Z C22 N11-C12. N11-Ct 1. N12 IX1+C11. N22. X2+Nt 1. N22. Xt . X2+(C11 ~ C22- 

Ct 1. C12) 

This would be sufficient to examine what factors the defect density depends upon. 

When we are varying only layer I, the terms that contain Xq, Xi Xq and Xz vanish (since 

Xq = 0) and only Xi and Xi terms remain both in the numerator as well as the 

denominator. However if we recall some of the theory we went over earlier, we know that 

the N terms are comparatively much smaller than the C terms. The value of N term is 

-A m/2 S and the value of C term is A m/ 2. S as given by (3) and (4) respectively. If we 

examinethecoefficientofthe Xi term wefindthat it is -di N, z which is comparatively 

very much less than the (C. N) terms that exist as coefficients for X, . 
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So the overall expression will be of the form ai Xi+ bi I azXi+ bi where ai& at and 

bi & bi, since ai and bi contain d terms while az and br do not contain any d terms. This 

explains the linearity observed in our results. 

For the case of line width variation for two layers we can observe that the defect 

density also has some cross terms e. g. X, Xi. We notice that the X, . Xz terms have the 

product of two N terms as coefficient. This makes the effect of cross terms negligible. The 

same also applies to the quadratic terms. Thus the overall relationship is linear since the 

Xi and Xi terms have the largest coefficients. The same theory would apply for more than 

two layers if varied simultaneously. 

Let us consider an example in which there are two different layers Ml and M2 and 

two sets of parallel lines for each layer, each set having different length. 

For the two la ers M 1 and M2: 

Let the two sets of parallel lines for layer Ml have the following lengths: 

L 1 = 3000 centimicrons, L2 = 3000 centimicrons 

Let the two sets of parallel lines for layer M2 have the following lengths: 

L3 = 3000 centimicrons, L4 = 5000 centimicrons 

Spacing S = 300 centimicrons 

The defect size X, at which the peak defect &equency occurs = 100 centimicrons 

Let a short in the lines with length Ll, L3 cause fault 1 and short in the lines with 

length L2, L4 cause fault 2. 
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We get N =-X, L/4 S'and C= X, . L/4. S by substituting A=X, /2 and m = L in 

(8) and (7) respectively. 

d j = dz = 1000 defects / sq. cm. 

Following the notation provided earlier in this section we get 

Nl I Niz = Nzj = -83. 33, Nzz = -138. 89 

Cll Clz Czl 25000 
& Czz 41666 67 

substituting these values we get the defect density for Ml as given below 

0 1157 X22 0 6944 X12 208 325 X 1 694 4334 X2+41666 675 

0 0019 X12 PO 0694 X 1 0 3472 X2~0 0012 Xl X2~41 667 

= 1000+ 5Xi - 16. 667 Xz 

Clearly we can neglect the XI Xz, X~ and Xz terms thus the defect density is 

linear in X~ and Xz. 

B. Defect Sample Size 

The suitable defect sample size for building the POF matrix would be one that 

would help diagnose most of the bad chips, with the confidence interval due to the finite 

number of bad chips to be greater than the interval due to defect sampling noise in the 

POF matrix entries. Obviously a large defect sample size would help us to overcome the 

noise problem and give us a dictionary vrith very good diagnosibility. 
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But the construction costs for a dictionary associated with such a large defect 

sample size would be too expensive in terms of time and memory space. This section 

introduces us to the theory which would help us to achieve some balance between large 

dictionary construction costs and very low defect sampling noise, high diagnosibility. 

As we increase the defect sampling size the number of different types of failure 

patterns also increases. When there are fewer than 5 patterns of a particular type, a Beta 

distribution is a better approximation than a binomial distribution for the sample mean. 

The Beta distribution is given by; 

(Y; + 1)/(n+2) 

Gj (Yj + 1)(n Yj + 1)/ (n + 2) (n + 3) 

The Binomial distribution is given by: 

lt;= Y /n 

where, 

Y; = number of faults of type i. 

n = number of defects in sample. 

p; = sample mean. 

rr; = sample variance. 
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The rate of increase in the number of different types of patterns depends upon the 

type of design under consideration. The design could be random logic or memory array or 

some combination of the two, The distribution of critical area sizes is a crucial factor 

which affects this rate. For random logic there is a distribution of sizes, with a relatively 

small fraction accounting for most failures. 

Thus a relatively small defect sample size will generate most patterns. In an array, 

the critical area sizes are evenly distributed, so the number of patterns is more 

proportional to the number of defects, until a much larger sample is used. 

The rate of increase of failure patterns decreases with larger sample size. The figure 

44 gives us the percentage of all test failure patterns that can occur on a chip versus the 

sampling size for a typical random logic design and array. 

The climb shown in Figure 44 depends upon the type of the design under 

consideration i. e. the critical area distribution by test failure pattern. 



82 

f 00'/o 

Random logic 

'/a of al test 
f ailures t hat 

can occur on 
a chip. 

Array 

Defect Sample Size 

Figure 44: Typical defect sample size vs. number of failures curve 

We have conducted experiments with different defect sample sizes for our random 

logic design c17 to confirm the theory discussed above. Table 6 gives us the probabilities 

for different failure patterns with different defect sample sizes. Clearly we can see that 

the rate of increase of failure patterns decreases beyond a threshold defect sample size. 

Table 7 gives us the mean + standard deviation values for circuit c17 with 10000, 

100000, 700000 and 1500000 sample sizes respectively. From the table we find that the 

confidence interval, the mean error falls as the sample size increases. 
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Table 6: Probabilities for different failures with different sample sizes 

Pattern 10, 000 100, 000 700, 000 1, 500, 000 

1-00 0. 0165 0. 0195 0. 0212 0. 0210 

I-OX 0. 0015 0. 0044 0. 0040 0. 0041 

1-10 0. 0005 0. 0002 0. 0002 0. 0002 

0. 0175 0. 0142 0. 0198 0. 0196 

I-IX 0. 00005 0. 00001 0. 00002 

I-XI 0. 0160 0. 0098 0. 0] 02 0. 00098 

I-XX 0. 0005 0. 0006 0. 0007 0. 0007 

2-01 0. 0115 0. 0090 0. 0101 0. 0101 

2-OX 0. 0030 0. 0034 0. 0039 0. 0039 

2-1 I 0. 0070 0. 0062 0. 0059 0. 0058 

2-XX 0. 0075 0. 0050 0. 0054 0. 0053 

3-01 0. 0030 0. 0034 0. 0039 0. 0039 

4-00 0. 0080 0. 0080 0. 0069 0. 0071 

4-XX 0. 0020 

4-11 

0. 0041 0. 0045 0. 0044 

0. 00002 0. 000003 

5-00 0. 0100 0. 0050 0. 0055 0. 0053 

5-01 0. 0020 0. 0017 0. 0020 0. 0021 

5-10 

6-1 I 

0. 0035 

0. 0035 

0. 0027 0. 0029 

0. 0024 0. 0024 

0. 0026 

0. 0022 
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Table 7: Mean i standard deviation values for circuit c17 with 

varying defect sample sizes and chip sample size of 1000 

Defect 10, 000 100, 000 700, 000 1, 500, 000 

POSMF 

POSPG 

51. 5663+ 

6. 3983 

8. 5341+ 

51. 568 + 

] 3. 6581 

8. 3980+ 

51. 3672+ 51. 3483+ 

14. 8302 15. 1257 

8. 46312+ 8. 4058+ 

3. 9213 7. 8398 9. 3598 9. 411 

POSMS 

PIN1 

32. 5114+ 

5. 7776 

5. 6663+ 

8. 0133 

32. 1477+ 

8. 0539 

7. 1514+ 

10. 1136 

6. 3819 

7. 0201+ 

9. 9279 

6. 1622 

7. 5072+ 

10. 6168 

32. 1313+ 31. 9957+ 

PIN2 4. 5907+ 

2. 9431 

4. 5071+ 

3. 4479 

4. 4587+ 

2. 6708 

4. 5037+ 

2. 7071 

For defect Pareto calculation we have to multiply the test count vector with the 

inverted POF matrix. The SVD algorithm [34, 35] is used to invert the POF matrix, 

However the SVD algorithm effectively neglects the low probability terms in the POF 

matrix. 
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Therefore if we do not have failure patterns with low probabilities in our POF 

matrix this would not affect the accuracy of the Pareto calculation. Hence the optimum 

defect sample size would be the one very close to the threshold sample size. Thereby 

saving us the time and memory expense which would have incurred with large defect 

sample sizes. This would give us a dictionary with good diagnosibility and less 

construction cost since the dictionary does not contain the low probability failure 

patterns. 

The issue that remains is to identify when our defect sample size is close to the 

threshold value. For our case we started with an arbitrary defect sample size of 10, 000 

defects and then checked to see how many of the total failure patterns are those with high 

probability. If they comprise a bulk of the total number of failure patterns generated by 

the sample size in consideration and a very few patterns have comparatively less 

probability then our starting defect sample size is adequate. We then take another defect 

sample size greater (here we took 100, 000) than the starting sample size and check how 

many high probability failure patterns there are and whether the high probability patterns 

generated by the previous sample have higher probability than before with the new defect 

sample size or whether they have remained stable or decreased in value. 
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If they have a higher value then the rate of percent increase in probability vs. 

percent increase in sample size should be calculated for the high probability terms. We can 

also check how may new patterns are being added with the increasing sample size and 

what their probabilities are along with the percent of all possible failure patterns covered 

up to this point. The total number of failure patterns depends upon the number of test 

vectors and the stopping criterion applied. In the case of bridging faults the number of 

failure patterns can be roughly proportional to the number of nets (for stopping criteria kp 

k = 1, 2, . . . ; for ln it is proportional to the number of test vectors). So if we are 

approaching the total number of failure patterns that could exist then we could establish 

that the sample size we have used to obtain this number of failure patterns is sufficient to 

overcome the noise problem. For a memory structure the total number of failure patterns 

can be bounded by O(n) (where n is the number of bits). 

All these factors combined together h'elp us to get an idea about our design and 

allow us to estimate an optimum defect sample size. However a more exact method of 

estimation of an optimum defect sample size which would answer problems like 

dictionary construction cost and diagnosibility would be to apply the beta distribution. 

First of all we can set goals such as the error should be less than chip sampling error, we 

should be able to diagnose 90'/0 of the chips etc. 
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Substituting Y; = 0 (for 0 entries) and n the total number of defects placed on the 

chip we get 

I/(n+ 2) 

p, ; - I/n 

rr, = (n- I)/(n+2) (n+3) 

tr, — 1/n 

and if we use 1. 96tr as an upper bound we get 

The sample mean would be — 3lt; 

=& 3/n 

The probability of unseen patterns can be calculated by multiplying 3lt; by the 

total number of failure patterns. 

If the total probability of available patterns for a particular defect sample size is 

much higher than the probability of unseen patterns (by a factor of 10) then we have 

reached our adequate defect sample size, otherwise we have to use a larger sample size that 

would give us a value closer to the desired probability. 

The Figure 45 gives us the number of all failure patterns covered vs. the defect 

sample size for c432. We can see that at roughly 700K defects the rate of increase in the 

number of failure patterns with sample size decreases significantly. Figure 46 shows the 

number of unique faul'ts covered vs. defect sample size. We can see how the slope of the 

curve decreases after a defect sample size of 700K . 
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Figure 45: No. of failure patterns vs. defect sample size in thousands for 
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Figure 46: No. of unique faults vs. defect sample size in thousands for c432 



The total probability of available patterns at a defect sample size of 700K is 

0. 0337. The probability of unseen patterns can be calculated by multiplying the mean 

value given by lt; - 1/n (lt, — 3/n would give us a conservative value) with the number of 

estimated unseen failure patterns (where n is 700K and the estimated total number of 

failure patterns is 4320, assuming there are k = 10 failure patterns per net). Thus we get 

the probability for unseen patterns equal to 0. 0056. From this information we estimate 

that 85. S% of all failure patterns are covered with a defect sample size of 700K. 

Note that we do not calculate the number of failure patterns by substituting design 

information like the number of testvectors 'v' and the number of primary outputs 'po' in 

v 2 ', since this would give us a conservative vaiue for the number of failure patterns. 

Figure 47 shows the actual percentage of failure patterns covered vs. the predicted 

percentage of failure patterns covered for a distribution of defect sample sizes for c432. 

We see that our predicted values differ from the actual only by a small amount. This 

difference depends upon the k value that we have considered. The number of failure 

patterns is almost linearly proportional to the number of nets in memory arrays and can be 

given by k no. of nets for Ip test stopping criterion, this number would be obviously 

very conservative for stopping criterion 1 n. 
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Figure 47: Percentage of actual vs. predicted failure patterns covered for a 

distribution of defect sample size in thousands for c432. 

Table 8 gives the mean and standard deviation values for circuit c432 with varying 

defect sample sizes and chip sample size of 10000. The standard deviation values were 

calculated analytically. We observe that there is not much increase in the standard 

deviation from 700K defects onwards and the mean also converges. This further confirms 

our method of estimation of an adequate defect sample size. 

We can also estimate the defect sample size by considering the probabilities of 

failure patterns covered for a defect sample size X and then analyzing the probabilities for 

failure patterns for defect sample size Y (where Y & X). If there is not much increase in the 

probability values then we can conclude that we have arrived at the desired number of 

defects. 



91 

Table 8: Mean k standard deviation values for circuit c432 with 

varying defect sample sizes and chip sample size of 10000 

Defect 

POSMF 

POSPG 

POSMS 

PIN I 

PIN2 

1, 000 

0. 8789+ 

0. 0472 

0. 1448+ 

0. 0743 

0. 5514+ 

0. 1389 

0. 0724+ 

0. 0379 

0. 0758+ 

0. 0176 

10, 000 

0. 9221+ 

0. 0535 

0. 1517+ 

0. 0389 

0. 5826+ 

0. 0520 

0. 0777+ 

0. 1312 

0. 0795+ 

0. 0353 

100, 000 700, 000 

0. 9689+ 0. 9995+ 

0. 06236 0. 0757 

0. 1580+ 0. 1561+ 

0. 0509 0. 0970 

0. 6039+ 0. 6317+ 

0. 0564 0. 0927 

0. 0774+ 0. 0810+ 

0. 1085 0. 1389 

0. 0864+ 0. 0912+ 

0. 0381 0. 0384 

1, 000, 000 

1. 0001+ 

0. 0765 

0. 2310+ 

0. 0464 

0. 6238% 

0. 1 I I I 

0. 0803+ 

0. 1329 

0. 0867+ 

0. 0412 

3, 001, 440 

1. 0012+ 

0. 0922 

0. 1642+ 

0. 1094 

0. 6260+ 

0. 0803 

0. 0833+ 

0. 1220 

0. 0908+ 

0. 0423 

C. Bridge Resistance 

Bridging failures are the most common defects present in mature CMOS integrated 

processes. Hence the detection of faults introduced by bridging defects is required in order 

to perform an acceptable test of an IC. Bridge resistance variation is random across a few 

wafer samples. Most of the bridging faults have low resistance. But roughly half have 

resistance higher than 500Q, with the percentage varying from lot to lot [39]. 
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We shall begin by postulating that a distribution of bridging resistance does not 

affect Pareto accuracy. For almost every fault we postulate that increasing the bridge 

resistance from OQ to ~ causes the test failure to change irom the faulty pattern to a fault 

free pattern. If the test set has high fault coverage then the test sequence detects bridges 

over nearly their entire resistance range where they can cause a fault. 

In some cases [40, 41], as the bridge resistance is increased, additional test failure 

patterns may occur. If these alias to patterns associated with other defect types, then a 

dictionary built using a fixed IOOQ may incorrectly predict a Pareto for chips with these 

overlapping patterns. Also from [I] we know that if all X values (intermediate voltage 

values) at the outputs were mapped to some existing patterns then the overall error in the 

accuracy would not be more than 6 '/o. This further strengthens our views regarding bridge 

resistance and its small effect on Pareto accuracy. 

The maximum resistance upto which the fault is detectable depends upon the 

threshold of the gate which is receiving the fault . This threshold is in turn dependent upon 

the threshold of the driving gates, nodal voltages, power supply etc. Please refer to Figure 

48 which illustrates the detectability of faults with variation in bridge resistance. The 

curves shown in this figure correspond to the voltage values of the two nodes which are 

bridged together, at a given power supply voltage and bridge resistance varying from OQ to 

higher values. We can see that the fault remains detectable for a small range of bridge 

resistance values and then becomes undetectable over a higher range 
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Figure 48: Fault detectability for varying bridge resistance 

If the number of outputs is small for a given circuit then as we increase the 

bridge resistance we do not find much decrease in the number of failure patterns that are 

detectable. This is because all the dift'erent possible failure patterns for a small number of 

outputs is already small. This implies that a large number of faults would fall into one 

failure pattern type which is unlike the case of a circuit having a larger number of outputs 

which would have a larger number of failure patterns and therefore the number of faults 

that would fall into one failure type would be relatively small. 
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Figure 49: Circuit level explanation of the effect of bridging resistance 

on fault detectability 

Generally we see that at lower bridge resistances most of the faults are detectable. 

If we consider portion of a circuit as shown in Figure 49, the shorts between both Mi 

(metall) layers and M2 (meta12) layers propagate to the primary outputs PO, and POz at 

lower resistances. However at higher resistances we find only the bridging fault between 

Mq layers propagated to PO& and only the bridging fault between Mi layers propagated to 

POs. 

This explains how the number of detectable faults corresponding to a particular 

failure pattern decreases as we increase the bridge resistance. 
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Figure 50: Fault detection at a higher bridge resistance - XOR gate 

with inputs bridged, test vector 0001 at Vdd = 2V. 

The Figure 50 shows a particular case where at a higher bridge resistance we are 

able to detect a bridging fault [40]. This fault was detectable even for a higher bridge 

resistance since a required environment was set up. This required a number of conditions 

to be met like a particular test sequence, device parameters, nodal voltages etc. 

We have conducted experiments for the c17 and c432 ISCAS benchmark circuits 

and have found what we had postulated earlier to be true i. e. , the bridging resistance does 

not have any effect on Pareto accuracy. Table 9 shows that the number of detectable faults 

decreases with increase in bridge resistance. 
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Table 9: Failure counts for different defect types (c17, c432) 

c432 POSMF POSPG POSMS PIN I PIN2 TOTAL 

6000Q 590 714 436 58 374 2172 

1500Q 

500Q 

100Q 

c17 

4000Q 

3295 3035 

3348 3089 

3349 3089 

POSMF POSPG 

1377 2053 

2858 

2915 

2915 

POSMS 

1311 

2]30 

2134 

2134 

PIN1 

939 

9072 20390 

9126 20612 

9126 20613 

PIN2 TOTAL 

3174 8854 

1500Q 

500Q 

100Q 

2223 

2223 

2223 

3226 

3226 

3226 

2421 

2421 

2421 

1314 

1314 

1314 

5888 15072 

5888 15072 

5888 15072 

The number of overlapping patterns for c17 as we change the bridge resistance 

I'rom 100Q to 500Q, 100Q to 1500Q and 100Q to 4000Q is 462, 605 and 2629 

respectively. In the Table 10 the IDDQ column refers to the mean + standard deviation 

values of the Pareto generated for the 100Q resistance, the column marked Replaced next 

to the IDDQ column refers to the mean and standard deviation values of the Pareto 

generated trom the POF matrix for the 100Q case whose pattern counts were replaced 

with counts of similar patterns occurring in the POF matrix generated for the 4000Q case. 
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The 4000Q column refers to the mean+ standard deviation values of the Pareto 

generated for the 4000Q resistance, the column marked Replaced next to the 4000Q 

column refers to the mean and standard deviation values of the Pareto generated from the 

POF manix for the 4000Q resistance whose pattern counts were replaced with counts of 

similar patterns occurring in the POF matrix generated for the 100Q case. From the Table 

10 we see that there is not much difference in the Paretos when higher bridge resistance is 

considered. 

Table 10: Paretos with pattern counts exchanged for overlapping patterns 

Defect 100Q 

POSMF 51. 3672+ 

Replaced 4000Q 

51. 8398+ 86. 709+ 

Replaced 

97. 7516+ 

14. 8302 11. 8597 26. 7088 29. 6609 

POSPG 8. 46312+ 

9. 3598 

8. 6860+ 

8. 8526 

14. 6577+ 15, 9779+ 

12. 3373 22. 3394 

POSMS 32. 1313+ 

6. 3819 

32. 4811+ 54. 3283+ 60. 5474+ 

11. 9883 16. 5727 16. 3816 

PIN1 7. 0201+ 5. 9708+ 11. 245+ 17. 1486+ 

9. 9279 8. 4440 15. 9028 24. 2518 

PIN2 4. 4587+ 

2. 6708 

4. 4696+ 

2. 6707 

7. 6883+ 

6. 8695 

8. 4730+ 

7. 3531 
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VI. CONCLUSION 

A. Summary 

We arrived at the following conclusions following experimentation and study 

conducted in the given topics: 

Line width variation 

~ For the types of circuits and technology considered, a +/- 30/0 variation in line 

width causes a significant variation (e. g. +/- 10'/0) in predicted defect Paretos, 

and so must be modeled and corrected. 

~ An additive linear model is adequate for correcting for the line width effect. The 

actual response may be PWL or quadratic, but the addinonal accuracy of a 

more complicated model is not worth the additional calibration effort. 

~ The larger defect sample sizes during model building are required to reduce the 

sampling noise to the point that a good model can be fit. 

Defect sample size 

~ We can reduce the dictionary construction costs by using relatively small defect 

sample sizes. 

~ If experiments were conducted with a defect sample size X then with a sample 

size Y(where Y& X) the number of failures added to the POF matrix would 

help us to estimate a suitable defect sample size. 
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Bridge resistance distribution 

~ A distribution in bridging resistance has little effect on Pareto accuracy. 

~ Very few failures alias to existing patterns with an increase in resistance. Hence 

they should not affect the Pareto accuracy. 

~ The detectability of faults decreases with an increase in bridging resistance. 

B. Future work 

For the experiments we conducted concerned with line width variation we chose to 

use large defect sample sizes to eradicate the sampling noise. In our experimentation the 

defect sampling was uniform across the whole chip. The way to deal with this "correctly" 

is to change the defect sampling to be nonuniform across the chip, just sampling where the 

edges are moving. Since we are biasing the lines up and down, the obvious thing to do is to 

try and have all defects have an edge in the range where change occurs. This area is a 

region around all polygons on a layer. For this we have to randomly decide where to place 

the defect in those regions. One approach is to look at the edges of the geometry and 

randomly place the defects in the region around that. This could be determined by using 

polygon operations on the mask geomeny. The hard part is changing the random number 

generators to randomly place in this region. Probably the way to do it would be to 

concatenate all the periphery of all polygons into a line, and randomly choose a coordinate 

on that line, and then offset into the region. 
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We have considered random logic for our experiments and were able to decipher 

what an adequate defect sample size was by observing certain details in the POF matrix. A 

general and exact method applicable to different designs has to be uncovered. Several 

questions would have to be answered by this strategy. For example we assumed in our 

research that the defect sample size which would cover failures close to the total would be 

appropriate, but we did not answer how many percent of the total failures should be 

covered by an adequate defect sample size. 

For our experiments we found that roughly 3-10'/a of the total number of failures 

were overlapped patterns for disuIbution of bridge resistance. It may be of interest to 

study some other designs and check to see what are the different reasons that lead to 

detectability of faults at higher bridge resistances. 
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