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ABSTRACT 

Performance of BCH Codes over GF(q'). (December 1996) 

Kuntal Dilipsinh Sampat, B. E. , University of Bombay 

Chair of Advisory Committee: Dr. Jay N. Livingston 

The main work involved in this thesis is the implementation of a generalized 

encoder and decoder for BCH codes. The special feature of the implementation is 

that it works over all finite fields and their extensions as opposed to earlier implemen- 

tations in literature involving only finite field extensions of the binary field. These 

generalized codes are attractive mainly because of their rate advantage. Interest 

in these codewords mapped into modified M-PSK constellations has been generated 

because of availability of a new method to make a code rotationally invariant. The 

purpose of this work is to measure the performance of these codes in an Additive 

White Gaussian Noise ( AWGN ) channel. The effect of Rayleigh fading on the 

performance has also been simulated for some codes. The new technique of making the 

M-PSK modulation scheme rotationally invariant is also presented. Chapter I gives an 

introduction to finite field algebra. Chapter II provides an introduction to the terms 

that are used in channel coding theory. Readers familiar with the basics in Chapters 

I and II may directly skip to Chapter III. This chapter deals with the encoding rules 

and the decoding algorithms for BCH codes from an implementation point of view. 

Chapter IV is the mainstay of the thesis. It explains rotational invariance, presents 

the new technique and discusses the system issues involved in making a modulation 

scheme rotationally invariant. The results of the simulation are shown in Chapter V. 

Appendix A shows an alternative way to make rotationally invariant block codes in 

a QAM scheme. 
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CHAPTER I 

INTRODUCTION TO ALGEBRA 

This chapter serves to lay the background for the symbols and mathematics that are 

used in latter chapters. It provides an introduction to Galois Fields and lists some of 

their properties. 

A. Introduction to Galois Fields 

The notation closely follows that of [I]. 

Group: 

A binary operation 'w' is a rule that assigns to each pair of elements a and b a uniquely 

defined third element c. 

A set G on which a binary operation w is defined is called a group if the following 

conditions are satisfied for all elements in G: 

1. The binary operation is associative: 

a*(b*c) = (a*b) *c 

2. There exists a unique element e such that 

os e= esa= a. 

This element e is called the identity element. 

3. For any element a there exists another element a' such that a * a' = a' s a = e. 

The element a' is called the inverse of a and vice versa. where a, b, c, a', e 6 G. 

The journal model is IEEE Transactions on Automatic Control. 



A group G is called commutative if Va, b g G, 

a*b = b*a. 

Field: 

Let F be a set of elements on which two binary operations called addition '+' and 

multiplication ' ' are defined. The set F is a field if the following conditions are 

satisfied: 

1. F is a commutative group under addition '+'. The identity element with respect 

to addition is called the zero element and is denoted by 0. 

2. The set of non-zero elements in F form a commutative group under multiplica- 

tion ' '. The identity element with respect to multiplication is called the unit 

element and is denoted by 1. 

3. Multiplication is distributive over addition; i. e. for any three elements in F, 
a. (b+c) =a b+a c 

In a field the additive inverse of an element a is denoted by — a. Addition of 

the additive inverse of an element with itself results in the additive identity 0. The 

multiplicatise inverse of a non-zero element a is denoted by a '. Multiplication of 

a i with a results in the multiplicative identity 1. 

Order: The number of elements in a field is called the order of the field. 

If the number of elements in the field is finite then the field is called as a Finite 

Field or a Galois Field, denoted by GF(q), where q is the order of the field. 

1. Properties of' Galois Fields 

1. The order of any finite field is the positive power of a prime number. In general, 

a Galois Field may be expressed as GF(q') where s is a, positive integer and 



In our notation, in the case of GF(q'), q = p, p is prime and m and s are 

positive integers, GF(q) shall be called as the base field, GF(p) shall be called the 

prime field, GF(p ) shall be called the prime extension field and GF(q') as the 

[base]eatension field. The base extension field is the highest in the hierarchical 

structure of fields. The base field elements form the codeword. 

2. GF(p') contains a sabfield (isomorphic to) GF(p'), iff s divides r. 

For example the subfields of GF(2'a) are shown in Figure 1. 

GF(2 ) 

GF(2 ) GF(2 ) 

GF(2 ) GF(2 ) 

GF(2) 

Fig. 1. Subfields of GF(2' ). 

3. The characteristic of GF(q') is p. 

4. The order of an element P C GF(q') is the least positive integer n such that 

pn 

5. If the order of an element of GF(q') is q' — 1 then that element is called the 

primitive element of that field. All GFs have a primitive element. A GF can 



have more than one primitive element. 

6. The 1, 2, . . . , q' — 1 powers of the primitive element generate all the non- 

zero elements of a finite field. The representation of the elements of the field 

as a power of the primitive element is called the power or the ezponential 

representation of the field. Thus F = (0, a, a', . . . , cr'i' 

7. A polynomial is said to be over GF(q) if its coefficients are from GF(q). 

8. A polynomial over a finite field is said to be irreducible ii' it is not divisible by 

any other polynomial over the same finite field. 

9. An irreducible polynomial of degree r is said to be primitive if the smallest 

positive integer n for which it divides X" — 1 is n = p'. A polynomial that is 

primitive over GF(q') is irreducible over GF(q) and is of degree s. 

Extensive tables of primitive polynomials, representation of field elements, etc. ( both 

binary as well as non-binary ) can be found in [2]. Methods for the systematic search 

of primitive polynomials can be found in [3]. 

By setting the primitive element rr as the root of the primitive polynomial of 

degree r, each non-zero element of a field can be represented as a polynomial with a 

degree of r — 1 or less — called the polynomial representation - or equivalently as an 

r-tuple of the coefficients of the polynomial representation. 

In all extension fields of GF(p), arithmetic operations are defined modulo-p. 

In a prime field: addition is modulo-p. Subtracting an element b from a is the 

same as adding the additive inverse of b to a. Multiplication is modulo-p. Dividing a 

by b is the same as multiplying a by the multiplicative inverse of b. 



In an extension field: elements of an extension field are expressed as either powers 

of the primitive element n or as polynomials in n of degree less than the degree of the 

primitive polynomial that defines the extension field. Multiplication of two elements 

is easily carried out using the power representation of the elements. In order to 

multiply two elements, the powers of the two elements are added modulo-n, where 

n = q' — 1. The multiplicative inverse of an element is found by subtracting the power 

of n which represents the element from n. Division is done by adding modulo-n the 

powers of the divisor with the multiplicative inverse of the dividend. For addition 

and subtraction the polynomial representation is required. Addition: coefficients of 

like powers are added modulo-p. Subtraction u — b: First the additive inverse of b is 

found; each coefficient is subtracted from p. The result is then added to a. 

Example 1: Consider GF(3r). The primitive polynomial is thus of degree 2 

and from [2] is given by zs + z + 2. Let n be the primitive element of GF(3 ). Thus 

n = 1. The non-zero elements of GF(3 ) may be expressed by the 1", 2"", . . . , 8'" 

powers of n. To form the polynomial representation of elements, we let n be the root 

of the primitive polynomial: n + n + 2 = 0, which may be expressed as: 

(1. 1) 

Since addition and subtraction are modulo-3, the above equation can be written as 

n = 2n+1 

This gives us the polynomial representation of the element whose power representation 

is ns. Other elements may be found in thc following manner: multiply Equation 1. 2 

n =2n +o. (1 3) 



Substituting the value of as from Equation 1. 2 in Fquation E3, we get 

os = 2(2(xi]) in 
2a+ 2 

Continuing the same way, the nine elements of GF(3 ) are as given in Table I. 

Table I. Three representations of elements of GF(3 ) 

Power 

Representation 

Polynomial 

Represent ation 

2- Tuple 

Representation 

00 

01 

1+ 2o 

2+ 2' 

12 

22 

20 

02 

2+ o 21 

I+ cr 

10 

Multiplication: The multiplication of any element with the additive identity '0' 

results in 'O'. To multiply other elements, the power representation of the elements 

is used. o x rr~ = o+ = cP = cr since cr =1. 
Addition: To add cr with n, consider their polynomial representations: I + 2cr 

and 2+2o respectively. I+2cr+2+2rr = 1+2+(2+2)o = 0+rr'. Thus rr +cr = rr 

Table II shows the addition table for the elements of GF(3 ). 



Table 11. Addition table for elements of GF(32) 

o' Q' Q' Qs Q' C' 

0 0 

Q1 Ql 

Q2 Q2 

Q3 c3 

Q4 4 

Qs Q5 

Q' 

Q7 Q7 

s s 

Q' Q' c" 

Q4 c' 0 

Ql Q5 Q7 

Q7 Q2 Qs 

Q' Q' Qs 

Qs Q3 1 

QS Q7 Q4 

0 a' Qs 

c' 0 Q' 

Qs C' Q' 

Q Q Q 

0 Q4 Qs 

Q' 0 Qs 

QS Q2 

Qs c' Q' 

c' Qs c' 
Ql Q6 Q4 

Cyclotomic Cosets: The text and notation closely follow the excellent exposition 

given in [4]. The cyclotomic coset mod-n over GF(q) is given by 

C, = (n, aq, aq &. . . , aq ' ') 

where, a is the least integer in the set and is called the coset representative, m, is the 

least positive integer such that aq ' = a mod n. 

Minimal Polpnoiiiial: For an element p C GF(q'), if qi(X) is the polynomial of 

the smallest degree over GF(q) such that qi(P) = 0, then qi(X) is called the minimal 

polynomial of P. 

Constructiiig Minimal Polynomials: The minimal polynomial of Q', where Q c 

GF(q ) is the primitive n'5 root of unity, over GF(q) is 



This is a monic polynomial (leading coefficie is unity) with coefficients from GF(q). 

For example consider the double error correcting (t=2) code of length n = 63 

over GF(8) 

Cp = {0) 

Cl ' . 1. 8 = 8, 1. 8 = 64 = 1 mod 63 ~ C1 — — (1, 8} 

C2 . 2. 8 = 16, 2. 8' = 128 = 2 mod 63 W C2 = (2, 16) 

Likewise 

C. = (3, 24), C, = (4, 32) 

Since cr = 1, it is the primitive element of GF(64). Since GF(64) is an extension 

field of GF(8) it contains all the elements of GF(8). The order of the primitive element 

of GF(8) is 7. Therefore a is the primitive element of GF(8). 

iEC1 

P(2)(~) ~2 + o27~ + ala 

p(3)(g) g2 + 45 + 27 

y(4)( ) 
2 + 54 + 36 



CHAPTER II 

CODING THEORY 

Noise is defined as any unwanted disturbance which afi'ects the recovery of information 

that is stored in or transmitted over a medium. In a digital system, noise manifests 

itself by causing the bits that represent the information to be in error. To achieve 

reliable transmission/storage of information, error correcting or detecting means are 

required. A simple and an almost intuitive way to achieve this is by the use of a 

parity bit. A fixed rule is used to generate the parity bit. The application of a rule 

to generate additional bits from the information bits is called the encoding process. 

The information bits along with the generated parity bits form a codeword. The 

set of all possible codewords is called a code. If even parity is desired, then if an 

information word has an odd number of ones, a one is chosen as the parity bit. If 

the information word has an even number of ones then a zero is the parity bit. This 

parity bit is sent along with the information bits. While recovering the in'formation, 

if the number of ones in a codeword is odd when an even parity encoding has been 

done, then an error is detected. This scheme can detect only an odd number of 

errors. If correction of the errors is also desired then additional parity bits must be 

generated. The addition of the redundant parity bits leads to a decrease in the rate 

of transmission of information. Thus, an increase in the reliability causes a decrease 

in the rate of transmission of information [5]. 

A. Definitions 

Source: A source randomly generates elements chosen from a finite set of 

symbols. This set of symbols is known to the destination or the receiver. The order 

of generation of the symbols is not known to the receiver. 
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Message: The sequence of information symbols generated by the source is called 

the message. Generally the source is assumed to generate k symbols in unit time. 

The information may then be regarded as a, sequence of k — tuples or as a polynomial 

of degree k — 1, called the message polynomial (m(x)), with the information symbols 

as coe%cients. 

Encoder: The device which assigns redundancy to information by the application 

of certain rules, is called the encoder. The mapping done by the encoder from the k 

information symbols to n, n ) k symbols must be one-one onto to allow recovery of 

information. The mapping process may be viewed as a matrix multiplication of the 

1 x k message matrix with a k x n it generator matrix or as a polynomial multiplication 

of the message polynomialand the generator polynomial (g(x)). The formed codeword 

itself may be considered as a, polynomial callled c(x). 

Non-systematic encoding: c(x) = g(x) x m(x). 

Systematic encoding: c(x) = x" " x m(z) + b(x), 

where b(x) is the remainder obtained by dividing x" " x m(x) by g(x). Here, as 

shown in Figure 2, a code word is divided into two parts, the unaltered message part 

of k digits and the redundant checking part of n — k parity-check digits. 

Redundant 

checking part 

Message 
part 

W-k digit ~k digit W 

Fig. 2. Systematic format of a codeword. 

Code: The set ot' n — tuples formed by the mapping by the encoder is called the 

code. This type of a code which assigns an n-tuple to each k-tuple is called a, block 

code. Each n-tuple is called a codetoord. The usual representation of a, code is in the 
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form (n) k). The number of information symbols k is often called the dimension of 

the code. A codeword may be represented as: 

(VO) Vl ) ~ . . ) V)) — 1) 

Linear Code: If the addition over the finite field over which the code is defined 

of any two codewords produces another codeword then the code is a linear code. 

Weight: The number of non-zero symbols in a codeword is called the weight of 

the codeword. 

Minimum Distance d;„: The number oi' places at which two codewords differ is 

called the distance between the two. The least distance that exists between any two 

codewords of a code is called the minimum distance of the code. For a linear code 

the minimum distance is the weight of codeword with the least weight. 

Error Detecting Capacity: The number of errors that can be detected by the 

code is d;„— 1. 

Error Correcting Capacity I: The number of errors that can be corrected by the 

ciide ~d~, -1 ( t ( ~d;„-2 
2 2 

Rate R: If the source is assumed to generate k information symbols in unit time 

and after the addition of redundancy the number of symbols generated by the encoder 

is n, then the rate of the code is R = L/n. 

Cyclic Code: If every cyclic shift of a codeword results in another codeword 

then the code is called a cyclic code, where a single cyclic shift of the n-tuple 

(VO, Vi). . . , V)) 1) 1S (Vi, . . . , V)) 1) VP). 
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CHAPTER III 

BCH CODES 

A. Definition 

The Bose, Chaudhuri and Hocquenghem (BCH) codes form a large class of powerful 

random error-correcting cyclic codes. Binary BCH codes were discovered by Hoc- 

quenghem in 1959 and independently by Bose and Chaudhuri in 1960. The cyclic 

nature oi' these codes was proved by Peterson in 1960. 

The decoding algorithms for BCH codes have been developed by Peterson, Goren- 

stein, Zierler, Chien, Forney, Berlekamp, Massey, Burton and others. 

A BCH code over GF(q) of length n and designed error correcting capability of 

t errors is the code having 

b+1 b+2 b+3 b+22 

as the zeroes of its generator polynomial, which is of the smallest possible degree, 

where a C GF(q') is the primitive n" root of unity i. e. cr" = I, 6 is a non-negative 

integer 

Special cases: 

b = 0 Narrow-sense BCH codes. 

n = q' — I Primitive BCH codes. 

s = 1, n = q 
— I Reed Solomon ( RS ) codes. 

Let qtf +'I be the minimal polynomial of crt 'I. Then the generator polynomial is: 
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For Reed Solomon codes 

g(X) = (X — o')(X — a'+')(X — cv'+ ). . . (X — cr'+") 

The degree of each minimal polynomial is s or less. Therefore, the degree of the 

generator polynomial is at most 2st, which is also the maximum number of parity 

check digits required. 

For p = 2 we obtain the binary BCH codes. For q = 2 binary RS codes are 

obtained. This work concentrates on BCH codes over GF(q), q . f 2. For the purpose 

of implementation, the most important codes are those where q is a power of 2 since 

all operations are done modulo-2. 

Generalization of the binary BCH codes into p symbols, p prime, m positive 

integer, was obtained by Gorenstein and Zierler in 1961. Such codes were referred 

to as generalized BCH codes. The advantages of using non-binary base fields is best 

illustrated by examples taken from the original paper [6] by Gorenstein and Zierler. 

The text has been slightly modified for the purpose of clarity. 

There are two areas ( at least ) of application of codes in q ) 2 symbols. 

First, data to be transmitted may appear in such a form and second, 

although the (binary) BCH codes tend to be highly efficient in correct- 

ing independent errors, still greater efficiency may be obtained with the 

general codes when the errors occur in bursts. A code C of the general 

class is uniquely determined by the triple (q, n, e) where q is the number 

of symbols, n is the block length ( number of symbols per block ) and e is 

the error correction capacity of the code. The parameter k, the number 

of information symbols per block, is computed as a function of n and e. 

Two examples of the second application are: 
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Example 1. Suppose we wish to transmit binary data in the presence of 

noise that occurs in bursts of length 5 ( binary symbols ) or less and that 

acceptable reception results when we are able to correct two bursts in a 

block length of about 60. A BCH code for the job has n = 63, e = 10, k 

= 18, and q = 2, and so gives a transmission rate R = —" = 
s 

= -„. On 

the other hand we can take the general code with q = 26 ( so a burst of 

length 5 causes errors in exactly two symbols, each symbol being encoded 

in a natural way as s, binary 4-tuple ) n = 15, e = 4 and k = 7. Then the 

binary block length is 4x15 = 60 and the transmission rate is —, s. 

Example 2. Suppose again that binary data are to be transmitted, that 

errors occur in bursts of length 9 or less and that we must be able to correct 

4 such bursts in a binary block length of around 2050. An appropriate 

BCH code has n = 2047, e = 36 and k very nearly 1670, so R = 4. A 

suitable general code has q = 2, n = 255, e = 8, k = 239 and a binary 

block length of 8x 255 = 2040; its rate is then 239/255 — 15/16. 

B. Decoding BCH codes 

Most of the material in this section has been derived from [7]. We know that the 

binary generator polynomial g(z) is selected so that it has as zeros 2t consecutive 

powers of a. 
6+1 

) ( 6+2) 
( 

6+26) 0 (3 1) 

A q-ary code vector c = (cs, c6, . . . , c„r) is s, codeword if and only il' its as- 

sociated polynomial c(z) = cs + crz + . . . + c„, z" has as zeros these same 2t 

consecutive powers of o. Now consider the received polynomial r(z), which can be 

expressed as the sum oi' the transmitted code polynomial and the error polynomial 
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e(x) = ca+ eix+ + e„, x" '. A series of syndromes is obtained by evaluating the 

received polynomial at the 2t zeros 

Sa = r(cr' ) = c(o ) + e(cr'+ ) = e(cr'+ ) = Q eq(cr'+ ), j = 1, 2, . . . , 2t (3, 2) 
a=p 

If v errors have corrupted the transmitted word, at locations i„i2, . . . , i, then 

"at 

St = ge;, Xf, j =1, 2, . . . , 2t (3. 3) 
t=r 

J P X' l, l I 1 I" tI i I id' t LI p A' 

errors in the received word. Expanding the above equation we obtain a sequence of 

2t algebraic syndrome equations in the~vun~known error locations. st&' ++' 
~) 

: Spa — — X, + Xz + . . . + X„ 

S, =X'+X'+. . +X' 
(3. 4) 

Sz( — — Xz' + X" + . . + X ' 

Equations of this form are called power-sum symmetric functions. The above 

equations can be translated into a series of a linear equations. Let A(x) be the error 

locato~ polynomial which has as its roots the inverses of the error locators (Xt}. 
V 

A(x) = g(1 — X~x) = A, x'+ A, x' ' +. . . + Asx -t ~o (3. 5) 
I=1 

It follows that for some error locator X~ 

A(Xr, ') = A, X( + A, rX, '+' +. . . + Ap — — 0 (3. 6) 

Since the expression sums to zero, we can multiply by a constant without affecting 

the equality: 

e;, X('(A, X, ' + A, 1X( "+' +. . . + Ap) 



16 

= e;, (R, X, +' + A. 1+, X( 
" '+' +. . . + ApXt') = 0 (3. 7) 

Summing the above equation over all indices I, 

g;, e„(A, X, '+'+ A, 1+, X, " '+' +. . . + ApX, ') 

=A, pt te;, Xt '+A„ tpt' te;, Xt 
" +. . . +Atilt' tet«+Asst' te;, Xt 

AvSj v + Av — 1St-v+1 + ~ . . + A1Sj-1 + APSj — — 0 (3 8) 

From Equation 3. 8 it is clear that Ap is always one. Thus Equation 3. 8 can be 

expressed s. s 

AvSj — v + Av-1Sj-v+1 + ~ ~ ~ + A1Sj — 1 (3. 9) 

I. The Peterson-Gorenstein-Zierler algorithm 

If tve assume that v = I, we obtain the following matrix equation. 

A'A = 

S1 S2 S3 . . . St-1 St 

S2 Ss S4 St St+1 

S3 S4 S5 . . . St+2 St+2 

A, 

At-1 

A, 2 

St+1 

— St+2 

— St+3 
(3. 10) 

St-1 St St+2 . . . S21-3 S21-2 

St St+1 St+2 . . S21-2 S2t-1 A, 

— S2t-1 

— Sst 

It can be shown that A' is non-singular if the received word contains exactly t 

errors. It can also be shown that A' is singular if fewer than t errors have occurred. 

If A' is singular then the right-most column and the bottom row are removed and 

the determinant of the resulting matrix computed. This process is repeated till the 

resulting matrix is non-singular. The coeflicients of the error locator polynomial 

are then I'ound through the use of standard algebraic techniques with computations 
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performed in the appropriate finite field. 

Once the v errors are known, Equation 3. 8 becomes a system of 2v equations 

in v unknowns ( the error magnitudes). This system can be reduced to form the 

matrix relation below. Since the (Xi) are non-zero and distinct, the matrix B is 

Vandermonde and thus non-singular. 

Be = 

~2+b A 1 bb ~1+b 
1 2 ' I 

~2+b ~2+b ~2+b 
1 2 ' ' ' 

I 

eII 

ei2 

Si 

S2 
(3. 11) 

gI. I +b LI +b ~v+b 
1 2 ' ' I ei„ S, 

Decoding is completed by solving for the (e;, ) 

The essential steps may be recapjtulated as: 

1. Compute the syndromes for r: (S, ) = (r(12'+ )), 1 = 1, 2, . . . , 2t. 

2. Construct the syndrome matrix A' in Equation 3. 10. 

3. Compute the determinant of the syndrome matrix. If the determinant is non- 

zero go to step 5. 

4. Construct a new syndrome matrix by deleting the rightmost column and the 

bottom row of the old syndrome matrix. Shorten A by one co-ordinate position 

by deleting A, for the highest remaining t. Go to 3. 

5. Solve for A and construct A(z). 

6. Find the roots of A(z). If the roots are not distinct or not present in the desired 

field, go to step 10. 

This expression differs from the one given in [7]. 
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7. Construct the matrix B in Equation 3. 11 and solve for the error magnitudes. 

8. Subtract the error magnitudes l'rom the values of the received word at the 

appropriate locations. 

9. Output the corrected word and stop. 

10. Declare a decoding failure and stop. 

Limitations of the PGZ algorithm: It is known [8] that decoding based on the 

PGZ algorithm may, under certain circumstances, produce an output which is not a 

codeword and the resulting failure is not announced. An obvious way to counteract 

this is to recompute the syndromes after the 'corrected' word has been formed. Arne 

Dur [9] provides a way to detect cases where the PGZ algorithm fails without the 

recomputation of syndromes by introducing the minimum number of checks during 

the error evaluation process. We have used a final comparison with the sent code 

word after decoding to check for legitimacy. 

Matrix algebra is used to calculate error locations and magnitudes. Thus the increase 

in complexity is of the the order of the matrices is directly dependent on the error 

correcting capacity of the code. Thus as the error correction capacity increases 

linearly, the complexity of the computations increases by the erdhWf. 0(ni). For 

example for a fifteen error correcting code the number ol' second order determinants 

required to be computed is 's, 
' x C2 = 1. 98 x 10' . Thus the algorithm can only be 

used for codes with low error correcting capacity. A practical limit would be put at 



19 

2. The Berlekam p-Massey s. lgorithm 

Returning to Equation 3. 9 it is seen that the syndrome Si can be expressed in a 

recursive form as a function of the coefficients of the error locator polynomial A(r) 

and the earlier syndromes S, i, . . . , Si, . Figure 3 shows that expressions of this 

form can be given a physical interpretation through the use of a linear feedback 

shift register (LFSR). The double lined elements denote storage of and operations on 

non-binary field elements. 

"&i-v»S&v i SJ Sj- vu S, , 

— Qx A„, — 0 A„, — 0 A. , — 0 A, — 0 

OQ— Q+ 
-- — Q+ 

Fig. 3. LFSR interpretation of Equation 3. 9. 

The problem of decoding BCH and Reed-Solomon codes can thus be expressed as 

follows: find an LFSR of minimal length such that the first 2t elements in the LFSR 

output sequence are the syndromes Si, Ss, . . . , Sso The taps of this shift register 

provide the desired error locator polynomial A(z). 

Let AI I(r) = Asr" + As ix" '+. . . + Air+1 be the connection polynomial of length 

k whose coefficients specify the taps of a length-k LFSR. The Berlekamp-Massey al- 

gorithm starts by finding Al'I such that the first element output by the corresponding 

LFSR is the first syndrome Si. The second output of this LFSR is then compared 

to the second syndrome. If the two are not equal then the discrepancy between 

the two is used to modify the connection polynomial. If there is no discrepancy, 
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then the same connection polynomial is used to generate a third sequence element, 

which is compared to the third syndrome. The process continues until a connection 

polynomial is obtained that specifies an LFSR capable of generating all 2t elements of 

the syndrome sequence [7]. The algorithm has five basic parameters: the connection 

polynomial Apd(x), the correction polynomial T(x), the discrepancy Al"l, the length 

L of the shift register and the indexing variable k. The algorithm proceeds as follows; 

1. Compute the syndrome sequences Si, . . . , Ss, for the received word. 

2. Initialize the algorithm variables as follows: k = O, Al &(x) = 1, L = 0 and 

T(x) = z. 

3. Set k = k + 1. Compute the discrepancy Alrq by adding the kth output. of the 

LI"SR defined by Al" 'l(z) to the kth syndrome. 

al"l = S, + P A('-'lS„ i 

4. Il' Al"l = 0, then go to step 8. 

5. Modify the connection polynomial: A00(z) = Al 
' 

l(x) — Al l(x)T(x). 

6. If 2L & k then go to step 8. 

7. Set T(x) = x. T(x) 

8. If k & 2t go to step 3. 

9. Determine the roots of A(z) = Al 0(x). If the roots are distinct and lie in 

the right field then determine the error magnitudes, correct the corresponding 

locations in the received word and STOP. 

This expression differs from the one given in [7]. 
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10. Declare a decoding failure and STOP. 

It is seen that the Berlekamp-Massey algorithm avoids the calculation of deter- 

minants in forming the error locator polynomial A(z) which is the main reason I' or 

its popularity. 

C. Implementation of Galois Field arithmetic 

This section may be skipped without losing understandability of the latter text. 

The method in which arithmetic computation in any Galois Field is accomplished 

is discussed. The prime purpose of this section is to explain the working of the 

program. This might well be used for an implementation in silicon. 

For analyzing the performance of a code, the user specifies the following infor- 

mation: 

1. T the error correcting capacity, 

2. N the length, 

3. P the prime number from which extension fields have been derived, 

4. M the power of P which specifies the base field Q = P 

5. S to represent the base extension field GF(Q~) over which the code is defined, 

6. PRIM POLY the primitive polynomial over GF(P) which defines the exten- 

sion field GF(Q ), 

7. *co ordx and +co ordy the constellation into which the symbols shall be 

modulated, 

8. R the choice of a narrow-sense/non-narrow-sense code, 



9. SYS the choice which decides whether systematic or non-systematic encoding 

is done, 

10. DIM the number of modulation intervals over which a symbol from the base 

field is desired to be sent and 

11. PGZ the choice between the Herlekamp-Massey and the Peterson-Gorenstein- 

Zierler decoding algorithms. 

Once the above data is supplied, the preamble. c function is called. This function 

assigns representations ( exponential and polynomial ) to each element of the Galois 

Field. Elements are arranged in the order of their power representations. The first 

element is the additive inverse '0', the second is the first power of rr, the third 

S 
element is the second power of n and so on. Since the last element a~ i = I, 

it is represented in the program as rr . The polynomial form of each element is 

formed using the primitive polynomial and is kept in the two dimensional array 

named clem. In case the base field is a prime field then there elements are not 

expressed in their polynomial forms. Throughout the program except at certain 

places, an element is represented in its exponential form. This representation takes 

the form of an integer which as a power of ir forms the exponential representation of 

that element. Thus the primitive element n is represented as 1. The multiplicative 

identity 1 is represented by 0. The additive identity zero is represented by — 1. 

The power representation is stored in a one-dimensional array named element. 

Thus element[0] = -1, element[1] = 1, element[2]=2, . . . , element [Q~ — 1]=0. 

The exceptions to exponential representation are those places where addition or 

subtraction needs to be done. Here the polynomial representation of each element 

is used. Polynomial addition/subtraction is done in the normal way except that it 

is done modulo-p. Multiplication of two elements is done by adding the integers 



that represent them modulo-n. All aritlunetic operations are done by the code in 

gf arith. c. Polynomial mull, iplication and division are also done in the same file. 

Following the formation of elements, an addition table is generated using the 

polynomial f'orm of elements. In the case of the base field being a prime field, the 

addition table is simply formed by adding the elements modulo-p. 

The next step is I'orming the generator polynomial. To do this minimal polynomials 

of 2t consecutive powers of o are formed. To form minimal polynomials, cyclotomic 

cosets of each of the 2t consecutive powers of o are formed. Repeat occurrences of 

elements are discarded. This acts as aa algorithm to ensure that the LCM of the 

minimal polynomials forms the generator polynomial. The degree of the generator 

polynomial determines the dimension of the code or the number of input symbols If. 

This makes the set-up and initialization of the program complete. 

The next step in simulation is generating the codeword. IC random symbols from 

the base field are generated. Encoding may be done in two forms: systematic and 

non-systematic depending on the set value of SYS. 

Modulation is done by mapping the symbols in the codeword to a point in the two- 

dimensional constellation formed by co ordx[] and co ordy[]. Mapping is allowed to 

be done in a variety of ways. If there are 8 symbols in the base field, the constellation 

may have a point for each symbol so that one modulation interval is required to 

transmit one symbol or it may have 2 points so that 3 modulation intervals would be 

required to transmit one symbol. In this program the base field and the number of 

points in the constellation can only be powers of the same prime. This is the way it 

would be done in any practical system or else rate loss takes place. Splitting a symbol 

also has the consequence of' making the code lose its rotational invariance property if 

it has been so designed. 

Independent white Gaussian noise whose variance depends upon the SNR ( Signal 



to Noise Ratio ) is added to both co-ordinates of the point into which the symbol 

has been mapped into. This simulates the AWGN channel. Recovery is done by 

inverse mapping the symbol-point which is nearest in Euclidean space to the received 

co-ordinates to the symbol. 

Once the entire codeword has been recovered one of the decoding techniques is applied. 

It is observed that step 9 in the Berlekamp-Massey algorithm and step 6 in the PGZ 

algorithm are the same. After step 9 in the Berlekamp-Massey algorithm steps 7, 8, 

9 and 10 of the PGZ algorithm are followed. In the implementation a common piece 

of code serves the purpose. 

If the decoder has been unable to correct for the errors in the received codeword, an 

error counter a is incremented. A count b is also kept of the number of codewords 

transmitted. The fraction a/b is the probability of' block error. At each value of SNR, 

the simulation is kept running till 30 errors have occurred. At low values of SNR 

this results in a low accuracy of the error probability but in the region of interest it 

provides a value with high repeat accuracy. A plot of the probability of error versus 

the SNR gives the desired performance of the code. 

see Chapter IV. 
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CHAPTER IV 

ROTATIONAL INVARIANCE 

Quadrature Amplitude Modulation (QAM) and Phase Shift Keying (PSK) are types 

of modulation schemes that are susceptible to a catastrophic performance degradation 

il' the receiver loses synchronization with the phase of the transmitted signal. These 

modulation schemes have certain inherent rotational symmetries such that rotation 

of the constellation into which symbols are mapped, by an angle which is a rotational 

symmetry, results in the same constellation. A receiver that has lost phase synchro- 

nization might interpret the rotated constellation as the original constellation, thus 

making incorrect decisions. Dilferential encoding is done to make the modulation 

transparent to signal element rotations. 

Ungerboeck's seminal paper [10] on improving the Euclidean distance between trans- 

mitted codes by using expanded sets of multilevel/phase signals t'ollowed by soft 

decision decoding to achieve a gain of 3-4dB is called joint coding and modulation. A 

simpler way to achieve this gain was shown by Calderbank and Sloane [11]. In [12] 

rotational invariance is achieved using joint coding and modulation so that in making 

a, code rotationally invariant also involves an increase in the Euclidean distance 

between symbols. It is easy to design 180' rotationally invariant codes without 

sacrificing this gain. Designing rotationally invariant codes immune to other phase 

ambiguities is more diflicult and could involve a loss of the coding gain derived from 

expanded signal sets. 

However joint coding and modulation followed by soft decision decoding to 

achieve rotational invariance necessarily implies the use of convolutional codes and 

QAM constellations. One would like to extend the rotational invariance property 

to PSI( constellations as well. The techniques in [12] to make a code rotationally 
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invariant are quite involved ivhen the constella. tion has phase symmetries other than 

180'. Also if it were to make achieving rotational invariance simpler, one would like 

to explore the use oi' block codes for the purpose, even if it meant sacrificing the use 

of soft decision decoding. In [13], Wei refers to the problem as a difficult one, snd 

resorts to the use of multidimensional constellation to achieve rotational invariance. 

In other ([14]- [16]) schemes too, multilevel codes/multidimensional constellations 

have been used. However even in these approaches, providing rotational invariance 

for anything higher than 4 PSK has proved difEcult. 

Points worth noting in the rotational invariance achieved in [12] are: 

1. the basic property for making the modulation scheme f' or a code rotationally in- 

variant is that when the modulated symbols are rotated, another valid codeword 

is formed. 

2. for a constellation with n elements, where n = 2'" for some m, the convolutional 

coder produces at its output all possible binary sequences of length m. This 

is a special property of convolutional codes. Block codes of length m typically 

form a subset of the set containing all possible sequences of lenght m. 

3. Rotation of the states (current and next) should produce a codeword that 

corresponds to a point in the constellation which, when rotated by an equivalent 

amount in the opposite direction corresponds to the codeword formed by the 

unrotated states. 

4. The code is formed simply by performing arithmetic operations on some, but 

not all of the input lines. 

From the above considerations one may easily infer the following: 
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l. A QAM constellation cannot be used. This holds true if a regular QAM 

constellation is considered. If a constellation formed by equidistant points on 

concentric circles, the number of points on each circle being equal, is used then 

under certain circumstances detailed in Appendix A, the code can be made 

rotationally invariant. However for all practical purposes the error protection 

on such a code would remain unequal and hence this case does not have much 

importance. 

2. If a QAM constellation as detailed in Appendix A is used then differential 

encoding has to be applied to all the inputs. 

3. A natural alternative to QADI is PSK. Instead of having a point in the con- 

stellation represent an entire codeword, it may be made to represent only fixed 

parts of it. For instance the constellation used for a code over GF(q) may be q 

PSK. Thus if the length of a codeword is n then n modulation intervals would 

be required to transmit the entire codeword. 

The simplest way to achieve rotational invariance for MPSK is to differentially 

encode the symbols before modulation. The disadvantage is that a single error 

propagates and errors continue to occur until the next synchronization symbol is 

transmitted. 

One would thus like to code the transmitted data such that a certain number of 

errors may be corrected so that the synchronization symbols are not requited to be 

transmitted too frequently. The choice between increased redundancy introduced by 

coding and the redundancy due to synchronization symbols is an engineering problem 

with the decision likely to be made depending on the application. 

Using stand-alone block codes for rotationally invariant MPSK constellations 

was first mentioned in [17]. This was followed up with [18j. This method for making 



block codes rotationally invariant is presented in the following discussion. The main 

advantage of this new method is its simplicity. 

Consider the basic scheme shown in Figure 4. 

B 
Differential 

Encoder 

Block 

Encoder 
Noisy Channel 

C D 

Block 

Decoder Differential 
Decoder 

Modulator Demodulator 

Fig. 4. Basic block diagram to achieve rotational invariance. 

The data entering from point A is differentially encoded and forms the data 

at point B. The data at point B is taken k symbols at a time and block coded 

into a length of n symbols. The codeword symbols are then modulated into PSK 

constellations and enter the channel at point C. Data alfected by noise and rotation 

is recovered I'rom point D. After demodulation, this data is decoded, error correction, 

if any errors have occurred, is done and ftnally differentially decoding in a sense 

opposite to the one introduced in the encoding process is done. The data stream 

obtained at point F is the same as the stream entering at point A if the number 

of errors between points C and D is less than the error correcting capacity of the 

block code or if no errors have occurred. To take advantage of the error correcting 

properties of the code, it is necessary that after rotation between points C and D, the 

rotated symbols form another valid codeword. To achieve this property, one needs 

to choose a proper mapping scheme and a, matching code. Suppose ((r, P, . . . , q) are 

the symbols in a codeword and (6, c, . . . , s) is the word formed when each symbol of 

the codeword is rotated by an angle equal to a rotational symmetry. If rotation of' 

an element by a rotational symmetry 8 can be expressed as an operation QO then 
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6 = cr Q 0, E = p Q 6, . . . , E = 7 Q 0. Thus to achieve rotational invariance, (6, c, . . . , s) 

must be a valid codeword. A different valid codeword must be formed when the 

original codeword is rotated by each rotational symmetry. This must be true for all 

codewords. Consider the mapping shown in Figure 5 for elements of GF(5). For 

~ i 

2 ~ 

Fig. 5. Sequential mapping of elements of GF(5). 

this constellation there are five rotational symmetries viz. 72'&144', 216', 288s and 

360'. A rotation of a symbol in this constellation by m x 72' may be interpreted 

as an addition of m mod 5 to the symbol. Consider a. simple repeat code with four 

codewords each of the same but arbitrary length n formed by repeating a symbolC 

GF(q), n times. This is also a cyclic code. This type of a code clearly forms a 

rotationally invariant scheme if mapped into the arrangement shown in Figure 5. 

Since Reed-Solomon codes are also cyclic, have repeat codes as thier subsets and are 

linear, they can be used in such constellations where elements from a Galois Field are 

labelled consequtively on sn M PSK constellation. For short codeword lengths this 



scheme is quite satisfactory. For the purpose of getting better rate performance longer 

codewords are required. BCH codes are the best suited for this because their length 

is dependent' on the base extension field while their modulation symbols are from 

the base field. However when the base field is not prime, the simple arrangement 

of modulation symbols shown in Figure 5 does not work because elements can be 

expressed only as powers of, or in terms of a polynomial in, the primitive element cr. 

Addition of power representation of elements is non-linear. For example consider the 

base extension field GF(64), with the base field of GF(8). Since these are the field 

extensions of the prime field GF(2), the addition of any element with itself produces 

the additive identity 0. o +cr = a, a +a = a~ . The alternative is to place the 

elements in the order of increasing power of a and to interpret rotation of symbols as 

multiplication. A sequence of symbols from a given Galois Field of the appropriate 

length forms a valid codeword if, when expressed as a polynomial, it has as its roots 

all the roots of the generator polynomial. If g(z) is the generator polynomial, then- 

as has been shown in Chapter II — a codeword may be expressed as g(z) m(z), where 

m(z) is the message polynomial. By definition cr g(z) m(z) is also a valid codeword 

since its roots remain the same. 

If elements of GF(5) are arranged as shown in Figure 6-a, then by multiplying 

each symbol by o, a, rotation is almost achieved as shown in Figure 6-b. The additive 

identity '0' is not rotated when it is multiplied by rr. To ensure that the sequence 

of symbols after rotation also forms a valid codeword, it is proposed to move the '0' 

element to the center of the constellation [17j. This new constellation I' or M PSK has 

been called (M-1)+1 constellation. 

The new 5 PSK constellation in Figure 7-a is called 4+1 PSK constellation. 

'If the code is a primitive BCH code. 
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a 2 

a ~ a ~ 3 

a3 
~ 4 a 

a4 

a = 2 o r 3, the primitive elements of GF(5) Multiplication of each element by a 

(a) 

Fig. 6. 5 PSK constellation. 

2 a ~ ~ a 1 3 a ~ 
a' 

a a 4 a 3 a 

4+1 PSK modified constellation Rotated 4+1 PSK constellation. 

(b) 

Fig. 7. 4+1 PSK constellation. 
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The result of multiplication of each symbol of the constellation with cy is shown 

in Figure 7-b. It is seen that complete rotation is achieved. This constellation is 

more power efficient than the original MPSK constellation. The improvement is . 97 

dB for the 5 PSK constellation. For the much more common 8 PSK constellation 

the improvement is . 58 dB. Additionally, this constellation has a larger minimum 

distance between points (d = 2 sin(yr/(M — 1))) for an additional improvement of 

1616, ~(, ) 1, likf 5PSKi 1. 6dB df SPSKi l. ldB. TS f 5 

PSK this constellation offers an improvement of 2. 57dB compared to the conventional 

5 PSK constellation while achieving rotational invariance at the same time. The 

corresponding figure for 8 PSK is 1. 7dB. Thus in our scheme, Figure 4 would be 

modified into Figure 8. 

AS die 
Input Sequence 

V 

U d u 

Precodc 
Noisy CI ael 

C D 

Block 

rs u 
Delay 

rnfferenual Encoder 

Mod later Demodutam Delay 
r 

Diffmml ttl Decoder 

Fig. 8. New rotationally invariant scheme. 

A. System issues 

The (M-1)+1 PSK constellation has advantages and disadvantages. Its advantages are 

better power efficiency and larger minimum Euclidean distance. However, the point 

at the origin has a drawback for maintaining synchronism. Repeated transmission of 

the all-zero codeword would probably cause the system to lose symbol timing. Thus, 



there needs to be a, mechanism for limiting the number of zeros transmitted in a row. 

A second problem is the requirement of s, precoder. The differential encoder creates 

the input element to the encoder by recursively forming: 

AB„= Au„, X B„ (4. 1) 

where Du„ is the current and Au„r is the previous output of the differential encoder, 

and u„ is the current output from the precoder. Since multiplication is performed 

in the encoding process, the presence of a '0' in the input stream u will make all 

subsequent outputs of the decoder zero. 

Since rotation is seen to be the same as multiplying the sequence by a non- 

zero element from GF(q), then to undo the rotation, we must resort to division. 

The differential decoder in Figure 8 then performs division to undo the differential 

encoding and any rotation: 

where r„and r„, are the current and previous outputs from the block decoder and 

Ar„ is the current output of the differential decoder. Since division is performed in 

the decoding process, the sequence r cannot have zeros in it. 

A precoder is thus required which avoids mapping the input symbols at point A 

in Figure 8 into the symbol 'O'. However, the rate loss accompanying this is more than 

made up for by the power efficiency increase of the new constellation. For example, 

using a (7, 5) Reed-Solomon code, the 5 input symbols allow a total of 8 = 2 s code 

sequences. Therefore 15 bits could be used as an input to generate 5 symbols from 

GF(8). However since 0 is not an allowable symbol in our scheme, we have 7' valid 

code sequences. This corresponds to 14. 037 bits. Thus we can create a mapping of 
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14 input bits to an allowable input sequence with no zeros in it for a rate loss of only 

1bit/codeword. This reduces the overall rate to 2/3 from 5/7, or a loss of 0. 3dB. The 

net gain of using the 7+1 PSK constellation is thus 1. 7-0. 3 = 1. 4dB. 

A matter of concern that arises is whether at point E in Figure 8, the symbol 

zero occurs due to rotation of codewords at point D. In the case where non-systematic 

encoding has been done, rotation may be represented as a xc(z) = rrx(g(z) xm(z)) = 

g(z) x (cr x m(z)). Therefore, the rotated codeword is formed when the original 

sequence m(z) is multiplied by rr. Since there are no zeros in m(z) by design, rr xm(z) 

also cannot have any zeros, which also implies that systematic encoding also would 

not produce any zeros at point E. 

The issue of synchronization loss, as a result of transmission of a zero in the new 

constellation can be mitigated in part by the use of a systematic encoder. Since the 

input to the encoder does not contain any zeros, it is guaranteed that at least k of 

the code symbols of a (n, k) codeword will not be zeros. 

Every uncorrectable error that occurs also causes the next decoded word to be 

in error. In general if the number of consecutive non-correctable errors is b then b+ 1 

words are wrongly decoded. 



CHAPTER V 

SIMULATION RESULTS AND CONCI. USION 

In this chapter we present results of the various simulations carried out. In all 

examples the block error probability (Pj, ) has been plotted against the signal to noise 

ratio ( SNR ) expressed in energy per bit. A block error is said to have occurred 

when a) the error has not been detected or b) the errors in the received codeword 

cannot be corrected. To make the decision of whether a block error has occurred, a 

comparison is made between the 'corrected' codeword and the transmitted codeword. 

The SNR in energy per bit is calculated as follows: If E, is the energy per symbol, n 

is the number of symbols in one codeword or the length of the code, k is the number 

of information symbols per codeword, and GF(q) is the Galois Field over which the 

code is defined, then the energy per bit, 

uE, 
6 = 

k logs q 

and 

SNR = 10Iogrp— 
0 

where Np is the single sided noise spectral density. 

Random variables with Gaussian distribution having zero mean and unit variance 

i. e. N(0, 1) are generated in the following manner: 

First two uniform ( in [0, 1) ) random variables u and v are generated. The function 

drand48, available in stdlib. h, which returns double precision floating point values, 

is used for this purpose. The function srand48 - also available in stdlib. h - may be 

used to initialize the seed of drand48 to a different value each time srand48 is called. 

Then, 

u = ~s")")- )' ") 



and 

r = ~gf"( ) '"(1 ) 

are formed which are N(0r 1) random variables. 

Depending on the SNR, a scalar noise multiplier m is generated, which satisfies the 

equation 

SNR = 10logip- Eh 
-2mB 

m is multiplied to yi and ys, which are then added to the X Bnd Y co-ordinates of the 

transmitted symbol respectively. Thus ms acts as the variance of the additive noise. 

Fading has been simulated in the following way: A uniform random variable u) 

(1 [C, l))f g td. Th fdfg g ltd t gf hyt( — fg( ). Th' 1 

multiplies the amplitude of the modulated signal. White noise is then added. 

Figure 9 is an example of a non-binary RS code. 
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Fig. 9. Comparison for soft and hard decision decoding of a (6, 2, 2) code over GF(7). 
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Fig. 10. (7, 3, 2) code over GF(8). Performance compared for 8 PSK modulation and 

7+1 PSK modulation. 
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Fig. 11. (7, 5, 1) code over GF(8). Performance compared for 8 PSK modulation and 

7+1 PSK modulation. 



Figures 10, 11 and 12 are examples of generalized binary BCH codes. 
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Fig. 12. Performance of rate=2/3 BCH codes over GF(8) using 7+1-PSK. 
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Fig. 13. 16 error correcting BCH codes over GF(8) of length 63 using 7+1 PSK. 

Figure 13 shows comparison. between a narrow-sense and a non-narrow-sense 

code. We have chosen R=3 for the code which is non-narrow-sense. When R=O, we 

find that the dimension(K) of the 16 error correcting code of length 63 is 18. When 

R=3, K=16. 
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Fig. 14. (48, 27, 6) code over GF(7). Comparison of performance between 7 PSK and 

6+1 PSK modulation. 
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Fig. 15. (48, 25, 7) code over GF(7). Comparison of perfonnance between 7 PSK and 

6+1 PSK modulation. 
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Figures 14 and 15 are examples of generalized non-binary BCH codes. 
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Fig. 16. (8, 6, 1) code over GF(9). 8+1 PSK modulation. 

In the case where loss of synchronization caused by the center zero is undesirable, 

one might choose to avoid transmitting all codewords that have a zero. Figure 16 

shows the performance of such a. scheme. For the sake of comparison (7, 5, 1) code 

over GF(8) with 8 PSK modulation has been included in the figure as well. 

Figure 17 shows the performance of the codes mentioned in Example 1 of Goren- 

stein's and Zierler's paper [6] under fading in the presence of white noise. 
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Fig. 17. Advantage of using generalized BCH codes under fading conditions. 
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Fig. 18. Comparison between fading and non-fading performance of (63, 18, 15) code 

over GF(8) with 7+1 PSK modulation. 
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Figure 18 plots the performance of one of the codes of Figure 13 under fading 

conditions. 

A. Conclusion 

The rate advantage and superior burst error correcting capability of generalized BCH 

codes has been known since 1961 I6]. Performance of these codes in AWGN was 

not available in literature. This work led to the development of a generalized BCH 

codec whose performance is measured in AWGN. To illustrate the better burst error 

correction capacity of the generalized codes, simulation in the presence of fading 

has also been done. This work also presents a new way of making M-PSK schemes 

rotationally invariant. Using BCH codes and modified PSK constellations, the task 

of making rotationally invariant has been reduced to a trivial exercise. Performance 

curves for these modified PSK constellations have been plotted. Since the process 

of decreasing the size of the channel-symbol alphabet as compared to the codeword 

alphabet makes the code lose its rotational invariance, the tivo advantages of these 

generalized codes viz. higher rate and ease of being rotationally invariant are mutually 

exclusive. 
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APPENDIX A 

USING A QAM CONSTELLATION WITH ROTATIONALLY INVARIANT 

BLOCK CODES 

Consider the double error correcting (6, 2) code over GF(7). The code consists of the 
following codewords: 

Codeword 

0 0 
4 1 

1 2 
5 3 
2 4 

6 5 
3 6 
6 4 
3 5 
0 6 

4 0 

1 1 

5 2 

2 3 
5 1 
2 2 

6 3 
3 4 
0 5 
4 6 
1 0 
4 5 
1 6 
5 0 
2 1 

Input 
0 0 
0 1 
0 2 
0 3 
0 4 
0 5 
0 6 
1 0 
1 1 

1 2 
1 3 
1 4 
1 5 
1 6 
2 0 
2 1 
2 2 

2 3 
2 4 
2 5 
2 6 
3 0 
3 1 
3 2 

3 3 

Codeword 

1 5 4 6 2 

3 3 3 3 3 
5 1 2 0 4 
0 1 6 3 2 

2 6 5 0 3 
4 4 4 4 4 

6 2 3 1 5 
1 0 2 5 6 
3 51 2 0 
5 3 0 6 1 
0 3 4 2 6 
2 1 3 6 0 
4 6 2 3 1 

6 4 1 0 2 
1 2 0 4 3 
3 0 6 1 4 

5 5 5 5 5 

0 5 2 1 3 
2 3 1 5 4 
4 1 0 2 5 
6 6 6 6 6 
1 4 5 3 0 
3 2 4 0 1 
5 0 3 4 2 

Input 
3 4 

3 5 
3 6 
4 0 
4 1 

4 2 

4 3 
4 4 
4 5 
4 6 
5 0 

5 1 

5 2 

5 3 
5 4 

5 5 

5 6 

6 0 
6 1 

6 2 
6 3 
6 4 

6 5 
6 6 

Let us form partitions of the code using the following rule: 

1. Form closed sets of codewords such that rotating a codeword ( assumed to 
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be equivalent to adding 1-mocl7 to each element of the codeword ) forms another 

codeword in t, he same set. Thus we have the follorving seven sets: 

B 
6 
0 
1 
2 

3 
4 

5 

1 0 

2 ] 
3 2 

4 3 
5 4 

6 5 
0 6 

E 
1 6 3 
2 0 4 
3 1 5 
4 2 6 
5 3 0 
6 4 1 

0 5 2 

C 
5 
6 

0 
1 
2 

3 
4 

E 
2 
3 
4 
5 

6 

0 

1 

D 
4 

5 
6 
0 
1 

2 

3 

3 0 
4 1 

5 2 

6 3 
0 4 

1 5 

2 6 

5 2 
6 3 
0 4 
1 5 
2 6 
3 0 
4 1 

G 
1 
2 
3 
4 
5 
6 
0 

6 0 
0 1 
1 2 
2 3 
3 4 
4 5 

5 6 
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Fig. 19. The complete en/de-coding scheme for making the (6, 2) code over GF(7) 
rotationally invariant. 
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Fig. 20. Mapping the sets. 

Both the inputs are differentially encoded by the inputs in the previous mod- 

ulation interval. Once a codeword of the differentially encoded input is formed it is 

sent as a single symbol of the QAM constellation shown in Figure 20. Elements of 

each set are distributed uniformly along the circumference of the circle alongside the 

label of the set. At the receiving side the differential decoding is done in the opposite 

sense to that of the transmitter. It can be easily verified that the scheme shown in 

Figures 19 and 20 is rotationally invariant. The main disadvantage of such a scheme 

is the unequal error protection. 
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