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ABSTRACT 

Functional Heterogeneity of the Red-cockaded Woodpecker Habitat in the Sam Houston 

National Forest A Geographic Information System Approach. (December 1995) 

Joao Carlos Martins de Azevedo, B. S. , Universidade de Tras-os-Montes e Alto Douro, 

Portugal 

Chair of Advisory Committee: Dr. Steven B. Jack 

Red-cockaded woodpecker (RCW) populations are maintained by dispersal of 

fledglings and adults among clusters of cavity trees, the distribution of which is a6'ected by 

fraginentation of the pine forest and savanna landscapes. A spatially explicit model of the 

distribution of RCW as related to landscape characteristics was developed in this study 

using a Geographic Information System (GIS). The study area was the Raven District of the 

Sam Houston National Forest, East Texas. 

Conceptually, the model was based on the functional heterogeneity of the landscape 

in the study area. A GIS coverage resulting from the conjunction of habitat suitability 

pattern and RCW distribution and group size was the base for the application of the 

functional heterogeneity indices of Angular Moment of Inertia, Connectivity, Weighted 

Connectivity, and Spatial Interaction. Five approaches were used in the definition of the 

habitat suitability corresponding to 5 levels of fragmentation. Two scales of observation 

were used in the calculation of the indices. 

The functional heterogeneity indices seem to be an effective way to detect areas of 

the forest most important for the maintenance of RCW populations. These areas are those 



presenting the best demographic, habitat, and landscape conditions for the species. The 

Angular Moment of Inertia, Weighted Connectivity, and Spatial Interaction indices detected 

the same areas of the Raven District as those which are more important for the birds given 

actual distribution, group size, habitat conditions, and landscape conditions These areas are 

located in the east and west of the southwestern region and had the highest values for the 

Angular Moment of Inertia, Weighted Connectivity, and Spatial Interaction indices for all 

the levels of fragmentation and the two scales used. Other areas presenting high indices 

values were detected in the north and in the center of the same region. 

Fragmentation in terms of loss of only roosting and nesting habitat but not foraging 

habitat does not seem to interfere considerably in the maintenance of spatial conditions 

within the areas most important for the species. Fragmentation in terms of loss of roosting, 

nesting, and foraging seems to allow the maintenance of the main centers of RCW 
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CHAPTER I 

INTRODUCTION 

Landscape measurements have been developed in recent years which utilize 

Geographic Information Systems (GISs), creating methods to perform spatial analyses over 

large areas (Turner 1990) and allowing the relationship between patterns and ecological 

processes to be explored at the landscape level (Turner 1989) In fragmented populations a 

goal of landscape ecology research is to "link the landscape pattern with the key processes 

that determine the chance of survival in the region" (Opdam et al. 1995). Dispersal 

movements of animals are in many situations the determinant processes responsible for the 

survival of populations Dispersal movements of animal populations make it necessary to 

discern the arrangement of habitats across landscapes to understand the ecology of these 

populations and to improve their management (Turner et aI 1995). The red-cockaded 

woodpecker (RCW) is an endangered species threatened by loss of habitat and a decrease in 

conditions amenable to dispersal within the pine forests of the southern United States 

(Conner and Rudolph 1991; Rudolph and Conner 1994). The spatial attributes of the habitat 

of the RCW have been evaluated in the Sam Houston National Forest in Texas, and 

maintenance of active colonies is related to spatial landscape attributes such as 

fragmentation, connectivity, and isolation in the pine landscape mosaic (Conner and 

This thesis follows the style of Landscape Ecology. 



Rudolph 1991; Rudolph and Conner 1994; Thomlinson 1993). Despite these efforts, 

however, exactly how the forest landscape pattern affects the demographic processes of 

RCW in that particular landscape, at a broad scale and from a spatially explicit point of 

view, is not sufficiently understood. A spatially explicit analysis of &agmentation-population 

relationships is an important and necessary continuation of the previous work done on this 

subject and constitutes the goal of this study 

Functional heterogeneity, defined as the way organisms perceive and respond to 

their environment (Kolasa and Rollo 1991), can provide a useful approach for the 

integration of landscape structure and animal behavior (Coulson et a!. 1994). In this work, 

functional heterogeneity is the basic concept chosen to address the RCW - forest pattern 

relationship. The habitat conditions required by the RCW are known, and this knowledge 

has led to such practices as reducing the hardwood midstory component and the 

maintenance of vegetation cover within 400 m of identified colonies. The USDA Forest 

Service has created recruitment and replacement stands in the Sam Houston National Forest 

for the propose of maintaining the existing active colonies and to allow the colonization of 

new areas by the RCW (Thomlinson 1993). What is not well known is where these 

practices should best be applied, in terms of spatial location, for maximum benefit to the 

species The procedures outlined in this proposal will contribute to the optimization of these 

conservation efforts and will provide a means to forecast RCW responses to landscape 

change 



OB JECTIVES 

The objectives of this work are to (1) analyze the effect of the forest landscape 

pattern on the RCW colony distribution and group size; (2) apply the functional 

heterogeneity concept to the landscape pattern - red-cockaded woodpecker relationship; 

(3) create a spatially explicit model of the distribution of RCW as a function of landscape 

conditions; (4) identify the areas where RCW groups are more threatened; and (5) identify 

the areas presenting landscape conditions to be used in the expansion of the actual red- 

cockaded population. 

HYPOTHESES 

I will pursue the hypothesis presented by Rudolph and Conner (1994): when suitable 

habitat conditions are present, the maintenance of RCW populations is primarily dependent 

on the movement of individuals among clusters, and predominantly the dispersal of fledgling 

females. Further, the movements of the individuals comprising a cluster includes their flights 

to access foraging areas (Rudolph and Conner 1994). If these hypotheses are true, then 

measurements of landscape isolation and connectivity will be highly correlated with the 

distribution of clusters in the landscape and also with the group size of the clusters In other 

terms, it is expected that the active clusters in the Raven District of the Sam Houston 

National Forest are distributed over the areas where the forest landscape possesses high 

connectivity. 

Additionally, I hypothesize that the areas containing a high density of clusters and 

large group sizes can be described as networks with high connectivity Areas where cluster 



density and group sizes are low should possess a patchy pattern with reduced connectivity 

and with functional isolation between colonies. Groups of connected colonies might be 

isolated from other groups of connected colonies, or individual colonies may be isolated in 

the same landscape. If this additional hypothesis is true, the population of RCW in the area 

of study can be characterized by spatial and demographic behaviors representative of 

metapopulations. A metapopulation is defined as a set of populations distributed over a 

number of habitat f'ragments, as long as the sub-units are interconnected by dispersing 

individuals (Opdam 1991) 



CHAPTER H 

LITERATURE REVIEW 

THE RED-COCKADED WOODPECKER 

The red-cockaded woodpecker (Picoides borealis) inhabits the mature pine forests 

of the Southeastern United States Its range of distribution is coincident with the Atlantic 

and Gulf Coastal Plains from Virginia to East Texas 

The Red-cockaded woodpecker (RCW) was considered an endangered species by 

the Endangered Species Conservation Act of 1969 and by the subsequent Endangered 

Species Act of 1973. Several factors have contributed to the decline of the RCW 

populations. The primary causes are the reduction of nesting and roosting habitat due to 

extensive timber harvesting of mature pine forests (Conner and Rudolph 1989, Conner and 

Rudolph 1991; Walters 1991) and hardwood encroachment due to artificial reduction of fire 

in the forests of the Southern United States (Conner and Rudolph 1989). The effects of this 

reduction of suitable areas for nesting and roosting are reflected in reduction of patch size, 

isolation of colonies, and a decrease in movement conditions in the pine landscapes. These 

can be considered as the direct reasons for the decrease in population size observed in the 

last decades (Conner and Rudolph 1989; Conner and Rudolph 1991; Walters 1991; 

Thomlinson 1993). 



Social Organization of the Red-cockaded Woodpecker 

The species is organized into a cooperative breeding system with nonbreeding 

individuals remaining in the groups (clans) as helpers (Walters et al. 1988). The functions of 

the helpers are associated with the help of the reproductive pair and related young birds, 

and with the defense of cavities and territories (Ligon 1970; Walters et al. 1988). Helpers 

are usuagy close relatives of the breeders they assist (Walters et al. 1988). 

A clan's composition can vary from a single male individual, to a breeding pair, to a 

breeding pair with male helpers (Walters er al. 1988) Each individual in a group occupies 

one roost cavity (Walters 1991). Each group occupies a cluster of cavity trees, but in some 

instances the group can occupy more than one cluster of cavity trees (Walters et al. 1988) 

The activity of clans with more than one cluster is, however, still concentrated in one 

predominant cluster of cavity trees (Walters et al. 1988). Breeding birds in the colonies are 

sedentary and can remain in the same trees for up to four years (Ligon 1970) 

Abandonment of clusters and capture of active or inactive clusters by different 

groups are dynamic processes in the RCW populations (Walters et al 1988; Doerr et al. 

1989) Recently abandoned clusters are more quickly reoccupied than long-abandoned 

clusters (Doerr er al. 1989), and territories abandoned for more than 2 years will not be 

reoccupied (Walters 1991). Population density positively affects the recolonization rates of 

abandoned colonies (Doerr er al. 1989). Creation of new colonies is, however, very rare 

(Doerr et al, 1989; Ligon et al. 1986; Walters 1991; Conner and Rudolph 1989). 

Red-cockaded woodpeckers generally compete for a breeding position in the group 

to which they belong rather than searching for a new territory and creating a new group 



(Walters 1991), This behavior is due to the time and energy investment involved with the 

excavation of cavities in new territories (Walters 1991). New cavities are often excavated in 

existing clusters which increases their extent or shifts their location (Walters er al. 1988; 

Doerr et al. 1989) A new clan can also result from a colony breaking into two groups 

(Walters er al. 1988). 

The dependency of the species on already existing clusters of cavity trees has strong 

implications in terms of defining the habitat for the species (Doerr et al. 1989). A cluster of 

cavity trees, even if inactive, has a high value in terms of potential nesting habitat for the 

species. Walters (1991) states that the "worst territories with an existing set of cavity trees 

may be sufficiently better than the best ones without cavities [ . ]". Successful occupancy of 

artificial cavities by RCW supports this hypothesis (Doerr et al. 1989; Walters 1991, 

Walters et al. 1992; Rudolph et a! 1992; Came 1995, USDAFS, personal communication). 

Throughout North Carolina Walters et al. (1988) studied for 5 years the 

composition of groups of red-cockaded woodpeckers. Fifty-nine percent of the observed 

groups were composed of a male and a female, only 30% by a breeding pair with at least 

one helper, and 11'/o by solitary males. From the groups containing helpers, just 5'/o had 

more than one helper. The maximum number of helpers observed was 3, and the helpers 

were almost exclusively males (98'/o). The composition of groups is variable from area to 

area, however. In Sam Houston National Forest 69. 6'/o of the colonies have 2-3 roosting 

birds, 21. 4'/o a single bird, and the remaining 9/o from 4 to 7 roosting birds (Rudolph and 

Conner 1994). 



Movements of Red-cockaded Woodpeckers in the Landscape 

Movements of Red-cockaded Woodpeckers include three main types: foraging 

movements, defense movements, and dispersal movements. Birds can fly considerable 

distances every day in foraging and defense activities (Ligon 1970), In Florida, 

woodpeckers were observed approximately 1300 m away &om their colony (Ligon 1970). 

In central Florida, on some occasions, groups were observed to ily up to 950 m away &om 

their territory to intercept an intruding neighbor at the territorial boundary, but mean 

distances traveled were 277. 1 m (ad=196. 3m) (DeLotelle et al. 1987). Also in central 

Florida, birds were observed to fly up to 1200 m (mean=720 m) away frotn the roost tree 

(Nesbitt et al. 1978) 

Dispersal of fledglings or adults to other colonies is an important characteristic of 

the species for maintaining demographic processes and genetic variability in the population 

(Walters 1988; Doerr et al. 1989). Walters et al. (1988) suggest that red-cockaded 

woodpeckers disperse in the direction of existing groups or existing clusters of cavity trees 

and not in the direction of unoccupied territories. 

Movements of females from the time of fledgling to the subsequent breeding season 

was quantified by Walters et al. (1988) in North Carolina. At the age of one year, 31/0 of 

the fledgling females dispersed to other colonies, 1'/0 remained in the original group, and 

68/o disappeared (mortality). Out of the fledgling females that dispersed, 92/o became 

breeders. One breeding season after the females became breeders, 56'/0 remained in the 

same group, 12'/o moved to different groups, and 31'/o disappeared. Walters et al. (1988) 

quantified distances that fledgling females dispersed: mean=4. 7 Km, median=3. 2 Km, and 



maximum=31. 5 Km Using the number of territories through which the dispersing birds 

passed as an indicator of effective dispersal distance, they stated that 29% of the fledgling 

females dispersed to a neighboring group and 24% moved three or more territories away 

from the original colony. 

Adult females also disperse. Incest avoidance, loss of mate, and mate desertion are 

reasons for these movements (Walters et al. 1988). These distances were quantified by 

Walters er al. (1988), mean=2. 1 Km, median=1. 3 Km, and maximum 15 0 Km. Adult 

females disperse mainly to neighboring groups (61'/o), while those that pass through more 

than two territories are relatively scarce (8'/o). 

Male dispersal follows two strategies: "dispersal after fledgling, as females do, or 

remaining as helpers until a breeding vacancy arises in the vicinity" (Walters er al. 1988), 

Fledgling males were found to disperse in just 13% of the cases in North Carolina Higher 

proportions either die (57%) or remain as helpers in the natal group (27%) (Walters et al. 

1988). Fledgling males dispersal distances were quantified by Walters et al. (1988). 

mean=5 4 Km, median=4. 5, and maximum=21. 1 Km. 

Adult male breeders and helpers move reduced distances and usually only to 

neighboring groups. Helpers became breeders either when they inherited territories (90'/o) 

or when they dispersed (91%) (Walters et al. 1988). Breeders remained as breeders in the 

same territory until they disappeared (Walters et al. 1988). Solitary males, those that are 

associated with a territory but not with a group, can disperse considerable distances. 

Floaters are solitary males without a temtory. Solitary males became breeders in 26'/o of the 
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cases studied by Walters et al. (1988). Eighteen percent moved to new territories, and most 

of these became breeders (Walters et al. 1988). 

RED-COCKADED WOODPECKER HABITAT 

In the area of study of this project, which is the Raven District of the Sam Houston 

National Forest, the forest stands are mainly comprised of loblolly pines (Pinus taeda) and 

shortleaf pines (Pinus echinata). The following review will be based primarily on the red- 

cockaded woodpecker's habitat requirements relative to stands dominated by such species. 

Longleaf pine (Pinus Palustrts) is the species preferred for cavity excavation, but RCW also 

use the other native pines of the southeastern United States (Lay and Russell 1970; Ligon et 

al. 1986, Doerr et al. 1989). 

Nesting and Roosting Habitat 

Clans of red-cockaded woodpeckers concentrate a majority of their activity in the 

trees they excavate for roosting and nesting cavities. These cavity trees and the group of 

trees that constitute the cluster are the center of activity for individuals and clans of red- 

cockaded woodpeckers The availability of cavity trees can determine the distribution of 

birds, group size, attraction and retention of mates, and reproductive success (Ligon 1970). 

Age 

Red-cockaded woodpeckers require old-growth living pines for excavation of 

cavities for nesting and roosting (Conner and O'Halloran 1987; Hooper 1988; Rudolph and 
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Conner 1991, Conner et al. 1994b). In spite of the skepticism of Field and Williams (1985), 

more recent literature has indicated that the tree age is a main attribute in the selection of 

trees by RCW and in the definition of suitable habitat for the species (Hovis and Labisky 

1985; Conner and O'Halloran 1987; DeLotelle and Epting 1988; Hooper 1988; Engstrom 

and Evans 1990; Conner and Rudolph 1991; Thomlinson 1993). 

Using data collected during 1991 in the Sam Houston National Forest, Conner et al. 

(1994b) detected significant differences in age between active cavity trees and trees selected 

randomly. In the Angelina, Davy Crockett, and Sam Houston National Forests in East 

Texas, Rudolph and Conner (1991) found statistically significant differences in tree age 

between cavity trees and both non-cavity trees within clusters and trees randomly selected 

Rom the stands surrounding the clusters. These differences were detected for the species 

that dominate the mentioned national forests, i. e, loblolly, shortleaf, and longleaf pines. 

While tree age is one of the variables that account for the greatest differences between 

cavity and non-cavity trees in the Angelina National Forest of Texas (Conner and 

O'Halloran 1987), diameter at breast height and crown characteristics are other important 

variables. 

Age of trees is important in the process of selection of cavity trees by RCW 

primarily because in young trees the heartwood available in the trunk is not large enough in 

size to allow the excavation of a complete cavity (Conner and O'Halloran 1987; Conner et 

al. 1994b). Conner and Rudolph (1994 cit. in Conner et al, 1994b) state that a 15 cm 

diameter of heartwood is sufficient to house a RCW cavity Another aspect associated with 
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heartwood diameter is the proportion of heartwood to sapwood since the flow of resin from 

the sapwood can inactivate a cavity (Conner and O'Halloran 1987). 

Older trees allow the construction of cavities at higher positions on the trunk 

because the height of adequate heartwood volume increases with age (Jackson and Jackson 

1986; Conner and O'Halloran 1987; Rudolph and Conner 1991). Cavities located high in 

the trunk are distant &om the understory, a limiting factor of RCW habitat (Jackson and 

Jackson 1986) The height of the cavity creates protection against predators (Conner and 

O'Halloran 1987) and fire damage (Conner and Locke 1979). Age is also important in the 

selection of cavity trees because older trees with larger diameters possess the properties that 

allow the formation of typical resin wells and plates (Jackson and Jackson 1986). Protection 

against predators can be more efficient in old trees because certain resin properties, such as 

slower resin crystallization, are maintained for a longer period of time (Conner and 

O'Halloran 1987). 

Age is also related to the probability of infection by fungi causing heartwood decay, 

which facilitates the excavation of cavities by red-cockaded woodpeckers (Lay and Russell 

1970; Ligon 1970; Conner and Locke 1982; Conner and O'Halloran 1987; Hooper 1988; 

Conner ei aL 1994b), Phellinus pini is the most common fungus causing heartwood decay 

in pines, but others can also be responsible for this disease (Conner and Locke 1982). 

Loblolly and shortleaf pines have heartwood decaying fungi more often than longleaf pines 

(Conner and Locke 1982). Wahlenberg (1946, 1960 cit. in Conner and O'Halloran 1987) 

found that, for ages under 75 years, loblolly pines have a lower frequency of heartwood 

decaying fungus infection. Hepting (1971 cit. Jackson and Jackson 1986) states that 
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southern pines less than 60 years old are rarely infected by Phellinus pint, In South 

Carolina, Hooper (1988) found frequencies of heartwood decaying fungus in 97'/0 of 

longleaf pines which were cavity trees over 100 years old and 86'/0 in cavity trees less than 

80 years. Non-cavity trees less than 80 years old contained heartwood decaying fungus in 

just 9'/o of the cases. In two national forests in Florida the same authors detected an 

occurrence rate of heartwood decaying fungus of 80'/a and 90'/0 for trees older than 100 

years, and 32/0 for trees younger than 80 years old. 

Selection of cavity trees by RCW seems based on an individual tree's age more than 

on the stand's age (Conner and O'Halloran 1987; Rudolph and Conner 1991). Rudolph and 

Conner (1991) using data from three national forests concluded that in Texas, RCW selects 

cavity trees f'rom the oldest available trees. Woodpeckers seem to select individual trees that 

exhibited suppression followed by release (Conner and O'Halloran 1987). As a consequence 

of suppression, trees drop their lower branches, boles became open, additional heartwood 

can be formed, and susceptibility to fungal heartrot increases (Conner and O'Halloran 

1987). Hooper (1988) suggests that RCW use the trees that are easiest to excavate - those 

with the presence of decayed heartwood or rapid diameter growth. Growth rate impacts the 

selection of trees for cavity excavation. Species with rapid growth, besides reaching suitable 

sizes faster, also present wood characteristics that facilitate excavation (Jackson and 

Jackson 1988). 

In the Francis Marion National Forest in South Carolina and the Noxubee National 

Wildlife Refuge in Mississippi, young trees were more abundant than the trees chosen for 

excavation by woodpeckers (Jackson et al. 1979). In the Francis Marion National Forest, 
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805o of the loblolly pine stands were less than 50 years old, but the mean age of trees with 

cavity initiation was 77. 4 years old (Jackson et al. 1979). 

Data from Florida and North Carolina suggest a threshold requirement of loblolly 

pine trees above 60 years in age for continuous stand occupancy (DeLotelle and Epting 

1988). The presence of trees older than 90 years in the stand can increase RCW population 

density (DeLotelle and Epting 1988). 

In South Carolina and Mississippi, loblolly pines where cavity initiation was not 

completed had a mean age of 75 years (Jackson et aL 1979) In the same study, loblolly 

pines with just one completed cavity averaged 80 6 years (sd=11. 06). Rudolph and Conner 

(1991) provide evidence that the mean age of recently initiated trees does not differ from 

cavity trees. 

The studies of Loeb et al (1992) and Thomlinson (1993) present data regarding 

tree age for colonies and for the stands where the colonies are located In the Piedmont of 

Georgia, Loeb et al. (1992), using circular plots of 0 01 acres for characterization of 

colonies, obtained a mean value of 87 years (sd=1 year) for stands having active colonies, 

while in the Sam Houston National Forest 72 years (range=51-103) was the mean age of 

stands were RCW colonies occurred (Thomlinson 1993). Data from the Continuous 

Inventory of Stand Condition (CISC) database (USDA Forest Service) was used in this 

work. This value was found to be significantly different from the age of stands having the 

same silvicultural conditions (loblolly and shortleaf sawtimber) but that were not colonized. 
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Diameter at the Breast Height 

Diameter at the breast height (dbh) has an intimate relationship with tree age. Like 

age, dbh of cavity trees is significantly different Rom trees not selected for cavity excavation 

by RCW (Hovis and Labisky 1985; Conner and O'Hallorsn 1987; Hooper 1988; Engstrom 

and Evans 1990; Conner et al, 1994b). Mean values ranging Irom 40 cm to about 53 cm for 

loblolly and shortleaf pines were observed in national forests in Texas (Lay and Russell 

1970; Conner and O'Halloran 1987; Conner and Rudolph 1989 ). 

Basal Area 

It is generally accepted that RCW require open and park-like pine stands for nesting 

and roosting habitat (Ligon et af 1986; Conner and Rudolph 1989). Basal area and number 

of stems per unit area are measures of density that have been evaluated in RCW colonies in 

relation to various other components in the stand (Lay and Russell 1970; Conner and 

O'Halloran 1987; Conner and Rudolph 1989; Kalisz and Boettcher 1991; Loeb et af 1992). 

I chose to include in this study these particular components in order to evaluate the 

importance of each in the definition of habitat suitability. Total basal area and total number 

of stems per unit area include all the individual trees, independent of species, and the 

position they occupy in the vertical structure of the stand. Overstory basal area and number 

of stems refers to the dominant pine species and is very often similar to the total values 

when hardwood midstory basal area is reduced. Midstory basal area and number of stems 

includes the individuals below the overstory and above the understory levels Hardwood 

midstory is the part of the midstory composed just of hardwood species. 
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Total Basal Area 

Total basal area of the stands where RCW establish colonies can be an indicator of 

the overall density in a stand. It is, however, a relatively limited variable in terms of the 

information it can provide about specific aspects of basal area which are more directly 

related to stand suitability for RCW. In the literature, several values are referred to as 

reflecting the mean conditions of colonies. For loblolly and shortleaf pine stands expect 

mean values for total basal area ranging from 11 m'/ha to 23 m'/ha (Conner and O'Halloran 

1987; Conner and Rudolph 1989; Kalisz and Boettcher 1991; Loeb et a/. 1992). Hooper er 

al. (1980 cit, in Kalisz and Boettcher 1991) recommended the basal area as ranging from 

4. 6 to 7. 4 m'/ha in pine habitat. The typical range seems to be between 5 and 15 m'/ha 

(Hovis and Labinsky 1985; Conner and Rudolph 1989). 

Loeb et al. (1992) found statistically significant differences in both total basal area 

and total number of stems per unit area between stands with active colonies and stands with 

inactive colonies. In different locations over the area of distribution of RCW, significant 

differences in total basal area between stands supporting colonies and stands selected 

randomly were also observed (Loeb er al. 1992; Conner and O'Halloran 1987). 

Overstory Basal Area 

Conner and Rudolph (1989) noticed high pine basal area in the colony as a factor 

that could contribute to the decline of RCW in the Angelina, Davy Crockett, and Sabine 

National Forests in eastern Texas. Although the pine basal area within the colonies was 

acceptable, 20 m away &om each cavity tree it rose rapidly. Hovis and Labisky (1985) 
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found significant diflerences in overstory stem density between areas within a 200 m circle 

around colonies and areas between 200 and 400 m away &om the center of the colonies. 

Areas close to colonies presented lower basal area (median=10. 6 m'/ha, range 5. 0-19. 2 

m /ha) than areas distant &om colonies (median=15. 0 m /ha, range=6. 7-26. 3 m /ha). These 

difFerences were not, however, statistically significant. Conner and O'Halloran (1987) 

recommend for colonies pine basal area of approximately 9 m /hs, the limit of the basal area 

interval (9-14 m /ha) defined by Hooper et al. (1980 cit. in Conner and O'Halloran 1987). 

Using mean stand measurements of basal area, Thomlinson (1993) showed 

hardwood sawtimber basal area influenced colony activity more than poletimber basal area 

Comparing active and inactive colonies, the same author found sawtimber basal area to be 

the only timber variable to have a significant efFect on the colony status. 

Midstory Basal Area 

Hardwood midstory is another of the major factors which determines nesting habitat 

suitability for RCW. It is generally accepted that midstory encroachment is one of the 

reasons for the reduction in RCW populations in the last decades as fires were excluded or 

reduced in frequency (Vsn Balen and Doerr 1978; Ligon 1986; Conner and Rudolph 1989; 

Thomlinson 1993). 

When the hardwood midstory reaches the height of the cavities, RCW abandon 

these cavity trees (Loeb et al. 1992). This behavior is even stronger when the midstory 

blocks cavity access (Van Balen and Doerr 1978). Hardwood midstory increases the 

competition for cavity trees with red-bellied woodpeckers and flying squirrels (Glaucomys 
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volans), and increases the frequency of enlargement of RCW cavities by pileated 

woodpeckers (Conner and Rudolph 1989). 

In two areas in North Carolina, Van Balen and Doerr (1978) found statistically 

significant differences between cavity trees and randomly selected trees in basal area and the 

total number of stems of hardwood understory (trees less than 14 m in high) within 0. 01 ha. 

In the Apalachicola National Forest of Florida, significant differences in midstory stem 

density and midstory crown area between areas around the colony (within a 200 radius 

circle) and areas distant from the colony (defined between 200 and 400 m away from the 

center of the colonies) were observed (Hovis and Labisky 1985). 

Colonies that became inactive after 1983 in the Angelina and Davy Crockett 

National Forests of Texas contained significantly higher hardwood midstory than colonies 

still active in 1987 (Conner and Rudolph 1989) Discriminant function and logistic 

regression analyses indicated that hardwood midstory was the determining factor in the 

inactivity of colonies from 1983 to 1987. 

In the Piedmont of Georgia, Loeb et al. (1992), using areas of 0. 01 acres (0 004 

ha), found statistically significant differences between active and inactive colonies in terms 

of total hardwood basal area and midstory hardwood basal. Differences in the number of 

total hardwood stems per unit of area and midstory hardwood stems per unit of area were 

also observed, but were not statistically significant 

At the northern extreme of the distribution of the species, in the Daniel Boone 

National Forest in Kentucky, Kalisz and Boettcher (1991) did not find differences in 

hardwood live crown density at the cavity height (a measure of hardwood density) using 



circular plots of 0. 01 ha around cavity trees The authors concluded that midstory 

encroachment was not the reason for abandonment of cavity trees in that area. 

Conner and O'Halloran (1987), comparing stand conditions around active cavity 

trees and trees randomly selected, observed significant differences in basal area of midstory 

hardwoods and midstory height. Loch et a1 (1992) found statistically significant differences 

between active and inactive colonies in terms of pine midstory basal area, total midstory 

basal area (pine+ hardwood), and total number of midstory stems per acre. More than just 

hardwood midstory, all midstory trees, independently of the species or vegetation type 

present, seems to affect the activity of RCW colonies Data from Conner and O'Halloran 

(1987) support this idea They found significant differences in both hardwood and pine 

midstory basal area of colony stands and stands selected at random. Using a logistic 

regression model based on midstory basal area Loeb et al. (1992) present a value of 30 

fi /ac (6. 9 m /ha) as the maximum limit for RCW habitat suitability. 

Foraging Habitat 

In addition to nesting and roosting habitat, red-cockaded woodpeckers use large 

areas for foraging activity. Foraging areas are called home ranges (Burt (1943 cit. in 

DeLotelle et al. 1987)) or total observed ranges (Hooper et al. 1982) and include all the 

foraging habitat of a clan Occasionally, the birds forage within the colony areas (Nesbitt et 

rd. 1987). Home ranges or total observed ranges include areas which are defended by the 

clans, designated as terntories (Burt (1943 cit. in DeLotelle et a/. 1987) or home range 

(Hooper et al. 1982). Tenitorial boundaries result from habitat limitations and the 
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temtories of other groups (Ligon, 1970). The number of groups in a population is 

determined by the distribution of cavity tree clusters and the number of acceptable 

territories (Walters 1991). Defense of territories is a main activity of all individuals in 

groups (Ligon, 1970). Home ranges can cover from less than 50 ha to over 400 ha 

depending on habitat quality (Conner and Rudolph 1989) 

In central Florida the mean size of home ranges of six groups of RCW was 150 0 ha 

(ad=32. 9ha; range=116. 2-198. 8 ha) and territory was 116 1 ha (sd=27. Sha; range=92. 7- 

154. 9 ha) (DeLotelle et al. 1987) Also, in central Florida the mean home range observed 

for three clans based on three days' observations was 69. 8 ha (max=91 4, min=58 4 ha) 

(Nesbitt et aI 1978). Porter and Labisky (1986) observed year-round home ranges for four 

clans of 129 ha (sd=31ha; max=157 ha; min=85 ha) in northern Florida. 

In South Carolina, total observed ranges ranged from 34 to 225 ha but the mean 

total observed range was 86. 9 ha (+44. 2) (Hooper et al. 1982), For two clans in South 

Carolina, Skorupa and McFarlane (1976) registered year round home ranges of 48 3 and 

80. 4 ha. 

Foraging habitat can be extremely diversified Ligon (1970) observed birds foraging 

mainly in longleaf pine trees but also in cypress (Tmodium distichum) and pecan trees 

(Carya tllinoensis) In northern and central Florida, RCW foraging habitat includes stands 

of longleaf pine and other pine species (Pintts elltottii and Pitms serotttta), hardwood 

stands, savannahs, swamps dominated by several species, and open areas such as pastures 

and recent timber clearcuts (Porter and Labisky 1986; Nesbitt et al. 1987; DeLotelle et al. 

1987). The land use of the area studied by DeLotelle et al. (1987) was composed of pine 
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flatwoods (88. 1'/s), cypress domes and bayheads (8. 6/o), and wet prairie and open areas 

(3. 3o/o). 

In central Florida woodpeckers spent 90'/o of their foraging time in longleaf pine 

stands and the remaining time in cypress stands (DeLotelle et al. 1987). Unlogged pine 

stands were used relatively intensively; 41'/o of home ranges and 59'/o of foraging 

observations (DeLotelle et al. 1987). Stand use was found to be correlated with pine stand 

size (DeLotelle et al. 1987). 

In the areas where foraging behavior was observed, red-cockaded woodpeckers 

showed a high preference for live pine species (Hooper and Lennartz 1981; Porter snd 

Labisky 1986; DeLotelle et al. 1987). Snags and live hardwoods were also extensively used 

as foraging habitat by red-cockaded woodpeckers (Conner er al. 1994a). 

In central Florida, pine flatwoods were available in 71/o of the area and used in 82'/a 

of the foraging time by red-cockaded woodpeckers (Nesbitt er al. 1978). In northern 

Florida longleaf pine was preferred by the woodpeckers in 99'/o of the registered 

observations, in spite of its availability being only 69'/s (Porter and Labisky 1986). Slash 

pine occupied 12'/o of the foraging habitat but was used in just I'/o of the cases (Porter and 

Labisky 1986). 

Hooper and Lennartz (1981) observed in coastal South Carolina that live pines 

(longleaf and shortleaf) were selected on average 163 times more frequently than 

hardwoods. Pines were selected 96'/o of the times the birds foraged when its availability was 

71. 3/o. Hardwoods, with a 24. 6/o availability, and cypress, with 1. 9'/o availability, 

respectively, accounted for 0 9'/o and 0. 1'/s of selections for foraging. 
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Cypress was used in 12'/o of the foraging time of a clan located in an area where the 

availability of pine stands was more reduced than the other areas (Hooper and Lennartz 

1981). Hardwood stands were not avoided, but there foraging was mairdy in the existing 

pine trees (Hooper and Lennartz 1981). In northern Florida birds prefer stands with certain 

requirements of height and dbh. When they use these stands for foraging activity, they 

choose the individual trees that meet the preferred criteria (Porter and Labisky 1986) 

In territories of central Florida, pine stands within territories were young, ranging 

from 17 to 53 years (DeLotelle et al. 1987) Old trees (110 years) were also found. 

Sensitivity analyzes revealed age to be more important than density in determining stand use 

(DeLotelle et al. 1987). Porter and Labisky (1986) observed in northern Florida that the 

stands preferred for foraging activity had a mean age of 72 years, but the stands used for 

foraging ranged in age from 17 to 60 years 

The age of trees preferred for foraging is related to the bark's flaking off and the 

bark plate size, both of which increase the conditions needed for arthropods to hide and 

which allow the "scaling" foraging behavior of the woodpeckers (Jackson and Jackson 

1986). Older trees also have an increased height and structural diversity favorable to the 

creation ofbetter and more diverse foraging conditions than young trees do (Jackson and 

Jackson 1986) Age of the stands used for foraging also influences the home range size 

(Jackson and Jackson 1986). When foraging stands are large, isolation of colonies increases 

and is conducive to the inactivation of colonies (Jackson and Jackson 1986). 
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In South Carolina, foraged pine trees had dbh mean values of 29. 5 cm for males and 

29. 8 cm for females (Hooper and Lennartz 1981). Here the woodpeckers preferred pines 

greater than 23 cm dbh and avoided pines less than 13 cm dbh (Hooper and Lennartz 1981) 

Territories in central Florida presented mean values of pine basal area and numbers 

of pine stems of 267. 6 ft'/ac (61 4 m'/ha) (range=204. 6-355 8 fl'/ac) and 9768 stems above 

6 cm in dbh (24, 137 stems/ha), respectively (DeLotefle et al. 1987) In northern Florida, 

RCW choose stands for foraging with height above 20 m and dbh above 20 cm (Porter and 

Labisky 1986). 

In the area analyzed by DeLotelle et a/. (1987), territories occupied about 95'/o 

(mean) of the available habitat. Territory size was correlated with the area of suitable 

habitat within a 2000 m radius for each group of cavity trees (DeLotelle et al. 1987). 

Hooper et aL (1982) also found a relationship between home range size and variables 

reflecting habitat quality. This relationship was, however, relatively weak. 

A high frequency of extraterritorial foraging and group interactions can be 

interpreted as an indicator of poor habitat quality. Porter and Labisky (1986) suggest that 

the foraging habitat composition influences the size of home ranges Nesbit et al. (1983 cit. 

in DeLotelle et al. 1987) contends that habitat quality is the most important factor in 

determining home range size. In central Florida territories and home ranges of RCW are 

larger than in South Carolina but contain less pine basal area (DeLotelle er a/. 1987), 

Central Florida RCW groups use larger habitat areas in their territories as a result of poorer 

habitat quality than that in South Carolina (DeLotelle er al. 1987) In the area studied 

population density is a major constraint in group territory size (DeLotelle et al. 1987). 
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Foraging in small stems (down to 5 cm dbh (DeLotelle et al, 1983 cit in DeLotelle et a!. 

(1987)) (214io use of 5-11 cm dbh class) and in cypress is interpreted as compensation 

behavior for poor quality habitat (DeLotelle et al. 1987). Also, in coastal South Carolina 

cypress use was higher when pine availability was reduced (Hooper and Lennartz 1981). In 

South Carolina RCW foraged in hardwoods during the winter in 10'/o of the cases (Skorupa 

and McFarlane 1976) These authors suggested a limitation in prey in pine trees during the 

winter season. The home ranges of the clans considered in this study were relatively small in 

size. Hooper et al. (1982) suggested that in South Carolina year-round range sizes are 

determined by the density of colonies that divide the available suitable foraging habitat. 

Fragmentation and Connectivity of the Red-cockaded Woodpecker Habitat 

Fragmentation of habitats is characterized by 4 components (1) general loss of 

habitat area, (2) decrease in the size of habitat patches, (3) increase in distance between 

patches, and (4) increase in resistance to dispersal movements of organisms (Opdam et al. 

1995). McGarigal and McComb (1995) add to this set of components the change in the 

configuration ofhabitats resulting from fragmentation The habitat configuration is 

especially important to animal species in terms of movement patterns, intraspecific and 

interspecific interactions among individuals, and juxtaposition ofhabitats (McGarigal and 

McComb 1995) 

Red-cockaded woodpecker populations are affected by habitat fragmentation 

resulting from timber management of the southern pine forests of the United States, 

particularly prior to 1968-1973 (Rudolph and Conner 1994). Conner and Rudolph (1991) 
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found evidence of fragmentation effects on RCW group size due to habitat loss (foraging 

insufficiency, components (1) k (2) above) in small populations of isolated clusters. In large 

and dense populations such as in the Raven district of the Sam Houston National Forest, 

however, the effects were not similar. Isolation (component (3) above) and forest removal 

within 800 m around colonies were negatively correlated with cluster activity. Rudolph and 

Conner (1994) in the same area detected significant correlations between the size of areas 

with forest older than 60 years (component (2) above) and the number of colonies, the 

number of woodpeckers, and the number of woodpeckers per colony. The same variables 

were not correlated to the size of the area when below 60 years of age. Colony activity in 

the Raven district was also detected to be dependent on stand size in the work of 

Thomlinson (1993) 

Fragmentation in terms of a decrease in movement conditions in the landscape 

(component (4) above) seems to be the main constraint on the maintenance of RCW 

populations (Rudolph and Conner 1994). In fact, demographic dynamics of the species are 

based on the movements of individuals, primarily females, among clusters (Walters 1988). 

Rudolph and Conner (1994) suggest that the distribution pattern of clusters of RCW in the 

Raven District is better explained by differential attrition of active clusters related to the 

extent of forest fragmentation. This pattern decreases the dispersal efficiency of fledgling 

females, which increases the difficulty of locating active clusters with vacant breeding 

positions by these females As a consequence, colonies remain without a breeding female 

and group size decreases. The results observed can also be attributed to the lack of nesting 

trees. 
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In spite of the absence of specific data about the topic, it seems reasonable to think 

that RCW individuals prefer to move within forest stands, particularly within those more 

suitable either for nesting or foraging habitat (R. N. Conner and D C. Rudolph 1995, 

USDAFS, personal communication) The absence of landscape conditions that allow 

movement of individuals will irreversibly interrupt the reproduction of groups where a 

female is not present. 

Indications of a decrease in landscape conditions conducive to movement can be 

taken from the work of Thomlinson (1993) in the Raven District of the Sam Houston 

National Forest. Variables such as stand size, stand shape, patch configuration, patch 

tortuosity, distance between patches, connectivity, habitat types surrounding colonies, and 

corridors and barriers between colonies are related to this component of fragmentation In 

the work of Thomlinson (1993) the results of the application of these variables seem to 

corroborate the hypotheses of Rudolph and Conner (1994). 

Increased distances among patches with inactive colonies was detected by 

Thomlinson (1993) in the Raven District. Here, distances to the nearest colonies were 

significantly higher for inactive colonies than for active colonies: "72'/0 of the active 

colonies and 53'/0 of the inactive colonies were within a linear distance of 500 m. 32'/0 of 

the inactive colonies were more than 1 Km away from the closest active colony, compared 

with only 7'/o of the active colonies" (Thomlinson 1993). Isolation, quantified using three 

different coefficients, was significantly hier for inactive colonies than for active colonies 

when radii of 4000 m and 1130 m were used (Thomlinson 1993). When a radius of 390 m 

was used, no significant differences were observed. 
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Variables associated with isolation and connectivity, the stand size and the stand 

shape, were revealed to be different between active and inactive colonies. Stands where 

active colonies are present are bigger than stands with inactive colonies (Thomlinson 1993). 

The values for the configuration and tortuosity indexes used by Thomlinson (1993) were 

also significantly different between active and inactive colonies. 

Habitat types surrounding colonies is another factor related to forest fragmentation. 

Thomlinson (1993) found that stands with inactive colonies share their perimeter with open 

areas such as pastures and pastures plus water significantly more often than stands with 

active colonies. 

Active and inactive colonies in the Raven district present differences in connectivity 

as expressed by the analysis of corridors and barriers made by Thomlinson (1993) Inactive 

colonies are more likely to have circuitous corridors or barriers between them, and active 

colonies are more likely to have direct corridors between them. 

LANDSCAPE ECOLOGY AND GEOGRAPHIC INFORMATION SYSTEMS 

Landscape ecology is an emergent field in ecology and land sciences defined as the 

"study of structure, function and change in a heterogeneous land area composed of 

interacting ecosystems" (Forman and Crodron 1986). The structure of a landscape is the 

distribution of energy, materials, and species in relation to the sizes, shapes, numbers, 

kinds, and configurations of landscape elements or ecosystems (Forman and Godron 1986). 

Matrix, patches, and corridors are considered the essential structural elements of a 



landscape. The measure of how connected corridors or matrix are in a landscape is 

designated by connectivity (Forman and Godron 1986). 

Methods for quantification of landscape patterns were developed to compare 

different landscapes, to identify significant changes through time, and to relate landscape 

patterns to ecological function (Turner 1989). Landscape richness, evenness, patchiness, 

dominance, contagion, and diversity result from the application of Information Theory to 

Landscape Ecology (Turner 1989, Turner 1990, Li and Reynolds 1993) Landscape pattern 

complexity can be evaluated based on the quantification of shapes and boundaries using 

fractals (Turner 1989), and complexity of patch perimeter can be measured based on edge 

to area relationships (Turner 1990) Complete landscapes can also be evaluated in terms of 

fractal dimension (Milne 1988; Olsen er al. 1993) Contagion, nearest neighbor probability, 

and edge measurements are used to express the degree to which landscape elements are 

connected (Turner 1989; Turner 1990). 

The relationship between landscape patterns and ecological processes has received 

particular attention by scientists in the last decade. Turner and Bratton (1987) studied 

disturbance phenomena such as fire and grazing in a heterogeneous landscape in Georgia. 

Animal movements at landscape levels have been analyzed based on Neutral Models and 

Percolation Theory (Gardner 1987 cit. in Turner 1989; Johnson er al. 1992) and MAP 

models (Models of Mobile Animal Populations) (Pulliam et al. 1995). Other approaches 

have been used in the analysis of ecological processes in heterogeneous landscapes 

involving several groups of animals affected by fragmentation processes. Population 

demography of the euro kangaroo was related to habitat fragmentation in Australia (Arnold 
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et al. 1993). Forest fragmentation at a landscape level was related to pairing success in 

ovenbirds in Quebec, Canada (Villard er al. 1993). Thomlinson (1993) analyzed the red- 

cockaded woodpecker colony status in terms of spatial habitat characteristics in the Sam 

Houston National Forest in Texas. The influence of the forest structure on the abundance 

of breeding birds was studied in the Oregon Coast Range (McGarigal and McComb 1995) 

Metapopulation theory has been used as a demographic model in ecological studies 

on a broader scale (Opdam 1991; Opdam et al. 1995; Arnold er a1. 1993; Pulliam er al. 

1995) . Metapopulation theory emerged from the recognition that small populations are not 

independent of other populations in the surrounding habitat (Pulliam et al. 1995). 

Landscape structure and pattern can be expressed in terms of heterogeneity, which 

is defined as the composition of parts of different types (Kolasa and Rollo 1991). Measured 

heterogeneity, the classical perspective of heterogeneity and expressed by patch diversity, 

patch size, shape, etc. , is probably not the most appropriate approach in analyzing 

landscapes from the point of view of an entity of interest, since this perspective constitutes 

an oversimplification of the system and is independent of that entity (Kolasa and Rollo 

1991). 

Functional heterogeneity, on the other hand, is the heterogeneity directly related to 

an entity of interest - an individual, species, population, or community (Kolasa and Rollo 

1991). In the case of a population observed at a landscape scale, functional heterogeneity 

represents how this population perceives and responds to heterogeneity (Kolasa and Rollo 

1991). Coulson er af (1994) forecast the epidemiology of pine beetles in a heterogeneous 

forest landscape of East Texas applying a methodology based on this concept. 
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The emergence of landscape ecology follows the development of technology 

capable of performing spatial and temporal analysis in large surface areas. Geographic 

Information Systems (GIS) are among these new technologies and are one of the most 

successfully used. Even though several kinds of spatial analyses had been made before the 

wide availability of GIS (Johnston 1990), the development of this tool creates promising 

perspectives for quantification and analysis of patterns and processes over extensive 

territories GIS is a helpful tool in the study of change in landscape structure, the factors 

that control landscape pattern, the effect of landscape patterns on ecological processes, the 

relationship between measurements of landscape pattern and ecological function, the effect 

of landscape pattern in disturbance propagation, and prediction of landscape changes based 

on simulation models (Turner 1990). 

In ecology the use of GIS has been concentrated on characterization and 

measurement of linear and areal features, intersection of georeferenced data, and proximity 

analyses (Johnston 1990). Commercial GIS packages, however, lack adequate capabilities 

for computing classical landscape structure measurements (Baker and Cai 1992), so 

specific programs have been developed for particular applications in landscape ecology 

(Turner 1990; Baker and Cai 1992; Gustafson and Parker 1992) SPAN, a grid-cell based 

spatial analysis program, was developed to quantify landscape patterns and changes, and to 

evaluate predictions of spatial simulation models (Turner 1990) SPAN measures the 

proportion of landscape occupied by each landscape category, size and perimeter of each 

patch, fractal dimension of patch perimeters, edges between each pair of categories, 

probabilities of adjacency between categories, and diversity, dominance, and contagion 



indexes. Gustafson and Parker (1992) modified SPAN creating HISA (Habitat Island 

Spatial Analysis) to quantify spatial patterns oflandcover types from TM (Thematic 

Mapper) satellite images. 

Baker and Cai (1992) developed programs for GRASS GIS that measured 

landscape structure variables Measured variables included distance, size, shape, fiactal 

dimension, perimeters, diversity, texture, juxtaposition, and edges 
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CHAPTER III 

STUDY AREA 

The current project was conducted on the Raven District of the Sam Houston 

National Forest (SHNF), an area located in Southeastern Texas (Figure 1), at the extreme 

western edge of the pine forests that follow the Atlantic and Gulf Coastal Plain 

physiographic provinces. Thomlinson (1993) provides a detailed description of the area of 

study. For this reason, only relevant aspects for this particular study will be mentioned. 

FOREST STANDS IN THE RAVEN DISTRICT 

The Raven District is the largest and most continuous forested area of the Sam 

Houston National Forest. With a total area of 66, 000 ha, the Raven District includes 39, 200 

ha of forested area. The Raven district is located between longitude 95' 56' and 95' 22' 

West and latitude 30' 26' and 30' 45' in Montgomery and Walker Counties. The district is 

comprised of 79 compartments (administrative units with a average area of 520 ha in the 

SHNF (Rudolph and Conner 1994)) (Figure 2) Stand size averages 19, 25 ha, ranging from 

0. 1 ha to 537 ha. Adjacent private land is typically pasture and short rotation pine 

plantations, habitats which are in general not suitable for RCW (Rudolph and Conner 1994). 

The dominant forest species is loblolly pine, Pinus taeda, but some shortleaf pine, 

Pmus echinafa, occurs (Figure 3; Appendix 1) Hardwoods are usuagy well-developed in 

the midstory of pine stands (Rudolph and Conner 1994). The forest stands are managed 
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Scale 1. 10 000 000 

Figure 1 - Location of the Raven District of the Sam Houston National Forest. 
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Scale 1:10, 000, 000 

Figure 1 - Location of the Raven District of the Sam Houston National Forest. 
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using even-aged regeneration methods (Rudolph and Conner 1994). Until this year there 

had been no timber cuts in the Raven district since 1989 (Thomlinson 1993). 

The loblolly and shortleaf pine stands in the district are generally young About 87'/o 

of the area occupied by pine stands has an age below 80 years, and just 1'/o is above 100 

years (Appendix 2) The stands are managed mainly for the growth of large sized materials 

In 67'/o of the area, stands contains mature, immature, low quality, or sparse sawtimber 

(Appendix 3). 

RED-COCKADED WOODPECKER IN THE RAVEN DISTRICT 

The Raven District contains the majority of the population of red-cockaded 

woodpeckers in the Sam Houston National Forest and maintains one of the highest 

population densities of this species in the country (Rudolph and Conner 1994). The district 

contains 125 active colonies, with at least one active cavity tree, and 85 inactive colonies, 

colonies where no active cavity trees were found in the last survey The area of forest per 

active colony is 314 ha. When considering solely pine forests, the area per active colony is 

285 ha. Active colonies have, on average, 3. 2 cavity trees, with the minimum and maximum 

number of cavity trees, respectively, 1 and 8. Active cavity trees are mostly natural cavity 

trees, but some artificial cavities are being used by red-cockaded woodpeckers. 

The Forest Service uses Replacement and Recruitment Areas in the management of 

the RCW population in this area Replacement Areas are areas with the required nesting and 

roosting habitat conditions located close to existing active colonies. The objective of this 

practice is to provide suitable habitat for a clan in the case of destruction of the actual 



cluster of cavity trees. Recruitment Areas have the same habitat conditions but are located 

in unpopulated or low population density regions. They are used to attract new birds to 

these regions and in this way increase the number of active colonies and the overall 

population. Both types of areas are 10 acres in size. There are 208 replacement and 74 

recruitment stands in the Raven District 

In the Sam Houston National Forest 69. 6'/0 of the colonies have 2-3 roosting birds, 

21. 4'/0 a single bird, and the rentaining 9/o from 4 to 7 roosting birds (Rudolph and Conner 

1994). From our data, collected in 1994, there are 20'/0 of the colonies with one active 

cavity tree, 43'/o with 2-3 active cavity trees and 37'/0 with 4 or more active cavity trees. 

The distribution of colonies in the study area is shown in Figure 4. 
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Figure 4 - Distribution of Active and Inactive Colonies in the Raven District. 
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CHAPTER IV 

METHODOLOGY 

MATERIAL 

Arc/Info GIS sofiware was used for spatial data representation, database 

management, habitat classification, and display. The functional heterogeneity analyses were 

conducted using FORTRAN programs on a UNIX platform Additional software included 

Excel The hardware used includes an Intergraph TD1 personal workstation, Sun Spare 

workstations, and the SGI Power Challenge super computer located at the Texas A&M 

University. 

DATA 

In this project, I used data provided by the Raven District of the Sam Houston 

National Forest (SHNF), United States Department of Agriculture Forest Service 

(USDAFS). A GIS coverage for the area and a hard copy of data concerning red-cockaded 

woodpecker was provided by the district A complementary data set from the Continuous 

Inventory of Stand Conditions (CISC) database was also provided 

THE GIS STANDS COVERAGE 

A GIS coverage of the Raven District of the Sam Houston National Forest was 

obtained directly from the Raven District. This coverage includes 3383 polygons. Details 
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about this coverage are provided in Appendix 4, with additional information presented in 

the Study Area Chapter. 

The GIS coverage includes lines relative to roads, 'quad' maps, and other linear 

features dividing the forest stands. For this reason the GIS coverage presents, in many 

cases, more than one polygon belonging to the same stand. I did not change this situation 

since a unique attribute existed that could group the polygons belonging to the same stand, 

and because the main analysis was done using raster format which was not affected by this 

delineation. 

A large group of attributes were included in the table associated with the polygons 

of the graphic coverage. From this table I extracted the variables that would be used to 

perform the analyses The attributes of interest in the project and the definitions as provided 

by USDAFS (1993) follow. 

- RAVSTAND¹: number of each polygon in the coverage. It is the attribute with 

unique values 

- AREA area of each polygon (fi ) It is calculated automatically by the GIS. 

- COMP NO: compartment number 

- STAND NO: stand number "A stand is a community of trees possessing 

sufficient uniformity in composition, constitution, age, spatial arrangement or 

condition, to be distinguishable from adjacent communities, so forming a 

silvicultural or management entity" 
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- LNCL land class. "Timber land suitability classification for National Forests land. 

Two broad categories are considered: suitable and unsuitable for timber 

production", 

— STCN' stand condition "A classification of the woody growth occupying the 

stand that incorporates a broad evaluation of (1) the adequacy of stocking, (2) size 

of material, (3) thrift, (4) age, and (5) success in meeting planned product 

objectives". 

— FRTY. forest type. "Classification of the forest overstory cover type currently 

existing on the stand Forest type is based on one or more species of trees that 

comprise the main crown canopy (i e. dominants and co-dominants)". I am 

particularly interested in pine types defined as "stands in which 70'/o or more of the 

basal area of trees with dominant or co-dominant crowns are sofiwoods, the specific 

name represents the species comprising the plurality". 

- AGYR age of the stand. " The calendar year of stand origin" (USDAFS 1993). 

For simplification of the analysis, I created a new attribute AGE from the existing 

AGYR attribute. The AGYR variable includes the last three digits of the year of the stand 

origin The new variable AGE was defined as follows' AGE=995-AGYR 

The stands table originally contained values for basal area of pine poletimber, pine 

sawtimber, hardwood poletimber, hardwood sawtimber, and diameter at the breast height of 

pine poletimber, pine sawtimber, hardwood poletimber, and hardwood sawtimber. I 

detected some inconsistencies in the values of these timber attributes, particularly the values 



for pine poletimber and sawtimber basal area and diameter at breast height, relative to 

hardwood poletimber and sawtimber basal area and diameter at breast height. The CISC 

database was used to assess the values of these variables The timber variables originally 

contained in the stands table were redefined and new attributes were created. 

The final timber attributes that I considered in this project are listed below. 

— PNPOLE BA: pine poletimber basal area (fi /ac), 

- PNSAW BA: pine sawtimber basal area (ff /ac), 

- HWPOLE BA hardwood poletimber basal area (fl'/ac), 

- HWSAW BA hardwood sawtimber basal area (ff'/ac), 

- PN BA. pine basal area (fi /ac)=PNPOLE BA + PNSAW BA, 

- HW BA: hardwood basal area (fi'/ac)=HWPOLE BA + HWSAW BA, 

- POLE BA poletimber basal area (ft /ac)=PNPOLE BA + HWPOLE BA, 

- SAW BA: sawtimber basal area(fi'/ac)=PNSAW BA+ HWSAW BA, 

- PNPOLE DBH: pine poletimber diameter at the breast height (ff), 

- PNSAW DBH: pine sawtimber diameter at the breast height (ff), 

— HWPOLE DBH: hardwood poletimber diameter at the breast height (fi), and 

- HWSAW DBH: hardwood sawtimber diameter at the breast height (ff). 

Although these timber attributes for stands in the Raven District of the Sam 

Houston National Forest are included in the stand table, many of the stands contain no data 

for these parameters. Initially I thought this was due to table updating problems Using data 

f'rom CISC, however, I realized that many stands were still missing data for these variables 
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It was not possible, for this reason, to have a complete data set of timber variables for the 

entire area of interest. 

Another problem detected in the GIS coverage was the noncoincidence between the 

number of stands in the coverage and the number in the CISC database in the CISC 

database the number of stands was higher than in the GIS coverage. Besides the 

implications of this discrepancy in terms of final results, it created some problems in the 

next step of data preparation. 

One last comment should be made about the meaning of the variables contained in 

the data set. The values attached to each stand refer to the mean conditions of these stands. 

The units of work, the stands, are by definition homogeneous areas This purported 

homogeneity is most of the times illusory, however Examing the CISC database, I found 

active colonies located in stands which were classified as 19 years old This occurred 

because there are inclusions of mature trees in young stands These inclusions are 

mentioned in the table field but are not defined as different stands in the CISC database. 

When the stand areas are large, the probability of heterogeneity increases. In such areas 

control over the mean values used to describe these large areas is very much reduced. 

THE RED-COCKADED WOODPECKER TABLE 

The Raven District of the Sam Houston National Forest provided their most recent 

data about the colonies in the area of interest The data included location of active and 

inactive colonies and recruitment and replacement areas by compartment and stand number. 
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For each of these cases, information about the number of natural and artificial active or 

inactive cavities was also included. 

RCW data location was established based on compartment and stand numbers 

according to the CISC database. This enumeration was not, however, entirely coincident 

with the enumeration followed in the GIS coverage. Stand numbers from the RCW data set 

in many cases didn't match the stand numbers in the coverage The number of stands in the 

GIS coverage was in many cases less than the number of stands considered in the location 

of the RCW units. A description of the stands mentioned is given in the Appendix 5 

Stand numbers for 15 active and 2 inactive colonies, as well as 29 replacement and 2 

recruitment stands, were not included in the GIS coverage I presumed that the variations 

were due to the ditferences in dates of construction/updating of the GIS coverage and the 

CISC database. The CISC database is continuously updated, and new divisions of the 

existing stands would have been included in that database. The GIS coverage was created in 

1991 and has not been modified since. Thus, stands defined afier this date are not included 

in the GIS coverage. 

It was my decision to include the mentioned colonies, replacement, and recruitment 

areas in the analysis data set, even though I assumed that an error would result from such a 

procedure. The exclusion of these colonies from the data set would, however, generate 

higher errors than the error resulting from the location of the colonies in the compartments 

The proportion of the units not included originally in the data set in relation to the total 

number of units of their respective type was 12/0 for active colonies, 3 5'/0 for inactive 

colonies, 14'/o for replacement stands, and 2. 7'/0 for recruitment stands. Since the 
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compartment number was known for the "missing" stands and some cautions were used in 

the location of the units, it was expected that the errors resulting from the subsequent 

spatial analysis after including the stands will not be significant. 

The location of colonies and recruitment and replacement stands was made 

following a procedure similar to that of selection of suitable nesting habitat for RCW (see 

below). In each compartment, the stands where forest type was loblolly or shortleaf pine, 

the age was above 50 years, and stand condition was 10 or 12, were selected. When 

hardwood basal area was included in the records, it was considered as a criteria for final 

placement of colonies as well Stands with minimum values for total basal area and 

hardwood basal area were chosen. The values of 110 0'/ac (25. 3 m /ha) for total basal area 

and of 20 It /ac (4 6 m /ha) for hardwood basal area (Thomlinson 1993) were considered as 

maximum limits for the placement of these units. In the case of the active colonies these 

values were always respected. Six out of twenty nine replacement stands and one out of 

two recruitment stands had basal area above these values, Since many of the stands 

originally containing areas of these types had values above the values used as limits, the 

error introduced should not be very high. The location of replacement units was made 

considering also the location of existing colonies In the GIS the selection of stands for 

placement of these units was made according to the proximity of the possible stands when 

more than one existed; i. e. , the stands closer to the colonies were always chosen. 

Stands in one compartment also presented inclusions of colonies located in stands of 

other compartments. Inclusions were excluded when their area was below 5 acres, since 

their small size would bias the composition of the stands where the inclusions existed 



The RCW table created includes the following attributes 

- RAVSTANDII. the unique attribute that will be used to link the RCW table and 

the stands table, 

- ACCOL: active colonies, 

- INCOL inactive colonies, 

- RP: replacement stands, 

- RC. recruitment stands, 

- ACNT active natural cavity trees, 

- ACAT. active artificial cavity trees, 

- ACTO total active cavity trees, 

- INNT inactive natural cavity trees, 

- INAT inactive artificial cavity trees, and 

— INTO: total inactive cavity trees. 

The RCW table was created as a text file in Excel software, imported into the 

ArdInfo system, and joined to the stands table at the "Tables" prompt of Ardlnfo Using 

the "polygrid" command in Arc/Info, the final GIS coverage was converted from vector 

format into several raster format layers for some of the attributes described previously. The 

grid format is more suitable for the kind of analysis performed in this project The cell size 

of 328 x 328 11 (100 x100 m=1 ha) was chosen for the conversion. Smaller cell sizes were 

avoided because some information would be lost during the conversion and also because 

considerable additional time would be required during the analysis process In the GIS 
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coverage there are 44 stands with areas bellow 1 ha (2'/o of the total number of stands) and 

14 with area below 0 5 ha (0. 7 '/o of the total number of stands) 

RED-COCKADED WOODPECKER HABITAT SUITABILITY CLASSIFICATION 

In this step, the area of study was classified in terms of habitat suitability for the 

RCW using the concept of functional heterogeneity. The types of habitat required by the 

species - nesting, roosting, and foraging - were considered The areas resulting from this 

process were hierarchically preferred by the woodpeckers independent of their accessibility 

in spatial terms. Spatial availability of the preferred stands was assessed by the application 

of the functional heterogeneity indices to the cover that includes additional information 

about location and group size of RCW colonies. 

I followed a general assumption according to which foraging insufficiency does not 

affect RCW in the area of study (Rudolph and Conner 1994, Conner and Rudolph 1995, 

USDAFS, personal communication). The main implication of this assumption is that the 

distribution and spatial dynamics of the species is dependent only on the nesting and 

roosting habitat quality, habitat used by birds for movements, the location of sources for 

birds movements, and the distribution and configuration of these units. 

In the definition and classification of the RCW habitat I considered five different 

approaches. The necessity for the creation of five different approaches derives from the lack 

of data for timber variables in many of the stands in the database. The delineation of the 

conditions following five different approaches define the most likely characterizations of the 

forest pattern in the Raven District. The establishment of these approaches also simulate a 
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set of conditions where two types of fragmentation could be considered. Approach 1 

intends to establish the best possible scenario. Approaches 2 and 3 represent fragmentation 

in terms of decreases in just nesting and roosting habitat. The other type oF fragmentation, 

in terms of absolute loss of areas of roosting, nesting, and foraging habitat, is expressed by 

approaches 4 and 5. Approach 5 constitutes the worst-case scenario. Approaches 1, 2, and 

3 constitute a gradient of fragmentation of the first type. Approaches I, 4, and 5 constitute 

a gradient of the other type. An overall gradient of fragmentation can also be considered 

from I to 5. Analyzing these several situations, the effect of fragmentation on the 

population in the area of study can be considered. 

Approach 1 - Definition and classification of the red cockaded woodpecker habitat 

based on forest type, age, stand condition, and cavity trees assumed that the timber 

parameters, particularly basal area of hardwoods, can be managed in order to create suitable 

nesting and roosting habitat for RCW All habitat of pine forest above a certain age and 

following a certain growth pattern is suitable for RCW if hardwood control is applied to 

those areas. A summary of the criteria followed in this classification system is given in 

Appendix 9. 

The dependency of the species on already existing cavity trees has strong 

implications in terms of the definition of the suitable habitat for the species. A cluster of 

cavity trees, even if inactive, has a high value in terms of potential nesting habitat for the 

species (Walters 1991). For this reason, I considered the presence of active or inactive 

clusters within a stand as the most important component for the definition of habitat 

suitability A similar approach was used by Probst and Hayes (1987) when they defined 
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suitable habitat for Kirtland's Warblers as areas that had been used by the species for at 

least 3 years. 

Habitat suitability classification consisted of eight different classes ranging froin 0 to 

7. The stands where active or inactive clusters of trees are present were classified with the 

highest suitability habitat value: active clusters were assigned a value of 7; inactive clusters 

were assigned a value of 6 From the data available it was not possible to distinguish among 

inactive clusters abandoned for more or less than 2 years, so it was assumed that all of them 

could be colonized by RCW. Replacement and recruitment stands were considered to have 

suitable conditions for nesting and roosting habitat since they are managed for that purpose. 

These areas were classified as class 5 habitats. 

The next classes of habitat suitability were based on age of the stands given that the 

forest type was loblolly or shortleaf pine and stand condition was mature or immature 

sawtimber. Thomlinson (1993) found all active colonies in mature or immature sawtimber in 

54 compartments of the Raven District of the SHNF The data provide evidence of a similar 

conclusion for the entire district. The only colonies that did not follow this pattern occur in 

stands where inclusions of mature sawtimber are present The youngest stand with active 

colonies in the area studied by Thomlinson (1993) was 51 years old. In the data set of this 

project the minimum age of stands having active colonies was 54 years old I considered, 

however, the age of 60 years as the limit of suitability of pine stands for red cockaded 

woodpeckers since in the data set only two colonies were located in stands with ages below 

60 years Stands with ages ranging from 60 to 80 years were assigned the lowest value of 

suitability, and were classified with a value of 2; stands 80 to 100 years old were classified 
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with a value of 3, and stands with ages above 100 were classified with a suitability value of 

Finally, the stands not suitable for nesting and roosting but suitable for foraging 

habitat were include in the suitability classification. This habitat represents conditions 

favorable for movement of individual birds. It was assumed that RCW individuals prefer to 

move within pine forest stands. There is reluctance to cross open areas by the birds when 

they do not know what is on the other side of the open area (Conner and Rudolph 1995, 

USDAFS, personal communication). 

Occasionally, red-cockaded woodpeckers use hardwood stands and open areas but 

exhibit higher preference for live pine species (Ligon 1970; Nesbitt et al. 1987; DeLotelle et 

al. 1987; Hooper and Lennartz 1981; Conner et al. 1994b), where avoidance of pines less 

than 13 cm dbh and preference for pines greater than 23 cm dbh has been observed (Hooper 

and Lennartz 1981). In territories in central Florida, pine stands containing longleaf pine 

were young, ranging from 17 to 53 years (DeLotelle er al. 1987). This is the only reference 

to age of pines in territories of RCW other than to the age of actual clusters of cavity trees. 

Longleaf pine grows more slowly than the pine species present in the area of study, so for 

this reason this class of suitability was limited by the age of 17 years. The last class of 

habitat suitability was then defined by the stands of loblolly and shortleaf pine with ages 

above 16 years. 

Approach 2 - Definition and classification of the red cockaded woodpecker habitat 

was based on forest type, age, stand condition, cavity trees, and timber variables. Using the 
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data available for the stands concerning total basal area and hardwood basal area, 

restrictions were created relative to approach 1 (Appendix 10) 

The classification was based on the schema defined in approach 1, but basal area 

was now included as an additional criterion. Total basal area above 110 fi'/ac (25. 3 m'/ha) 

and hardwood basal area above 20 fl'/ac (4. 6 m'/ha) for forest stands in the Raven District 

of the Sam Houston National Forest appear to be restrictive in terms of habitat suitability 

(Thondinson 1993) All the areas missing data in the database (with total and hardwood 

basal area simultaneously equal to zero) were considered suitable for nesting and roosting 

habitat. The areas with total and hardwood basal area above the limiting values mentioned 

were considered as foraging habitat (suitability class 1). 

Approach 3 - Definition and classification of the red cockaded woodpecker habitat 

was based on forest type, age, stand condition, cavity trees, and timber variables. Stands 

missing data concerning timber variables (total and hardwood basal area simultaneously 

equal to zero) were considered as foraging habitat (suitability class 1). In the previous 

approach, the stands without basal area data were considered as nesting and roosting 

habitat. This classification system is explained in Appendix 11. 

Approach 4- This approach differs from the second approach by excluding those 

stands that do not match the timber variable conditions. All stands with total and hardwood 

basal area above 110 Il /ac (25 3 m'/ha) and 20 II'/ac (4. 6 m'/ha), respectively were not 

considered suitable for any activity of RCW (Appendix 12) 
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Approach 5 - This was the most restrictive approach followed. If a stand had no 

information concerning basal area it was excluded from the RCW habitat. Appendix 13 

describes the classification followed in this case. 

Maps of habitat suitability for the five cases described were created in raster format, 

using the existing raster layers of stand condition, forest type, age, active colonies, inactive 

colonies, total basal area, and hardwood basal area. These maps are the result of the 

application of queries in the 'docell' block in 'Grid' prompt of Arc/Info based on the layers 

mentioned above. 

COMBINATION OF HABITAT SUITABILITY AND RED-COCKADED 

WOODPECKER INFORMATION 

In this step additional information about the behavior of the red-cockaded 

woodpecker was incorporated into the previously created habitat suitability maps. Some 

information about the species was already included in the habitat maps because the 

existence of cavity trees was a main criteria in the suitability classification process. The 

additional RCW variable used was clan size 

The number of active cavity trees in each stand provided an indication of group size. 

I assume here that large groups had more potential for movement of birds, particularly 

fledgling females, than small groups. This assumption is in accordance with indications 

provided by the research conducted about bird movements (Lennartz and Harlow 1979, 

Conner and Rudolph 1989; Conner and Rudolph 1995, USDAFS, personal 

communication). 
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Three classes for group size were considered (Table I). The lowest class considered, 

class 0, included the colonies with 1 cavity tree. The potential for dispersal is the smallest 

for this class, Class I included colonies with two or three cavity trees. The last class, 2, 

included the colonies with four or more cavity trees. This class should have the highest 

potential for dispersaL 

Table I - Classes of RCW Group Size. 

Class Number of Cavity Trees 

2-3 

A raster layer was created to include the information concerning group size Final 

habitat/RCW maps were obtained by summing each of the five habitat suitability grid layers 

with the group size layer. In this way a classification system based on ten classes was 

obtained. Each functional heterogeneity class value is a function of the habitat conditions, 

location of RCW colonies, and potential for dispersal in each forest stand. A stand of class 

9, for example, represents the "best" habitat conditions and contains a RCW colony where 

the group size is maximum. The 5 final habitat/RCW grids will constitute the matrices to 

submit to the algorithms which calculate the functional heterogeneity indexes 
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THE FUNCTIONAL HETEROGENEITY INDICES 

Functional heterogeneity, defined by Kolasa and Rollo (1991) as the way an 

organism perceives and responds to its environment, can be a useful concept in defining 

connected landscape units because it integrates the landscape structure and the demographic 

processes of animals In order to evaluate the functional heterogeneity of the landscape of 

interest, I used the indices of functional heterogeneity created and adapted by Coulson et al. 

(1994). These indices are sensitive to different aspects of the landscape: Angular Moment 

of Inertia is sensitive to the dispersion of landscape elements; Connectivity is sensitive to 

connectedness of the landscape elements, and Spatial Interaction is sensitive to the 

fragmentation of the highest valued, or most important, landscape element (Coulson et al. 

1994). In addition to these indexes I used the Weighted Connectivity Index, which 

considers the value of the matrix cells in the determination of connectivity (Coulson er al. 

1994). The weighted connectivity index is necessary because the connectivity index is not 

able to distinguish between a situation of homogeneity of the input matrix due to 0 values 

and a homogeneity due to the highest values in the same matrix. 

Angular Moment of Inertia (AMI) 

This AMI index measures variation in the dispersion of matrix elements in relation to 

a centroid. This centroid is obtained for each matrix by weighing the coordinates i andy 

with the value of the corresponding cells (ar). The centroid is defined by the following 

equations. 
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Within each matrix, dispersion is measured by subtracting from the i and j 
coordinates of each element the Xo and Yo components of the centroid. The squared (j-Xo) 

and (i-Yo) distances are summed and multiplied by the value of the celL The value of the 

index is the result of the sum of these operations for all the cells in the matrix, A final factor 

considering all the a„values is later added. 

a„ 
AM = g ((( j — X. )'+ (i — Y. )')+a„) + 

Connectivity (H) 

The Connectivity index is based on the number of adjacent cells with the same value 

(runs) evaluated in columns, rows, and both diagonals. A given run has a value, S(i'), which 

is a function of its extent, L. It is calculated as follows 

S(, (L+ 1) 

2 

The total run values (I) in a matrix are calculated as the sum of all the runs for all 

the values in the matrix, where t is a particular value and n is the number of different values 

in the matrix. 

n 

T = QS(r) 
I 

The minimum T possible is obtained when a N x N matrix is absolutely 

heterogeneous, i. e. , all the runs have a value of I. 
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N' 
T min = 2(N' + — ) 22 

The maximum sum of run values will be obtained for a homogeneous N x N matrix 

where only one element value is found. The k value ranges from I to N 

Tmax = N'(N+ 1)+ 2(, ) — N 
gk(k+ I) (N ~ 1) 

The connectivity index (H) is calculated as the relative difference of the total run 

value of the matrix and the minimum possible total run value (T min) 

T — Tmin 

T max — T min 

This value is independent of the values of the cells that constitute the measured runs. 

Weighted Connectivity (WH) 

The weighted connectivity index was derived from H by weighting the run values 

with the value of the cell considered in the run. 

WH = gi(QS(r)) 

Spatial Interaction (S1) 

This index is based on Newton's Law of Attraction Between Masses, and it is 

sensitive to the fragmentation of the most valuable element type in the matrix. It is 

calculated based on the value of all the possible pairs of different values in the matrix (mq, 

m~), the distances between them (rn), and the maximum value in the matrix (t) It is 

calculated as fogows 
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THE APPLICATION OF THE FUNCTIONAL HETEROGENEITY INDICES 

These indices were calculated using a moving window function. In this function, the 

values of the functional heterogeneity indices are calculated for each cell in the matrix using 

the values of a constant number of cells, or submatrix, in the neighboring region of each 

cell. This submatrix used for the calculation of the value for each cell is determined by the 

window size. 

To determine the window size to use in this project, mean dispersal distances of 

RCW individuals were considered, and two window sizes were tested: 4. 1 x 4, 1 Km (41 x 

41 cells) and 2, 1 x 2 1 Km (21x 21 cells). The first distance represents the distances flown 

by fledgling females, the most important group in terms of dispersal movements among red- 

cockaded woodpeckers and the most important group in terms of maintenance of RCW 

populations. Since distances flown by RCW in the area of study were unknown, the flight 

distances measured by Walters er al. (1988) in North Carolina were used, where the mean 

dispersal distance of fledgling females was 4. 7 Km and the median was 3. 2 Km. The second 

distance, 2. 1 Km, includes the movements of adult females (mean=2. 1 Km, median=1. 3 

Km), also important for maintaining RCW populations Male dispersal distances were not 

completely considered in the chosen window size. The median flight distances by fledgling 

male birds in North Carolina was 4. 5 Km The 4 1 x 4. 1 Km window thus included an 
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important part, though not complete, portion of the males that disperse. The distance of 4. 1 

Km seemed to be a reasonable distance to use in this work since it included the majority of 

the movements of RCW individuals. The use of two window sizes met the objective of 

testing the behavior of the indices when the window size changed. 

The habitat/RCW grids were converted to ASCII files in Arc/Info and used as inputs 

for the calculation of the functional heterogeneity indices. FORTRAN programs written by 

Dr. Eugene Pulley (1995, Texas A&M University, personal communication) and first used 

in the study of the relationship between bark beetles and forest pattern (Coulson et al. 

1994) were adapted to the grid size and window sizes used in this project. These programs 

run in a UNIX environment, Due to the extension of the input matrices and the calculations 

included in the algorithms, the Sun Spare workstations were not able to run the programs in 

an acceptable period of time, when the 41 x 41 cell window size was used, one program 

took five days to run in a workstation The SGI Power Challenge super computer was used 

to run the remaining matrices. The programs generated ASCII files which were converted 

to Grid files in Arc/Info and visualized using that sofiware The new grids were smaller in 

size than the input matrices due to the loss of one half of the window size within the matrix 
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CHAPTER V 

RESULTS 

The present chapter includes some of the intermediate results of the successive steps 

followed in the methodology: habitat maps, habitat/RCW maps, and the final maps resulting 

from the application of the functional heterogeneity indices The large number of maps 

generated during the analysis process for the five approaches, four indices, and two window 

sizes upon which the work was based, and the impossibility of including all of them in this 

thesis, made necessary a selection of some of these maps. The maps shown here are the 

most representative of the overall results obtained For simplification and convenience of 

the presentation of the results, the area of study was divided in two regions. the 

southwestern and the northeastern regions. 

HABITAT SUITABILITY MAPS 

Figures 5 to 9 present the habitat suitability maps created following the criteria 

defined for the five approaches (see methodology). The areas of classes 5, 6, and 7 are 

constant over the five maps since they include colonies and replacement and recruitment 

stands. The variation in foraging habitat can be seen in maps for approaches 1, 4, and 5 

(Figures 5, 8, and 9). Variations in the loss of areas of any kind of habitat from approaches 

1 to 3 can be seen in Figures 5 to 7 Table 2 presents the areas occupied by each suitability 

class in the various maps 
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Figure 5 — Habitat Suitability Map for Approach 1. Raven District of the SHNF, 1995. 
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Figure 6 - Habitat Suitability Map for Approach 2. Raven District of the SHNF, 1995. 
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Figure 7 - Habitat Suitability Map for Approach 3. Raven District of the SHNF, 1995. 
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Figure 8 - Habitat Suitability Map for Approach 4. Raven District of the SHNF, 1995. 
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Figure 9 - Habitat Suitability Map for Approach 5. Raven District of the SHNF, 1995. 



Table 2 - Distribution of Area by Habitat Suitability Class and Approach Followed. 

Area Occupied (number of cells) 

Class Approach 1 Approach 2 Approach 3 Approach 4 Approach 5 

324142 324142 324142 327173 337509 

5270 8301 18637 5270 5270 

13253 10802 3428 10802 3428 

4155 3584 894 3584 894 

297 288 16 288 16 

2701 2701 2701 2701 2701 

349 349 349 349 349 

1313 1313 1313 1313 1313 

Note the reduction in area of habitat classes 2, 3, and 4 occurring from the first to 

the third approach and from the first to the fifih approaches, and a corresponding increment 

in foraging habitat (class 1) and not suitable habitat (class 0) The areas changing in class 

are not uniformly distributed over the study area. When the areas with no information are 

considered as foraging or nonsuitable habitat (approaches 3 and 5), there is a major 

concentration of the resulting classes (1 and 0) in the central and east portions of the 

southwestern region and overall in the northeastern region. 
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HABITAT/RCW MAPS 

No maps of this category are shown here since they do not illustrate substantial 

differences from the habitat maps, The only difference is the subdivision of the class 7 in the 

habitat maps into three classes: 7, 8, and 9 After the split of the 1313 cells representing 

active colonies into the three new classes, the area occupied by each one is 217 cells for the 

class 7, 617 cells for the class 8, and 479 for the class 9. 

FUNCTIONAL HETEROGENEITY INDICES MAPS 

21 x 21 Window Size 

Due to the large range in values contained in the outputs, and to the difficulty of 

distinction among different areas, classes for each index were created. The procedures 

followed are summarized in Table 3 The zero values are not considered as belonging to any 

class. I attempted to create the maximum number of classes that could reduce the diversity 

of values and at same time more easily distinguish among different portions of the area. 

Not all the 40 maps generated in this phase of the work are included in this 

document. The maps resulting from the application of the indices to approaches 1, 2, and 4 

are usually very similar and for that reason maps from approaches 2 and 4 will not be 

shown. The description of the output maps will be made in a sequential way, following the 

fragmentation gradient established from approaches 1 to 5 
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Table 3 - Ranges and Classification of the Outputs of the Functional Heterogeneity Indices; 

21 x 21 Window Size. 

Index Range of the Results No of 

Classes 

Interval 

Width 

Highest 

Class 

App. 1 App. 2 App. 3 App. 4 App. 5 

AM? 0-70 0-67 0-92 0-67 0-50 10 &45 

H 12-100 12-100 12-100 12-100 12-100 10 10 90-100 

0-44 0-38 0-77 0-37 0-26 &30 

SI 0-56 0-53 0-53 0-38 &30 

Angular Moment of Inertia (AM1) 

In the output relative to approach I (Figure 10), five main areas of the highest AM1 

classes can be observed within the southwestern region: one in the west (compartments 6, 

7, 8, 9, 10, 14, and 15), another in the east (compartments 42, 43, 50, 51, and 52), two in 

the north (compartments 18, 22, 23, 24, and 25 with some small portions in compartments 

19 and 20), and the last in the center (compartments 24 and 25 crossing compartments 17, 

21, and 34 in the southern direction) (for location of compartments see Figure 2). The 

northern and central areas differ &om the others by their polygonal and regular shape. The 

two other areas are round in shape and include typical concentric zones of increasing AMI 

class values. In the northeastern region of the district, different units can be visualized 

within which small areas of relatively high AMI values are observed. The four areas are 
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Figure 10 - AMI; Approach 1; 21 x 21 Window Size. Raven District of the SHNF, 1995. 
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located in compartments 59, 60, 61, and 62; the center of compartment 65; compartment 

56; and compartment 79. The results for approach 2 are similar to those in Figure 10. The 

third approach generated a different set of results (Figure 11). There is a decrease in the 

values of the central and northern portions in the southwestern region. In this same region, 

the eastern portion is separated from the rest by a narrow strip containing AMI class values 

of I and 2. In the northeastern region a shift in importance can be observed between the 

northern and eastern portions relative to the previous approaches. Approach 4 generated an 

output similar to the two first outputs. There is, however, a decrease in cells of class 7 and 

above and an increase in cells of classes 1 and 2. Approach 5 output (Figure 12) shows a 

higher abundance of cells of the lowest AMI values (classes 0, 1, 2, and 3). Two of the 

areas of highest values detected before are now isolated within the area of study 

(compartments 6, 7, 8, 9, 10, 14, and 15 and compartments 50, 51, and 43), though they 

maintain their characteristic shapes and most of their extension. Northern and central areas 

have, in this case, low AMI values and an opening (0 value area) appears in the center of 

this portion of the district. The northeastern region is now more isolated &om the 

southeastern region. Within this last area, smaller areas with medium AMI values are 

reduced and the spots of areas with higher values are more isolated among them. 

Connectivity (H) 

In the output resulting from approach I (Figure 13) the area is dominated by class 3 

cells. Large continuous areas of class 2 exist, however. The areas where absolute 

cormectivity is higher (equal or above 6) are located in the southwestern region: west 
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Figure 11 - AMI; Approach 3; 21 x 21 Window Size. Raven District of the SHNF, 1995. 
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Figure 12 - AMI; Approach 5; 21 x 21 Window Size. Raven District of the SHNF, 1995. 
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Figure 13 - H; Approach 1; 21 x 21 Window Size. Raven District of the SHNF, 1995, 



(junction of compartments 4, 16, 18), north (compartments 18 and 22), and northeast 

(compartments 48 and 46). Small areas of class 6 can be observed in compartment 29. The 

northeastern region presents areas with connectivity below 6 except for areas affected by 

the zero values outside of the study area. For the second approach, there are small 

differences in the results. The areas previously detected in the north are very reduced now, 

and the small area in compartment 29 disappeared. In the third situation (Figure 14), the 

southwestern region presents three large areas with values above 6. They are located in 

compartments 20 and 23, compartments 24, 25, and 26; and compartment 21 In the output 

for approach 4 the northeastern region exhibits areas separated from its core. Values inside 

the small areas are low The southwestern region shows a central area of class 8 

(compartment 34). The northern, western, and one of the northern areas of class 6 detected 

in previous approaches are maintained. A large area of class 10 is shown at the center of the 

southwestern region in the fifih approach (Figure 15). The western area increases in size. 

The eastern portion of the region is separated from the rest. In the northeastern region, very 

small and isolated areas can now be observed. They are high in value because of the edge 

effect in the calculation of the index values. 

Weighted Connectivity (8%) 

Within the area of study the dominant values in the output of approach 1 (Figure 16) 

belong to the lowest class considered (class 1). The northeastern region of the district 

presents smaU patches with low connectivity classes (2 and 3). In the southwestern region, 

four areas of higher connectivity can be observed. The western area (compartments 7, 9, 
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Figure 14 - H; Approach 3; 21 x 21 Window Size. Raven District of the SHNF, 1995. 
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Figure 15 - H; Approach 5; 21 x 21 Window Size. Raven District of the SHNF, 1995. 
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Figure 16- WH; Approach 1; 21 x 21 Window Size. Raven District of the SHNF, 1995. 
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and 15) and the eastern area (compartments 50, 51, and 53) do not reach the highest 

connectivity class. The highest values are observed in the northern area (compartments 18, 

19, 22, 23, 24, and 25). This area is connected to the central area (compartments 21, and 

34) by a class 2 area. The second approach results in an overall light reduction of class 2 

areas around the spots described previously. In the output of the third approach (Figure 17) 

the areas of class 1 are more abundant. Larger areas with the highest connectivity value 

(class 7) not observed before can now be detected in compartments 25, 49, and 23. In the 

results from approach 4, there is an increase of the areas with class 1 values. For the last 

output (Figure 18), the results show a matrix of class 1 cells, where "islands" of relatively 

high connectivity (up to 5) are found in compartment 50 and compartments 7, 9, and 10, 

The overall result is more fragmented. The northeastern region is divided into several small 

islands of weakly connected areas. The southwestern region presents an opening in the 

center and the eastern portion which is practically separated from the rest. 

Spatial Interaction (S1) 

In the output of approach 1 (Figure 19) areas with index class values equal or above 

5 can be found mainly in the southwestern region: north (compartments 22, 23, 24, 25, and 

small portions of 18 and 19), center (compartments 34 and small portions of 17, 21, 28, and 

37), west (compartments 7, 9, 10, and 15), east (compartments 50 and small portions of 49 

and 51), and northeast (compartment 54). The western area is the only one where the 

maximum class level, 7, is not reached. Differences of shapes, similar to those observed for 

the AMI outputs can be seen between the western and eastern areas and the northern and 
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Figure 17 - FH; Approach 3; 21 x 21 Window Size. Raven District of the SHNF, 1995. 
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Figure 18 - WH; Approach 5; 21 x 21 Window Size. Raven District of the SHNF, 1995. 
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Figure 19 - SI; Approach 1; 21 x 21 Window Size. Raven District of the SHNF, 1995. 
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central areas. In the northeastern part of the study area, only in a very reduced extension, 

the maximum value is reached. Zones with SI values equal to or above 5 can be found in the 

northern (compartment 62), northeastern (compartment 79) and western (compartment 65) 

areas of this region The output of the second approach is identical to the previous one The 

results of the third approach (Figure 20) show large areas of the higher class values found in 

the southwestern region (compartments 22, 23, 24, 25, and 32; compartments 7, 9, 10, and 

15; compartments 49 and 53) and in the northern and western areas of the northeastern 

region (62, 56, 57, and 65) The matrix is dominated by class 1 areas with islands of higher 

SI values in the zones mentioned. Small difFerences are found between the results of the 

fourth approach and the results of the first approach There is a slight reduction in class 2 

and class 3 cells, and the northern zone in the northeastern region lost the high class areas. 

The spot in compartments 56, 57 and 65 was also lost For the last approach (Figure 21), 

the results show the northeastern and southwestern regions completely independent, i e. , no 

interaction. Class 1 areas are still more dominant over all the area of study The only areas 

where it is now possible to locate zones of SI equal to or above 5 are in the southwestern 

region (compartments 6, 7, 8, 9, 10, 15, and 50). 

41 x 41 Window Size 

The classification system used for the 21 x 21 window size is kept except for the 

WH index The values obtained for this index reach a maximum of 23 in approach 3, and in 

the other cases never higher than 12. The same classes are used here to make comparisons 

between the results of both window sizes possible. All the functional heterogeneity indices, 



82 

L~J 
1 
2 

3 
4 
5 
6 
7 

Range 
0 
1-5 

6-10 
11-15 
16-20 
21-25 
26-30 
&30 Scale 1:325, 000 

Figure 20 - SI; Approach 3; 21 x 21 Window Size. Raven District of the SHNF, 1995. 
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Figure 21 - SI; Approach 5; 21 x 21 Window Size. Raven District of the SHNF, 1995. 



except for H due to the particular way it is calculated, produced more reduced ranges of 

values when the larger window size was used. Table 4 shows the ranges of the outputs. 

Table 4 - Ranges of the Outputs of the Functional Heterogeneity Indices; 41 x 41 Window 

Size. 

Index Range of the Results 

Approach 1 Approach 2 Approach 3 Approach 4 Approach 5 

0-37 0-37 0-40 0-37 0-37 

9-100 10-100 10-100 11-100 12-100 

0-12 0-11 0-23 0-11 0-9 

SI 0-22 0-21 0-43 0-21 0-18 

Angular Moment of Inertia (AMI) 

The maximum class value obtained in the output relative to approach 1 is 8 (Figure 

22). The areas with higher values in the southwestern region are located in the west 

(compartments 7, 9, and 10 with small portions in 6, 11, and 15), the east (compartments 

51 and small portions in 42, 43, 44, and 50), and the north (20 and 23). This last area differs 

Irom the previous by its regular shape and by the maximum value reached, 7. There is also a 

diagonal of class 4 in the center of this region. Class values 3 and 4 are dominant. The 

northeastern region presents the maximum value of 5 in very reduced spots. Two is the 

dominant value here. The second approach results in a reduction in the areas of highest 

class value, especially in the eastern area of the southwestern region where class 8 is no 
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Figure 22 - AMl; Approach 1; 41 x 41 Window Size. Raven District of the SHNF, 1995. 



longer present. Approach 3 (Figure 23) maintains the eastern and western areas of the 

southwest almost completely. A new area with high class value appears in the southwestern 

portion of the northeastern region in the upper part of compartment 57. The output of the 

fourth approach is very similar to that obtained by the second approach. The results of the 

last approach (Figure 24) reveal that in the overall study area just the eastern and western 

areas defined by the results of the first approach are maintained. The rest of the area now 

has class values of I, 2, and 3 

Connectivity (8) 

In the output of approach 1, class 2 represents the dominant connectivity in the 

interior of the area of study, where the effect of the outside zero values is no longer a 

factor. There is no differentiation of areas of high connectivity classes. The same happens 

relative to the second and third approaches. In this last, however, an area of class 5 

surrounded by an extensive area of class 4 can be observed in the northern part of the 

southwestern region. Approach 4 also results in an output identical to the previous 

approaches. Class 3 is now more extensive. In the results for the last approach there is a 

division of the study area into two independent regions. Within the southwestern region 

there is an evident separation of the eastern part and a hole appears in the center. Class 3 

values are the most important. 

Weighted Connectivity (WH) 

The maps relative to this index and window size are given in absolute values of the 
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Figure 23 - AMI; Approach 3; 41 x 41 Window Size. Raven District of the SHNF, 1995. 
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Figure 24 - AMI; Approach 5; 41 x 41 Window Size. Raven District of the SHNF, 1995. 
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index because of the reduced range in values of the results when the 41 x 41 window size 

was used. The areas presenting higher values in the output for the southwestern region 

resulting from the first approach (Figure 25) are in the west (compartments 6, 7, 9, and 10), 

the east (compartment 51) and the north (compartments 19, 22, and 23). The rest of the 

region is composed of cells with 2 and 3 values In the northeastern region the maximum 

value reached is 4. The second output shows a small decrease in cell values but is essentially 

the same as the previous one. The output of approach 3 (Figure 26) shows a more extensive 

area of high connectivity values in the northern area of the southwestern region. In the 

northeastern region an area with higher values (compartments 57 and 65) can now be seen. 

The results of the fourth approach are still very similar to I and 2. The last results, approach 

5 (Figure 27), present the area of study formed by isolated Iragments of the lowest value 

cells. Some areas with higher values can be observed as the intact western and eastern areas 

detected before in the southwestern region. 

Spatial Interaction (S1) 

The overall area is dominated by class I values in the results of approach I (Figure 

28). Two areas with class values up to 4 can, however, be observed. They are located in the 

east and west of the Southwestern region, in compartments 6, 7, 9, and 10, and in 

compartments 50 and 51, respectively. The second outputs are similar to the first. For 

approach 3 (Figure 29), an area of class 7 is observed in the northeast of the southwestern 

region in the compartment 25, and an area of class 4 is observed in the southwest of the 
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Figure 25 - WH; Approach 1; 41 x 41 Window Size. Raven District of the SHNF, 1995. 
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Figure 26 - WH; Approach 3; 41 x 41 Window Size. Raven District of the SHNF, 1995. 
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Figure 27 - WH; Approach 5; 41 x 41 Window Size. Raven District of the SHNF, 1995. 
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Figure 28 - SI; Approach 1; 41 x 41 Window Size. Raven District of the SHNF, 1995. 
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Figure 29 - SI; Approach 3; 41 x 41 Window Size. Raven District of the SHNF, 1995. 
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northeastern region in compartments 57 and 65. In the results of approach 5 (Figure 30) the 

western and eastern areas are smaller, have lower SI values, and are more isolated The 

remaining area is comprised of class 1 values. 
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CHAPTER VI 

DISCUSSION 

THE MEANING OF THE APPROACHES 

The complete conditions of the stands included in the area were not known at the 

beginning of the project. For this reason analysis of the actual landscape pattern and RCW- 

process relationship in the area of study was not possible. The conditions included in the 

five approaches define the most likely situation for the forest pattern in the Raven District. 

This procedure could have implications in terms of the abundance, density, dispersion, and 

configuration of different landscape elements and could result in different patterns of 

fragmentation expressed by isolation and connectivity. 

The Raven District already exhibits some degree of fragmentation, particularly in the 

northeastern region where forest stands are considerably separated from each other The 

establishment of the five approaches also simulated a set of conditions where 2 types of 

fragmentation could be examined One type was fragmentation in terms of a decrease in 

nesting and roosting habitat (approaches 2 and 3 where the areas not suitable for these 

activities were considered as foraging habitat) and the second type in terms of absolute loss 

of areas for roosting, nesting, and foraging habitat (approaches 4 and 5 where areas not 

suitable were simply excluded from the habitat). Approaches 1, 2, and 3 constitute a gradient 

of fragmentation of the first type, Approaches 1, 4 and 5 constitute a gradient of the second 

type. An overall gradient of fragmentation can also be considered from 1 to 5. 
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The first approach would constitute the best possible scenario for the area since all 

loblolly and shortleaf stands of mature or immature sawtimber older than 16 years were 

considered suitable. Approach 5 constitutes the worst possible scenario in that the 

abundance of suitable stands is much reduced I believe that approaches 2 and 3 best 

represent the true conditions existing in the study area, since the situations defined by 

approaches 4 and 5 are unlikely. If this assumption is true, the set of conditions defined by 

the third approach constitutes the worst possible actual scenario for the Raven District. By 

allowing the inclusion of the areas not suitable for nesting and roosting in at least suitability 

class 1 in the habitat maps, approaches 2 and 3 allow the maintenance of some conditions in 

the landscape for movement of birds. 

The sequence of the approaches 1, 4, and 5 primarily test a set of conditions that, 

although they don't currently exist, might occur in the future if disturbance factors are 

intensified. These conditions would occur if a strong disturbance like fire or hurricanes 

affected the area. 

The implications of the spatial pattern in terms of the RCW population maintenance 

were analyzed from these two points of view in this project Simulating the effects of 

fragmentation on this bird population is possible, independently of the conditions existing at 

this moment, to forecast how the population can be affected by the factors that presently 

configure the forest pattern. 
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THE MEANING OF THE INDICES 

Angular Moment of Inertia (AMI) 

The location of the centroid is a function of the values of the cells present in a 

matrix and their position A centroid will be placed closer to the most valuable and more 

abundant cells in a matrix, The presence of valuable cells in the matrix and distances of each 

cell to the centroid increase the AMI result. The abundance of a specific cell type will affect 

the position of the centroid and the result of the multiplication of the differences by the cell 

value. Two matrices with the same abundance of high valued cells have different AM/ 

values according to their distances relative to the centroid Zero values for the AMI index 

are obtained only when all the cells in a matrix have zero values. Higher values will occur 

where cells with higher values are abundant and are distant from the centroid. A matrix 

homogeneously composed of the highest values will present the highest AMI result. 

I was not able to distinguish between high AMI values which were due to abundance 

of high values in the matrix and those which were due to distances from the centroid. This 

dispersion of landscape elements occurs within a range defined by the size of the window 

used, and should not be understood as synonymous with isolation This dispersion would 

express potential connectivity conditions in a landscape since it would create a set of 

vertices of a hypothetical network. This network, however, would only work if intermediary 

suitable conditions exist between the points 

The cells with higher habitat/RCW values are those where active colonies are found. 

Active colonies actually define the 3 most important class values in the Habitat/RCW maps. 



100 

Using a 21 x 21 or 41 x 41 cell window, the cells with higher values are those where, 

considering the neighboring square area, active RCW colonies present a high density and 

the surrounding landscape has at least a reasonable suitability value. 

As mentioned before, the areas detected by this index imply a high potential for 

landscape connectivity within the spatial limits defined by the window size. Connectivity is 

not, however, dependent only on the abundance of suitable patches, though this is an 

important part of it Other indices will more appropriately assess this aspect. 

Connectivity (H) 

The values of this index depend on the T value for each matrix since the T min and 

T max are constant when the matrix size is constant. The maximum value for the index, 

100, occurs when the T value equals the T max. This happens when all the cells in the 

matrix have the same value. The minimum value for the index, 0, occurs when T equals T 

min. This happens when all the cells in a landscape have different values. Matrices 

composed of long vertical, horizontal, and diagonal runs of cells will result in large values of 

H Long runs in this way indicate connectivity in the element types present in the landscape 

independently of the element type 

The Connectivity index is probably the least useful index for achieving the objectives 

proposed in this project. This index behaves in a different way relative to the other indices 

used in this study. Since its calculation is based only on the runs of cells with the same 

value, independently of those values, the maximum values will be reached outside the area 

of study where the matrix is continuously filled by zero values. When the moving window 



starts operating with values from the study area, the index values start decreasing until the 

outside area is no longer included in the moving window calculations. Afler this point the 

index indicates only the connectivity within the area of study. 

Considering a sub-matrix size of 21 x 21 or 41 x 41 cells, a given value in the output 

grid will represent numerically the connectivity expressed by the extent of horizontally, 

vertically, and diagonally contiguous cell values within that range. There is little ecological 

meaning for the resulting value because it is unknown what cells constitute the runs, It is 

possible to obtain a "good" (high) value of connectivity in a landscape, even when that 

connectivity is based on landscape elements that are not favorable to the organism of 

interest. 

Weighted Connectivity (WHj 

This index detects the connectivity of the most valuable classes present in the matrix 

since the values of the elements that constitute the runs are used as a weighting factor of 

those runs The value of the WH is dependent on both the extent of the runs and the value 

of the cells that are contiguous in the vertical, the horizontal, and the diagonals of a matrix. 

Higher values result when long vertical, horizontal, and diagonal runs of high values are 

present. Lower values result from short runs of low value cells 

The window size used reflects the connectivity conditions existing within a certain 

limited area. The areas detected by the index wifl indicate the areas where there is 

continuous, high connectivity of the most valuable elements in the matrix. 
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Spatial interaction ($1) 

Zero values result from a matrix were all the elements are 0 In such a situation mq 

and mi will be zero and the index value is necessarily zero. Small values occur when there is 

high abundance of elements with low values in the matrix, these elements are not close 

together, and there is a high value present in the matrix High values for the SI index occur 

when there is high abundance of high values close to each other, and when the highest value 

is equal to mi or ms Considering that there is always a high value r in the matrix, the SI 

values depend on the values of the cells, mq and mi, and the distance between them 

A high value of the SI index indicates a high abundance of valuable cells within the 

matrix close together The areas where the most important stands are present (better habitat 

and higher group size) and where they are closer together should have higher values. 

THE MEANING OF THE WINDOW SIZE 

The 41 x 41 window size is indicative of the movement conditions for fledgling 

females and the majority of fledgling males. Fledgling females constitute the most important 

group in terms of dispersal movements among red-cockaded woodpecker groups and in 

terms of maintenance of RCW populations. This window creates a limited area within which 

the several indices are applied successively The results for each particular cell of the 

outputs will indicate the conditions existing within this range considering the landscape 

conditions and the RCW population conditions. The areas detected by the application of the 

indices are those where adult females would be able to find landscape conditions allowing 

movement from colony to colony. These conditions are measured by the indices used in this 
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project. The 21 x 21 window size represents mainly the movement conditions of adult 

females. The results of the indices can in this way indicate the areas that are more likely to 

be used by this group of birds in movements between colonies It might be considered also 

the distance used by fledgling females or males if a small group of colonies is surrounded by 

unfavorable habitat conditions. In such a situation the movements of the birds would be 

confined to a smaller area represented by this reduced window size. 

ANALYSIS OF THE RESULTS 

In this section several components of this study will be discussed. the window size, 

the gradient of fragmentation defined by the 5 approaches used, the 4 indices, and the 

relations between them. The actual landscape patternfRCW scenario that I believe exists in 

the Raven District of the Sam Houston National Forest likely is included between the 

conditions defined by approaches 2 and 3. For this reason, in this section I will analyze in 

particular the results relative to approaches 1 to 3. The other approaches will be analyzed in 

more detail for the considerations relative to &agmentation. 

The Areas Detected by the Indices 

Angular Moment of Inertia (AM1) 

For the 21 x 21 cell and 41 x 41 cells window sizes and the first three approaches 

(Figures 10, 11, 22, and 23), the AMI index detected higher class areas located in the west, 

in the east, and in the north of the southwestern region. A central area was also detected, 
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and more marked with the 21 x 21 window size. These areas correspond to areas of the 

input habitat/RCW matrices with different characteristics. The northern area is dominated 

by cells of the classes 2 (youngest suitable nesting and roosting habitat) and 3 (medium age 

nesting and roosting habitat), with many small areas of class 5 (recruitment and replacement 

stands) and a few small areas of class 6 (inactive colonies). The west area is dominated by 

habitat/RCW class 5 with some additional extensive areas with values 1(foraging habitat) 

and 2. There are, however, also many areas of classes 8 (colony with 2 or 3 cavity trees) 

and 9 (colony with 4 or more cavity trees) and class 6 areas as well. The east area presents 

a similar situation to the west area in terms of abundance and distribution of cells with the 

highest values (5, 6, 7, 8, and 9). A large central area of class 8 and another of class 5 are 

present in the east area. 

These 3 areas, although different in terms of matrix dominance, abundance, and 

I configuration of the several landscape element types, obtain similar AMI values. The 
4 

importance of the areas for RCW is quite different, however. The north area, although its 

AMI results are high, includes no active colonies. This means that even though this area has 

l 
1 

conditions comparable to other areas where woodpeckers exist, it is not used by RCW 

because there are no cavities present. Despite this fact, the AMl index indicated this area as 

an important area for the RCW. 

l 

Connectivity (II) 
I 

T 

The results of the application of this index with the 41 x 41 window size did not 

indicate particular areas of the region as distinct from the rest. The areas of high values in 
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the output &om the 21 x 21 window size (Figures 13 to 15) for this index are coincident 

with empty areas (holes of zero values) in the input matrix or with continuous areas of class 

1, 2, or3. 

Stands with colonies do not seem to influence the results of the application of the H 

index since the colonies, active or inactive, are located in areas of the lowest connectivity 

classes (2, 3, and 4). The reduced size of the stands compared to the window size is 

probably one reason this occurs. Another obvious factor is that the calculations don' t 

consider the values of the cells. This index might, however, eventually be useful in the 

definition of areas considered important for a particular group of birds and in the definition 

of absolute connectivity of a landscape for comparative purposes 

Weighted Connectivity (8%) 

Both 21 x 21 and 41 x 41 window sizes (Figures 16, 17, 25, and 26) indicate 

basically the same high value areas in the output grids despite the important differences in 

values obtained and the spatial dimensions and shapes of the highlighted areas for the two 

window sizes. There is, however, a quantitative difference in the input values. In the west 

and east areas the values in the Habitat/RCW matrix are quite elevated, mostly classes 5 and 

8. The east area is located over a large area of class 8. In the north region the same cannot 

be observed. In that area, cells of the classes 2 and 3 are dominant with many small areas of 

class 5. 
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Spatial Interaction (S1) 

The areas of the District generating the highest SI values (Figures 19, 20, 28, and 

29) are areas with difierent habitat conditions. For the first approach, the north areas are 

over an extensive class 2 area with some smaller areas of class 3 and 1. The east and west 

areas are the same as for other indices. In the northeastern region the area to the north is 

over a class 3 area with some class 4 and 5 areas, while the area to the west is mainly over 

habitat of class 3. For the 41 x 41 window size only the areas located to the east and west 

have high index values, and their extent and absolute value are more reduced than for the 

smaller window size. 

The Areas Indicated by the Overall Results 

There is a general tendency for the indices to identify the same areas of the 

landscape as those having the highest values, independently of the window size or the 

approach used in the analysis. The extent, the absolute values obtained, and the exact 

location of these areas change from approach to approach and between window sizes, but 

they are almost always located around the same group of compartments. These areas are 

located in the north, in the west, and in the east of the southwestern region, A central area 

of more reduced size is many times also detected in this region. The northeastern region is 

more difficult to describe since the areas of high values are not as constant. There are, 

however, areas in the west and north of this region which are detected especially in the third 

approach using the Angular Moment of Inertia, Weighted Connectivity, and Spatial 

Interaction Indices for both window sizes. 



107 

The conditions that generate the same high index values are quite different from area 

to area, as described before. Some examples of several conditions that produce high values 

for the different indices were given in the previous section The areas of high index values 

always have a reasonable abundance of groups of cells of at least class 5 located within 

larger areas of classes 1, 2, and 3 values Among the areas with higher AM/ values, the one 

presenting the least high values in the habitat/RCW input is the northern location where 

there is a relatively high abundance of class 5 cells This would indicate that high values for 

this index could be obtained when there is, within sub matrices of 21 x 21 or 41 x 41 cells, a 

density of suitable habitat at least equal to that observed in the northern part of the 

southwestern region. The Connectivity index indicates areas of high cefi conti~ity. These 

areas don't have any relationship to the presence of cells of the high habitat/RCW classes 

The Weighted Connectivity and Spatial Interaction indices seem to express the presence of 

high values of the input matrix but have some tendency to include areas of relatively high 

density of the most valuable input values. Using the 21 x 21 window size in the analysis, the 

areas detected by both indices seem quite similar When the window size is changed to 41 x 

41 cells, however, the northern area of the southwestern region loses relative importance 

for both indices. This last window size (41 x 41) seems in this way to be a better indicator 

of the presence and density of the most valuable landscape elements. 

Fragmentation 

Fragmentation in the terms defined previously indicates how RCW populations 

would change in response to loss of habitat (nesting and roosting habitat, or any kind of 
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habitat). It is expected that the areas that are able to "survive" the effects of fragmentation 

can also be indicated as those with the best chance for maintenance. This means that the 

areas that present high values for the indices considered would provide the most favorable 

conditions for the species in spite of the degree of fragmentation created (which was quite 

intense in the fi(lh approach) 

Fragmentation increases the abundance of the lowest values in the habitat/RCW 

input grids (1 or zero according to the type of fragmentation considered). This will 

considerably reduce the values obtained for the various indices, except Connectivity, since 

all these indices are sensitive to the presence of zero values in the input matrices 

The fragmentation considered in terms of shifting the habitat class of roosting and 

nesting habitat, as described by the sequence of outputs relative to approaches 1 to 3, does 

not seem to interfere considerably, in terms of spatial conditions, with the maintenance of 

the actual pattern of the RCW population distribution in the Raven District. The areas more 

important for the RCW in the less fragmented situation, approach 1, are generally 

maintained in the third approach. Actually, a decrease in nesting and roosting habitat should 

not affect the existing and occupied nesting and roosting habitat; the spatial conditions 

among these areas change categories but the conditions required for movement still exist in 

the foraging habitat Thus an increase in foraging areas would not reduce movement 

conditions for the landscape The northern area of the southwestern region loses some 

importance from approach 1 to 3 in terms of AMI for both window sizes, whereas other 

areas become more important The same doesn't occur for the other indices. Weighted 

Connectivity and Spatial Interaction indices generate even more extensive areas in the same 
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region. Spatial Interaction, based on the 41 x 41 window size, decreases the importance of 

the east area when this fragmentation increases 

Fragmentation in terms of absolute loss of habitat as incorporated in approaches 1, 

4, and 5 reveals that some modification would occur at the level of the landscape, but some 

of the areas detected in the approach I are still maintained. Actually, few changes in 

location of the areas with higher values for the indices were observed. The main change, for 

this gradient of fragmentation, was the loss of importance of the northern area in the 

southwestern region based on the fifth approach 

Other major changes observed are related to the overall area of study From the 

outputs relative to the sequence of approaches 1, 4, and 5, the following changes were 

evident. 

- isolation of the northeastern region of the district in relation to the southwestern 

region by areas containing no suitable conditions (indices values equal to zero); 

- isolation within the northeastern region; there was a fragmentation of the area into 

very small islands with values slightly above zero, 

- isolation within the southwestern region; the eastern region becomes separated 

from the rest of the region by a strip of zero values. A hole corresponding to an extensive 

area of zero values in the input grid, is observed in the center of the region. 

It seems that the western and eastern areas of the southwestern region are 

independent of the changes created by this fragmentation If the Raven District is subject to 

Iragmentation of RCW habitat following the pattern considered (approaches I, 4, and 5), 

the main nucleus of RCW populations would be maintained in the area. Active colonies 
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located outside the areas defined by the indices, however, will have a tendency to disappear 

since there are no conditions suitable for contact with other colonies. Inactive colonies 

located outside of these same high-value areas also will not be recolonized 

Differences Between Window Sizes 

Most of the areas mentioned before were detected using both window sizes Some 

differences, however, can be perceived between the outputs resulting from the use of the 

two window sizes. The magnitude of the output values is considerably lower for the 41 x 41 

window size except for the Connectivity Index, The most important revelation from the 

application of the 41 x 41 window size is the potential reduction in the relative importance 

of the areas located at the north of the southwestern region by the AMI, JYH, and SI indices. 

Other differences include the size and shape of the detected areas. in the 41 x 41 cell size 

analysis the areas were generally larger and more uniform. Because of this, the number of 

areas indicated by the indices based on this window size were fewer in number. 

The 41 x 41 window size is the most important in ecological terms because it 

encompasses movements of all the sex-age categories within a RCW population. The areas 

detected by the application of the indices deserve special attention in the analysis of the 

relationship between pattern and dispersal processes, and logically more emphasis will be 

given to the results obtained using this scale 

The areas detected by the AMI, WH, and SI indices for the five approaches have 

some points in common Given the uniformity of the results of the Connectivity index, it will 

be excluded from this discussion. The first point in common between results is that the 
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western and eastern areas of the southwest region have particular importance over the rest 

of the areas because of their predominance when any of the several approaches are used. 

The northern areas are especially detected by the Weighted Connectivity index for the 

approaches I to 3. This area is, however, also present in the results of the other two indices 

for at least one approach. In the northeastern region the northern and western portions, in 

spite of their reduced dimensions, also have some importance. 

From the reasons pointed out, it is possible to indicate the areas located in the west 

and east of the southwest region as those that possess the most important actual conditions 

for the species. Also, these conditions would be enough to maintain the present groups of 

colonies in case of increasing fragmentation as defined by the gradient ranging from 

approach I to approach 5. According to the values of the indices, these areas provide the 

best conditions in terms of presence of birds, presence of cavity trees, presence of nesting 

and roosting habitat, presence of foraging habitat, and density, connectivity, and interaction 

of the areas with these favorable characteristics. The northern area is also an important area 

when approaches I to 3 are used. It presents a relatively high abundance of suitable habitat 

areas, but it has no cavities and birds. Since the values obtained by the indices in that 

particular area are comparable to the values obtained for the other areas mentioned, this 

area seems able to support a group of active colonies. 

Another observation is that the groups of colonies mentioned (west, east, and north 

locations) are apparently isolated, with no contact between them. Since the window size 

does not include all the possible distances that birds can fly, this hypothesis is not strongly 

supported. Male birds fly longer distances and can maintain some links between the existing 
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groups of colonies They are not, however, as important as females are for the maintenance 

of populations, and females are not able in most cases to fly the distances needed for 

maintaining contact between groups of colonies in this region. 

The Metapopulation Theory as Related to the Raven District Red-cockaded 

Woodpecker Population 

The results suggest that the population of red-cockaded woodpeckers of the Raven 

District is not a population in the classical sense, but instead is a population composed of a 

set of sub-populations which are relatively or totally isolated from each other The 

metapopulation model thus might apply to the present population distribution To be 

considered as a metapopulation, a population must possess certain other characteristics. The 

first is the independence of the sub-populations' dynamics (Haila 1990 cit. in Simberloff 

1995). The second is specific extinction-recolonization dynamics followed by a 

metapopulation (Opdam 1991). Independence of sub-population dynamics is likely to occur 

in the Raven District since the nucleus of populations detected seem to be isolated from 

each other. The distances between them and the landscape conditions are not very favorable 

to dispersal movements between them, as expressed by the indices Extinction in RCW 

populations would occur in groups where there is not renewal of females in the colonies 

when breeding females disappear (Walters et al. 1988) Areas from the northeastern region 

where only inactive colonies exist are likely to be the result of such a process 

Recolonization occurs in colonies as a natural demographic process of abandonment 

and reoccupation of colonies (Doerr et al 1989, Walters er al. 1988; Walters 1991), but at 



the scale considered in this study there is no indication of such a process. It is difficult to 

consider extinction-recolonization dynamics in a species so dependent on cavity trees. It 

does not seem probable that woodpeckers can recolonize an area of available territory when 

cavity trees are absent. It is theoretically admissible to consider the existence of cavity trees 

in areas where woodpeckers have recently become extinct. It is difficult, however, to find 

extinction factors that could provoke a fast extinction of a population without a decrease in 

the habitat quality of the area. The factors that might be associated with extinction of local 

populations of woodpeckers (change of landscape conditions for dispersal movement, 

hardwood encroachment, intensive disturbance such as fire, bark beetles, or hurricanes) all 

create conditions unfavorable to the presence of RCW clans. Demographic stochasticity and 

predation would cause population extinction only if a population was stressed by any of the 

factors mentioned above and if the population was reduced in size. For all these reasons, 

natural recolonization by RCW is unlikely. This is, from my point of view, the condition that 

does not allow the classification of this RCW population in the Raven District as a 

metapopulation. 

Final Considerations 

All the indices detected basicaffy the same areas as more important than others 

according to the conditions they were measuring. The reasons for this result are unknown 

since the model was not validated It is possible, however, to speculate based on the results 

obtained. The areas detected by the indices are coincident with the major aggregations of 

active colonies. This does not occur in every case, but the major concentrations of active 



colonies are indicated by the indices The indices indicated also areas that have no colonies 

but do contain recruitment stands and suitable habitat conditions and thus present high final 

values. The fact that the same areas were detected by all the indices in several approaches 

can be explained by two hypotheses: (1) the areas detected contain simultaneously the 

conditions evaluated by the indices allowing the dispersal movements of the birds, and for 

that reason the birds occupy the best areas in terms of the conditions defined, or (2) the 

indication of these areas was only a consequence of the way the habitat and habitat/RCW 

inputs were established, or the way in which the indices were calculated, thus high values 

were assigned to particular areas Given the high coincidence of the areas detected by the 

indices and the areas of higher density of active colonies, it seems that the indices are an 

effective way to indicate the best set of conditions associated with both the woodpeckers 

and the forest pattern The areas of high index values that were obtained for areas without 

active colonies are indicative of the limits at which the indices can operate; i e. they are able 

to detect areas with favorable conditions for the species even when the species is not 

present. The northern area of the southwestern region is the primary example of that ability, 

and in fact this area is indicated with more strength than some areas containing active 

colonies. Concentrations of active colonies that were not detected by the indices are mainly 

located in the compartment 39, group of compartments I, 2, 3, and 4, compartments 13, 

31, 32, and 33, and compartments 67, 69, and 74. These groups are relatively small in 

number. The indices present medium-low values for these areas, but are very low when 

approach 5 is used. It is possible that the indices are not able to detect small and isolated 

groups like these, or, alternatively, these groups are located in areas of poor landscape 
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conditions for the species, or they are small in size and isolated from other groups of 

colonies by unsuitable habitat and might disappear in the next years 

Eventual Limitations of the Study 

The first subject of comment is the spatial and ecological unit of work followed in 

this study, the forest stand These areas were used as landscape elements with the meaning 

of the traditional ecotopes homogeneous units of the landscape mosaic. This homogeneity 

is, however, unlikely. From the comments made in the methodology chapter one can 

question the validity of the forest stands as homogeneous land units when so much 

heterogeneity is included. Variables such as age and timber variables are expressed by a 

single value, the mean, for an area that can be as large as 537 ha. It was found that a stand 

can include several conditions within its limits. It was detected, for example, that some 

stands present inclusions older than the overall stand conditions and not described by the 

mean value. Even if they were considered in the mean, the mean value would describe 

conditions that in fact do not exist in the stands This problem is extensive and a6'ects all the 

attributes used in the classification of the RCW habitat The solution to this problem would 

be the reevaluation of the Raven District, creating homogeneous areas and thereby reducing 

the variability of the variables describing the land units, Such a procedure was not viable for 

this study. 

Another problem related to the units is the variability in size that the stands 

represent. Since the stand and not an area around the exact location of the colonies was 

used in this study, it is possible that small stands with large RCW groups would be less 
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important based upon the calculated indices than large areas of a lower habitat/RCW class. I 

am not able, however, to quantify the magnitude of such an error in this project. The 

solution previously mentioned (i e. , reclassification of the land units) could have solved this 

problem in part, but additional corrections would also be necessary. The most logical 

approach would be the consideration of the geographic location of the colonies in the study 

area. Again, the investment in time that this procedure would require made it impossible to 

pursue. 

I employed the dispersal distances measured in North Carolina by Walters er al. 

(1988) for the establishment of the window sizes to apply in the Raven District. The habitat 

of the RCW population where these distances were evaluated is not necessarily similar to 

the habitat of the RCW population in the East Texas, Patch size, distances between suitable 

habitat areas, and configuration of the habitat are all conditions that can influence the 

distances flown by red-cockaded woodpeckers in an area. The population density and group 

size are population attributes that can also influence the dispersal distances 
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CHAPTER VII 

CONCLUSIONS 

Based on the results of the study developed for the Raven District of the Sam 

Houston National Forest, some conclusions can be presented. 

(1) The functional heterogeneity indices seem to be an effective way to detect areas 

of the forest most important for the maintenance of red-cockaded woodpecker 

populations. These areas are those presenting the best demographic, habitat, and 

landscape conditions for the species. 

(2) The Connectivity index is not a useful index for achieving the objectives 

proposed in this study since its results are not related to the distribution of the 

RCW colonies or the most valuable habitat conditions 

(3) Angular Moment of Inertia, Weighted Connectivity, and Spatial Interaction 

indices indicate the same areas of the Raven District as those which are more 

important For the birds given actual distribution, group size, habitat conditions, and 

landscape conditions. These areas are listed below. 

- the western and eastern areas of the southwestern region, which had the 

highest values for the AMI, WH, and SI for all the approaches and for both 

21 x 21 and 41 x 41 window sizes, and 

— the northern and central areas of the southwestern region, with high values 

for approaches 1 to 3 and for the 21 x 21 window size 



(4) Fragmentation of the kind expressed by approaches l to 3 does not seem to 

interfere considerably in the maintenance of spatial conditions within the areas 

detected as most important for the species. 

(5) Fragmentation of the kind expressed by approaches l, 4, and 5, seems to allow 

the maintenance of the main centers of RCW 
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CHAPTER VIII 

RECOMMENDATIONS FOR THE CONSERVATION OF THE RED-COCKADED 

WOODPECKER IN THE RAVEN DISTRICT 

Although this population cannot be considered a true metapopulation, some of the 

characteristics of the metapopulation model can be used to understand the population 

dynamics and, especially, to provide some recommendations for the conservation of the 

species in the area. The metapopulation model of Boorman and Levitt (1973 cit in 

Simberloff 1995) is based on a central, long-lived population which is responsible for the re- 

establishment by immigration of peripheral areas where extinction occurs The existing 

centers of red-cockaded woodpeckers presenting the most favorable conditions can be 

considered as sources for future expansion of the population towards currently vacant areas 

which provide conditions to support red-cockaded woodpeckers, such as the northern area 

of the southwestern region. 

RCW can not, however, colonize areas where cavity trees are absent. Given the 

successful results in the use of artificial cavities (Walters 1991; Walters er al 1992), it 

seems that the installation of these cavities could allow the creation of the missing 

conditions in the areas which have all the remaining habitat and landscape conditions, In this 

way, the expansion of the actual population centers to the remainder of the Raven District 

would be possible 
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Recolonization of the mentioned areas can be accomplished following two 

strategies, either independently or combined. One would be the creation of suitable 

conditions between the existing centers and the areas able to support active colonies. The 

other would be the reintroduction of pairs of birds directly in the new territories. The 

creation of intermediary areas of suitable conditions between the occupied and the 

unoccupied areas of the Raven District would include the continuation of the creation and 

maintenance of replacement and recruitment stands that the Forest Service currently uses 

for the conservation of the species. Additionally, these areas should contain artificial 

cavities. In this way a progressive reoccupation of territories can be carried out from the 

actual centers in the direction of the northern area This strategy would be responsible for 

the creation of an overall network, allowing movements and contacts between woodpeckers 

in colonies in different locations. 

The reintroduction of woodpeckers in the areas containing the best conditions for 

supporting red-cockaded woodpeckers is interesting because it would make the process of 

recolonization faster, creating new sources of birds in the center of the unoccupied 

territories. This process has already been used with success (Rudolph et al. 1992). These 

new centers of dispersal, in conjunction with the network of nesting and roosting habitat, 

would create the most efficient strategy for the conservation of the species in the Raven 

District. 

Particular groups of active colonies were not detected by the indices. The colonies 

located in the compartments 1, 2, 3, and 4 are isolated from the western area of the 

southwestern region by a large area of unsuitable habitat. These colonies are, however, 
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close to the northern areas. It is possible to connect this sub-population with the northern 

group after the recolonization of these areas by new groups of red-cockaded woodpeckers. 

The group located at compartment 39 seems isolated as well. In this case 

connections to the east or west areas are unlikely since this group is surrounded by large 

water surfaces except to the north. The expansion of this group in that direction seems to be 

the only option to its conservation, based on the actual forest pattern. 

The group of colonies located in compartments 13, 31, 32, and 33 seems to be 

relatively close to the western concentration of the southwestern region of the District, 

although it does not seem to be functionally connected to it. The linkage of this group to the 

groups in the west area could create conditions for its maintenance. 

The group of colonies located in compartments 67, 69, and 74, in the northeast 

region seems to be absolutely isolated from the rest of the population and is likely to 

become extinct very soon. The maintenance of active colonies in the northeastern region of 

the District seems more complicated due to the existing fragmentation in the area. The 

maintenance of this group should be analyzed in much more detail and at a larger scale, 

according to the debility of this sub-population. 
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APPENDIX I 

FOREST TYPES IN THE RAVEN DISTRICT 

Forest Type Area occupied (ha) Relative Area (%) 

Loblofly Pine 30920 79. 34 

Shortleaf Pine 4672 11. 99 

White Oak-Northern Red Oak-Hickory 

Sweet Gum-Nuttall Oak-Willow 

Loblolly Pine-Hardwood 

855 

752 

719 

2. 19 

1. 93 

1. 84 

Sugarberry-American Elm-Green Ash 572 1. 47 

Bottomland Hardwood- Yellow Pine 110 0. 28 

White Oak-Black Oak-Yellow Pine 79 0. 20 

Slash Pine 74 0. 19 

Laurel Oak-Willow Oak 62 0. 16 

Post Oak-Black Oak 53 0. 14 

Undrained flatwoods - Savannahs 50 0 13 

Sycamore-Pecan-Amencan Elm 29 0. 07 

Southern Red Oak-Yellow Pine 15 0. 04 

River Birch-Sycamore 0. 02 

White Oak 0, 01 

Total 38973 100 

' - Definitions follow the CISC database manual 
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APPENDIX 2 

LOBLOLLY AND SHORTLEAF PINE STANDS AREA DISTRIBUTION BY AGE 

CLASS 

Age Area Occupied (ha) Relattve Area (%) 

0-20 9269 26 0 

21-40 2699 7, 6 

4140 2225 6. 3 

61-80 16722 47. 0 

81-100 4333 12 2 

&100 344 10 

Total 35592 
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APPENDIX 3 

STAND CONDITION IN THE RAVEN DISTRICT 

Stand Condition Area Occupied (ha) Relative Area (%) 

Mature sawtimber 12799 32. 8 

Immature sawtimber 12583 32. 3 

Seedlings dt saplings adequately stocked 5404 13 9 

In regeneration 

Immature poletimber 

4633 

2713 

11. 9 

7. 0 

Low quality sawtimber 454 1. 2 

Sparse sawtimber 228 0. 6 

Low quality poletimber 

Non-stocked 

76 

56 

0. 2 

0. 1 

Sparse poletimber 17 0 04 

Seedlings dt saplings inadequately stocked 14 0. 04 

Total 38977 100 
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APPENDIX 4 

GIS COVERAGE 

Projection State Plane 

FIP S Zone: 4203 

Spheroid. Clarke 1866 

Datum' NAD27 

Units: Feet 

Xmin=3401899. 750 

Xmax=3600376. 0 

Ymin=285782. 219 

Ymax=475880. 719 
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APPENDIX 5 

ACTIVE COLONIES WITH STAND NUMBER NOT INCLUDED IN THE GIS 

COVERAGE 

Compartment Number 

Number After Placement 

Oriynal Stand Stand Number Total Basal Area 

(ft'/ac) 

Hardwood Basal 

Area 

(ft'/ac) 

15 17 96 

25 12 103 13 

52 106 

15 23 92 

15 22 89 

30 26 25 

32 33 94 

39 32 21 

39 50 94 12 

42 30 16 108 17 

50 15 

50 33 

51 25 107 

69 21 12 

72 23 25 93 13 
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APPENDIX 6 

INACTIVE COLONIES WITH STAND NUMBER NOT INCLUDED IN THE GIS 

COVERAGE 

Compartment Number Stand Number 

(Original ) 

Stand Number 

(Atter Placement) 

Total Basal Area 

(ft'/ac) 

Hardwood Basal 

(ft'/ac) 

35 18 110 

44 17 120 20 
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APPENDIX 7 

REPLACEMENT STANDS WITH STAND NUMBER NOT INCLUDED IN THE GIS 

COVERAGE 

Compartment Number Stand Number 

(Origtnal ) (A(ter Placement) ((t /ac) 

Stand Number Total Basal Area Hardwood Basal 

Area 

(0'/ac) 

15 16 124 16 

94 

19 94 

24 102 15 

24 102 15 

26 102 15 

47 114 15 

53 114 15 

15 92 

15 27 92 

27 12 

32 28 25 105 

32 35 

35 17 104 10 

35 10 82 

36 49 44 

36 39 19 82 

39 55 14 95 10 
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APPENDIX 7 

Continued 

Compartment Number Stand Number 

(On8tnal ) 

Stand Number 

(Atter Placement) 

Total Basal Area Hardwood Basal 

(tt'/ac) 

(ft'/ac) 

39 56 26 108 

40 122 20 

42 37 14 130 21 

43 25 103 

43 26 124 18 

50 25 22 

50 34 30 

51 27 109 

69 23 16 128 27 

72 31 21 106 

75 44 28 
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APPENDIX $ 

RECRUITMENT STANDS WITH STAND NUMBER NOT INCLUDED IN THE GIS 

COVERAGE 

Compartment Number Stand Number 

(Original ) 

Stand Number 

(Atter Placement) 

Total Basal Area Hardwood Basal 

((t'/ac) 

(tt /ac) 

12 25 14 

60 33 
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APPENDIX 9 

CRITERIA FOLLOWED 1N THE RCW HABITAT SUITABILITY CLASSIFICATION; 

APPROACH 1 

Class Forest Type Stand Condiuon Age Cavity Trees 

(years) 

other than loblolly or shortleaf other than mature or &17 no 

pine immature sawtimber 

loblolly or shortleaf pine any 17-59 no 

loblolly or shortleaf pine mature or immature 60-79 no 

sawti mba r 

loblolly or shortleaf pine mature or immature 80-99 no 

sawtimber 

loblolly or shortleaf pine mature or immature & 100 no 

sawtimber 

loblolly or shortleaf pine mature or immature & 50 no 

sawtimber 

inacnve 

active 
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APPENDIX 10 

CRITERIA FOLLOWED IN THE RCW HABITAT SUITABILITY CLASSIFICATION; 

APPROACH 2 

Class Forest Type Stand Condition Stand Age Cavity 

Trees 

Total Basal 

Area 

Hardwood 

Basal Area 

(ft'/ac) (lt'/ac) 

other than 

loblolly or 

shortleaf pine 

other than mature or 

immature sawtimber 

& 17 no 

loblolly or 

shortleaf pine 

any 17-59 

e 60 

no 

no 

any 

&110 &20 

loblolly or 

shortleaf pine 

loblolly or 

shortleaf pine 

loblolly or 

shortleaf pine 

loblolly or 

shortleaf pine 

loblolly or 

shortleaf pine 

loblolly or 

shortleafpine 

mature or immature 

sawn mber 

mature or immature 

sawtimber 

mature or immature 

sawnmber 

mature or immature 

sawtimber 

mature or immature 

sawtimber 

mature or immature 

sawtimber 

60-79 

80-99 

& 100 

&50 

no 

no 

no 

no 

inactive 

active 

& 110 

& 110 

& 110 

& 20 

& 20 

& 20 
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APPENDIX 11 

CRITERIA FOLLOWED IN THE RCW HABITAT SUITABILITY CLASSIFICATION; 

APPROACH 3 

Class Forest Type Stand Condinon Stand Age Cavity 

Trees 

Total Basal Hardwood 

Basal Area 

(lt /ac) (11'/ac) 

other than 

loblolly or 

shortleaf pine 

loblolly or 

shortleaf pine 

loblolly or 

shortleaf pine 

loblolly or 

shortleaf pine 

loblolly or 

shortleaf pine 

loblolly or 

shortleafpine 

loblolly or 

shortleaf pine 

loblolly or 

shortleaf pine 

other than mature 

or immature 

sawtimber 

any 

mature or immature 

sawtimber 

mature or immature 

sawtimber 

mature or immature 

sawhmber 

mature or immature 

sawtimber 

mature or immature 

sawtimber 

mature or immature 

sawtimber 

& 17 

17-59 

& 60 

60-79 

80-99 

'a 100 

&50 

no 

no 

no 

no 

no 

no 

no 

inactive 

active 

any 

any 

& or&110 

0-109 

0-109 

0-109 

any 

=0 or &20 

0-19 

0-19 

0-19 
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APPENDIX 12 

CRITERIA FOLLOWED IN THE RCW HABITAT SUITABILITY CLASSIFICATION; 

APPROACH 4 

Class Forest Type Stand Condition Stand Age Cavity Total 

(fl'/ac) 

Trees Basal Area 

Hardwood 

Basal Area 

(ft'/ac) 

other than 

loblogy or 

shortleaf pine 

loblolly or 

shortleafpine 

loblogy or 

shortleaf pme 

other than mature or 

immature sawtimber 

any 

mature or immature 

sawtimber 

& 17 

17-59 

60-79 

no 

no 

no & 110 & 20 

loblolly or 

shortleafpine 

mature or immature 

sawtimber 

80-99 no & 110 & 20 

loblolly or 

shortleaf pine 

mature or immature 

sawtimber 

& 100 no & 110 & 20 

loblolly or 

shortleafpine 

loblolly or 

shortleaf pine 

loblolly or 

shortleaf pine 

mature or immature 

sawtimber 

mature or immature 

sawtimber 

mature or immature 

sawn mber 

&50 no 

inactive 

active 
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APPENDIX 13 

CRITERIA FOLLOWED IN THE RCW HABITAT SUITABILITY CLASSIFICATION; 

APPROACH 5 

Class Forest Type Stand Condhtion Stand Age Cavtty Total Basal 

Trees 

Hardwood 

Basal Area 

(ft'/ac) (ft'/ac) 

other than 

loblolly or 

shordeaf pine 

other than mature or 

immature sawttmber 

& 17 no any 

loblolly or 

shortleaf pine 

loblolly or 

shortleaf prne 

any 

mature or immature 

sawtimber 

17-59 

60-79 

no 

no 

any 

1-109 

any 

1-19 

loblolly or 

shortleaf pine 

mature or immature 

sawtimber 

80-99 no 1-109 1-19 

loblolly or 

shortleaf pine 

mature or immature 

sawtimber 

& 100 no 1-109 1-19 

loblolly or 

shortleaf pine 

loblolly or 

shortleaf pine 

mature or immature 

sawtrmber 

mature or immature 

sawtimber 

&50 no 

inactive 

loblolly or 

shortleafpine 

mature or immature 

sawtimber 

active 
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