A GRAPHICAL INTERFACE FOR THE

INTEGRATION OF ALGORITHM ANIMATIONS

A Thesis
by

CHRISTOPHER JAMES RODA

Submitted to the Office of Giaduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the degice of

MASTER OF SCIENCLE

December 1992

Major Subject: Clomputer Scienee

A GRAPHICAL INTERFACE FOR THE

INTEGRATION OF ALGORITHM ANIMATIONS

A Thesis
by

CHRISTOPHER JAMES RODA

Approved as to style and content by:

47/,W/\ Bt Nt

James Abello Paul Nelson
(Chair of Committee) (Member)
. ~ . |
;oA
A, Sedad 2
Thomas Linehan Richard Volz ~
(Member) (Head of Department)

December 1992

ABSTRACT

A Graphical Interface for the
Integration of Algorithm Animations. (December 1992)
Christopher James Roda. B.S., The Ohio State Universitv

Chair of Advisory Committee: Dr. James Abello

Recently, the computer science community has seen the emeigence of several algorithm
animation systems created to help in the understanding of algmithmic principles and tech-
niques. Examples of such systems are AGE. Balsa and Tango. With time. algoiithms have
become more and more complex. They tend to be quite interelated and their implementa-
tions may be distributed over multiple machines. Under these circumstances, a need has
arisen for an easy to use interface tlat allows the user to express and control different levels
of algorithmic interactions.

This thesis proposes a graphical interface that facilitates the ntegration of previously
defined algorithm animations and other animation independent applications. Since morl-
ularity has been regarded as an essential design principle, each of the basic objects the
interface manages has been categorized associated with a set of well defined operations.

From the user’s point of view, our graphical interface behaves as a graph editor whose
vertices correspond to previously defined applications and the edges cotespond to the flow
and progression of data among them.

From the internal perspective, five entities compose a three layered communication.

The first layer consists of a User Event Handler. an Object Table. and several Interface
Communication mechanisms. These entities form a triangle comprising the foundation of
the interface. The middle layer consists of several Communication Agents which receive
instructions from the foundation. manipulate child application processes and transmit data
amongst each other. Finally, several I/O Masters converse with application processes.
Communication Agents and the foundation and act as the inks hetween different animation
environments and the interface.

A prototype for this interface has been created on UNIX with the X Window environ-
ment using the OSF/Motif toolkit. The source code was developed using the C++ language.
and Sun Sparc Stations were used.

One of the main contributions of this work is the interface methodology. It enables
user events to interactively manipulate and monitor the communication among pirevionsly
defined processes. This is achieved with the assistance of a specialized database and 4
process communication tool.

We believe this effort provides a useful set of principles which can be used to guide the
design of interfaces whose main function 15 to provide a link between different algonthm

animation systems and other applications.

ACKNOWLEDGMENTS

This thesis is the result of many long hours of work spent by many people and I would
like to thank all those who helped and those who I have failed to mention. Thanks! T
couldn’t have done it without your help.

I would especially like to thank Dr. James Abello for his encouragement and many
late night hours spent for this effort. Likewise, I would like to thank my other committee
members Dr. Paul Nelson and Dr. Thomas Linehan for their consistent patience and
support.

Special thanks goes to the UNIX gurus Craig Smith. Jeff Wallet and Ron Thertault
whose expertise helped me through the most difficult Unix puzzles Likewise, appreciation
goes to Andy Dennis for insight on the delicate natme of bitmaps. A special thanks goes
to Tim Veatch for his help with AGE and all the AGE client creators: Lucero Torres. Don
Sonom, Craig Smith, Beata Bloch, and Matt Kernek. for their valuable contributions.

I also thank Dr. Abello, Craig Smith and Shawn Cailow whose reviews of preliminary
versions of this document greatly improved its content and 1eadabihtv.

Finally, I am very grateful to my parents and the gang. Gieg Schmidt. Andy Dennis
and Shawn Carlow for their seemingly endless moral support and especially Ha Nguyen who

provided the strength, love and light to carry me through mv darkest hours.

TABLE OF CONTENTS

Page

ABSTRACT . . oottt e e e e iii

ACKNOWLEDGMENTS N 4

TABLE OF CONTENTSttt ittt e vi

LISTOFFIGURES B P L.

LISTOFTABLES i o X1
CHAPTER

1 INTRODUCTIONt e s 1

LA Motivation 1

LB Approach S 2

1.C Implementation L R O

1D Related Work. S . R T

LE Thesis Outline T 9

I INTERFACE EXTERNAL VIEW 10

ILA Interface AcCess i i ittt 11

ILB Sample Session, 11

I.C Administrative View e e 16

I INTERNAL DESCRIPTION o 20

TABLE OF CONTENTS (CONTINUED)

CHAPTER PAGE
IILA Global Interface View 20
1ILB Levels of Interface Communication 22
II1.C The First Level of Interface Communication 24
II1.D The Second Level of Interface Communication 34
II1L.E The Third Level of Interface Communication 41

IV. CONCLUSIONot 44
IVAResults 44
IV.B Future Enhancements 19

REFERENCES e i 53

APPENDIX

A USERMANUAL. e 54
AA Interface Access Lo 54
AB External View 54
ACMenuBar................... 56
A.D Animation Display Area T
AE Control, 37
AF Canvas L. 68
AGErorBox e 72

B APPLICATION REGISTRATION

CHAPTER

TABLE OF CONTENTS (CONTINUED)

Vil

PAGE

B.A Needed Information 73
B.B Catalogs O T4
BC Header Filest ™
B.D Application Registration 81
B.E Application Input N2
B.F Application Qutput . e N3
B.G Application Self Loops N
1/0 MASTER CREATION 85
C.A Command Router . . N
C.B Environment Liaison Ny
C.C' Output Dispatch N
GLOSSARY 81
.............. 91

LIST OF FIGURES

FIGURE Page
1 A Simple Animation Digraph i
2 A More Sophisticated Animation Digraph 5
3 Interface Appearance Upon Invocation 10
4 Interface with AGE Animation Digraph 12
5 A Sample AGE Animation Digraph P L 14
6 Catalog Loading Menu, 18
7 Query Box o e 19
8 Global Interface View, ..., 20
9 AGEInterface View e 21
10 Interface With AGE Animation Digraph 2
11 The Three Levels of Interface Communication 23
12 The First Level of Interface Communication23
13 Internal Interface Message Flow PO 2
14 Interface Status Manager, 20
15 Object Table Entry Information Flow 30
16 The Second Level of Interface Communication 34
17 UCABulletin Board 37
18 Multiple Process Interaction 38
19 File Input and File Qutput 10

20 The Third Level of Interface Communication

LIST OF FIGURES (CONTINUED)

FIGURE PAGE
21 Interface Appearance Upon Invocation 55
22 MenuBar.......... e e 56
23 Unix AccessMenu 36
24 Interface Information Menu 57
25 The Control Subwindow, 5%
26 The Agents Submenu T 39
27 The Sysload Popup Window P P ()
28 Query BOX e 61
29 FileI/OSubmenu 63
30 FileLoad Window 64
31 Interface Status Manager, 67
32 Animation Digraph Icon Menu |
33 Catalog Loading Menu T
34 Sample Graph 79

35 Query Box e 82

LIST OF TABLES

TABLE Page
1 Icon Color Status 69
I Format String Decomposition R
I Major Functions of CommandInterpreter.c 86
v Major Functions of AGELiaison.c 87

v Major Functions of OutputDispatch.c, 88

CHAPTER 1

INTRODUCTION

I.LA Motivation

Recently, the computer science community has seen the emergence of several algorithm
animation systems created to help in the understanding of algorithmic principles and tech-
niques. Systems such as AGE created by Abello. Sudaisky. Veatch and Waller [1}, Tango by
Stasko[10] and Balsa ITby Brown [3] have contributed significantly not only to the teaching
environment but also to the research community As these systems Liave become more avail-
able, a large number of algorithm animations have appeared With time. algoitluns have
become more and more complex and they tend to be extiemely inteielated and possibly dis-
tributed over multiple machines. With this in mind. « powerful but simple to usc yraphical
interface 1s needed lo ezpress and control different levels of algorithmae wnteractions.

To understand the duties of such an interface. it is important to ash the following

questions:

1. How can this interface be designed to maximize ease of use?

2. What can the interface provide for fast creation of algorithu animations?

3. If there is to be communication of data. where 1s the data commg from and where 15

it going to?

Answers to the previous questions define the desied intetface behavior and this in turn

Journal model is IEEE Transactions on Computers

Answers to the previous questions define the desired interface behavior and this in turn
determines the objects that such an inteiface must manipulate.

The design of the interface reflects these duties in its implementation. A novice user is
able to operate the interface and its available tools with little or no training. To achieve
this, the interface is self defined with informational labels, help windows and easy to follow
instructions to help the user integrate previously defined algorithm animations. While the
interface is structured to guide the user along each step of an interactive session, skilled
users are not hindered by the aids.

The effectiveness of the interface is judged on how “quicklv™ it operates. This is a
challenging factor since the interface would most probablv interact with a local network
and the operational time is thus controlled by the netwoirk environment. In consideration
of this fact, the interface needs to be designed to minimize the waiting time for any network
operation. Operations that force the usets to wait mote than a few seconds diminish the

effectiveness of the interface.

I.LB Approach

Our method, to provide some answers to the challenge posed by the task of designing
a user friendly interface to integrate algorithm animations. is to classify the basic objects
that have to be dealt with. Each object has a set of well defined operations associated
with it. The objects are categorized to algorithm awmation enviionments. algonthm
animations created to execute under those environments {clients). and otler environment
independent applications. Examples of the latter include applications needed for input,

output and visual display. Communicated data may come from a keyhoard. an input file. a

visual display device, an algorithm chent or other application. The destination of the data
may be to output files, other animation clients. applications. visual displays or to hard copy
devices.

QOur approach is to represent a typical interface input as a directed praph, called lere-
after an interface animation digraph, or simply an animation digraph [1]. An animation
digraph is composed of vertices and edges. Each vertex has an (animated) iconic visual rep-
resentation and has an associated set of specified internal processes. The edges connecting
the icons correspond to directional flows of data from one process to another and 1epresent
the schematic order of sequential execution. The arrous on the edges indicate the direction
in which data flows along the paths.

The main task of the interface consists of interpreting an mput animation digraph.
activating the processes associated with each icon. and providing the necessary structures
to guarantee the assigned task is to be completed successfullv or to he aborted gracefully in
case of abnormal conditions. Upon execution. the interface parses the animation digraph.
identifies its associated objects, prepares a communication digraph for those objects. invokes
the corresponding processes and places them in an execution waiting state.

The interface behaves both in a batch and on-line manner The user. with the help of
the graphical interface, is able to compose an animation digraph using previously defined
objects. The interface creates an interprocess commuuication mechanism in such a way that
an animation digraph can be added to, subtracted fiom. or its execution can be started and
stopped at any particular time. In summaiy. the user has the abihity to interact with an
animation digraph, controlling its execution. termunation and configuration.

The user may select any icon as the initial vertex within the animation digraph. Ex-

skank skank.

Fig. 1. A Simple Animation Digraph

ecution starts at some internally selected icon’s process. Once this process terminates or
transmits data, control is transferred to the set of selected processes associated with the
neighboring icons. If data is passed, the information is deliveied to the set of selected icons.
Execution continues as long as there is a control or data path to be followed. The user mav.
however, terminate execution at any time. When the animation digraph fimshes, the usei
may work with a different animation digraph or leave the interface.

A simple scenario demonstrating the basic function of the interface 1s shown i Figure L.
In this scenario, four icons. “skank”, are connected in a 1ing fashion and a fifth oue, "Dude”
is connected to only one of the first four. Each of the four icons 1epiesents a process that
inputs an integer value. computes some integer function of the given value, and outpnts
the obtained result. The purpose of the fifth process is to start the animation digraph by

supplying the first process with an initial value. Upon receiving the animation digraph,

e~ o

AGE

B

{onnectivity Biconnectivity Planarity

Fig. 2. A More Sophisticated Animation Digraph

the interface parses it, identifies the executable processes and constructs a communication
network that will service the digraph. The user begins execution by selecting the fifth
process. The fifth process sends a value to the first one which then computes an mteget
function of it and sends the result to the second process. This in turn sends its result 1o
the third process and so on until progression reaches the first. The first receives the data
value and continues with the loop. The loop eveles until the user teiminates execution. All
information passing and the sequencing of executing processes is handled by the mterface
A more pertinent example of the tool’s capahility 1s demonstrated in Figure 2. In this
scenario, a chain of processes (Connectivity. Biconnectivity and Planarity [5]) is linked
to pass information which is displayed by an algorthmic atimation environment. Iu this
example the environment is AGE [1] AGE is a software environment for creatimg and
interacting with visual displays of giaph-theoretical concepts. Each AGE animation 1~

considered an AGE client. In this case. the end user must supply an AGE graph to be used

with the Connectivity client. The Connectivity client finds the connected components of
the AGE graph and passes them to the Biconnectivity client which finds the biconnected
components. Biconnected components are passed to the Planarity client which tests each of
them for planarity. When each of these clients takes control, its corresponding AGE results

is displayed in the AGE window.

I.C Implementation

The prototype for this interface is created above Unix 7! on the X Window System? /2,
Unix was chosen because it provides a reasonahly portable enviionment such that software
can be integrated from one environment to another with onlv modest modifications[12].
Other operating systems may be capable of performing smular tasks as Unix but speafic
Unix functions are invoked by our current interface implementation. The X Window System
is comprised of the X protocol, which interprets data streams from applications, and the
X display server which performs the tasks requested by X clients. written using Xlib '
routines [2]. The X Window System is intended to he portable like Unix thus promotmg
its use in a heterogeneous network of machines.

The interface was constructed using the OSF/Motif Toolkit T3 which is layered on top
of the X Windows platform. Motif is a very popnlar and well known interface toolkit which
helps create easy to identify interface objects and tools. The large Motif object libraiy
was instrumental to the creation of some of the more sophisticated tools and objects of the

interface.

1UNIX is a registered trademark of AT & T.

2The X Window System is a registered trademark of the Massachussetts Institute of
Technology.

3Motif is a trademark of the Open Software Foundation.

Through this work, it became clear that object ortented techniques are the logical choice
to express the relationships among the different objects this interface manipulates. Thus
C++ was the natural selection of language. The object oriented nature of the Motif Toolkit
blended in naturally with the C++ classes of the interface. The mterface was implemented
on Sun SPARC Stations”M%. If the interface 15 desired to execute on other platforms.
the code will need to be re-compiled. The conditions for re-compilation include the Unix

platform, and the X Windows and Motif libraries.

LD Related Work

The main objective of this work is to provide an interface that helps the user to in-
tegrate previously created algonthm animations and animation independent applications
easily. An effective demonstration on algorithm amimation creation 1s provided by AGE
developed by Abello, Sudarsky, Veatch and Waller [1] and John Stasko’s Tango Algorithm
animation systems [10]. Algorithm animations are broken into three components: the al-
gorithm component, the animation component. and the mapping component. By creating
an editor for each of these components. one 15 able to create ammations in a reasonable
manner. A similar conceptual approach is raken bv Sudarskv {11]. She provides a librarv
of algorithmic animation primitives to help users program algorithim animations quickly
and easily. Both AGE and Tango are influenced by a similar system called Balsa IT by
Brown[3]. Balsa II, one of the first systems to illustrate algorithms. provides a dynamic.
interactive environment that helps to display a wide range of algorithms and data structures
for animation.

From the user’s point of view, a graphical interface as we present it in the followin
P grap. 1 B

4SPARC Station is a registered trademark of Sun Miciosvstems. Inc.

section behaves as a graph editor, where the vertices correspond to previously defined
applications and the edges correspond to the flow and progression of data among them.
Several questions concerning graph editors are addressed by the EDGE system created by
Paulisch and Tichy [9]. Some of the issues tackled aie automatic graph layouts. graph
abstractions, adaptability and persistence of graphs.

Modularity is regarded as an essential design principle for graphical software packages.
Thus, several graphical interface creation tools have been examined for gmdance. The Gar-
net system, created at Carnegie Mellon, manipulates high and low level interface tools [7].
The important low level tools consist of a prototype-mstance object oriented programming
system, a constraint system, a graphical object system and an input handlng system. Other
efficient interface design tools are Interviews created by Linton. Vlissedes and Calder [6} and
Forms created by Marc Overmars [8].

A good example of how an interface. like the one we are to propose. is to look and feel 1s
the Ezplorer environment created by Silicon Graphics [4]. The interface tools provided are
a distributed execution map, a map editor, a module o1 process librarian, and a datascribe
where the user can control the format of each modnle’s input and ontput.

One of the main algorithm animation tools worked with is the AGL environment {1].
AGE is an effective distributed animated graph environment. It 1s process oriented and built
of multiple processes {14]. It makes effective use of interprocess communication. The work
done by Sudarsky [11] provides a set of algonthmic primitives that can be used as building
blocks for larger animations and algorithms. Any mteiface that integiates and contiols such
algorithmic networks must lie conceptnally somewhere in between the algorithmic primitives

and the animation system.

The entire development of AGE and this proposed interface has been done m the Lab-
oratory for Algorithms Design{LAD) in the Computer Science Depaitment of Texas A&M
University. AGE is currently being used as an instructional tool for several graduate and
undergraduate classes. Amongst being part of the research bemng done at the LAD. AGE

acted as the testbed for this interface development.

LE Thesis Outline

The next two chapters are dedicated to the desctiption of the external and internal views
of the interface.

In the first part of chapter II, the reader i» tahen thiough a typical interactive session
that goes through the main steps from the access of the mterface to its tetmination, The
remaining of chapter II describes the administrative view of the interface for those who wish
to register new applications with the interface.

Chapter III contains a top down description of the three levels of internal inteiface
communication.

Chapter IV includes a discussion on the main lessons learned durmg the development
and implementation of this interface. Futmie interface enhancements ate also proposed
this chapter.

For completeness, we have included seveial appendices. The first appendix is the user's
guide to the interface. Full descriptions of the inteiface tools and hehaviors are inciuded.
The second appendix contains the specific details of application tegistiation with the in-
terface. A template and requirements for /O Masteis ave included The last appendix

contains a glossary of terms introduced and used in this thesis.

i

CHAPTER II

INTERFACE EXTERNAL VIEW

MeruBar M o pccens Inecfsce Information |
Ammaton
Duplay
Ar
=
‘Agent Control Drgraph Control “Tools.
Agens. Execute Digraph Window Mannger| L] Camas
cot Ul reio] [owmecr u
ObyEdn Drgraph Stop
O Ramove Aget.
I X
Eror
Error Box.
Box
s

Fig. 3. Interface Appearance ["pon Invocation

Before describing how the interface works internally. it is necessaiyv to desciibe how it
looks and behaves externally, (Figure 3). The first portion of this chiapter goes through a
typical interactive session. The reader is taken thiough all of the steps from accessing the

interface to the termination of a session. The sample session demonstrates the behavior of

the interface and gives the reader enough information to construct his o1 fier own animation
digraphs and execute them. A full user’s manual is supplied in the Appendix.

The second portion of the chapter describes the administrative aspects of the inter-
face. The information needed by the interface to manipulate an application is discussed.

Descriptions of registration tools are also given.

II.A Interface Access

We assume the user is logged onto a computer that is running under the Unix operating
system, and is operating inside the X Windows environment [tom a command interpreter
window, the user can change the current ditectoiy to the duectory where the interface
executable resides. The Interface 1s mvoked by calling the evecutahble name “IntApp™.
After a few seconds of processing. the interface window should appear and look similar to
Figure 3.

The interface is laid out in a simple. easy to use fashion It is bioken mto five visnal
components: the Menu Bar, the Animation Displav Area. the Contiol, the Canvas and the

Error Box.

II.LB Sample Session

To demonstrate the behavior and ability of the interface. we show how an animation
digraph is created, executed and terminated. AGE hehaves as the algorithm animation
environment. In this example, the AGE clients composing the anmmation digraph are Con-
nectivity, Biconnectivity and Plananty. Execution of the animation digraph starts with the

Connectivity client.

rUlh Access Interface ln(mmuil
Graph
O Draw O Client Operauon spec]
)

Ageni Conrol _ Drgraph Control Tools
[Choms | [Ecicmmpmen | [winsow e
[Congex | [ogmsie |

Connecuvit
Icon

0 Remove Agens.

o -

o]

AR A A 7 7 VA4 /
[l 7 7 71 7 7 7 /. /.
[, 7 7 7 7 7 / /7
L7 7 VA Vi

Fig. 4. Interface with AGE Ammation Digraph

Connectivity is an AGE client that receives an AGL Graph. finds all of its connected
components and then displays the first to the AGE window. A connected component is a
subgraph such that for each pair of vertices. v and w. within the subgraph. there exsts a
path from v to w. The connected components are sent to the Biconnectivity client where the
biconnected components are found. A biconnected component is a counected subgraph that
does not contain any vertex whose removal will disconnect the giaph. Each biconnected

component is then sent to the Plananty client. The Planaiity client takes a biconnected

component and tries to imbed it on the screen in such a way that no two edges mtersect.
The animation terminates when the execution of the planarity client 1s completed. The
interface indicates termination by stopping the arumation digraph 1cons.

In what follows, the reader 1s shown how to generate an ammation digraph that looks
similar to the one displayed in the Canvas subwindow of Figure 4. Once the animation
digraph is created, the reader is shown how to execute it. The results of the execution
are included. After the animation has concluded, the user may choose to terminate the

animation digraph and leave the interface.

IL.B.1 Animation Digraph Generation

There are two steps to generate an ammation digraph: process invocation and nteipro-
cess connection. To invoke a process. the user presses the .\gents” button in the Control
subwindow and choose either the “Environment™. ~Client™ or “Executable” selection with
the right mouse button from the new menu that pop» up. Upon selection. the user 1s given
an Fzec Boz to choose an available machine and application. Once theses choices are made,
the user hits the “Execute” button in the Exec Box The Exec Box disappears aud after
a few seconds, an icon for the application process appears in the Canvas subwindow. In
our case, the icons correspond to AGE, and to Connectivitv, Bicounectivity and Planarity
clients. An icon can be moved within the Canvas by piessing 1t with the left monse button
and dragging it to a new location.

Execution of the AGE application 1s achieved by lutting the “Ageuts™ hutton follosed by
the choices of “Environment”. “Machine™. and " AGLE" and then hitting the execute button.
The AGE window appears in the Animation Display \rca and the AGE icon appears i the

Canvas. The user then moves the AGE icon ta the upper pait of the Canvas. Once AGE

Connecti viﬁg Biconnectivity Planarity

Fig. 5. A Sample AGE Animation Digraph

is invoked, the user invokes the Connectivity. Biconnectivity and Planarnty clients. This
is done in the exact same fashion as desciibed above except “Client” is chosen mstead of
“Environment”. The user may space out the icons i the C'anvas for visual claiity.

Once the application processes are invoked. the user cieates the process connections. A
connection is made by pressing a source icon with the middle mouse button. The mouse
pointer is then placed over a destination icon which 15 pressed with the middle mouse
button. A directed edge appears and connects the sonrce jcon with the destmation i1con.
In this example, the user creates connections from Connectivity to Biconnectivity and from
Biconnectivity to Planarity. The animation digraph is complete and it looks similar to the

animation digraph in Figure 5.

II.B.2 Animation Digraph Execution

Once the animation digraph is generated it can e excented. .\ process is set as the initial

process by selecting the corresponding icon with the left mouse hutton. The imtial process

icon frame then turns yellow. The User presses the Connectivity icon to imtialize the
animation digraph. The animation digraph can now be executed bv pressing the “Execute
Digraph” button in the Canvas subwindow.

Before allowing the Connectivity client to execute. the AGE server will query the user
for an AGE graph. The user presses the AGE message area with the right mouse button
selects “Done”, creates an AGE graph and then hits the “Graph Entered” button. After
this sequence of user actions, the Connectivity icon starts to animate and the Connectivity
client starts in AGE. To operate the Connectivity client, the user hits the “Connectivity™
button in the AGE window. When the client is complete. the AGE ~Show™ hutton is
pressed. With that sequence, the Connectivity 1con stops animating and the Biconnectivity
icon starts. To start the Biconnectivity client in AGE. the user presses the "Biconnectivity™
AGE button. When finished, the nser presses the “Show™ AGE button. This will stop the
Biconnectivity client and start the Planarity client Pressing the “Planarity” button in
AGE executes the algorithm. When the algorithm finishes. the user cycles through the
AGE clients by pressing the round arrow AGE button until the word “IQ Master” appears
The user presses the AGE button that savs “\lgonthm Complete”™ The planarty Icon

stops animating and the animation digraph is complete.

II.B.3 Animation Digraph Termination

Once the animation digraph is complete. it can be ternnnated by pressing the ~Digraph
Clear” button in the Control. The icons disappear fiom the (lamas as well as the AGE
window from the Animation Display Arca. The user mav leave the interface by pressing
the phrase “Unix Access” on the Menu Bar and pressing the "Return to Unix™ button. The

interface shuts down and the user is returned to the X window shell

I

II.C Administrative View

Although not a large part of the external view of the interface, the application admin-
istration plays a vital portion in the expandability of the interface. The registration of new
applications is not a difficult procedure but one that must done with thought and care.
Errors may have direct effects on how an application behaves and how it interacts with

other processes.

II.C.1 Needed Information

For every application that executes on the interface, there is a set number of informative
data elements describing the application and communication behasvior. Data concerning the
name and executable are needed to launch the application correctly. Bitmap information
is needed to display the appearance of the icon in the Canvas. Tnput and output demands
are needed to inform the interface how it communicates with other processes.

For the interface to launch an application pioperlv, the application’s name and exe-
cutable path are required. If the interface trics to launch an application that does not exist
at the given path, an error will be displayed in the Fitor Box. The tetface will contimue
making the error if not corrected. The "type™ of application is also needed. The interface
accepts three different types of applications: Ammation Environments. Clients and geneial
executables. If the application is an animation environment. the path of an 1/Q Master is
needed for it. I/Q Masters are programs that communicate hetween algorithm animation
environments and the interface, and are described mn full detail in chapter IILE. Clients a1e
considered as applications who need an Animation Enviroument to operate. Clients are

prevented from launching until an Animation Envitonment is provided. General executa-

bles refer to any applications that are indepeudent of environments o1 clients. Executables
have no constraints on launching.

Every Application has a set of bitmaps displayed within its icon. Each icon 1s bioken
into two animation modes: executing and stationary or non executing. The hitmaps ave
cycled to give the icon an animated appearance. The bitmaps used for the execution mode
animation do not have to correspond to the bitmaps used in the non-executing animation
mode. Each bitmap is stored, individually, in the standard X Window bitmap format (2].
The bitmaps may be created using the X Window hitmap editor batmap.

Fach application needs to define the necessary input sequences needed to execute. Theie
may be multiple acceptable input sequences for each application. An example is a client
that needs a graph or a filename to execute If the chient receives the filename instead of the
graph, it can read from the contents of the mputed filename. Each necessary input sequence
is defined by integer values, floating point values, words. graphs, file names, environmental
specific data such as AGE graphs. and matrices. The output sequence for an application i~
defined in the exact same fashion as the mpnt sequences The imput and output sequences
are recorded in a header file for each application. Tnstruction ou the cieation of header files

in included in Appendix B.

I1.C.2 Techniques of Registration

All information defining an application. except for the mput and ontput sequences. 15
stored in files called Catalogs. The Interface uses a defanlt catalog loaded durg startnp
time. The user may load Catalogs by usmg the Ciutalog Loader which is accessed via the
Control button “File I/0”. After the button is pressed. a menu appears giving the options

of “Catalog” or “Digraph”. These buttons cascade to further options of “Load™. ~Save”

Filter

Ealéction

Bt load, eps

catload.ps’
cortrolsubyindow.eps
contralsubwindow, ks
digraph,eps
digraph,ps
exechox,eps
execbox,ps

S RN P~

fhnme!tmpfcrcd&fcatload.eps

| Load l VFiIter I Cancel[Help '

Fig. 6. Catalog Loading Menn

: . . Please enter the name of the process:
| oteutpptsoation,

_@}; Minuel

Fig. 7. Query Box

or “Cancel”. The button sequence “Catalog — Load” produces a loading menu called
CatLoad, see Figure 6. This tool enables the nser 1o select a catalog and load it into the
interface.

If the user chooses, he may create his own catalog by using a file editor and suplying the
needed information to a catalog file. The format and contents of a catalog are described
in Appendix B. The user may also define a new application by ptessing the “ObjEdit™
button in the Control subwindow. Upon pressing the buttou, a window appears called the
Query Boz which prompts the user for information and then saves the results to the current
Catalog, see Figure 7. The questions in the Query Box are self explanatory and the user
always has the option of exiting the proceduie. The information taken by the Query Box

will be sufficient to append to the catalog file and create a new header file.

20

CHAPTER III

INTERNAL DESCRIPTION

IIILA Global Interface View

‘Communication

Interface Agents

Sidin
f Sudout

Window Manager,
(o Tnerfice oformaum

Application

Pracesses
~.

Fig. 8. Glohal Tuterface View

If we remove ourselves from preconceived ideas about operating svstems and window
managers, we can derive a global view of the internal implementation of the interface. What
is minimally needed to implement an mterface such as this 15 an environment that allows
us to obtain the functionality demonstrated in Fignie 8. Ou the highest level, there is a
terminal with an interface view displaved on it. The images on the termmal are driven
by a window manager which receives requests fiom an application This application con-
trols the behavior of the images on the terminal and communicates witl other processes

called communication agents. Conununication agents contiol the hehavior of other appli-

21

Unix
Communication
Agent

B poes
N

AGE
Process

Sockets

Fig. 9. AGE Interface View

cation processes working with the same window manager The application processes have
no knowledge of the agents controlling them and pass information 1o and from them vix
understood file descriptors.

We have been able to achieve this on top of the Univ operating svstemn and the X
Windows environment. Execution of the inferface depends heavily on these environments.
Qur actual implementation of Figure & looks mote like Fignre 9. Lhe X Window system
is essential for the driving of animated icous and remote displays. Unix mterpiocess com-
munication techniques like internet sockets and pipes are essential to the interface. Other
intrinsic functions in Unix such as fork and cace plav a laige roll in the behavior of the inter-
face. Because of the interface’s heavy dependeuce on both these envionments, Unix and X

Windows must be available for om1 implementation of the interface 1o operate successfully.

22

III.B Levels of Interface Communication

Unix Acoess Tnterface Infomaton |

Graph
ODraw O Chent Operation speco I
Ropeat

AgetContrl Digraph Control Tools

[Caeems | [ncoue Digrapn Window Manager
[rero | [oo cieas Status Manager
onan

Connectivat;
e

Pey——
[0t
|Eanox-
VAR A / VA4
VAR A4 VAR / /
7 7 7

L /L 7 7 7 7 VA /L

Fig. 10. Inteiface With AGE Animation Digraph

Figure 10 is a copy of Figure 4 from chapter 2. The sample animation digrapl appearing
in the Canvas section will help to describe the internal view of the interface because its
execution requires the activation of the thice levels of internal interface communication.
Figure 11 is the corresponding internal view of the intetface for the external view of Figure
10. The first level occurs within the interface itself. The user sends events to the [scr

Event Handler via the X Window Manager which is managing the mterface display on the

Tig. 11. The Three Levels of Interface Communication

terminal screen. The events are mterpreted and messages are sent to the other infernal
mechanisms of the interface to be acted on.

The second level deals with the communication between the mterface and the l'nn
Communication Agents (UCAs). The UCAs are spawned processes fiom the interface which
communicate with it via Unix internet sochets Sockets aze a fadility of Unix that provide
two way flows of data, across the internet. usnally between two processes. The UCAs
spawn the application processes seut as parameters durmg thein execution The UCAs
communicate to the application processes through standard imput and standard ontput via
Unix pipes. Hereafter, we will refer to these as Stdin aud Stdout. respectively A pipe 15
a facility of Unix that provides one way flow of data usuallv fiom one process to another

on the same machine. UCAs receive commands from the interface to execute or stop the

24

application processes or make communication links to other Unix communication agents.
These links are implemented by Unix internet sockets. Received data from other ageuts 15
relayed to the application process through its Stdin. The process’ Stdout is received by the
agent and distributed to other agents.

The third level involves all of the previous levels plus a new entity called the I/O Master.
In this application, the current animation environment is AGE thus the new element is the
AGEI/O Master. The I/O Master acts as the link between the animation environment and
the interface. The interface spawns the I/O Master and communicates to it thiongh Unix
internet sockets. The I/O Master connects to the ammation environment and communicates
to it through the environment's commmnnication apparatus, In this example the medium
is Unix internet sockets. The I/O Master 1eccives commands from the interface to get
data information from the animation emvirionment The environment data is relayed ro
the communication agent of the client currently attempting execntion. ‘I he communication

medium between the I/O Master and dient’s commmnication agent is Unix infernet sockets.

III.C The First Level of Interface Communication

The first level of interface commnuication involves the interface itsell and its external

connections to other computational entities sucl as the X Window Manager and UCAs. wee
Figure 12. The purpose of the interface 1n to provide a simple. graphical metlod for inter-
actively working with algorithm animation systems, the algorthm ammations associated
with them and any other executables that may interact with the algorithins. Interelated

animations, represented here by animation digiaphs. are intetactisely aeated. manipulated.

executed and terminated. Animation digraphs consist of vertices and ditected edges. The

vertices are animated icons that represent specific application processes. ‘I'he edges corse-
spond to lines of communication between two processes and the sequences of execntion. The
interface interprets an input animation digraph, activates the corresponding computational
chores associated with each icon node of the digraph, and provides the necessary structures
to guarantee the assigned task is to be completed successfully or he aborted gracefully m

case of abnormal conditions.

*Agen
Clrnmands
Aot Siams Vplawes et Stater

g U0 Tnformaton Updiies

*Anmaon Digraph

Informasan

*Indmdual Agem Commands

H *Enor Pollng Locp
Informauan auon | “Bdmidual

User Event Handler

Asvmation Display Ares

X Window Manage?)
[T T r—— Sooooooo
o T -
Control
Puc] =T=1=]
===
=1=]
i —
a
=]

Fig. 12. The First Level of Interface Communication

The interface achieves these tasks bv its thice internal mechanisms the Uscr Frent
Handler, the Object Table and the Interface Commumeation. T'lie User Event Handler

communicates with the X Window Manager and receives all visunal events supplied by the

26

user. These events are parsed into commands and ributed to erther the Object Table or
the Interface Communication.

The User Event Handler sends individual agent commands to the Ohject Table along
with agent information. animation digraph information and object appeatance information.
The objects referred to are the icous within the animation digraph. The Object table sends
back to the User Event Handler agent information. ohject appearance information and erio1
information.

The User Fvent handler sends the ammation digiaph execution commands to the Inter-
face Communication. The Interface Communication 1etuins eron infonmation.

The Object Table sends the Interface Commnnmicalion messages concerning agent 1/0
information, animation digraph information and indisidnal agent commands The Tutetface
Communication returns agent status updates

The Interface Communication acts a~ the communication engine for the interface with
the Unix Communication Agents and the 1/O Masters Agent conunands and agent statns
updates are sent to and received from Unix Comumucation Agents gespectively. Chent
information and needed client data ate seut to [/O Masters while ammation enviomnents

statuses are returned.

III.C.1 The User Event Handler

The User Event Handler is designed to act as the fiont end contiol mechanism for the
interface. Its purpose is to establish communication with the the X Window Manager and
receive all visual events captured by the manager perfaining to the interface, see Fignre
13. These events are parsed and delivered to thew respective min-handlers withw the

mechanism. The miui-handlers trausiate the events to mteiface commands and send them

Tools

Window Managet

Digragh Clear 1 [Stams Managor

.
[T cow §

Fig. 13. Inteinal Interface Message Flow

off either to the Object Table o1 to the Interface Comnmmnication.

The User Event Handler performs these duties by its five internal meni-hendlers: the
Menu Bar, the Ammation Display Arca. the Control. the Canvas and the Error Bor.
Each of these mini-handlers drives their corresponding subwindow in the mterface display.
There is no direct communication between any of these mini-handlers as they behave as
independent entities and communicate to the rest of the inteiface through the Object Table
or the Interface Communication.

The Menu Bar mini-handler drives the menu har subwindow of the interface. It receives
events that tell it to return to Unix, or display mformational windows concernmg interface

usage or interface version. The return to Umix event mitiates a series of apent commands

that are sent to the Object Table to order the termination of the application processes and
communication agents. The Menu Bar then shuts down the intetface.

The Animeation Display Area mun-handler drives the animation display area subwindow
of the interface. Since this submenu blocks out space on the screen that is to be used by
an animation environment, no events are sent to the handler. Thus no commands aie
originated either.

The Control mini-handler drives the Control subwindow of the inteiface. Tt breaks up
the subwindow into three subsections: Agent Control, Digraph Control and Tools. T'he
“Agent Control” section contains three buttons and two toggles The “Agents™ bution
generates a menu which in turn generates one of thiee Lvee Box windows correspondmg, ro
a system, client or executable. The Exec Box generates an mdividual agent conunand which
is sent to the Object table. This command instructs the Object Table to launch an agent
for the selected application on the selected machine The “File T/O™ button generates
series of menus which terminate in either a Read Box o1 a Wiite Box 1hese boxes generate
individual agent commands sent to the Ohject Table, These commands tell the Ohject
Table to launch specific agents and to save digraphs or catalogs with the given filenames
The “ObjEdit” generates a Query Box. The Query Box sends to the Ohject Table agent
information received as input from the wser The "Remove Agent™ and “Remove Fdee™
toggles send individual agent comnmands to the Ohject Table desaribing which agent o
edges are to be removed.

The “Digraph Control” section contains thiee buttons. “Execute Digraph™. “Digtaph
Clear”, and “Digraph Stop”. Each of these hutton events generates animation digraph

execution commands which are sent to the luterface Communication. These commands

29

g 2 L dkak wareld Stapped shark 1 sparcBO 1187 w&i

Fig. 14. Interface Status Manager

tell the Interface Communication to start executing the digraph. remove all the agents and
application processes of the digraph and to stop the executing digraph. respectively.

The “Tools™ section contains two buttons: “Window Manager™ and “Status Manage™
The “Window Manager” button is deseusitized or not active and receives no user events.
The “Status Manager” button generates the Status Manager Window. The Status Manager
window receives agent information from the Object Table for every object on the subwmdow
and then displays the information in the window. see Figure 11,

The Canvas mini-handler drives the canvas subwindow of the intetface. The Canvas
displays the animation digraph and provides facilities [o1 the user 1o modifyv the digraph and
control some of the individual application processes The (lanvas sends to the Objedt Table
messages containing object appearance and animation digraph information. It receives fiom
the Object Table object appearance information. Tl inforntation 1n used to update the
appearance of the icons in the digraph. When the user wants to manipulate the execution
state of an application process from the Canvas, the Canvas sends an individual agent
command to the Object Table. This command contains the npdated state information.

The Error Bor mni-handler drives the error Box subwindow m the interface. This

t
R
Informauon
wouper
‘ Appeae
o
P
Comass
e
T >
itemn gm0
— pges s
it
oo
-
gent Communtcation § o
LA

Fig. 15. Object Table Entrv Infonmation Flow

handler receives error information from the Ilie Object. Table and the Interface Commin-
nication. Errors are displayed in the box and removed when the nser hits the Continue™

button. The Error Box sends or receives no other information.

IIL.C.2 The Object Table

The Object table acts as the global data base for the interface. see Figure 15. Aside
from storing information about ammation digraphs and it~ individual elements, 1t also

has certain procedures associated with it. The purpose of the Object Table is to receive

and record information about elements of an animation digraph, supply wformation to

the Interface Communication and provide the lannching procedure for the communication
agents. Much of the information sent to the Interface Commmnication involves individual
agent commands. The Object Table is actually a dynamic array of object entries, There is
one object entry in the Object Table fo1 every vertex within the animation digraph.

The Object table achieves all of its duties by parsing the messages and commands mto
five groups: the Launching Procedure, the Moving Object, the Agent Information, the Edge
Listand the Header Information. Only the Launching Procedure and the Agent Information
groups share information. The contents of the Edge list are lent to the Agent luformation
whenever it is sending agent information to the C'ontrol

The Launching Procedure recerves all the individual agent commands that request the
launching of a Unix communication agent The Procedure accesses all of the needed infor-
mation from the Agent Information. forks 4 process aud exees a new Unix communication
agent with the information needed to launch the new desired application. The process i
of the agent is sent to the Ageat Information

The Mowing Object group receives object appearance mformation from the Canvas muni-
handler. Information dealing with the appearance of the icons in the ammation digraph
is stored here. This information includes the icon frame color, 1con statns. 1con animation
cycle and the paths of the bitmaps that compose the icon animation.

The Agent Information group receives individual agent commands and agent informa-
tion from the Control mini-handler and retuins to it agent information. Before sending
the agent information to the Control, the list of neighboiing objects must he bonewed
from the Edge List. From the Clanvas, 1t receives individual agent commands and returns

nothing. All of the received individual agent commands are interpreted and sent to the

Interface Communication. The group receives agent status updates in return. Much of the
information stored in the Agent Information. such as name path and type, is read in fiom
the default catalog during the interface startup {see section 1[.C..2).

The Edge List keeps pointers to all the object entries in the table that are neighbors to
the entry in the animation digraph. It receives the animation digraph information fiom the
Canvas mini-handler and sends the information out to the Interface Communication. The
neighboring information is also given to the Agent Information whenever it is sending agent
information to the Control mini-handler.

The necessary input sequences and the output sequence for the corresponding applica-
tion are stored in the Header information group The agent information is 1cceived from
the Control mini-handler and sends the sequence information off to the Interface Commn-

nication.

III.C.3 The Interface Communication

The Interface Communication acts as the central headquarters for all information that
is sent over the internet, see Fignre 12. Its puipose 15 to be a gate for all information
entering and leaving the interface that is not mvelved with the window display. All agent
commands are broken down into their individnal components and distiibnted to their proper
destinations. The Interface Commuuication gets information fiom the Object Tahle to
satisfy the requests of a UCA. An example is the iuput and output sequences for a specific
application. The agent requests this mformation from the Interface Communication upon
registration. The Interface Communication gets this information from the Object table.
The Interface Communication performs its function by remaining in a polling loop with

its socket and all of its connected sockets. checking cach for new messages ot connection

requests. As an agent connects with the Inteiface Communication, certain information
about the agent is kept and placed m a list of all the communication agents hefore the
status update information is sent to the Object table. When an agent command is received,
the destination for the command is known immediately.

The animation digraph execution commands, received from tlhe Control mini-handler,
are broken down into individual agent commands and are distributed to their corresponding
communication agents in sequential order. All individual agent commaunds fiom the Object
Table are translated to their basic components and sent to theit communication agent. ‘I he
Interface Communication receives status updates fram the conmmumication agents and that
information is passed on to the Object Tahle. All error information from the Inferface

Communication or an Agent is sent to the Error Box niini-handler

IILD The Second Level of Interface Communication

III.D.1 Unix Communication Agent (UCA)

User Event Handler
“Data from
Ouer Agens

Recroved Dare
From Orber Agents

“Data T
Onver Agents

N

Fig. 16. The Second Level of Interface Connunnication

Every application process executing within the interface animation digiaph 15 connected
to a Unix Communication Agent (UCA). When the user invokes an application from the
Control subwindow, a command gets sent to the Object Table to fork the process and exer
a UCA with the necessary parameters to launch the dewired application When a process
Sforks in Unix, a copy of the process is made and starts exccuting. Tle process that did
the fork is considered the parent. the resnlting process is the child. When a process doos
an exec Unix system call it transforms itself mto a new prograni. Upon exccution. the

UCA connects with the interface and sends information about itselfl snch as name and

process id. Once the registration is complete. the UC'A forks the process and execs the
desired application. Before the exec, the UCA ties the child’s standard mput (Stdin) and
standard output (Stdout) to itself via two Unix pipes. Stdin 1cfers to the default stream
a process reads from if no specific file is supplied. Stdout refers to the default stream
a process writes to if no specific file is supplied. The child process’ default input and
output go directly to the parent UCA. The purpose of the UCA is to launch the applcation
process, receive and execute interface commands concerning the application. peiforn the
internet communication for the application process and 1eport the process” status back ro
the interface.

The UCA’s duties are allocated to four internal mechamisms: the Bullctin Board, the
Command Router, the Input Reception and the Output Dispateh. see Figute 16, As a unt,
the UCA remains transparent to the application process sot interacts with the main mteiface
and other applications. No modifications are made to the application process other than
the routing of its communication thiough its Stdin and Stdout.

Internally, the Input Reception 1eccives all commmnications from the interface. the child
process and all other UCAs. The Input Reception signals the Command Router when
there is a message from the interface. sends data from the child process to the Output
Dispatch and data from other UC'As to the Bulletin Board. The Command Router receives
agent commands from the interface and returns status updates. It exchanges execntion /0
information with the Bulletin Board and sends output commands to the Qutput Dispatch.
The Bulletin Board sends output to the application process via the pipe connected to the

child’s Stdin. The Qutput Dispatch sends data to all other connected UC As,

36

IIL.D.2 Command Router

The purpose of the Command Routeris to act as the cential decision maker for the UCA.
The socket to communicate with the interface 1s owned by the Router. Although the Input
Reception monitors the socket for any new mnessages. a signal is sent to the Router from the
Input Reception informing that a message from the iuteiface has been 1eceived. To fulfill its
functjonality, the Command Router parses and executes all interface commands, laundies,
executes and stops the child application process, sends the input and output sequences to
the Bulletin Board, decides if the application process is allowed to execute based m its
received information from the Bulletin Board and sends ontput connection commauds to

the Output Dispatch, reflecting the connection cotnmands sent by the inteiface.

III.D.3 Bulletin Board

An essential mechanism to the UCA s the Bulletin Board inechanism, see Figue 17
The purpose of the Bulletin Board is to act as a data storage banh for all tecened data
until the data is needed. Because it heeps tiach of all 1eceived information, it judges 1f
the available data is sufficient to satisfy the necded input sequences. When the application
process is allowed to execute, the Bulletin Boaid send its information to the child process
via its Stdin pipe.

The Bulletin Board achieves these duties with the help of its three iternal mechanisis:
the Message Parser, the Input Reception and the Datu Information Queucs. The Message
Parser receives all data sent to it from the Iuput Reception and places each data element iuto
the appropriate queue of the Data Information Queues The Queuc tiformation, such as

size, is sent to the Execution I/0 Information mechanism. The execntion 1/0O Information

1€ wbua

Other Agers

“Needed Input

“Recrcved Dt From Odher Agsra

AGH

o o3
D Tusdn \Procest ’ “DraT rom Siden

Fig. 17. UCA Bulletin Board

stores the input and output sequences from the Command Router and returns a YES/NO

execution decision.

III.D.4 Input Reception

The Input Reception monitors all lines of external communication and sends the received
data to its proper place. It has a special 1elationship with the Comiand Router as it
monitors the Command Router’s socket to the inteiface and signals wlhen a message attives.
The Input Reception does not read the sochet The Input Reception blocks the execution
of the UCA until information airives. Once the information arrives. the Input Reception

reads in the information and activates the receiving mechanism with the inputed data.

User Event Handler
Verm Bar

Fig. 18 Multiple Process Interaction

III.D.5 Output Dispatch

The purpose of the Outpnt Dispatchis 1o 1elay all information recerved from the cluld ap-
plication processes from the Input Reception 1o all connected UCAs. The Output Dispatch

creates lines of communication to those UC.As indicated by the Command Router.

III.D.6 Multiple Process Interaction

An example of the UCA’s potential is demonstrated by the multiple process interac tion
described in Figure 18. In this scenariv a ring of applications have heen ereated m the

interface and internally the UCAs have heen interlinked with cach other When the interface

39

sends the execution command to the UCA of process A, process A is allowed to execute.
The output of process A gets 1ead by its UCA and seut to the UCA of process B. The
UCA interprets the output action of A as a signal of completion and fells the interface that

process A is complete. The interface sends the

cution command to the UC'A of process
B which executes the process and sends 1t the dafa 1cceived fiom A's UCA, In the same
sequence of events, process B executes and the data is sent to the UCA of process C. Piocess
B stops, process C executes and data is sent to process A’s UCA. Depending on the nature
of process A, as soon as the UCA of A 1eceives the command to exeante and the data from
C, process A will execute, continuing the loop. The loop will continne executing until the

interface stops execution or one of the processes stops and terminates naturally.

III.D.7 File Input and File Output

The relationship between the TC'A and 1ty cluld application process is exploited by
the FileReader and FileWriter programs. Example digraphs demonstratiug their beliasior
are shown in Figure 19. In this example. process A receives data from the FileReader
and process B sends data to the FileWriter. During execution. the FileReader is allowed 1o
execute before process A. The FileReader needs no input so it starts to execute immediately.
The FileReader sends a request to its Stdout for the necessary input sequence of process
A. The UCA receives the request and relays it to the interlace. The mterface 1etuins the
sequence to the UCA which sends 1t to the FileReader via its Stdu With the help of a
Read Box, the FileReader opens an input file, reads the data acconding to the received
sequence then sends the data to its Stdout which is recerved by the UCA and sent to the
UCA of process A. The FileReader stops execution and process A starts 1cading the data

from its Stdin.

0

f-senuce
Request

User Event Handler

Anmation Display Area

Fig. 19. File Inpat and File Output,

In the other example, process B is allowed to execute hefore the IiletWriter. B outputs
data to its Stdout and is read by its UCA. The data is sent to the UC'A of the FileWiiter
which sends it to the FileWriter With the help of a Write Box. the FileWriter opens a file

and outputs all information sent by its UCA,

IILE The Third Level of Interface Communication

IILE.1 I/O Master

Interface
Intertace ﬂ:
‘Communication f—1
Objec) H
M Tavle H ['Necded Data
z H Client
: Inforration
: *Necdsd Clin|
| Daia
: +AGE Requests
User Event Handler !
H AGE Graphs .
‘Benu Bar H i AGE
Anmation Display Ares H
= :
L. Tror B H

X Window Manages

“Client
Information

AGE 1/O Master

Fig. 20. The Third Level of Interface Commuuication

Before the first client is invoked fiom the interface. the I/O Master for the particular
animation environment is launched. The /O Mastei is spawned and connects back to the
interface and connects to its corresponding animation environment The T/0 Master is
confined to using the animation environment’s communication metlods. The 1/0 Master™s
purpose is to link the animation environment with the main interface. When the clent

process is set to execute, the interface queiies the client UCA for the data it needs to

execute. The interface sends the needed dient data mformation to the I/O Master along
with the connection information for the executing client. The 1/O Master then cieates a
series of requests and sends them to the animation environment n order to prompt the
user for the necessary client information. Based on the requests from the I/O Master. the
animation environment obtains the user suplied data and sends it back 1o the 1/0 Master.
The I/O Master then sends the information to the UCA of the executing client. The Client
process should have the necessary input data to execute. If the client does not have a
method to output any information to signal completion. the 1/O Master places a device in
the animation environment that can he inmvohed upon client completion. The /0 Master
receives the completion event and sends it back to the mterface to let the nexr chent srart
execution.

The I/O Master is composed of three computational mechanisms the Cominand Router.
the Environment Lwatson and the OQuéput Dispateh (Figure 20). The Command Router
receives the interface commands along with the client mformation and the needed client
data. The notification of special events are sent back to the interface. An example of such
an event is the client completion signal “The Command Router sends the needed chient
data to the Environment Liaison and gets back environmental status information 1t sends
the client information to the Qutput Dispatch. The Fnvironment Liaison sends 1equests to
the animation environment and gets hach user suplied data and special device events T'he
received data is relayed to the Qutput Dispatch where 11 is sent to the GO'A of the client

needing input data.

III.LE.2 Command Router

The Command Router receives all commuutcations from the mterface and distichutes
the information to the Envuonment Liaison ot the Ontput Dispateh Tis purpose = (o
communicate with the main intetface and route the teceived commands 1o the proper desti-
nations. Like the UCA Input Reception. the Command Router blocks the /O Master nnnl
a message arrives from the interface The message 15 immediately mterpreted and sent 1o

its proper channels.

III.LE.3 Environment Liaison

The purpose of the Knvzronment Linison s 1o atl as a chewt 1o the desied anmation
environment. The needed client datais transhited mro sequests and ~sent 1o the ensuonment
The results of the requests are sent back ta the Livson and ielaved 1o the Output Dispatch.
The Environment Liaison communicates with the anmmation environment according to the

environment's methods.

II1.E4 Output Dispatch

The purpose of the OQuipat Disputch is 1o comnect with the UCN of the chent needmg,
input and transmit data to it once the information arives frone the Envitonment Liarson
Unlike the Qutput Dispatel of the UC.A. information s sent 1o onlv one connected UC A at
a time. If the I/O Master retrieves information for the same dient at a later timeot does

not need to reconnect with that client™s UC'\

CHAPTER IV

CONCLUSION

IV.A Resulis

This thesis proposes an interface that allows the end-user to integrate algorithm ani-
mations and independent applications. Its evolution has contributed to the development
of several inter-related issues. The distribution of dnties amongst internal mechanisms
provides a good methodology for the construction of interfaces dealing with multiple com-
municating processes. The uses for this interface are diverse, ranging fiom reseaich to
teaching. This interface achieves its desired objectives and yet it is subject to limitations.

These limitations provide insight for the implementation of future systems.

IV.A.1 Methodology

The internal allocation of tasks within the interface provides a good methodology which
can be applied for similar systems dealing with control and mterprocess communications
of previously defined applications. Tlice internal and two external mechanisims provide
a simple yet powerful way for the user to manipulate otherwise nncontiollable exteinal
applications.

The User Event Handler, Object Table and Inteiface Communication mechanisms con-
tribute to a stable foundation for handling mput and output. The mterface recetves input.
in the form of window events by the User Event Ilandler, These events aie translated into

commands which are distributed as output by the Intetface Communication. Dedicated to

the delivering of command output and the reception of processes reply, the Interface (‘om-
munication provides a unique link to all process activity outside the interface. The Object
Table provides a database for the recording of information provided by the user and pro-
cess replies received from the Interface Communication. These three mechamsms create a
triangle through which the user may communicate with external independent applications.

The Communication Agents act as the external arms of the interface While connected
only to the Interface Communication mechanism. the agents perform the interface’s com-
mands externally. The Agents remain invisible to applications at all times as they tianslate
the received commands from the interface. They remove the responsibility of tiansporting
input and output from the interface. This fieedom allows the interface to dedicate itself to
the execution of user input.

Similar to the Communication Agents. the I/O Masters act as the external communi-
cation links from the interface to the otherwise uncommuucative animation environments.
Because the 1/0 Masters are specialized applications that can speak to both the interface
and a particular environment, the interface can use the emvironment to get data essential

for execution, from the user.

IV.A.2 Uses

The needs of the user dictate how this mterface is to he used. It has potential value in
any situation where the user may need to set up ~equences of applications that need to pass
input and output with each other and execute i a desited vider. This has immediate valne
to the research and educational communities. Other than the realm of algorthm animation.
this interface has applications in the visualization of large scale numerical data systems aud

the visualization of distributed animation and simulation.

40

An important research application for this mnterface 1s to act as a testbed for distiibuted
algorithms. All execution of animation digraphs start with just one process. That process
may split execution into multiple processes. Thus after the termination of the initial appli-
cation, control may be passed onto a number of independent processes executing in paraliel.
Distributed algorithms can be decomposed mto their individual components. layed out in
an orderly fashion as animation digraphs, and executed.

Another possible research application for this interface is the development and testing
of sophisticated algorithms. We use the term sophisticated to refer to algorithms composed
of other algorithms. The modular nature of the animation digraph allows the user to easily
add, swap and remove applications from the animation digraph easily. Thus animation
digraphs can be executed, modified and re-executed repeatedly until the desired 1esults
are achieved. This is a more efficient method for algonthm testing than the traditional
one-program method.

An important teaching application for the interface is the demonstration of algmithm
significance and function. Quite often a student may not perceive the utilitv of a paiticular
algorithm as it is taught. However. as a umit i an ammation digraph. the student may
observe the relevance and usefulness of an algorithm as it interacts with otheirs. An exam-
ple of this has been displayed earlier in the animation digraph consisting of Connectivity.
Biconnectivity and Planarity. In this example. a student may not comprehend the func-
tional differences between the Connectivity and Biconnectivity algorithms. but when they
are observed as elements of a sequence leading to a final destination. Planarity. the student
can begin to understand the usefulness and functionality of these paiticular algorithms,

The visualization of large scale numerical data svstem can be aided by this interface.

By constructing animation digraphs consisting of numerical filters. 1esearchers can visualize
large quantities of data. Quite often programs are written to handle one type of input and
to output another. With this interface. pipelines of these programs can receive and process
information that terminate in one or many display windows. Mleteorologists can use this
interface as a tool for processing data received from storms in order to studv phenomenon
such as hurricanes. Petroleum engineers can take data processed from other machines.
such as Crays, and reconstruct and visualize layers of oil deposits. In the same fashion,
geologist can study the movements and changes in the Earth’s crust. Astronomers can
also be aided as large amounts of satellite data can be taken to reconstruct and visualize
planetary surfaces.

The distributed nature of the interface opens new horizons in ammation and simulation.
Animations are typically one program entities that take one object. expose it to a series of
forces and changes in environment and display the 1esnlting activities. This mterface allows
the possibilities for many of these animations to commumnicate data with each other as thev
are driving their images to display. If the results of these animations can he composited to
one display then we would have the effect of one animation under the mflnence off manv
different factors. Take. for example. an animation of a walking dog. an animation of a
hurricane, and an animation of trees. Now run all these amtmation in parallel, letting them
send information back and forth to each other. and displaying all the results to one scene.
The result would be a dog trying to walk in a very bad storm while trving to react to the
actions of the moving trees and the strong gusts of winds. This concept 15 still yet very

abstract and still needs much thought. But the potential exists for further researcl.

IV.A.3 Limitations

One of the most significant limitations of this interface is the problem of applications cre-
ated for other windowing environments other than X Windows. AGE is an example of such
an application. AGE proved to be a challenge to integrate with the interface. The demands
set by the Sunview windowing system became a difficult obstacle to work around. There
is no guarantee there will be windowing environments to support all platforms. Hopefully
over time, applications will be developed in a more uniform standard. If not, translators
are essential to the universal communication and interaction of applications.

One of the conditions placed upon the developers of programs that are executed within
this interface, is the restricted used of Stdin and Stdout. In order to communicate informa-
tion with other processes, these two channels aie dedicated to the transmission and reception
of data. The developer is forced to use Stderr for the display of debugging messages and
other information. User-supplied input must now be supplied through other other than
Stdin. The sacrifice of these two channels was essential to provide an environment where
predefined applications could interact with each other without having to go through majm
modifications.

Re-executability of animation digraphs i» hindeted by the fundamental nature of some
applications. Unless the application has been written to stay within an mternal loop, it may
die or become static once it has produced output. This factor brings np manv difficulties
for the reusability of animation digraphs. Because each icon in the ammation digraph
represents one real process, that process may need to be recreated 1n order to function as
a participating member of the animation digraph. Processes that have heen stopped after

output behave as dead weight, as their icon still appears in the ammation digraph. The

4

responsibility for re-executable applications is then delivered into the hands of the developer.

The aforementioned limitations play roles in the registration process that all applications
must go through. All applications must obev certain criteria to perform effectively within
an animation digraph. While these criteria are not many in number. their pure presence 1s
enough to decrease the utility of the interface to some degree. Thus. the removal of these

limitations is presented as one of the future enhancements for the interface.

IV.B Future Enhancements

IV.B1 1/0

As was mentioned in the first section of this chapter. this interface forces the user
to execute under a certain limitations. Quite often the reqmrements for meetig these
limitations require code modification. A future goal would be to mmimize and possibly
remove any need to modify the application code. A primary cxample of modification 1s
the process signaling to the Communication Agent that it has completed its computation.
Without this signal, the Communication Agent has no idea when the process has completed
its tasks. This problem is compounded by the fact that the process outputs data only at
the end of its computation. The outputting of data is the signal that the application has
finished. The problem arises when the process is manpnlating environment specific data
like AGE graphs. In this situation. theie is no need to ontput anvthiug but an AGE
graph. But since the clients are using the AGE seiver as a communication medinm of
AGE graphs. they still need to output something to the Communication Agent to mignal 1ts
completion. In this instance, the signaling is done with transmission of a semaphore Other

code modification is needed in the tiansmission and reception of data. The pirocess has

to follow a specific sequence when sending and receiving the data. For both the signaling
and data transmission problems. the user should not have to make any modifications to the

source of the application. All applications should be ready to be used by the interface.

IV.B.2 Icon Window Modification

Currently, the icons of the animation digraph are viewed as an animated bitmap within
a color-coded frame. The icon may change position and the bitmap may also change but
otherwise the icon is static. A useful futuie extension to the interface would be the provision
of tools to the user to modify the icon window. The size and (olor of the icon are two
important attributes that are not alterable

Making the icon window an independent viewport is another interesting enhancement.
Currently each icon is a very small X window. If this window could be used to display
information from the application and control structures for the manipulation of input pa-
rameters, an entirely new avenue of icon manipulation can be created.

To supplement the creation of bitmaps, an animated bitmap editor provided by the
interface would be helpful. Currently the user must use the X Window program “bitmap”
to generate the icon bitmaps individuallv. An editor that allows the creation of the bitmaps
in a side-by-side fashion and a preview of the created bitmap animation, would be very

useful.

IV.B.3 Secript Editing

Other than the ability to save created animation digraphs. there 15 no facility for the
user to “record” his or her session with the imteiface. These 1ecorded sessions. o1 scrip/s.

are believed to have important applications in the learning, teaching and 1esearching 1calms

{14]. The ability to save a “history of the user” session to a file and play it back would
greatly enhance the value of the interface. The ability to edit. cut. paste and duplicate
portions of scripts would complement the abilities to save and play bach scripts

The AGE animation environment allows the user to save and playback the contents of

a user-session [14]. This provision can be used as part of an editing facility.

IV.B.4 Unusual Machinery

Currently, the interface provides the ability to execute applications on Unix machines
within the local network. However, the need for the wterface to span across different
machines other than Sun Sparc Stations is evident. A typical example of this is interaction
with Silicon Graphics machines. Although the applications can be executed on them. they
cannot display their output on non Silicon Graphics terminals. Silicon Graphics provides
a distributed graphics library (dgl) that enables other machines to execute and compile
programs written using dgl. But the display still has 1o be on a Silicon Graphics terminal.
Perhaps with the advent of X Windows there will be a wav to get around this problem.
Execution of applications on other machines sich a» the Crav. MasPai. and N-cube also
present similar problems due to their unusual architectures and ~Noutraditional Unix™

operating systems.

IV.B.5 Programming Language Constructs

The addition of programming language constinets fo the animation digraphs would
open the door for the interface to be used as a visnal programming tool. Provisions sucl
as self-loops, conditional execution, sequencing. and interaction with actual programming

pseudo-code would make the animation digraph not just a map for the sequence of animation

execution, but also a visual representation of programming constructs.

REFERENCES

[1] J. Abello, S. Sudarsky, T. Veatch, and J. Waller, “AGE: An Animated Graph Envi-
ronment,” DIMACS Workshop on Computational Support for Disciete Mathematics.
March 12-14, 1992, Rutgers University. New Brunswick. NJ.

[2] Naba Barkakati, X Window System Programming. SAMS. Carmel. IN, 1991
[3] Marc H. Brown, Algorithm Animation, MIT Press. Cambridge, MA, 1988
{4] Ezplorer Environment User's Guide, Silicon Graphics, Mountain View, C:A. 1991

[5) Hopcroft, J. E. and Tarjan, R. E., “Efficient Planaiity Testing.” Journal of the ACAL.
21 (1974).

[6] Mark A. Linton. John M Vlissides, and Paul R. Calder, “Composing User Interfaces
With Interviews,” IEEE Computer, pp. %-22. Februaiy 1989 ~

[7) Brad A. Myers, Dario A Guise, Roger B. Dannenberg, Brad Vander Zanden, David §.
Kosbie, Edward Pervin, Audiew Mickish, Plullipe Marchel. “Garnet: Compichensive
Support for Graphical, Highly Interactive User Iuterfaces.” IEEE Computcr. pp. 71-83
November 1990. .

8] Mark Overmars, Forms, A C-Library for Dinlogucs. Department of Computer Science.
1 iy
Ultrecht University, The Netheilands, 1991

[9] Frances Newbery Paulisch and Walter F - Tichy. "EDGE: An Extendable Giapl
Editor,” Software Practices and Experiences vol 20, pp. 63-88. June 1990

{10] John T. Stasko, *Tango. A Framework aud System for Algonthm Ammation * JEEF
Computer, pp. 71-85, September 1990.

[11] Sandra Sudarsky, “Primitives for Algorithm Animation,” M.S. Thesis, Depaitment, of
Computer Science, Texas A&M University. December 1991,

[12] Sun C Programmer’s Guide, Sun Microsystems. Inc . Monntain View, (‘a., Febrnary
1991.

[13] Ray Swartz, Umiz Appheations Programaming, Mastering the Shell. SAMS, Carmel. IN.
1990.

[14] A.S. Tanenbaum and S.J. Mullender. “An Ovenview of the Amoeba Distributed Oper-
ating System,” Paraliel Computers and Computations, edited by J. van Leeuwen and
J.K. Lenstra, Mathematisch Centrum. Amsterdam. 1985

[15] Timothy R. Veatch, “AGE: A Distiibuted Envinonment for Creating Interactive Am-
matjons of Graphs,” M.S Thesis, Depaitinent of Computer Science, Texas ALM Uni-

versity, December 1990

54

APPENDIX A

USER MANUAL

A.A Interface Access

The user must be logged onto a computer that is operating under the Unix operating
system. Once inside Unix, the windowing environment is placed into the X Window System.
Within the X Windowing System, the current directory is changed to the directory where
the interface executable resides. On our system the directory is
/user/agesw/Interface/bin/Interface. The Interface is invoked by calling the executable
name “IntApp”. After a few seconds of processing, the interface window appears and

should look similar to figure 21.

A.B External View

The interface is laid out in a simple, easy to use fashion. It is broken into five visual
components: the Menu Bar, the Animation Display Area, the Control, the Canvas and the
Error Boz. On the top of the interface is the Menu Bar. The Menu Bar enables the user
to return to Unix and gain interface information dealing with interface usage and version.
Directly beneath the Menu Bar is the Animation Display Area. The Animation Display
Area is a reserved area in the interface window for the placement of algorithm animation
environments. Figure 21 displays no animation environment. Beneath the Animation Dis-
play area are the Control and Canvas. The Control is a collection of buttons providing the

user means to invoke and terminate processes, execute and stop animation digraphs, and

MeewBo [Interface Information
Animation
1
I
ApazCourol Dugragh Contral Tooks
Agenss l&mm IWM -
cowd U eeyo | [Digwncesr h
ObjBdis Digraph Stop.
PP ——
| —— C —

Ll T

[7 7 7 777 7 7 7 7 7 7 [7
L J 7 7 7 7 7 7 7 7 7 7 7 L/
7 77 7 7 7 7 [£ [7 7 7
L7 7 7777 7 7 77 7 [[7

Fig. 21. Interface Appearance Upon Invocation

55

monitor network statistics. The Canvas, residing to the right of the Control, displays the

current animation digraph. The user may reposition the icons composing the animation

digraph and create edges between icons to represent the informational path flows and exe-

cution order. The lowest portion of the interface is the Error Box. Any problems, errors or

unusual events occurring during a user session are reported to this subwindow, along with

helpful suggestions

56

Fig. 22. Menu Bar

Fig. 23. Unix Access Menu

A.C Menu Bar

The top portion of the interface consists of the Menu Bar which spans the width of
the screen. The words “Uniz Access” reside on the leftmost end of the Menu Bar while
“Interface Information” resides on the right, see Figure 22. By selecting the phrase “Unix
Access” with the left mouse button, a push button with the phrase “Return to Uniz” appears
beneath, see Figure 23. By selecting “Return to Unix” with the left mouse button, a popup
message appears querying the user’s intentions. The user may select the “Continue” button
to exit the system or “Cancel” button to return to normal operation.

If the users selects the word “Interface Information” with the left mouse button, two push
buttons appear beneath, see Figure 24. The buttons are labeled “Usage” and “Version”. By
selecting the “Usage” button with the left mouse button, a popup window appears giving
full interface instructions. The popup window is removed by selecting the “Close” button

beneath the instructions. By selecting the “Version” button with the left mouse button, a

57

Fig. 24. Interface Information Menu

popup window appears displaying program name, version, creation date, author, and any
other up to date informaiion ihe user may need. Simiiar to the heip window, the version
window is removed by selecting the “Close” button.

If at any time the user decides not to select one of the optional buttons displayed from
the menu bar, he is to click the menu bar with the left mouse button anywhere in between
the two phrases on the Menu Bar. This activity removes the optional buttons. For Example,
if the users is presented with the “Help” and “Version” buttons but wants neither, he simply

clicks the Menu Bar with the left mouse button to remove the buttons.

A.D Animation Display Area

The area immediately beneath the Menu Bar is the Animation Display Area. This
subwindow acts as a place holder for an algorithm animation environment when it is invoked.

All user interaction with this area, other than with an animation environment, is ignored.

A.E Contral

Beneath the Animation Display Area lies the Control and Canvas subwindows. The

Control subwindow is left of the Canvas, see Figure 21, 25.

58

Fig. 25. The Control Subwindow

The Control is broken up into three separate subwindows. These subwindows are labeled
“ Agent Control”, “ Digraph Control’ and “Tools”. The “Agent Control” subwindow provides
tools for loading individual processes or digraphs on to the interface and removing specific
processes. The “Digraph Control” box provides tools for executing, stopping, or erasing
the current animation digraph. The “Tools” box provides tools for monitoring the status of

applications on the animation digraph and viewing graphics generated by the applications.

A.E.1 Agent Control

The “Agent Control” subwindow contains three buttons labeled “Agents”, “File /0",

and “ObjEdit”, and two toggle buttons labeled “Remove Agent” and “Remove Edge”.

A.E.1l.1 Agents

By selecting the “Agents” button the user will be given a popup menu with three

buttons: “Environment”, “Client”, and “Fzecutable”, see Figure 26. The user must select

59

Fig. 26. The Agents Submenu

one of the three buttons with the right mouse button. If the user selects any portion of the

screen except one of the three buttons, the popup menu will disappear.

Environment The “Environment” button allows the user to invoke an algorithm ani-
mation environment, such as AGE, Tango or Balsa, into the interface digraph. When the
“Environment” button is pressed with the right mouse button, the user will be given a
“SysLoad” popup window, see Figure 27 . The “SysLoad” window is broken into two main
portions, the machine list section and the items list section. The leftmost section is the
machine section. It contains a list of all available machines on the local network. A slider
runs vertically next to the list of machines. By moving the slider up and down, the user
may control which machines are visible in the selection window. The user must select a
machine to execute the animation environment with the left mouse button.

The rightmost section of the “SysLoad” window contains a selection box with three
buttons. Inside the box, labeled “Items” are the choices for algorithm animation systems.
If there are more systems then there is room, then a slider will control the visibility of items.
The user must select one of the options with the left mouse button. If a selection has been

made, the choice will be displayed in a box beneath the “Items” box labeled “Selection”. If

60

Fig. 27. The Sysload Popup Window

the user chooses, he may type in the selection into the box without actually selecting from
the “Items” box.

Once 2 machine and the desired algorithm animation environment have been selected
the user may invoke his choice by pressing the “Execute” button with the left mouse button.
If the “Execute” button is pressed with out a selected machine, the interface will assign a

default hine. If an algorith imation system in not selected, the user will receive an

error popup window that can be removed by pressing the “Close” button contained in the
error window. If the user so chooses, he may also select the “Cancel” or the “Help” buttons.
The “Cancel” button will return the user to the main interface. The “Help” button will will
cause a popup window to appear that explains how the “SysLoad” window works. Once
again this popup can be removed by pressing the “Close” button contained within it.

If the user types in a reply to the “Selection” box of the “SysLoad” window that is
not not known by the interface, a popup window will appear querying the user if he would
like to add the reply to the system. The user must choose either the “Cancel” or “Define”
button. The “Cancel” button returns the user to the “SysLoad” window. The “Define”

button creates a new interactive window, which queries information from the user, called

61

Fig. 28. Query Box

the “Query Boz”, see Figure 28.

Query Box The first item requested by the “Query Box” is the name of the applica-
tion. The users is to type the name into the box provided. After entering the name, the user
must press the “Continue” button. The user will then be asked for the entire path of the
executable. The continue button proceeds. The user will then be asked for the number of
stationary bitmaps. The stationary bitmaps are the bitmaps that cycle in the icon while the
process is not executing. Once the number is entered, the path for each bitmap is requested.

After the stationary bitmaps are entered, the user enters the same information concerning

the executing bitmaps. The ing bi are the bitmaps that are cycled in the icon

while the process is executing. Once the information for the executing bitmaps has been
received the user is asked to give the number of acceptable inputs. An exceptable input is
a set of integers, floats, words, graphs, filenames, environment specific data and matrices
the process needs to execute. A process may have more than one acceptable input. Once
the number is suplied, the users is asked for the number of integers, floats, words, graphs,
filenames, environment specific data and matrices that are needed for that particular input.
Once all the input information has been given, the same type of questions will query the

user for the format of the output. However, each process is allowed only one acceptable

62

output format. Following the output format, the application type will be queried. There

are three type of application: Animation Environment (601), Arimation Client(602), and

general executable (603). If the application is an animation envi then the user will

be queried for the path of the 1/O Master for that environment.

Client Choosing the “Client” button from the “Agents” menu will produce a window

labeled “ClientLoad”. This new window allows the user to invoke an algorithm client to

operate with a selected algorithm animation envi . Since AGE is one of the envi-
ronments this interface was designed for, all animations that execute on the AGE “server”
are AGE “clients”. The “ClientLoad” window operates with the exact same behavior as
the “Sysload” window. The only difference is the user will be selecting animation clients

rather than systems.

E ble Choosing the “E: ble” button from the “Agents” menu will produce
a window labeled “ProcLoad”. This window allows the user to invoke any process to be
placed inside the animation digraph that is not an algorithm animation environment or a

client jated

with a envir t. Once again, the “ProcLoad” window behaves in the

exact same fashion as the “SysLoad” and “ClientLoad” windows.

A.E.1.2 FileI/O

The “File I/O” button in the “Agent Control” subwindow enables the user to save or
load pre-existing animation digraphs or catalogs. A catalog is a list of available processes
the user has to select from. The catalogs are stored as files in the user’s directory. Upon
pressing the “File I/0” button, a popup menu with two buttons, labeled “Digraph” and

“Catalog”, will appear. Next to each label is a small arrow. When the user places the cursor

63

Fig. 29. File I/O Submenu

over either of the arrows, another popup menu will appear. The menu has three buttons :
“Load”, “Save” and “Cancel”, see Figure 29. The menu from the “Digraph” arrow applies
to the loading and saving of animation digraphs and the menu from the “Catalog” applies
to catalogs. The user must make a selection with the right mouse button on any of the

menu items. If the buttons is pressed on a non-menu item, the menus go away.

Load Pressing cither of the “Load” buttons will invoke a loading popup window, see
Figure 30. The window is broken into five major sections: the “Filter” window, the “Di-
rectories” and “Files” lists, the “Selection” window and the control buttons. The user may
control which directory the file is loaded from by manipulating the “Directories” list. By
double clicking with the left mouse buttons on any of the directory options, the list will
descend into that directory. Similarly, the “Files” list displays which files are available in
the chosen directory. The user needs to only click the file choice once with the left mouse

button to make a selecti The selection will be displayed in the “Selection”’ window. The

full path is displayed with the name. The user may wish to type in his own entry into the

64

Fig. 30. File Load Window

selection window instead of choosing from the list. There is an alternative method of mak-
ing a file selection. The user may wish to filter out certain files from the directory. He does
this by modifying the filter in the “Filter” window. For example, if the user wanted only
“NTK” files displayed in his “Files” list, he would enter the entire path into the “Filter”
window and end the entry with “*. NTK”. In this example, the “*” is a wild card. Pressing
the “Filter” Button will engage the filter and only “NTK” files will be observed in the
“Files” list. The “Load” button loads the selected file into the interface. The “Cancel”
button returns the user to the interface and the “Help” button displays a helping popup

window.

Save Pressing either of the “Save” buttons invokes a saving popup window very similar
to the loading window described above, see Figure 30. All sub windows behave the same
as their loading counterparts, except the user must type in a new name to the “Selection”
window. If a new name is not supplied, the contents will overwrite the file selected in the
“Files” and “Selection” windows. The save button is the only different item and pressing

that button executes the saving process on the selection.

65

A.E.1.3 ObjEdit

When the user selects the “ObjEdit” button from the “Agent Control” subwindow the
user is given the opportunity to modify any of the attributes associated with a particular
application. The users is given the exact same “Query Box” as if they were defining a process
to system for the first time, see Figure 28. When the user supplies the name, the interface
will search for its entry. When found, the old values will be used as the default values for
the queries. Once again if a new name is given, the user will be given the opportunity to

define it.

A.E.1.4 Remove Agents

The “Remove Agents” toggle button in the “Agent Control” subwindow places the user

into kill mode where he may remove lication p from the animation digraph. I

the cursor is placed over an existing application icon in the animation digraph and the left
mouse button is pushed, that application is terminated. As long as the “Remove Agents”

button is engaged, the user can remove applications {rom the animation digraph.

A.E.1.5 Remove Edges

The “Remove Edges” toggle button in the “Agent Control” subwindow places the user
into edge kill mode. While the button is engaged, the user may remove edges. Edges are
removed the same way edges are created. The initial icon is pressed with the middle button.
The user then presses the receiving icon with the middle button. If there exists an edge, it

is removed.

66

A.E.2 Digraph Control

The “Digraph Control” subwindow contains three buttons labeled “Ezecute Digraph”,
“Digraph Clear” and “Digraph Stop”. This subwindow gives the user control over the overall

status of the animation digraph.

A.E.2.1 Execute Digraph

The animation digraph is executed by pressing the “Execute Digraph” button. To
execute the animation digraph, an initial process application must be chosen first. This
is done by pressing the selected icon with the left mouse button. The chosen process is
said to be “Armed” and is identified by a yellow frame around the icon in the animation
digraph. The “Armed” icon acts as the initial starting point for digraph execution. The
animation digraph begins execution at the “Active” application upon the pressing of the
“Execute Digraph” button. An executing application is represented by a green frame around
its corresponding icon and an animating bitmap image inside the icon. How ever, if the
application process is instructed to execute and does not have the needed input, it’s icon
frame will turn orange. If the “Execute Digraph” button is pressed while there is no “Active”

process, nothing happens.

A.E.2.2 Digraph Clear

The “Digraph Clear” button allows the user to remove all of the application processes
from the animation Digraph in one command. Since the current animation digraph is not
replaced when 2 new digraph is loaded in, the old animation digraph will have to be removed

if a clean Canvas is desired.

87

Fig. 31. Interface Status Manager

A.E.2.3 Digraph Stop

The “Digraph Stop” button stops an executing animation digraph. The currently ex-
ecuting processes are stopped and the execution is no longer transferred. A stopped an-
imation digraph is identified by blue edges on all icons. The animation digraph resumes
execution with the pressing of the “Execute Digraph” button. Depending on the nature
of the animation digraph and its processes, the digraph may need to be loaded in again
1o execute correctly. For example, if the animation digraph contains processes that do not
contain self loops, then those processes will disappear after their execution. If the animation
digraph is dependent on the output supplied by those processes, then the digraph will need

to load the data in again in order to execute once more.

A.E.3 Tools

The “Tools” subwindow contains two buttons labeled “Status Manager” and “Window
Manager”. These two buttons are invocation buttons for tools that help watch the status

of individual processes and the graphics each generates.

68

A.E.3.1 Status Manager

The “Status Manager” brings up a popup window that displays each process in the
network as a row of information, see Figure 31. The information is surrounded by a frame
the same color as the frame surrounding the process’s icon. Inside each status row is the
number of each process in the network, the name of the executable, the machine it is
executing on, its current status, all the the other processes it is connected to, the port
which it receives connection requests from and the child’s process id which the process is
executing on. All processes of a session are displayed here even after they are killed since
all processes are remembered in a table. The status field of the row reports all changes
to the process as soon as they happen. At the top of the “Status Manager” window is
a button labeled “Turn Off”. This removes the status manager but does not destroy its

current The status is il

a devise for monitoring the entries inside

the global process table.

A.E.3.2 Window Manager

The “Window Manager” is currently not incorporated thus its button has been desen-

sitized.

A.F Canvas

The Canvas is used to display the interface animation digraph. It is the rectangular
area to the right of the Control subwindow. The animation digraph is constructed here and
during execution, some control of digraph execution may be exerted. The Canvas contains

a virtual work area larger than the provided viewport thus vertical and horizontal scrollbars

69

TABLE I

Icon Color Status

Color Status M

Red Stopped | Application is waiting to execute or
has already
Yellow | Armed | Application is ready to execute and

is waiting for execution signal.

Orange | Active | Application has received execution signal
but is waiting for input data.

Green | Executing | Application has input to t

and is currently executing.

Blue Halted | Animation digraph received stop signal during execution.

are supplied to control the view area. The animation digraph consists of nodes and edges

where the nodes are displayed on the Canvas as icons and the edges are displayed as arrows.

AF.1 Icons

Icons are the visual representation of the application processes in the animation digraph.
Icons consist of a multi-colored frame, a pictorial bitmap and text title. Icons are movable
and may be placed anywhere within the Canvas work area. They have limited control on an
executing animation digraph. They are also used to designate the starting application for
an animation digraph. When an application process terminates, its icon is removed form

the Canvas.

Icon Frames The frame surrounding each icon is composed of two colors. The upper left
corner is the unique color assigned to the icon from the interface. The color allocation is
random and no two colors on the same animation digraph are exactly the same. The lower

right corner reflects the application’s current status. The color statuses are represented in

70

Table 1.

Icon Bitmaps The image of each icon is an animated pictorial bitmap. The bitmap

may have two animation states: non-executing and executing. In each state, the image

is composed of multiple bitmaps which are displayed in flipbook cycle fashion. The icon
bitmaps are “changed” once every second. If no animation is desired, then only one bitmap
for that state is supplied. For each state, the number of bitmaps is limited by the ability of

the computer the interface is executing on.

Icon Control Icons are fully movable, let the user stop and start the animation digraph,
and allow the user to select a starting application for the animation digraph. The icon also

has the ability to terminate the application process it is representing.

Icon Movement Icons are moved by pressing the icon with the left mouse button,
dragging the icon to its new position, and releasing the mouse button. An icon may be
positioned anywhere on the Canvas work area. Any edges associated with the icon will

move along it.

Icon Digraph Manipulation The icon gives the user the ability to stop and restart
an executing animation digraph. It also gives the user the ability to terminate its application
process. When the icon is pressed with the right mouse button, a menu appears with three
buttons: “Activate”, “Stop” and “Kill”, see Figure 32.

The “Activate” button allows the user to restart a “Halted” animation digraph, the
“Stop” button halts an executing animation digraph and the “Kill” button kills the corre-

sponding application process.

71

Fig. 32. Animation Digraph Icon Menu

Animation Digraph Initiation If an Icon is not “Active”, “Executing” or “Stopped”,
or none of the other icons in its local animation digraph are “Active” or “Executing”, it is
placed in the “Armed” status when the user presses the icon with the left mouse button or
moves it. This is the interfaces’ method for designating a starting node for the animation
digraph. Before any edges connect icons, all can be made “Armed” and thus execnted at
the same time. However, only one Icon within a local animation digraph is allowed to be

“Armed”.

A.F.2 Edges

Edges connect the icons in an animation digraph. They represent the directional flows
of data and the application execution sequence. They are seen visually as arrows between

two icons.

Edge Manipulation Edges are created by clicking the initial icon with the middle mouse

button. An arrow attached to that icon will follow the cursor. By clicking a second icon with

72

the middle mouse mouse, the edge is complete and connects the two icons. If something
other than an icon was pressed once an edge has started, the edge is terminated. Edges
may be removed by pressing the “Remove Edge” toggle button in the Control subwindow.
Once the toggle is pressed, the interface removes edges between icons instead of creating
them. The user clicks an initial icon with the middle mouse button. When a second icon
is clicked with the middle mouse button, the edge connecting the two icons is removed.
Nothing occurs if a deleting edge is drawn between two unconnected icons.

If two icons are not in the same local animation digraph when the user connects them,
the interface will cause the second icon to enter the “Stopped” state as soon as an edge is

created. This ensures only one starting application within a local animation digraph.

A.G Error Box

The Error Box receives error messages for the interface. As it receives a message, the
message is displayed and a button labeled “Continue” is created. The message stays in
the window until the “Continue” button is pressed. The “Continue” button’s purpose is
to remove the error message. Leaving the error message in the window does not affect the

behavior of the interface.

73

APPENDIX B

APPLICATION REGISTRATION

Although not a large part of the external view of the interface, the application admin-
istration plays a vital portion in the expandability of the interface. The registration of new
applications is not a difficult procedure but one that must done with thought and care.
Simple errors will not only have direct effects on how an application behaves but how it

interacts with other processes as well.

B.A Needed Information

For every application that executes on the interface, there is a set number of informative
data elements describing the application and communicative behavior. Data concerning
the name and executable are needed for the Communication Agent. Bitmap information is
needed to display the appearance of the icon in the Canvas. Input and output sequences
are needed to inform the interface how it communicates with other processes.

For the Communication Agent to launch an application properly, the application’s name
and executable path are required. If an Agent tries to launch an application that does not
exist at the given path, an error will be displayed in the Error Box and the process will
be removed from the object table. The interface will continue making the error if not
corrected. The type of the application is also needed. The interface understands three
different types of applications: Animation Environments, Clients and general executables.

Animation Environments have a type number of 601 and need executable paths for IO

4

Masters that are to communicate between them and the interface. Animation Environments

are executed i diately after being I hed from the Communication Agent. The 10
Master is launched as soon the first client is launched. Clients are considered applications
who need an Animation Environment to operate. Clients have a type number of 602 and are
prevented from launching until an Animation Environment is provided. General executables

refer to any applications that are independent of environments or clients. Executables have

a type number of 603 and have no constraints on launching.

B.B Catalogs

All information defining an application, except for the input and output sequences, is
stored in files called Catalogs. The Interface uses a default catalog stored in . XMIProcTable
which is loaded during startup time. Each catalog contains the necessary information for
many applications. The interface only allows one catalog to be in the interface at a time
but the user can control the work environments by controlling the catalogs used.

Each entry in a catalog file contains the following:

¢ Application Name

» Application Executable path

o Number of Non-Executing Bitmaps

o Path for each Bitmap

o Number of Executing Bitmaps

o Path for each Bitmap

o The path for the header file containing I/O Information

o Application type

o Path of IO Master if Animation Environment

The application name is the name used in the icon representation in the animation
digraph. The executable path tells the Communication Agent where to find the application
executable. The number of non-executing bitmaps is the number of bitmaps that make up
the animated icon cycle when the application is not executing. For each of the number of
bitmap paths, there must be the path of where each bitmap can be found. The number of
executing bitmaps and their paths are defined similarly. The path for the header file tells the
interface where to find the header file for an application. The type of application tells the

interface whether it is an animation environment (601), animation environment client (602),

or general executable (603). If the application is an algorith imation envi , the
interface then needs the path of the I/O Master for that environment so it can be executed
with the clients.

The first element of a catalog file contains the number of entries within that file. The

individual entries follow. Here is an example of the contents of a Catalog file containing

three applications, Filewriter (ble), AGE (envi t), and Ce tivity (client):

FileWriter
/user/croda/Regsearch/X/New/I0do/FileWriter

1
/user/croda/Research/X/New/Bitmaps/filwritel
2

fuser/croda/Research/X/New/Bitmaps/filuritel

/user/croda/Research/k/New/Bitmaps/filwrite2
/user/croda/Research/X/Neuw/Headers/FileWriter.hdr

603

AGE

/user/agesw/NEWAGE/pub/bin/AGE

1

fuser/creda/Research/X/New/Bitmaps/AGE.1

3

fuser/croda/Research/X/New/Bitmaps/AGE.1
/user/croda/Rasearch/X/New/Bitmaps/AGE.2
/user/croda/Research/X/New/Bitmaps/AGE.3
Juser/croda/Research/X/New/Headers/AGE . hdr
601

/user/croda/Research/X/New/I0Master/I0Master

Connectivity
/tmp_mnt/cssun/xy1b/agesw/NEWAGE/clients/connectivity/connacted
1

/user/croda/Research/X/New/Bitmaps/connacted.1

5

/user/croda/Research/X/New/Bitnaps/connected.1

/user/croda/Research/X/New/Bitmaps/connected.2

7

Fig. 33. Catalog Loading Menu

/user/croda/Research/X/New/Bitmaps/connacted.3
/user/croda/Research/X/New/Bitmaps/connected.4
/user/croda/Research/X/New/Bitmaps/connected.5
/user/croda/Research/X/New/Readers/connectivity.hdr

602

The user may load catalogs by using the Catalog Loader which is accessed via the
Control button “File I/0”. After the button is pressed, a menu appears giving the options
of “Catalog” or “Digraph”. These buttons cascade to further options of “Load”, “Save”
or “Cancel”. The button sequence “Catalog — Load” produces a loading menu called
CatLoad. See figure 33. This tool enables the user to select a catalog and load it into the

interface.

78

TABLE II

Format String Decomposition

String Position | Data Type

0 Integer Values
Float Point Values
Words (text strings)
Graphs
Filenames (text strings)
Environment Specific Data
Matrices

o o] o vof

B.C Header Files

Each application registered with the interface has a header file which instructs the
interface how to conduct the communication for that application. Each header file contains
a number of sequences that indicate the format of input the application expects and the
format of its output. Each format consists of an string of ten integers. Each position of the

string indicates the number of data el t iated with that seq . The significance

of each position is is displayed in Table II:
There are three abstract data types in each sequence: Graphs, Environment Specific

Data, and Matrices.

Graphs The format of Graphs is as follows:

o Number of vertices in Graph (integer).
o Number of edges in Graph (integer).

o For each edge, a pair of integers identifying the edges two vertices.

79

Fig. 34. Sample Graph

The interface assumes the edges are directed. The vertices given for each edges must be
between or including 0 through the number of vertices minus one. An example of the graph

representation for Figure 34 is:

01

23
30
02

13

Environment Specific Data The format of environment specific data is a semaphore.
Since this type of data refers to a type of data that can’t be universally translated, we use
the animation environment as the communication medium. For example, in the AGE envi-
ronment, one client may output an AGE GRAPH to another client. Since AGE GRAPHS

are environment specific, the first client simply outputs an integer and when that integer

80

arrives at at the other client, it knows it can read the data from the AGE window.

Matrix The format of a Matrix is as follows:

o Number of rows in Matrix (integer).
o Number of columns in Matrix (integer).

o Each of the rows X columns entries (integers).
An example of a Matrix is the adjacency matrix for the Graph in Figure 34:

4
4
0110
0011
0001

1000

Header File Contents The header files contains the I/O sequences for the application.

Their format is defined as follows:

1) #INPUT

2) Number of Necessary Input Sequences (at least one)

3) An integer string of length 10 where each digit describes the number of
needed: Integers, Floats, Words, Graphs, File Names, Environment Data,
and Matrices

4) #OUTPUT

5) Number of Output Sequences (always one)

81

6) An integer string of length 10 where each digit describes the number of
ountput: Integers, Floats, Words, Graphs, File Names, Environment Data,

and Matrices
An example header file would look like the one for connectivity.hdr:

#INPUT

1
0000010000
#0UTPUT

1

0000010000

From this file example, the Connectivity client can receive only one AGE GRAPH as input.

It outputs one AGE GRAPH.

B.D Application Registration

If the user chooses, he may create his own catalog file. By using one of the available
UNIX file editors (vi, emacs) the user may design his own catalog that should look very
similar to the given example. In the same manner, the user may create a header file for an
application.

The user may also define a new application into a catalog by pressing the “ObjEdit"
button in the Control subwindow. Upon pressing the button, a window appears called the
Query Bor which prompts the user for information then saves the results to the current

catalog. See Figure 35. The questions in the Query Box are self explanatory and the user

82

Fig. 35. Query Box

always has the option of exiting the procedure. The questions asked are sufficient to add a

new application to an already existing catalog and create a new header file.

B.E Application Input

If an application wishes to receive input, it must do so through standard input. The

application’s Communication Agent will send it the data when the application is allowed

to execute. The application must read all data elements in the order of the described

sequences. Likewise, all abstract data will be sent in their format described previously. For

example, if an application wishes to read in the input sequence:

3000011000

the corresponding C code would look like:

facanf (stdin,

facanf (stdin,

fscanf (stdin,

fscanf(stdin,

fecanf (stdin,

"%d", kinteger1);

"%d", kinteger2);

"%d", tinteger3);

"%d", tenvsemaphore);

“%d", &rows);

83

fscanf(stdin, "%d", &columns);
for(i = 0; i < rows; i ++)
for(j = 0; j < columns, j++)

fscanf(stdin, "%d", &matrix[il(j]);

B.F Application Output

If an application wishes to transmit data, it must do so through standard output. The
application’s Communication Agent will receive the data when the application transmits
it. Each data element must be followed by a “\n” in order to separate individual elements.
The application must transmit all data elements in the order of the described sequences.
Likewise, all abstract data must be sent in their format described above. Once the data has
outputted all the data, it must perform the system call “flush(stdout)”. This command will
flush the standard output channel so the Communication Agent can read it. For example,

if the application wishes to output the data sequence:
0201100000
the corresponding C code would look like:

fprintf (stdout, "%f\n", floatl);

fprintf (stdout, "%f\n", float2);

fprintf(stdout, "%d\n", numvertices);
fprintf (stdout, "%d\n", numedges);
fprintf(stdout, "¥%d\n %d\n", vertex0, vertexi);

fprintf (stdout, "%d\n %d\n", vertexi, vertex2);

84

fprintf (stdout, "%d\n %d\n", vertex2, vertex0);

fprintf(stdout, "¥s\n", filenamel);

fflush(stdout);

B.G Application Self Loops

If the user wishes the application to stay in the animation digraph after it has been
completed once, he or she must place it in some kind of loop. If the loop is not available,
the next time the application executes it will terminate. Only the looping behavior of an

application will prevent it from leaving the animation digraph before the user wishes.

85

APPENDIX C

I/0 MASTER CREATION

The I/O Master is composed of three computational hani the Ce d Router,
the Environment Liaison and the Output Dispatch. The Command Router receives the
interface commands along with the client information and the needed client data. The
notification of special events are sent back to the interface. The Command Router sends
the needed client data to the Environment Liaison and gets back environmental status
information. It sends the client information to the Output Dispatch. The Environment
Liaison sends requests to the animation environment and gets back user suplied data and
special device events. The received data is relayed to the Output Dispatch where it is sent

to the Communication Agent of the client needing input data.

C.A Command Router

The Command Router receives all communications from the interface and distributes
the information to the Environment Liaison or the Qutput Dispatch. Its purpose is to
communicate with the main interface and route the received commands to the proper des-
tinations. Like the Communication Agent Input Reception, the Command Router blocks
the I/O Master until a message arrives from the interface. The message is immediately
interpreted and sent to its proper channels.

Most of the code for the Command Router has been supplied in the file “CommandIn-

terpreter.c”. This file acts as the “main” for the I/O Master. It creates connections to the

TABLE III

Major Functions of CommandInterpreter.c

86

Function Description
main Hook up to Animation Environment and Interface,
enter into polling loop.
initCIC Become an internet socket client to the interface.
initIclient Socket connect routine for initCIC.
enterInterfacePoll Enter I/O Master into polling loop.
interfacePoll Polls interface socket and Environment sockets
for incoming messages.
set Timer Sets the timer used for the select command.
setFds Tell the select command to poll the interface and
animation environment’s sockets.
handleInterfaceC: ds | Process messages from interface.
handleClientConnect Hook up to Ci ication Agent of envi
client and get data from the animation envi t
getNeededInput Tell the Environment Liaison to get data and
relay it to the Output Dispaich.

algorithm animation environment and the interface then goes into a polling loop where it

d

check for messages from the interface and the animation envi Once a

comes through it relays the message to the Environment Ligison or the Qutput Dispatch.
Return controls to the polling loop were the I/O Master stays until needed again.

The break down of the major functions in CommandInterpreter.c are given in Table ITI.
When the reader is creating a new I/O Master he or she will only have to change those

parts involving the Environment Liaison.

C.B Environment Liaison

The purpose of the Environment Liaison is to act as a client to the desired animation
environment. The needed client data is translated into requests and sent to the environment.

The results of the requests are sent back to the Liaison and relayed to the Qutput Dispatch.

87

TABLE IV

Major Functions of AGELiaison.c

Function Description
AGEConnect Ci the I/O Master to the AGE environment.
AGEEvent Receives a message from AGE and reports it to
Command Router.
get AGEInt Get integer data from AGE and send to Output Dispatch.
getAGEFloat Get floating point data from AGE and send to Output Dispatch.
getAGEWord | Get word data from AGE and send to Qutput Dispatch.
get AGEGraph | Get Graph data from AGE and send to Output Dispatch.
getAGEFilename | Get file name from AGE and send to Output Dispatch.
get AGESys Get system data from AGE and send to Output Dispatch.
get AGEMatrix | Get Matrix data from AGE and send to Output Dispatch.

The Envi Liaison i with the animation envi according to the
environment’s methods.

The Reader creating a new I/O master will have to create most of this code. An example
from the AGE environment is given in “AGELiaison.c”. The connection instructions to the
AGE animation environment are included. The code also contains instructions how to
get each type of data from the animation environment and how to send it to the Qutput

Dispatch. The breakdown of the major functions of “AGELiaison.c” are given in Table IV.

C.C Output Dispatch

The purpose of the Output Dispatch is to connect with the Communication Agent of
the client needing input and transmit data to it once the information arrives from the En-
vironment Liaison. Unlike the Output Dispatch of the Communication Agent, information
is sent to only one connected Communication Agent at a time. If the I/O Master retrieves

information for the same client at a later time, it does not need to reconnect with that

88

TABLE V

Major Functions of QutputDispatch.c

Function Description
clientNotConnected | Returns true if an input client is not connected.
newClient Creates a connection to a Ci ication Agent.
addClient Add a new client connection to an internal list.
sendMessageData | Takes the data from the Environment Liaison and transmits
it to the client’s Communication Agent.

client’s Communication Agent.

Most of the code needed for the Output Dispatch is already supplied in the file “Output-
Dispatch.c”. In fact, because its routines are called by both the Command Router and the
Environment Ligison and calls neither, no code should have to be rewritten. The Qutput
Dispatch keeps a list of all the clients it has attached to so it does not attach to the same one
twice. Otherwise, it receives commands to connect from the Command Router and receives
data to transmit from the Environment Liaison. The breakdown of the major functions of

“OutputDispatch.c” are given in table V.

89

APPENDIX D

GLOSSARY

Agent Information Data group of Object Table ining ion infe ion about

each Communication Agent and its child applications.
Animation Digraph Basic interface input consisting of a directed graph.

Animation Display Area Mini handler in User Event Handler which controls events in
the Animation Display Area of the interface which reserves an area for the display of

an algorithm animation environment.

AGE Animated Graph Environment. Algorithm animation environment created at Texas

A&M University by Abello, Sudarsky, Waller and Veatch [1].

Balsa One of the first algorithm animation environments created at Brown University by

Marc Brown [3].

Bitmap Rectangular array of pixels, where each location contains an On/Off state for that

pixel [2].

Biconnected Component A subgraph that does not contain any vertex whose removal

will disconnect the graph.

Bulletin Board Internal hanism of Cq ication Agent that stores received infor-

mation and judges tabl dition of child application

90
Canvas Mini handler in User Event Handler which controls the events in the Canvas sub-
window which displays the interface animation digraph.

Catalog File used by interface to store essential information pertaining to each application

registered with the interface.

Catalog Loader interface tool used to query user for desired catalog to be used in inter-

face.
Command Router Internal mechanism of Communication Agent which controls its de-
cision making.

Command Router(I/O Master) Internal mechanism of I/0 Master which receives all
communications and distributes them among the other I/O Master internal mecha-

nisms.

Communication Agent Fund tal el t of interface connecting the interface and

an application process.

Communication Digraph Internal soft r ion of in ¢ ica-

tion network described by interface animation digraph.

Control Mini handler in User Event Handler which controls the events in the Control

bwindow which ipul the state and status of animation digraph.

Connected Component A subgraph such that for each pair of vertices, v and w, within

the subgraph, there exists a path from v to w.

Edge List Data group of Object Table containing edge information of the animation di-

graph.

91
Environment Liaison Internal mechaunism of 1/0 Master which acts as a client to the
desired algorithm animation environment.

Error Box Mini handler in User Event Handler which receives and displays the error

messages from other internal interface elements.

Exec Overlays the calling process with the named file, then transfers to the entry point of

the core image of the file [12].

Fork Creates anew process. The new process (child pracess) is an exact copy of the calling

process [12].

Header Information Data group of Object Table contaming all input and output se-

quences for each interface application.

Input Reception Internal mechanism of Communication Agent whiclt monitors all lines

of communication to the Communication Agent.
Interface Animation Digraph Basic interface input consisting of a directed graph.

Interface Communication Commnunication engne for interface with Communication

Agents and /O Masters.

I/O Master Fundamental element of interface linking the algorithm animation environ-

ment with the interface.

LAD Laboratory for Algorithms Design. Computer laboratory where this interface. AGE

and many AGE animations were created.

Launching Procedure Subgroup of Object Table that forks and execs all Communication

Agents.

92

Menu Bar Mini handler in User Event Handler which controls the events in the Menu Bar
subwindow which enables the user to return to Unix and supplies helpful interface

information.

Moving Object Data group of Object Table containing visual information concerning the

icon rep ion of applications in the animation digraph.

Object Table Internal global data base for interface.

OQutput Dispatch Internal hanism of C ication Agent to relay information to

all other Communication Agents.

Output Dispatch(I/O Master) Internal mechanism of I/Q Master to send received data

to executing algorithm animation.

Planarity An algorithm to test if a graph can be imbedded on a plane such that no two

edges of the graph intersect [5].

Pipe A facility of Unix that provides a one way flow of data usually from one process to

another on the same machine.

Query Box interface tool used to query user for information concerning executing infor-

mation for an interface application.
Scripts A recording of a user session with an algorithm animation environment.

Sockets A facility of Unix that provide two way flows of data, across the internet, usually

between two processes.

Stdin Default input process data channel.

93

Stdout Default output process data channel.

Tango One of the first algorithm animation environments created at Brown University by

John Stasko [10}.

User Event Handler Receives visual events from X Window Manager and distributes

them to the Object Table and interface Communication.

94

VITA

Christopher Roda grew up on the East side of Cleveland Ohio. He received his Bachelor
of Science Degree in Computer Information Science in 1989 from the Ohio State University
in Columbus QOhio. In continuation of his education, he finished his Master of Science in
Computer Science in 1992 from Texas A&M University in College Station Texas. He plans
to pursue his fortune in the area of computer animation. Christopher Roda can be reached
at his email address croda@cs.tamu.edu. His permanent address is 35985 Timber Ridge,

Willoughby Ohio, 44094.

