
A GRAPHICAL INTERFACE FOR THE

INTEGRATION OF ALGORITHM ANIMATIONS

A Thesis

CHRISTOPHER JAI&IES RODA

Submitted to the Office nf Graduate Studies of
Texas AS=M Hniversity

in partial fulfillment of the r«luirements for the degiee of

MASTER OF SOIEVC'E

December 199'2

Major Sub]ect: Computer Scin&re

A GRAPHICAL INTERFACE FOR THE

INTEGRATION OF ALGORITHM ANIMATIONS

A Thesis

by

CHRISTOPHER JAMES RODA

Approved as to style and content by:

James Abe o
(Chair of Committee)

Paul Nelson

(Member)

Thomas Linehan

(Member)
Richard Volz

(Head of Department)

December 1992

ABSTRACT

A Graphical Interface for the

Integration of Algorithm Animations. (December 1902)

Christopher James Roda. B. S. , The Ohio State Vniversitv

Chair of Advisory Committee: Dr. James Abello

Recently, the computer science community has seen the emeigenre of several algonthm

animation systems created to help in the understanding of algoiiihmic principles snd ierli-

niques. Examples of such systems are AGE, Balsa and Tango. IVith time. algoiitluns lieve

become more and more complex. They tend to 1&e quite i»terelateil and their implementa-

tions may be distributed over multiple machines. Ender these circumstances, a need has

arisen for an easy to use interface that allows the user to express and control diferent le&els

of algorithmic interactions.

This thesis proposes a graphical interface that fa& ilitates the integratioii of previously

defined algorithm animations and other animation independent applications. Since mnd-

ularity has been regarded as an essential design piinciple, each of the 1&asic o1&jeer~ the

interface manages has been categorized associated ivith a set of well defined operations.

From the user's point of view, our graphical interface behaves as a grapli ed&to& ivhose

vertices correspond to previously define&1 appli&ations an&i the edges coiiespond to the flow

and progression of data among them.

From the internal perspective, five nitities compose a three layered communicatioii.

The first layer consists of a User Event Handler. aii Object Table. and several Interface

Communication mechanisms. These eutities form a triangle comprisiiig the founilatioii oi'

the interface. The middle layer consists of several Commumcation Agents v:hich receive

instructions from the foundation, manipulate child application processes and transmit data

amongst each other. Finally, several I/O hlasters converse ivith application processes.

Communication Agents and the foundation and act as the lmks between different animation

environments and the interface.

A prototype for this interface has been created on I'XIX i«ith the X Window environ-

ment using the OSF/Motif toolkit. The soui ce i oile ivas ilevelope&1 using i he C++ language.

and Sun Spare Stations were used.

One of the main contributions of this work is tlie intei face methodology. It ena1&les

user events to interactively manipulate anil monitor the communication auiong pievionsli

defined processes. This is achieved with the assistance of a specialized ilatal&ase anil a

process communication tool.

We believe this effort provides a useful set of principles ivhi&. li can he used to guiile the

design of interfaces whose main function is to proviile a link hctwe»«dilfeient algoiithi»

animation systems and other applications.

ACKNOWLEDGMENTS

This thesis is the result of many long hours of work spent by many people and I would

like to thank all those who helped and those who I have failed to mention. Thanks! I

couldn't have done it without your help.

I would especially like to thank Dr. James Abello for his encouragement aud many

late night hours spent for this effort. Likewise, I would like to thank my other committee

members Dr. Paul Nelson and Dr. Thomas Linehan for their consistent patience and

support.

Special thanks goes to the UNIX gurus Craig Smith. . Jeff tyallei and Ron The&sault

whose expertise helped me through the most &lillicult Unix p«zzles Likewise, appieciatioii

goes to Andy Dennis for insight on the delicate nat»ie ol' bi&i»aps. A special thanks goes

to Tim Veatch for his help with AGE and all the AGE &lie»t creatois: Lucero Torres. Don

Sonom, Craig Smith, Beats. Bloch, and Matt Ifernek, for their valuable contril&utions,

I also thank Dr. Abello, Craig Smith «nd Shairn Cai lotv ivhose reviews of preliminary

versions of this document greatly improved it~ &on«»it a»il &&»debility.

Finally, I am very grateful to my parents an&1 &lie aiig. G&eg Schmidt. Andy Dennis

and Shawn Carlow for their seemingly endless moi al support an&i especially Ha Nguyen ivho

provided the strength, love and light to carry me through mv darkest hours.

TABLE OF CONTENTS

Page

ABSTRACT

ACKNOWLEDGMENTS

TABLE OF CONTENTS Vl

LIST OF FIGURES 1X

LIST OF TABLES Xl

CHAPTER

I INTRODUCTION . .

I. A Motivation

I. B Approach

I. C Implementation

I. D Related Work . .

I. E Thesis Outline

II INTERFACE EXTERNAL VIEW 10

ILA Interface Access

II. B Sample Session

II. C Administrative View

III INTERNAL DESCRIPTION 'lo

TABLE OF CONTENTS (CONTINUED)

CHAPTER PAGE

III. A Global Interface View 20

III. B Levels of Interface Communication 22

III. C The First Level of Interface Communication 2Q

III. D The Second Level of Interface Communication

III. E The Third Level of Interface ('ommunication

IV CONCLUSION .

IV. A Results

IV. B Future Enhancements

REFERENCES

APPENDIX

A USER MANUAL . .

A. A Interface Access

A. B External View

A. C Menu Bar .

A. D Animation Display Area

A. E Control

A. F Canvas

A. G Error Box i2

B APPLICATION RECISTRATION

TABLE OF CONTENTS (CONTINUED)

CHAPTER

B. A Needed Information

B. B Catalogs

B C Header Files

B. D Application Registration

B. E Application Input,

B. F Application Output

B. G Application Self Loops .

C I/O MASTER CREATION

C. A Command Router

C. B Environment Liaison

C. C Outpnt Dispatch

D GLOSSARY

VITA

LIST OF FIGURES

FIGURE Page

1 A Simple Animation Digraph.

2 A More Sophisticated Animation Digraph

3 Interface Appearance Upon Invocation

4 Interface with AGE Animation Digraph

5 A Sample AGE Animation Digraph

6 Catalog Loading Menu

10

18

7 Query Box 10

8 Global Interface View

9 AGE Interface View

20

21

10 Interface With AGE Animation Digraph '22

11 The Three Levels of Interface Commnnication

12 The First Level of Interface Communication 25i

13 Internal Interface lilessage Flow

14 Interface Status Manager 20

15 Object Table Entry Information Flow

16 The Second Level of Interface Communication

:30

17 UCA BuHetin Board 37

18 Multiple Process Interaction

19 File Input and File Output

. '38

-10

20 The Third Level of Interface Comnninication

LIST OF FIGURES (CONTINUED)

FIGURE PAGE

21 Interface Appearance Upon Invocation oo

22 Menu Bar 5(i

23 Unix Access Menu 56

24 Interface Information Menu 57

25 The Control Subwindow. . .

26 The Agents Submenu

27 The Sysload Popup Window

5x

(s0

28 Query Box

29 File I/O Submenu

30 File Load Window

(r3

(id

31 Interface Status Manager 57

32 Animation Digraph Icon Menu

33 Catalog Loading Menu

34 Sample Graph

35 Query Box

LIST OF TABLES

TABLE Page

Icon Color Status

III

Format String Decomposition

Major Functions of Commandlnterpreter. c

ig

IV Major Functions of AGELiaison. c

V Major Functions of OutputDispstcinc

CHAPTER I

INTRODUCTION

I. A Motivation

Recently, the computer science community has seen the emergence of seve& al algorithm

animation systems created to help in the understanding of algonthniic piinciples and tecli-

niques. Systems such as AGE created by Abello, Su&laisl&y. Veatch and Wailer [Ij, Tunryo bv

Stasko[10) and Balsa ff by Brown [3j have control&uted signifi& antly not only to the teaching

environment but also to the research couimunity As these systems liave become more avail-

able, a. large number of algoritlim animations have appeared With time. algoiitluus have

become more and more complex and they tend to be extiemely inteielated aud possibl«lis-

tributed over multiple machines. With this in mmd, r& pouierfol hot simp?& tr& v & yiopl«r nl

interface is needed to express and control diffr i& nl ?riel& r&f r&tgr&r&tt«u&r n&tr ir&rtions.

To understand the duties of such an interfare, it is important to ask the followiug

questions:

1. How can this interface be designed to niaxiuiizc ease of user

2. What can the interface provide for fast creation of algoiithni animatious&

3. If there is to be communication of data, u here is the data. conung from aiid ivlier&. »

it going to?

Answers to the previous questions define the desii&d niteiface bchaiior and tills Ill Llllll

Journal model is IEEE Transactions on C'r&iiqiotr r&

Answers to the previous questions define tire desired interface behavior and this in turn

determines the objects that such an inteifare must nianipnlare.

The design of the interface reflects these duties in its miplementation. A novice user is

able to operate the interface and its available tools with little or no trainmg. To achieve

this, the interface is self defined with informational labels, help windows and easy ro follow

instructions to help the user integrate previously deline&1 algorithm animations. WVhile &lie

interface is structured to guide the user along each step of an interactive session, skilled

users are not hindered by the aids.

The effectiveness of the interface is judge&1 on how "quicl lv" it operates. This is a

chaBenging factor since the interface ivoul&l most probal&lv interact with a local netwnih

and the operational time is thus controlled bi &lie n& tivnil r nviionment. In consideration

of this fact, the interface needs to be designerl tn minimize the ivaiting time for any netivork

operation. Operations that force the useis tn ivait mnie tlian a feiv seconds diminish the

effectiveness of the interface.

I. B Approach

Our method, to provide some ansivers tn thr rh rile&&«1&nsnd hy the rusk of designilir'

a user friendly interface to integrate algorithm animations, is to classify the basic objects

that have to be dealt with. Each object has a set of ivell defined operations associaterl

with it. The objects are categorized into algorithm air&ms&rot& env»onments. algo»thm

animations created to execute undei those environmr nts (cli&nts). an&I otlier eiiviroiiment

independent applications. Examples of the latter iiiclu&lc applications needed for input.

output and visual display. Communicated &lata may come from a keyboard, an input file. a

visual display device, an algorithm chent or other application. The destination of tin data

may be to output files, other animation chents. applications. visual displa) s or to hard ropy

devices.

Our approach is to represent a typical interface input as a directed graph, called liere-

after an interface animation &figruph, or simply an animation digraph [I]. An animation

digraph is composed of vertices and edges. Each vertex has an (animated 1 iconic visual rep-

resentation and has an associated set of specified internal processes. The edges connecting

the icons correspond to directional flows of &lata, from one pioress to another and represent

the schematic order of sequential execution. Tlie arro&is on t lie edges inrlicate the dire&tron

in which data flows along the paths.

The main task of the interface consists of interpreting an input animation digraph.

activating the processes associated with each icon. an&i providing the necessary structures

to guarantee the assigned task is to be completed surcessfull& or to be aborted gracefullv in

case of abnormal conditions. Upon execution. the interface parses the animation digrapli.

identifies its associated objects, prepares a crirrr ms»irnt inn iliprn plr for those objects. invokes

the corresponding processes and places them in an & xerutio» ii siting state.

The interface behaves both in a batch and on-lin&»&armer Thr usm. ivith rhe belli ol

the graphical interface, is able to compo~e an animation rligraph using previously defined

objects. The interface creates an interprocess comm»&rica&inn niechanixm in such a wa& that

an animation digraph can be added to, suhtrarte&l from, or 1&x exe&utioii can be started anrl

stopped at any particular time. In summaiy. the nser has the aliilitv io inteiact witli an

animation digraph, controlling its execution, termination an&I configuratron.

The user may select any icon as the initial vertex ivithin the animation digraph, Ex-

Fig. l. A Simple Animation Digraph

ecution starts at some internally selected icon's piocess. Once this process terminates or

transmits data, control is transferred to the set of selectcil processes associated ivith tlie

neighboring icons. If data is passed, the information is deliveied to the set of selected icons.

Execution continues as long as there is a coutrol or ilata p. ith to lie folloived. The user mav.

however, terminate execution at any time.)Vheu the ani»iatioii iligrapli finishev, the usei

may work with a different animation iligraph or leave the interface.

A simple scenario demonstrating the basic function of the interface is shoivn in Figure l.

In this scenario, four icons, -skank", are con»ected in i iin" fa~liio» inil a fifth oiie, "Duile"

is connected to only one of the first fonr. Each of the four icons ii pi& v& nts a process that

inputs an integer value. computes some intcgei function nf tlie give» value, and outpnts

the obtained result. The purpose of the fifth process is to st»it tiie animation digraph hy

supplying the first process with an initial value. Vpo» receiving the animatioii digraph,

z
CannlnCt, iVitg BiC0nneCt iV it, g P

lazar

i thJ

Fig. 2. A More Sophisticated Animation Digraph

the interface parses it, identifies the executable pro&esses and constructs a comnnmi&ai. ion

network that will service the digraph. The nser begins execution by selecting tlie fif&h

process. The fifth process sends a value io tlie first one &vhith then computes an iuteg& i

function of it and sends the result to the second process. This in turn sends its result io

the third process and so on until progression reaches the first. The first receives the data

value and continues with the loop. The loop &vries until ihe use& te»ninates execution. All

information passing and the sequencing nf executing processes is handled liy the inieifa«

A more pertinent example of the tool's capability is &lemonsirate&l iu Figurc '2. In &his

scenario, a chain of processes (Connectiv&ty. Biconnectiv&ty and Planarity [5]) is liuke&i

to pass information which is displayed by an algoiutbnnc animation environment. Iu ibis

example the environment is AGE [I] AGE is a soft&var& environment for creatmr»i&&I

interacting with visual displays of gialih-tli&oieii&ul con&el&is. Each AGE;&nimation &i

considered an AGE client. In this case. tlie en&1 nsei must snpply an AGE gl'aph to be use&1

with the Connectivity client. The Connectivity client linils the connected components of

the AGE graph and passes them to the Biconnectivity client ivhich finds the biconnecieil

components. Biconnected components are passed to the Planarity client ivluch tests each of

them for planarity. When each of these clients takes coutrol, its corresponding AGE results

is displayed in the AGE window.

I. C Implementation

The prototype for this interface is createil above Unix ' on the X Window System

Unix was chosen because it provides a reasonably poi table enviionment such that soft&vere

can be integrated from one environment to another with oulv inodest modif&rations[12].

Other operating systems may be capal&le of performing smiilar tasks as Unix but spenfic

Unix functions are invoked by our current interface implemrsiiation. The X Windoiv System

is comprised of the X protocol, which interprets data streams from applications, and the

X display server which performs the tasks requesteil by X clients. ivritten using Xlib C

routines [2]. The X Window System is intended to be portable like Unix thus promoting

its use in a, heterogeneous networl' of machine~.

The interface was constructed using the OSF/hlotif Toolkit s ivhich is layered on iop

of the X Windows platform. Motif is a very popular and iivll I noivn interface toolkit ivhich

helps create easy to identify interface objects anil tools. The large hfotif object libra&&

was instrumental to the creation of some of the more sophisticated tools and objects of the

interface.

UNIX is a registered trademark of AT 4 T.
The X Window System is a registered trailem»rk of the hfassachussetts Institute of

Technology.

Motif is a trademark of the Open Software Foundation.

Through this work, it became clear tliat object oi iented tech uques are the logical choice

to express the relationships among the d&fferent objects this interface manipulates. Thus

C++ was the natural selection of language. The object oriented nature of the Motif Toolkit

blended in naturally with the C++ classes of the interface. The interface was nnplemented

on Sun SPARC Stations™. If the interface &s desired to execute on other platforms.

the code will need to be re-compiled. The conditions for re-compilation include the Unix

platform, and the X Windows and Motif libraries.

I. D Related Work

The main objective of this work is to provide an interface that helps the user to in-

tegrate previously created algor&thm animations and animation indeJ&cadent applications

easily. An effective demonstration on algorithm animation creation is provided by ACE

developed by Abello, Sudarsky, Veatch and Wailer [I] and . John Stasko's Tango Algor&thm

animation systems [10], Algorithm animations are broken into three components: the al-

gorithm component, the animation component. and the mapping component. By creating

an editor for each of these components, one is al&lc io trente aiiimations in a reasonal&li

manner. A similar &onceptual approach is ial en by Siiilarskv [11]. She J»ovides a libraiy

of algorithmic animation primitives to help nseis program algoiitlim animations quickl&

and easily. Both AGE and Tango are influenced by a siinilar system called Balsa 11 hy

Brown[3]. Balsa II, one of the first systems to illustrate algorithms. piovides a dyuainic,

interactive environment that helps to display a iviile iange ol alronthms and data structures

for animation.

From the user's point of view, a graphical interface as ive piesent it in the followiiig

SPARC Station is a registered trademark of Sun kliciosvstems. Inc.

section behaves as a graph editor, where the vertices correspond to previously defined

applications and the edges correspond to tlie flow and progression of data among them.

Several questions concerning graph editors are addressed by the EDGE system created by

Paulisch and Tichy [9]. Some of the issues tackled aie automatic graph layouts, graph

abstractions. adaptability and persistence of graphs.

Modularity is regarded as an essential design principle for graphical software packages.

Thus, several graphical interface creation tools have been examined for guidance. The Gar-

net system, created at Carnegie iVlellon, manipulates high and low level interface tools [i].

The important low level tools consist of a prototype-instance object oriented programming

system, a constraint system, a graphical object system and an input liandlmg system. Other

efficient interface design tools are Interuieu s created liy Linton. Vlissedes and Calder [6] ai«l

Forms created by Mare Overmars [8].

A good example of how an interface, like the one &ve are to propose. is to look and feel is

the Ezplorer environment created by Silicon Graphics [4]. The interface tools provided are

a distributed execution map, a map editor, a module oi pi ocess librarian. and s datascribe

where the user can control the format of ear h modiil&'s in pe& and on& pn»

One of the main algonthm animation tools ivorkcd ivi&h is the AGF. environment [1].

AGE is an effective distributed animated graph environment. It is process oiuented and bnilt

of multiple processes [14]. It makes effecti&e use of intei process communication. The ivork

done by Sudarsky [11] provides a set of algo»thmic piumi& iv& s that can be use&i as building

blocks for larger animations and algorithms. Any intm face &liat integia&es an&i & mitiots such

algorithmic networks must lie conceptually somewhere in bet&veen t lie algor&thm&c piumitiv& s

and the animation system.

The entire development of AGE and this proposed interface has iieen done in &lie L«l«

oratory for Algor&thrr&s Design(LAD) in the Computer Science Depaitment of Texas A&tkl

University. AGE is currently being used as an instructional tool for several graduate and

undergraduate classes. Amongst being part of the research being done at the LAD. AGE

acted as the testbed for this interface development.

I. E Thesis Outline

The next two chapters are dedicated to the &lesciiption of the external and internal lip'ivs

of the interface.

In the first part of chapter II, tlie reader is tal mi &l»ongli a typical interactive sessioii

that goes through the main steps from the access of the interface to its &eimination. The

remaining of chapter II describes the administrative vieiv of the intei fare for those u ho ivish

to register new applications with the interface.

Chapter III contains a top down description of the three levels of internal inteiface

communication.

Chapter IV includes a discu~sion on the mai» lrssoni learned &1»riiig the &le&eiopmisii

and implementation of this interface. Futi»e in&& i far«iiliaiiremmi&s, iic also proposed in

this chapter.

For completeness, we have included seveial appendices. The hrst appendix is the user's

guide to the interface. Full descriptions of the inteiface tools an&I beiiaviors are mcludeil.

The second appendix contains the specific &le&ails of applica&ioii i&gistiation with the iii-

terface. A template and requirements foi I/O hlast&is a« i&i&luded The last appen&iix

contains a glossary of terms introduced aud used in i liis & hrsis.

CHAPTER II

INTERFACE EXTERNAL VIEW'

Menu Bar Urus Aeons Inuufaro Informers n

Agon Consol

~gus I/O

~oh&ada

fg ~ «a
Oa nrs

Enor Boa

rngraph Consol

nraaw rngraph

Cugraph Clear

Chgraph Seep

Tools

Wuuloo Manager

Swws Manager

Cares

Fig. 3. Interface Appearance I'pon Invocation

Before describing how the interface ivorks internally. it iu neceshaiy to desciil&e holy it

looks and behaves externally, (Figure . I). The first portioii of this l liaptei goes through, i

typical interactive session. The reader is taken thiongh all of the steps from accessing the

interface to the termination of a session. The sample session flemonstrates the behavior ol'

the interface and gives the reader enough infoim«tion to construrt his oi her own a»ini«tion

digraphs and execute them. A full user's manual is supplied in the Appmidix.

The second portion of the chapter desriabes the administrative aspects of the inter-

face. The information needed by the interface to manipulate an «pplication is discussed.

Descriptions of registration tools are also given.

II. A Interface Access

We assume the user is logged onto a computer that is running under the llnix operating

system, and is operating inside the X Windoivs environment I'&om a rommand interpretei

window, the user can change the current &liiertoiy to the d»erioiy where the mterfare

executable resides. The Interface is invoked by calling the executable name "IntApp'.

After a few seconds of processing, the interface ivindow shonl&1 appear and look similar to

Figure 3.

The interface is laid out in a simple. easy to use fashioii lt is biol'en into fi&e visual

components: the Menu Bar, the Animation Displav Area. the I'ontiol, the Ca»vas aiul th&

Error Box.

II. B Sample Session

To demonstrate the behavior and ai&ilitv of the interface. ive shoiv how an animation

digraph is created, executed and terminated, AGE belia&es «s the algor&thn& «uimatio«

environment. In this example, the AGE clients composi&ig i lie animation digraph are Goli-

nectivity, Biconnectivity and Planaaty. Exec»tion of the animation digraph starts ivith tli&

Connectivity client.

Unix Accus inrcrfacc infonnsntn

Graph Animation

~Q&ut 0 Draw C3 Client Operauon Spefd~~
~OPdong ~Repeat ~Hetp ~Print ~Redraw ~Store ~Load ~Delete ~Undo

Agent Can nol

~etio VO

~Oh&stat

o ~*y
OR ass

rngraph Connol

Eaccntc Digraph

rngnph Ctcar

ntgnph Stop

Tools

Wndo Managm

Snnrs Man gcr

Aox

Connecuvu Plananiy

Icon ~leon

Biconnecuvtt
Icon

Enolsoa ~

Fig. 4. Interface ivith AGF. Animation Digraph

Connectivity is an AGE client that ieteives an ACrE Crlapil. finds al! of ils rot&nfrfrr/

components and then displays the first to the AGE &tint lotv. A connected component ih a

subgraph such that for each pair of vertices. v and w. tvithin the su1&graph. there exists a

path from v to w. The connected components are sent to the Biconnectivity clieut ivhere thf

6iconnected components are found. A l&iconnecte&l component in a cminected sul&grapli that

does not contain any vertex whose removal itill diaconnect tlie glaph. Each 1&iconiiectef1

component is then sent to the Planar&ty client. The Plena& ity clieut takes a biconneclefl

component and tries to imbed it on the screen in sucli a way that no two edges inteisert.

The animation terminates when the executioii of the planar&ty client is completed. The

interface indicates termination by stopping the an&mation digraph &cons.

In what follows, the reader &s shown how to generate an ammation d&graph that looks

similar to the one displayed in the Canvas subwindow of Figure 4. Once the animation

digraph is created, the reader is shown how to execute it. The results of the execution

are included. After the animation has concluded, the user may choose to terminate the

animation digraph and leave the interface.

II. B. 1 Animation Digraph Generation

There are two steps to generate an ammation digraph: process invocation anil i»teip«&-

cess connection. To invoke a process. the user presses the "Agents" button in tlie (''o»tiol

subwindow and choose either the "Environment". -Client" or "Executable" selection ivii h

the right mouse button from tlie new nienu that pop~ up. Fpon selection. the user is g&ven

an Exec Box to choose an available machilip '&lid appliratio». O»re tlieses choices are lljadc.

the user hits the "Execute" button in the Ex«Box Th& I. xe&. Box &li&appears a&id after

a few seconds, an icon for the applicatio» pro&eau app& are i» tlie C'a»vas sul»vindow. In

our case, the icons correspond to ACE. a»d to ('o»ne&ti&itv. Bicoiine& tivitv an&I Planari»

clients. An icon can be moved within tlie ('a»vav hy p&ex~i»g it ivith the left mo»se butt»»

and dragging it to a new locat&on.

Execution of the AGE application is arhi& veri hv liitt&»o t li& ". tge&its" hiitto» folio»«l lii

the choices of "Environment". "Maclune". anil "ACIE" and thmi i&it t&ng the execute huitoii.

The AGE window appears in the Animation Display Area an&I the ACIE icon appears i» tli&

Canvas. The user then moves the AGE icon to the iippcr pait of the Canvas. Once AGlt

Fig. 5. A Sample AGE Ammation Digraph

is invoked, the user invokes the Connectivity, Bi&onnectiviti and Planaisty clients. This

is done in the exact same fashion as desmibed sliove except "('lient' is chosen mstea&1 of

"Environment". The user may space out the icons in the (. 'anvss for visual claiitv.

Once the application processes are invoked, the user cieates the process connections. A

connection is made by pressing a source icon ivith the middle mouse button. The mouse

pointer is then placed over a destination icon ivhi&h is pr&ssed ivith the miildl& tnouse

button. A directed edge appears an&i connects th& sniirre icon nith the dest&natton icoii.

In this example, the user creates connections from Connectivity to Biconnectivity and from

Biconnectivity to Planarity. The animation digraph is coiupl&te an&i it looks similar to the

animation digraph in Figure 5.

II. B. 2 Animation Digraph Execution

Once the animation digraph is generate&1 ii can he ex&cut«1. A process is set as the initial

process by selecting the corresponding icon ivith tlie left mouse button. The initial progress

icon frame then turns yellow. The User presses &he Connectivity icon io initialize ihe

animation digraph. The animation digraph can now b& execute&i hv pressing tlie "Execute

Digraph" button in the Canvas subwindow.

Before allowing the Connectivity client to execute, the AGE server will queiy the user

for an AGE graph. The user presses the AGE message area with the right mouse button

selects "Done", creates an AGE graph and then hits the "Grapli Entered" button. After

this sequence of user actions, the Connectivity icon starts to animate and the Connectivity

client starts in AGE. To operate the Connectivity client, the user hits the -Connectivity"

button in the AGE window. When the client is compl«e. the AGE "Show" button is

pressed. With that sequence, the Connectivity icon stops anin&a&iug and the Bicouuectiviiy

icon starts. To start the Biconnectivity client in AGE, the user presses the -Biconnectivity"

AGE button. When finished, the user presses the "Show" AGE button. This ivill stop the

Biconnectivity client and start the Planarity client Pressing the "Planarity" button i«

AGE executes the algorithm. When the algorithm finishes. the user cycles through the

AGE clients by pressing the round arroiv AGE button iinl il &lie ivoal "IO Ilaster" appears

The user presses the AGE button that savs -Algo&«hm Complete" The plananty Iron

stops animating and the animation digraph is con&pl &e.

II. B. 3 Animation Digraph Termination

Once the animation digraph is complete. it can be iei minute&I hy pressing the "Digraph

Clear" button in the Control. The icons &lisapp&ar f'iom ili& Can&as as &veil as the AGE

window from the Animation Display Area. The iisei mav leave the interface bv pressing

the phrase "Unix Access" on the 5fenu Bar an&I pressing th& "Het urn to Unix" button. The

interface shuts down and the user is returned to the X i& in&loiv shell

II. C Administrative View

Although not a large part of the external viev of the interface, the application admin-

istration plays a vital portion in the expandability of the interface. The registration of new

applications is not a difficult procedure but one that must &lone with thought and care.

Errors may have direct effects on how an application behaves and how it interacts ivith

other processes.

II. C. 1 Needed Information

For every application that executes on the interface. there is a set number of informative

data elements describing the application and communicatioii l&chas ior. Data concernmg the

name and executable are needed to launch &lie application correctly. B&tn)ap informatioii

is needed to display the appearance of the icon in thc Canvas. Input and output demands

are needed to inform the interface how it commnnicates ivith other piocesses.

For the interface to launch an application pioperlv, the application's name and exe-

cutable path are required. If the interface &ties to launch an spplication that does not exist

at the given path, an error will be displayed in thc Bi&or Box. Tlie inteiface will ron&i)inn

making the error if not corrected. Tlie "type" of applicatioii is also iiceiled. 'I'he iuterfa«

accepts three different types of applications: Animation Environments. Clients and genmal

executables. If the application is an animation environment. the path of an I/O hlaster is

needed for it. I/O Masters are programs that communicate bet&veen algorithm auimation

environments and the interface, and are described in full detail in chsptei III. E. Clients ai&.

considered as applications who need an Animation Environmmi& to operate. ('Iients s)e

prevented from launching until an Animation Enviionment is provided. C)enerai executa-

bles refer to any applications that are in&lepei«lent of environments oi clients. Ex& cu&alih s

have no constraints on launching.

Every Application has a set of b&t&nnps displayed within its icon. Each icon is bioken

into two animation modes: executing and stationary or non executing. The bitmaps are

cycled to give the icon an animated appearance. The bitmaps used for the execution mo&le

animation do not have to correspond to the bitmaps used in the non-executing auimation

mode. Each bitmap is stored, individually, in the standard X Window bitmap format [2].

The bitmaps may be created using the X Wiudo&v l»tmap editor hilmnp.

Each application needs to define the necessaiy input sequences needed to execute. There

may be multiple acceptable input sequences for each application. An exaniple iv a &lieiit

that needs a graph or a filename to execute If tlie & lieut rue& ives the filename instead of thr

graph, it can read from the contents of the iiipute&l filename. Each necessary input sequence

is defined by integer values, floating point values, words. graphs, file iiames, environmental

specific data such as AGE graphs. and matrices. The output sequence for an applicatloii Is

defined in the exact same fashion as the iup»t vequen&es The input and output sequences

are recorded in a header file for each appli& it ion. Iiis& i ii& i ion oii i li& rieation of hea&lei lil& s

in included in Appendix B.

II. C. 2 Techniques of Registration

All information defining an application. & xcept Ioi ihc iiil»it an&I output sequen&es, is

stored in files called Catalogs. The Intcrfic& iisev, i def'aiilt. ca&slog loaded &luiing siartiip

time. The user may load Catalogs by using the f'«Iul&xy L&x&dr& ivhi&h is accessed iid &lu

Control button "File I/O". After the button is piess&d. a meiiu appears giving &he options

of "Catalog" or "Digraph". These buttons cascade to fu&tlier options of 'Loa&l". "lave"

CtaI $88

catload. p~
controleubwindov. cps
controlsubvindov, rs
dial Bph, eps
d19raph ~ ps
execbox, eps
execbax. ps

S818ction

/home/tmp/crodar'catload. eps

Load Filter Cancel Help

Fig. 6. Catalog Loa&ling %lena

Fig. r. Query Box

or "Cancel". The button sequence "Catalog Load" produces a loading menu called

CatLond, see Figure 6. This tool enables the user io select a catalog and load it into the

interface.

If the user chooses, he may create his own catalog hy using a file editor and suplying the

needed information to a catalog file. The foiunat anil contents of a catalog are descnheil

in Appendix B. The user may also define a new application 1&y piessing the "ObjEdit"

button in the Control subwindow. Upon pressing the buttoii, a ivindow appears called the

Query Boz which prompts the user for mformation and then saves the results to the current

Catalog, see Figure i. The questions in the Query Box are self explanatory and the usei

always has the option of exiting the proieiluie. Tbe information taken by the Query Box

will be sufficient to append to the catalog file an&1 create a new header file.

CHAPTER III

INTERNAL DESCRIPTION

III. A Global Interface View

Interface

&n&e&e&ocem

Commun&cauon Commun&ca»on

Age»t&

Window Manager

Su&

Su&on&

Apphcatmn

proccssce

Cs C& C&
ca c& c&
CD Ca
0
n ca ca ca cs c3 cz M c2

Fig. 8. (llo1&al hit& rtac& Vien

If we remove ourselves from pieco&«& ii& d id& as ali&mt npmdti»g svste»is dnd ivindniv

managers, we can derive a global vie&v nf t l&e i»tei »al im pl&»in»i atinii nf t 1« iiit»i fd&c.)Vlidt

is minimally needed to implement an mterface such as this &s a&i environme nt tliat allo&vs

us to obtain the functionality demonstrated i» I'ig»t& g. Ou tl» l&igh&'st le&el, tlie&e is

terminal with an interface view displdye&l o» it. Thc ii»dg&s n» the terminal are ilriv&»

by a window manager which receives re&p«nts fioiii d» nplili&;iiinn This appli&ation co»-

trois the behavior of the images on the t& r minal d»&l &nm»iii»iraten vv&t li other pro& esses

called comm»»icut&o» ooeots. Co&&i&iiu»ication agmits «»it&nl tli& 1&& lidvinr of otliei appii-

Interface

X Wrndnw Manager

Internet
Unix

Sockets

Unix

Communica»on

Agent

Pipes

li n Iwr nr
AGE

Process

CD CD CD
CD CD CD
CD CD
n
0

AGE

CD CD CD CD CD CD CD CD

F&g. '). AOI: interfere Fir iv

cation processes working with the same uiiiilniv maiiagei 'I'lie appliratinii pin«sses 1&a«

no knowledge of the agents controlling them &in&1)&ass i»l'nim, itinn &n and from them m i

understood file descriptors.

We have been able to achieve th&s o&i tnp of tli& 1 &i&s opr & itiiig svsteiii aii&1 &li&

Windows environment. Execution of the i»&r rfa«&lepm&&ls hr»v&ly on the~e m&v&ronm&&its.

Our actual implementation of Figure g looks nin« l&ke F&g»re '). I'he s Wi»&1»iv sisteiii

is essential for the driving of a»in&ate&1 ico»s an&1 rmiiotr displays. linix &»terp&ocess com-

munication techniques like iuternet socket~ and pipes ire essenti il to & br interface. Otlier

intrinsic functions in Unix such as for(anil r rrr plav a 1»ge r&ill iii I l&e h& l&avio& nl the in&m-

face. Because of the interface's heavv &lope»&leii& e nii l&ot li t lir se e»v»niii»e»is. U»ix a»d s;

Windows must be available for ou& imp)en&en&ation of th& interface tn operate successf»ll&s

III, B Levels of Interface Communication

Ultra Access Interface Informanon

Graph Ammauon

Quit CI Draw C3 Client Operation Speed~~
~Opuoro ~Repeal ~Help ~Print ~Redraw ~Store ~Load ~Delete ~Undo

Agent Cco»ol

~A, .
File BO

Oh&rare

OR Atom

OR ata

lhgraph Contml

Execnm D g ph

Ihgraph Clm»

rngmph Stop

W cow M g

Status Manager

AGE

Counecttvit Piananty

ict&n ~icon

B&connect&vtr
Icon

E»m Box

Fig. 10. Interface With AClF, Aiiiniarit&u Digraplt

Figure 10 is a copy of Figure 4 from chapter nh 'l'lie hami&lp animatiori rligrai&h apppari»

in the Canvas section will help to descril&e the internal victv of the interface hplause its

execution requires the activation of the r. hiee levchc of intr mal interface communication.

Figure 11 is the corresponding internal view ol' the iiilel face for the external vretv of Figure

10. The first level occurs within the iurerfare itself. The user sends events ro the I'. ter

Errent Handler via the X Window Ivlanager lvhilh is managing the»iterface rlisi&lay oii flit

C
C

AA

C
C

AC

u s ~&u&k
N s

C y
ss

A ~A

C3 CC CC
C3 CC CS
CC CS
ss
C

AOE
I/O A& c

Fig. 11. The Three bevels of Iii&erface ('niiiiu»iiicatiou

terminal screen. The events are mterprete&l and in&»»agre ere snit to tlie otlier in/&&&&»1

mechanisms of the interface to be acted on.

The second level deals with the corn/n/&nic»(ion b& twemi the interface aiid the

Coin&»sulcation Agents(UCAs). The U('As nie slmiviie&l]y&o&e»eu fioiii tlie interface ivhi&li

communicate with it via Unix i»tet»et sockets go& kete A&e a f»&ili(1 ol' I'iiix that provide

two way flows of data, across the iut&»net. usimlly l&etueeii (wo p&o&ess&s. The UCAA

spawn the application processes sent as paiaiiieti»s diiiing tlieii exec»/iou The U('. Y~

communicate to the application processes throngli st»n&lco &i inpiit an&i Atamlard o»tp»t & /a

Unix pipes. Hereafter, we will refer to these ns, 'y'//I/r/ caid . '&'//l&s///. &»Ape&. tively A p&l&e»

a facility of Unix that provides oue ii»y floiv of &l»&» usucllv fioui one pio&ese to anothei

on the same machine. UCAs receive comiiicni&le from the interface to execute or stop th&

appl]cat]on processes or make comllluiiica'tiol& llllks 'to other Ulllx co&11111&11&&&'at&011 agcllts.

These links are implemented by Unix internet sockets, Received data from other age»t»s

relayed to the application proces~ through its Stdin. The pro&ess' Stdou& is ieccived by the

agent and distributed to other agents.

The third level involves all of the previous levels plus a new entity called the I/O Illus]& r.

In this application, the current animatioii environment is AGlv thus the new element is the

AGE I/O Master. The I/O Master acts as the]ink betwccn the animation environment an&1

the interface. The interface spawns t]ie 1/0]&]aster a»&1 coiii»»i»]&at»s &o it tl»o»gh I'iiis

internet sockets. The I/O Master connects to i hc animation &»ivi ron m& nt an&I commnni& at i s

to it through the environment's comm»nic, i&i»» ap]i ira& &is, ill &111» pxilnlp]e the me&1&i»»

is Unix internet sockets. The I/O]vfastcr i«civ&s &omman&ls from the interface t&& gct

data information from the aniuiation c»&i&on&«cnt Tli«uiviio»ni& nt data is relavcd io

the communication agent of the chent currnitli attemptiiig &x&c»tio«. '1 h«ommiiiiiratioii

medium between the I/O Master aud &limit's &oiiiiii»iii& a] io» au&»it is I'nix in&ein&t noel&et s.

III. C The First Level of Interface Corn»&unicatiou

The first level of interface couin»uii&atioii in&»]v&s tlie i»t&. rlacc its&]]' auil its external

connections to other computational entiti& s s»cli as thc X ht&i»&loss hlanagcr and UCAs. s&c

Figure 12. The purpose of the interfac& is to proviil& a sinipli. g&ra]&hical met]iud foi iiitci-

actively working with algoritlun a»in&at&on sistinis. th a]goo]lim a»imations asso&iat«l

with them and any other executables that may interact ivith the algorith»is. Interelati. il

animations, represented here by aniuiatio» dig& aplis. , ir& i»tc&a«i&c]v & ieaied. ni inipulate&1.

executed and terminated. Animation digraphs ro»sis] of virti«s a»d &litic&ed c&l &s. Th&

vertices are animated icons that represent specific application pro&essrs. '1'he erlges rolle-

spond to lines of communication between ttvo processes and the s«tuences of exec«tion. The

interface interprets an input animation digraph, activates the corresponding computational

chores associated with each icon node of the digrapli, al«l provides the»eressary structul& 4

to guarantee the assigned task is to be completed successfully or be aborted grarefiilli iii

case of abnormal conditions.

, Interface
Oupa AE»

I

Agtut h~m
4& dud

Obieot
Aa tat t Upd

Table
A~I&ID Id
A a Dmpa

Id a
"mdudtdAg IC d

E
Id u

Inta«ace

Communteauon

Pdl gl I 'I.
tdu

Ag I
C d

Ag tait
Upd I

U
C

Ag I

'2P p

lwdm, wd O

User Event Handler

A u DplyA

C C

P B

C d

'Oupa
Apr

AGE
G pu
C

X Wmdow Manager

4 uf

CD C3 CD M C3 M CD Cu ~ ~ ~
C Id
Pu I C3 C3 CI

CD Cg C2
CD CD
0
0

Fig. 12. The First Level of lnterl'tc& ('omi«uiiication

The interface achieves these tasks bv itn t liie& iilt& iiial iii«baniui«u the I;trr Firrll

Handler, the Object Table and the Inlrrfnrr Onmnlnlrlcnllnn, l lie I Acr Eve»t Ilai«ll&i

communicates with the X Window I fa»ag& I a»&1 I& « i&en all & is«EI eients supplied bi t I«

user. These events are parsed into commands and distributed to either thr Object Table or

the Interface Communication.

The User Event Bundle» scuds inilivi&1»al ageiit rommanrls to the 01&jert Table along

with agent information, animation digraph information an&1 o1&jert appeaian&e infoimation.

The objects referred to are the icous witliiii the aiiimation digraph. The Object table senrls

bach to the User Event Handler agent information. ohject appearance information aml etio&

information.

The User Event I&r&ndler sei«ls the a»imation &ligiaph ra& r»tion roininands tn tlie Intr i-

face Communication. The Interface ('ommuni& ation i et»&ns eiioi inl'oiiiiation.

The Object Table sends the Interfa«('o»i»i»nit atio» i»essa es «in& etiii»g ag& iit I/O

information, animation digraph infoiniatioii a&i&i i»&lit i&1»&l a & nt roiiiniaiiils 'I'li& I&it«fi«

Communication returns age»t statns iip&lat& s

The Interface C'ommunfcatio» arts as th«&iiiiiiiniii&, i&i&i&i & iigiii& foi th& i&it»if»«&&itli

the Unix Communication Agents and the I/O 1&last« s . X e»t i o»»»a»ils a»&l agm» stat »s

updates are sent to and received froui (»ix ('oi«»»iiiic&tioii Agents iespectiveh. ('h& &it

information and needed clieut data. aie smit to I/O KI »te&s « l»le a&i&matin&i enviioiiiiieiits

statuses are returned.

III. C. 1 The User Event Handler

The Vser Event ffr&nrf lee is desig»ed to ar t as the fioiit r'n&l roiiti&il mechanism for t h&

interface. Its purpose is to establish rommiini&atioii &vith tli& tlir X)V»«lo&v blat&ager anrl

receive all visual events captured 1&v the iiia»ag&r I&&it, iiiii» to tli& iiit&ifa«» see Fig»«

13. These events are parsed and &lelivererl to their r&sp&rtiv& miai-handlers &vithi» tlir

mechanism. The miui-handlers tra»slate tlie eve&its to iiitr i f «e comniands an&1 send then&

SHIIT
I «d'«

C U
'A U S«™

lg CICIH t g
Di ra R

Ca&alas

CllQI IKHH

~DU&&FMU Dg FUM«

N Ag

DR FAM

A D 1«At

xwa M g

C3 C3 C\
M C3 C3

D
D

Fig. 13. Intci»al Inti»la(i hli A«, igc I loii

off either to the Object Table oi to tlie I»teiiare ('omiii»iiicatinii.

The User Event Handler performs these iliitiis hv i&s five i»ternal nii»i-h»n&HF&«c the

Menu Bar, the Ang&rant&'nn Dgcplny A&ri&. the Cii»ti of. thi C»»»»A A»d the J''iroi Boi.

Each of these mini-handlers drives their corresponili»g R»l»i i»&lou iii thr interface diApl tv.

There is no direct communication bet&veen anv of these mini-hanilli ra as thiv behave as

independent entities and communicate to tlii rest of &lie i»&7» fa« thin»gli the 01&ji ct 'I'al&li

or the Interface Communication.

The Menu Bar»&tnghnndlcr drives tlie i»eii» 1&ar Xiii&ivinilnu of tlii inti rfacc. It riii ivi U

events that tell it to return to Unix, or displ tv infor»iat inn il u ii«ious concernnig nit& rfaic

usage or interface version. Tlie return to 1&iiix event n&it&atea a senea of agent comma»&IU

that are sent to the Object Table to o&xler the ternii»ation of the appli&a&ion processes and

communication agents. The Menu Bar then shuts &lown the inteifa&e.

The A»imot&on Display A&e'o &»1&l&-l&(&»(llr&'drives the anima&ion &lisplav area subw&&iilo&v

of the interface. Since this submenu blocks out space on tli& »mern& tlia& is to be used 1&y

an animation environment, no events are sent &n the handler. Tlius no co&nmanrls air

originated either.

The Control &»fr»-f&a»dier drives the Control subwindow of the inteiface. It br»al s»p

the subwindow into three subsections: Agm» Cnn&rnl, Digrapli Co&i&rnl an&1 Tools. 'I'lir

"Agent Control" section co»tains three bii»n»s ai«l iuo &n glr s 'I'Ii& "Ag& nis" hii&inn

generates a menu whicli in turn genera&&s one of &hi« I:xcr. Box &v&nilnivs rorrespo»&ling ro

a system, client or executable. The Exec Box geiieratrs a» i»clivi&liial, igrui& & ni»»ia»&l alii& li

is sent to the Object. table. This commancl h&i&r»c&s &h&' 01&ier& Tal&le &o launch an agent

for the selectecl application on the selrr&ril »iarlii»e 'I'Iir "fail& I/O" 1»i»o» & e»e&a&&v

series of menus which terminate in either a It»ail Bnx ni a 9'&i&i Box I hese box& s ge»&i i&&

individual agent commands sent to the Obj«t Table. These coiii&»an&la tell the OSIec&

Table to launch specific agents and &o sa&e &ligraphs or ra&sings wi&h the give&i f&lena»&es

The "ObjEdit" generates a Query Box. The Qu&. rv Box smi&1& &o &he 01&j&ct, Table agent

information received as input froni the»ser The -Il&uii&&v& Agm»" a»&l "Remove Vdgr"

toggles send individual agent coii»»a»&ls &o &lie Ol&I&»& 'I;iblr &l&a&iihiiig cvhi&li agcn& ni

edges are to be removed.

The "Digraph Control" section contains th&ee but&o»s. "I:xer»&e Dig&aph". -Digiapli

Clear", and "Digraph Stop". I". ach of tliese 1&u»o» eve&i&s geii&i»&rs aiii«ia&ion digraph

execution commands which arc sent to the l»tcrfair ('on»ii»»i&&itioii. Tlies& cn»&»&a»ds

c»»nest&&&as t&&&rt 6(&td

sk«st& t &r«&rsr&(& 6472 66t&&

~

st»«&k assr& H Est&&«s&

Fig. 14. Iuterface Status Manager

tell the Interface Communication to start executing the digraph. remove all the agents and

application processes of the digraph and to stop the ex&r»t»ig d&nraph, respectively.

The "Tools" section coutains two h»tto»s "0'i»&lo&v %la»age&" a»&l "Status h»fa»age&"

The "Window Manager" button is dese»sitized or»ot activ& a&«l r«e&ves no»ser eve»ts.

The "Status Manager" button generates the Status hlanager W&»do&v, The Status Manage&

window receives agent information from the Ob ject 'I'able fo«verv object on the sub«»«low

and then displays the information in the &v&»dnw. see F&gure I l.

The Canvas mini ha»&lier drives the c &n&as snl«&i»&lou of &hc intc&f&cc» The (x»«»

displays the animation digraph and prov&dcs facilities for the user & o u&odi I'& the &lig& aph a»&1

control some of the individual appli& ation pro& esses Tl«(»uvres sc»&ls 1 o 1 he Object Table

messages containing object appearance a»d animatio» digraph i»io&mation. It recci&c& f&om

the Object Table object appearance i»fo& mation. 'I'h&s i»fo&»«. tio» &s used to update the

appearance oi' the icons in the digraph. When the user nants to &nan&pulate the executio»

state of an application process from the ('anvas, the ('a»vai se»ds a» individual age»t

command to the Object Table. This command contains the»pdated state infonuation.

The Error Box r»t»t-1»&»&lier drives the error Box sub&v&ndon &u the interface. This

:30

Object Table
I ndrmg

PM

E Ag t

Mo mg

nb&oct

C I

Sl

A

Agmt
Inr nnnnon

N~

Sm
'I

'Typ'
ID

Codd ID

Edge
I

Ibmtomn

N Sbt

Obn tn

A
Dg pb

n

H~m
I I n

IptSq
Orp raq

Obymr

App

'Id dod

Ag

C d

Ag t
M tmmt

User Event Handler

An ono D pl yA

C nd C

Ag t
1& n

I d d I
Ag
C m d

Ag I DO
bd

Int (oco

C mmnnc ton

Ag tSI
Updn

X Wmdo Monngc

tt m to

CD CD na

&I

D

Fig. 15. Obje&t Table Eutrv lufoi »talion Floiv

handler receives error information from the 'l'lie Olijerl, 'I'al&le an&i &lie Int& rfare Ooinnin-

nication. Errors are displaye&l in lhe box an&1 removed bvheii &lie nsei liits the "C'onttntie"

button. The Error Box sends or recniven no other information.

III. C. 2 The Object Table

The Object table acts as the glob~1 ddld l&ant& I'or tlii interface. s«Figure 15, Asi&1&.

from storing information about animatioii digialilis, »i&I itb inilivi&lual elemeiits, il also

has certain procedures associated Ivith it. The pnrpose of the Obje&. t Table is to rereive

and record information about element~ of an aninialion digraph, supply iiiforination to

the Interface Communication an&i provide the la»iiching prore&l»re for &he &ozzz»z&zz&ic»zion

agents. Much of the information scut to the Interface Coinn»mi&. ation iuvolvcs indivirlual

agent commands. The Object Table is actually a dynamic array of object entries. There is

one object entry in the Object Table foi ev&»y vertex within the animation digraph.

The Object table achieves all of its duties by parsing the messages aiid commanils»ito

five groups: the Launching Proc«dure, tlie Movi»g Obj «ct, thc:lg«nt Informatimz, the ErIg«

List and the Header Informotzo», Only the I, auncliing Procerl&zre ancl the Agent, Infoiniation

groups share information. The contents of thr Frigg list are lr iit tn the Age&it lrifoinmtioii

whenever it is sending agent information to the ('onz rol

The Launchmg Procedure receives all the m&lividual age&it conznian&ls that reit»est c lir

launching of a Unix conununicatioii agnit The I'ioccrlillr' l«esses all of thc ii«&lcd iiifoi-

mation from the Agent Information, foi ks, i pion ss aiiil rxrra ii r&e&v Uiiix conimiini&a&ir»i

agent with the information needed to launrli the iiew il& sire&1 appliratioii. The pro&&su irl

of the agent is sent to the Agent Infoi ma& ioii

The Moc&zng Object group receives o1&iect appearance information from thr Caiivas miiii-

handler. Information dealing with the appearance of the icons in the ai»mation digrapli

is stored here. This information inrlucles the icon fram& color. icon stat»s. icon a»imatioii

cycle and the paths of the bitmaps that compose the i&on aiiiiiiation.

The Agent Information group receives individual agent commancls arid agent i»forma-

tion from the Control mini-handler and ict»ins to it ag&niz iz&for&»alii»&. Bcfi&re sen&liiig

the agent information to the Control, tlie list ol' iieiglil&o&i»g ol&jcris rii»st 1&& boiiowrd

from the Edge List. From the Canvas, it reer»vr s i»&lividual aomit coniman&ls an&1 returns

nothing. All of the received individual ageiit commands an intcrprete&1 and sent to the

'32

Interface Communication. The group rece&ves agent status updates in return. Much of the

information stored in the Agent Information, such as ns&ne p»tli and type, is rcarl in f&o»&

the default catalog during the interface startiq& (see ~ection II. C. '2).

The Edge List keeps pointers to all the object entries in the table that are ne&ghbors to

the entry in the animation digraph. It receives the a»imatio&i digrapli iiitormatio» fioiii tlie

Canvas mini-handler and sends the &nformation out to the Interface Communication. The

neighboring information is also given to the Agent Information &vhencvc& it is sending agent

information to the Control mini-haudlei.

The necessary input sequences and the output sequence for the corresponding applica-

tion are stored in the Ifeader informriiir»r grrrup Tli& ag&»i& i»for»»a&i&m is &c&ci&&rl f&oi»

the Control mini-handler and sends tlie vertu&»cr i»f'mi»;itioii olf i» &lie lnimfa&c ('oin»iii-

nication.

III. C, 3 The Interface Communication

The Interface Co&»mu»icntion acts as thc &cntral hc «lqua& ters fo& all info&mation that

is sent over the internet, see Fig»re I'2. Its p»i pose is to he a gate for all info&uustimi

entering and leaving the interface that is no»nvolvr'rl ivi& li & Iie &vin&l»iv display. All sge»t

commands are broken down into their indivirl»al co&llpo»c&its and dist&i1&»tcd to thci& p&opn

destinations. The Interface Commuiiicatioii gets i»fo»iiatio« fiom tlie Object Table to

satisfy the requests of a UCA. An example is the iiip»t and output sequences for a specih&

application. The agent requests this»ifo&ma&ion fr&mi t lie liitcrf's&e ('ommuni&'atro&i »1&r»i

registration. The Interface Co&nmunics&ion pets this ii&for»&a&ion fioi» th& Obj&ct &able.

The Interface Communication perfo&uis its f»n&&ion hy &ci»ainiug i&i a pollii&g loop with

its socket and all of its connected sockets. checking car li for ne&v»&csiages o& conncc&ioii

:3:3

requests. As an agent connects with the lnteiface Comniuni&a&imi, &eitaiu information

about the agent is kept and placed in a list of all the communication agents livfoiv tliv

status update information is sent to the Object table. EVhvn an agent command is received,

the destination for the command is 1'no&en i»&»&e&liatvly.

The animation digraph execution commands, received from tlie Control »&i»i-1&«»&11& i,

are broken down into individual agent, &onimands aiid vn«listrih«tvd to their corresponding

communication agents in sequential order. All individual agent commaiiils fi oin tlie Object

Table are translated to their basic &onqioii&»its an&i sent to tli& ii comm»»ication agent. '1 li&

Interface Communication receives statiis iii&&l«tes fi&iiii ili«o»i»»ini&«&ion agents an&i that

information is passed on to the Object Tihl&. All vrror information ironi the In&vrfa&v

Communication or an Agent is seiit to tliv F'rior 13ox iiii»i-han&llvi

III. D The Second Level of Interface Communication

III. D. I Unix Communication Agent (UCA)

C' As I Onh

Unix Connnnnlosnon
A ont

User Event Handler

DWDIA

E DO
nnl In 'Ann np I

c n
R p

'D I'

OS As

!. (Xh As

n non 'R»~D
I (I ISP

Won o Mans A(E
p

nn OD OD
nn CI En

n
n

'D r
(XS As

Fig. 16. The Second I &v& I of Intr if«(e ('oniitiiini& «tion

Every application process executing within the ititeit«re aiiini«tion di »aph is connected

to a Unix Communication Agent (UCAI. tVlien the usr» invokes an «pplication from tlie

Control subwindow, a command gets sent to t lie Ob lect Tel(le to fui k the ptorenh and (. x«

a UCA with the necessary parameters to lauiirh the d&»re&I appliratioii IVhplt «pl(p((' An

forks in Unix, a copy of the process is made and startn ex&(utiiig. 'I'lie pio((DR th«t &libel

the fork is considered the parent. the res(tlting I»o(ehs is tli(. i IiiI(l.)Vlt& n «piocess dorn

an exec Unix system call it transform~ its(lf mto a ne(v piogi a»i. I. 'Iron exe&. ation. th(

UCA connects with the interface and Rends iiifoi matioii «hmit itnelf ((trit «R name aiiil

. 3'&

process id. Once the registration is complete, the UCA forks the process a«&l exers &lie

desired application. Before the exec, the I&CA ties tlie &liild's standarrl iuput (Stdin) anil

standard output (Stdout) to itself via two Uiiix pipes. St&lin icfeis to the default stream

a process reads from if no specific file is supplied. Stdout refers to tlie default st&&am

a process writes to if no specific file is supplied. The child process' default input ai«l

output go directly to the parent UCA. The purpose of the \I('A is to laun&-h the applicatinn

process, receive and execute interface com&nands concerning the application, peifoiui thc

internet communication for the applicatinii l&roc& sx;»irl ir t&»i i tbr tun&cue' status back to

the interface.

The UCA's duties are allocated to four internal iiic& lianixnis: the BuRctin Bort&rh tl«

Command Router, the Intuit Rene(&tir»& ai«l th& Outl»&t Dixpotrli. s&r Figuir 1(i. As a iiiiit.

the UCA remains transparent to the appli& a& in» I» nc& si i& t intr recta u ith t 1«main iiitr i far &

and other applications. No modifications are macle tn tl&e appliratlnll fuo&c«s olhei &hi&i

the routing of its communication tl»ough its Stdin and Stdout.

Internally, the Input Receptiou tc&ciscs all rommnnications from the iiiterfare, thc &hilrl

process and all otlier UCAs. The Input Reception s&gnals th& Coniiiiaiid Routei i&h&n

there is a message from the interfac~. sc»&l~ &let, i froin thr &hil&l process to tlie Output

Dispatch and data from other UCAs to tli& lliilI& tiii Bii ii&l, 'I'lic Corn&»and Router receives

agent commands from the interface an&1 returns status up&!ates. It exrhaiiges execution I/O

information with the Bulletin Board and sends output cominaii&ls to tlic Output Dispat& h.

The Bulletin Board sends output to tl«application proc~ex via the pipe &nniiected to tlic

child's Stdin. The Output Dispatcli seiirls &tat, & tn all ntlici &nn»e&tc&l It('. &&s.

III. D. 2 Command Router

The purpose of the Command Router &s tn a& t as 1 he cent& al rlec isinn maker for the U('A.

The socket to communicate with the interface is owned by the Ro»ter. Although the lnpiit

Reception monitors the socl et for any ueiv n&cssages. a signal is sent &o the Ronter from the

Input Reception informing that a message from the i«tei face has bee« ieceived. Tn f»llil1 i&s

functionality, the Commaml Router parses a«cl execute~ all interface coinniand&» launc. b& s,

executes and stops the child application process, sei&cls the input and oii&1»it seq«emes to

the Bulletin Board, decides if the applicat«»i p&oress is allo&v& &1 tn &xecure basecl in its

received information from the Bulletin Bna&il an&1 sr nrls n»tpi» cn&i«e&tion comma«ds ru

the Output Dispatch, reflecting the co»&ie& &in»«&o&i»«a«&lu s&»& b»1« i»&&» far& .

III. D. 3 Bulletin Board

An essential mechanism to the UCA is tlie 8&&B& tr» Bn»rrl »&erhanisin. see Fign&e if

The purpose of the Bulletin Board is to act as a data s&o&age haul for all iccei&erl da&»

until the data is needed. Because i& h&eps»a&h nf, ill ic«i&e&l iiif'o&»m&i&m, it, jurlges &f

the available data is sufflcient to satisfy the needed inpn& se&p&ences. B'hen the apphrati&»i

process is allowed to execute, the Biilleti«Boa&d send i&s infoi«&a&inn &o &lie &hilcl pin«ii

via its Stdin pipe.

The Bulletin Hoard achieves these &1nties &vi&h tlic brlp ul'its three iiiter«al mechauisi«s:

the Message Purser, the Input Recept&on an&1 the Dnl« fn/i&rmntrri» O&rrur. &. The hlessage

Parser receives all data sent to it from the I&ipn& Re& eptio&i a&i&I places each data eleuie«t iu& o

the appropriate queue of the Data Iuforn&a&, ioii Queues Tlie Queue i»fo&uiat. iou, su&h»s

size, is sent to the Execution I/O Information mechanism. The execii&ion I/O Informs&i»&i

Inter(

Vnmnulnaurri

Unix Commumcalion
Agent

Rnl I B~
Command
Router

~ o. r
Oa«aa

User Event Handler
0 a

DW aa

A v D any A

D

I I'

'D I ~ r
Od A ay

V A

wan at g ln
D I ~

Vl a

P

N y

Ip Sa
Nynp NV
'N *dl p

lm nn nn
nn nn nn

9
n

'R ~D P Od Ai

AGI
n r tu p D I I nd

Fig. ii. UCA Bulletin Roa«l

stores the input and output sequences fioi» thi ('omm, in&i Router anil returns a YF i/NO

execution decision.

III. D, 4 Input Reception

The Input ffeception monitors all liuen Of eX&nnal & on i»in nit d& iOn &indi Bends the rece&vlul

data to its proper place. It has a special ielationship nit li &lie ('ouuiidntl Route& as it

monitors the Command Router's socket to thn t&tte&fate nnil n>taln itlicii d mevvdgc a»itcs.

The Input Reception does not read the gorki t I'lit Input Rrrl ptio&i lllockn tltc cxccui ion

of the UCA until information a&rives. Oned the mformation arrives. the Input Rec~ption

reads in the information and activates the receiving incr liduixui tvith the iupu&e&l data.

I Interface

Inter&me

Commnmcanon

Onlcct
Table

U
Conceal cantm

AS I

User Event Handler Pmccls

An&mat&on Dopey Alee

Ctcnfol Ccovcc

SOW Bal

Un&a
Coma o c non

Anent

llcl

X&VnnowMSO S

nsoa I m lw

U
C n Imon

As t

CD CD

Fig. 18. Idultipl& P&o«vc lnt&taclion

III. D. 5 Output Dispatch

The purpose of the Output Dl'AI&ntcf& is to &Clay all &nfo&matiou rece&vc&l from tits & hll&1 at&-

plication processes from the Input Rec& ption 1 o all & onn« teal f&CAM The Output l)ispat& lt

creates lines of communication to those U('An indi&a&ed l)1' th&' (Onlnl'to&1 I(outer.

III. D. 6 Multiple Process Interaction

An example of the UCA's poteutial ic &lemonntrated bl 1 lt&' &nnlt&pie pro& can iute&a& tiotl

described in Figure 18. Iu this s&ena&io a ring of applicatio&ts have heen &reat&d ul ill&

interface and internally the UCAs have been interhnked tvith & a&1& olh& & tVhen the interface

sends the execution command to the UCA of process A, process A is allowed to exerate.

The output of process A gets iead by its UCA an&1 scut to l. lic UCA of process B. Tl&e

UCA interprets the output action of A as a signal of &oiiiplctio» an&1 &ella thc interface that

process A is complete. The interface seu&ls thc exc&. ution command to the UCA of p&ores»

B which executes the process an&i senile it the data ic&eivcd fiom A's UCA. In the same

sequence of events, process B executes and the data is sent to the UCA of process C. Pi o& ess

B stops, process C executes and data is sent to pro&. css A's UCA. Depending on the &iature

of process A, as soon as the UCA of A icreivrs thc rn&niiia&i&1 to cx«ut& an&1 the data froin

C, process A will execute, continuing the loop. Thc loop w&ll conliiiiic rx&riiting i&iitil t)ic

interface stops execution or one of the 1»o«ss& s str&t» an&I tc&»&in»&c+ il &lit&ally.

III. D. 7 File Input and File Output

The relationship between the I&('A aii&l iis rliilrl it&pli& ation I»&&«» is exploited by

the FileReader and FileWriter prograins. Exa»&pic &ligraplis ilc&no»strati&ig tlir ir t&el&a&io&

are shown in Figure 19. Iu this example. 1&ro&css A rrrcivcs &lata f&om the FilcR& a&In

and process B sends data to the FileWr&ter. During executioii. the I'ilcllcader is «llowc&1 i o

execute before process A. The FileReadci nccds no input so it atarts to execute immediately.

The FileReader sends a request to its Stdoiit for th& nc& essa&1 inp»t sett»ence of pro&ess

A. The UCA receives the request anil r& lays &1 to tli& int& ilare. Tlic iii&mfa&c i&. turn& t1&&.

sequence to the UCA which sends it to the FileRcarler via its Sliliii At&1th the help of a

Read Box, the FileReader opens an i&iput filr, rcails tbr ilata a«oi&liiig to tl&e &erci&«1

sequence then sends the data to ils St&lout ivlii&h is r«mved by the I l 'A and sent to the

UCA of process A. The FileReader stops Pxc&'i&tin&i a&Id liro& css A sta&ts &eading the &lata

from its Stdin.

10

r-
, 'Interface

Interface

Communtcaucn

Un
Commun mt

Aaenl

User Event Handler

M B

Anunauon Display Ama
UItix

Conunun cnam
Asclll

Unn
Commuatcauon

Asnu

Output
D ta

p

X Wmdo Manaacr

q q
0 Ip t

I kn d Pl W t &)iut

CBCD CD mm n

n cn

Ftlr
Ou

pep I kN

Read Uox

e FJ

Wntc 13 ox

OICIl
[rH On, k

Fig. I&i. Ipile Iiipiii d»&1 Fil Oiilp»t

In the other example, process B is alloiye&l to exp&»te br foie the lpiletVritei. B out 1&ul q

data to its Stdout and is read by its I f'A. The &inta is sent to the I'(. '4 of tlie Filetpiiti»

which sends it to the FileVVriter IVith lh& h& ll& of a IVrite Box. the FdetVriter olienq d lile

and outputs all informatiou sent hy its It(' I,

11

III. E The Third Level of Interface Communication

III. E. 1 I/O Master

, 'Interface

anmfscc

Connnnnmsnon

User Event Handler

Menu Ssr

AOSR q

AOC G ph*

U Iu
C I

Assai

AOS
Pl eel

Client
hite n I

"Neemd CI I
Dmu

AOF

Sl I

AMMUM Dmplsr A

Ceutml Cml su

U
C mmunicsuon

AS t
~ Our
ACR

*AGR

R q t

'nunen

'U S phed

0 I

X Woldow MsMScf

AGO St t

AGR Nc d dCI tD t
L Resin

lmh A l~ Id

*Dr F m
GL

Output

Dq Ih

CI ot
Info I

CD CD CD

DO
D

AOE t/0 Master

Fig. 20. The Third Level of Intr rfare Commii«ication

Before the first client is invoked from tli& iiitm face. &h& I/O hlaster for the parti& iildi

animation environment is launched. The I/O Itahter ih spat&I&ed at«l &onnrctq hack to the

interface and connects to its corresponding animation enviro«meiit 'I'lip I/O kfantci ih

confined to using the atiimatio«enviion«i&nit'h cominuni&niioii metiintiq. The I/O hfactpr'h

purpose is to link the animation environment &pith tlio maiii interft«L IVhrn the client

process is set to execute, the interface &1&tettpq tli& cli& ti& VC5 foi the data it neeils to

execute. The interface sends the needed &lien& &I »a iiiloinia&ioii &o the I/O &las&er;&Iong

with the connection information for the exec»»ng &lien&. . Tlie I/O blas&i r tli&» r&ea&ei a

series of requests and sends them to &he a»imati&»& eiiviionment &n oixler to prompt il&e

user for the necessary client informatimi. Ilased oii the requests from the I/O hlastc». Iic

animation enviro&lment obtains the»ser a&&plied da&a a&id sends it back &o &1&& I/O hl»&l&»

The I/O Master then sends the i»foi»nation &o the T. 'CA of the exec»ting client. The ('1&eii&

process should have the necessary input, &lata to execute. If the client iloes no& lian a

method to output any information to six»al &oi»1&le&in». &I&& I/O &Ia&&c& pine»i a &l«i&e i»

the animation environment that can be in&oh«l »po» &lit n& &omple»o». The I/O!&Ia&&er

receives the completion event and send& it bach &n &h& iii&»i face &o le& the next cl&en& &&ar&

execution.

The I/O Master is composed of three ro&»liuta&inn &I n&&u h &»ii»&s ih& ('«i»«i&i»rl g&i»(& i.

the Enu&ro»ment L&a&so» and the O»lpi&(D&&I&&&(&i& (Fig»rr '20). 'I'he ('nmmand Bou&cr

receives the interface commands along ivi&h &lie clien& iiil'or&»at&on in&I &he»re&1& d cli&»ii

data. The notification of special events ir& ~& n& back &o & lie iii&»if»« . . &» exa&»pie of &»& li

an event is the client completion signal 'I li& ('oi»ii&an&I It&i«i&» ~&»&li i lii ii«&l«l rli&»&

data to the Environ&neat Liaison an&i g&&s b i&i &»vironn&&»» il i&»&»s i«foiina&ion It sends

the client information to the Outpnt Oisp;it& h. I'li& I. nv&ron»&&. »& Li. iisoll spilds Ieqllps&s &0

the animation environment and gets harl, »s&i s»plieil &la&a and special il& vice ev&»its I'he

received data is relayed to the Output Dial)»&&'ll all&'i'c I& Ii ic»» o tlic Ii('4 of the &l&cn&

needing input data.

III. E. 2 Command Router

The Corn»&r&r&(l Itoutcr receive& «11 &o&»n&u&iii' &ii«&iv f&n»& i lii iiiie& l, i«, iiiil d&&»iliii&r &

the information to the Enviioume&it Li, iivoii i&r &lir Oi&lpiii Di&p«ich I&i p»&l&i&v& i- io

communicate with the ma&n intort»&e, iii&l &o»r& tli& r(« iv«I & i&iii», »i&la in &lie l&iol&r& &i& i»-

nations. Like the UOA Input R« ep&io«. & Iir ('&»»ni, in&i Ro«&(r l&l&)(l's & lie I/O Il;i re& i»i&il

a message arrives from the interface The r«rssage && &mme&li«t(l(int& rl»& tr&l »&i&I v&»& r&&

its proper channels.

III. E. 3 Environment Liaison

The purpose of the Envrro»mc»t 1&rii ~ »»»&i &» «& &, iv, « li& iii i&i & l«&l& s»«l, in&ni, iri&»i

e&lvlronm&'nt. The»&'pded client da& I && & 1 I &lvl &I ('&I »1» r&'(I »&'s& I&I&i ('ll» (& 11&«' '&IL»»ll »»'»1

The results of the re&iuests are s& nt I&ack &n &lii I &«&«&ii »ii&l ii I ii&il &«& li& Oiitpii& D&sl&«&&i&.

The Environment Liaison commumcates «i& h & I&&, iii&»i;i»o&i i i» &ron»&r»&t »«»riling &o & I&(

environment's methods.

III. E. 4 Output Dispatch

The purpose of the O«tput Di&p«tet& i& i«& «iiii«& (i ii li &lie I'('. I rif &li& climii &i«»liii

input and trausmit data, to &t o&ice &li& iiih&»», i&i&&ii, iii i&(i fir»ii & li& I. ii& i&oi»iimi& I. &, »s&&i&

Unlike tlie Output Dispatcli of the U('. &(. i»ln& ri&»&i&&ii » &r ii& r»»nlv &ir&e & o»r&«&erl U(' I

a. time. If the I/O hlaster retrie(cv infoii», i&i&&ii fi&i i lii v, iiiii & li& &ii, ii, i I, i&r»»i»r, &r il&&& i

not need to reconnect &vith that rlic»&'~ I (' t

CHAPTER IV

CONCLUSION

IV. A Results

This thesis proposes an interface that allows the end-user to integrate algorithm ani-

mations and independent applications. Its evolution has contributed to the development

of several inter-related issues. The distribution of duties amongst internal mechanisms

provides a good methodology for the construction of interfaces dealing with multiple rom-

municating processes, The uses for this interface are diverse, ranging fiom reseaich to

teaching. This interface achieves its desired objectives and yet it is subject to limitations.

These limitations provide insight for the implementation of future systems.

IV. A. 1 Methodology

The internal allocation of tasks within the interface provides a goo&1 methodology &vhirb

can be applied for similar systems dealing i«ith &ontrol an&I interpro&ess rommunications

of previously defined applicatious. Tin&a inimnal an&i two external i««&ha«i&aux pio&i&lr

a simple yet powerful way for the user to manipulate otheiuvise nncontiollable external

applications.

The User Event Handler, Object Table and Intci face (. 'ommuniration iu&chanisms &on-

tribute to a stable foundation for handluig input an&1 output. The interface receives input,

in the form of window events by the User Event Handler. These events aie translated into

commands which are distributed as output by the lnteifare Communication. Dedicated to

the delivering of command output and the reception of processes reply, the Interface Com-

munication provides a unique lmk to all process activity outside the interl'ace. The 01&jec&

Table provides a database for the recording of information provided by the user and pro-

cess replies received from the Interface Conuuunicatiou. These three mechanisms create 'i

triangle through which the user may communicate with external independent applications.

The Communication Agents act as the external arms of the interface While &onnecte&l

only to the Interface Communication mechanism. the agents perform the interface s com-

mands externally. The Agents remain invisible to applications at all tintes as they tiausls&e

the received commands from the interface. They remove the responsibility of tianspoi&ing

input and output from the interface. This fiee&lom allo&vs the iutei face to dedicate itself in

the execution of user input.

Similar to the Communication Agents, the I/O hlasters srt as the ex&~&uzi &ommuiii-

cation links from the interface to the other&vise nncoiiunuuirstive animation environments.

Because the I/O Masters are spemafized applications that ran speak ro both the interfs«

and a particular environment, the interface ran use the en&ironment to gct data essential

for execution, from the user.

IV. A. 2 Uses

The needs of the user dictate how this &nterface is to he used. It has potential value in

any situation where the user may need to s« ill) &Pquencc& ol al) f)li& a&in&is that need to pa%~

input and output with each other arid &xerute in a desii&&l oi&ler. Thi& l&a& inime&l&ate isl»&.

to the research and educational communities. 0t h& r &lian &li& r& alni of slgouthm anima& ioii.

this interface has applications in the visnalizstion of large scale nnmcrical data systems su&i

the visualization of distributed animation an&i simnlat ion.

An important research applicatiou for this mterface is to act as a testl&ed for distiibutcd

algorithms. All execution of animation digraphs start ivith just one process. That process

may split execution into multiple processes. Thus after the termination of the initial appli-

cation, control may be passed onto a number of indepemlent pro&'esses executing in parallel.

Distributed algorithms can be decomposed into theii inilivi&lual components. layed out in

an orderly fashion as animation digraphs, and executed.

Another possible research application for this interface is the development and testing

of sophisticated algorithms. We use the term sophisticated to refer to algorithms composed

of other algorithms. The modular nature of the animation digraph allows the user to easily

add, swap and remove applications from the anima&in&i &ligiapli easily. Thus animation

digraphs can be executed, modified an&i re-executed iepeatc&ll& until the desired iesults

are achieved. This is a more efficient method for algoi»thm testiiig than the traditional

one-program method.

An important teaching application for the interface is the demonstration of «lgoiith»i

significance and function. Quite often a student may not perceive the utilitv of a paiti&ul, ir

algorithm as it is taught. However. as a iini& iii aii aiiima&ion digraph. the sti»len& may

observe the relevance and usefulness of an algorithm as it i»teracts ivith otheis. An»xam-

pie of this has been displayed earlier in the anin&ation digraph consisting of Connertivitv.

Biconnectivity and Planarity. In this example. a student may not comprehend the fun&-

tional differences between the Connectivity and Biconnecti& ity aleorithms. 1&ut ivhen tliey

are observed as elements of a sequence leading to a final &I&stina&ion. 1'lanar&ty. the studeii&

can begin to understand the usefulness a&id f»»ction, ility»f & lieve paiticulai alporithms.

The visualization of large scale numerical data svstem &. an be aided by this interface.

By constructing animation digraphs consisting of numerical iiliers. iesearcheis can visualize

large quantities of data. Quite often programs are written to handle one type of input. and

to output another. With this interface. pipelines of these programs can receive and process

information that terminate in one or many display ivindows. hleteorologists can use this

interface as a tool for processing data received from storms in order to studv phenomenon

such as hurricanes. Petroleum engineers can take data processed from other machines.

such as Crays, and reconstruct and visualize layers of oil deposits. In the same fashion,

geologist can study the movements and changes in the Earth's crust. Astronomers ran

also be aided as large amounts of satellite &lata can lie taken io reconstruct and visualize

planetary surfaces.

The distributed nature of the interface opens neiv horizons in annnstion and simulation.

Animations are typically one program entities that take one object. expose it to a seriev oi

forces and changes in environment and display the iesulting activities. This inteiface alloii s

the possibilities for many of these animations to communicate data &vith each other as tli& v

are driving their images to display. If the resnlts of these animations ran he composited to

one display then we would have the effect of one animaiio» iin&ler the &nfl»ence off nianv

different factors. Take, for example. an animation of a ivalking dog. an animation of a

hurricane, and an animation of trees. hlow run all these animation in parallel, letting &bein

send information back and forth to each other. and &lisplaying all the results to one scene.

The result would be a dog trying to walk in a very bad storm ivhile rrving to react to &lie

actions of the moving trees and the strong gusts of &v&ndv. Tliis concept is still yet very

abstract and still needs much thought, Bu& the porn&rial & xivts for furtlier reseairli.

IV. A. 3 Limitations

One of the most significant limitations of & his interface is & he problem of appl&cat&ons cre-

ated for other windowing environments other than 7 Windows. AGE is an example of surh

an application. AGE proved to be a challenge to integrate with the interface. The demanils

set by the Sunview windowing system became a difficult obstacle to work around. There

is no guarantee there will be windowing environments to support all platforms. Hopefully

over time, applications will be developed in a more uniform standard. If not, transistors

are essential to the universal communication and interaction of appbcations.

One of the conditions placed upon the developeis of pioyranis that are executed &v&thin

this interface, is the restricted used of St&I&n and Sr&In&&h In oi hler &o communicate informa-

tion with other processes, these two channels aie &ledicated to &he transmission and reception

of data. The developer is forced to use Sr&lerr for the display of debugging messages and

other information. User-supplied input must now be snpplied through other othei than

Stdin. The sacrifice of these two channels was essential &o provide an environment &vhere

predefined applications could interact &vith each other without liaving &o go through majo&

modifications.

Re-executability of animation digraphs is l&i&ideie&l b& the fiii«lamcii&, d na&u&e of son&&

applications. Unless the application has 1&een &vritten to stay» i&his an internal loop, it ma&

die or become static once it has produced output. This factor brings up man& diffic»lties

for the reusability of animation digraphs. Because eacli icon in &lie aiuma&ion digraph

represents one real process, that process may need &o 1&e recreated in order to function as

a participating member of the animation digraph. Pro&esses that have bren stopped af&&r

output behave as dead weight, as their icon still appears &n the a«&ma&ion digraph. The

responsibility for re-executable applications is then delivered into the hands of the de&elope&.

The aforementioned limitations play roles iu the registration prove~~ that all application~

must go through. All applications must ol&ev certain criteria to perform effectively witliin

an animation digraph. While these criteria are not many in number. their pure presence is

enough to decrease the utility of the interface to some degree. Thus. the removal of these

limitations is presented as one of the future enhancements for the iuterl'ace.

IV. B Future Enhancements

IV. B. 1 I/O

As was mentioned in the first section of tliis chapter. this interface forces the use&

to execute under a certain limitations. Quite often the requirements for meetiiig &hese

limitations require code modification. A future goal ivoul&l be to nummize and possibly

remove any need to modify the application cocle. A primarv &xample of modification is

the process signaling to the Communication Agent that it has completed its computation.

Without this signal, the Communication Agen& i&as no i&les ivlien the process has &omple«&l

its tasks. This problem is compounded by the fact that the l&ioccss ou&pnts data o&ib, &&

the end of its computation. The outputting of &inta is &lie si nal that &lie applica&ioii lies

finished. The problem arises when the process is manipiila&iiig environment specific data

like AGE graphs. In this situation. thme is nn iii«l &o oii&p»& aiiv&hiug liut an AGE

graph. But since the clients are using tlie AGE sei ver as a &ommnni& ation medium of

AGE graphs, they still need to output something &o tire f'ominunicatiou Agent to signal i&s

completion. In this instance, the signaling is done u ith tran~mission of a semaphore 0th r

code modification is needed in the tiansmission and reception of &lata. The piocess h, is

&0

to follow a specific sequence when semliug and receiving the data. I"or both the signaling

and data transmission problems. the user should uot have to make any modifications to the

source of the application. All applications should be rra&ly to be used bv the interface.

IV. B. 2 Icon Window Modification

Currently, the icons of the animation digraph are viewed as an animated bitmap ivitl»»

a color-coded frame. The icon may change positiou and the bitmap may also change hnt

otherwise the icon is static. A useful futuie eztr»sion to the interface ivould 1&e the provision

of tools to the user to modify the icon ivindoiv. Tlie size anil &olor of the icon are &uo

important attributes that are not alterable

Making the icon window an independent viewport is anothei interesting enhancement.

Currently each icon is a very small X ivindo&v. If this &vi»&low could be used to displa&

information from the application and control st&»et»res for the manipulatiou of input pa-

rameters, an entirely new avenue of icoii manipulation can be created.

To supplement the creation of bitmaps, an auimate&1 bitmap editor provided by tlir

interface would be helpful. Currently tlie»sr& must iise the y lyin&low lirogram "bi&map"

to generate the icon bitmaps individ»allv. An editor that allo&vs the creation of the bitmaps

in a side-by-side fashion and a, previeiv of the created l&itmap animation, &could be very

usefuL

IV. B. 3 Script Editing

Other than the ability to save created anima&inn digraphs. there is no facility for tlir

user to "record" his or her session ivith the i»trifare. These ircoidr&l sessions, oi scrilr&&.

are believed to have important applicatio«s in thr learning, teaching and irsearching realms

[14]. The ability to save a "history of the user" scs»o» to a file and play it back &could

greatly enhance the value of the interface. The ability to e&lit. c«t, paste and &luplicare

portions of scripts would complement the abilities to save a«d play hack scripts

The AGE animation environment allows the user to save and playback the contents ol'

a user-session [14]. This provision can be used as part of an editing facility.

IV. B. 4 Unusual Machinery

Currently, the interface provides the ability to execute appli&ations on Unix machines

within the local network. However, tlie need for the iiiterface to span acros~ d&ITere«t

machines other than Sun Spare Station~ is evident. A typical example of this is interactioii

with Silicon Graphics machines. Although the applicationv &an l&e executed on them. tli«y

cannot display their output on non Silicou Graphics terminals. Silicon Graphics provides

a distributed graphics library (dgl) that enables other machines to execute and compile

programs written using dgl. But the display still has to be on a Silicon Graphics terminal.

Perhaps with the advent of X windows ther& &vill be a &&ay to get around this problem.

Execution of applications on other machines s»cb»i &b& Gi, i&. Ilaspai. and X-cube also

present similar problems due to their unns»al architec&»i&s anil -Xo«tra&jitional Unix"

operating systems.

IV. B. 5 Programming Language Constructs

The addition of programming lang»au«cons&i»cts &o the animation digraphs wo»l&l

open the door for the interface to be»seri a~ a vii»al piogiamming tool. Provisions sucl)

as self-loops, conditional execution, sequencing. an&1 interaction ivith act»al programming

pseudo-code would make the animation digraph «ot, just a inap for rim sequence of animation

execution, but also a visual representat&on of programming constructs.

REFERENCES

[1] J. Abello, S. Sudarsky, T. Veatch, and J. Wailer, "ACE: An Animated Graph Envi-
ronment, " DIMACS Workshop on Computational Support for Disc&etc Mathematic~,
March 12-14, 1992, Rutgers University, Ne&v Brunswick, N J.

[2] Naba Barkakati, X Window System Prngromming. SAMS. Carmel, IN, 1991

[3] Mare H. Brown, Algomthm Animation, MIT Press. Cambridge, MA, 1988

[4] Explorer Environment User's Guide, Silicon Giaphics, Mountain View, CA. 1991

[5] Hopcroft, J. E. and Tarjan, R. E. , "Efllcient Planaiity Testing. " Journal nf the ACI)l.
21 (1974).

[6] Mark A. Linton, John M Vlissides, and Paul R. Calder, "('oiuposiug Use& Interfaces
With Interviews, " IEEE Computer, pp. 8-22, Februaiy 1989

[7] Brad A. Myers, Dario A Guise, Roger B. Dannenberg, Brad Vander Za»&len, David S.
Kosbie, Edward Pervin, Audie&v Mickish, Plullipe Marchel. "Carnet: (', o»ip&ehens»e
Support for Graplucal, Highly Interactive User Iuterfaces. " IEEE Comput«, pp. 7)-8 &

November 1990.

[8] Mark Overmars, Fomns, A C-L&I&rarv fnr Dinlngurs. Departmi»it, of Computer Science.
Ultrecht University, The Netheilands, 1991

[9] Frances Newbery I'aul»ch and Waltm F Tichy. "EDGE: An I', xte»dable ('&aph
Editor, " Software Practices nnd Ext&sr&en&&&, «&l 20. pp. 53-88. Juue 1990

[10] John T. Stasko, "Tango. A F&su&e&vork »lid System for Algoritl»ii Anima&i&)n ' fEEI'
Computer, pp. 71-85, September I&)')0.

[11] Sandra Sudarsky, "Primitives for Algoi»thiii Animation,
"

NI. S. Thesis, Depai tmeut ol
Computer Science, Texas AX~M Universii&. Decembei 1991.

[12] Su» C Programmer's Guide, Sun Microsystems. Inc . I&lou»tain View, Ca. , Febr»ar)
1991.

[13] Ray Sivartz, Unix Applicntion& Progrnn»nn&y, . lfn&tcrinrg the Sh&II. SAIvIS, ('armel. IN

1990.

[14] A. S. Tanenbaum and S. J. Ivliillendei. , ". &&n 0&vii ie&v of the Amoeba Distributed Opei-
atmg System, " Par»It&i Computer& and Cnmpntntinn&, edited by, l, van Leeu&veii a»&l

J. IC Lenstra, Mathematisch Centrum. Amsterdam. 198&

[15] Timothy R. Veatch, "AC&E: A Distiibnte&l Env»onuien(, for Creating Interactive Ani-

mations of Graphs, " M. S Thesis, Depai&»i&»it of ('ompu). ei Science, Texa~ Ab. M Uni-

versity, December 1990

APPENDIX A

USER MANUAL

A. A Interface Access

The user must be logged onto a computer that is operating under the Unix operating

system. Once inside Unix, the windowing environment is placed into the K Window System.

Within the X Windowing System, the current directory is changed to the directory where

the interface executable resides. On our system the directory is

/user/agesis/Interface/bin/Interface. The Interface is invoked by calling the executable

name "IntApp". After a few seconds of processing, the interface window appears and

should look similar to figure 21.

A. B External View

The interface is laid out in a simple, easy to use fashion. It is broken into five visual

components: the Menu Bar, the Animation Display Area, the Control, the Canvas and the

Error Boz. On the top of the interface is the Menu Bar. The Menu Bar enables the user

to return to Unix and gain interface information dealing with interface usage and version.

Directly beneath the Menu Bar is the Animation Display Area. The Animation Display

Area is a reserved area in the interface window for the placement of algorithm animation

environments. Figure 21 displays no animation environment. Beneath the Animation Dis-

play area are the Control and Canvas. The Control is a collection of buttons providing the

user means to invoke and terminate processes, execute and stop animation digraphs, and

55

Mau s»

OI
Qv 84@

Fig. 21. Interface Appearance Upon Invocation

monitor network statistics. The Canvas, residing to the right of the Control, displays the

current animation digraph. The user may reposition the icons composing the animation

digraph and create edges between icons to represent the informational path flows and exe-

cution order. The lowest portion of the interface is the Error Box. Any problems, errors or

unusual events occurring during a user session are reported to this subwindow, along with

helpful suggestions

56

Fig. 22. Menu Bar

Fig. 23. Unix Access Menu

A. C Menu Bar

The top portion of the interface consists of the Menu Bar which spans the width of

the screen. The words "Vnia Access" reside on the leftmost end of the Menu Bar while

"Interface Information" resides on the right, see Figure 22. By selecting the phrase "Unix

Access" with the left mouse button, a push button with the phrase "tteturn to Unix" appears

beneath, see Figure 23. By selecting "Return to Unix" with the left mouse button, a popup

message appears querying the user's intentions. The user may select the "Continue" button

to exit the system or "CanccP button to return to normal operation.

If the users selects the word "Interface Information" with the left mouse button, two push

buttons appear beneath, see Figure 24. The buttons are labeled "IIsage" and "Version". By

selecting the "Usage" button with the left mouse button, a popup window appears giving

full interface instructions. The popup window is removed by selecting the "Close" button

beneath the instructions. By selecting the "Version" button with the left mouse button, a

Fig. 24. Interface Information Menu

popup window appears displaying program name, version, creation date, author, and any

other up io date infortnai, ion ihe user may need. Simiiar to the heip winnow, the version

window is removed by selecting the "Close" button.

If at any time the user decides not to select one of the optional buttons displayed from

the menu bar, he is to dick the menu bar with the left mouse button anywhere in between

the two phrases on the Menu Bar. This activity removes the optional buttons. For Example,

if the users is presented with the "Help" and "Version" buttons but wants neither, he simply

clicks the Menu Bar with the left mouse button to remove the buttons.

A. D Animation Display Area

The area immediately beneath the Menu Bar is the Animation Display Area. This

subwindow acts as a place holder for an algorithm animation environment when it is invoked.

All user interaction with this area, other than with an animation environment, is ignored.

A. E Control

Beneath the Animation Display Area lies the Control and Canvas subwindows. The

Control subwindow is left of the Canvas, see Figure 21, 25.

58

Fig. 25. The Control Subwindow

The Control is broken up into three separate subwindows. These subwindows are labeled

"Agent ControP, "Digroph ContioP and "Tools". The "Agent Control" subwindow provides

tools for loading individual processes or digraphs on to the interface and removing specific

processes. The "Digraph Control" box provides tools for executing, stopping, or erasing

the current animation digraph. The "Tools" box provides tools for monitoring the status of

applications on the animation digraph and viewing graphics generated by the applications.

A. E. 1 Agent Control

The "Agent Control" subwindow contains three buttons labeled Agents", "File l/0",

and "ObjEdiP, and two toggle buttons labeled "Remove AgenP and "Remove Edge".

A. E. 1, 1 Agents

By selecting the "Agents" button the user will be given a popup menu with three

buttons: "Environment", "CHenP, and "Executable", see Figure 26. The user must select

59

Fig. 26. The Agents Submenu

one of the three buttons with the right mouse button. If the user selects any portion of the

screen except one of the three buttons, the popup menu wiB disappear.

Environment The "Environment" button allows the user to invoke an algorithm ani-

mation environment, such as AGE, Tango or Balsa, into the interface digraph. When the

"Environment" button is pressed with the right mouse button, the user will be given a

4SysLoad" popup window, see Figure 27 . The "SysLosd" window is broken into two main

portions, the machine list section and the items list section. The leftmost section is the

machine section. It contains a list of all available machines on the local network. A slider

runs vertically next to the list of machines. By moving the slider up and down, the user

may control which machines are visible in the selection window. The user must select a

machine to execute the animation environment with the left mouse button.

The rightmost section of the "SysLoad" window contains a selection box with three

buttons, Inside the box, labeled "Items" are the choices for algorithm animation systems.

If there are more systems then there is room, then a slider will control the visibility of items.

The user must select one of the options with the left mouse button. If a selection hss been

made, the choice will be displayed in a box beneath the "Items" box labeled "Selection". If

60

Fig. 27. The Sysload Popup Window

the user chooses, he may type in the selection into the box without actuaUy selecting from

the "Items" box.

Once a machine and the desired algorithm animation environment have been selected

the user may invoke his choice by pressing the "Execute" button with the left mouse button.

If the "Execute" button is pressed with out a selected machine, the interface will assign a

default madune. If an algorithm animation system in not selected, the user will receive an

error popup window that can be removed by pressing the "Close" button contained in the

error window. If the user so chooses, he may also select the "Cancel" or the "Help" buttons.

The "Cancel" button will return the user to the main interface. The "Help" button will will

cause a popup window to appear that explains how the "SysLoad" window works. Once

again this popup can be removed by pressing the "Close" button contained within it.

If the user types in a reply to the "Selection" box of the "SysLoad" window that is

not not known by the interface, a popup window wiB appear querying the user if he would

like to add the reply to the system. The user must choose either the "Cancel" or "Define"

button. The "Cancel" button returns the user to the "SysLoad" window. The "Define"

button creates a new interactive window, which queries information from the user, called

61

Fig. 28. Query Box

the "Query Box", see Figure 28.

Query Box The first item requested by the Query Box" is the name of the applica-

tion. The users is to type the name into the box provided. After entering the name, the user

must press the "Continue" button. The user will then be asked for the entire path of the

executable. The continue button proceeds. The user will then be asked for the number of

stationary bitmaps. The stationary bitmaps are the bitmaps that cycle in the icon while the

process is not executing. Once the number is entered, the path for each bitmap is requested.

After the stationary bitmaps are entered, the user enters the same information concerning

the executing bitmaps. The executing bitmaps are the bitmaps that are cycled in the icon

while the process is executing. Once the information for the executing bitmaps has been

received the user is asked to give the number of acceptable inputs. An exceptable input is

a set of integers, fioats, words, graphs, filenames, environment specific data and matrices

the process needs to execute. A process may have more than one acceptable input. Once

the number is suplied, the users is asked for the number of integers, fioats, words, graphs,

filenames, environment specific data sad matrices that are needed for that particular input.

Once all the input information has been given, the same type of questions will query the

user for the format of the output. However, each process is allowed only one acceptable

62

output format. Following the output format, the application type will be queried. There

are three type of application: Animation Environment (601), Animation Client(602), and

general executable (603). If the application is an animation environment, then the user will

be queried for the path of the I/O Master for that environment.

Ghent Choosing the "Client" button from the "Agents" menu will produce a window

labeled "ClientLoad". This new window allows the user to invoke an algorithm client to

operate with a selected algorithm animation environment. Since AGE is one of the envi-

ronments this interface was designed for, all animations that execute on the AGE "server"

are AGE "cheats". The "ClientLoad" window operates with the exact same behavior as

the "Sysload" window. The only difference is the user will be selecting animation clients

rather than systems.

Executable Choosing the "Executable" button from the "Agents" menu will produce

a window labeled "ProcLoad". This window allows the user to invoke any process to be

placed inside the animation digraph that is not an algorithm animation environment or a

client associated with a environment. Once again, the "ProcLoad" window behaves in the

exact same fashion as the "SysLoad" and "ClientLoad" windows.

A. E. 1. 2 File I/O

The "File I/O" button in the "Agent Control" subwindow enables the user to save or

load pre-existing animation digraphs or catalogs. A catalog is a list of available processes

the user has to select from. The catalogs are stored as files in the user's directory. Upon

pressing the "File I/O" button, a popup menu with two buttons, labeled "Digraph" snd

"Catalog", will appear. Next to each label is a small arrow. When the user places the cursor

Fig. 29. File I/O Submenu

over either of the arrows, another popup menu will appear. The menu has three buttons:

"Load", "Save" snd "Cancel", see Figure 29. The menu from the "Digraph" arrow applies

to the loading and saving of animation digraphs and the menu from the "Catalog" applies

to catalogs. The user must make a selection with the right mouse button on any of the

menu items. If the buttons is pressed on a non-menu item, the menus go away.

Load Pressing either of the "Load" buttons will invoke a loading popup window, see

Figure 30. The window is broken into five major sections: the "Filter" window, the "Di-

rectories" and "Files" lists, the "Selection" window and the control buttons. The user may

control which directory the file is loaded from by manipulating the "Directories" list. By

double clicking with the left mouse buttons on any of the directory options, the list will

descend into that directory. Similarly, the "Files" list displays which files are available in

the chosen directory. The user needs to only click the file choice once with the left mouse

button to make a selection. The selection will be displayed in the "Selection" ' window. The

full path is displayed with the name. The user may wish to type in his own entry into the

64

Fig. 30. File Load Window

selection window instead of choosing from the list. There is an alternative method of mak-

ing a file selection. The user may wish to filter out certain files from the directory. He does

this by modifying the filter in the "Filter" window. For example, if the user wanted only

". NTK" files displayed in his "Files" list, he would enter the entire path into the "Filter"

window and end the entry with s. NTK". In this example, the "*" is a wild card. Pressing

the "Filter" Button will engage the filter and only ". NTK" files will be observed in the

"Files" list. The "Load" button loads the selected file into the interface. The "Cancel"

button returns the user to the interface and the "Help" button displays a helping popup

window.

Save Pressing either of the "Save" buttons invokes a saving popup window very similar

to the loading window described above, see Figure 30. All sub windows behave the same

as their loading counterparts, except the user must type in a new name to the "Selection"

window. If a new name is not supplied, the contents will overwrite the file selected in the

"Files" and "Selection" windows. The save button is the only different item and pressing

that button executes the saving process on the selection.

65

A. E. 1. 3 ObjEdit

When the user selects the "ObjEdit" button from the "Agent Control" subwindow the

user is given the opportunity to modify any of the attributes associated with a particular

application. The users is given the exact same "Query Box" as if they were defining a process

to system for the first time, see Figure 28. When the user supplies the name, the interface

will search for its entry. When found, the old values will be used as the default values for

the queries. Once again if a new name is given, the user will be given the opportunity to

define it.

A. E. 1. 4 Remove Agents

The "Remove Agents" toggle button in the "Agent Control" subwindow places the user

into kill mode where he may remove application processes from the animation digraph. If

the cursor is placed over an existing application icon in the animation digraph and the left

mouse button is pushed, that application is terminated. As long as the "Remove Agents"

button is engaged, the user can remove applications from the animation digraph.

A. E. 1. 6 Remove Edges

The "Remove Edges" toggle button in the "Agent Control" subwindow places the user

into edge kill mode. While the button is engaged, the user may remove edges. Edges are

removed the same way edges are created. The initial icon is pressed with the middle button.

The user then presses the receiving icon with the middle button. If there exists an edge, it

is removed.

66

A. E. 2 Digraph Control

The "Digraph Control" subwiudow contains three buttons labeled "Execute Digraph",

"Digruph Clear and "Digraph Stop". This subwindow gives the user control over the overall

status of the animation digraph.

A. E. 2. 1 Execute Digraph

The animation digraph is executed by pressing the "Execute Digraph" button. To

execute the animation digraph, an initial process application must be chosen first. This

is done by pressing the selected icon with the left mouse button. The chosen process is

said to be "Artnctf" and is identified by a yellow frame around the icon in the animation

digraph. The "Armed" icon acts as the initial starting point for digraph execution. The

animation digraph begins execution at the "Active" application upon the pressing of the

"Execute Digraph" button. An executing application is represented by a green frame around

its corresponding icon and an animating bitmap image inside the icon. How ever, if the

application process is instructed to execute and does not have the needed input, it's icon

frame will turn orange. If the "Execute Digraph" button is pressed while there is no "Active"

process, nothing happens.

A. E. 2. 2 Digraph Clear

The "Digraph Clear" button allows the user to remove all of the application processes

from the animation Digraph in one command. Since the current animation digraph is not

replaced when a new digraph is loaded in, the old animation digraph will have to be removed

if a clean Canvas is desired,

67

Fig. 31. Interface Status Manager

A. E. 2. 3 Digraph Stop

The "Digraph Stop" button stops an executing animation digraph. The currently ex-

ecuting processes are stopped and the execution is no longer transferred. A stopped an-

imation digraph is identifred by blue edges on all icons. The animation digraph resumes

execution with the pressing of the "Execute Digraph" button. Depending on the nature

of the animation digraph and its processes, the digraph may need to be loaded in again

to execute correctly. For example, if the animation digraph contains processes that do not

contain self loops, then those processes will disappear after their execution. If the animation

digraph is dependent on the output supplied by those processes, then the digraph will need

to load the data in again in order to execute once more.

A. E. 3 Tools

The "Tools" subwindow contains two buttons labeled "Status Manager" and "Window

Manager". These two buttons are invocation buttons for tools that help watch the status

of individual processes and the graphics each generates.

68

A. E. 3. 1 Status Manager

The "Status Manager" brings up a popup window that displays each process in the

network as a row of information, see Figure 31. The information is surrounded by a frame

the same color as the frame surrounding the process's icon. Inside each status row is the

number of each process in the network, the name of the executable, the machine it is

executing on, its current status, all the the other processes it is connected to, the port

which it receives connection requests from and the child's process id which the process is

executing on. All processes of a session are displayed here even after they are killed since

all processes are remembered in a table. The status field of the row reports all changes

to the process as soon as they happen. At the top of the "Status Manager" window is

a button labeled "Turn Ofi . This removes the status manager but does not destroy its

current contents. The status manager is primarily a devise for monitoring the entries inside

the global process table.

A. E. 3. 2 Window Manager

The "Window Manager" is currently not incorporated thus its button has been desen-

sitized.

A. F Canvas

The Canvas is used to display the interface animation digraph. It is the rectangular

area to the right of the Control subwindow. The animation digraph is constructed here and

during execution, some control of digraph execution may be exerted. The Canvas contains

a virtual work area larger than the provided viewport thus vertical and horizontal scrollbars

69

TABLE I

Icon Color Status

Color Status Meaning

Yellow

Orange

Green

Stopped

Armed

Active

Executing

Application is waiting to execute or
has already executed.
Application is ready to execute and

is waiting for execution signal.

Application has received execution signal
but is waiting for input data.
Application has sufHcient input to execute
and is currently executing.

Blue Halted Animation digraph received stop signal during execution.

are supplied to control the view area. The animation digraph consists of nodes and edges

where the nodes are displayed on the Canvas as icons and the edges are displayed as arrows.

A, F. 1 Icons

Icons are the visual representation of the application processes in the animation digraph.

Icons consist of a multi-colored frame, a pictorial bitmap and text title. Icons are movable

and may be placed anywhere within the Canvas work area. They have limited control on an

executing animation digraph. They are also used to designate the starting application for

an animation digraph. When an application process terminates, its icon is removed form

the Canvas.

Icon Frames The frame surrounding each icon is composed of two colors. The upper left

corner is the unique color assigned to the icon from the interface. The color allocation is

random and no two colors on the same animation digraph are exactly the same. The lower

right corner reiiects the application's current status. The color statuses are represented in

70

Table I.

Icon Bitmaps The image of each icon is an animated pictorial bitmap. The bitmap

may have two animation states: non-executing and executing. In each state, the image

is composed of multiple bitmaps which are displayed in fiipbook cycle fashion. The icon

bitmaps are "changed" once every second. If no animation is desired, then only one bitmap

for that state is supplied. For each state, the number of bitmaps is limited by the abiTity of

the computer the interface is executing on.

Icon Control Icons are fully movable, let the user stop and start the animation digraph,

and allow the user to select a starting application for the animation digraph. The icon also

has the ability to terminate the application process it is representing.

Icon Movement Icons are moved by pressing the icon with the left mouse button,

dragging the icon to its new position, snd releasing the mouse button. An icon may be

positioned anywhere on the Canvas work area. Any edges associated with the icon will

move along it.

Icon Digraph Manipulation The icon gives the user the abiTity to stop and restart

an executing animation digraph. It also gives the user the ability to terminate its application

process. When the icon is pressed with the right mouse button, a menu appears with three

buttons: "Activate", "Stop" and "Kill", see Figure 32.

The "Activate" button allows the user to restart a "Halted" animation digraph, the

"Stop" button halts an executing animation digraph and the "Kill" button kills the corre-

sponding application process.

71

Fig. 32. Animation Digraph Icon Menu

Animation Digraph Initiation If an Icon is not 'Active", "Executing" or "Stopped",

or none of the other icons in its local animation digraph are "Active" or "Executing", it is

placed in the "Armed" status when the user presses the icon with the left mouse button or

moves it. This is the interfaces' method for designating a starting node for the animation

digraph. Before any edges connect icons, sll can be made "Armed" and thus executed at

the same time. However, only one Icon within a local animation digraph is allowed to be

"Armed" .

A. F. 2 Edges

Edges connect the icons in sn animation digraph. They represent the directional flows

of data and the application execution sequence. They are seen visually as arrows between

two icons.

Edge Manipulation Edges are created by clicking the initial icon with the middle mouse

button. An arrow attached to that icon will follow the cursor. By clicking a second icon with

72

the middle mouse mouse, the edge is complete and connects the two icons. If something

other than sa icon was pressed once an edge has started, the edge is terminated. Edges

may be removed by pressing the "Remove Edge" toggle button in the Control subwindow.

Once the toggle is pressed, the interface removes edges between icons instead of creating

them. The user clicks an initial icon with the middle mouse button. When a second icon

is clicked with the middle mouse button, the edge connecting the two icons is removed.

Nothing occurs if a deleting edge is drawn between two unconnected icons.

If two icons are not in the same local animation digraph when the user connects them,

the interface will cause the second icon to enter the "Stopped" state as soon as an edge is

created. This ensures only one starting application within a local animation digraph.

A. G Error I3ox

The Error Box receives error messages for the interface. As it receives a message, the

message is displayed and a button labeled 'Continue" is created. The message stays in

the window until the "Continue" button is pressed. The "Continue" button's purpose is

to remove the error message. Leaving the error message in the window does not affect the

behavior of the interface.

73

APPENDIX B

APPLICATION REGISTRATION

Although not a large part of the external view of the interface, the application admin-

istration plays a vital portion in the expandability of the interface, The registration of new

applications is not a difilcult procedure but one that must done with thought and care.

Simple errors will not only have direct effects on how an application behaves but how it

interacts with other processes as well.

B. A Needed Information

For every application that executes on the interface, there is a set number of informative

data elements describing the application and communicative behavior. Data concerning

the name and executable are needed for the Communication Agent. Bitmap information is

needed to display the appearance of the icon in the Canvas. Input and output sequences

are needed to inform the interface how it communicates with other processes.

For the Communication Agent to launch an application properly, the application's name

and executable path are required. If an Agent tries to launch an application that does not

exist at the given path, an error will be displayed in the Error Box and the process will

be removed from the object table. The interface will continue making the error if not

corrected. The type of the application is also needed. The interface understands three

different types of applications: Animation Environments, Clients and general executables.

Animation Environments have a type number of 601 and need executable paths for IO

74

Masters that are to communicate between them and the interface. Animation Environments

are executed immediately after being launched from the Communication Agent. The IO

Master is launched as soon the first client is launched. Clients are considered applications

who need an Animation Environment to operate. Clients have a type number of 602 and are

prevented from launching until an Animation Environment is provided. General executables

refer to any applications that are independent of environments or clients. Executables have

a type number of 603 and have no constraints on launching.

B. B Catalogs

All information defining an application, except for the input and output sequences, is

stored in files called Catalogs. The Interface uses a default catalog stored in . XMIProcTeble

which is loaded during startup time. Each catalog contains the necessary information for

many applications. The interface only allows one catalog to be in the interface at a time

but the user can control the work environments by controlling the catalogs used.

Each entry in a catalog file contains the following:

~ Application Name

~ Application Executable path

~ Number of Non-Executing Bitmaps

~ Path for each Bitmap

~ Number of Executing Bitmaps

~ Path for each Bitmap

~ The path for the header file containing I/O Information

~ Application type

75

~ Path of IO Master if Animation Environment

The application name is the name used in the icon representation in the animation

digraph. The executable path tells the Communication Agent where to find the application

executable. The number of non-executing bitmaps is the number of bitmaps that make up

the animated icon cycle when the application is not executing. For each of the number of

bitmap paths, there must be the path of where each bitmap can be found. The number of

executing bitmaps and their paths are defined similarly. The path for the header file tells the

interface where to find the header file for an application. The type of application tells the

interface whether it is an animation environment (601), animation environment client (602),

or general executable (603). If the application is an algorithm animation environment, the

interface then needs the path of the I/O Master for that environment so it can be executed

with the clients.

The first element of a catalog file contains the number of entries within that file. The

individual entries follow. Here is an example of the contents of a Catalog file containing

three applications, Filetsriter (ezccutablc), AGE (environment), and Connectivity (client):

FileWriter

/user/croda/Research/X/New/IOdo/Fileitriter

/user/croda/Research/X/New/Bitmaps/filwritei

/user/croda/Research/X/New/Bitmaps/filwritei

76

/user/croda/Research/I/New/Bitmaps/filvrite2

/user/croda/Research/I/Nev/Headers/FileWriter. hdr

603

AGE

/user/agesv/NEWAGE/pub/bin/AGE

/user/erode/Research/I/Nev/Bitmaps/AGE. 1

/user/croda/Research/I/New/Bitmaps/AGE, 1

/user/croda/Research/I/New/Bitmaps/AGE. 2

/user/croda/Research/I/New/Bitmaps/AGE. 3

/user/croda/Research/I/Nev/Headers/AGE. hdr

601

/user/croda/Research/I/New/ZONaster/IOMaster

Connectivity

/tmp mnt/cssun/zy1b/agesw/NEWAGE/clients/connectivity/connected

/user/croda/Research/I/Nev/Bitmaps/connected. 1

/user/croda/Research/I/Nev/Bitmaps/connected. 1

/user/erode/Research/I/New/Bitmaps/connected. 2

77

Fig. 33. Catalog Loading Menu

/user/croda/Research/I/New/Bitmaps/connected. 3

/user/erode/Research/I/New/Bitmaps/connected. 4

/user/croda/Research/X/New/Bitmaps/connected. S

/user/croda/Research/X/New/Headers/connectivity. hdr

602

The user may load catalogs by using the Catalog Loader which is accessed via the

Control button "File I/O". After the button is pressed, a menu appears giving the options

of "Catalog" or "Digraph". These buttons cascade to further options of "Load", "Save"

or "Cancel". The button sequence "Catalog ~ Load" produces a loading menu called

CstLoad. See figure 33, This tool enables the user to select a catalog and load it into the

interface.

78

TABLE II

Format String Decomposition

String Position Data Type

Integer Values
Float Point Values

Words (text strings)
Graphs
Filenames (text strings)
Environment Specific Data
Matrices

B. C Header Files

Each application registered with the interface has a header file which instructs the

interface how to conduct the communication for that application. Each header file contains

a number of sequences that indicate the format of input the application expects and the

format of its output. Each format consists of an string of ten integers, Each position of the

string indicates the number of data elements associated with that sequence. The significance

of each position is is displayed in Table II:

There are three abstract data types in each sequence: Graphs, Environment Specific

Data, sad Matrices.

Graphs The format of Graphs is as follows:

~ Number of vertices in Graph (integer).

~ Number of edges in Graph (integer).

~ For each edge, a pair of integers identifying the edges two vertices.

79

0

3 2

Fig. 34. Sample Graph

The interface assumes the edges are directed. The vertices given for each edges must be

between or including 0 through the number of vertices minus one. An example of the graph

representation for Figure 34 is:

01

12

23

30

02

13

Environment Specific Data The format of environment specific data is a semaphore.

Since this type of data refers to a type of data that can't be universally translated, we use

the animation environment as the communication medium. For example, in the AGE envi-

ronment, one client may output an AGE GRAPH to another client. Since AGE GRAPHS

are environment specific, the first client simply outputs an integer and when that integer

80

arrives at at the other client, it knows it can read the data from the AGE window.

Matrix The format of a Matrix is as follows:

~ Number of rows in Matrix (integer).

~ Number of columns in Matrix (integer).

~ Each of the rows X columns entries (integers).

An example of a Matrix is the adjacency matrix for the Graph in Figure 34:

0110

0011

0001

1000

Header File Contents The header files contains the I/O sequences for the application.

Their format is defined as follows:

1) /INPUT

2) Number of Necessary Input Sequences (at least one)

3) An integer string of length 10 where each digit describes the number of

needed: Integers, Floats, Words, Graphs, File Names, Environment Data,

and Matrices

4) /OUTPUT

5) Number of Output Sequences (always one)

81

6) An integer string of length 10 where each digit describes the number of

output: Integers, Floats, Words, Graphs, File Names, Environment Data,

and Matrices

An example header file would look like the one for connectivity. hdr:

¹ INPUT

0000010000

¹OUTPUT

0000010000

From this file example, the Connectivity client can receive only one AGE GRAPH as input.

It outputs one AGE GRAPH.

B. D Application Registration

If the user chooses, he may create his own catalog file. By using one of the available

UNIX file editors (vi, emacs) the user may design his own catalog that should look very

similar to the given example. In the same manner, the user may create a header file for an

application.

The user may also define a new application into a catalog by pressing the "ObjEdit"

button in the Control subwindow. Upon pressing the button, a window appears called the

query Box which prompts the user for information then saves the results to the current

catalog. See Figure 35. The questions in the Query Box are self explanatory and the user

82

Fig. 35. Query Box

always hss the option of exiting the procedure. The questions asked are sufficient to add a

new application to an already existing catalog and create a new header file.

B. E Application Input

If sn application wishes to receive input, it must do so through standard input. The

application's Communication Agent will send it the data when the application is allowed

to execute. The application must read all data elements in the order of the described

sequences. Likewise, all abstract data will be sent in their format described previously. For

example, if an application wishes to read in the input sequence:

3000011000

the corresponding C code would look like:

fscanf(stdin, "'%d", aintegert);

f'scsnf(stdin, "%d", ainteger2);

1'scsnf(stdin, "%d", ainteger3);

1'scani'(stdin, "%d", kenvsemaphore);

fscant, '(stdin, "'%d", krovs);

fscanf (stdin, "Nd", ncolumns);

for(i ~ 0; i & ross; i ++)

for(j ~ 0; j & columns, j++)

fscanf(stdin. "Nd", amatrix[i] [j]);

B. F Application Output

If an application wishes to transmit data, it must do so through standard output. The

application's Communication Agent will receive the data when the application transmits

it, Each data element must be followed by a "l, n" in order to separate individual elements.

The application must transmit ail data elements in the order of the described sequences.

Likewise, all abstract data must be sent in their format described above. Once the data has

outputted all the data, it must perform the system call "fflush(stdout)". This command will

Bush the standard output channel so the Communication Agent can read it. For example,

if the application wishes to output the data sequence:

0201100000

the corresponding C code would look like:

fprinti'(stdout, "yf$n", floati);

fprinti'(stdout, "Xfhn", float2);

fprintf(stdout, "%dan", numvertices);

i'printf(stdout, "Xdhn", numedges);

fprintf(stdout, "'/dNn Kdhn", vertex0, vertexi);

fprintf(stdout, "Xdhn Kdhn", vertexi, vertex2);

84

fprintf(stdout, "KdKn tdhn", verter2, vertez0);

fprintf(stdout, "Xnan", filenamet);

fi'lush(stdout);

B. G Application Self Loops

If the user wishes the application to stay in the animation digraph after it has been

completed once, he or she must place it in some kind of loop. If the loop is not available,

the next time the application executes it will terminate. Only the looping behavior of an

application will prevent it from leaving the animation digraph before the user wishes.

85

APPENDIX C

I/O MASTER CREATION

The I/O Master is composed of three computational mechanisms: the Corumand Router,

the Enviiouiuent Liaison and the Output Dispatch. The Command Router receives the

interface commands along with the client information and the needed client data. The

notification of special events are sent back to the interface. The Command Router sends

the needed client data to the Environment Liaison and gets back environmental status

information. It sends the client information to the Output Dispatch. The Environment

Liaison sends requests to the animation environment and gets back user suplied data and

special device events. The received data is relayed to the Output Dispatch where it is sent

to the Communication Agent of the client needing input data.

C. A Command Router

The Command Router receives sll communications from the interface and distributes

the information to the Environment Liaison or the Output Dispatch. Its purpose is to

communicate with the main interface and route the received commands to the proper des-

tinations. Like the Communication Agent Input Reception, the Command Router blocks

the I/O Master until a message arrives from the interface. The message is immediately

interpreted and sent to its proper channels.

Most of the code for the Command Router has been supplied in the file "Commandln-

terpreter. c". This file acts as the "main" for the I/O Master. It creates connections to the

TABLE III

Major Functions of CommandInterpreter. c

Function
main

initCIC
initlclient

enterInterfaceP oil

interface Poll

setTimer
setFds

Descrtption
Hook up to Animation Environment and Interface,
enter into polling loop.
Become an internet socket client to the interface.
Socket connect routine for initCIC.
Enter I/O Master into polling loop.
Polls interface socket and Environment sockets
for incoming messages.
Sets the timer used for the select command.

Tell the select command to poll the interface and
animation environment's sockets.

handleInterfaceCommands Process messages from interface.
handleClient Connect

getNeededInput

Hook up to Communication Agent of environment
client and get data from the animation environment.

Tell the Environment Liaison to get data and

relay it to the Output Dispatch.

algorithm animation environment and the interface then goes into a polling loop where it

check for messages from the interface and the animation environment. Once a command

comes through it relays the message to the Environraent Liaison or the Output Dispatch.

Return controls to the polling loop were the I/O Master stays until needed again.

The break down of the major functions in CommandInterpreter. c are given in Table III.

When the reader is creating a new I/O Master he or she will only have to change those

parts involving the Environment Liaison.

C. B Environment Liaison

The purpose of the Environment Liaison is to act as a client to the desired animation

environment. The needed client data is translated into requests and sent to the environment.

The results of the requests are sent back to the Liaison and relayed to the Output Dispatch.

87

TABLE IV

Major Functions of AGELiaison. c

Function Description
AGEConnect Connects the I/O Master to the AGE environment.

AGEEvent

getAGEInt

Receives a message from AGE and reports it to
Commend ftouter.
Get integer data from AGE and send to Output Dispatch.

getAGEFloat Get Soating point data from AGE and send to Output Dispatch.

getAGEWord Get word data from AGE and send to Output Dispatch.

getAGEGraph Get Graph data from AGE and send to Output Dispatch.

getAGEFihmame Get file name from AGE and send to Output Dispatch,

getAGESys Get system data from AGE and send to Output Dispatch.

getAGEMatrix Get Matrix data from AGE and send to Output Dispatch,

The Environment Liaison communicates with the animation environment according to the

environment's methods.

The Reader creating a new I/O master will have to create most of this code. An example

from the AGE environment is given in "AGELiaison. c". The connection instructions to the

AGE animation environment are included. The code also contains instructions how to

get each type of data from the animation environment and how to send it to the Output

Disputch. The breakdown of the major functions of "AGELiaison. c" are given in Table IV.

C. C Output Dispatch

The purpose of the Output Dispatch is to connect with the Communication Agent of

the client needing input and transmit data to it once the information arrives from the En-

vironment Liaison. Unlike the Output Dispatch of the Communication Agent, information

is sent to only one connected Communication Agent at a time. If the I/O Master retrieves

information for the same client at a later time, it does not need to reconnect with that

88

TABLE V

Major Functions of OutputDispatch. c

Function Description
cfientNotConnected Returns true if an input cfient is not connected.

new Client
addClient

sendMessageData

Creates a connection to a Communication Agent.
Add a new cfient connection to an internal list.
Takes the data from the Environment Liaison and transmits
it to the cUent's Communication Agent.

cUent's Communication Agent.

Most of the code needed for the Output Dispatch is already supplied in the file Output-

Dispatch. c". In fact, because its routines are called by both the Command Router and the

Enuironment Liaison and caUs neither, no code should have to be rewritten. The Output

Dispatch keeps a list of aU the cfients it has attached to so it does not attach to the same one

twice. Otherwise, it receives commands to connect from the Command Router and receives

data to transmit from the Environment Liaison. The breakdown of the major functions of

"OutputDispatch. c" are given in table V.

89

APPENDIX D

GLOSSARY

Agent Information Data group of Object Table containing execution information about

each Communication Agent and its child applications.

Arumation Digraph Basic interface input consisting of a directed graph.

Animation Display Area Mini handler in User Event Handler which controls events in

the Animation Display Area of the interface which reserves an area for the display of

an algorithm animation environment.

AGE Animated Graph Environment. Algorithm animation environment created at Texas

AIrM University by Abello, Sudarsky, Wailer and Veatch [1].

Balsa One of the first algorithm animation environments created at Brown University by

Mare Brown [3].

Bitmap Rectangular array of pixels, where each location contains an On/Off state for that

pixel [2].

Biconnected Component A subgraph that does not contain any vertex whose removal

will disconnect the graph.

Bulletin Board Internal mechanism of Communication Agent that stores received infor-

mation and judges executable condition of child application.

90

Canvas Mini handler in User Event Handler which controls the events in the Canvas sub-

window which displays the interface animation digraph.

Catalog File used by interface to store essential information pertaining to each application

registered with the interface.

Catalog Loader interface tool used to query user for desired catalog to be used in inter-

Command Router Internal mechanism of Communication Agent which controls its de-

cision making.

Command Router(I/O Master) Internal mechanism of I/O Master which receives all

communications and distributes them among the other I/O Master internal mecha-

Communication Agent Fundamental element of interface connecting the interface and

an application process.

Communication EHgraph Internal software representation of interprocess communica-

tion network described by interface animation digraph.

Control Mini handler in User Event Handler which controls the events in the Control

subwindow which manipulates the state and status of animation digraph.

Connected Component A subgraph such that for each pair of vertices, v and w, within

the subgraph, there exists a path from v to w.

Edge List Data group of Object Table containing edge information of the animation di-

graph.

Environment Liaison Internal mechanism of I/O bluster ivhich acts as a client. ro the

desired algorithm animation environment.

Error Box Mini handler in User Event Ilandler ivhich receives and display~ the eiror

messages from other internal interface elements.

Exec Overlays the calling process with the named file, then transfers to the entry point of

the core image of the file [12].

Fork Creates anew process. The new process (child process) is sn exact copy of the calling

process (12].

Header Information Data group of Object Table containing all input and output se-

quences for each interface application.

Input Reception Internal mechanism of Communication Agent which monitors all lines

of communication to the Communication Agent.

Interface Animation Digraph Basic interface input consisting of a directed graph.

Interface Communication Commumcarion engine for inrerface ivirli ('ommunicariou

Agents and I/O hfasters.

I/O Master Fundamental element of interface linkmg thc algorithm animation environ-

ment with the interface.

LAD Laboratory for Algorithms De~ign, ('nmpnri r Isbnrsrniv u. here this in(in face. AOE

and many AC~E animations were created.

Launching Procedure Subgroup of Object Table that. forks and execs all Communication

Agents.

92

Menu Bar Mini handler in User Event Handler which controls the events in the Menu Bar

subwindow which enables the user to return to Unix and supplies helpful interface

information.

Moving Object Data group of Object Table containing visual information concerning the

icon representation of applications in the animation digraph.

Object Table Internal global data base for interface.

Output Dispatch Internal mechanism of Communication Agent to relay information to

all other Communication Agents.

Output Dispatch(I/O Master) Internal mechanism of I/O Master to send received data

to executing algorithm animation.

Plauarity An algorithm to test if a graph can be imbedded on a plane such that no two

edges of the graph intersect [5].

Pipe A facility of Unix that provides a one way liow of data usually from one process to

another on the same machine.

Query Box interface tool used to query user for information concerning executing infor-

mation for an interface application.

Scripts A recording of a user session with an algorithm animation environment.

Sockets A facility of Unix that provide two way flows of data, across the internet, usually

between two processes.

Stdin Default input process data channeL

93

Stdout Default output process data channel.

Tango One of the first algorithm animation environments created at Brown University by

John Stasko [10].

User Event Handler Receives visual events from X Window Manager and distributes

them to the Object Table and interface Communication.

94

VITA

Christopher Roda grew up on the East side of Cleveland Ohio. He received his Bachelor

of Science Degree in Computer Information Science in 1989 from the Ohio State University

in Columbus Ohio. In continuation of his education, he finished his Master of Science in

Computer Science in 1992 from Texas A&M University in College Station Texas. He plans

to pursue his fortune in the area of computer animation. Christopher Roda can be reached

at his email address croda@cs. tamu. edu. His permanent address is 35985 Timber Ridge,

Wifioughby Ohio, 44094.

