2DBTOR -- A TOROIDAL GEOMETRY NEUTRON DIFFUSION CODE

A Thesis

by

CRAIG ANTHONY HRABAL

Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 1990

Major Subject: Nuclear Engineering

2DBTOR -- A TOROIDAL GEOMETRY NEUTRON DIFFUSION CODE

A Thesis

by

CRAIG ANTHONY HRABAL

Approved as to style and content by:

Theodore A. Parish (Chairman of Committee)

Gerald A. Schlapper (Member)

John W. Poston

(Head of Department)

R. Dante DeBlassie (Member)

August 1990

ABSTRACT

2DBTOR -- A Toroidal Geometry Neutron Diffusion Code (August 1990) Craig Anthony Hrabal, B.S., Texas A&M University; Chair of Advisory Committee: Dr. Theodore A.Parish

The objective of the research performed here was to produce a scoping code that could be used for fusion reactor blanket design. To this end, the present research initially explored a technique proposed by Pomraning and Stevens, in which the toroidal diffusion problem in toroidal geometry is cast into cylindrical (r- θ) form by a spatially dependent redefinition of the diffusion coefficient, absorption cross-section, and extraneous source function. This idea was explored but was later abandoned in favor of the direct finite differencing of the toroidal diffusion equation.

The direct finite differencing approach was programmed into an existing two-dimensional(x-y, r-z, r- θ , triangular), multi-group neutron diffusion code, 2DB, that had previously been converted to execute on the IBM-AT. Neutronic scoping calculations relevant to fusion reactor design were then performed in a micro-computer environment. The modified code was renamed 2DBTOR.

To verify that 2DBTOR was operating correctly, comparisons were made to both analytical and numerical solutions for several types of problems. Both ANISN and 2DB were used to verify and compare the solutions obtained from 2DBTOR. It was also shown that as the aspect ratio approached infinity (i. e., the major radius became large) the 2DBTOR solution approached the solution for that of 1-D cylindrical geometry. After verifying the solution for a large major radius, the errors associated

iii

with using a non-toroidal scoping code were examined versus using 2DBTOR. To accomplish this, neutron cross-sections for a benchmark problem were input to 2DBTOR and the output was compared to that from ANISN. A method proposed by Price and Chapin, that used volume correction factors to compute the reaction rates in the benchmark blanket, was utilized to provide a means of checking 2DBTOR's results versus those given by a Monte Carlo code. It is also worth noting that 2DBTOR makes possible the calculation of material depletion in the fusion blanket, which is a unique advantage of the new program, 2DBTOR.

In future versions of the 2DBTOR program, it is recommended that the central vacuum should be modelled through an internal boundary condition. A separate void streaming calculation should be used to define the internal boundary condition by specifying the neutron flux to current ratio as a function of position along the vacuum wall. Improved modelling of the central void region will be required if 2DBTOR is to prove to be an attractive program for Tokamak blanket scoping calculations.

ACKNOWLEDGEMENTS

The author would like to take this opportunity to express his gratitude to several people who have made this work possible. First of all, I would like to thank my committee chairman, Dr. Theodore A. Parish, for suggesting this thesis, and for his guidance in its development. Also, I wish to thank Babatunde O. Shofolu for the help given on the computer and Jodine Jansen for her help with the manuscript preparation. Finally, I would like to thank my wife, Karen, for her constant encouragement and moral support.

TABLE OF CONTENTS

_		
I.	INTRODUCTION	1
	I.A The Fusion Process	2
	I.B The Need for Scoping Codes to Study the Fusion Process	5
	I.C Previous Studies	6
	I.D Computer Codes Used in This Work	7
	I.E Objectives of This Work	8
П.	THEORY	10
	II.A Introduction	10
	II.B Pomraning and Stevens' Method	22
	II.C Finite Difference Approximation to the Diffusion Equation in	
	Cylindrical Coordinates	24
	II.D Finite Difference Approximation to the Diffusion Equation in	
	Toroidal Coordinates	33
	II.E Analytical Solutions	37
III.	RESULTS	40
	III.A 2DBTOR Verification and Infinite Cylinder Problems	40
	III.B 2DBTOR Verification and Toroidal Problems	43
	III.C Standard Blanket Solutions	46
	III.C.1 Infinite Cylinder	46
	III.C.2 Comparison of Torus and Infinite Cylinder Models	40
	oy made models	79

Page

TABLE OF CONTENTS (CONT.)

	Page
REFERENCES	66
APPENDIX A. Pomraning and Stevens' Analytical Solution	69
APPENDIX B. Average D _k Solution	72
APPENDIX C. XPROC2DB Listing	75
APPENDIX D. 2DB Errata	79
APPENDIX E. Plasma Source	81
APPENDIX F. Equivalent Source to the Plasma Source at the Inner	
Edge of the Blanket	83
APPENDIX G. 2DBTOR Manual	84
APPENDIX H. 2DBTOR Listing	147
VITA	237

vii

LIST OF FIGURES

Figure		Page
1-1	Reactivity Curves	5-
2-1	Toroidal Coordinate Description	20
2-2	2 Finite Difference Coordinates Used in 2DB	
	and 2DBTOR	25
3-1	Flux versus Poloidal Angle at a Radius of 150 cm	
	for Several Aspect Ratios	44
3-2	Flux versus Poloidal Angle at a Radius of 250 cm	
	for Several Aspect Ratios	45
3-3	Standard Blanket Configuration	47
3-3	Standard Blanket Configuration	47

viii

LIST OF TABLES

Table		Page
2-1	Area and Volume Elements in Cylindrical	·
	and Toroidal Coordinates	38
3-1	Standard Blanket Constituents	48
3-2	Radial Averaged Tritium Breeding Ratio's for 2DB	
	and ANISN, Infinite Cylinder Case	50
3-3	Radial Averaged Tritium Breeding Ratio's for 2DBTOR	
	Versus 2DB, Torus Case (Aspect Ratio = 3)	52
3-4	Radial Averaged Tritium Breeding Ratio's for 2DBTOR	
	Versus 2DB, Torus Case (Aspect Ratio = 5)	53
3-5	Zone by Zone Averaged T6 for 2DBTOR Versus 2DB, Torus Case	
	(Aspect Ratio = 3)	54
3-6	Zone by Zone Averaged T7 for 2DBTOR Versus 2DB, Torus Case	
	(Aspect Ratio = 3)	55
3-7	Zone by Zone Averaged T6 for 2DBTOR Versus 2DB, Torus Case	
	(Aspect Ratio = 5)	56
3-8	Zone by Zone Averaged T7 for 2DBTOR Versus 2DB, Torus Case	
	(Aspect Ratio = 5)	57
3-9	T6 for 2DBTOR Versus Volume Corrected T6 for 2DB, Torus Case	
	(Aspect Ratio = 3)	60
3-10	T7 for 2DBTOR Versus Volume Corrected T7 for 2DB, Torus Case	
	(Aspect Ratio = 3)	61

Table	Page
3-11 T6 for 2DBTOR Versus Volume Corrected T6 for 2DB, Torus Case	
(Aspect Ratio = 5)	62
3-12 T7 for 2DBTOR Versus Volume Corrected T7 for 2DB, Torus Case	
(Aspect Ratio = 5)	63

I. INTRODUCTION

In order to sustain the current level of world civilization man requires energy. However, at the present pace of energy demand, it is predicted that coal and U-235 resources will be depleted in the next 25 to 100 years.¹ To meet the world's energy demand as the above resources become more scarce, new options will have to be employed. Of the methods available to produce energy, only solar energy, fission breeders, and fusion are thought to be capable of meeting the world's long-term needs. Of these three energy resources, fission breeders produce and use special nuclear materials, which makes them undesirable without stringent safeguards. This leaves solar energy and fusion as the most viable energy resources to meet future energy demands. Both will have to be developed, since a stable society needs alternate sources of energy to call upon in an uncertain future.

Because of progress in plasma confinement, fusion has warranted increased attention in the past decade. What makes fusion of most interest is the fact that one of the fuels required, deuterium, is essentially an inexhaustible resource. Deuterium, which has an average abundance of 0.015% in elemental hydrogen, can be separated relatively easily and cheaply from water.² A secondary, but perhaps more important advantage, as regards public perception, is fusion's inherent safety and reduced radioactivity hazard relative to fission. Tritium, one of the more radioactive of the fusion fuels, has a relatively short half-life(12.36y) and decays by emitting low energy β -rays. Unfortunately, activation of structural materials, such as the first wall in

a fusion reactor, presents a possible hazard, but this can be controlled by choosing

This thesis follows the style of Nuclear Technology.

suitable materials. In regard to safety, with magnetic confinement fusion, a sudden increase in power is likely to be counteracted by altering the conditions that are necessary to position and heat the plasma. In addition to the above advantages, use of exotic fuels which only produce charged particles, might lead to energy conversion efficiencies approaching 100%, since charged particles can possibly be directly converted to electricity.

I.A The Fusion Process

Fusion is essentially the process of two nuclei coming together to form one or more nuclei with an accompanying release of energy. Since very high temperatures (over 10^8 oC) are required to overcome the Coulomb repulsion between the reacting nuclei, a plasma must be produced. The nuclei, which are stripped of electrons at such temperatures, must be confined long enough to fuse. As a consequence of the high temperatures required for fusion, the reactants can not be contained within physical walls, since interactions with the wall material would likely cool the nuclei down below their required temperature for fusion. By virtue of the nuclei being charged particles, however, they can be contained by magnetic fields in various plasma confinement configurations.

Several reactions are considered to be possible for producing power from fusion break-even conditions, but the deuterium-tritium (D-T) reaction has the best chance of being the first to reach the required plasma conditions. The D-T reaction is described below:

$$D + T \rightarrow 4He + n + 17.6 \text{ MeV}$$
 (1)

This reaction requires the use of of tritium, which is extremely rare in nature and must be artificially produced. Tritium production is expected to be accomplished by surrounding the plasma with a lithium containing blanket. Tritium is produced from lithium according to the neutron reactions that follow:

$$n + {}^{7}Li \rightarrow T + {}^{4}He + n$$
 (2)

$$n + {}^{6}Li \rightarrow T + {}^{4}He$$
 (3)

The reaction with Li-7 has a threshold of 2.7 MeV, while the Li-6 reaction takes place with neutrons down to thermal energies. Although the above reactions require consumption of lithium, the known U.S. reserves of lithium are thought to be able to last 600 years.³ The D-T reaction discussed above has great potential for fusion due to its large reactivity at relatively low temperatures(<100 keV; 1 keV = 10^9 oC). The reactivity, $\langle \sigma v \rangle_{jk}$, is defined to be the average of the fusion cross-section multiplied by the relative speed between the reacting particles j and k averaged over Maxwellian distributions. Curves of the reactivity versus energy for several fuels are shown in Figure 1-14. As can be seen, the D-T reactivity is by far the highest at temperatures below 100 keV. Since the reaction rate per unit volume for two nuclei can be shown to be given by

$$RR_{jk} = a_{jk}n_{j}n_{k} < \sigma v >_{jk}$$
⁽⁴⁾

Reaction rate parameters for mixtures of Maxwellian distributions at the same temperature. (1) D + T \rightarrow n + ⁴He, (2) D + ³He \rightarrow H + ⁴He, (3) D + D \rightarrow H + T, (4) T + T \rightarrow ⁴He + 2n, (5) T + ³He \rightarrow (various products), (6) H + ¹¹B \rightarrow 3(⁴He).

where RR_{jk} = reaction rate per unit volume for nuclei j and k,

 $a_{jk} = 1$ for $j \neq k$ and 1/2 for j = k,

n_j = atom density of nuclei j,

and nk = atom density of nuclei k,

it is apparent that the D-T reaction for fixed reactant densities will provide the greatest number of fusions per cm³ per sec at the lowest temperatures.⁵ Since lowering of the temperature needed for fusion makes the required plasma conditions more achievable, it is likely that the first fusion reactions will use D-T fuel.

I.B The Need for Scoping Codes to Study the Fusion Process

In the past decade, as plasma confinement experiments have advanced nearer to break-even, there has been a concurrent interest in the engineering problems associated with power production from nuclear fusion. Since a magnetically confined plasma burning D-T fuel should be a reality within the next decade, calculations of the transport of 14 MeV neutrons through the first wall and blanket of a fusion reactor have become particularly pertinent. Accurate computations of neutron transport are currently feasible; however, these calculations can be labor intensive and expensive. To evaluate the myriad of possibilities for the first wall and blanket, scoping codes to estimate reaction rates and leakage could be advantageous for design purposes.

Engineers who do neutronic computations for fission reactors commonly use neutron transport and diffusion codes to determine the flux profiles within a nuclear reactor. By using a neutron diffusion code, scoping runs can be made to provide an initial estimate for the actual flux profiles. Since diffusion calculations can be performed more easily than the more exact calculations based on transport theory, neutron diffusion codes are used to decrease the computational effort involved in the trial and error process that takes place in designing the cores of nuclear reactors. In the same manner, a need has arisen to perform flux computations for the nuclear design of Tokamak-type fusion reactors which have a toroidal or doughnut shape.

I.C Previous Studies

Several computational models have been applied to estimate the flux profile in toroidally shaped blankets. One approach is to perform diffusion or transport calculations in one-dimensional cylindrical geometry and to ignore the curvature associated with the major radius. In particular, the geometry of the toroidal reactor blanket can be approximated as an infinite right circular cylinder, so that a one-dimensional discrete ordinates code, such as ANISN⁶, can be used to solve for the neutron flux in the radial direction. This method is advantageous in that one-dimensional codes are readily available, easy to use, and relatively inexpensive to run. On the other hand, because one-dimensional cylindrical diffusion and transport codes can not model the curvature associated with the major radius present in Tokamaks, such codes are probably not suitable for tori with small aspect ratios.

To take into account the curvature of the major radius as well as the minor radius, two-dimensional cylindrical calculations in r-z geometry have been used to solve for the neutron flux. A typical code for this method is TWOTRAN-II⁷, a two-dimensional discrete ordinates transport code which can be run in r-z geometry. Although it is possible to model the curvature of the major radius adequately using such a code, small mesh spacings are required to correctly model curved surfaces in the r-z plane; this can lead to costly and time consuming computations. More recently, computer programs have been developed to perform neutron transport calculations that are more suitable for toroidal geometry. One example of such a code is TRISM⁸, a two-dimensional discrete ordinates transport code developed at Los Alamos National Laboratory. Finally, full three-dimensional and Monte Carlo⁹ programs have also been applied to blanket problems. While these more advanced methods allow fluxes to be calculated accurately, they can be quite cumbersome and expensive to use.

I.D Computer Codes Used in This Work

2DB, a code written primarily for use in fast reactor calculations, provides two options that are potentially useful for fusion reactor design.¹⁰ First, a fixed source option will enable modeling of fusion blanket problems. Second, material depletion in the blanket of a Tokamak can potentially be calculated by using 2DB's material burn-up option.

ANISN, as stated previously, is a neutron transport code commonly used for fusion blanket analysis in one dimension. It can also be used to provide for a benchmark comparison to the one-dimensional results obtained with 2DB. In addition, ANISN enables one to reduce the number of groups used in the calculations by averaging over the fine groups to produce broad group cross sections. Reducing the number of groups will prove useful in a neutron diffusion code, since run times can be greatly decreased, thus facilitating its use on a micro-computer.

Since ANISN is a transport code, the results for the flux distribution will be more accurate than those obtained based on diffusion theory. In particular, if the validity of diffusion theory in the vacuum region of a Tokamak inordinately affects the flux distribution in the rest of the Tokamak, then results from ANISN will provide a means to check this in 2DB.

The neutron cross section data used in the above codes will be taken from the CLAW-IV¹¹ library. Most of the materials suggested for fusion applications are contained in this multi-group cross section set. Each material in the CLAW-IV library has four cross section matrices ($P_0 - P_3$), with 30 neutron groups and 12 photon groups coupled in each. In the diffusion calculations, only the P_0 matrix is used.

I.E Objectives of This Work

The objective of the research performed here is to produce a scoping code that can be used for fusion blanket design. Pomraning and Stevens¹² have previously explained a technique in which a toroidal geometry problem can be cast into cylindrical (r- θ) form by a spatially dependent redefinition of the diffusion coefficient, absorption cross-section, and extraneous source function. Use of this method will first be attempted in an existing two-dimensional(x-y, r-z, r- θ , triangular), multi-group neutron diffusion code, 2DB, that already executes on the IBM-AT. This method will also be assessed and compared to direct finite differencing of the toroidal diffusion equation. The method with the most advantages will then be implemented in a new version of 2DB that will be called 2DBTOR.

To verify that 2DBTOR is operating correctly, comparisons will be made to both analytical and numerical solutions for several types of problems. ANISN and 2DB will be used to verify the solutions obtained from 2DBTOR.

The modifications that were made to 2DB, a description of the problems and analytical solutions used to verify 2DBTOR, and the further modifications that were necessary to use 2DBTOR for fusion blanket calculations are presented in the following sections of this thesis.

II. THEORY

II.A. Introduction

The design of tokamak reactors requires an accurate calculation of the flux profile in the toroidally-shaped blanket. As stated previously, an r-0 neutron diffusion code will be used, with the appropriate modifications, to obtain a solution for the flux while taking into account the curvature of the torus. The solution from this modified neutron diffusion code might then be used as a first approximation for later runs in a more accurate transport code, such as TRISM⁸.

In order to make the appropriate changes so that a two-dimensional, r- θ , diffusion code can be made to model toroidal geometry, an understanding of the form of the diffusion equation in toroidal geometry is necessary. The diffusion equation in toroidal geometry can be developed from the equation for the time rate of change of the number of neutrons at energies, E, in an arbitrary differential volume, dV. Neutrons of energies between E and E+dE, within dV, can be lost or gained by a variety of processes including: (1) production directly from a source, (2) absorption, (3) leakage and (4) scattering. The time rate of change of the number of neutrons in dV and between E and E+dE can be obtained by integrating the neutron density (n(r,E,t)) over dV, and balancing this with the gains and losses as follows:

$$\frac{\partial}{\partial t} \int_{v}^{t} \frac{\Phi(\vec{r}, E, t)}{v} dV = \begin{bmatrix} \text{source neutron} \\ \text{production rate} \\ \text{in } V \text{ at } E \end{bmatrix} - \begin{bmatrix} \text{absorption} \\ \text{rate in } V \\ \text{rate } E \end{bmatrix} - \begin{bmatrix} \text{change due} \\ \text{to leakage} \\ \text{from } V \text{ at } E \end{bmatrix} \\ - \begin{bmatrix} \text{neutron scattering} \\ \text{rate out of} \\ \text{E in } V \end{bmatrix} + \begin{bmatrix} \text{neutron scattering} \\ \text{rate into} \\ \text{E in } V \end{bmatrix}$$
(5)

where $\Phi(\mathbf{r}, \mathbf{E}, t) = \text{flux of neutrons in } \mathbf{r} \text{ at } \mathbf{E} \text{ and } \mathbf{t} = \mathbf{n}(\mathbf{r}, \mathbf{E}, t)\mathbf{v}$

and v = the speed of the neutrons at E.

Equation (5) is known as the neutron continuity equation. Since the energy dependence of the neutron cross sections vary, equation (5) is usually solved for discrete energy groups(groups denoted by g in this case); thus equation (5) can be written as

$$\frac{\partial}{\partial t} \int_{\mathbf{v}} \frac{\Phi_{g}(\mathbf{r}, t)}{\mathbf{v}_{g}} \, d\mathbf{V} = \begin{bmatrix} \text{source neutron} \\ \text{production rate} \\ \text{in V for} \\ \text{group, g} \end{bmatrix} - \begin{bmatrix} \text{absorption} \\ \text{rate in V} \\ \text{for group, g} \end{bmatrix} - \begin{bmatrix} \text{change due} \\ \mathbf{v} \text{ kakage} \\ \text{form V} \\ \text{for group, g} \end{bmatrix} \\ - \begin{bmatrix} \text{neutron scattering} \\ \text{rate out of} \\ \text{group, g in V} \end{bmatrix} + \begin{bmatrix} \text{neutron scattering} \\ \text{rate into} \\ \text{group, g in V} \end{bmatrix}$$
(6)

Before substituting expressions for the terms in equation (6), it is necessary to consider the flow of neutrons in a medium. Since the neutron current vector, J(r,E,t) is a vector quantity, then

To determine the total net rate of flow out of a closed surface, S, integration of equation (7) over S yields

$$\int_{s} \vec{J}(\vec{r}, E, t) \cdot \hat{n} \, dA,$$

where n is the unit normal to the surface dA. Using the Divergence Theorem, then

$$\int_{s} \vec{J}(\vec{r}, E, t) \cdot \hat{n} dA = \int_{v} \vec{\nabla} \cdot \vec{J}(\vec{r}, E, t) dV. \qquad (8)$$

Since equation (6) will be used to solve for the neutron flux, it is necessary to relate J(r,E,t) to the flux. In the diffusion approximation the relation between current and flux is assumed to be as follows:

$$\vec{J}(\vec{r},E,t) \cong -\vec{D}(\vec{r})\vec{\nabla \Phi}(\vec{r},E,t)$$
 (9)

where D(r) = the diffusion coefficient.

Equation (9), known as Fick's Law for Diffusion, describes the flow of neutrons as being proportional to the negative of the density(flux) gradient, since particles tend to flow from a region of higher density to a region of lower density. Fick's Law is only valid for:

- 1.) points away from a vacuum boundary,
- 2.) points away from sources (by a few mean free paths),
- isotropic scattering (e.g., equal probability of scattering in any direction,
- and 4.) a slowly varying flux (absorption << scattering).13

The above conditions can be somewhat relaxed, depending on the accuracy required for the solution of equation (6).

Using Fick's Law it is now possible to express the balance equation only in terms of the neutron flux. Substituting the right hand side (RHS) of equation (9) into the leakage term found from the Divergence Theorem (equation (8)), then

$$\begin{bmatrix} \text{change due} \\ \text{to leakage} \\ \text{from V for} \\ \text{group, g} \end{bmatrix} = \int_{v} \vec{\nabla} \cdot (-D_{g}(\vec{r}) \vec{\nabla} \Phi_{g}(\vec{r}, t)) \, dV$$
(10)

The use of Fick's Law in the neutron balance equation, equation (6), is known as the diffusion approximation, and the resulting equations are known as neutron diffusion equations.

The source term in equation (6) can be expressed by defining a source density, $S_g(r,t)$, for the group, g. If $S_g(r,t)$ is integrated over V, then

$$\begin{bmatrix} \text{source neutron} \\ \text{production rate} \\ \text{in V for} \\ \text{group, g} \end{bmatrix} = \int_{V} S_{g}(\tilde{r}, t) \, dV \, . \tag{11}$$

If source neutrons are allowed to be produced by either fission or extraneous(independent of the neutron flux) sources, then let

$$S_{g}(\vec{r},t) = S_{g}^{ext}(\vec{r},t) + S_{g}^{fis}(\vec{r},t)$$
(12)

where

-

 $S_g^{ext}(\vec{r},t) = \text{extraneous source density rate}$ $S_g^{fis}(\vec{r},t) = \text{fission source density rate.}$ and

The fission source density rate is given by

$$S_{g}^{fis}(\bar{r},t) = \begin{pmatrix} \text{average number of} \\ \text{fission neutrons emitted} \\ \text{within group, g} \end{pmatrix} \sum_{g=1}^{G} \left\{ \begin{cases} \text{fission rate in} \\ \text{group, g' per} \\ \text{unit volume} \end{cases} \begin{vmatrix} \text{average number of} \\ \text{neutrons released} \\ \text{into group, g, that} \\ \text{occur from fission} \\ \text{in group, g'} \end{vmatrix} \right\}$$
(13)

where G = total number of groups.

It is common to denote the average number of neutrons released into group, g, that occur from fission in group, g', by $\boldsymbol{\nu}_g$ and the average number of fission neutrons emitted within group, g, by χ_{g} .¹⁴ Thus

$$S_{g}^{fis}(\vec{r},t) = \chi_{g} \sum_{g'=1}^{G} v_{g'} \left[\begin{array}{c} fission rate \\ in group, g' \\ per unit volume \end{array} \right]$$
(14)

Since

$$\begin{bmatrix} \text{reaction rate} \\ \text{per unit} \\ \text{volume} \end{bmatrix} = \Sigma \Phi$$
(15)

where Σ = macroscopic cross section,

the expression for the fission source can be written as

$$S_{g}^{fis}(\vec{t},t) = \chi_{g} \sum_{g'=1}^{G} v_{g'} \Sigma_{f_{g}}(\vec{t}) \Phi_{g}(\vec{t},t).$$
 (16)

The rest of the terms in the neutron balance equation can be expressed analogously to the above. For the absorption rate term, the absorption rate per unit volume is integrated over V to give

$$\begin{vmatrix} \text{absorption rate} \\ \text{in V for group, g} \end{vmatrix} = \int_{V} \Sigma_{a_{g}}(\tilde{r}) \Phi_{g}(\tilde{r}, t) \, dV$$
(17)

where $\Sigma_{ag}(r)$ = the macroscopic absorption cross-section in group g.

Assuming that neutrons can not scatter to groups of higher energy (upscatter), then the neutron outscattering rate term is given by(decreasing group numbers correspond to increasing neutron energy)

$$\begin{bmatrix} neutron scattering rate \\ out of group g in V \end{bmatrix} = \int_{v} \sum_{t=1}^{q} \Sigma_s(g \rightarrow g') \Phi_g(\vec{t}, t) dV$$
(18)

and the neutron inscattering rate term is given by

$$\begin{bmatrix} neutron scattering rate \\ into group g in V \end{bmatrix} = \int_{V} \sum_{s=1}^{s^{-1}} \Sigma_{s}(g \rightarrow g') \Phi_{g}(\mathbf{f}, t) dV$$
(19)

where $\Sigma_{g}(g \rightarrow g') = \text{macroscopic scattering cross-section from g to g'}$

and $\Sigma_{g}(g \rightarrow g') =$ macroscopic scattering cross-section from g' to g.

Now that all of the terms in the neutron balance equation have been determined, equation (6) can be rewritten. Assuming steady state $(\partial/\partial t \text{ term} = 0)$ and no upscatter, the neutron balance equation becomes, combining terms,

$$0 = \int_{V} \left(S_{g}^{ext} + \chi_{g} \sum_{g'=1}^{G} (v_{g'} \Sigma_{f_{g}} \Phi_{g'}) - \Sigma_{a_{g}} \Phi_{g} - \sum_{g'=g+1}^{G} (\Sigma_{s}(g \rightarrow g') \Phi_{g}) \right) (20)$$

+ $\vec{\nabla} \cdot (D_{g} \vec{\nabla} \Phi_{g}) + \sum_{g'=1}^{g-1} (\Sigma_{s}(g \rightarrow g') \Phi_{g'}) dV$

where the (r,t) has been dropped for clarity. Since the volume, V, was arbitrarily chosen, equation (20) reduces to the form that follows:

$$-\vec{\nabla} \cdot (D_g \vec{\nabla} \Phi_g) + \Sigma_a \Phi_g + \sum_{g'=g+1}^{G} (\Sigma_a (g \rightarrow g') \Phi_g) =$$

$$S_g^{ext} + \chi_g \sum_{g'=1}^{G} (v_g' \Sigma_{f_a} \Phi_{g'}) + \sum_{g'=1}^{g-1} (\Sigma_a (g \rightarrow g') \Phi_{g'})$$
(21)

Since the removal of neutrons from group g is caused by both downscattering and absorption, the removal cross section for group g is defined as shown below:

$$\begin{split} \Sigma_{g}^{r} &= \Sigma_{a_{a_{a}}} + \sum_{g'=g+1}^{G} (\Sigma_{s}(g \rightarrow g')) \\ &= \Sigma_{a_{a}} + \Sigma_{s}(g \rightarrow g) + \left[\sum_{g'=g+1}^{G} \Sigma_{s}(g \rightarrow g') \right] - \Sigma_{s}(g \rightarrow g) \\ &= \Sigma_{tr_{a}} - \Sigma_{s}(g \rightarrow g') \end{split}$$

where Σ_{trg} = the macroscopic transport cross section = 1/(3Dg).¹⁴

Thus the removal rate/cm3 is

$$\Sigma_{g}^{r} \Phi_{g} = \Sigma_{a_{g}} \Phi_{g} + \sum_{g'=g+1}^{G} (\Sigma_{g}(g \rightarrow g') \Phi_{g}).$$
(22)

Finally, substituting equation (22) into equation (21) gives

$$-\vec{\nabla} \cdot (D_{g}\vec{\nabla}\Phi_{g}) + \Sigma_{g}^{r}\Phi_{g} = S_{g}^{ext} + \chi_{g} \sum_{g'=1}^{G} (v_{g'}\Sigma_{f_{g'}}\Phi_{g'}) + \sum_{g'=1}^{g-1} (\Sigma_{g}(g \to g')\Phi_{g'})$$
(23)

To apply the above equation to practical problems, the ∇ operator must be written in the coordinate system of interest. In general orthogonal curvilinear coordinates

$$\vec{\nabla}\Phi = \frac{1}{h_1}\frac{\partial\Phi}{\partial u_1}\hat{e}_1 + \frac{1}{h_2}\frac{\partial\Phi}{\partial u_2}\hat{e}_2 + \frac{1}{h_3}\frac{\partial\Phi}{\partial u_3}\hat{e}_3$$

and

$$\vec{\nabla} \cdot \vec{A} = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial u_1} (h_2 h_3 A_1) + \frac{\partial}{\partial u_2} (h_3 h_1 A_2) + \frac{\partial}{\partial u_3} (h_1 h_2 A_3) \right]$$

where u₁, u₂, and u₃ are the coordinates;
 e₁, e₂, and e₃ are the corresponding coordinate vectors;
 and h₁, h₂, and h₃ are scale factors that depend on the coordinates.

For cylindrical coordinates (r, θ , z)

$h_{I} = 1$	$u_1 = r$	$e_1 = r$
$h_2 = r$	$u_2 = \theta$	$e_2 = \theta$
h3 = 1	u3 = z	e3 = z.

For toroidal coordinates (r, θ , ϕ) (see Figure 2-1)

h₁ = 1 u₁ = r e₁ = r h₂ = r u₂ = θ e₂ = θ h₃ = R+rcos θ u₃ = ϕ e₃ = ϕ .¹⁵

Consider the diffusion equation in cylindrical coordinates. From the above,

$$\label{eq:radius} \begin{split} R = major \mbox{ radius}, \mbox{ a = minor radius}, \mbox{ r = radial coordinate}, \\ \theta = \mbox{ poloidal angle, and } \varphi = \mbox{ toroidal angle}. \end{split}$$

20

$$\vec{D\nabla \Phi} = \vec{D}\frac{\partial \Phi}{\partial r}\hat{r} + \frac{\vec{D}\partial \Phi}{r}\hat{\theta} + \vec{D}\frac{\partial \Phi}{\partial z}\hat{z}$$
(24)

Also,

$$\vec{\nabla} \cdot (\vec{D\nabla} \Phi) = \frac{1}{r} \left[\frac{\partial}{\partial r} (r D \frac{\partial \Phi}{\partial r}) + \frac{\partial}{\partial \theta} (\frac{D \partial \Phi}{r \partial \theta}) + \frac{\partial}{\partial z} (r D \frac{\partial \Phi}{\partial z}) \right]$$
(25)

Analogously for toroidal coordinates,

$$\vec{D\nabla \Phi} = \vec{D} \frac{\partial \Phi}{\partial r} \hat{r} + \frac{\vec{D} \partial \Phi}{r} \hat{\theta} + \frac{\vec{D}}{R + r \cos \theta} \frac{\partial \Phi}{\partial \phi} \hat{\phi}$$
(26)

and

$$\vec{\nabla} \cdot (\vec{D} \nabla \Phi) = \frac{1}{r(R + r\cos\theta)} \left[\frac{\partial}{\partial r} (r(R + r\cos\theta) D \frac{\partial \Phi}{\partial r}) + \frac{\partial}{\partial \theta} ((R + r\cos\theta) \frac{D}{r} \frac{\partial \Phi}{\partial \theta}) + \frac{\partial}{\partial \phi} (\frac{rD}{R + r\cos\theta} \frac{\partial \Phi}{\partial \phi}) \right] (27)$$

The diffusion equation in a cylindrical coordinate system, assuming axial symmetry (i.e., the flux, $\Phi(r, \theta, z)$ depends only on the r and θ coordinates), is given by

$$= \frac{1}{r} \left[\frac{\partial}{\partial r} (rD_{g} \frac{\partial \Phi_{g}}{\partial r}) + \frac{\partial}{\partial \theta} (\frac{D_{g}}{r} \frac{\partial \Phi_{g}}{\partial \theta}) \right] + \sum_{g}^{r} \Phi_{g}$$

$$= S_{g}^{ext} + \chi_{g} \sum_{g'=1}^{G} (v_{g'} \sum_{r_{g'}} \Phi_{g'}) + \sum_{g'=1}^{g-1} (\sum_{s} (g \rightarrow g') \Phi_{g'})$$

$$(28)$$

Similarly the diffusion equation in a toroidal coordinate system with axisymmetry (i.e., the flux, $\Phi(r, \theta, \phi)$ depends only on the r and θ coordinates), is given by

$$-\frac{1}{r(R+r\cos\theta)} \left[\frac{\partial}{\partial r} (r(R+r\cos\theta)D_g \frac{\partial \Phi_g}{\partial r}) + \frac{\partial}{\partial \theta} ((R+r\cos\theta)\frac{D_g}{r} \frac{\partial \Phi_g}{\partial \theta}) \right]$$

$$+ \Sigma_g^r \Phi_g = S_g^{ext} + \chi_g \sum_{g'=1}^G (v_{g'} \Sigma_{f_{t'}} \Phi_{g'}) + \sum_{g'=1}^{g-1} (\Sigma_g(g \to g') \Phi_{g'})$$
(29)

II.B. Pomraning and Stevens' Method

If the toroidal form of the diffusion equation (equation (25)) is multiplied by (R + $rcos\theta$)/R, then

$$-\frac{1}{r}\frac{\partial}{\partial r}(r(1+\frac{r}{R}\cos\theta)D_{g}\frac{\partial\Phi_{g}}{\partial r}) - \frac{1}{r^{2}}\frac{\partial}{\partial \theta}((1+\frac{r}{R}\cos\theta)D_{g}\frac{\partial\Phi_{g}}{\partial \theta}) + (1+\frac{r}{R}\cos\theta)\Sigma_{g}^{r}\Phi_{g} = (1+\frac{r}{R}\cos\theta)\overline{S}_{g}^{r}\Phi_{g}$$

where S_g = three terms representing sources on the right hand side of equation (29).

If now one defines

$$D_{g}' = (1 + r/R\cos\theta) D_{g}$$
$$\Sigma^{r'}{}_{g} = (1 + r/R\cos\theta) \Sigma^{r}{}_{g}$$
$$S_{g}' = (1 + r/R\cos\theta) S_{g}$$

Then the above equation becomes

$$-\frac{1}{r}\frac{\partial}{\partial r}(rD'_{g}\frac{\partial \Phi_{g}}{\partial r}) - \frac{1}{r^{2}}\frac{\partial}{\partial \theta}(D'_{g}\frac{\partial \Phi_{g}}{\partial \theta}) + \Sigma_{g}^{r'}\Phi_{g} = \overline{S}'_{g}$$

This equation is just the cylindrical diffusion equation with a modified diffusion coefficient, removal cross section, and source function. Pomraning and Stevens¹¹² proposed the possibility of using an existing r- θ neutron diffusion code and redefining the diffusion coefficient, removal cross section, and source function to model the

curvature of the torus naturally. This method was the original idea that suggested the topic of this research; however, this approach was later abandoned in favor of direct finite differencing of the toroidal diffusion equation.

II.C. Finite Difference Approximation to the Diffusion Equation in Cylindrical Coordinates

To develop a finite difference approximation for the cylindrical diffusion equation(with axial symmetry), it is first necessary to integrate equation (28) over a small, arbitrary volume ΔV (see Figure 2-2). Thus,

$$-\int_{\Delta V} \frac{1}{r} \left[\frac{\partial}{\partial r} (r D_g \frac{\partial \Phi_g}{\partial r}) + \frac{\partial}{\partial \theta} (\frac{D_g \partial \Phi_g}{r}) \right] dV + \int_{\Delta V} \int_{\Delta V} \sum_{g \neq g} \left[dV \right] dV$$

$$= \int_{\Delta V} \left[S_g^{ext} + \chi_g \sum_{g \geq 1}^{G} (\nu_g, \Sigma_{r_g} \Phi_{g'}) + \sum_{g \neq 1}^{g-1} (\Sigma_g(g \to g') \Phi_{g'}) \right] dV$$
(30)

where the first term on the LHS of the equation is the leakage term, the second term on

Figure 2-2. Finite Difference Coordinates Used in 2DB and 2DBTOR.

the LHS of the equation is the removal term, and the RHS represents the source terms including fission and scatter. Thus for the removal term,

$$\int_{\Delta \mathbf{V}} \Sigma_g^{t} \Phi_g \, d\mathbf{V} = \Sigma_{g_0}^{t} \Phi_{g_0} \quad (\mathbf{r}_{i+1} - \mathbf{r}_{i}) \left(\theta_{j+1} - \theta_{j} \right) \mathbf{r}_{swc_i}$$
(31)
$$= \Sigma_{g_0}^{t} \Phi_{g_0} \mathbf{v}_0$$

where

and

 Φ_{g_0} = flux associated with meshpoint o $\Sigma_{g_0}^r = \text{ removal cross section associated with meshpoint o.}$

Just as above, the source term on the RHS can be shown to have a $V_{\rm O}$ given by

$$V_{o} = (r_{i+1} - r_{i}) (\theta_{j+1} - \theta_{j}) r_{ave_{i}}.$$
 (32)

The leakage term is changed to an integral over the surface area of the volume element, thus from the Divergence Theorem

$$-\int_{\Delta V} \overrightarrow{\nabla} \cdot \mathbf{D}_{g} \overrightarrow{\nabla} \Phi_{g} dV = -\int_{A} \mathbf{D}_{g} \overrightarrow{\nabla} \Phi_{g} \cdot \widehat{\mathbf{n}} dA$$

Using equation (24) for the $D_g \nabla \Phi_g$ term (where $d\Phi/dz = 0$)

$$-\int_{A} D_{g} \vec{\nabla} \Phi_{g} \cdot \hat{n} \, dA = -\int_{A} (D_{g} \frac{\partial \Phi_{g}}{\partial r} + \frac{D_{g} \partial \Phi_{g}}{r} \frac{\partial}{\partial \theta}) \cdot \hat{n} \, dA .$$
The normal vector, n, is r or θ for those area elements having normals in the positive r or θ , or increasing r or θ , respectively. In the same manner, n is -r or - θ for those elements in the -r or - θ directions. The area element corresponding to a normal in the $\pm r$ direction is rd θ , while the area element for a normal in the $\pm \theta$ direction is dr. Thus for the 4 area elements

$$-\int_{A} (D_{g} \frac{\partial \Phi_{g}}{\partial r} \hat{r} + \frac{D_{g} \partial \Phi_{g}}{r} \hat{\theta}) \cdot \hat{n} dA$$

=
$$-\int_{A} (D_{g} \frac{\partial \Phi_{g}}{\partial r} \hat{r} + \frac{D_{g} \partial \Phi_{g}}{r} \hat{\theta}) \cdot \hat{n} dA_{1}$$

$$-\int_{A_{1}} (D_{g} \frac{\partial \Phi_{g}}{\partial r} \hat{r} + \frac{D_{g} \partial \Phi_{g}}{r} \hat{\theta}) \cdot \hat{n} dA_{2}$$

$$-\int_{A_{2}} (D_{g} \frac{\partial \Phi_{g}}{\partial r} \hat{r} + \frac{D_{g} \partial \Phi_{g}}{r} \hat{\theta}) \cdot \hat{n} dA_{3}$$

$$-\int_{A_{3}} (D_{g} \frac{\partial \Phi_{g}}{\partial r} \hat{r} + \frac{D_{g} \partial \Phi_{g}}{r} \hat{\theta}) \cdot \hat{n} dA_{4}$$

Substituting for n and the dA's (see Figure 2-2) then the RHS becomes

$$= -\int_{\theta_{j}}^{\theta_{j+1}} (D_{g} \frac{\partial \Phi_{g}}{\partial r} \hat{r} + \frac{D_{g} \partial \Phi_{g}}{r} \hat{\theta}) \cdot \hat{r} r_{i} d\theta \Big|_{A_{1}}$$
$$-\int_{\theta_{j}}^{\theta_{j+1}} (D_{g} \frac{\partial \Phi_{g}}{\partial r} \hat{r} + \frac{D_{g} \partial \Phi_{g}}{r} \hat{\theta}) \cdot \hat{r} r_{i+1} d\theta \Big|_{A_{2}}$$
$$-\int_{r_{i}}^{r_{i+1}} (D_{g} \frac{\partial \Phi_{g}}{\partial r} \hat{r} + \frac{D_{g} \partial \Phi_{g}}{r} \hat{\theta}) \cdot -\hat{\theta} dr \Big|_{A_{3}}$$
$$-\int_{r_{i}}^{r_{i+1}} (D_{g} \frac{\partial \Phi_{g}}{\partial r} \hat{r} + \frac{D_{g} \partial \Phi_{g}}{r} \hat{\theta}) \cdot \hat{\theta} dr \Big|_{A_{4}}$$

Since $\mathbf{r} \cdot \mathbf{\theta} = \mathbf{\theta} \cdot \mathbf{r} = 0$ and $\mathbf{r} \cdot \mathbf{r} = \mathbf{\theta} \cdot \mathbf{\theta} = 1$, then the RHS simplifies to

$$= \int_{\theta_{j}}^{\theta_{j+1}} D_{g} \frac{\partial \Phi_{g}}{\partial r} r_{i} d\theta \Big|_{A_{1}} - \int_{\theta_{j}}^{\theta_{j+1}} D_{g} \frac{\partial \Phi_{g}}{\partial r} r_{i+1} d\theta \Big|_{A_{2}} + \int_{r_{i}}^{r_{i+1}} \frac{D_{g} \partial \Phi_{g}}{r \partial \theta} dr \Big|_{A_{j}} \int_{r_{i}}^{r_{i+1}} \frac{D_{g} \partial \Phi_{g}}{r \partial \theta} dr \Big|_{A_{j}} (33)$$

Since the partial derivatives of the flux will be obtained by differencing the two neighboring flux values, then letting k be the adjacent mesh point to mesh point o gives

$$\frac{\mathrm{d}\phi}{\mathrm{d}x} \approx \frac{\phi_k - \phi_0}{\Delta x}$$

where x = r or θ depending on the derivative being considered.

Then

$$\begin{split} \int_{\theta_{i}}^{\theta_{i+1}} D_{g} \frac{\partial \Phi_{g}}{\partial r} r_{i} d\theta \Big|_{A_{1}} &= \overline{D}_{g_{1}} \frac{\partial \Phi_{g}}{\partial r} \Big|_{r_{i}} (\theta_{j+1} - \theta_{j}) \\ &= -\overline{D}_{g_{1}} \frac{\phi_{g_{1}} - \phi_{g_{0}}}{r_{ave_{i}} r_{ave_{i}}} r_{i} (\theta_{j+1} - \theta_{j}) \end{split}$$

where Dg_k is defined to be (see Appendix B)

$$\overline{D}_{g_k} = \frac{D_{g_0} D_{g_k} (\Delta r_0 + \Delta r_k)}{(D_{g_0} \Delta r_k + D_{g_k} \Delta r_o)} \quad \text{or} \quad \frac{D_{g_0} D_{g_k} (\Delta \theta_0 + \Delta \theta_k)}{(D_{g_0} \Delta \theta_k + D_{g_k} \Delta \theta_o)} \text{ for } k = 1, 2, 3, \text{ or } 4$$

and $Dg_0 = average D_g$ for volume element o,

 $Dg_k = average D_g$ for volume element k,

 $\Delta \mathbf{r}_{0} = \Delta \mathbf{r}$ for volume element o,

$$\Delta r_{\mathbf{k}} = \Delta r$$
 for volume element k.

 $\Delta \theta_0 = \Delta \theta$ for volume element o, and

 $\Delta \theta_{0} = \Delta \theta$ for volume element 0.

Let

$$A_{1} = r_{i} (\theta_{j+1} - \theta_{j})$$
$$L_{1} = r_{ave_{i}} - r_{ave_{i-1}}$$

Then

$$\int_{\theta_{i}}^{\theta_{ji}} D_{g} \frac{\partial \Phi_{g}}{\partial r} r_{i} d\theta \approx -\overline{D}_{g1} \frac{\Phi_{g1} - \Phi_{g0}}{L_{1}} A_{1}$$
(34)

For r_i close to $r_{i+1}, \ \ln(r_{i+1}/r_i) \approx (r_{i+1}$ - $r_i).$ Thus,

$$\ln\left(\frac{r_{i+1}}{r_i}\right) \approx r_{i+1} - r_i \quad ,$$

which when used in the third term in equation (33) gives

$$\begin{split} \int_{r_{i}}^{r_{i}} & \frac{D_{g} \partial \Phi_{g}}{r \partial \theta} dr &= \overline{D}_{g_{3}} \frac{\partial \Phi_{g}}{\partial \theta} \bigg|_{\theta_{i}} \ln r \bigg|_{r_{i}}^{r_{i+1}} \\ &\approx -\overline{D}_{g_{3}} \frac{\Phi_{g_{3}} - \Phi_{g_{0}}}{\theta_{ave_{j}} - \theta_{ave_{j+1}}} (r_{i+1} - r_{i}) \end{split}$$

$$\begin{array}{lll} A_{3} &=& (r_{i+1} - r_{i}) \\ L_{3} &=& \theta_{ave_{j}} - \theta_{ave_{j-1}} \end{array},$$

then

$$\int_{r_i}^{r_{sA}} \frac{D_g \partial \Phi_g}{\partial \theta} dr \approx -\overline{D}_{g_3} \frac{\Phi_{g_3} - \Phi_{g_0}}{L_3} A_3 .$$
(35)

The above process can be applied to the remaining terms of equation (33) to give

$$-\int_{\theta_{j}}^{\theta_{j+1}} D_{g} \frac{\partial \Phi_{g}}{\partial t} \mathbf{r}_{i+1} d\theta \approx \overline{D}_{g_{2}} \frac{\phi_{g_{2}} - \phi_{g_{0}}}{\mathbf{r}_{\mathbf{ave}_{i}} - \mathbf{r}_{\mathbf{ave}_{i}}} \mathbf{r}_{i+1} (\theta_{j+1} - \theta_{j})$$
(36)

$$\approx -\overline{D}_{g_2} \frac{\phi_{g_2} - \phi_{g_0}}{L_2} A_2$$

$$\int_{\mathbf{r}_{i}}^{\mathbf{r}_{i+1}} \frac{\mathbf{D}_{g}\partial \Phi_{g}}{r\partial \theta} d\mathbf{r} \approx \overline{\mathbf{D}}_{g_{4}} \frac{\Phi_{g_{4}} - \Phi_{g_{0}}}{\Phi_{ave_{j+1}} - \Phi_{ave_{j}}} (\mathbf{r}_{i+1} - \mathbf{r}_{i})$$
(37)

$$\approx -\overline{D}_{g_4} \frac{\phi_{g_4} - \phi_{g_0}}{L_4} A_4$$

where
$$L_2 = r_{ave \ i+1} - r_{ave \ i}$$
,
 $A_2 = r_{i+1} (\theta_{j+1} - \theta_j)$,
 $L_4 = \theta_{ave \ j+1} - \theta_{ave \ j}$,

and

$$A_4 = r_{i+1} - r_i$$
.

Combining all of the above terms back into equation (30)

$$-\sum_{k=1}^{4} \left[\overline{D}_{g_{k}} \left(\frac{\Phi_{g_{k}} - \Phi_{g_{0}}}{L_{k}} \right) A_{k} \right] + \Sigma_{g_{0}}^{T} \Phi_{g_{0}} V_{0} \qquad (38)$$
$$= \left[S_{g_{0}}^{ext} + \chi_{g} \sum_{g'=1}^{G} \left(v_{g'} \Sigma_{f_{e'}} \Phi_{g'_{0}} \right) + \sum_{g'=1}^{g-1} \left(\Sigma_{s_{0}} (g \rightarrow g') \Phi_{g'_{0}} \right) \right] V_{0} .$$

II.D. Finite Difference Approximation to the Diffusion Equation in Toroidal Coordinates

In a similar manner as was used in the previous section, the diffusion equation in a toroidal coordinate system can be written in finite difference form. Using the Divergence Theorem to transpose the leakage term in the toroidal diffusion equation (equation (29)) from a volume to a surface integral and substituting for the $D_g \nabla \Phi_g$ term from equation (26), then

$$-\int_{A} \left[D_{g} \frac{\partial \Phi_{g}}{\partial r} + \frac{D_{g}}{\partial \theta} \frac{\partial \Phi_{g}}{\partial \theta} + \frac{D_{g}}{(R + r\cos\theta)} \frac{\partial \Phi_{g}}{\partial \phi} \right] \cdot \hat{n} \, dA + \int_{V} \left[\Sigma_{g}^{r} \Phi_{g} \right] dV$$
(39)
$$= \int_{V} \left[S_{g}^{ext} + \chi_{g} \sum_{g=1}^{G} (v_{g} \cdot \Sigma_{f_{g}} \Phi_{g'}) + \sum_{g=1}^{g-1} (\Sigma_{g} (g \to g') \Phi_{g'}) \right] dV$$

The leakage term in toroidal coordinates becomes (assuming axisymmetry)

$$-\int_{A} 2\pi (R + r\cos\theta) \left(D_{g} \frac{\partial \Phi_{g\hat{f}}}{\partial r} + \frac{D_{g} \partial \Phi_{g\hat{f}}}{r} \frac{\partial \Phi_{g\hat{f}}}{\partial \theta} \right) \cdot \hat{n} dA .$$

where the $(R + r\cos\theta)$ term appears from multiplying by $(R + r\cos\theta)$ before taking $d\Phi/d\phi = 0$. As in the cylindrical form of the diffusion equation, n and the dA's are the same, so the only difference in evaluating the toroidal form of the diffusion equation is the $(R + r\cos\theta)$ terms. Thus from the above, the leakage term becomes

$$\begin{split} & 2\pi \int_{A} (\mathbb{R} + \operatorname{rcos}\theta) \left(D_{g} \frac{\partial \Phi_{g}}{\partial t} \widehat{\mathbf{r}}^{*} + \frac{D_{g}}{r} \frac{\partial \Phi_{g}}{\partial \theta} \widehat{\mathbf{s}}^{*} \widehat{\mathbf{n}} \, dA = \\ & 2\pi \int_{A}^{\left| \frac{\theta_{j+1}}{2} - D_{g}(\mathbb{R} + \operatorname{rcos}\theta) \frac{\partial \Phi_{g}}{\partial t} - r_{1} \, d\theta \right|_{A_{1}} - 2\pi \int_{\theta_{j}}^{\theta_{j+1}} D_{g}(\mathbb{R} + \operatorname{rcos}\theta) \frac{\partial \Phi_{g}}{\partial t} - r_{j+1} \, d\theta \Big|_{A_{2}} \\ & + 2\pi \int_{\tau_{j}}^{\tau_{j+1}} \frac{D_{g}}{r} (\mathbb{R} + \operatorname{rcos}\theta) \frac{\partial \Phi_{g}}{\partial \theta} \, dr \Big|_{A_{3}} - 2\pi \int_{\tau_{j}}^{\tau_{g+1}} \mathbb{R} (\operatorname{rcos}\theta) \frac{\partial \Phi_{g}}{\partial \theta} \, dr \Big|_{A_{4}} \\ & \approx -2\pi \mathbb{R} \, \overline{D}_{g} \frac{\Phi_{g,1} - \Phi_{g,0}}{L_{1}} \Big[r_{1} \Big[(\theta_{j+1} - \theta_{j}) + \frac{r_{1}}{\mathbb{R}} (\sin\theta_{j+1} - \sin\theta_{j+1}) \Big] \Big] \\ & -2\pi \mathbb{R} \, \overline{D}_{g3} \frac{\Phi_{g,2} - \Phi_{g,0}}{L_{3}} \Big[r_{1+1} \Big[(\theta_{j+1} - \theta_{j}) + \frac{r_{1+1}}{\mathbb{R}} (\sin\theta_{j+1} - \sin\theta_{j+1}) \Big] \Big] \\ & -2\pi \mathbb{R} \, \overline{D}_{g3} \frac{\Phi_{g,3} - \Phi_{g,0}}{L_{3}} \Big[(r_{1+1} - r_{j}) \Big[\frac{\cos\theta_{av\phi_{j+1}}}{\mathbb{R}} + 1 \Big] \Big] \end{split}$$

For the removal term

$$\begin{split} \int_{\mathbf{V}} \sum_{g}^{\mathbf{r}} \Phi_{g} \, d\mathbf{V} &= \sum_{g}^{\mathbf{r}} \Phi_{g_{0}} \int_{r_{1}}^{r_{1}-1} \int_{\theta_{j}}^{\theta_{j}+1} 2\pi \mathbf{r} \left(\mathbf{R} + \mathbf{r} \cos\theta\right) \, d\mathbf{r} \, d\theta \\ &= \sum_{g}^{\mathbf{r}} \Phi_{g_{0}} 2\pi \mathbf{R} \left[\left(\frac{\mathbf{r}_{1+1}^{2} \cdot \mathbf{r}_{1}^{2}}{2} \right) \left(\theta_{j+1} \cdot \theta_{j} \right) + \frac{\mathbf{r}_{1+1}^{3} \cdot \mathbf{r}_{1}^{3}}{3\mathbf{R}} \left(\sin\theta_{j+1} - \sin\theta_{j} \right) \right] \\ &= \sum_{g}^{\mathbf{r}} \Phi_{g_{0}} 2\pi \mathbf{R} \left[\left(\mathbf{r}_{i+1} \cdot \mathbf{r}_{i} \right) \mathbf{r}_{swe} \left(\theta_{j+1} - \theta_{j} \right) + \frac{\mathbf{r}_{1+1}^{3} \cdot \mathbf{r}_{1}^{3}}{3\mathbf{R}} \left(\sin\theta_{j+1} - \sin\theta_{j} \right) \right] \\ &= \sum_{g}^{\mathbf{r}} \Phi_{g_{0}} 2\pi \mathbf{R} \mathbf{V}_{0} \end{split}$$

As in the cylindrical coordinate system diffusion equation, V_0 for the source term is the same as the above term for V_0 .

Let

$$\begin{split} \mathbf{A}_{1} &= \left[\mathbf{r}_{i} \left[\left(\boldsymbol{\theta}_{j+1} - \boldsymbol{\theta}_{j} \right) + \frac{\mathbf{r}_{i}}{R} \left(\sin \boldsymbol{\theta}_{j+1} - \sin \boldsymbol{\theta}_{j+1} \right) \right] \right] \\ \mathbf{A}_{2} &= \left[\mathbf{r}_{i+1} \left[\left(\boldsymbol{\theta}_{j+1} - \boldsymbol{\theta}_{j} \right) + \frac{\mathbf{r}_{i+1}}{R} \left(\sin \boldsymbol{\theta}_{j+1} - \sin \boldsymbol{\theta}_{j+1} \right) \right] \\ \mathbf{A}_{3} &= \left[\left(\mathbf{r}_{i+1} - \mathbf{r}_{i} \right) \left[\frac{\cos \boldsymbol{\theta}_{avq_{i+1}}}{R} + 1 \right] \right] \\ \mathbf{A}_{4} &= \left[\left(\mathbf{r}_{i+1} - \mathbf{r}_{i} \right) \left[\frac{\cos \boldsymbol{\theta}_{avq_{i}}}{R} + 1 \right] \right] \end{split}$$

Using the above, the toroidal diffusion equation in finite difference form after using

equation (39) and dividing through by $2\pi R$ becomes

$$\cdot \sum_{k=1}^{4} \left[\overline{D}_{g_{k}} \left(\frac{\Phi_{g_{k}} \cdot \Phi_{g_{0}}}{L_{k}} \right) A_{k} \right] + \Sigma_{g_{0}}^{r} \Phi_{g_{0}} V_{0}$$

$$= \left[S_{g_{0}}^{ext} + \chi_{g} \sum_{g'=1}^{G} \left(v_{g'} \Sigma_{f_{x}} \Phi_{g'_{0}} \right) + \sum_{g'=1}^{g'_{1}} \left(\Sigma_{s_{0}}(g \rightarrow g') \Phi_{g'_{0}} \right) \right] V_{0} .$$

Thus, the finite difference approximation to the diffusion equation in any coordinate system results when appropriate area and volume elements are used. The differences between the cylindrical and toroidal coordinate system area and volume elements are listed in Table 2-1. By changing the area and volume elements to those for toroidal coordinates, a standard neutron diffusion code can be generalized to solve the multi-group diffusion equations in toroidal coordinates and in practice this is easier than the redefinition of cross sections proposed by Pomraning and Stevens.

II.E. Analytical Solutions

In order to insure that the above methodology was implemented correctly, analytical solutions for the flux profiles of an elementary case were obtained. Pomraning and Stevens'¹² presented the analytical solution for the diffusion of neurons due to a line source in a homogeneous cylindrical medium of radius, a (see Appendix A). This cylinder did not have a central void. Approximate solutions were then derived for the

Table 2-1. Area and Volume Elements in Cylindrical and Toroidal Coordinates.

	Cylindrical	Toroidal
A ₁	$r_i(\theta_{j+1} - \theta_j)$	$[r_i[(\theta_{j+1} - \theta_j) + \frac{r_i}{R}(\sin\theta_{j+1} - \sin\theta_{j+1})]]$
A ₂	$\mathbf{r}_{i+1}(\boldsymbol{\theta}_{j+1} \cdot \boldsymbol{\theta}_j)$	$[r_{i+1}[(\theta_{j+1} - \theta_{j}) + \frac{r_{i+1}}{R}(\sin\theta_{j+1} - \sin\theta_{j+1})]]$
A3	$(\mathbf{r}_{i+1} - \mathbf{r}_i)$	$[(\mathbf{r}_{i+1} - \mathbf{r}_i)[\underbrace{-\frac{\cos\theta_{ave}}{R}}_{-R} + 1]]$
A4	$r_{i+1} - r_i$	$[(r_{i+1} - r_i)[\frac{\cos\theta_{ave}}{R}j + 1]]$
v。	$(\mathbf{r}_{i+1} - \mathbf{r}_i)(\mathbf{\theta}_{j+1} - \mathbf{\theta}_j)\mathbf{r}_{ave_i}$	$[(r_{i+1} - r_i) r_{ava}(\theta_{j+1} - \theta_j) + \frac{r_{i+1}^3 - r_i^3}{3R}(\sin\theta_{j+1} - \sin\theta_j)]$

flux profile within a torus of major radius, R, and minor radius, a. The analytical result for the cylindrical problem is

$$\Phi(\mathbf{r}) = \frac{1}{2\pi} \left[K_{q} \left(\frac{\mathbf{k} \mathbf{r}}{\mathbf{a}} \right) - \frac{K_{0}(\mathbf{k})}{\Gamma_{0}(\mathbf{k})} \mathbf{I}_{q} \left(\frac{\mathbf{k} \mathbf{r}}{\mathbf{a}} \right) \right]$$
(40)

and the approximate result for the toroidal problem is

$$\Phi(\mathbf{r}, \theta) \approx \frac{1}{2\pi} \left[\mathbf{K}_{\mathbf{q}} \left(\frac{\mathbf{k}}{\mathbf{a}} \right) - \frac{\mathbf{K}_{\mathbf{q}}(\mathbf{k})}{\mathbf{I}_{\mathbf{q}}(\mathbf{k})} \mathbf{I}_{\mathbf{q}} \left(\frac{\mathbf{k}}{\mathbf{a}} \right) \right] \left(1 - \frac{\mathbf{r} \ \mathbf{R} \cos \theta}{2} \right) + \mathbf{Q} \left(\frac{\mathbf{a}}{\mathbf{R}} \right)^2 \right)$$
(41)¹²

where $k = (\Sigma_a/D)^{1/2}$; K_0 and I_0 are the zero order modified Bessel functions of the first and second kind, respectively; and $O((a/R)^2)$ denotes an error term of order $(a/R)^2$. For the above solutions, the only source is a line source of unit strength at $r=0^{12}$.

III. RESULTS

III.A 2DBTOR Verification and Infinite Cylinder Problems

In order to develop and verify 2DBTOR, modifications had to be made to 2DB, as described previously in the theory section. In addition, 2DB was tested to insure that it was operating correctly. This was done by comparing 2DB's results to both analytical and numerical flux solutions for several types of problems. ANISN was used to obtain numerical results to verify one-dimensional results from 2DB; Pomraning and Stevens' solution for a solid, homogeneous torus with a line source in the center provided an analytical verification in the limit as the aspect ratio of the torus became large (e.g., the torus approximated an infinite cylinder),¹²

The first part of the investigation was to compute, using 2DB, the flux in an infinite, homogeneous cylinder due to a line source. The radius of the cylinder was 300cm. Graphite was chosen as the material for the cylinder, since graphite has good neutron scattering properties ($\Sigma_s >> \Sigma_a$) and thus should prove to give good results for the flux profile when diffusion theory is used. A source density given by

$$S_v = \frac{D}{\pi r_v^2}$$
 (42)¹⁶

where $S_v = \text{source density } (n/cm^3)$,

 $D = 1/3\Sigma_{tr} = diffusion coefficient,$

 Σ_{tr} = macroscopic transport cross section, and r_v = radius of the area for the source,

was input into 2DB for a small radius ($r_v = 6$ cm) which would approximate the line source of equation (40) from the theory (see Appendix A¹⁶). ANISN was used to collapse the 30 group graphite cross sections to one group using S₂ angular quadrature with the P₀ matrix from the CLAW-IV neutron cross section library. After collapsing to one group, 2DBXPROC, a cross section processor to manipulate the cross sections from ANISN's format into 2DB's format (see Appendix C for a listing of 2DBXPROC), was used so that 2DB could employ the one group cross sections for graphite. Solutions for the flux away from the source for both the analytical calculation and the 2DB run gave results that were in excellent agreement, after errors for both the volume and area elements were corrected (see Appendix D). The one group cross section set for graphite was then input to ANISN with the same conditions as above. Solutions of the flux from ANISN were also in excellent agreement with 2DB.

After studying the infinite, homogeneous cylinder, computations were made to determine the flux due to a uniformly distributed source of 14 Mev neutrons (see Appendix E) in an infinite homogeneous cylinder with a central void. The source radius was 150 cm and the inner and outer radii of the medium were 200cm and 300cm, respectively. ANISN was again used to collapse the 30 group cross section set for graphite to one group. In order to model the central void region, fictitious cross sections were first input into 2DB such that the absorption cross section was zero and the scattering cross section was equal to the transport cross section of graphite. This method proved to give somewhat erroneous results, however, since the value for the diffusion coefficient in the vacuum region was arbitrary. To alleviate this problem, a sufficiently thin source equivalent to the plasma source was placed at the inner edge of the annulus (see Appendix F) and the problem was re-run. This quasi-albedo boundary condition overcame the need for a fictitious scattering cross section in the void. Re-runs of the above problem gave 2DB and ANISN results which were in good agreement.

To complete the test of 2DB, some of the above problems were re-run with more than one energy group. This served to verify that 2DB's use of the downscattering cross sections was being performed correctly. Each problem was solved as before, except that 9 groups were used instead of one. Again the cross sections were obtained by collapsing the 30 group P₀ matrix using ANISN. Each solution of the flux was correct for each problem done previously for graphite. Since fusion problems would involve (n,2n) and (n,n') reactions, it was decided to further test 2DB by using Nb-93, which has a significant (n,2n) reaction at high energy for the problems previously studied. The results obtained using Nb-93 in 2DB for the two cases above (with and without central voids) were discovered to be quite different from those of ANISN. An investigation of 2DB's source code was therefore performed to identify the reason for the differences. It was then discovered that 2DB eroneously computed the downscattering (see Appendix D). After correcting 2DB to compute the proper downscatter contribution, the Nb-93 problem was re-run with a 9-group cross section set, and the results were in good agreement with those obtained using ANISN.

III.B 2DBTOR Verification and Toroidal Problems

After making appropriate changes, as described earlier in this thesis (i.e, change the volume and area elements), to change 2DB to compute the flux for toroidal geometry (see Appendices G and H), a new code was produced which was called 2DBTOR. Using the same conditions stated previously for an infinite homogeneous graphite cylinder with one-group cross sections and without a central void, 2DBTOR was run for aspect ratios of 3 and 5 and compared to Pomraning and Stevens' solutions¹² for the same aspect ratio. The solutions for the flux were in excellent agreement. These solutions for both aspect ratios were then compared to the infinite cylinder solutions at radii of 150cm and 250cm from $\theta = 0$ to 2π . The results are shown in Figures 3-1 and 3-2 for 150cm and 250cm, respectively. As can be seen from Figures 3-1 and 3-2, the flux has a minimum at the outside part of the torus ($\theta = 0$) and increased up to the inner part ($\theta = \pi$), where the flux was a maximum. This was an expected result since the area of the inner portion of the torus is smaller than the outer portion. In addition, as the aspect ratio increases the solution approaches that of the infinite cylinder.

Figure 3-1. Flux Versus Poloidal Angle at a Radius of 150 cm for Several Aspect Ratios.

Figure 3-2. Flux Versus Poloidal Angle at a Radius of 250 cm for Several Aspect Ratios.

III.C Standard Blanket Solutions

III.C.1 Infinite Cylinder

The blanket used for this analysis is shown in Figure 3-3, and it is the so-called 'standard' blanket that was formulated as a benchmark for neutronic calculations.¹⁷ The materials used and their atom densities are given in Table 3-1.¹⁷ From Figure 3-3 it can be seen that the blanket consists of 10 zones, or regions, which contain one of 3 mixtures(except for the first 2 zones which are the vacuum and plasma). These are denoted A, B, or C. Each mixture has one or more materials including Li-6, Li-7, C-12, and Nb-93. When lithium is present in a mixture, the medium is medium is assumed to be homogeneous with volume fractions of 94% lithium and 6% niobium. The lithium serves as both a coolant and tritium producer, while the niobium provides the structural function. The plasma has a radius of 150cm and occupies zone 1. A vacuum region is located from 150cm to 200cm and occupies zone 2. The blanket extends from 200cm to 300cm consisting of the first wall (200-200.5cm), a tritium production region (200.5-203.5cm), the second wall (203.5-204cm), 3 tritium production regions of 20cm thickness each (204-264cm), a carbon reflector (264-294cm), and a final tritium production region (294-300cm).

After setting up the standard blanket problem to run on ANISN, the 30-group cross sections in CLAW-IV for all the materials were collapsed to 9-group cross sections, with a P₀ Legendre expansion and S₂ quadrature to represent a diffusion theory calculation. 50 mesh intervals were used in this computation (see Figure 3-3). The 9-group cross section set was unable to produce satisfactory results for the tritium

Table 3-1. Standard Blanket Constituents.

Material Code Letter	Constituents	Atom density		
(from Figure 3-3)		(atoms/cm ³ x 10-24)		
А	Nb-93	0.05556		
В	Nb-93	0.003334		
	Li-6	0.003234		
	Li-7	0.04038		
С	C-12	0.0804		

breeding ratio (TBR = tritium production rate/ source neutron rate) for both T6 (TBR from Li-6) and T7 (TBR from Li-7). When the 9-group cross section set was input back into ANISN for comparison to the results of the 30-group set, differences in the corresponding zone TBR's were detected which were deemed to be unacceptable. To overcome this problem, it was decided to use the 30-group, uncollapsed, cross section set in 2DB and 2DBTOR for TBR computations. Again as in ANISN, 50 mesh intervals were used in both 2DB and 2DBTOR. The TBR results for 2DB and ANISN were compared in the zones of interest (i.e., zones 4,6,7,8, and 10 where lithium was present). The results of the 2DB and ANISN computations are given in Table 3-2 for the above 5 zones. It is seen from Table 3-2 that there is agreement between the results from the codes, especially in the T6 values. The T7 values are acceptable in the inner zones but have significant error in the outer zones. Likewise, the total TBR in the entire blanket is in closest agreement for T6, and differs by less than 5% for T7. A comparison of the individual group fluxes showed a similarly acceptable agreement between 2DB and ANISN. All of the above implies that 2DB can now be used successfully to perform fusion scoping calculations in one-dimensional geometry.

III.C.2 Comparison of Torus and Infinite Cylinder Models

Since 2DB was found to produce adequate results for the standard blanket compared to the ANISN results, a comparison of the results from both 2DBTOR and

Table 3-2. Radially Averaged Tritium Breeding Ratio's for 2DB and ANISN, Infinite Cylinder Case.

Zone	Zone	T6, reaction	rate per source	T7, reaction ra	te per source
Number	Radii (cm)	neutron rat	e from Li-6	neutron rate	from Li-7
		ANISN	2DB	ANISN	2DB
4	200.5-203.5	0.05043	0.05776	0.08191	0.10119
6	204.0-224.0	0.30399	0.34143	0.29809	0.33643
7	224.0-244.0	0.24598	0.25690	0.12189	0.09031
8	244.0-264.0	0.29518	0.27286	0.05050	0.02108
10	294.0-300.0	0.04923	0.03955	0.00093	0.00009
Total		0.94482	0.96850	0.55331	0.54910

2DB was made next. The 2DBTOR analysis was run in both toroidal (aspect ratios = 3 and 5) and cylindrical geometry. To begin the analysis, zones were chosen as in the previous infinite cylinder computation, so that radially averaged TBR's could be computed. In Tables 3-3 and 3-4, the TBR results for aspect ratios of 3 and 5 versus the infinite cylinder results were compared for T6 and T7, respectively. As can be seen there, the total T6 and T7 were about the same for both the toroidal and infinite cylinder calculations. This suggested the idea that if one were only interested in global reaction rates (e.g., not the outside versus inside reaction rates for the torus), then a one-dimensional neutron transport or diffusion code would be adequate for determining these quantities.

To investigate the local effects introduced by the toroidal geometry, the standard blanket was further sub-divided into ten zones of 36° each in the angular or poloidal direction. This resulted in 100 zones for the entire torus cross section (10 radially x 10 poloidally). The infinite cylinder T6 and T7 results are presented in Tables 3-5 and 3-6 for an aspect ratio of 3 and in Tables 3-7 and 3-8 for an aspect ratio of 5. Only the 5 zones from 0 to π are presented since the torus is symmetric about its axis (see Figure 2-1). From these tables, it was noted that the TBR was largest at the outer part of the torus ($\theta = 0^{\circ}$ to 36°) and decreased to a minimum value at the inner part of the torus ($\theta = 144^{\circ}$ to 180°). The effect of different aspect ratios was also seen by comparing the corresponding zone rates -- e.g., the 0° to 36° zone rate for an aspect ratio of 5, while the 144° to 180° zone rate was about 10% smaller for an aspect ratio of 3. This is a desirable result in a practical sense since the tritium on the outside part of the

Table 3-3. Radially Averaged Tritium Breeding Ratio's for 2DBTOR Versus 2DB, Torus Case (Aspect Ratio = 3).

Zone	Zone	T6, reaction 1	rate per source	T7, reaction ra	te per source
Number_	Radii (cm)	neutron rate	e from Li-6	neutron rate	from Li-7
		2DBTOR	2DB	2DBTOR	2DB
4	200.5-203.5	0.05767	0.05776	0.10119	0.10119
6	204.0-224.0	0.34095	0.34143	0.33643	0.33643
7	224.0-244.0	0.25667	0.25690	0.09031	0.09031
8	244.0-264.0	0.27238	0.27286	0.02107	0.02108
	294.0-300.0	0.03950	0.03955	0.00009	_0.00009
Total		0.96717	0.96850	0.54909	0.54910

Table 3-4. Radially Averaged Tritium Breeding Ratio's for 2DBTOR Versus 2DB, Torus Case (Aspect Ratio = 5).

Zone	Zone	T6, reaction r	rate per source	T7, reaction ra	te per source
Number	Radii (cm)	neutron rate	e from Li-6	neutron rate	from Li-7
		2DBTOR	2DB	2DBTOR	2DB
4	200.5-203.5	0.05781	0.05776	0.10114	0.10119
6	204.0-224.0	0.34167	0.34143	0.33619	0.33643
7	224.0-244.0	0.25690	0.25690	0.09029	0.09031
8	244.0-264.0	0.27286	0.27286	0.02107	0.02108
10	294.0-300.0	0.03950	0.03955	0.00009	0.00009
Total		0.96874	0.96850	0.54878	0.54910

Table 3-5. Zone by Zone Averaged T6 for 2DBTOR Versus 2DB,

Torus Case (Aspect Ratio = 3). Angle Measured in Degrees.

Zone				T6			
Number	2DB	0-36	36-72	72-108	108-144	144-180	0-360
4	0.05776	0.00688	0.00644	0.00503	0.00459	0.00459	0.05504
6	0.34143	0.04091	0.03824	0.03393	0.02960	0.02691	0.33914
7	0.25690	0.03110	0.02898	0.02555	0.02209	0.01994	0.25530
8	0.27286	0.03348	0.03107	0.02714	0.02319	0.02073	0.27123
10	0.03955	0.00495	0.00456	0.00394	0.00331	0.00292	0.03935
Total	0.96850	0.11732	0.10929	0.09559	0.08278	0.07509	0.96006

Table 3-6. Zone by Zone Averaged T7 for 2DBTOR Versus 2DB,

Torus Case (Aspect Ratio = 3). Angle Measured in Degrees.

Zone							
Number	2DB	0-36	36-72	72-108	108-144	144-180	0-360
4	0.10119	0.01221	0.01141	0.01012	0.00884	0.00804	0.11240
6	0.33643	0.04074	0.03805	0.03364	0.02926	0.02655	0.33648
7	0.09031	0.01103	0.01027	0.00904	0.00780	0.00703	0.09034
8	0.02108	0.00260	0.00241	0.00211	0.00181	0.00162	0.02108
10	0.00009	0.00001	0.00001	0.00001	0.00001	0.00001	0.00009
Total	0.54910	0.06659	0.06215	0.05492	0.04772	0.04325	0.54924

Table 3-7. Zone by Zone Averaged T6 for 2DBTOR Versus 2DB,

Torus Case (Aspect Ratio = 5). Angle Measured in Degrees.

Zone				T6			
Number	2DB	0-36	36-72	72-108	108-144	144-180	0-360
4	0.05776	0.00642	0.00617	0.00576	0.00535	0.00510	0.05758
6	0.34143	0.03812	0.03655	0.03402	0.03152	0.03000	0.34043
7	0.25690	0.02888	0.02762	0.02560	0.02360	0.02237	0.25612
8	0.27286	0.03095	0.02950	0.02719	0.02491	0.02347	0.27204
10	0.03955	0.00454	0.00431	0.00395	0.00358	0.00335	0.03946
Total	0.96850	0.11732	0.10929	0.09559	0.08278	0.07509	0.96563

Table 3-8. Zone by Zone Averaged T7 for 2DBTOR Versus 2DB,

Torus Case (Aspect Ratio = 5). Angle Measured in Degrees.

Zone				7			
Number	2DB	0-36	36-72	72-108	108-144	144-180	0-360
4	0.10119	0.01136	0.01089	0.01012	0.00935	0.00887	0.10117
6	0.33643	0.03786	0.03624	0.03362	0.03100	0.02938	0.33619
7	0.09031	0.01023	0.00977	0.00903	0.00829	0.00783	0.09030
8	0.02108	0.00240	0.00229	0.00211	0.00193	0.00182	0.02108
	0.00009	0.00001	0.00001	0.00001	0.00001	0.00001	0.00009
Total	0.54910	0.06186	0.05920	0.05489	0.05058	0.04800	0.54882

torus is probably more accessible than that of the inner part. In addition, the TBR computed in the top zone (72° to 108°) was about the same for both aspect ratios. It also indicates that the toroidal TBR depended on volumetric effects, since an area on the outer part of the torus corresponds to a larger volume than an area on the inner part.¹⁸

D. L. Chapin of the Princeton Plasma Physics Laboratory presented the above idea concerning volumetric effects in a topical report.¹⁸ From Table 2-1, the volume occupied by a specified zone is

$$V_{t} = V_{t} \left[1 + \frac{\frac{3}{r_{i+1} - r_{i}^{3}}}{3R(r_{i+1} - r_{i})r_{avq}(\theta_{j+1} - \theta_{j})} (\sin\theta_{j+1} - \sin\theta_{j}) \right]$$
(43)

where $V_t =$ volume of the torus,

.

and $V_c = (r_i + 1 - r_i)r_{avei} (\theta_{j+1} - \theta_j) = volume of the cylinder with the same zone as the torus.$

.

Thus, a volume factor , Fv, can be defined as

$$F_{\mathbf{v}} \approx \frac{\text{volume of the torus}}{\text{volume of the cylinder}} = \left[1 + \frac{\frac{3}{r_{i+1}^3 - r_i^3}}{3R(r_{i+1} - r_i)r_{ave}[\theta_{j+1} - \theta_j)}(\sin\theta_{j+1} - \sin\theta_j)\right] (44)^{18}$$

When F_v is multipled by the TBR given by the cylinder, good agreement is expected between the torus TBR values and the volume corrected TBR values of the cylinder according to Chapin.¹⁸ Tables 3-9 through 3-12 show the differences between using volume corrections on the cylinder T6 and T7 for aspect ratios of 3 and 5 and then comparing to the torus's T6 and T7. This provides another check on the validity of 2DBTOR for doing toroidal scoping calculations, since Chapin's results were produced using a Monte Carlo code, which provides very accurate analysis for toroidal geometry. Since the TBR results from Tables 3-9 through 3-12 were in good agreement, it is apparent that 2DBTOR worked quite well for doing toroidal geometry scoping computations. Of course, the real test and usefulness of 2DBTOR will be for those designs which are not poloidally symmetric like the standard blanket used here.

Table 3-9. T6 for 2DBTOR Versus Volume Corrected T6 for 2DB, Torus Case (Aspect Ratio = 3). Angle Measured in Degrees.

Zone				T6			
Number	2DBTOR	0-36	36-72	72-108	108-144	144-180	0-360
4	0.05504	0.00699	0.00653	0.00578	0.00503	0.00456	0.05776
6	0.33914	0.04174	0.03884	0.03414	0.02945	0.02654	0.34143
7	0.25530	0.03194	0.02955	0.02569	0.02183	0.01944	0.25691
8	0.27123	0.03449	0.03174	0.02729	0.02283	0.02008	0.27286
10	0.03935	0.00518	0.00471	0.00396	0.00320	0.00273	0.03955
Total	0.96006	0.12034	0.11137	0.09685	0.08233	0.07336	0.96850

Table 3-10. T7 for 2DBTOR Versus Volume Corrected T7 for 2DB,

Torus Case (Aspect Ratio = 3). Angle Measured in Degrees.

Zone							
Number	2DBTOR	0-36	36-72	72-108	108-144	144-180	0-360
4	0.11240	0.01224	0.01143	0.01012	0.00881	0.00799	0.10119
6	0.33648	0.04113	0.03827	0.03364	0.02901	0.02615	0.33643
7	0.09034	0.01123	0.01039	0.00903	0.00767	0.00683	0.09031
8	0.02108	0.00267	0.00245	0.00211	0.00176	0.00155	0.02108
10	0.00009	0.00001	0.00001	0.00001	0.00001	0.00001	0.00009
Total	0.54924	0.06728	0.06256	0.05491	0.04726	0.04254	0.54910

Table 3-11. T6 for 2DBTOR Versus Volume Corrected T6 for 2DB,

Torus Case (Aspect Ratio = 5). Angle Measured in Degrees.

Zone				T6			
Number	2DBTOR	0-36	36-72	72-108	_108-144	144-180	0-360
4	0.05758	0.00650	0.00623	0.00578	0.00533	0.00505	0.05776
6	0.34043	0.03870	0.03696	0.03414	0.03133	0.02958	0.34143
7	0.25612	0.02944	0.02801	0.02569	0.02337	0.02194	0.25691
8	0.27204	0.03161	0.02996	0.02729	0.02461	0.02296	0.27286
10	0.03946	0.00469	0.00441	0.00396	0.00350	0.00322	0.03955
Total	0.96563	0.11095	0.10556	0.09685	0.08814	0.08275	0.96850
Table 3-12. T7 for 2DBTOR Versus Volume Corrected T7 for 2DB,

Torus Case (Aspect Ratio = 5). Angle Measured in Degrees.

Zone				T7_			
Number	2DBTOR	0-36	36-72	72-108	108-144	144-180	0-360
4	0.10117	0.01139	0.01091	0.01012	0.00933	0.00884	0.10119
6	0.33619	0.03814	0.03642	0.03364	0.03089	0.02915	0.33643
7	0.09030	0.01035	0.00985	0.00903	0.00822	0.00771	0.09031
8	0.02108	0.00244	0.00231	0.00211	0.00190	0.00177	0.02108
10	0.00009	0.00001	0.00001	0.00001	0.00001	0.00001	0.00009
Total	0.54882	0.06233	0.05950	0.05491	0.05032	0.04749	0.54910

IV. SUMMARY AND CONCLUSIONS

The objective of the research performed here was to produce a scoping code that could be used for fusion reactor design. To this end, the present research initially explored a technique proposed by Pomraning and Stevens¹², in which a toroidal

geometry diffusion problem is cast into cylindrical $(r-\theta)$ form by a spatially dependent redefinition of the diffusion coefficient, absorption cross-section, and extraneous source function. This idea suggested the approach of a direct finite differencing of the toroidal diffusion equation. Direct finite differencing proved to be more advantageous for incorporation into a computer program and to allow the curvature of the torus to be accounted for naturally.

The direct finite differencing approach was programmed into an existing two-dimensional(x-y, r-z, r-θ, triangular), multi-group neutron diffusion code, 2DB¹⁰, that had previously been converted to execute on the IBM-AT. Neutronic scoping calculations relevant to fusion reactor design were then performed in a micro-computer environment. This modified code was called 2DBTOR.

To verify that 2DBTOR was operating correctly, comparisons were made to both analytical and numerical solutions for several types of problems. ANISN and 2DB were used to verify and compare the solutions obtained from 2DBTOR. It was also shown that as the aspect ratio approached infinity (e. g., the major radius became large) the 2DBTOR solution approached the solution for that of 1-D cylindrical geometry. After verifying the solution for a large major radius, the errors associated with using a non-toroidal scoping code were examined versus 2DBTOR. Neutron cross-sections for a benchmark problem were input into 2DBTOR and the output was compared to that from ANISN. A method proposed by Price and Chapin¹⁸, that used volume correction factors to compute the reaction rates in the benchmark blanket, was utilized to provide a means of checking 2DBTOR's results versus those given by a Monte Carlo code. It was also noted that 2DBTOR would also make possible the calculation of depletion in the fusion blanket, which was a unique advantage of the new program, 2DBTOR.

In future versions of the 2DBTOR program, it is anticipated that the central vacuum should be modelled through an internal boundary condition. A separate void streaming calculation will be used to define the internal boundary condition by specifying the neutron flux to current ratio as a function of position along the vacuum wall,¹⁹ Improved modelling of the central void region will be required if 2DBTOR is to prove to be an attractive program for blanket scoping calculations.

REFERENCES

- R. A. Gross, <u>Fusion Energy</u>, (John Wiley & Sons, New York, New York, 1984), p. 2.
- R. A. Gross, <u>Fusion Energy</u>, (John Wiley & Sons, New York, New York, 1984), p. 16.
- G. A. Miley, <u>Fusion Energy Conversion</u>, (John Wiley & Sons, New York, New York, 1970), p. 250.
- T. J. Dolan, <u>Fusion Research Volume 1</u>, (Pergamon Press, New York, New York, 1982), p. 29.
- R. A. Gross, <u>Fusion Energy</u>, (John Wiley & Sons, New York, New York, 1984), p. 25.
- D. K. Parsons, "ANISN/PC Manual," EGG-2500, Idaho National Engineering Laboratory Report, Idaho Falls, Idaho, 1987.
- K. D. Lathrop and F. W. Brinkley, "TWOTRAN-II: An Interfaced, Exportable Version of the TWOTRAN Code for Two Dimensional Transport," LA-4848-MS, Los Alamos Scientific Laboratory, Los Alamos, New Mexico, 1973.

- J. W. Davidson et al., "Trism: A Two-Dimensional, Finite-Element, Discrete-Ordinates Transport Code with Deterministic Streaming," LA - 7835 -M, Los Alamos National Laboratory, Los Alamos, New Mexico.
- Los Alarnos Monte Carlo Group, "MCNP: A General Monte Carlo Code for Neutron and Photon Transport," Version 2B, LA-7396-M, Los Alarnos National Laboratory, Los Alarnos, New Mexico, 1981.
- W. W. Little, Jr. and R. W. Hardie, "2DB User's Manual," BNWL 831, Pacific Northwest Laboratory, Richland, Washington, 1968.
- 11. R. J. Barrett and R. E. MacFarlane, "Coupled Neutron and Photon Cross Sections for Transport Calculations," LA-7808-MS, Informal Report, Los Alamos Scientific Laboratory, Los Alamos, New Mexico , 1979.
- G. C. Pomraning and C. A. Stevens, "Transport and Diffusion Equations in Toroidal Geometry," <u>Nuclear Science and Engineering</u>: 55,359-367 (1974).
- J. R. Lamarsh, <u>Introduction to Nuclear Reactor Theory</u>, (Addison Wesley Publishing Company, Reading, Massachusetts, 1972), pp. 129 - 131.
- J. J. Duderstadt and L. J. Hamilton, <u>Nuclear Reactor Analysis</u>, (John Wiley & Sons, New York, New York ,1976), p. 61.

- 15. T. A. Parish, Personal notes on the ∇ operator, March 1988.
- 16. T. A. Parish, Personal notes on the plasma source calculation, May 1988.
- D. Steiner, "Analyses of a Bench-Mark Calculation of Tritium Breeding in a Fusion Reactor Blanket," ORNL-TM-4177, Oak Ridge National Laboratory Report, Oakridge, Tennessee, 1973.
- W. G. Price and D. L. Chapin, "Comparative Analysis of a Fusion Reactor Blanket in Cylindrical and Toroidal Geometry Using Monte Carlo," MATT-1102, Princeton Plasma Physics Report, Princeton, New Jersey, 1975.
- W. G. Price and D. L. Chapin, "A Comparison of the D-T Neutron Wall Load Distributions in Several Tokamak Fusion Reactor Designs," MATT-1060, Princeton Plasma Physics Report, Princeton, New Jersey, 1974.

APPENDIX A

POMRANING AND STEVENS' ANALYTICAL SOLUTION

For an infinite line source at the center of a non-fissioning medium with radius, a, the monoenergetic neutron diffusion equation is given by the following (assuming that both the diffusion cofficient does not vary with position and the solution is only radially dependent):

$$\begin{split} \frac{1}{r} \frac{\partial}{\partial r} \Big(r \frac{\partial \varphi}{\partial r} \Big) & \cdot k^2 \varphi = Q \quad (A-1) \end{split}$$
 where $k^2 = \frac{\Sigma_a}{D}$, $Q = \frac{S}{D} = 0$ for r>0, $\varphi = the flux$, $\Sigma_a = the macroscopic absorption cross section, and $D = the diffusion coefficient$.$

Solving equation (A-1) gives the following:

$$\phi(\mathbf{r}) = \mathbf{A}K_{\mathbf{O}}(\mathbf{k}\mathbf{r}) + \mathbf{CI}_{\mathbf{O}}(\mathbf{k}\mathbf{r}) \tag{A-2}$$

where both A and C are constants. Using the boundary condition at r=a where $\phi(a)=0$ allows C to be given as

$$C = -A \frac{K_o(ka)}{I_o(ka)}$$

which when substituted into equation (A-2) gives the following:

$$\phi(\mathbf{r}) = \mathbf{A} \left[\mathbf{K}_0(\mathbf{k}\mathbf{r}) - \frac{\mathbf{K}_0(\mathbf{k}\mathbf{a})}{\mathbf{I}_0(\mathbf{k}\mathbf{a})} \mathbf{I}_0(\mathbf{k}\mathbf{r}) \right] \quad . \tag{A-3}$$

In order to solve for A, one must use a source condition given by

$$\lim_{r\to 0} 2\pi r J(r) = S \tag{A-4}$$
 where
$$J(r) = -D \frac{\partial \psi(r)}{\partial r} \ .$$

It can be shown that when equation (A-3) is subtituted into equation (A-4) the following results:

$$\lim_{r \to 0} r J(r) = \frac{S}{2\pi D} = \frac{Q}{2\pi} \quad . \tag{A-5}$$

Since equation (A-4) can also be written as

$$\lim_{r \to 0} r J(r) = \lim_{r \to 0} Akr K_1(kr)$$
(A-6)

which from Meghreblian and Holmes, <u>Reactor Analysis</u>, page 185, is equal to A, this implies that

$$A = \frac{Q}{2\pi} \quad . \tag{A-7}$$

When equation (A-7) is substituted into equation (A-3) the following results:

$$\phi(\mathbf{r}) = \frac{Q}{2\pi} \left[K_0(\mathbf{k}\mathbf{r}) \cdot \frac{K_o(\mathbf{k}\mathbf{a})}{I_o(\mathbf{k}\mathbf{a})} \mathbf{I}_o(\mathbf{k}\mathbf{r}) \right] \quad . \tag{A-8}$$

In order to employ equation (A-8) for comparison to 2DB, it is necessary to determine a volumetric source that is equivalent to the line source used in deriving the flux solution. Thus, the line source is given by

$$S_{I} = S_{V} \pi r^{2} \tag{A-9}$$

where S_1 = the line source (n/cm-sec)

For Q=1 and since Q=S_I/D, then this implies that $S_I = D$. When $S_I = D$ is substituted into equation (A-9), the resulting equation for S_V is given by the following:

$$S_v = \frac{D}{\pi r^2}$$
. (A-10)

This is the Sv value that will be input to 2DB so that comparisons to the analytic solution can be made.

APPENDIX B

AVERAGE D_k SOLUTION

From continuity of current for two adjacent mesh points, k and $k\!+\!1$ (see Figure B-1), it can be shown that

$$\frac{\frac{D_k}{\delta r_k}}{2}(\phi^{1/2} - \phi_k) = \frac{\frac{D_{k+1}}{\delta r_{k+1}}}{2}(\phi_{k+1} - \phi^{1/2}) . \tag{B-1}$$
where $\frac{\delta r_k}{2}$ = distance from mesh point k to mesh point 1/2
and $\frac{\delta r_{k+1}}{2}$ = distance from mesh point k+1 to mesh point 1/2 .

$$\begin{bmatrix} I & II \\ k & k+1 \\ l & l \\ r_k & r_{k+1} \end{bmatrix}$$

Figure B-1. Mesh points

Rearranging equation (B-1) gives the following:

$$\left[\frac{\underline{D}_k}{\underline{\delta r}_k} + \frac{\underline{D}_{k+1}}{\underline{\delta r}_{k+1}}\right] \varphi^{1/2} = \frac{\underline{D}_{k+1}}{\underline{\delta r}_{k+1}} \varphi_{k+1} + \frac{\underline{D}_k}{\underline{\delta r}_k} \varphi_k \quad , \tag{B-2}$$

which when solved for $\phi^{1/2}$ yields

$$\phi^{1/2} = \frac{\frac{D_{k+1}}{\delta r_{k+1}} \phi_{k+1} + \frac{D_k}{\delta r_k} \phi_k}{\left[\frac{D_k}{2} + \frac{D_{k+1}}{2}\right]} .$$
(B-3)

Substituting the RHS of equation (B-3) for the left-hand term in equation (B-1) gives the following:

$$J_{k} = \frac{D_{k+1}}{2} \frac{D_{k}}{2} \frac{1}{\left[\frac{D_{k}}{D_{k}} + \frac{D_{k+1}}{1}\right]} \left[\frac{\varphi_{k+1}}{\Phi_{k}} + \frac{\varphi_{k+1}}{\Phi_{k+1}}\right]}{\frac{\varphi_{k+1}}{2}}$$
(B-4)

Further simplifying equation (B-4) gives

$$J_{k} = \frac{D_{k+1}D_{k}\left(\delta r_{k} + \delta r_{k+1}\right)}{\left[D_{k}\delta r_{k+1} + D_{k+1}\delta r_{k}\right]} \left(\frac{\varphi_{k+1} - \varphi_{k}}{r_{k+1} - r_{k}}\right)$$
(B-5)

where

$$\mathbf{r}_{k+1} - \mathbf{r}_k = \frac{\delta \mathbf{r}_k}{2} + \frac{\delta \mathbf{r}_{k+1}}{2}$$

Thus, D can be defined to be

$$\overline{\mathbf{D}} = \frac{\mathbf{D}_{k+l}\mathbf{D}_{k}\left(\delta\mathbf{r}_{k} + \delta\mathbf{r}_{k+l}\right)}{\left[\mathbf{D}_{k}\,\delta\mathbf{r}_{k+l} + \mathbf{D}_{k+1}\,\delta\mathbf{r}_{k}\right]} \quad , \tag{B-6}$$

to yield

$$J_{k} = \overline{D} \left(\frac{\Phi_{k+1} - \Phi_{k}}{r_{k+1} - r_{k}} \right) . \tag{B-7}$$

APPENDIX C XPROC2DB LISTING

DIMENSION A(30,46,4,4),B(30,46,4,4)

- C OPEN(UNIT=9,FILE='STDXSC.DAT',STATUS='OLD')
- C OPEN(UNIT=10,FILE='STDXSC2.DAT;STATUS='UNKNOWN') OPEN(UNIT=9,FILE='XPROC30.DAT;STATUS='UDL') OPEN(UNIT=10,FILE='XPROC30.OUT;STATUS='UNKNOWN')
- C K = NUMBER OF MATERIALS
- C I = GROUP #
- C J = XSC TABLE #
- C NMAT=NUMBER OF MATERIALS
- C NGRUP=# OF GROUPS
- C NTAB=XSEC TABLE LENGTH
- C NSCAT=SCATTERING ORDER

NSCAT≃3

NMAT=4

NGRUP=30

NTAB=46

DO 30 K=1,NMAT

```
DO 25 L=1,NSCAT+1
```

DO 20 I=1,NGRUP

READ(9,10) (A(I,J,K,L),J=1,NTAB)

10 FORMAT(1X/,9(5(E13.5)/),E13.5)

A(I,14,K,L)=A(I,8,K,L)

e.,

- 16 FORMAT(78X,I2)
- 20 CONTINUE

READ(9,13)

- 13 FORMAT(1X)
- 25 CONTINUE

READ(9,13)

30 CONTINUE

DO 50 K=1,NMAT

L=1

DO 40 I=1,NGRUP

WRITE(10,10) (A(I,J,K,L),J=1,NTAB)

WRITE(10,99)

- 99 FORMAT(3X,' T',2X)
- 40 CONTINUE

WRITE(10,16)K

WRITE(10,13)

50 CONTINUE

```
K=4
```

L=1

DO 60 I=1,NGRUP

A(I,17,K,L)=A(I,16,K,L)

60 CONTINUE

K=4

L=1

DO 70 I=1,NGRUP

DO 65 J=1,15

A(I,J,K,L)=0.0

65 CONTINUE

70 CONTINUE

DO 170 I=1,NGRUP

DO 165 J=18,NTAB

A(I,J,K,L)=0.0

- 165 CONTINUE
- 170 CONTINUE

K=4

L=1

DO 260 I=1,NGRUP

WRITE(10,10) (A(I,J,K,L),J=1,NTAB)

WRITE(10,99)

260 CONTINUE

WRITE(10,16)K

WRITE(10,13)

STOP

END

APPENDIX D

2DB ERRATA

I. The area elements for $r \cdot \theta$ geometry can be shown to be given by

$$A_r = r_{aveo} \Delta \theta_0 \tag{D-1}$$

$$A_{\theta} = \Delta r_0$$
 (D-2)

where A_r = radial area element and A_{θ} = axial area element for a volume element, 0. In the original 2DB code, the above area elements included a 2π factor. Since this is incorrect, the 2π terms were deleted (see Appendix H, subroutine INIT). For x-y geometry, the axial area element stays the same as above, but the radial element does not have a raveo term and thus, is given by

$$A_r = \Delta \theta_0$$
. (D-3)

Again, the area elements in 2DB included a 2π term. The 2π terms were deleted to cause 2DB to correctly solve the diffusion equation (see Appendix H, subroutine INIT).

II. For the downscattering term in the diffusion equation, 2DB uses the following:

$$XD = \Sigma_{tr} - \Sigma_{s} - \Sigma_{a}$$
(D-4)

where XD = the sum of the downscattering cross sections.

It can be shown that

$$\Sigma_{\rm tr} = \Sigma_{\rm a} + \Sigma_{\rm s} + {\rm XD} - \Sigma_{\rm n,2n} \quad . \tag{D-5}$$

where $\Sigma_{n,2n} = (n,2n)$ cross section.

Substituting equation (D-5) into equation (D-4) gives the following:

$$XD = XD - \Sigma_{n,2n}$$
 (D-6)

Since XD cannot equal XD - $\Sigma_{n,2n}$, this implies that 2DB has incorrectly calculated the downscattering component for those problems which have a significant amount of (n,2n) scattering reactions taking place. Therefore, 2DB was changed so that the downscattering term was calculated by summing over all the downscattering cross sections for a specified group of neutrons (see Appendix H, subroutine S860).

APPENDIX E

PLASMA SOURCE

The problem to be solved is the determination of the uniformly distributed source of 14.1 MeV neutrons in the plasma (radius = R_{pl}) impinging upon the blanket's inner wall at R_w . It is assumed that 10 MW/m² will be the maximum wall load, thus, the current on the inner wall is given by

$$J = \frac{10MW}{m^2} \left(\frac{10^6 W}{MW} \right) \left(\frac{J/s}{W} \right) \left(\frac{m^2}{10^4 cm^2} \right) \left(\frac{MeV}{1.6 \times 10^{-13} J} \right) \left(\frac{1}{14.1 \text{ MeV/n}} \right)$$
(E-1)
= 4.43 × 10⁻¹⁴ $\frac{n}{cm^2 \text{ sec}}$.

Equating the number of neutrons emitted in the plasma to the number of neutrons impinging upon the inner wall, then for a unit width in the toroidal direction the balance is given by

$$J 2\pi R_{w} = FRV\pi R_{pl}^{2}$$
(E-2)

where FRV = the uniformly distributed source of 14.1 MeV neutrons in the plasma. Rearranging equation (E-2) to solve for FRV gives the following:

$$FRV = \frac{J 2\pi R_w}{R_{pl}^2} . \qquad (E-3)$$

Substituting for J from equation (E-1), while letting R_w = 200cm and R_{pl} = 150cm, the uniformly distributed source of 14.1 MeV neutrons in the plasma is equal to 7.88 x 10^{12} n/cm²-sec.

APPENDIX F

EQUIVALENT SOURCE TO THE PLASMA SOURCE AT THE INNER EDGE OF THE BLANKET

The problem to be solved is the determination of the equivalent source at the inner edge of the blanket (radius = R_w) to the of the uniformly distributed source of 14.1 MeV neutrons in the plasma (radius = R_{pl}). Equating the number of neutrons emitted from the plasma to the number of neutrons emitted from a thin source (width = Δr) at the inner wall (radius = R_w), then for a unit width in the toroidal direction the balance is given by

$$\frac{FRV \pi R_{pl}^2}{2\pi R_{pl}} = \frac{S_e \pi \left(\left| R_w + \Delta r \right|^2 - R_w^2 \right)}{2\pi R_w}$$
(F-1)

where FRV = the uniformly distributed source of 14.1 MeV neutrons in the plasma and S_e = equivalent source at the inner wall. Rearranging and simplifying equation (F-1) to solve for S_e gives the following:

$$S_{e} = \frac{FRV R_{pl}R_{w}}{\left(\left|R_{w} + \Delta r\right|^{2} - R_{w}^{2}\right)} \quad . \tag{F-2}$$

APPENDIX G 2DBTOR MANUAL

2DBTOR MANUAL

Craig Hrabal Babatunde Shofolu

susulunue shoronu

Theodore Parish

Texas A&M University

College Station, Texas 77840

Acknowledgements

Much of this manual for 2DBTOR was influenced by both the previous 2DB manual (2DB User's Manual written by W. W. Little, Jr. and R. W. Hardie) and the ANISN/PC manual (ANISN/PC Manual written by D. Kent Parsons). Some of the sections of both manuals were incorporated into the 2DBTOR manual, although the style was based for the most part on the ANISN/PC manual.

Contents

AC	KNOWLEDGEMENTS	. 86
AB	STRACT	. 89
1.	INTRODUCTION	. 90
2.	THEORETICAL FOUNDATIONS	91
	2.1 Discretization of the Diffusion Equation	. 91
	2.1.1 Energy Discretization	91
	2.1.2 Spatial Discretization The Finite Difference Method	94
	2.2 Discussion of Boundary Conditions Used in 2DBTOR	. 97
	2.2.1 Zero Flux Gradient Boundary Condition	. 97
	2.2.2 Zero Flux Boundary Condition	. 98
	2.2.3 Periodic Boundary Condition	. 99
	2.3 Discussion of Triangular Mesh Option	100
	2.4 Iterative Solution Methods of 2DBTOR	101
	2.4.1 Outer Iterations	102
	2.4.2 Inner Iterations	103
3.	USER'S GUIDE	105
	3.1 2DBTOR Input Data Description (Logical Unit 5)	105
	3.2 Supplemental Input Information for 2DBTOR	121
	3.2.1 Cross Section Considerations	121
	3.2.2 Search Considerations	123
	3.2.2.1 Time Absorption (a Calculation)	123
	3.2.2.2 Material Concentration (C Calculation)	124

	3.2.2.3 Zone Dimensions (& Calculation) 126
	3.2.2.4 Buckling (B ² Calculation) 126
	3.2.3 Burnup Model 126
	3.2.3.1 Remarks on Burnup Equations 128
	3.2.4 Source Problems 128
	3.2.5 Remarks on Code Operation 129
	3.3 2DBTOR Format Description 130
	3.3.1 Operators
	3.4 Printed Output Description
4.	PROGRAMMER'S GUIDE TO 2DBTOR 133
	4.1 2DBTOR Files Description
	4.2 2DBTOR Subroutines
	4.2.1 Subroutine Calling Sequences 136
	4.3 Selected Definitions of Variables and Arrays Used
5.	REFERENCES

2DBTOR MANUAL -- REVISION OF 2DB MANUAL (REVISION 1)

ABSTRACT

1. Program Identification: 2DBTOR is a revised version of 2DB1.

2. Description of Problem: 2DBTOR is a two-dimensional (X-Y, R-Z, R-θ, triangular, toroidal), multi-group neutron diffusion code for use in fast reactor criticality and burnup analysis. In addition, 2DBTOR may also be used to study fusion blanket problems in toroidal geometry. 2DBTOR solves the multi-group diffusion theory eigenvalue, adjoint, time absorption, fixed source and criticality search (concentration, zone thickness, and buckling) problems.

3. Method of Solution: Multi-group finite difference neutron diffusion equations are solved iteratively in 2DBTOR. The power method, accelerated by a fission source over-relaxation factor calculated in the code, is used for the outer iterations. Inner iterations are accelerated by use of an over-relaxation factor input by the user.

1. INTRODUCTION

A number of significant additions and alterations (e.g., a toroidal geometry option and an activity cross section option) have been made to the 2DB¹ diffusion-burnup code. In addition, some bugs were discovered in the old 2DB version which have been corrected in the current code, 2DBTOR. This manual gives a complete description of the code including all modifications. A description of both the mathematical model and user instructions are given in the body of the report; a sample problem is included in the appendix.

2DBTOR is designed for use in both fast reactor and fusion analysis. Eigenvalues are computed by standard source-iteration techniques. Group rebalancing and successive over-relaxation with line inversion are used to accelerate convergence. Adjoint solutions are obtained by inverting the input data and redefining the source terms.

Variable dimensioning is used to make maximum use of the available fast memory. Since only one energy group is in the fast memory at any given time, the storage requirements are insensitive to the number of energy groups.

Criticality searches can be performed on buckling, time absorption, material concentrations, and region dimensions. Alpha and k_{eff} can be used as parametric eigenvalues. Criticality searches can be performed during burnup to compensate for fuel depletion.

2. THEORETICAL FOUNDATIONS

2.1. Discretization of the Diffusion Equation

2.1.1. Energy Discretization. The diffusion equation can be developed from the equation for the time rate of change of the number of neutrons within dE of energy, E, in an arbitrary differential volume, dV. Neutrons of energies between E and E+dE, within dV, can be lost or gained by a variety of processes including: (1) production directly from a source, (2) absorption, (3) leakage and (4) scattering. The time rate of change of the number of neutrons in dV and between E and E+dE can be obtained by integrating the neutron density (n(r,E,t)) over dV, and balancing this with the gains and losses as follows:

$$\frac{\partial}{\partial t} \int_{V} \frac{\Phi(t, E, t)}{\nu} \, dV = \begin{bmatrix} \text{source neutron} \\ \text{production rate} \\ \text{in } V \text{ at } E \end{bmatrix} - \begin{bmatrix} \text{absorption} \\ \text{rate in } V \\ \text{at } E \end{bmatrix} - \begin{bmatrix} \text{change due} \\ \text{to } \text{ bakage} \\ \text{from } V \text{ at } E \end{bmatrix} \\ - \begin{bmatrix} \text{neutron scattering} \\ \text{rate out of} \\ E \text{ in } V \end{bmatrix} + \begin{bmatrix} \text{neutron scattering} \\ \text{rate into} \\ E \text{ in } V \end{bmatrix}$$
(1)

where $\Phi(r,E,t) =$ flux of neutrons at r, E and t = n(r,E,t)v

and v = the speed of the neutrons at E.

Equation (1) is known as the neutron continuity equation. Since the energy

dependence of the neutron cross sections vary, equation (1) is usually solved for discrete energy groups(groups denoted by g in this case); thus equation (1) can be written as

.

$$\frac{\partial}{\partial t} \int_{v}^{t} \frac{\Phi_{g}(\mathbf{r}, t)}{v_{g}} \, dV = \begin{bmatrix} \text{source neutron} \\ \text{production rate} \\ \text{in } V \text{ for} \\ \text{group, g} \end{bmatrix} - \begin{bmatrix} \text{absorption} \\ \text{rate in } V \\ \text{for group, g} \end{bmatrix} + \begin{bmatrix} \text{change due} \\ \text{to leak age} \\ \text{from } V \\ \text{for group, g} \end{bmatrix}$$
(2)

Assuming steady state $(\partial/\partial t \text{ term} = 0)$ and no upscattering, equation (2) becomes upon substituting the corresponding mathematical expressions for the RHS terms,

$$-\vec{\nabla} \cdot (D_{g}\vec{\nabla}\Phi_{g}) + \Sigma_{s_{g}}\Phi_{g} + \sum_{g'=g+1}^{G} (\Sigma_{g}(g \rightarrow g') \Phi_{g}) = (3)$$

$$S_{g}^{ext} + \chi_{g} \sum_{g'=1}^{G} (v_{g} \cdot \Sigma_{f_{g}}\Phi_{g'}) + \sum_{g'=1}^{g-1} (\Sigma_{s}(g \rightarrow g') \Phi_{g'})$$

where the (r,t) arguments have been dropped for clarity. This is the multi-group neutron diffusion equation.

Equation (3) can be further simplified by noting that the removal of neutrons from group g is caused by both downscattering and absorption. The removal cross section for group g is defined as shown below:

$$\begin{split} \Sigma_{g}^{r} &\equiv \Sigma_{a_{g}} + \sum_{g'=g+1}^{G} (\Sigma_{s}(g \rightarrow g')) \\ &= \Sigma_{a_{g}} + \Sigma_{s}(g \rightarrow g) + \left[\sum_{g'=g+1}^{G} \Sigma_{s}(g \rightarrow g') \right] - \Sigma_{s}(g \rightarrow g) \\ &= \Sigma_{tr_{g}} - \Sigma_{s}(g \rightarrow g') \end{split}$$

where Σ_{trg} = the macroscopic transport cross section = 1/(3Dg).¹⁴

Thus the removal rate/cm3 is

$$\Sigma_{g}^{r} \Phi_{g} = \Sigma_{a} \Phi_{g} + \sum_{g=g+1}^{G} (\Sigma_{s} (g \rightarrow g') \Phi_{g}). \tag{4}$$

Substituting equation (4) into equation (3) gives

$$-\vec{\nabla} \cdot (D_g \vec{\nabla} \Phi_g) + \Sigma_g^r \Phi_g = S_g^{ext} + \chi_g \sum_{g'=1}^G (v_g \cdot \Sigma_{f_g} \Phi_{g'}) + \sum_{g'=1}^{g-1} (\Sigma_g (g \to g') \Phi_{g'})$$
(5)

the form of the multi-group neutron diffusion equation used in 2DBTOR.

2.1.2. Spatial Discretization - The Finite Difference Method. To develop a finite difference approximation for the diffusion equation(with axial symmetry), it is first necessary to integrate equation (5) over a small, arbitrary volume ΔV (see Figure 2-1) where the mesh points are considered to be in the center of the homogeneous mesh interval. Thus,

$$-\int_{\Delta V} \vec{\nabla} \cdot D_{g} \vec{\nabla} \Phi_{g} dV + \int_{\Delta V} \left[\Sigma_{g}^{r} \Phi_{g} \right] dV \qquad (6)$$

$$= \int_{\Delta V} \left[S_{g}^{ext} + \chi_{g} \sum_{g'=1}^{G} (\nu_{g'} \Sigma_{f_{g}} \Phi_{g'}) + \sum_{g'=1}^{g-1} (\Sigma_{g} (g \to g') \Phi_{g'}) \right] dV$$

where the first term on the LHS of the equation is the leakage term, the second term on the LHS of the equation is the removal term, and the RHS represents the source terms including fission and scatter. Thus for the removal term,

$$\int_{\Delta V} \Sigma_g^r \Phi_g \, \mathrm{d}V = \Sigma_g^r \Phi_{g0} \, V_o \tag{7}$$

where

 Φ_{g0} = flux associated with meshpoint o $\Sigma_{g_n}^{r}$ = removal cross section associated with meshpoint o. The source term on the RHS is done similarly to the above. The leakage term is changed to an integral over the surface area of the volume element, thus from the Divergence Theorem

$$-\int_{\Delta V} \vec{\nabla} \cdot \mathbf{D}_{g} \vec{\nabla} \Phi_{g} \, dV = -\int_{A} \mathbf{D}_{g} \vec{\nabla} \Phi_{g} \cdot \hat{\mathbf{n}} \, dA \quad .$$

The flux partial derivatives will be obtained by differencing the two neighboring flux values. Thus, volume integration of equation (5) for mesh point 0 (see Figure 2-1; where r stands for x or r, and θ stands for y, z, or θ , depending on the geometry) leads to the expression

$$-\sum_{k=1}^{4} \left[\overline{D}_{g_{k}} \left(\frac{\phi_{g_{k}} - \phi_{g_{0}}}{L_{k}} \right) A_{k} \right] + \Sigma_{g_{0}}^{T} \phi_{g_{0}} V_{0} \qquad (8)$$
$$= \left[S_{g_{0}}^{\text{ext}} + \chi_{g} \sum_{g'=1}^{G} (v_{g'} \Sigma_{f_{g'}} \phi_{g'}) + \sum_{g'=1}^{g'} (\Sigma_{g_{0}} g \rightarrow g') \phi_{g'} \right] V_{0} .$$

Equation (8) can be recast into a form more convenient for performing flux iterations by rearranging equation (8) to that given below:

$$\Phi_{b} = \frac{\left[\sum_{g=1}^{ext} \chi_{g} \sum_{g'=1}^{G} (v_{g'} \Sigma_{f_{g'}} \Phi_{g'}) + \sum_{g'=1}^{g-1} (\Sigma_{g} (g - g') \Phi_{g'})\right] V_{0} + \sum_{k=1}^{4} C_{k} \Phi_{k}}{C_{5}} , \qquad (9)$$

 $C_k = \frac{\bar{D}_k A_k}{L_k} k = 1, ..., 4$ (10)

and
$$C_5 = \Sigma_{g_5}^r V_0 + \sum_{k=1}^{r} C_k$$
. (11)

where

2.2. Discussion of Boundary Conditions Used in 2DBTOR

Three boundary conditions are available in 2DBTOR: reflective, extrapolated vacuum, and periodic. The reflective boundary conditions is used on boundaries where $\nabla \Phi = 0$; the extrapolated vacuum boundary condition is used on boundaries where the flux is assumed to be zero at the extrapolated boundary; and the periodic boundary condition is used on boundaries where material conditions are repeating. The above mentioned boundary conditions are described in more detail below.

2.2.1. Zero Flux Gradient Boundary Condition. Consider the left-hand boundary of the one-dimensional reactor shown in Figure 2-2. Imagine that a

Figure 2-2. Schematic Diagram of 1-D Reactor

pseudo-mesh interval 0, has been added on the left-hand side of the boundary with the same composition and thickness of interval 1. Clearly, then, if $\nabla \Phi = 0$ at the boundary, $\phi_0 = \phi_1$. Therefore, since $(\phi_0 - \phi_1)=0$, the coefficient of $(\phi_0 - \phi_1)$, C₁(see equations (8) and (10)), is immaterial -- hence C₁ can be set equal to zero. The calculation is therefore performed assuminf that ϕ_0 does not exist and C₁ = 0.

2.2.2. Zero Flux Boundary Condition. Again, imagine that a pseudo-mesh interval with the same composition as interval IM has been added to the right hand side of the boundary in Figure 2-2. Now, since $\phi_{IM} \neq 0$ and $\phi_{IM+1} = 0$, the coefficient of $(\phi_{IM} - \phi_{IM+1})$ in equation (8) cannot be disregarded. In fact, from equation (10), it is clear that

$$C_k = \frac{D_k A_k}{.5 \Delta R_{IM} + .71 \lambda_{tr}}$$

where λ_{tr} is assumed to equal $1/\Sigma_{tr}$

Note, as in the reflective boundary condition case, that there is no contribution of the pseudo-flux in equation (9). For a zero flux gradient, $C_{\bf k} = 0$; whereas for a zero flux, $\phi_{\bf k} = 0$.
2.2.3. Periodic Boundary Condition. Periodic boundary conditions are only available for the top and bottom boundaries(e.g., boundaries in the y, z, or θ direction). In this option(see Figure 2-3),

$$\phi_{IM} = \phi_0$$

 $\phi_{IM+1} = \phi_1$

and

Figure 2-3. Schematic Diagram of 1-D Reactor

It should be stressed that the pseudo-mesh intervals discussed above are not in any way a part of the code. They are mentioned here only for heuristic purposes.

2.3. Discussion of Triangular Mesh Option

Since most fast reactors are composed of hexagonal assemblies, 2DBTOR includes a triangular mesh option. Hexagons are formed by appropriate grouping of six triangular mesh intervals.

In the triangular mesh option, the (i,j) coordinate grid is composed of a rectangular array of triangles. As in the other geometry options, the mesh points are placed in the center of each interval, or triangle. See Figure 2-4 for a simple 3 x 4 example. In contrast to the other geometry options, however, the mesh boundaries must be equally spaced. In fact, the radial (RB_i) and axial (θB_j) mesh boundaries must be computed by the expressions

$$RB_i = (i-1)\frac{FTF}{2\sqrt{3}}$$
, $i=1,...,IM+1$ (12)

$$\theta B_{j} = (j-1) \frac{FTF}{2}$$
, $j=1,...,JM+1$ (13)

where FIF is the flat-to-flat hexagon width.

Only vacuum and reflective boundary conditions are available with the triangular mesh option. The user is cautioned against using reflective left and right boundaries since this implies no surface leakage from each mesh interval on the left and right border.

Figure 2-4. Triangular Mesh Example (3 x 4)

2.4. Iterative Solution Methods of 2DBTOR

Within the 2DBTOR code, two distinct levels of iteration may be found for general problems. The top level of iteration (i.e., outer iterations) is for the spatially and energy-group summed fission sources. The second level of iteration (i.e., inner iterations) is for the individual group fluxes that result from a given source.

The following sections describe both the inner and outer iteration procedures used in 2DBTOR and discuss the methods used to accelerate those procedures. 2.4.1. Outer Iterations. Outer iterations in 2DBTOR are based on the power iteration method. That is, at each outer iteration, a total fission source is calculated. Upon convergence, the ratio of the latest fission source to the previous fission source is the eigenvalue. Thus, the eigenvalue is used to renormalize the fission source iterates between outer iterations, and the ratio between normalized fission source iterates approaches 1.0.

For search problems, the eigenvalue is defined to be the value of the search quantity (e.g., time absorption, zone thickness,etc.) that produces criticality. In these problems, the eigenvalue is used to change the problem at each search step so that the fisdsion source ratio still approaches 1.0 at convergence.

For each outer iteration, the inner iteration procedure starts with group 1 and sweeps through the groups in order of decreasing energy. The downscattering component of the source for the current group is calculated from the latest values of the higher energy fluxes.

Fission source over-relaxation is employed in 2DBTOR to accelerate convergence. The procedure is as follows: After the new fission source rate profile, F^{v+1}_{1} , is calculated, a second "new" value, F^{v+1}_{2} , is computed by magnifying the difference between the new fission source rate and the old fission source rate. Thus,

$$F_2^{\nu+1} = F^{\nu} + \beta'(F_1^{\nu+1} - F^{\nu}),$$

where β' is the fission source over-relaxation factor. F^{v+1}_{2} is than normalized to give the same total source as F^{v+1}_{1} . 2.4.2. Inner Iterations. Inner iterations are computed using successive line over-relaxation (SLOR). That is, the fluxes on each vertical (or horizontal) line are simultaneously computed (by the familiar Crout reduction technique) and then over-relaxed using

$$\phi^{\nu+1} = \phi^{\nu} - \beta(\phi^{\nu+1} \phi^{\nu}) ,$$

where β is the over-relaxation factor. In r-q problems or problems involving periodic boundary conditions, direct inversion is performed on vertical lines beginning at the left boundary and proceeding by column to the right boundary. In triangular problems, direct inversion is performed along horizontal lines beginning at the bottom boundary and proceeding by row to the top boundary. In all other situations, direct inversion is performed along the dimension with the most mesh points. One mesh sweep is defined as one inner iteration.

The flux over-relaxation factor, β , is an input parameter. The fission source over-relaxation factor, β' , is computed internally from the expression

$$\beta' = 1.0 + 0.6(\beta - 1)$$
.

As in the original version of 2DB, the flux in each group is normalized (by balancing the total source rate and loss rate) immediately before each group-flux calculation. Thus, a one-region problem with zero-gradient boundary conditions would be solved in exactly one outer iteration.

It should be mentioned that an alternating direction SLOR scheme (using line inversion for rows and then colums in alternation) is included as an option to enhance convergence for problems involving tight mesh spacing in both directions.

3. USER'S GUIDE

3.1. 2DBTOR Input Data Description (Logical Unit 5)

This section describes the input data for the 2DBTOR code. The input has the following general structure:

Section	Description
А	Title Card
В	Single Integer and Real Numbers
С	Cross Section Data
D	Fixed Source Data (if needed)
Е	Miscellaneous Data
F	Burnup Data

Each input section is begun on a new line and ended on a later line by a terminate marker. A "T" anywhere on a nontitle card or on a line by itself constitutes a terminate marker.

Each of the input sections will be described below. Locations of the terminate markers will also be given. The length of each data section is denoted by the number or variable in slashes "//" by the input description. The expression in braces "{}" by the input description is the condition that requires the input to be present. If no condition is given, the input is always needed.

The data format conventions used by 2DBTOR are described fully in Section 3.3. Succinctly described, however, 2DBTOR uses free format augmented by an operator notation, which conserves space in the input.

Further details about the various input options for 2DBTOR may be found in Section 3.2, which immediately follows the input data description.

A. Title Card - (4A20 Format)

B. Single Integer and Real Numbers

B.1 Integer control parameters /13/

	Variable	
	_Name	Description
1.	A02	0 - regular calculation
		1 - adjoint calculation
2.	104	Eigenvalue type
		0 - distributed source (D.)
		1 - eigenvalue calculation
		2 - time absorption (α) search
		calculation (E.7.)
		3 - concentration search (C)
		calculation

	Variable	
	Name	Description
		 4 - zone thickness search (δ) calculation (E.11,-14)
		5 - buckling (B ²) calculation
		(E.5.)
3.	S02	Parametric eigenvalue type
		0 - no effect
		1 - eigenvalue (k _{eff})
		2 - α (E.7.)
4. IGI	М	Number of energy groups
5.	IHT	Position of σ_{tr}
6.	NXCM	Number of downscattering
		terms
7.	MCR	Number of cross section
		sets to be read from
		cards/tape (+N/-N)
		(+N go to C.)
8.	G07	Maximum number of inner
		iterations for each group
		per outer iteration (suggested
		value ≥ 20)

	Variable	
	Name	Description
9.	D05	Maximum number of outer
		iterations(suggested value ≥ 50
		for general usage but D05 = 1
		fixed source calculations without
		fission)
10.	MAXT	Maximum run time (minutes)
11.	NPRT	Print option
		0 - mini
		1 - midi
		2 - cross sections
		3 - fluxes
12.	M07	Flux guess
		0 - no effect
		1 - flux guess from file
		FOR14.DAT
13.	NPUN	Flux dump
		0 - no effect
		1 - flux dump to file
		FOR16.DAT

B.2 Integer control parameters /14/

	Variable	
	Name	Description
1.	IGE	Geometry parameter
		0 - X-Y
		1 - R-Z
		2 - R-θ or toroidal (B.2.2.)
		3 - triangular
		4 - toroidal
2.	ITOR	Toroidal specifier ($0/1 = R \cdot \theta$ /
		toroidal)
3.	NACT	Number of activities (E.15.)
		0 - no effect
		>0 - read table positions
		for N activities
4.	IM	Number of radial fine mesh
		intervals
5.	ЛМ	Number of axial fine mesh
		intervals
6.	IZM	Number of zones (or regions)
7.	MT	Total number of material
		(IMCRI + mixtures formed in

Variab

	Name	Description
		mixing table)
8.	M01	Mixing table length
9.	B01	Left boundary condition
		0 - vacuum
		1 - reflection
10.	B02	Right boundary condition
		0 - vacuum
		1 - reflection
11.	B03	Top boundary condition
		0 - vacuum
		1 - reflection
		2 - periodic
12.	B04	Bottom boundary condition
		0 - vacuum
		1 - reflection
		2 - periodic
13.	IZ	Number of radial zones
		0 - no effect
		>0 - only if I04 = 4
14.	JZ	Number of axial zones
		0 - no effect
		>0 - only if I04 = 4

B.3 Floating point control parameters /6/

	Variable	
	Name	Description
1.	EV	First eigenvalue guess
2.	EVM	Initial eigenvalue modifier
		for search problems, zero
		otherwise
3.	S03	parametric eigenvalue
4.	BUCK	Buckling (cm ⁻²) (E.5)
5.	LAL	Lower limit for λ in search calculations, zero otherwise
6.	LAH	Upper limit for λ in search calculations, zero otherwise

Terminate Marker

B.4 Floating point control parameters /6/

	Variable	
	Name	Description
1.	EPS	Eigenvalue relative convergence
		criterion (suggested value,
		EPS = 0.0001)
2.	EPSA	Parametric convergence criterion
3.	G06	Pointwise flux relative
		convergence criterion, zero
		otherwise (suggested value,
		EPSA = 2.0 * EPS)
4.	POD	Paramater oscillation damper
		(suggested value, POD = 1.0)
5.	ORF	Over relaxation factor
		(suggested value,
		1.0≤ORF≤2.0)
6.	S01	S01<0, power (MWT) for R-Z
		geometry, (power/height
		(MWT/cm) for all but
		R-Z geometry)
		S01>0, neutron source rate
		(n/cm^3) (0.0 for source
		without fission)

B.4 Floating point control parameters /1/ {ITOR = 1}

	Variable	
	Name	Description
1.	BIGR	Major radius (cm)

Terminate Marker

C. Cross Section Data {MCR>0}

Variable		
	Name	Description
1.	HOLN(MCR)	Name of isotope
2.	ATW(MCR)	Atomic weight of isotope

Terminate Marker

ITL = NXCM + IHT + 1 = Cross section table length

3. C(ITL,IGM,MT) Read cross sections

for first group /ITL/.

- 4. Terminate Marker
- 5. Repeat C.3 and C.4 for all groups /IGM-1/
- 6. Repeat C.1 C.5 for all materials /MT-1/
- D. Fixed Source Data {I04 = 0}

	Variable	
	Name	Description
1.	S2(IM*JM)	Source in first group

- 2. Terminate Marker
- 3. Repeat D.1 D.2 for all groups /IGM-1/
- E. Miscellaneous Data

Description

 Radial mesh line coodinates defining the IM fine mesh intervals /IM+1/ (should be strictly ascending in order)

Description

 Axial mesh line coordinates defining the JM fine mesh intervals /JM+1/ (should be strictly ascending in order)

Terminate Marker

3. Zone numbers by fine mesh interval /IM*JM/

Terminate Marker

4. Material numbers by zone /IZM/

Terminate Marker

5. Buckling coefficients by zone /IZM/ {I04=5 or BUCK>0}

Terminate Marker

 Fission spectrum data /IGM/ (the sum of the entries should equal 1.0 for eigenvalue calculations (I04=1))

Description

7. Neutron velocities by group /IGM/ {I04=2 or \$02=2}

Terminate Marker

8. Mixture material numbers in mixing table /M01/ {M01>0}

Terminate Marker

 Component material numbers of mixtures in mixing table /M01/ {M01>0}

Terminate Marker

10. Atom densities of component materials in mixing table /M01/ (M01>0)

Terminate Marker

11. Delta option radial zone numbers by fine mesh interval /IM/ (I04=4)

Terminate Marker

12. Delta option radial zone modifiers /IZ/ {I04=4}

Terminate Marker

13. Delta option axial zone numbers by fine mesh interval /JM/ (I04=4)

Terminate Marker

14. Delta option axial zone modifiers /JZ/ {I04=4}

Terminate Marker

15. Cross section table position for activities /NACT/ {NACT>0}

Terminate Marker

16. End of problem identifier (NCON)

0 - End of problem (only if no burnup)

>0 - Take time step of DELT and read burnup data for

N isotopes (F.)

<0 - Take time step of DELT (F.)

(DELT is in Burnup Data)

F. Burnup Data {NCON≠0}

F.1 Integer control parameters /1/

Variable		
	Name	Description
	DELT	Time step (days)

Terminate Marker

1

F.2 Integer control parameters /12/ {NCON>0}

1.	MATN(NCON)	Material sequence number
		of burnable isotope
2.	NBR(NCON)	0 - No effect
		1 - Fertile isotope
		2 - Fissile istope
3.	LD(NCON)	0 - No decay source

N - Decay source from

burnable isotope N

Variable
vanable

	Name	Description
4.	LCN(NCON,1)	0 - No capture source
		N - Capture source from
		burnable isotope N
5.	LCN(NCON,2)	0 - No capture source
		N - Capture source from
		burnable isotope N
6.	LFN(NCON,1)	0 - No fission source
		N - Fission source from
		burnable isotope N
7.	LFN(NCON,2)	0 - No fission source
		N - Fission source from
		burnable isotope N
8.	LFN(NCON,3)	0 - No fission source
		N - Fission source from
		burnable isotope N
9.	LFN(NCON,4)	0 - No fission source
		N - Fission source from
		burnable isotope N
10.	LFN(NCON,5)	0 - No fission source
		N - Fission source from
		burnable isotope N

	Variable	
	Name	Description
11.	LFN(NCON,6)	0 - No fission source
		N - Fission source from
		burnable isotope N
12.	LFN(NCON,7)	0 - No fission source
		N - Fission source from
		burnable isotope N

F.3 Integer control parameters /1/ (NCON>0)

ι.	ALAM(ITEMP)	Decay constant for decay
		of burnable isotope N (days-1)
		(0.0 for no decay)

Terminate Marker

3.2. Supplemental Input Information for 2DBTOR

3.2.1. Cross Section Considerations. Cross sections input into 2DBTOR are ordered for each group as shown in Table 2.

Cross Section	Group	Position Description
σ activity 1 (optional)	g	
	•	
•		
	•	
σ activity N (optional)	g	(N = IHT - 4)
σ fission	g	
σ absorption	g	
vo fission	g	
σ transport	g	IHT
σ selfscatter	g→g	IHS
σ downscatter	g - 1→g	
	g	
	g	
	g	
σ downscatter	g - NXCM \rightarrow g	TTL

Table 2. Order of cross sections in 2DBTOR

If activity cross sections are not present, then IHT = 4.

The absorption cross section is used only for editing purposes. If a removal cross section is to be calculated, then 2DBTOR computes this by subtracting the self scatter cross section from the transport cross section.

Material numbers in 2DBTOR start at 1 and go through MT (the user specified total number of materials). Materials entered by cards or tape start at 1 and run through MCR (the user-specified number of materials from cards or tape). Materials formed in the mixing table are numbered from MCR+1 through MT.

The cross section mixing table is controlled by three input arrays: 10, 11, and 12. The length of the cross section mixing table (M01) is specified by the user. It is important to remember to initialize each array to zero before performing a mix in the mixing table since 2DBTOT does not do this internally in the program.

For each row of entries in the mixing table, three operations are possible. First, all of the cross sections in a given material number may be multiplied by a constant. This option is useful in number density variations. Second, a set of cross sections may be multiplied by a constant and added into another material. This option is useful in mixing cross sections. Finally, all of the cross sections of a material may be multiplied by the eigenvalue. This option is useful in concentration searches (104 = 3).

Table 3 illustrates the three options available from the mixing table:

	Material Number	Component Number	Concentration or Numeric Constant
Options	(IO)	(11)	(I2)
1	М	0	х
1	М	0	х
1	<u>M</u>	0	X

Table 3. 2DBTOR mixing table options

3.2.2. Search Considerations. The 2DBTOR code computes implicit eigenvalue searches on time absorption, material composition, zone thickness, and material buckling. In contrast to a k_{eff} calculation, the fission spectrum is not multiplied by $1/\lambda$ after each outer iteration. Instead, after a converged λ has been obtained ($|\lambda^{\nu+1} - \lambda^{\nu}| < \varepsilon$) by a sequence of outer iterations, the desired parameter is perturbed to make λ approach unity. That is, first a converged λ is calculated for the initial system. The system is then altered by the amount specified in the input (the eigenvalue modifier) and a second converged λ is calculated. Subsequent parameter changes are determined using either linear or parabolic interpolation procedures. The iteration is continued until $|1-\lambda| < \varepsilon$.

3.2.2.1. Time Absorption (α calculation). For simplicity, consider the one group, time dependent neutron diffusion equation

$$\frac{1\partial\phi(\vec{r},t)}{\nu\partial t} = D\nabla^2 \phi(\vec{r},t) - \Sigma_a \phi(\vec{r},t) + \nu \Sigma_f \phi(\vec{r},t) . \qquad (14)$$

If one now assumes that

$$\phi(\vec{r},t) = \phi(\vec{r})^{\alpha t} \quad . \tag{15}$$

then equation (14) can be rewritten in the form

$$D\nabla^2 \phi(\vec{r}) - (\Sigma_a + \frac{\alpha}{\nu} \phi(\vec{r}) + \nu \Sigma_f \phi(\vec{r}) = 0 . \qquad (16)$$

In a time absorption calculation, the parameter α , as defined and used in equations (15) and (16), is computed as the eigenvalue. Note that α/ν is effectively an absorption cross section -- hance the name "time absorption."

3.2.2.2 Material Concentration (C calculation). 2DBTOR can perform an extremely flexible and comprehensive criticality search on material composition. Any number of materials can simultaneously be added, depleted, or interchanged in any number of zones.

The format for specifying concentration searches can best be described by a simple example. Suppose that a zone mixture, say Mix 10, is to be composed of Materials 2 and 4. Further, assume that Material 2, with an initial density of 0.02 (atoms/barn-cm), shall be varied to obtain criticality, and Material 4 shall have a fixed

density of 0.04 (atoms/barn-cm).

The IO, I1, and I2 arrays would then be set up as shown in the following tabulation.

Mix Number (I0)	Material Number(11)	Density(I2)
10	0	0
10	2	0.02
10	10	0
10	4	0.04

The first row (10,0,0) instructs the code to clear a storage area for Mix 10. The second row (10,2,0.02) causes Material 2 to be added to Mix 10 with a density of 0.02. The third row (10,10,10) cuses the current contents of Mix 10 to be multiplied by the eigenvalue. Finally, the last row (10,4,0.04) instructs the code to add Material 4 to Mix 10 with a density of 0.04.

All of the foregoing can be summarized by the expression

$$\Sigma_{10} = 0.02 \,\sigma_2 \,\text{EV} + 0.04 \sigma_4 \tag{17}$$

where:

 Σ_{10} = macroscopic cross section for Mix 10,

 σ_2 = microscopic cross section for Material 2,

 σ_4 = microscopic cross section for Material 4,

EV = the eigenvalue.

3.2.2.3 Zone Dimensions (δ calculation). 2DBTOR searches on reactor dimensions by varying the dimensions of each axial an radial mesh interval. Each mesh width, δr^i , is computed from the expression

$$\delta r^{i} = \delta r_{0}^{i} [1 + (\text{mesh modifier})^{i} EV],$$
 (18)

where δr^i is the initial mesh spacing and EV is the eigenvalue. Different mesh modifiers can be specified for each axial and radial mesh interval.

3.2.2.4 Buckling (B^2 calculation). In a buckling search, the quantity D_iB^2 , where D_i is the zone dependent diffusion constant for group i, is added to the ith group absorption cross section. The in-group scattering cross section, σ^i_{gg} , is reduced by the same amount so that the calculated total cross section remains equal to the input total cross section. The buckling is then computed as the eigenvalue.

3.2.3. Burnup Model. The basic burnup equation for each zone has the form

$$\frac{dN^{i}}{dt} = -\lambda N^{i} N^{i} - \sigma_{a} \phi N^{i} + \lambda N^{k} + \sum_{i=1}^{2} \sigma_{a} \phi N^{i} + \sum_{m=1}^{k} \gamma_{m} \sigma_{m} \phi N^{m}$$
(19)

where:

$$\begin{split} N^{i} &= \text{density of nuclide } i, \\ N^{i} &= \text{decay constant for nuclide } i, \\ \stackrel{-i}{\sigma_{a}} &= \text{spectrum averaged absorption cross section for nuclide } i, \\ \stackrel{-i}{\sigma_{f}} &= \text{spectrum averaged fission cross section for nuclide } i, \\ \stackrel{-i}{\sigma_{c}} &= \text{spectrum averaged capture cross section for nuclide } i, \\ \stackrel{-i}{\phi} &= \text{ total average flux.} \end{split}$$

The last two terms in equation (19) allow provision for two capture and seven fission sources. The latter option, for example, could be used to compute the fission product buildup.

Each input time step is arbitrarily subdivided into 10 smaller times steps. Equation (19) is then solved as a march-out problem using the subdivided time intervals. If one rewrites equation (19) in the form

$$\frac{d\tilde{N}}{dt} = \tilde{f}(\tilde{N},t) , \qquad (20)$$

then the particular march-out algorithm used can be written as

$$\vec{N}_{j+1} = \vec{N}_j + \frac{\delta t}{2} (\vec{f}_j + \vec{f}_{j+1})$$
, (21)

where j is the index on time and δt is the fine-step time interval.

Observe that equation (21) is implicit in the sense that Nj+1 must be known in

order to compute fj+1. One must therefore iterate on N at each time point. This procedure leads to the algorithm

$$\vec{N}_{j+1}^{\nu+1} = \vec{N}_j + \frac{\delta t}{2} (\vec{f}_j + \vec{f}_{j+1})$$
, (22)

where v is the iteration index.

3.2.3.1. Remarks on Burnup Equations. The zone averaged flux and cross sections appearing in equation (19) are computed before each time step. The total reactor power (from the burnable isotopes) and flux profile (relative zone fluxes) are held constant during the fine-step march-out described by equation (22).

It should be clear from the mathematical model presented that relatively short time steps should be employed if rapid variations in isotopic concentrations or flux profiles are anticipated.

3.2.4. Source Problems. 2DBTOR will compute the flux profiles resulting from an extraneous (in space and energy) source distribution. The following suggestions will assist the user in running source problems:

- 1. A source problem is meaningless (and will not converge) if k>1.0.
- Convergence can be accelerated by giving the code an estimate of k (Card 5, Word 1).
- 3. A good estimate of the initial total neutron production rate (Card 6, Word 6)

will enhance convergence. This value can be estimated using the simple expression

$$N = \frac{kS}{1-k} , \qquad (23)$$

where:

N = total neutron production rate from fission,

S = total neutron source rate from extraneous source,

k = multiplication constant.

3.2.5. Remarks on Code Operation.

 Since the input data is inverted for transposed calculations, all group indicies in the output of adjoint cases are transposed. Furthermore, the balance tables in adjoint calculations do not have a direct physical interpretation.

 The material inventory tables are inapplicable for a mixture specification more complex than a mix in a mix (e.g., a mix in a mix in a mix).

 An isotope cannot be mentioned more than once in the same mix in burnup calculations. If mentioned more than once in other calculations, the printed inventory will be incorrect.

4. Although the new eigenvalue and material densities are computed and printed after the last time step, the zone averaged cross sections and reaction rates are not. These can easily be obtained, however, by simply taking 1 extra burnup step of zero length. Similarly, the zone averaged cross sections and reaction rates can be obtained in non-burnup runs by simply calling for 1 (dummy) burnup step of zero length.

- 5. A flux dump is given only when:
 - 1) A dump is called for, and
 - 2) The burnup time is zero.

Thus, if a dump is called for in a burnup calculation, only one dump (the initial flux) is given.

6. Tight mesh spacing in the dimension perpendicular to line inversion can cause excessive running time. Thus, if tight mesh spacing is used, it should be along the dimension containing the most mesh intervals. For the same reason, the "dummy" dimension in one-dimensional problems should contain large mesh intervals.

3.3 2DBTOR Format Description

3.3.1 Operators. Generalized Format = OPnn xx

- 1. nn = first subfield with integer entry
- 2. OP = operator = second subfield with character entry
- 3. xx = third subfield with real or integer entry
- There must not be a delimiter (blank or end of card) between the first and second subfields.

- 5. There must be a delimiter between the second and third subfields.
- There must be a delimiter between the third subfield of one operator and and the first subfield of the following operator.

	Operator	Description
1.	С	Continue the current array nn times with the
		previous xx entries
2.	F	Fill the remainder of the current array with xx
3.	Ι	Linear interpolation; generate nn entries between xx
	Operator	Description

	Operator	Description
		and the previous number
4.	R	The value xx is generated nn times
5.	т	Terminate the current array

3.4. Printed Output Description

The first output section of 2DBTOR is a brief edit of the first 37 input data preceded by the title card. The size of the array required to run the problem is printed after the above edit. If more or less than the required 37 entries is read than an error message is printed and the calculation stops.

The next section is an edit of the cross section, source, mesh interval, and zone data. First, a cross section edit is printed with a list of the cross sections read followed by a consistency check. If the problem involves a great amount of inelastic scattering,

then this check can be ignored. Second, if a source problem is run, then the source distribution is printed for each group. Each group source distribution is preceded by the required number of entries. Third, an edit of the mesh intervals is performed for both the radial and axial points. Again, each edit is preceded by the required number of entries. Finally, an edit of the zone numbers by mesh interval followed by an edit of the material numbers by zone is printed. Each of the above edits is preceded by the required number of entries.

The next section consists of an edit of the fission spectrum and mixing table data. The fission spectrum is printed for all groups. Next, the mixing table is printed for the I0, I1, and I2 arrays. Again, the required number of entries is printed.

The next section consists of a map of both the zone numbers by mesh interval and the material numbers by fine mesh interval. This provides a means to get a picture of the problem. If more than approximately 50 mesh intervals are used in the radial direction, then the printed inventory will leave off the excess due to problems with printing off the page. This will cause an error, which will not stop further running of the problem.

The next section is a brief edit of the time in days that the problem was started, of the mixing table in easy to read format, and of the cross sections (NPRT≥2) input into the problem for each group.

After printing out the input edits above, the number of inner iterations per outer iteration with the associate eigenvalue, eigenvalue slope, and lambda after the outer iteration are printed. This is followed by a balance table, which lists the number of fissions, in-scattering neutrons, out-scattering neutrons, absorptions, and leakage for each group. The total for each neutron process follows the above. The neutron multiplication constant (not k_{eff}) is printed, followed by an edit of the radii, average radii, axii, and average axii dimensions.

Next, if NPRT >2, then the flux by mesh interval for each group followed by the total flux by mesh interval is printed. This is followed by the power density (MWT/liter) for each mesh interval.

To end the problem (if no burnup is required), a brief edit of both the mass (kilograms) and volume (liters) inventory for each zone is printed followed by their totals. This concludes the problem.

If a burnup run is called for, then the amount of days in the burnup followed by another eigenvalue edit and balance table edit is printed. Next, a brief edit of the burnup input dat is printed in easy to read format. Finally, the absorption and fission

rates for each material burned by zone is printed with the number density of each material called in the burnup.

4. PROGRAMMER'S GUIDE TO 2DBTOR

4.1. 2DBTOR Files Description

Logical

<u>Unit</u>	Name	Format	Usage
3	FOR3.DAT	Unformatted	Cross section storage
4	FOR4.DAT	Unformatted	Scratch storage
5	TORACT5.DAT	Formatted	Input

6	TORACT5.OUT	Formatted	Output
8	FOR8.DAT	Unformatted	Flux storage
9	FOR9.DAT	Unformatted	Source storage
10	FOR10.DAT	Unformatted	Scratch storage
11	FOR11.DAT	Unformatted	Scratch storage
12	FOR12.DAT	Unformatted	Scratch storage
14	FOR14.DAT	Unformatted	Input of a flux dump
15	FOR15.DAT	Unformatted	Scratch storage
16	FOR16.DAT	Unformatted	Output of a flux dump

4.2 2DBTOR Subroutines

<u>Name</u>	Function
CALC	Main program
INP	Controls reading and printing of all input dat,
	computes variable dimension pointers, and computes
	program constants
ERR02	Prints error messages
S860	Reads cross sections from cards, performs adjoint
	reversals if required, and writes cross section tape
S862	Reads input fluxes and prepares a flux tape
S864	Reads input source and prepares a source tape
REAG2	Reads floating point data
<u>Name</u>	Function
-------------	--
REAI2	Reads integer data
RREAG2	Reads toroidal data (major radius)
MAPR	Produces a picture by zone and by material
INIT	Performs adjoint reversals, mixes cross sections,
	modifies geometry, and calculates areas, volumes,
	and fission neutrons
CLEAR	Sets an array of a specified length to a constant
FISCAL	Calculates fission sums and performs outer iteration
	normalization
S8830	Prints time, eigenvalue, lambda, etc. after each outer
	iteration
OUTER	Performs a complete outer iteration
INNER	Calculates flux in a specified group
INNER1	Calculates coefficients for the flux equation
INNERT	Calculates coefficients for the flux equation in
	triangular geometry
INNER2	Calculates flux in a specified group
INNERP	Calculates flux in a specified group for periodic
	boundary conditions
IFLUXN	Normalizes flux before each group flux calculation
IFLUXL	Normalizes flux before each group flux calculation
	(used for toroidal geometry source problems)

<u>Name</u>	Function
CNNP	Performs convergence tests and computes a new
	eigenvalue for search calculations
S8850	Prints the monitor line, group fluxes, total flux,
	power density, and fission source rate
S8847	Computes and prints group totals
PRT	Prints any IM*JM array
GRAM	Calculates and print the zone volume and the mass
	of each material in each zone
INPB	Reads and prints the input burnup data
AVERAG	Calculates zone averaged fluxes, fission cross
	sections, absorption cross sections, and breeding
	ratio
MARCH	Calculates the time dependent isotopic concentrations

4.2.1. Subroutine Calling Sequences.

Subroutine	Called By	Calls
CALC		INP, INIT, FISCAL,
		\$8830, ERR02, OUTER,
		CNNP, S8850, GRAM,
		INPB, AVERAG, MARCH
INP	CALC	S860,S862, S864, REAG2,
		REAI2, RREAG2, MAPR,
		ERR02

Subroutine	Called By	Calls
ERR02	CALC, INP, REAI2,	
	REAG2, INIT, CNNP	
S860	INP	
S862	INP	REAG2
S864	INP	REAG2
REAG2	INP, S862, S864	ERR02
REAI2	INP	ERR02
RREAG2	INP	
MAPR	INP	
INIT	CALC	CLEAR, ERR02
CLEAR	INIT, GRAM	
FISCAL	CALC	
S8830	CALC, \$8850	
OUTER	CALC	INNER1, INNER,
		INNERP
INNER	OUTER	IFLUXN, IFLUXL
INNER1	OUTER	
INNERT	OUTER	
INNER2	OUTER	IFLUXN, IFLUXL
INNERP	OUTER	IFLUXN
IFLUXN	INNER, INNER2,	
	INNERP	
IFLUXL	INNER, INNER2	

Subroutine	Called By	Calls
CNNP	CALC	ERR02, CLEAR
\$8850	CALC	PRT, S8830, S8847
S8847	S8850	
PRT	S8850	
GRAM	CALC	CLEAR
INPB	CALC	
AVERAG	CALC	
MARCH	CALC	

4.3. Selected Definitions of Variables and Arrays Used

Variable	Description
** INTERNAL VARIAI	BLES **
NINP	Input tape
NOUT	Output tape
NCR1	Cross section tape
NFLUX1	Flux tape
NSCRAT	Scratch tape
NSORCE	Source tape
ALA	Lambda
B07	Used for internal computation in FISCAL and INIT
CNT	Convergence trigger for lambda
CVT	Convergence trigger
DAY	Burnup time in days

Variable	Description
DELT	Length of time step (days)
E0(IGP)	Fission rate
E1(IGP)	Fission source
E2(IGP)	In-scatter and extraneous source
E3(IGP)	Out-scatter
E4(IGP)	Absorptions
E5(IGP)	Left leakage
E6(IGP)	Right leakage
E7(IGP)	Top leakage
E8(IGP)	Bottom leakage
E9(IGP)	Total leakage
E01	Temporary
E02	Temporary
E03	Temporary
EQ	Temporary for \$852(CNNP)
EVP	Previous eigenvalue
EVPP	Eigenvalue for two iterations back
FEF	Energy released /fission (215MeV)
GBAR	Group indicator
GLH	Initial clock time in seconds
IGEP	IGE + 1
IGP	IGM + 1
IGV	Group indicator for inner and outer

Variable	Description
IHS	Position of sigma self scatter
IHT	Position of sigma transport
п	Inner iteration count for a single group
IMJM	IM*JM
IP	IM + 1
ITEMP	Temporary
ITEMP1	Temporary
ITEMP2	Temporary
ITL	Cross section table length
IZP	IZM + 1
JP	JM + 1
K07	Not used
KPAGE	Page counter for monitor print
LAP	Lambda for previous eigenvalue
LAPP	Lambda for two iterations back
LAR	Lambda for previous iteration
LC	Loop count (total II in a single outer iteration)
ML	MCR + MTP
NCON	-/0/+ = take time step of DELT/ end of problem/
	take time step of DELT and read burnup data
NGOTO	Temporary
ORFP	ORF for (1-lambda) <10*EPS
202	Outer iteration count

Variable	Description
PBAR	Temporary
SBAR	Temporary
SK7	Sum of K7 over all groups
T06	0/1 = no effect/delta calculation
T7	Alpha/velocity
T11	Previous fission total
TEMP	Temporary
TEMP1	Temporary
TEMP2	Temporary
TEMP3	Temporary
TEMP4	Temporary
п	Time
TSD	(MW-sec)/(fissions)
V11	Total source for the group
**INPUT VARIABLES*	*
ID(20)	ID card
A02	0/1 = flux calc./adjoint calc.
104	Eigenvalue type (0/1/2/3/4 = source/keff/alpha/
	concentration/delta/buckling)
\$02	Parametric eigenvalue type (0/1/2 = none/keff/alpha)
IGM	Number of groups
NXCM	Number of downscattering terms
MCR	Number of materials from cards

Variable	Description
MTP	Number of materials from tape
G07	Inner iteration max per group (if neg., alt dir)
D05	Max number of outer iterations
MAXT	Max run time (minutes)
NPRT	Print option (0/1/2/3 = mini/midi/Xsec/fluxes)
M07	Flux guess $(0/1 = \text{none}/\text{flux from FOR14.DAT})$
NPUN	Flux dump (0/1 = none/ flux dump to FOR16.DAT)
IGE	Geometry parameter (0/1/2/3/4 = X-Y/R-Z/R-0/triangular/
	toroidal)
IM	Number of radial intervals
JM	Number of axial intervals
IZM	Number of zones
MT	Total number of materials including mixes
M01	Number of mixture specifications
B01	Left B. C. (0/1 = vacuum/reflective)
B02	Right B. C. $(0/1 = vacuum/reflective)$
B03	Top B. C. $(0/1/2 = vacuum/reflective/periodic)$
B04	Bottom B. C. $(0/1/2 = vacuum/reflective/periodic)$
IZ	Radial zones (delta option only)
JZ	Axial zones (delta option only)
NACT	Number of activations
EV	Eigenvalue
EVM	Eigenvalue modifier

Variable	Description
S03	Parametric eigenvalue
BUCK	Buckling
LAL	Lambda lower
LAH	Lambda upper
EPS	Eigenvalue convergence criterion
EPSA	Pointwise convergence criterion
G06	Inner iteration test (if 0 no test)
POD	Parameter oscillation damper
ORF	Over-relaxation factor
S01	-/+ = power(MWT)/neuton source rate
**ARRAY VARIABLES*	*
ATW(ML)	Material atomic weight
HOLN(ML,2)	Material name
ALAM(ML)	Decay constant (days ⁻¹)
C0(ITL,MT)	Cross section array for current group
N0(IM,JM)	Total flux (old)
N2(IM,JM)	Total flux (new)
A0(IP)	Radial area element
A1(IM)	Axial area element
F0(IM,JM)	Fissions (old)
F2(IM,JM)	Fissions (new)
I0(M01)	Mix number
I1(M01)	Material number for mix

Variable	Description
I2(M01)	Material density
I3(M01)	Material densities for gram calc.
K6(IGM)	Fission spectrum (effective)
K7(IGM)	Fission spectrum (input)
M0(IM,JM)	Zone numbers
M2(IM,JM)	Material numbers by zone
R0(IP)	Initial radii
R1(IP)	Current radii
R2(IM)	Radial zone numbers (delta calc. only)
R3(IZ)	Radial zone modifiers (delta calc. only)
R4(IM)	Average radii
R5(IM)	Delta-R
S2(IM,JM)	Fixed source
V0(IM,JM)	Volume elements
V7(IGM)	Neutron velocities
ZO(JP)	Initial axii
Z1(JP)	Current axii
Z2(JM)	Axial zone numbers (delta calc. only)
Z3(JZ)	Axial zone modifiers (delta calc. only)
Z4(JM)	Average axii
Z5(JM)	Delta-Z
CXS(IM,JM,3)	Constants involving cross sections for flux calculation
VOL(IZM)	Zone volume (liters)

Variable	Description
MASS(ML,IZM)	Material inventory in each zone
MATN(ML)	Material number for burnable isotopes
NBR(ML)	0/1/2 = none/fertile/fissile
LD(ML)	Source isotope for decay
LCN(ML,2)	Source isotopes for capture
LFN(ML,7)	Source isotope for fission
PHIB(IZM)	Zone averaged flux
AXS(ML,IZM)	Spectrum averaged absorption cross section
FXS(ML,IZM)	Spectrum averaged fission cross section
MASSP(ML,IZM)	Material inventory in each zone (previous)
CXR(JM)	Constants for right boundary
CXT(IM)	Constants for top boundary
HA(IM OR JM)	Temp storage for line inversion
PA(IM OR JM)	Temp storage for line inversion

5. REFERENCES

 W. W. Little, Jr., and R. W. Hardie. 2DB User's Manual, BNWL - 831 Revision 1, Batelle Pacific Northwest Laboratory, Richland, Washington (Unpublished).

APPENDIX H 2DBTOR LISTING

с	PROGRAM	208		
с	2	TAPE5=INPUT, TAPE6=OUTPUT, TAPE3=NCR1, TAPE4=NSCRAT.	CALC	<
С	3	TAPE8=HFLUX1, TAPE9=HSORCE,	CALC	<
С	4	TAPE14=HFLXI, TAPE16=HFLXD, TAPE15=HXS)	CALC	<
С	* * * *	* DESCRIPTION OF SUBROUTINES * * * * *	CALC	9
С			CALC	10
C	CALC	MAIN PROGRAMSETS UP TAPE UNITS AND CALLS INP, INIT,	CALC	11
С		FISCAL, S8830, ERRO2, OUTER, CHNP, S8850, GRAM,	CALC	12
C		INPB, AVERAG, AND MARCH.	CALC	13
C			CALC	14
С	INP	SUBROUTINE TO CONTROL THE READING AND PRINTING OF ALL	CALC	15
¢		INPUT DATA, COMPUTE VARIABLE DIMENSION POINTERS AND	CALC	16
C		PROGRAM CONSTANTS. INP IS CALLED BY CALC AND CALLS	CALC	1<
С		\$860, \$862, \$864, REAG2, REAI2, MAPR, AND ERRO2.	CALC	18
С			CALC	19
С	ERRO2	ERROZ IS USED TO PRINT AN ERROR MESSAGE. IT IS CALLED	CALC	20
С		BY CALC, INP, REAI2, REAG2, INIT, AND CNNP.	CALC	21
C			CALC	22
С	S860	SUBROUTINE TO READ CROSS SECTIONS FROM CARDS, PERFORM	CALC	23
С		ADJOINT REVERSALS IF REQUIRED, AND WRITE CROSS SECTION	CALC	24
C		TAPE. SB60 IS CALLED BY INP.	CALC	25
С			CALC	26
с	S862	S862 READS INPUT FLUXES AND PREPARES A FLUX TAPE. IT IS	CALC	27
с		CALLED BY INP AND CALLS REAG2.	CALC	28
С			CALC	29
С	S864	S864 READS INPUT SOURCE AND PREPARES A SOURCE TAPE. IT	CALC	30
С		IS CALLED BY INP AND CALLS REAG2.	CALC	31
С			CALC	32
с	REAG2	SUBROUTINE TO READ FLOATING POINT DATA. REAGZ IS CALLED	CALC	33
с		BY INP, S862, AND S864. REAG2 CALLS ERROR.	CALC	34
С			CALC	35
C	REA12	SUBROUTINE TO READ INTEGER DATA. REAIZ IS CALLED BY INP	CALC	36
C		AND CALLS ERRO2.	CALC	37
С			CALC	38
С	HAPR	SUBROUTINE TO PRODUCE A PICTURE BY ZONE AND	CALC	39
С		MATERIAL. MAPR IS CALLED BY INP.	CALC	40
С			CALC	41
С	INIT	INIT PERFORMS ADJOINT REVERSALS(S806), MIXES CROSS	CALC	42

Wednesday, February 21, 1990 12:42 pm Page 1

TL	IST2.FOR	Wednesday, February 21, 1990 12:42 pm	Pag	ge 2
C		SECTIONS(\$807), MODIFIES GEOMETRY(\$810), AND CALCULATES	CALC	43
C		AREAS AND VOLUMES(S811), AND FISSION NEUTRONS(S821),	CALC	44
C		INIT IS CALLED BY CALC AND CALLS CLEAR AND ERROZ.	CALC	45
С			CALC	46
С	CLEAR	CLEAR SETS AN ARRAY OF A SPECIFIED LENGTH TO A GIVEN	CALC	47
C		CONSTANT. THE SUBROUTINE IS CALLED BY INIT AND GRAM.	CALC	48
С			CALC	49
С	FISCAL	CALCULATES FISSION SUMS(S822) AND PERFORMS	CALC	50
С		NORMALIZATION(\$823). FISCAL IS CALLED BY CALC.	CALC	51
С			CALC	52
С	S8830	S8830 IS THE MONITOR PRINT SUBROUTINEPRINTS TIME,	CALC	53
С		EIGENVALUE, LAMBDA, ETC. AFTER EACH OUTER ITERATION.	CALC	54
С		IT IS CALLED BY CALC AND S8850.	CALC	55
С			CALC	56
С	OUTER	PERFORMS A COMPLETE OUTER ITERATION. CALLS INNER1,	CALC	57
с		INNER, AND INNERP. OUTER IS CALLED BY CALC.	CALC	58
С			CALC	59
С	INNER	CALCULATES THE FLUX IN SPECIFIED GROUP. IT IS CALLED	CALC	60
С		BY OUTER AND CALLS IFLUXN,	CALC	61
C			CALC	62
C	INNER1	CALCULATES COEFFICIENTS FOR THE FLUX EQUATION. INNER1	CALC	63
С		IS CALLED BY OUTER.	CALC	64
¢			CALC	65
С	INNERT	INNERT CALCULATES COEFFICIENTS FOR THE FLUX EQUATION FOR	CALC	66
c		TRIANGULAR GEOMETRY. INNERT IS CALLED BY OUTER.	CALC	67
C			CALC	68
С	INNER2	CALCULATES THE FLUX IN SPECIFIED GROUP. IT IS CALLED	CALC	69
С		BY OUTER AND CALLS IFLUXN.	CALC	70
С			CALC	71
C	INNERP	CALCULATES THE FLUX IN SPECIFIED GROUP FOR PERIODIC B. C	CALC	72
C		IT IS CALLED BY OUTER AND CALLS IFLUXN.	CALC	73
С			CALC	74
С	IFLUXN	SUBROUTINE TO NORMALIZE THE FLUXES BEFORE EACH	CALC	75
С		GROUP FLUX CALCULATION. IT IS CALLED BY INNER, INNER2,	CALC	76
C		AND INNERP.	CALC	77
C			CALC	78
С	CNNP	PERFORMS CONVERGENCE TESTS(\$851) AND COMPUTES A NEW	CALC	79
С		EIGENVALUE FOR SEARCH OPTIONS(\$852). CNNP IS CALLED	CALC	80

τL	IST2.FOR	Wednesday, February 21, 1990 12:42 pm	Pa	ge 3
с		BY CALC AND CALLS ERROZ AND CLEAR.	CALC	81
С			CALC	82
C	s8850	FINAL PRINT SUBROUTINEPRINTS THE MONITOR LINE,	CALC	83
С		GROUP FLUXES, TOTAL FLUX, POWER DENSITY, AND FISSION	CALC	84
С		SOURCE RATE. IT IS CALLED BY CALC AND CALLS PRT, \$8830,	CALC	85
С		AND \$8847.	CALC	86
C			CALC	87
С	S8847	SUBROUTINE TO COMPUTE AND PRINT GROUP TOTALS. S8847 IS	CALC	88
С		CALLED BY S8850.	CALC	89
С			CALC	90
с	PRT	SUBROUTINE TO PRINT ANY IM*JM ARRAY. IT IS CALLED BY	CALC	91
c		\$8850.	CALC	92
c			CALC	93
c	GRAM	CALCULATES AND PRINTS THE MASS OF EACH MATERIAL IN EACH	CALC	94
		ZUNE AND THE ZUNE VOLUME. IT IS GALLED BY CALC AND	CALC	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
۰ ۲		CALLS CLEAR.	CALC	96
č		CIRRONTINE TO READ AND DRINT THE INDIT DURING DATA IT	CALC	9/
č	INFO	IS CALLED BY CALC	CALC	70
č			CALC	100
č	AVERAG	AVERAG CALCULATES ZONE AVERAGED FLUXES FISSION CROSS	CALC	101
č		SECTIONS, ABSORPTION CROSS SECTIONS, AND REFERING RATIO.	CALC	102
č		THE SUBROUTINE IS CALLED BY CALC.	CALC	103
c			CALC	104
с	MARCH	SUBROUTINE TO CALCULATE THE TIME DEPENDENT ISOTOPIC	CALC	105
С		CONCENTRATIONS. MARCH IS CALLED BY CALC.	CALC	106
C			CALC	107
¢	* * * *	* INTERNAL VARIABLES * * * * *	CALC	108
С			CALC	109
с	NINP	INPUT TAPE	CALC	110
С	NOUT	OUTPUT TAPE	CALC	111
C	NCR1	CROSS SECTION TAPE	CALC	112
С	NFLUX1	FLUX TAPE	CALC	113
С	NSCRAT	SCRATCH TAPE	CALC	114
C	NCR1	SOURCE TAPE	CALC	115
С	ALA	LAMBDA	CALC	116
С	807	USED FOR INTERNAL COMPUTATION IN FISCAL AND INIT	CALC	117
С	CNT	CONVERGENCE TRIGGER FOR LAMBDA	CALC	118

TLI	ST2.FOR	Wednesday, February 21, 1990 12:42 pm	Page 4
C	CVI	CONVERGENCE TRIGGER	CALC 119
C	DAY	BURNUP TINE IN DAYS	CALC 120
C	DELT	LENGTH OF TIME STEP (DAYS)	CALC 121
C	EO(IGP)	FISSION RATE	CALC 122
c	E1(IGP)	FISSION SOURCE	CALC 123
c	E2(1GP)	IN-SCATTER (AND EXTRANEOUS SOURCE)	CALC 124
c	E3(1GP)	OUT-SCATTER	CALC 125
c	E4(IGP)	ABSORPTIONS	CALC 126
C	E5(IGP)	LEFT LEAKAGE	CALC 127
c	E6(IGP)	RIGHT LEAKAGE	CALC 128
c	E7(IGP)	TOP LEAKAGE	CALC 129
C	E8(1GP)	BOTTON LEAKAGE	CALC 130
c	E9(IGP)	TOTAL LEAKAGE	CALC 131
C	E01	TEMPORARY	CALC 132
c	E02	TEMPORARY	CALC 133
C	EO3	TEMPORARY	CALC 134
C	EQ	TEMPORARY FOR \$852 (CNNP)	CALC 135
с	EVP	PREVIOUS EIGENVALUE	CALC 136
c	EVPP	EIGENVALUE FOR TWO ITERATIONS BACK	CALC 137
С	FEF	ENERGY RELEASED PER FISSION (#215 MEV)	CALC 138
C	GBAR	GROUP INDICATOR FOR TAPE MOTION IN \$824 (OUTER)	CALC 139
C	GL#	INITIAL CLOCK TIME IN SECONDS (INTEGER)	
C	IGEP	IGE + 1	CALC 141
c	IGP	IGH + 1	CALC 142
С	Val	GROUP INDICATOR FOR INNER AND DUTER	CALC 143
С	IHS	POSITION OF SIGNA SELF SCATTER	CALC 144
C	1 H T	POSITION OF SIGHA TRANSPORT	CALC 145
c	11	INNER ITERATION COUNT FOR A SINGLE GROUP	CALC 146
с	INJM	(M*JH	CALC 147
с	IP.	IN + 1	CALC 148
С	ITEMP	TEMPORARY	CALC 149
С	1 TEMP1	TEMPORARY	CALC 150
С	1 TEMP2	TEMPORARY	CALC 151
С	17L	CROSS SECTION TABLE LENGTH	CALC 152
С	1 ZP	IZN + 1	CALC 153
С	JP	JN + 1	CALC 154
C	K07	NOT USED	CALC 155
С	KPAGE	PAGE COUNTER FOR MONITOR PRINT	CALC 156

TLIS	T2.FOR	Wednesday, February 21, 1990 12:42 pm	Page 5
с	LAP	LAMBDA FOR PREVIOUS EIGENVALUE	CALC 157
C	LAPP	LAMBDA FOR TWO ITERATIONS BACK	CALC 158
C	LAR	LAMBDA FOR PREVIOUS ITERATION	CALC 159
C	LC	LOOP COUNT (TOTAL II IN A SINGLE OUTER ITERATION)	CALC 160
C	ML	NCR + MTP	CALC 161
с	NCON	NEG/ZERO/POS=TAKE TIME STEP OF DELT/END OF PROBLEM/	CALC 162
с		TAKE TIME STEP OF DELT AND READ BURNUP DATA	CALC 163
С	NGOTO	TENPORARY	CALC 164
с	NPRT	0/1/2/3=NINI/MIDI/CROSS SECTION/FLUX PRINT	
с	ORFP	ORF FOR 1 - LAMBDA LESS THAN 10*EPS	CALC 166
С	P02	OUTER ITERATION COUNT	CALC 167
С	PBAR	TEMPORARY	CALC 168
C	SBAR	TEMPORARY	CALC 169
С	SK7	SUM OF K7 OVER ALL GROUPS	CALC 170
C	T06	0/1=NOT DELTA/DELTA CALCULATION	CALC 171
C	77	ALPHA/VELOCITY	CALC 172
C	T11	PREVIOUS FISSION TOTAL	CALC 173
C	TEMP	TEMPORARY	CALC 174
C	TEMP1	TEMPORARY	CALC 175
С	TEMP2	TEMPORARY	CALC 176
С	TENP3	TEMPORARY	CALC 177
C	TEMP4	TEMPORARY	CALC 178
С	TI	TINE	CALC 179
C	TSD	(MW-SEC)/(FISSIONS)	CALC 180
С	V11	TOTAL SOURCE FOR THE GROUP	CALC 181
C			CALC 182
С	* * * * *	INPUT VARIABLES (CARDS 1-5) * * * * *	CALC 183
C			CALC 184
С	10(20)	IDENTIFICATION CARD	CALC 185
С	A02	0/1=FLUX CALCULATION/ADJOINT CALCULATION	CALC 187
C	104	EIGENVALUE TYPE (1/2/3/4/5=KEFF/ALPHA/CONCENTRATION	/CALC 188
С		DELTA/BUCKLING)	CALC 189
С	S02	PARAMETRIC EIGENVALUE TYPE (0/1/2=NONE/KEFF/ALPHA)	CALC 190
С	IGN	NUMBER OF GROUPS	CALC 191
с	NXCH	NUMBER OF DOWNSCATTERING TERMS	CALC 192
C	MCR	NUMBER OF MATERIALS FROM CARDS/TAPE (+N/-N)	
с	NTP	NUMBER OF MATERIALS FROM TAPE	CALC 194
с	G07	INNER ITERATION MAX PER GROUP (IF NEG. ALT DIR)	

C S04 INVERSION DIRECTION (0/1=NO EFFECT/ALTERNATE DIRECTICALC 199 C D05 MXXIMM HUMBER OF DUTER ITERATIONS C MXXIMM THE (NILMUTS) C NOT FLUX GUESS (0)1=NOME/IMPUT FROM TAPE 16) C NOT C GEGRETHT (0/1/2/3+/1/R-2/R-THETA/TRIANGULAR) C IA NUMBER OF AXIAL INTERVALS CALC 202 C IA NUMBER OF AXIAL INTERVALS CALC 203 C IA NUMBER OF AXIAL INTERVALS CALC 204 C IA NUMBER OF AXIAL INTERVALS CALC 205 C NT TOTAL NUMBER OF AVERIAL ZONES CALC 206 C NOT NUMBER OF AVERIALS ZONES C B01 LEFT BOUNDAT CONDITION (0/1-XACUMARFELECTUPE) CALC 208 C B03 TOP BOUND	TLIS	T2.FOR	Wednesday, February 21, 1990 12:31 pm	Page 6
C DUS MAXIMUM NUMBER OF OUTER ITERATIONS MAXIMUM NUMBER OF OUTER ITERATIONS MAXIMUM NUMBER OF OUTER ITERATIONS C MAXIMUM THE (MINITES) IPRT PRINT OFTION (0/1/2+MINITEND) C NOT FRIT PRINT OFTION (0/1/2+MINITEND) C NOT FLUX DUMP (0/1-WOME/DUMP T FOR TARE 14) C IFUN FLUX DUMP (0/1-WOME/DUMP T FOR TARE 15) C IA NUMBER OF FAUAL INTERVALS CALL 203 L JA NUMBER OF FAUAL INTERVALS CALL 204 C IA NUMBER OF FAUAL INTERVALS CALL 205 C NUMBER OF FAUAL INTERVALS CALL 206 C NO1 NUMBER OF ANTALIS INCLIDING MIXES CALL 207 C B01 LEFT BOUNDARY CONDITION (0/1-VACUAR/REFLECTIVE) CALC 208 C B03 TOP BOUNDARY CONDITION (0/1-VACUAR/REFLECTIVE) CALC 201 C B03 TOP BOUNDARY CONDITION (0/1/2-VACUAR/REFLECTIVE) CALC 212 C B04 BOTTON BOUNDARY CONDITION (0/1/2-VACUAR/REFLECTIVE) CALC 203	c	\$04	INVERSION DIRECTION (0/1=NO EFFECT/ALTERNATE DIRECT	ICALC 199
C MAXT MAXT MAXTIME TIME (MINUTES) C HPRT PRINT OFTION (0/17/24/34/MIX/HD1/MAXI) C NO7 FLUX GUESS (0/1+KOME/INFUT FROM TAPE 14) C NO7 FLUX GUESS (0/1+KOME/INFUT FROM TAPE 14) C NUM FLUX GUESS (0/1+KOME/INFUT FROM TAPE 14) C NUM FLUX GUESS (0/1+KOME/INFUT FROM TAPE 14) C IGE GEOMETRY (0/1/2/3-X-Y/R-Z/R-THETA/TRIANGULAR) CALC 202 C IM NUMBER OF FAILAL INTERVALS CALC 203 C IM NUMBER OF MATERIALS INCLUDING MIXES CALC 204 C IM NUMBER OF MATERIAL SINCLUDING MIXES CALC 207 C B01 NUMBER OF MATERIAL SINCLUDING MIXES CALC 207 C B03 TOP BOUNDAY CONDITION (0/1-VACUM/REFLECTIVE) CALC 208 C B03 TOP BOUNDAY CONDITION (0/1-VACUM/REFLECTIVE) CALC 208 C B04 BOTTOM BOUNDAY CONDITION (0/1/2-VAC/REFL/FENDICICALC 211 C IZ ANTAL ZORES (DELTA-OPTION ONLY) CALC 214 C IZ ROILL ZORES (DELTA-OPTION ONLY) CALC 220	C	005	MAXIMUM NUMBER OF OUTER ITERATIONS	
C NPRI PRINT OPTION (0/1/2-MIKI)MOJ/MAKI) C NOT FLUE GUES (0/1-MOME/CMMP T ROM TAPE 14) C HFUN FLUE DUMP (0/1/2-MIKI) FROM TAPE 14) C HFUN FLUE DUMP (0/1/2-MIKI) FROM TAPE 14) C IFUN FLUE DUMP (0/1-MOME/CMMP T TO TAPE 14) C IG GE GEORETRY (0/1/2/3-K/TR-Z/R-TINTA/TRANGULAR) CALC 202 C IN NUMBER OF RADIAL INTERVALS CALC 204 C IAN NUMBER OF MATERIAL ZONES CALC 204 C IAN TOTAL MUMBER OF MATERIAL ZONES CALC 204 C NUMBER OF MATERIAL ZONES CALC 204 C B01 LEFT BOUNDARY CONDITION (0/1-VACUM/REFLECTIVE) CALC 205 C B03 TOP BOUNDARY CONDITION (0/1-VACUM/REFLECTIVE) CALC 216 C JZ ANIAL ZONES COLL 100 (0/1-VACUM/REFLECTIVE) CALC 217 C JZ ANIAL ZONES (DELTA-OPTION ONLY) CALC 212 CALC 212 C JZ ANIAL ZONES (DELTA-OPTION ONLY) CALC 212 C JACT<	C	MAXT	MAXIMUN TIME (MINUTES)	
C NU/F FLUX GUESS (0/) HKWRE/IMPUT FROM TAPE 16) C NU/F FLUX GUESS (0/) HKWRE/IMPUT FROM TAPE 16) C IEE GEORETRY (0/) HKWRE/IMPUT FROM TAPE 16) C IEE GEORETRY (0/) HKWRE/ALS CALC 202 C IM NUMBER OF RADIAL INTERVALS CALC 203 C JM NUMBER OF RADIAL INTERVALS CALC 205 C IA NUMBER OF ANTERIALS INCLUDING MIXES CALC 205 C NO1 NUMBER OF MATERIALS INCLUDING MIXES CALC 205 C NO1 NUMBER OF MATERIALS INCLUDING MIXES CALC 206 C B01 LEFT BOUNDARY CONDITION (0/) H-VACUM/REFLECTIVE) CALC 206 C B02 RIGHT BOUNDARY CONDITION (0/) HVACUM/REFLECTIVE) CALC 201 C B04 BOTTOM BOUNDARY CONDITION (0/) HVACUM/REFLECTIVE) CALC 213 C IZ RUBLA ZONES CALC 204 C B04 BOTTOM BOUNDARY CONDITION (0/) HVACUM/REFLECTIVE) CALC 212 C IZ RUBLA ZONES CALC 204 C RUBLA ZONES	c	NPRT	PRINT OPTION (0/1/2=MINI/MIDI/MAXI)	
C NFAM FLUX DUPE (0/1-14008-20040P TO TAPE 16) C IC E GEORETRY (0/1/2/3+/7R-Z/R-THETA/TRIANGLIAR) CALC 202 C IN NUMBER OF RADIAL INTERVALS CALC 203 C JN NUMBER OF RADIAL INTERVALS CALC 204 C JN NUMBER OF RADIAL INTERVALS CALC 204 C JN NUMBER OF MATERIAL ZOMES CALC 204 C IN TOTAL NUMBER OF MATERIAL ZOMES CALC 204 C NUMBER OF MATERIAL ZOMES CALC 204 C B01 LEFT BOUNDARY CONDITION CONT-VACUARYREFLECTIVE) CALC 206 C B03 TOP BOUNDARY CONDITION (0/1-VACUARYREFLECTIVE) CALC 207 C B04 BOTTOM BOUNDARY CONDITION (0/1/2>VAC/REFL/PERIODIC)CALC 211 CALC 212 C JZ ANIAL ZOMES GELARY CONDITION CALC 212 C JZ ANIAL ZOMES GELARY CONDITION CALC 212 C JZ ANIAL ZOMES GELARY CALC 212 C JACT NUMBER OF	ç	MU7	FLUX GUESS (0/1=NONE/INPUT FROM TAPE 14)	
C Low Elike (INT (U) / 2/3 AF / AF / AF / AF / INE (A/ INT ARGULAR) CALC 202 C IN NUMBER OF ANDIAL INTERVALS CALC 203 C JA NUMBER OF ANDIAL INTERVALS CALC 204 C IN NUMBER OF ANTALI INTERVALS CALC 202 C IN NUMBER OF ANTALI INTERVALS CALC 203 C IN TOTAL NUMBER OF ANTERIALS INCLUDING HIXES CALC 206 C MOT TOTAL NUMBER OF ANTERIALS INCLUDING HIXES CALC 207 C B01 LEFT BOUNDARY CONDITION (0/1-VACUAR/REFLECTIVE) CALC 208 C B03 TOP BOUNDARY CONDITION (0/1/2-VAC/REFL/PERIODIC)CALC 210 C B03 TOP BOUNDARY CONDITION (0/1/2-VAC/REFL/PERIODIC)CALC 212 C JZ ANIAL ZONES (DELTA-OPTION ONLY) CALC 212 C JZ ANIAL ZONES (DELTA-OPTION ONLY) CALC 212 C JZ ANIAL ZONES (DELTA-OPTION ONLY) CALC 212 C JZ ANIAL ZONES (DELTA-OPTION ONLY) CALC 212 C JZ ANIAL	5	NPUN	FLUX DUMP (U/1=NONE/DUMP TO TAPE 16)	
L IM NUMBER OF MAJIAL INTERVALS CALC 203 L IM NUMBER OF MAJIAL INTERVALS CALC 204 C IAIN NUMBER OF MAJIAL INTERVALS CALC 205 C IAIN NUMBER OF MAJIAL INTERVALS CALC 205 C IAIN NUMBER OF MAJIAL INTERVALS CALC 205 C NT TOTAL MUMBER OF MAJIAL INTERVALS CALC 206 C NO1 NUMBER OF MAJIAL INTERLAS INCLUDING MIXES CALC 206 C NO1 NUMBER OF MAJIAL INTERLAS INCLUDING MIXES CALC 207 C NO1 NUMBER OF MAJIAL INTERLAS INCLUDING MIXES CALC 207 C NO1 NUMBER OF MAJIAL INTERLAS INCLUDING MIXES CALC 207 C B03 ROBINARY CONDITION (0/1/2-VAC/REFL/GENDIC)CALC 211 C IACT NUMBER OF ACTIVATIONS CALC 212 C JZ ANIAL ZONES (DELTA-OFTION ONLY) CALC 214 C IACT NUMBER OF ACTIVATIONE CALC 224 C LACT NACT NUMBER OF ACTIVATION CALC 214 C	6	IGE	GEOMETRY (U/1/2/3=X-Y/R-Z/R-THETA/TRIANGULAR)	CALC 202
L JM INTREE OF AXIAL INTERVALS CALC 204 L INT INTREE OF AXIAL INTERVALS CALC 205 C IZ INT TOTAL INTERVALS CALC 205 C INT TOTAL INTERVALS CALC 205 C INT TOTAL INTERVALS CALC 205 C NOT INTIGE SCOPE OF INITIDE SCOPES CALC 205 C B01 LEFT BOUNDARY CONDITION (0/1-VACUAR/REFLECTIVE) CALC 206 C B03 TOP BOUNDARY CONDITION (0/1/2-VAC/REFL/PERIODIC/CALC 210 C B04 BOTTON BOUNDARY CONDITION (0/1/2-VAC/REFL/PERIODIC/CALC 210 C IZ RADIAL ZONES (DELTA-OPTION ONLY) CALC 212 C JZ AXIAL ZONES (DELTA-OPTION ONLY) CALC 212 C JZ		1.	NUMBER OF RADIAL INTERVALS	CALC 203
C 124 INMEER OF MATERIAL ZOMES CALC 205 C HT TOTAL MOMERO FOR MATERIALS INCLUDING MIXES CALC 205 C M01 NUMBER OF MIXTURE SPECIFICATIONS CALC 207 C B01 LEFT BOUNDARY CONDITION (0/1-WACLAM/REFLECTIVE) CALC 206 C B02 RIGHT BOUNDARY CONDITION (0/1-WACLAM/REFLECTIVE) CALC 207 C B03 TOP BOUNDARY CONDITION (0/1-WACLAM/REFLECTIVE) CALC 206 C B03 TOP BOUNDARY CONDITION (0/1/2-WAC/REFL/PERIOTIC/CALC 211 C B04 BOTTOM BOUNDARY CONDITION (0/1/2-WAC/REFL/PERIOTIC/CALC 211 C IZ ROILAZ CONSTOLITON (0/1/2-WAC/REFL/PERIOTIC/CALC 212 C IZ ROILAZ CONSTOLITON (0/1/2-WAC/REFL/PERIOTIC/CALC 213 C MACT NUMBER OF ACTIVATIONS CALC 214 C EV FIRST ELEMANLE GUESS CALC 225 C LAGE BUCK BUCK ING CALC 225 C LAGE LAGE CALC 225 C C LAGE LAGE CALC 226 C C	5	JH	NUMBER OF AXIAL INTERVALS	CALC 204
C MI IDIAL BAMBER OF MATERIALS INCLUDING MIRES CALC 205 C MOI NUMBER OF MIXTURE SCHIFCATIONS CALC 207 C B01 LEFT BOUMARY CONDITION (0/1-vACUAM/REFLECTIVE) CALC 208 C B03 TOP BOUMARY CONDITION (0/1-vACUAM/REFLECTIVE) CALC 208 C B03 TOP BOUMARY CONDITION (0/1-vACUAM/REFLECTIVE) CALC 208 C B03 TOP BOUMARY CONDITION (0/1-vACUAM/REFLECTIVE) CALC 201 C B04 BOTTON BOUMARY CONDITION (0/1/2-vAC/REFL/PERIODIC)CALC 211 CALC 212 C JZ AXIAL 20NES (DELT-0PTION ONLY) CALC 212 C JZ AXIAL 20NES (DELTA) CALC 212 C JZ AXIAL 20NES CALC 214 CALC 212 C JZ AXIAL 20NES CALC 220 CALC 221 C JACT NUMBER OF ACTIVATIONS CALC 221 CALC 221 C V FIRST TIC ETGENVALUE QUESS CALC 222 CALC 223	5	120	NUMBER OF MATERIAL ZONES	CALC 205
C NOT NOMERE OF HIALDRE SPECIFICATIONS CALC 207 C B01 LEFT BOUNDARY CONDITION (0/1-VACUUM/REFLECTIVE) CALC 208 C B02 RIGHT BOUNDARY CONDITION (0/1-VACUUM/REFLECTIVE) CALC 208 C B03 TOP BOUNDARY CONDITION (0/1-VACUUM/REFLECTIVE) CALC 208 C B03 TOP BOUNDARY CONDITION (0/1/2-VAC/REFL/PERTODIC/CALC 211 C B04 BOTTOM BOUNDARY CONDITION (0/1/2-VAC/REFL/PERTODIC/CALC 211 C IZ RADIAL ZORES (DELTA-OPTION ONLY) CALC 213 C IZ RADIAL ZORES (DELTA-OPTION ONLY) CALC 214 C EV FIRST ELGEWALLE RUESS CALC 220 C EVM ELGEWALLE ROUTFIER CALC 224 C LAL LAWBOA LOVER CALC 224 C LAL LAWBOA LOVER CALC 224 C LAL LAWBOA LOVER CALC 225 C LAL LAWBOA LOVER CALC 226 C LAL LAWBOA LOVER CALC 226 C LAL LAWBOA LOVER CALC 226 <td></td> <td>H01</td> <td>TOTAL NUMBER OF MATERIALS INCLUDING MIXES</td> <td>CALC 206</td>		H01	TOTAL NUMBER OF MATERIALS INCLUDING MIXES	CALC 206
C B01 LEFI BOURDARY CONDITION (0)1-VACUAM/REFLETIVE) CALC 200 C B02 RIGHT BOURDARY CONDITION (0)1-VACUAM/REFLETIVE) CALC 200 C B03 TOP BOURDARY CONDITION (0)1-VACUAM/REFLETIVE) CALC 201 C B03 TOP BOURDARY CONDITION (0)1-VACUAM/REFLETIVE) CALC 201 C B04 BOTTON BOURDARY CONDITION (0)1/2-VACUAM/REFLETIVPERIODIC)CALC 211 C IZ RADIAL ZONES (DELTA-OPTION ONLY) CALC 212 C IACT NUMBER OF ACTIVATIONS CALC 214 C EV FIRST EIGENVALUE GUESS CALC 220 C EVM EIGENVALUE BUESS CALC 220 C S03 PARAMETRIC EIGENVALUE CALC 223 C LAU LAURDA LOVER CALC 224 C EVM EIGENVALUE MOUFFER CALC 225 C LAU LAURDA LOVER CALC 225 <t< td=""><td>č</td><td></td><td>NUMBER OF MIXTURE SPECIFICATIONS</td><td>CALC 207</td></t<>	č		NUMBER OF MIXTURE SPECIFICATIONS	CALC 207
C 802 RIGHT BOURDAYT CONDITION (0/17-2WAC/REFL/ERTNEY) CALC 209 C 803 TOP BOURDAYT CONDITION (0/17-2WAC/REFL/ERTNEY) CALC 201 C 804 BOTTON BOURDAYT CONDITION (0/17-2WAC/REFL/ERTNEY) CALC 211 C 12 RDIAL 20NES (DELTA-OPTION ONLY) CALC 213 C 12 ANIAL ZONES (DELTA-OPTION ONLY) CALC 214 C 12 ANIAL ZONES (DELTA-OPTION ONLY) CALC 214 C 14 ANIAL ZONES (DELTA-OPTION ONLY) CALC 214 C EV FIRST EIGEWALLE GUESS CALC 224 C SUGX BOCKLING CALC 224 C SUGX BOCKLING CALC 224 C LA LAWEORA LEWERT CALC 225 C LAL LAWEORA LEWERT CALC 226 C LAL LAWEORA LEWERT CALC 226 C LAH LAWEORA LEWERT CALC 226 C FLORENCALUE CONFREGENCE CRITERIA CALC 226 C EFSA POINTINSE CONVERGENCE CRITERIA CALC 226 C OOF	5	801	LEFT BOUNDARY CONDITION (0/1=VACJUN/REFLECTIVE)	CALC 208
C B03 ILP BUCMLARY COMDITION (0/1/2*WAC/NET/PREIODIC)CALC 210 C B04 BOTTON BUCMARY COMDITION (0/1/2*WAC/NET/PREIODIC)CALC 211 C IZ RUDIAL 20NES (DELTA-OPTION ONLY) CALC 212 C IZ AVIAL 20NES (DELTA-OPTION ONLY) CALC 212 C IZ AVIAL 20NES (DELTA-OPTION ONLY) CALC 212 C IANCT NUMBER OF ACTIVATIONS CALC 212 C EV FIRST ELEMANLE BUCKS CALC 221 C EV FIRST ELEMANLE BUCKS CALC 222 C BUCK BUCKLING CALC 222 C BUCK BUCKLING CALC 223 C LL LANBOA LOVER CALC 224 CALC 225 C LAH LANBOA LOVER CALC 225 C EFSA POINTHISE CONVERCENCE CRITERIA CALC 226 C POD PARAMETER DOCILLETON TATOR CALC 230 C OFF OCH-PAREDERGENCE CRITERIA CALC 230 C SUBSCRIPTED VARIABLES ***** CALC 232	2	802	RIGHT BOUNDARY CONDITION (U/1=VACUUM/REFLECTIVE)	CALC 209
C BOA BOATINE BOUNDARY CONDITION (U) //2*VAC/ARE/L/PERIODIC)ALC 211 C 12 RUIAL 20NES (DELTA-OPTION ONLY) CALC 213 C JZ ANIAL 20NES (DELTA-OPTION ONLY) CALC 214 C IZ ANIAL 20NES (DELTA-OPTION ONLY) CALC 214 C NACT HUBER OF ACTIVATIONS CALC 214 C EV FIRST EIGENALUE GUESS CALC 224 C EV FIRST EIGENALUE GUESS CALC 224 C EV FIRST EIGENALUE GUESS CALC 222 C BUCK BUCKLING CALC 224 CALC 224 C LAL LANGOA LOVER CALC 225 C LAL LANGOA LOVER CALC 224 C LAL LANGOA LOVER CALC 225 C LAL LANGOA LOVER CALC 226 C LAL LANGOA LOVER CALC 227 C LAN LANGOA LOVER CALC 226 C EFSA POINTVISE CONVERGENCE CRITERIA CALC 227 C GOG INHERTIS	2	803	TOP BOUNDARY CONDITION (U/1/2=VAC/REFL/PERIODIC	CALC 210
C 12 ANIAL ZUNES COLLAGOTION ONLT) CALC 212 C JZ ANIAL ZUNES COLLAGOTION ONLT) CALC 212 C NACT NUMBER OF ACTIVATIONS CALC 214 C EV FIRST ELEMANLE BUESS CALC 220 C EVM ELERIVALUE MUESS CALC 221 C S03 PAAMETRIC ETGENVALUE BUESS CALC 222 C BUCK BUCKLING CALC 223 C LA LAMEDA LOVER CALC 224 C LAH LAMEDA LOVER CALC 225 C EFSA POINTIN'SE CONVERCENCE CRITERIA CALC 226 C POD PARAMETER DOSCILLATION DAMPER CALC 226 C OAF OVER-RELAVATION FACTOR CALC 230 C SUBSCRIPTED VARIABLES ***** CALC 232		804	BUTTOM BOUNDARY CONDITION (U/1/2=VAC/REFL/PERIODIC	CALC 211
C JZ NATAL CARES UDELIA-OFITION (NATT) CALC 213 C NACT NUMBER OF ACTIVATIONS CALC 214 C EV FIRST EIGENALUE GUESS CALC 220 C EVM EIGENALUE MODIFIR CALC 221 C S03 PARAMETRIC EIGENALUE CALC 221 C BUCK BUCK CALC 214 C BUCK BUCKING CALC 222 C LAL LAMBDA LOPER CALC 223 C LAH LAMBDA LOPER CALC 224 C LAH LAMBDA LOPER CALC 225 C EFSA POINTIVISE CONVERGENCE CRITERIA CALC 227 C GOG INMERTIERATION TEATON DAMER CALC 227 C PSA POINTIVISE CONVERGENCE CRITERIA CALC 226 C POD PARAMETER DSCILLATION DAMER CALC 227 C ROF OVERT-ELAVATION FACTOR CALC 223 C S01 WEG/POS-POKER (MATY)/NEUTRON SOURCE RATE CALC 232 C	5	12	RADIAL ZONES (DELIA-OPTION ONLY)	CALC 212
C NALI NUMBER OF ALI INTIDUS CALC 210 C EV FIRST ELEMANLE MUESS CALC 220 C EVM ELEMANLE MUESS CALC 221 C S03 PAAMETRIC ETGENVALUE MUESS CALC 222 C BUCK BUCKLING CALC 222 C LAL LAMEDA LOVER CALC 222 C LAL LAMEDA LOVER CALC 224 C LAH LAMEDA LOVER CALC 225 C EPSA POINTWISE CONVERGENCE CRITERIA CALC 225 C GOG IMMENTISE TONVERGENCE CRITERIA CALC 227 C ODF PAAMETER DSCILLATION DAMPER CALC 225 C ORF OVER-RELAVITON FACTOR CALC 227 C OSF DOVER-RELAVITON FACTOR CALC 230 C SUBSCRIPTED VARIABLES ***** CALC 232	č	32	AKIAL ZONES (DELIA-OPTION ONLT)	CALC 213
C EV FIRST ELEMPANUE MODIFIER CALC 220 C EVM ELEMPANUE MODIFIER CALC 221 C S03 PARAMETRIC ELEMPANUE CALC 222 C BUCK BUCKLING CALC 223 C LAL LAMBDA LONER CALC 223 C LAL LAMBDA LONER CALC 225 C EPS ELGENVALUE CONVERGENCE CRITERIA CALC 225 C EPS ELGENVALUE CONVERGENCE CRITERIA CALC 227 C 606 INMERTIFERTION ITERITON DAMPER CALC 227 C 606 INMERTIFEATORIN TERITON TERITON EXCONVERGENCE CRITERIA CALC 227 C 606 INMERTIFEATION TERATOR CALC 229 C POD PARAMETER DSCILLATION DAMPER CALC 230 C S01 WEG/POS=POKER (MNT)/NEUTRON SOURCE RATE CALC 231 C ***** SUBSCRIPTED VARIABLES ***** CALC 232	č	RAU I	NUMBER OF ACTIVATIONS	CALC 214
C \$VM EldeWALLE #W0/FIEK CALC 221 C \$S03 PAAMETRIC EIGEWALLE CALC 223 C BUCK BUCKLING CALC 223 C LAL LAWBOA LOWER CALC 224 C LAL LAWBOA LOWER CALC 224 C LAH LAMBOA LOWER CALC 224 C EPSA FOINTUISE CONVERCENCE CRITERIA CALC 226 C GOG PMAAMETER OSCILLATION DAMPER CALC 227 C OOF PAAMETER OSCILLATION FACTOR CALC 230 C SUBSCRIPTED VARIABLES ***** CALC 232	č	EV DAM	FIRST EIGENVALUE GUESS	CALC 220
C SUG PADARE RL E LERVALUE CALC 223 C BUCK BUCKLIGG CALC 224 C LAL LAMEDA LOXER CALC 223 C LAL LAMEDA LOXER CALC 224 C LAL LAMEDA LOXER CALC 225 C FPS EIGENVALUE CONVERCENCE CRITERIA CALC 225 C EPSA POINTWISE CONVERCENCE CRITERIA CALC 227 C GOG IMMERITERATION TEST (IF ZERO, NO TEST) CALC 225 C POO PRAAMETER OSCILLATION DAMERR CALC 225 C S01 NEG/POS=POMER (MNT)/NEUTRON SOURCE RATE CALC 231 C ***** SUBSCRIPTED VARIABLES ***** CALC 232	č	EVR	EIGENVALUE NOUTFIER	CALC 221
C BUCAL INBOL CALL 223 LAL LANGOA LOVER CALC 224 C LAL LANGOA LOVER CALC 225 C EFS EIGENVALUE CONVERGENCE CRITERIA CALC 226 C EPSA POINTVISE CONVERGENCE CRITERIA CALC 227 C GOG INMERT ITERATION TEST (IF ZERO, NO TEST) CALC 228 C POD PARAMETER OSCILLATION DAMPER CALC 230 C S01 WEG/POS-POGRET (WT/)/NEUTRON SOURCE RATE CALC 232 C SUBSCRIPTED VARIABLES ***** CALC 232	č	303	PARAMETRIC EIGENVALUE	CALC 222
C LAK LONGON LOUEL CALC 225 C LAK LANGON LOWER CALC 225 C EPS EIGENVALUE CONVERCENCE CRITERIA CALC 226 C EPSA POINTWISE CONVERCENCE CRITERIA CALC 226 C GOG INMER ITERATION TEST (IF ZERO, NO TEST) CALC 228 C POD PAGAMETER GOLLATION DAMPER CALC 220 C OR OVER-RELAXATION FACTOR CALC 229 CALC 231 C \$01 NEG/POS=POMER (MUT)/NEUTRON SOURCE RATE CALC C32 C ***** SUBSCRIPTED VARIABLES ***** CALC	č	IAI		CALC 223
C LNN LONGUA UPPER LALC 225 C EFPS EIGENVALUE CONVERGENCE CRITERIA CALC 226 C EPSA POINTVISE CONVERGENCE CRITERIA CALC 227 C 606 INMERI TERATION TEST (IF ZERO, NO TEST) CALC 228 C POD PARAMETER OSCILLATION DAMPER CALC 223 C 001 MEG/POS-POMER (MNT)/NEUTRON SOURCE RATE CALC 232 C \$101 MEG/POS-POMER (MNT)/NEUTRON SOURCE RATE CALC 232 C ***** \$URSCRIPTED VARIABLES ***** CALC 231	č		LANDA LOVER	CALC 224
C EPS EIGENFALLE CONFERENCE CATERIA CALC 220 C EPSA POINTUSE CONFERENCE CATERIA CALC 227 C 606 INHER ITERATION TEST (IF ZERO, NO TEST) CALC 228 C POD PARAMETER OSCILLATION DAMPER CALC 229 C 00F OVER-RELAVATION FACTOR CALC 229 C 801 NEG/POS=POMER (NWT)/NEUTRON SOURCE RATE CALC 231 C **** SUBSCRIPTED VARIABLES **** CALC 232	č	EDE		CALC 225
C GOG INHERITERATION TEST (FIZERA, NO TEST) CALC 226 C POO PARAMETER OSCILLATION DAMPER CALC 229 C ORF OVER-RELAXION FACTOR CALC 230 C S01 WEG/POS=POWER (WWT)/NEUTRON SOURCE RATE CALC 231 C **** SUBSCRIPTED VARIABLES **** CALC 232	ř	EPS	DOINTUISE CONVERGENCE CRITERIA	CALC 226
C POD PARAMETER OSCILLATION TAKEN, NO TEST) CALC 220 C POD PARAMETER OSCILLATION TAKEN CALC 220 C ORF OVER-RELAVATION FACTOR CALC 230 C S01 NEE/FORS-OVER (MT/NUETRON SOURCE RATE CALC 232 C ***** SUBSCRIPTED VARIABLES ***** CALC 232	ř	C04	INNER ITERATION TERT (IF JERG NO TERT)	CALC 227
C ORF OVER-RELAXION AVER CALC 229 C ORF OVER-RELAXION FOR ACTOR CALC 230 C \$01 NEG/POS=POWER (NWT)/NEUTRON SOURCE RATE CALC 231 C C **** SUBSCRIPTED VARIABLES ***** CALC 232	č	800	DADAMETER OFCILLATION DANOED	CALC 228
C ONF UPER-RELAXIVE TAKING CALC 230 C S01 MEG/R05-OVER (MAT/NELTRON SOURCE RATE CALC 231 C C ***** SUBSCRIPTED VARIABLES **** CALC 232	č	085	OVER-DELAVATION FACTOR	CALC 229
C C C C CALC 231 C C C C C CALC 231 C ***** SUBSCRIPTED VARIABLES ***** CALC 232	č	501	NECTORS-DOLER (MIT) (MELTON) COUNTS BATE	CALC 250
C ***** SUBSCRIPTED VARIABLES ***** CALC 232	č	301	HEG/PUS-POHER (HWT)/HEUTRUN SOURCE KATE	CALC 231
CALC 233	č			CALC 232
C	č		SUDJURIFIED TARIABLES	CALC 233
C ATH(NL) NATERIAL ATOMIC VEIGHT CALC 234	c		NATERIAL ATOMIC VEICHT	CALC 234
C HOLEVAL AND CALC 233	ř	HOLN (ML 2)	MATEDIAL NAME	CALC 235
C ALAN(NI) DECAY CONSTANT (DAYS-1) CALC 220	č	ALAN(ML)	DECAY CONSTANT (DAYS-1)	CALC 230
C CO(ITI NT) CROSS SECTION ADDAY FOR CHIRDENT CROWD CALC 237	č	CO(ITL WIT)	CROSS SECTION ADDAY SOD CHIDDENT COOLD	CALC 237

С	NO(IM.JM)	TOTAL FLUX (OLD)	CALC 239
c	N2(IM.JM)	TOTAL FLUX (NEW)	CALC 240
с	AO(IP)	RADIAL AREA ELEMENT	CALC 241
с	A1(IM)	AXIAL AREA ELEMENT	CALC 242
с	FO(IM,JM)	FISSIONS (OLD)	CALC 243
с	F2(IM, JM)	FISSIONS (NEW)	CALC 244
С	10(M01)	MIX NUMBER	CALC 245
с	11(N01)	MATERIAL NUMBER FOR MIX	CALC 246
С	12(M01)	MATERIAL DENSITY	CALC 247
C	I3(M01)	MATERIAL DENSITIES FOR GRAM CALCULATION	CALC 248
C	K6(1GH)	FISSION SPECTRUN (EFFECTIVE)	CALC 249
C	K7(1GH)	FISSION SPECTRUM (INPUT)	CALC 250
С	NO(1M,JM)	ZONE NUMBERS	CALC 251
С	M2(12M)	MATERIAL NUMBERS BY ZONE	CALC 252
С	R0(1P)	INITIAL RADII	CALC 253
с	R1(IP)	CURRENT RADII	CALC 254
C	R2(IM)	RADIAL ZONE NUMBERS (DELTA CALCULATION ONLY)	CALC 255
с	R3(12)	RADIAL ZONE MODIFIERS (DELTA CALCULATION ONLY)	CALC 256
C	R4([M)	AVERAGE RADII	CALC 257
C	R5(IN)	DELTA-R	CALC 258
C	S2(IM,JM)	FIXED SOURCE	CALC 259
C	VO(1M, JM)	VOLUME ELEMENTS	CALC 260
с	V7(IGM)	NEUTRON VELOCITIES	CALC 261
С	ZO(JP)	INITIAL AXII	CALC 262
C	Z1(JP)	CURRENT AXII	CALC 263
C	Z2(JM)	AXIAL ZONE NUMBERS (DELTA CALCULATION ONLY)	CALC 264
С	Z3(JZ)	AXIAL ZONE MODIFIERS (DELTA CALCULATION ONLY)	CALC 265
с	Z4(JM)	AVERAGE AXII	CALC 266
C	Z5(JM)	DELTA-Z	CALC 267
C	CXS([M,JM,3)	CONSTANTS INVOLVING CROSS SECTIONS FOR FLUX CALC.	CALC 268
¢	VOL(IZM)	ZONE VOLUME (LITERS)	CALC 269
С	MASS(ML,IZM)	MATERIAL INVENTORY IN EACH ZONE	CALC 270
С	MATH(ML)	MATERIAL NUMBER FOR BURNABLE ISOTOPES	CALC 271
C	NBR(ML)	0/1/2=NO EFFECT/FERTILE/FISSILE ISOTOPE	CALC 272
C	LD(ML)	SOURCE ISOTOPE FOR DECAY	CALC 273
C	LCN(ML,2)	SOURCE ISOTOPES FOR CAPTURE	CALC 274
С	LFN(ML,7)	SOURCE ISOTOPES FOR FISSION	CALC 275
c	PHIB(12M)	ZONE AVERAGED FLUX	CALC 276

Wednesday, February 21, 1990 12:31 pm

TLIST2.FOR

154

```
TLIST2.FOR
                        Wednesday, February 21, 1990 12:31 pm
                                                                           Page 8
С
      AXS(ML.IZM)
                    SPECTRUM AVERAGED ABSORPTION CROSS SECTION
                                                                         CALC 277
С
      EXS(NL.17N) SPECTRUM AVERAGED EISSION CROSS SECTION
                                                                         CALC 278
с
      MASSP(ML, IZM) NATERIAL INVENTORY IN EACH ZONE (PREVIOUS)
                                                                         CALC 279
                    CONSTANTS FOR RIGHT BOLMDARY
r
      CXR(JM)
                                                                         CALC 280
r
      CXT(10)
                    CONSTANTS FOR TOP BOUNDARY
                                                                         CALC 281
      HACIM OR JN) TEMP STORAGE FOR LINE INVERSION
С
                                                                         CALC 282
с
      PACIN OR JN) TEMP STORAGE FOR LINE INVERSION
                                                                         CALC 283
с
                                                                         CALC 284
      INCLUDE /ABC. FOR/
      COMMON/PACKED/A/500001
      OPEN(UNIT=3,STATUS='SCRATCH',FORM='UNFORMATTED')
      OPEN(UNIT=4,STATUS='SCRATCH',FORM='UNFORMATTED')
C USE BELOW ON A VAX
                                                                         HRA2
с
       OPEN(UNIT=3.FILE='FOR3.DAT'.STATUS='SCRATCH'.FORM='UNFORMATTED') HRA2
с
       OPEN(UNIT=4, FILE='FOR4.DAT', STATUS='SCRATCH', FORM='UNFORMATTED') HRA2
      OPEN(UNIT=5, FILE='toract5.DAT', STATUS='OLD', FORM='FORMATTED')
      OPEN(UNIT=6,FILE='toract5.OUT',STATUS='UNKNOWN',FORM='FORMATTED')
      OPEN(UNIT=8, STATUS='SCRATCH', FORM='UNFORMATTED')
      OPEN(UNIT=9, STATUS='SCRATCH', FORH='UNFORMATTED')
С
    USE BELOW ON A VAX
                                                                         HDA2
c.
       OPEN(UNIT=8.FILE='FOR8.DAT'.STATUS='SCRATCH'.FORM='UNFORMATTED') NRA2
r
       OPEN(UNIT=9, FILE=' FOR9.DAT', STATUS='SCRATCH', FORM='UNFORMATTED') HRA2
      OPEN(UNIT=10, FILE='FOR10.DAT', STATUS='UNKNOWN', FORM='UNFORMATTED')
      OPEN(UNIT=11,FILE='FOR11.DAT',STATUS='UNKNOWN',FORM='UNFORMATTED')
      OPEN(UNIT=12, FILE='FOR12.DAT', STATUS='UNKNOWN', FORM='UNFORMATTED')
      OPEN(UNIT=14, FILE='FOR14.DAT', STATUS='UNKNOWN', FORM='UNFORMATTED')
      OPEN (UNIT=15, FILE='for15, DAT', STATUS='UNKNOWN', FORM='UNFORMATTED')
      OPEN(UNIT=16, FILE='FOR16.DAT', STATUS='UNKNOWN', FORM='UNFORMATTED')
1
      CONTINUE
      REVIND 3
                                                                         CALC 291
      REVIND 4
                                                                         CALC 292
      REVIND 8
                                                                         CALC 293
      REWIND 9
                                                                         CALC 294
      CALL INP(BIGR)
                                                                         HRA2 295
102 CALL INIT(A(LK6), A(LK7), A(LI0), A(LI1), A(LI2), A(LH0), A(LH2), CALC 296
                A(LNO), A(LRO), A(LR1), A(LR2), A(LR3), A(LR4), A(LR5), CALC 297
```

	2 A(LZ0), A(LZ1), A(LZ2), A(LZ3), A(LZ4), A(LZ5), A(LA0).	, CALC 298
	3 A(LA1), A(LFO), A(LCO), A(LVO), ITL, IN, A(LV7).	, CALC 299
	4 JM, NT, ML, A(LGAM), A(LHOLN))	
	CALL FISCAL (A(LNO),A(LFO) ,A(LVO) ,A(LCO) ,A(LK6) ,	CALC 301
	2 A(LHO) ,A(LH2),ITL,NT)	CALC 302
¢	CALL MONITOR PRINT	CALC 303
101	CALL \$8830	CALC 304
	GO TO (100, 106, 106, 107), NGOTO	CALC 30#
106	CALL ERRO2('*MONPR',106,1)	HVX
С	PERFORM AN OUTER ITERATION	CALC 307
107	CALL OUTER(A(LAO), A(LA1), A(LCO), A(LFO), A(LK6),	CALC 308
	1 A(LMO), A(LM2), A(LNO), A(LN2),	CALC 309
	2 A(LS2), A(LV0), A(LV7), A(LZ5),	CALC 310
	3 A(LF2), ITL, MT, A(LCXS), IN, JM, A(LR5), A(LR4),	CALC 311
	4 A(LZ4), A(LCXR), A(LCXT), A(LHA), A(LPA), A(LR1), A(LZ1))	HRA2
C	PERFORM FISSION CALCULATION	CALC 313
	CALL FISCAL (A(LNO),A(LFO) ,A(LVO) ,A(LCO) ,A(LK6) ,	CALC 314
	2 A(LMO) ,A(LM2),ITL,MT)	CALC 315
С	PERFORM CONVERGENCE AND NEW PARAMETER CALCULATIONS	CALC 316
	CALL CHNP (A(LF2), A(LK6))	CALC 317
	GO TO (100, 101, 102), NGOTO	CALC 31#
С	100/101/102=FINAL PRINT/MONITOR PRINT/SEARCH CALCULATION	CALC 319
10	0 CALL \$8850(A(LF2),A(LN2),A(LR1),A(LZ1),A(LR4),A(LZ4),A(LV7),	CALC 320
	1 IN, JH, A(LN2), A(LCO), A(LNO), A(LHO), A(LH2), A(LFO), ITL, HT)	
	CALL GRAH(A(LHASS), A(LVOL), A(LATW), A(LHOLN), IH, JH,	CALC 323
	1 A(LNO), A(LM2), A(LVO), A(LIO), A(LI1), A(LI2), HL,	CALC 324
	2 A(L13))	CALC 325
	CALL INPB(A(LMATN),A(LNBR),A(LLD),A(LLCN),A(LLFN),A(LALAM),	CALC 326
	1 A(LHOLN), ML, A(LIZ))	CALC 327
	1F (NCON) 170,1,170	
170	CALL AVERAG(A(LPHIB), A(LAXS), A(LFXS), A(LMATN), A(LMASS), A(LATW),	WLP
	1 A(LVOL), A(LCO), A(LNZ), A(LNO), A(LVO), A(LHOLN), NL, 1TL,	CALC 330
с	2 A(LNBR), A(LT6), A(LT8), A(LNTWON))	HRAZ
	2 A(LNBR), A(LACT), NACT, A(LACPOS))	HRA3
	IF (DELT) 180.1.180	VLP
180	CONTINUE	WLP
	CALL MARCH(A(LPHIB),A(LMATN),A(LFXS),A(LAXS),A(LVOL),A(LMASS),	VLP
	1 A(LHASSP), A(LALAH), A(LLD), A(LLCN), A(LLFN). ML.	CALC 334

Wednesday, February 21, 1990 12:31 pm

TLIS	12.FOR Wednesday, February 21, 1990 12:31 pm	Page	e 10
	2 A(LIO),A(LI1),A(LI2),A(LH2))	CALC	335
	GO TO 102	CALC	336
	END	CALC	337
	SUBROUTINE OUTER (AO, A1, CO, FO, K6, MO, M2, NO, N2,	OUTE	2
	1 \$2, V0, V7, Z5, F2, JTL, JHT, CXS,	OUTE	3
	2 JIM, JJM, R5, R4, Z4, CXR, CXT, HA, PA,R1,Z1)	HRA2	
	DIMENSION XR(50),XD(50)	HRA2	
	DIMENSION A0(1), A1(1), F0(1), K6(1), M0(1), M2(1),	OUTE	5
	1 NO(1), N2(1),R1(1),Z1(1), S2(1),	HRA2	6
	Z V0(1), V7(1), Z5(1), F2(1), C0(JTL, JMT), HA(1), PA(1)	,OUTE	7
	3 CXS(JIN, JJN, 3), R5(1), R4(1), Z4(1), CXR(1), CXT(1)	OUTE	8
	INTEGER GBAR, PBAR, SBAR	OUTE	9
	INCLUDE 'ABC.FOR'		
	IGV=1	OUTE	13
С	SOURCE CALCULATION	OUTE	14
	REWIND 12	HRA2	
10	CONTINUE	OUTE	15
	READ(NCR1) ((CO(I,M),I=1,ITL),M=1,MT)	OUTE	16
С	READ(11) (XR(M),M=1,MT)	HRAZ	
	READ(11) (XD(H), M=1, NT)	HRA2	
	DO 1110 M=1,NT	HRA2	
1110	CONTINUE	HRA2	
	IF (104) 15,12,15	OUTE	17
12	READ (NSORCE) (S2(I), 1 = 1, IMJM)	OUTE	18
	GO TO 30	OUTE	19
15	DO 20 1=1, [MJN	OUTE	20
20	\$2(I)=0.	OUTE	21
30	IF(A02) 60, 40, 60	OUTE	22
40	DO 50 I=1, INJM	OUTE	23
50	\$2(1)=\$2(1)+K6(1GV)*F0(1)	OUTE	24
	GO TO 80	OUTE	25
60	DO 70 1=1, INJN	OUTE	26
	[TEMP1=HO(])	OUTE	27
	ITEMP1=M2(ITEMP1)	OUTE	28
70	\$2(1)=\$2(I)+CO(IHT-1,ITEMP1)*FO(I)	OUTE	29
80	GBAR=IGV+IHS-ITL	OUTE	30
	1F(GBAR-1) 90, 100, 100	QUITE	31

90	GBAR=1	OUTE	32
100	PBAR = IHS + IGV - 1	OUTE	33
	IF(PBAR - ITL) 115,115,110	OUTE	34
110	PBAR = ITL	OUTE	35
115	IF(GBAR - IGV) 120, 140, 140	OUTE	36
120	READ (NSCRAT) (N2(I), I=1, INJN)	OUTE	37
	DO 130 I=1, INJM	OUTE	38
	ITEMP1=NO(1)	OUTE	39
	ITENP1=M2(ITENP1)	OUTE	40
	LTENP=ITENP1	OUTE	41
	TEMP=CO(PBAR, ITEMP)	OUTE	42
130	\$2([)=\$2([)+N2([)*TEMP	OUTE	43
	GO TO 150	OUTE	44
140	READ (NFLUX1) (N2(1), I=1, IMJM)	OUTE	45
150	GBAR=GBAR+1	OUTE	46
	PBAR=PBAR-1	OUTE	47
	IF(GBAR - IGV) 120, 140, 160	OUTE	48
160	IF(IGV - IGM) 180, 170, 180	OUTE	49
170	REWIND NCR1	OUTE	50
	REWIND 11	HRA2	
	REWIND 12	HRA2	
180	V11=0.	OUTE	51
	DO 190 I=1,IMJM	OUTE	52
	S2(1)=S2(1)*V0(1)	OUTE	53
190	v11=v11+s2(1)	OUTE	54
	E2(IGV) = V11 - E1(IGV)	OUTE	55
C	SOURCE-ALPHA	OUTE	56
200	IF(104 - 2) 210, 240, 210	OUTE	57
210	IF(S02 - 2) 230, 220, 230	OUTE	58
220	17 = \$03/V7(IGV)	OUTE	59
	GO TO 250	OUTE	60
230	17 = 0.0	OUTE	61
	GO TO 270	OUTE	62
240	T7 = EV/V7(IGV)	OUTE	63
250	DO 260 K = 1, IZM	OUTE	64
	LIEMPI = M2(K)	OUTE	65
260	CUCINS, ILEMP1) = CO(INS, ITEMP1) - T7	OUTE	66
270	CONTINUE	OUTE	67

Wednesday, February 21, 1990 12:31 pm Page 11

TLIST2.FOR

с	GROUP FLUX CALCULATION	OUTE	68
280	11=0	OUTE	69
	IF(V11) 290, 370, 290	OUTE	70
290	IF(IGE - 3) 292,294,292	OUTE	71
292	CALL INNER1(MO, M2, CXS, VO, CO, AO, Z5, R5, R4, Z4, A1, IM, JM,	OUTE	72
	1 ITL, CXR,CXT,XR,XD,R1,Z1)	HRA2	73
	GO TO 296	OUTE	74
294	CALL INNERT(MO, M2, CXS, VO, CO, AO, Z5, R5, R4, Z4, A1, IM, JM,	OUTE	75
	1 ITL, CXR,CXT)	OUTE	76
	GO TO 340	OUTE	77
296	IF (803 - 1) 310, 310, 300	OUTE	78
300	CALL INNERP(NO, N2, CXS, S2, HO, H2, VO, CO, IM, JM, ITL, CXR,CXT	,OUTE	79
	1 HA, PA)	OUTE	80
	GO TO 350	OUTE	81
310	IF (IGE - 2) 320, 330, 320	OUTE	82
320	IF (S04 - 1) 525,522,525	OUTE	83
322	IF (P02 - 2 = (P02/2)) 550,550,540	OUTE	84
323	IF (IN - JM) 550,550,540	OUTE	85
220	CALL INNER(NO, N2, CXS, S2, NU, N2, VU, CU, IM, JN, ITL, CXR, CXT	,001E	86
	CO TO 350	nKA2	
340	CALLTANNED2/ND NZ CVS S2 NO N2 VO CO IN IN III CVD CVT	OUTE	- 00
340	1 UA DAL	,0076	07
350	20 360 K = 1.12M	ALLE	01
	ITENP1 = M2(K)	OLT F	62
360	CO(INS.ITEMP1) = CO(INS.ITEMP1) + T7	OUTE	03
	GO TO 390	OUTE	94
370	DO 380 I=1,IMJM	OUTE	95
	W2(1)=0.	OUTE	96
380	WO(I)=0.	OUTE	97
390	CONTINUE	OUTE	98
	WRITE (NSCRAT) (N2(T),I=1,INJM)	OUTE	99
	REWIND NSCRAT	OUTE	106
	SBAR=IGV-(ITL-IHS)	OUTE	107
	IF(SBAR) 440, 440, 420	OUTE	108
420	DO 430 IS=1,SBAR	OUTE	109
430	READ (NSCRAT)	OUTE	110
440	CONTINUE	OUTE	111

Wednesday, February 21, 1990 12:31 pm

	IF(V11) 450, 500, 450	OUTE 112
450	IF(A02) 460, 480, 460	OUTE 113
460	ED(IGV)=0.0	OUTE 114
	DO 470 I=1, INJM	OUTE 115
	[TEMP1=40(1)	OUTE 116
	[TEMP1=N2(ITEMP1)	OUTE 117
	EO(1GV)=EO(1GV) + CO(1HT-3, [TEMP1)*N2([)*VO(])	HRA2 118
470	F2(1)=F2(1)+K6(IGV)*N2(1)	OUTE 119
	GO TO 500	OUTE 120
480	E0(IGV)=0.0	OUTE 121
	DO 490 I=1, INJN	OUTE 122
	ITEMP1=H0(1)	OUTE 123
	ITEMP1=M2(ITEMP1)	OUTE 124
	EO(IGV)=EO(IGV) + CO(IHT-3,ITEMP1)*N2(I)*VO(1)	HRA2 125
490	F2(1)=F2(1)+CO(IHT-1,ITEMP1)*N2(1)	OUTE 126
500	CONTINUE	OUTE 127
	IGV=IGV+1	OUTE 128
	IF(IGV-IGH) 10, 10, 510	OUTE 129
510	T11 = E1(IGP)	OUTE 130
с	SWITCH TAPE DESIGNATIONS	OUTE 131
	REWIND NCR1	OUTE 132
	REWIND NSCRAT	OUTE 133
	REWIND NFLUX1	OUTE 134
	REWIND 11	HRA2
	REVIND 12	HRA2
	ITEMP = NSCRAT	OUTE 135
	NSCRAT = NFLUX1	OUTE 136
	NFLUX1 = ITEMP	OUTE 137
	17 (104) 514,512,514	OUTE 138
512	REWIND RSURCE	OUTE 139
514	CONTINUE	OUTE 140
с -		OUTE 141
C	OVER-RELAX FISSION SOURCE	OUTE 142
	UNFF = 1.0 + .6"(ORF - 1.0)	OUTE 143
	EU2 = .U	OUTE 144
F 20	17(AU2) 520,580,520	OUTE 145
520	E1(IGP) = .0	OUTE 146
C C	FOR ADJOINT CALCULATION, 52(1) STORES ORFED F2(1)	OUTE 147

Wednesday, February 21, 1990 12:31 pm Page 13

TLIST2.FOR

	DO 522 I=1.INJN	OUTE 148
522	S2(1) = F0(1) + ORFF*(F2(1) - F0(1))	OUTE 149
	DO 540 11G = 1.1GH	OUTE 150
	READ(NCR1) ((CO(1,J), I=1,ITL), J=1,MT)	OUTE 151
	E1(IIG) = .0	OUTE 152
	DO 530 1=1,INJN	OUTE 153
	ITEMP = NO(I)	OUTE 154
	ITEMP = M2(ITEMP)	OUTE 155
	E1(IIG) = E1(IIG) + CO(IHT-1,ITEMP)*F2([)*VO([)	HRA2 156
530	E02 = E02 + CO(IHT-1, ITEMP)*S2(I)*VO(I)	HRA2 157
540	E1(IGP) = E1(IGP) + E1(IIG)	OUTE 158
	TEMP1 = E1(1GP)/E02	OUTE 159
	DO 550 I=1, INJN	OUTE 160
550	FO(1) = TEMP1*S2(1)	OUTE 161
	REWIND NCR1	OUTE 162
	REWIND 11	HRAZ
	REWIND 12	HRA2
	GO TO 620	OUTE 163
580	E01 = 0.0	OUTE 164
	DO 590 I=1,IMJM	OUTE 165
	EO1 = EO1 + VO(1)*F2(1)	OUTE 166
	F2(1) = F0(1) + ORFF*(F2(1) - F0(1))	OUTE 167
590	E02 = E02 + VO(1)*F2(1)	OUTE 169
	TEMP1=0.	OUTE 170
	IF(E02.NE.0.0)TEMP1=E01/E02	OUTE 171
	DO 600 I=1,IMJM	OUTE 172
600	FO(1) = TEMP1*F2(1)	OUTE 173
	DO 610 116 = 1,10M	OUTE 174
610	E1(IIG) = K6(IIG)*E01	OUTE 175
	IF(104) 620,609,620	OUTE 176
609	TEMP1 = .0	
	IF(E01.EQ. 0.0) GO TO 613	OUTE 178
С	ACCELERATION FOR EXTRANEOUS SOURCE PROBLEMS	OUTE 179
611	TEMP1 = (1.0 - EV*T11/E01)/(1.0 - EV)	OUTE 180
	IF (T11/E0101) 620,620,612	OUTE 181
612	IF (T11/E01 - 1./(EV + .0001)) 613,613,620	OUTE 182
613	DO 614 I = 1,INJM	OUTE 183
614	FO(I) = TEMP1 * FO(I)	OUTE 184

Wednesday, February 21, 1990 12:31 pm

TLIST2.FOR Wednesday, February 21, 1990 12:31 pm	Page 15
DO 616 IIG = $1, IGH$	OUTE 185
EU(116) = TEMP1*EU(116)	OUTE 186
610 = 1(110) = 0.0	0016 107
E(1GP) = 0.0	OUTE 189
DO_{640} IIG = 1.1GM	OUTE 190
EO(IGP) = EO(IGP) + EO(IIG)	OUTE 191
640 E1(IGP) = E1(IGP) + E1(IIG)	OUTE 192
RETURN	OUTE 193
END	OUTE 194
SUBROUTINE PRT (JIM, JJM, N2, Z4, NOUT)	PRT 2
DIMENSION N2(JIM,JJM), Z4(1)	PRT 3
REAL N2	PRT 4
C DATA XRR/6HXRR /,YZT/6HY2T /	PRT 5
CHARACTER*6 XRR, YZT	HVX
DATA XRR/'XRR '/,YZT/'YZT '/	HVX
DATA LINES/0/	PRT 6
	PRT 7
50 50 1-1 1H 6	PKI 8
11=1	DBT 10
12=1+5	FKI IV
(F(12-10) 20, 20, 10	PRT 12
10 I2=IN	PRT 13
20 WRITE(NOUT,30) YZT,(XRR,JJ,JJ=11,12)	PRT 14
30 FORMAT(1X,A3,6(3X,A3,14,1X))	
DO 50 JJ=1,JM	PRT 16
ti=t	PRT 17
40 FORMAT (14, 6E11.4, F9.3)	
IF(J.EQ.1)GD TO 45	PRT 19
DO 42 K=11,12	PRT 20
IF(N2(K,J).NE.N2(K,J-1)) GO TO 43	PRT 21
42 CONTINUE	PRT 22
LINES=LINES+1	PRT 24
17(J-JH) 30,43,43	PRT 25
43 IF(LINES.EW.U)GU IU 43	PRT 26
44 FORNAT(' NEXT' 15 ' LINES SAME AS DEFINING LINE/)	PRI 27

Hedroeder, February 21, 1000 12-71 -

TLIST2.FOR Wednesday, February 21, 1990 12:31 pm	Page 16
1 INE6=0	DBT 20
1F(J-JW) 45 50 45	PRT 30
45 WRITE(NOUT.40)J.(N2(K.J).K=11.12). 74(J)	
50 CONTINUE	PRT 34
RETURN	PRT 35
END	PRT 36
SUBROUTINE AVERAG(PHIB, AXS, FXS, NATH, MASS, ATW, VOL, CO, N2, M0, V0,	AVER 2
C 1 HOLN, JML, JTL, NBR, T6, T8, NTWON)	HRAZ
1 HOLN, JML, JTL, NBR, ACT, JNACT, LACPOS)	HRA3
DIMENSION PHIB(1), AXS(JHL,1), FXS(JHL,1), MATH(1), MASS(JHL,1)), AVER 4
1 ATW(1), VOL(1), CO(JTL,1), N2(1), N0(1), V0(1),	
2 HOLN(JHL,1), NBR(1)	
C DIMENSION T6(JML,1),T8(JML,1)	HRA2
DIMENSION ACT(JML,1,JML,1),1ACPOS(JMACT),T1(20,20),ACTIV(20,20)) HRA3
INCLUDE 'ABC.FOR'	
C THIS SUBROUTINE CALCULATES ZONE AVERAGED FLUXES, FISSION CROSS	AVER 8
C SECTIONS, AND ABSORPTION CROSS SECTIONS.	AVER 9
RL = 0.0	AVER 10
RC = 0.0	AVER 11
DO 10 KZ=1, IZN	AVER 12
PHIB(KZ) = 0.0	AVER 13
DO 10 KN =1,NCON	AVER 14
AXS(KN,KZ) = 0.0	AVER 15
FXS(R), KZ) = 0.0	AVER 16
C T6(KH,KZ) = 0.0	HRAZ
C TIDIAL = 0.0	HRAZ
C (B(KR,KZ) = 0.0	HRAZ
50 1000 1=1,8401	HKAS
	AKAS .
ACT(1) + (2) + (2) = (1) + (1)	HDA7
1000 CONTINUE	WDA7
IN A WATH/FWY	AVEP 17
IF (WASS(IN K7) .FO. 0) GO TO 10	ATEA 17
MASS(IN K7) = (MASS(IN K7)* 6023)/(ATH(IN)*V0(K7))	AVEP 18
10 CONTINUE	ALCK ID
DQ 100 11G=1.1GH	AVER 19
• •	

TLIST	2.FOR Wednesday, February 21, 1990 12:31 pm	Page	17
	READ(NFLUX1) (N2(I), I=1.IMJH)	AVER	21
	DO 11 J=1,NCR	HRA2	
C	CALL REAG2(' RO', ACO(1,MT),3)	HRA2	
11	CONTINUE	HRAZ	
	DO 100 I=1,IMJN	AVER	22
	K2 = M0(1)	AVER	23
	PHIB(KZ) = PHIB(KZ) + N2(I)*V0(I)	AVER	24
	DO 100 KN=1,NCON	AVER	25
	LN = MATN(KN)	AVER	26
C CI	D(5,1 AND 2) ARE ACTIVITIES FOR TPROD	HRA2	
C	IF(LN.EQ.1)THEN	HRA2	
С	T6(KN,KZ) = T6(KN,KZ) + C0(5,LN)*N2(1)*V0(1)	HRA2	
С	ENDIF	HRA2	
С	IF(LN.EQ.2)THEN	HRA2	
с	T8(KN,KZ) = T8(KN,KZ) + C0(5,LN)*N2(1)*V0(1)	HRA2	
С	ENDIF	HRA2	
	DO 2000 K=1,NACT	HRA3	
	J=1ACPOS(K)	HRA3	
	ACT(LN,J,KN,KZ) = ACT(LN,J,KN,KZ) + CO(J,LN)*N2(I)*VO(I)	HRA3	
C	WRITE(6,")J,ACT(J,KN,KZ),IACPOS(K)		
2000		HKAS	
	AXS(KN,KZ) = AXS(KN,KZ) + CU(1HT-2,LN)*N2(1)*VU(1)	HRAZ	21
100	FXS(KN,KZ) = FXS(KN,KZ) + CU(IHT-3,LN)*N2(I)*VU(I)	HRAZ	28
ç	DO 200 KZ=1,12M	HKAZ	~
	DU 209 KZ=1,128	MKAZ	a
	IRI 18=0.0	HKAZ	
L	1811/=0.0	NKA2	
	DO 2/80 11-1 HOOH	UDAU	
		UDAT	
2/90	ACTIV(M, KI)=0.0	UDAN	
2500		HDAT	
2500	TENDE - DUID/V7)	AVED	30
	IE (DUID (K7) EO 0) CO TO 105	AVER	30
	PHIR(K7) = PHIR(K7)/(V0)(K7)*1000)	AVER	31
105	CONTINUE	AVER	-
	WRITE(NOUT,110) KZ, PHIB(KZ), VOL(KZ)	AVER	32

TLIST	12.FOR Wednesday, February 21, 1990 12:31 pm	Page	18
110	FORMAT(1H1,2X,9H Z O N E ,13,5X,7H FLUX =,1PE10.4,5X,9H VOLUME =,		
	1 1PE10.4,7W LITERS/)	AVER	34
	WRITE(NOUT, 120)	AVER	35
120	FORMAT (1X, 'BURNABLE MAT. NAME ATOM '		
	1,' FISSION ABSORPTION SIGNA SIGNA '/		
	3 1X, 'ISOTOPE NO. ', 15X, 'DENSITY', 4X, 'RATE', 8X, 'RATE', 4X,		
	3 'FISSION',2X,'ABSORPTION'/)		
	DO 200 KN=1,NCON	AVER	41
	LN = MATN(KN)	AVER	42
	TEMP1 = AXS(KN,KZ)*MASS(LN,KZ)	AVER	43
	TEMP2 = FXS(KN,KZ)*MASS(LN,KZ)	AVER	44
С	T1 = T6(KN,KZ)*MASS(LN,KZ)	HRA2	
C	T2 = T8(KN,KZ)*NASS(LN,KZ)	HRA2	
С	T6(KN,KZ) = T6(KN,KZ)/TEMP3	HRA2	
С	T8(KN,KZ) = T8(KN,KZ)/TEMP3	HRA2	
	DO 3000 K=1,NACT	HRA3	
	J=IACPOS(K)	HRA3	
	T1(LN,K) = ACT(LN,J,KN,KZ)*MASS(LN,KZ)	HRA3	
	ACT(LN,J,KN,KZ) = ACT(LN,J,KN,KZ)/TEMP3	HRA3	
3000	CONTINUE	HRA3	
	AXS(KN,KZ) = AXS(KN,KZ)/TEMP3	AVER	45
	FXS(KN,KZ) = FXS(KN,KZ)/TEMP3	AVER	46
130	FORMAT (1X, 13, 5X, 13, 4X, 2A4, 5E11.4)	HRA2	
	WRITE(WOUT, 130) KN, LN, (HOLN(LN,K),K=1,2), MASS(LN,K2), TEMP2,		
	1 TEMP1, FXS(KN, KZ), AXS(KN, KZ)		
с	TRIT6=TRIT6+T1	HRA2	
с	TRIT7=TRIT7+T2	HRA2	
с	TTOTAL=TTOTAL+T1+T2	HRAZ	
	DO 4000 KKK=1, NACT	HRA3	
	ACTIV(LN,KKK)=ACTIV(LN,KKK)+T1(LN,KKK)	HRA3	
4000	CONTINUE		
	1TEMP = NBR(KW)	AVER	50
	IF(ITEMP - 1) 200, 140, 160	AVER	51
140	RC = RC + TENP1 - TEMP2	AVER	52
	GO TO 200	AVER	53
160	RL = RL + TEMP1	AVER	54
200	CONTINUE	AVER	55
C	WRITE(6,134)TRIT6,TRIT7	HRA2	

TLIST	2.FOR Wednesday, February 21, 1990 12:31 pm	Page	19
C134	FORMAT(' T6=',E11.4,3X,'T7=',E11.4)	HRA2	
	DO 5500 JJ=1,NCON	HRAH	
	LN=MATN(JJ)	HRAH	
	DO 5000 KKK=1,NACT	HRA3	
	WRITE(6, 1340)KKK, LN, ACTIV(LN, KKK)	HRA3	
1340	FORMAT(' ACTIVITY',12,' FOR MAT. NO.',12,' =',E11.4)	HRA3	
5000	CONTINUE	HRA3	
5500	CONTINUE	HRAH	
	WRITE(6,*)		
	WRITE(6,*)		
	WRITE(6,*)		
209	CONTINUE	HRA2	
	IF(RL.EQ.O.D)THEN	HRA2	
	TEMP=0.0	HRA2	
	GO TO 340	HRA2	
	ENDIF	HRA2	
	TEMP = RC/RL	AVER	56
С	WRITE(NOUT,350) TEMP	AVER	5
7			
340	WRITE(NOUT, 350) TEMP	HRA2	
350	FORMAT(1H ///' BREEDING RATIO =',F7.4)		
C	WRITE(6,401) TTOTAL	HRAZ	
C401	FORMAT(' TTOTAL=',E11.4)	HRA2	
	REWIND NCR1	AVER	59
	REWIND NFLUX1	AVER	60
	RETURN	AVER	61
	END	AVER	62
	SUBROUTINE CLEAR (X,Y,N)	CLER	2
	DIMENSION Y(1)	CLER	3
	DO 1 1=1,W	CLER	4
1	Y(I)=X	CLER	5
	RETURN	CLER	6
	END	CLER	7
	SUBROUTINE CHMP (F2,K6)	CNNP	2
	DIMENSION F2(1), K6(1)	CHNP	3
	INCLUDE 'ABC.FOR'		

IF (MAXT) 25,25,10

10	JUMP=2	CNNP	5
	CALL TCHEK(GLH.JUMP)	CNNP	6
	GO TO (15.25), JUNP	CNNP	#
15	WRITE(NOUT, 20)	CNNP	8
20	FORMAT(53H1 * * RUNNING TIME EXCEEDED FORCED CONVERGENCE	* *//)CNNP	9
	GO TO 90	CNNP	10
25	CONTINUE	CNNP	11
30	E01=1.0-ALA	CNNP	12
	IF(ABS (E01)-10.0*EPS) 40, 40, 45	CNNP	13
40	ORF = ORFP	CNNP	14
45	CONTINUE	CNNP	15
	E02=ABS(E01)	CNNP	16
50	JF(E1(IGP)) 55, 130, 55	CNNP	17
55	1F (EO2 - EPS) 60, 60, 70	CNNP	18
60	CVT=1	CNNP	19
70	CALL CLEAR (0.0, F2, INJN)	CNNP	23
	GO TO 105	CNNP	24
80	EV=EV+POD*EQ*E01	CNNP	25
	GO TO 170	CNNP	Z6
с	FINAL PRINT	CNNP	27
90	NGOTO=1	CHNP	28
	IF (104 - 1) 135, 95, 80	CNNP	29
95	EV=0.0	CNNP	30
	DO 100 I=1,IGH	CNNP	31
100	EV=EV+K6(1)	CNNP	32
	EV=SK7/EV	CNNP	33
	GD TO 135	CNNP	34
105	IF(CVT-1) 110, 90, 110	CNNP	35
110	IF(104-1) 115, 120, 140	CHNP	36
c	NONITOR PRINT	CNNP	37
115	NGOTO=2	CNNP	38
	GO TO 135	CNNP	39
120	EV=0.	CNNP	40
	DO 125 I=1,IGH	CNNP	41
125	EV=EV+K6(I)	CNNP	42
	EV=SK7/EV	CNNP	43
	GO TO 115	CNNP	44
130	IF(104.EQ.0)GO TO 55	CNNP	45

Wednesday, February 21, 1990 12:31 pm Page 20

TLIST2.FOR

1614	siz.ruk weunesuay, rebruary zr, 1990 iz.si pii	raĝe	-
	CALL ERRO2(6H**CNNP.130.1)	CNNP	46
135	RETURN	CNNP	47
140	CONTINUE	CNNP	48
C		CNNP	49
c	CALCULATE NEW PARAMETERS FOR SEARCH CALCULATIONS	CNNP	50
145	E03=ABS (ALA-LAR)	CNNP	51
	IF (LAPP) 270, 150, 270	CHNP	52
150	IF (LAP) 230, 155, 230	CNNP	53
155	IF (EQ) 200, 160, 200	CNNP	54
160	IF (E03-EPSA) 175, 175, 165	CNNP	55
c	MONITOR PRINT.	CNNP	56
165	NGOTO=2	CNNP	57
	RETURN	CNNP	58
С	FINAL PRINT EXIT.	CNNP	59
170	NGOTO=1	CNNP	60
	RETURN	CNNP	61
175	LAP=ALA	CNNP	62
	EVP=EV	CNNP.	63
	IF (E01) 185,185,180	CNNP	64
180	EV=EV-EVH	CNNP	65
	GO TO 190	CNNP	66
185	EV=EV+EVM	CNNP	67
190	IF (104-2) 195, 165, 195	CNNP	68
c	MIX X-SECS.	CNNP	69
195	NGOTO=3	CNNP	70
	RETURN	CWNP	71
200	IF (CVT) 170, 205,170	CNNP	72
205	EV=EV+POD*EQ*E01	CNNP	73
210	IF ((LAPP-1.0)/(LAP-1.0)) 215, 190, 190	CNNP	74
215	TEMP1=AMIN1(EVP,EVPP)	CNNP	75
	IF (EV-TEMP1) 220, 225, 225	CNNP	76
220	EV=(EVPP+EVP)/2.	CNNP	77
	GO TO 190	CNNP	78
225	TEMP1=AMAX1(EVP,EVPP)	CNNP	79
	LF (EV-TENP1) 190, 220, 220	CNNP	80
230	IF (E03-EPSA) 235, 235, 165	CNNP	81
235	EQ=(EVP-EV)/(LAP-ALA)	CNNP	82
240	IF (CNT) 260, 245, 260	CNNP	83

nesday, February 21, 1990 12:31 pm

245	IF (E02-LAL) 265, 265, 250	CNNP 8	4
250	IF (E02-LAH) 260, 260, 255	CNNP 8	5
255	E01=SIGN (LAH,E01)	CNNP 8	6
260	LAPP=LAP	CNNP 8	7
	LAP=ALA	CNNP 8	8
	EVPP=EVP	CNNP 8	9
	EVP=EV	CNNP 9	0
	GO TO 205	CNNP 9	1
265	CNT=1	CNNP 9	2
	LAP=0.0	CNNP 9	3
	LAPP=0.0	CNNP 9	4
	GO TO 205	CNNP 9	5
270	IF (E03-EPSA) 275, 275, 165	CNNP 9	6
С	CALCULATE QUADRATIC COEFFICIENTS.	CNNP 9	7
275	TEMP1=EVP-EV	CNNP 9	8
	TEMP2=EVPP-EV	CNNP 9	9
	TEMP3=EVPP-EVP	CNNP 10	0
	TEMP4=TEMP1*(EVP+EV)	CNNP: 10	1
	TEMP5=-TEMP2*(EV+EVPP)	CNNP 10	2
	TEMP6=TEMP3*(EVPP+EVP)	CNNP 10	3
	DENON=TEMP3*TEMP2*TEMP1	CNNP 10	4
	EQA=((LAPP-1.0)*TEMP1*EVP*EV-(LAP-1.0)*TEMP2	CNNP 10	5
	1*EV*EVPP+(ALA-1.0)*TEMP3*EVPP*EVP)/DENOM	CNNP 10	6
	EQB=-(LAPP*TEMP4+LAP*TEMP5+ALA*TEMP6)/DENON	CNNP 10	7
	EQC=(LAPP*TEMP1-LAP*TEMP2+ALA*TEMP3)/DENON	CNNP 10	8
	DISCR=EQB*EQB-4.0*EQA*EQC	CNNP 10	9
	IF (DISCR) 235, 280, 280	CNNP 11	0
280	IF (E02-LAL) 265, 265, 285	CNNP 11	1
285	TEMP1=EQC+EQC	CNNP 11	2
	TEMP=SORT (DISCR)	CNNP 11	3
	EQ=1.0/(EQB+EV*TEMP1)	CNNP 11	4
	LAPP=LAP	CNNP 11	5
	LAP=ALA	CNNP 11	6
	EVPP=EVP	CNNP 11	7
	EVP=EV	CNNP 11	в
	FA1=(IFWb-FdR)/IFWb1	CNNP 11	
	EV2=-(TEMP+EQB)/TEMP1	CNNP 12	0
	EVA=ABS (EV-EV1)	CNNP 12	1

Wednesday, February 21, 1990 12:31 pm

TLIST2.FOR

TLISTZ	.FOR Wednesday, February 21, 1990 12:31 pm	Page	• 2
	EVB=ABS (EV-EV2)	CNNP	12
:	IF (EVA-EVB) 290, 290, 295	CNNP	12
290 I	EV=EV1	CNNP	12
	GO TO 210	CNNP	12
295 I	EV=EV2	CNNP	12
	GO TO 210	CNNP	17
	END	CNNP	17
	SUBROUTINE ERRO2(HOL, JSUBR, 1)	ERR2	
	COMMON NSORCE, NINP, NOUT, NCR1, NFLUX1, NSCRAT	ERR2	
	CHARACTER*6 HOL	HVX	
	DATA NERR/D/	ERR2	
1	NERR=NERR+1	ERR2	
	WRITE (NOUT,1) HOL, JSUBR	ERR2	
1 1	FORMAT(2H */9H ERROR IN,A6,3H AT,16/2H */2H *)	ERR2	
1	IF(NERR.EQ.100)GO TO 3		
	GO TO (3,4),I	ERR2	1
3 5	STOP	ERR2	1
4 1	RETURN	ERR2,	1
	ÉND	ERR2	1
1	SUBROUTINE FISCAL (NO, FO, VO, CO, K6, MO, M2, JTL, JMT) Include 'Abc.for'	FISC	
	DIMENSION NO(1), FO(1), VO(1), CO(JTL,1),K6(1), MO(1), M2(1)		
	LAR = ALA	FISC	
C I	FISSION SUMS	FISC	
3	(F(807) 90,90,10	FISC	
10 1	F(A02) 20, 40, 20	FISC	
20 D	NO 30 IIG=1,1GH	FISC	
	(CO(I,J),I=1,ITL),J=1,NT)	FISC	1
E	:1(11G)=0.	FISC	1
0	KO 30 I=1, INJN	FISC	1
1	(1)OH=9MJT	FISC	1
1	TENP=N2(ITEMP)	FISC	1
30 E	1(IIG)=E1(IIG)+CO(IHT-1,ITEMP)*FO(I)*VO(I)	FISC	1
R	EWIND NCR1	FISC	1
G	ο το 70	FISC	1
40 E	01=0.	FISC	1
	0 50 1=1.INJN	FISC	1
1213	12. Pok Rediresday, Pebruary 21, 1990 (2131 pill	Fage	: 44
-------	---	------	------
50	E01=E01+V0(I)*F0(I)	FISC	20
	DO 60 IIG=1,IGH	FISC	21
60	E1(IIG)=K6(IIG)*E01	FISC	22
70	E1(IGP)=0.	FISC	23
	E0(IGP)=0.	FISC	24
	DO 80 IIG=1,IGH	FISC	25
	E0(IGP)=E0(IGP)+E0(IIG)	FISC	26
80	E1(IGP)=E1(IGP)+E1(IIG)	FISC	27
	IF(807) 140, 90, 140	FISC	28
90	IF(T11.EQ. 0.0)GO TO 95		
	ALA=E1(IGP)/T11		
	TEMP=1.0/ALA	FISC	31
95	IF(104-1) 230,100,140		
100	DO 110 IIG=1,IGN	FISC	32
	E1(IIG)=E1(IIG)*TEMP	FISC	33
110	K6(IIG)=K6(IIG)*TEMP	FISC	34
	E1(IGP)=E1(IGP)*TEMP	FISC	35
	IF(A02) 120, 140, 120	FISC	36
120	DO 130 1=1,IMJM	FISC	37
130	FO(I)=FO(I)*TEMP	FISC	38
140	CONTINUE	FISC	39
С		FISC	40
С	NORMALIZATION	FISC	41
	B07=0	FISC	42
150	1F(S01) 160, 230, 170	FISC	43
160	E01 = ABS(S01)/(E0(1GP)*TSD)	FISC	44
	GO TO 180	FISC	45
170	E01=S01/E1(IGP)	FISC	46
180	DO 190 IIG=1,IGP	FISC	47
190	E1(]]G)=E01*E1(]]G)	FISC	48
	DO 200 I=1,IMJM	FISC	49
200	FO(1)=E01*FO(1)	FISC	50
230 ·	RETURN	FISC	51
	END	FISC	52
	SUBROUTINE GRAM(MASS, VOL, ATW, HOLN, JIM, JJM, MO, M2, VO,	GRAM	2
	1 10, 11, 12, JML, 13)	GRAN	3
	INCLUDE 'ABC.FOR'		

sday, February 21, 1990 12:31 pm

TLIS	T2.FOR Wednesday, February 21, 1990 12:31 pm	Page	25
	DIMENSION MASS(JNL,1), VOL(1), ATW(1), HOLN(JML,1), MO(JIM,JJM),		
	1 M2(1), V0(JIN,JJH), I0(1), I1(1), I2(1), I3(1)	GRAM	6
с	THIS SUBROUTINE CALCULATES THE MASS OF THE VARIOUS MATERIALS	GRAM	7
	WRITE(NOUT,10) (ID(I), I=1,20)	GRAM	8
10	FORMAT(1H1,20A4///)	GRAM	9
	WRITE(NOUT, 20)	GRAM	10
20	FORMAT(45H MATERIAL INVENTORY (KILOGRAMS) FOR EACH ZONE /)	GRAM	11
	CALL CLEAR(0.0,VOL,IZM)	GRAM	12
	ITEMP = ML*IZM	GRAM	13
	CALL CLEAR(0.0,MASS,ITEMP)	GRAM	14
	DO 30 J = 1, JM	GRAM	15
	DO 30 I = 1, IM	GRAM	16
	K = MO(1,J)	GRAM	17
30	VOL(K) = VOL(K) + VO(1, J)*.001	GRAM	18
	DO 39 M=1,MO1	GRAM	19
	13(M) = 12(M)	GRAM	20
	IF(I0(M) - I1(M)) 39,35,39	GRAM	21
35	IF(12(M)) 39,36,39	GRAM	22
36	DO 38 MH=1,N	GRAN	23
	IF(10(N) - 10(NN)) 38,37,38	GRAN	24
37	13(MM) = 12(MM)*EV	GRAN	25
38	CONTINUE	GRAM	26
39	CONTINUE	GRAM	27
	DO 190 N =1, IZM	GRAM	28
	NN = M2(N)	GRAM	29
	DO 190 M = 1,HO1	GRAM	30
	IF(10(M) - NN) 190, 40, 190	GRAM	31
40	L = I1(M)	GRAM	32
	IF(L + NL) 170, 170, 50	GRAM	33
50	NNAA = L	GRAN	34
	1F(L - 10(M)) 130,190, 130	GRAM	35
130	DO 160 MAA = 1, HO1	GRAM	36
	IF(10(MAA) - NNAA) 160, 140, 160	GRAM	37
140	L = [1(HAA)	GRAM	38
	IF(L) 160, 160, 150	GRAM	39
150	EU1 = 13(NAA)=13(N)	GRAM	40
	MASS(L,N) = ((E01*ATW(L)*VOL(N))/.6023) + MASS(L,N)	GRAM	41
160	CONTINUE	GRAM	42

TLIST	2.FOR Wednesday, February 21, 1990 12:31 pm	Page	26
	60 TO 190	GRAN	43
1/0	IF(L) 190, 190, 180	GRAM	44
180	EU1 = 13(M)	GRAM	40
100	MASS(L,N) = ((EUT*ATW(L)*VUL(N))/.6025) + MASS(L,N)	CRAM	40
190	CONTINUE DO 240 L = 1 (2N 5	CRAN	40
	20 280 C = 1, 12H, 5	CPAN	50
	1E(1) - 17W) 210 210 200	GRAN	51
200	11 = 17N	GRAM	52
210	WRITE(NOUT.220) ((K), K=L, LL)		
220	FORMAT (/// MATERIAL ATOMIC WT. /.2X.5(/ ZONE/.13.3X)/)		
	DO 240 K = 1. NL	GRAN	57
	DO 233 I=L.LL	UPD1	3
	IF(MASS(K,I) .NE. 0.) GO TO 238	UPD1	4
233	CONTINUE	UPD 1	5
	GO TO 240	UPD 1	6
238	WRITE(NOUT,250) K,(HOLN(K,N),N=1,2),ATW(K), (MASS(K,I), I=L,LL)		
240	CONTINUE	UPD 1	8
250	FORMAT (1X,13,1X,2A4, F12.2, 1X, 5E11.3)		
	1F(LL - 12M) 260, 270, 270	GRAN	60
260	CONTINUE	GRAM	61
C C	ONPUTE TOTAL MASSES	0901	y
270	WRITE (NOUI,275)		
2/5	FORMAT (//' MATERIAL ATOMIC WI. TOTAL'/)		
		UPUI	10
	NO 280 -1 17W		
280	TEND+TEND+MASS/Y I)		
310	WRITE(MOUT 250) K (HOLWCK N) N=1 2) ATU(K) TEMP		
	WRITE (NOUT.350)		
350	FORMAT (///, ' ZONE NUMBER VOLUME (LITERS)'/)		
	DO 400 L=1,12M		
	WRITE (NOUT,360) L,VOL(L)		
360	FORMAT (6X,14,6X,1PE12.3)		
400	CONTINUE		
	RETURN	UPD 1	18

TLIS	12.FOR Wednesday, February 21, 1990 12:31 pm	Page	27
	END SUBROUTINE IFLUXN (N2, C0, V0, CXS, M0, M2, JTL, JIM, JJM, CXR, CXT 1, XR, XD) UNFLUE (JAP FOR)	GRAM HRAZ HRAZ	63 2
	INCLUDE ABOUTOR		,
	1 CYP(1) CYT(1)	1610	2
	DIMENSION YD(50) YR(50)	NPA2	
r	THIS SUBDOUTINE MODIAN IZES FULLYES REFORE FACH INNER ITERATION	TELL	
č	ARSONDTION AND OUT-SCATTER	TELU	7
•	F3(16V) = 0.0	TELL	
	E4(IGV) = 0.0	TELU	ŏ
	DO 10 I=1. INJN	TELL	10
	TEMP = VO(1)*N2(1)	TFLU	11
	ITENP = MO(1)	IFLU	12
	ITEMP = M2(ITEMP)	IFLU	13
	E3(IGV) = E3(IGV) + (XD(ITEMP))*TEMP	HRA2	14
10	E4(IGV) = E4(IGV) + CO(IHT-2,ITEMP)*TEMP	HRA2	15
С	LEFT LEAKAGE	[FLU	16
	IF(801) 20, 20, 40	[FLU	17
20	E5(1GV) = 0.0	IFLU	18
	DO 30 KJ = 1, JM	IFLU	19
	I = (KJ - 1)*IM + 1	IFLU	20
30	E5(IGV) = E5(IGV) + CKS(1,KJ,1)*N2(1)	1FLU	21
	GO TO 50	IFLU	22
40	E5(IGV) = .0	IFLU	23
C	RIGHT LEAKAGE	IFLU	24
50	IF(802) 60, 60, 80	IFLU	25
60	E6(1GV) = 0.0	IFLU	26
	DO 70 KJ = 1, JM	IFLU	27
	I = KJ*IM	IFLU	28
70	E6(IGV) = E6(IGV) + CXR(KJ)*N2(1)	IFLU	29
	GO TO 90	IFLU	30
80	E6(1GV) = 0.0	IFLU	31
С	TOP LEAKAGE	IFLU	32
90	IF(803-1) 120, 140, 100	IFLU	33
100	E7(IGV) =.0	IFLU	34
	DO 110 KI = 1, IM	IFLU	35

TLIS	T2.FOR	Wednesday, February 21, 1990 12:31 pm	Page	28
	T = TM.IM	- 1M + KT	TELL	74
110	F7(16V) =	F7(1GV) + CYS(KI 1 2)*(W2(1) + W2(K1))	TELL	37
	EB(IGV) =	- E7(IGV)	7 FLU	38
	GO TO 190		TELU	39
120	E7(IGV) =	0.0	1 FLU	40
	DO 130 K	I = 1, IN	IFLU	41
	I = IMJM	- IN + KI	I FLU	42
130	E7(IGV) =	E7(JGV) + CXT(KI)*N2(I)	IFLU	43
	GO TO 150		I FLU	44
140	E7(IGV) =	0.0	I FLU	45
с	BOTTOM LE	AKAGE	I FLU	46
150	1F(804)	160, 160, 180	I FLU	47
160	E8(IGV) =	0.0	IFLU	48
	DO 170 KI	= 1, IM	I FLU	49
170	E8(1GV) =	E8(1GV) + CXS(KI,1,2)*N2(KI)	I FLU	50
	GO TO 190		IFLU	51
180	E8(IGV) =	0.0	[FLU	52
190	E9(IGV) =	E5(IGV) + E6(IGV) + E7(IGV) + E8(IGV)	I FLU	53
	TEMP = (E	1(1GV) + E2(1GV))/(E3(1GV) + E4(1GV) + E9(1GV))	I FLU	54
	00 200 1	= 1, IMJM	I FLU	55
200	N2(1) = T	EMP*N2(1)	I FLU	56
	E3(IGV) =	TEMP*E3(IGV)	I FLU	57
	E4(IGV) =	TEMP*E4(IGV)	1 FLU	58
	E5(IGV) =	TEMP*E5(IGV)	1 FLU	59
	E6(1GV) =	TEMP*E6(IGV)	IFLU	60
	E7(1GV) =	TEMP*E7(IGV)	IFLU	61
	E8(IGV) =	TEMP*E8(IGV)	I FLU	62
	E9(IGV) =	TEMP*E9(IGV)	IFLU	63
	RETURN		IFLU	64
	END		IFLU	65
	SUBROUTINE	: INII (K6, K7, IU, I1, I2, MU, M2, NU, R0, R1, R2,	INIT	2
	1	R3, R4, R5, Z0, Z1, Z2, Z3, Z4, Z5, A0, A1,	INIT	3
	2	FU,CU,VU,JTL,JIM,V/,JJM,JMT,JML,GAM,HOLN)		
	INCLUDE	ABC.FUR'		
	DIMENSION	K6(1), K7(1), 10(1), 11(1), 12(1), R0(1), R1(1),	INIT	6
	1	R2(1), R3(1), R4(1), R5(1), Z0(1), Z1(1), Z2(1),	INIT	7
	2	Z3(1), Z4(1), Z5(1), A0(1), A1(1), C0(JTL,JMT),	INET	8

TLIS	T2.FOR Wednesday, February 21, 1990 12:31 pm	Page	29
	3 VO(JIM,JJM), MO(1), M2(1), NO(1), FO(1), V7(1)	INIT	9
	4 ,GAN(1), HOLN(JNL,1)		
	DIMENSION XD(50),XR(50)	HRAZ	
	IF (P02) 20, 10, 20	INET	11
10	WRITE(NOUT, 15) DAY	INET	12
15	FORMAT(1H1,24X,' T I N E =',F8.3,8H D A Y S///)		
20	CONTINUE	INET	14
С	ADJOINT REVERSALS	INIT	15
	IF(A02) 25, 45, 25	INIT	16
25	IF(PO2) 45, 30, 45	INLT	17
30	IF(NCON) 45, 35, 45	INIT	18
35	11G=1	INET	19
	I GBAR=I GM	INIT	20
40	TEMP=K7(IIG)	INIT	21
	K7(IIG)=K7(IGBAR)	INIT	22
	K7(IGBAR)=TEMP	INET	23
	TENP=V7(11G)	INIT	24
	V7([IG)=V7(IGBAR)	INIT	25
	V7(IGBAR)=TENP	INIT	26
	IIG=IIG+1	INIT	27
	IGBAR=IGBAR-1	INIT	28
	IF(IIG-IGBAR) 40, 45, 45	INIT	29
45	CONTINUE	INIT	30
C	MIX CROSS-SECTIONS	EN1T	32
	B07=1	INIT	33
	IF(P02) 50, 55, 50	INIT	34
50	GO TO (245,245,85,245,185), IO4	INIT	3#
55	IF(M01) 70, 70, 60	INIT	36
6	0 WRITE(NOUT,61)	UPD1	22
6	1 FORMAT(1H0,4X,16H MIXTURE NUMBER ,18H MIX COMMAND	, UPD1	23
	124H MATERIAL ATONIC DENSITY /)	UPD1	24
	DO 67 J=1,M01	UPD1	25
	WORD = 0		
	WORD2 = WORD		
	I=11(J)	UPD 1	27
	IF(I .GT. 0 .AND.I .LE. NL) WORD=HOLN(I,1)	HVX	
	IF (I .GT. 0 .AND. I .LE. ML) WORD2=HOLN(1,2)		
	WRITE(NOUT,63) J,10(J),11(J),12(J),WORD,WORD2		

TLI	ST2.FOR	Wednesday,	February 21,	1990 12:31	pm	Page	e 30
	53 FORMAT(15,19	9,115,E28.8,12x,2	A4)				
	IF(J .EQ. N	01 .OR. IO(J).EQ.	IO(J+1)) GO	TO 67		UPD 1	31
66	FORMAT (1X,	15(58))					
	WRITE(NOUT,	66)				UPD 1	33
	57 CONTINUE					UPD 1	34
70	IF(NPRT-1)	85, 85, 75					
75	WRITE (NOUT,	,80)				INIT	41
80	FORMAT(/19H	1CROSS-SECTION ED	(T)			INIT	42
85	REWIND NCR1					INIT	43
	DO 180 IIG	=1,IGN				INIT	44
	READ (NCR1)	((CO(1,J),I=1	,ITL),J=1,MT)			INIT	45
с	READ(11) ()	XR(J),J=1,MT)				HRA	2
	READ(12) (X	D(J),J=1,MT)				HRA2	
	[F(M01) 90,	145, 90				INIT	46
90	DO 140 H=1	,M01				INIT	47
	IF(10(M)-HT) 100, 100, 95				INIT	48
95	CALL ERRO2(**INIT',95,1)				HVX	
100	IFCI1(M)-HT) 105, 105, 95				INIT	50
105	N=10(M)					INIT	51
	L=I1(N)					INIT	52
	E01=12(M)					INIT	53
	IF(L) 125,	125, 110				INIT	54
110	IF(E01) 125	, 115, 125				INIT	55
115	1F (N-L) 125	5, 120, 125				INIT	56
120	E01 = EV					INIT	57
	L = 0					INIT	58
125	DO 140 I=1,	,17L				INIT	59
	IF (L) 130,	135, 130				INIT	60
130	CO(1,N)=CO(1	1,N)+CO(1,L)*EO1				INIT	61
	GO TO 140					INIT	62
135	CO(I,N)=CO(1	1,N)*E01				INIT	63
140	CONTINUE					INIT	64
	1F(M01) 900,	, 145, 900				HRA2	46
900	DO 1140 M=	=1,MO1				HRA2	47
	IF(IO(M)-NT)) 1000, 1000, 950				HRA2	48
950	CALL ERRO2((***1NIT',950,1)				HRA2	HVX
1000	IF(11(M)-M1	r) 1050, 1050, 95	0			HRA2	50
1050	N=10(N)					HRA2	51

TLIST	2.FOR Wednesday, February 21, 1990 12:31 pm	Page	e 31
	L=[1(M)	HRA2	52
	E01=[2(M)	HRA2	53
	IF(L) 1125, 1125, 1110	HRA2	54
1110	IF(E01) 1125, 1115, 1125	HRA2	55
1115	IF (N-L) 1125, 1120, 1125	HRA2	56
1120	E01 = EV	HRA2	57
	L = 0	HRA2	58
1125	CONTINUE	HRA2	59
	IF (L) 1130, 1135, 1130	HRA2	60
1130	XD(N)=XD(N)+XD(L)*E01	HRA2	61
	GO TO 1140	HRA2	62
1135	XD(N)=XD(N)*E01	HRA2	63
1140	CONTINUE	HRA2	64
145	IF(P02) 175, 150, 175	INIT	65
150	IF(NPRT-1) 175, 175, 155		
155	WRITE(NOUT, 160) IIG	INIT	68
160	FORMAT (' GROUP ', 13, 'CROSS-SECTIONS')		
	DO 165 N=1,MT	INIT	70
165	WRITE (NOUT, 170) N, (CO(I, N), I=1, ITL)	INIT	71
170	FORMAT(4H NAT,13,(6E12.4))		
175	WRITE (WSCRAT) ((CO(1,J),I=1,ITL),J=1,MT)	INIT	73
	WRITE(11) (XD(J),J=1,MT)	HRAZ	
180	CONTINUE	INIT	74
	REWIND NCR1	INIT	75
	REWIND 11	HRA2	75
	REWIND 12	HRA2	75
C	WRITE(12) (XD(J), J=1,MT)	HRA2	75
c	WRITE(11) (XR(J), J=1,MT)	HRAZ	75
	REWIND 11	HRA2	75
	REWIND 12	HRA2	75
	REWIND NSCRAT	INIT	76
С	SWITCH TAPE DESIGNATIONS	INIT	77
	1 TEMP=NSCRAT	INIT	78
	NSCRAT=NCR1	INIT	79
	NCR1=ITEMP	INET	80
185	IF(104-5) 190, 205, 190	INIT	81
190	IF(BUCK) 200, 245, 200	INIT	82
200	TEMP = BUCK	INIT	83

	60 10 220	INIT 84
205	IF(P02) 210, 210, 215	1NIT 85
210	BUCK = 0.	INIT 86
215	TEMP = EV - BUCK	INIT 87
	BUCK = EV	INIT 88
220	DO 240 11G=1,1GN	INIT 89
	READ(NCR1) ((CO(I,J), I=1,ITL),J=1,MT)	INIT 90
	DO 235 NTZ = 1,NT	INIT 91
	DO 230 KZ=1, IZM	INIT 92
	IF(M2(KZ) - MTZ) 230, 225, 230	INIT 93
225	TEMP1=(TEMP*GAM(KZ))/(3.*CO(INT,NTZ))	HRA2 94
	CO(1HT-2,MTZ) = CO(1HT-2,MTZ) + TEMP1	HRA2 95
	CO(1HS,MTZ) = CO(1HS,MTZ) - TEMP1	HRA2 96
	GO TO 235	1N1T 97
230	CONTINUE	IN1T 98
235	CONTINUE	INIT 99
	WRITE(NSCRAT) ((CO(I,J), I=1,ITL),J=1,MT)	INIT 100
240	CONTINUE	INIT 101
	REWIND NCR1	INIT 102
	REWIND NSCRAT	INJT 103
C	SWITCH TAPE DESIGNATIONS	INIT 104
	ITEMP = NSCRAT	INIT 105
	NSCRAT = NCR1	INIT 106
	NCR1 = ITEMP	INIT 107
245	CONTINUE	INIT 108
c		WLP
C	MODIFY GEOMETRY	WLP
	IF(P02)270, 250, 270	WLP
250	IF(NCON) 3/5, 255, 3/5	WLP
200	DO 260 I=1,IP	WLP
260	R1(1)=R0(1)	WLP
	DO 265 J=1, JP	WLP
202	21(J)=20(J)	WLP
2/0	IF(104-4) 303, 273, 303	WLP
215	UU 200 1=1,1R	WLP
280	N=K2(1) R\$(1+1)=R1(1)+(R0(1+1)=R0(1))#(1 0+ E)#R3(K))	WLP ULD
200	RI(1+1)=RI(1)+(RU(1+1)-RU(1))*(1.0+ EV*R3(R))	WLP ULD
	DU 203 J=(,JM	WLP .

Wednesday, February 21, 1990 12:31 pm Page 32

TLIST2.FOR

.

1113	inzurok wednesday, rebruary zr, 1990 iz:bi pii	raye 5
	K=Z2(J)	WLP
285	21(J+1)=21(J)+(20(J+1)-20(J))*(1.0+ EV*23(K))	WLP
	IF(IGE-2) 305, 290, 305	WLP
290	IF(ABS (Z1(JP)-1.0)-1.0E-04) 305, 305, 300	WLP
300	CALL ERRO2('**INIT',300,1)	HVX
305	CONTINUE	WLP
с		WLP
С	AREAS AND VOLUMES	WLP
	PI2=6.28318	WLP
	IF(P02) 310, 315, 310	WLP
310	1F(104 - 4) 375, 315, 375	WLP
315	CONTINUE	WLP
	DO 345 I=1,IN	WLP
	R4([)=(R1(]+1)+R1([))*0.5	WLP
	R5([)=R1(]+1)-R1(])	WLP
	IF(R5(1)) 320, 320, 325	WLP
320	CALL ERRO2 ('*R5(1)',320,1)	HVX
325	CONTINUE	WLP.
	GO TO (330,335,340,342), IGEP	WLP
330	A0(1)=1.0	WLP
	A0(IP)=1.0	WLP
	A1(])=R5(])	WLP
	GO TO 345	WLP
335	AU(1)=P12*R1(1)	WLP
	A0(IP)=P12*R1(IP)	WLP
	A1(1)=P12*R5(1)*R4(1)	WLP
	GO TO 345	WLP
340	A0(I)=R1(I)	HRA2
	A0(1P)=R1(1P)	HRA2
	A1(I)=R5(I)	HRA2
	GO TO 345	WLP
342	AO(1) = 2.*R5(1)	WLP
	AO(IP) = 2.*R5(I)	WLP
	A1(I) = 2.*R5(I)	WLP
345	CONTINUE	WLP
	DO 370 J=1,JM	WLP

Vednesday, February 21, 1990 12:31 nm

	747 11-7717 1-11-717 1-11-0 5	ив
	24(3)=(21(3+1)+21(3))=0.5	
	LE(75(1)) 350 355	
350	CALL EDDO2 (/#75(1)/ 350 1)	HVY
355	CONTINUE	UI P
333	00 370 1=1 IN	VIP
	CO TO (360 365 367 360) IGER	HPA2
360	VN(1_()=P5(1)=75(1)	VID
~~~	FO TO 370	WI P
365	V0(1_J)=P12*P5(1)*75(J)*P4(1)	HRA2
	60 TO 370	HPA2
367	VD(I,J)=(R5(I)*25(J)*R4(I)+((R1(I+1))**3-(R1(I))**3)/3.0	HRA2
	1 /B1GR*(SIN(21(J+1))-SIN(21(J))))	HRAZ
370	CONTINUE	WLP
375	CONTINUE	WLP
С		INIT 170
С	NATERIAL ADDRESSES	INIT. 171
380	IF(P02) 405, 385, 405	INIT 172
385	sK7=0.	INIT 173
	DO 400 [IG=1,IGN	INIT 174
	IF(\$02-1) 395, 390, 395	INIT 175
390	K6(IIG)=K7(IIG)/S03	INIT 176
	GC TO 400	INIT 177
395	K6(IIG)=K7(IIG)	INET 178
400	SK7=SK7+K7(11G)	INET 179
405	CONTINUE	INET 180
С		INIT 181
С	FISSION NEUTRONS	INIT 182
	T11=E1(IGP)	INIT 183
410	CALL CLEAR(0.0,FO,IMJM)	INIT 184
	DO 425 [IG=1,IGH	INIT 185
	EO(11G) = .0	INIT 186
	READ (NFLUX1) (NO(I),I=1,IMJM)	INIT 187
	READ (NCR1) ((CO(I,J),I=1,ITL),J=1,MT)	INIT 188
	DO 425 J = 1, JM	INIT 189
	DO 425 K = 1, IN	INIT 190
	I = K + (J-1)*IM	INIT 191

Wednesday, February 21, 1990 12:31 pm

TLIST2.FOR	Wednesday, February 21, 1990 12:31 pm	Pag	e 35
ITEMP=NO(I)		INIT	192
ITEMP=M2(ITE	MP)	INIT	193
E0(11G) = E0	CIIG) + VO(K,J)*NO(1)*CO(IHT-3,ITEMP)	HRA2	194
IF(A02) 415,	420, 415	INIT	195
415 FO(1)=FO(1)+	K7(11G)*N0(1)	INIT	196
GO TO 425		INIT	197
420 FO(1)=FO(1)+	CO(INT-1,ITEMP)=NO(1)	INIT	198
425 CONTINUE	· · · · · · · · · · · · · · · · · · ·	INIT	199
REWIND NFLUX	(1	INIT	200
REWIND NCR1		INIT	201
RETURN		INIT	202
END		INIT	203
SUBROUT [NE ]	NNER(NO, N2, CXS, S2, MO, M2, VO, CO,JIM,JJM, JTL,	INNR	2
1 INCLUDE 'ABC	CXR,CXT, HA, PA,XR,XD) LFOR'	HRA2	
DIMENSION N	10(1), N2(1),CXS(JIH,JJH,3),S2(1), N0(1), N2(1),	INNR	6
1 V	/0(1), CO(JTL,1), CXR(1), CXT(1), HA(1), PA(1)	INNR	7
DIMENSION XD	(50),XR(50)	HRA2	
CALL IFLUXN	(N2,CO,VO,CXS,MO, M2, ITL, IN, JM, CXR,CXT,XR,XD)	HRA2	9
2 DO 4 I=1, I	NJN	INNR	18
4 NO(I) = N2(I	)	INNR	19
C BEGIN FLUX C	ALCULATION	INNR	20
IKB = IM - 1		INNR	21
JKB = JN - 1		1 NNR	22
C FLUX CALCULA	ITION USING SOR WITH LINE INVERSION	INNR	23
c		INNR	24
C CALCULATION	OF LEFT BOUNDARY FLUX	INNR	25
KI = 1		INNR	26
KJ = 1	41414	INNR	27
I = KI + (KJ	- 1)-IM	INNR	28
HA(KJ)= CXS(	K1,KJ+1,2)/CXS(K1,KJ,5)	INNR	29
PA(KJ)= (S2(	1) + CX5(K1+1,KJ,1)=N2(1+1))/CX5(K1,KJ,5)	INNR	30
	, JKB	INNR	21
$i = KI + \{KJ\}$		INNR	52
$m_{A}(KJ) = CXS$	(K1,KJ+1,Z)/(UXS(K1,KJ,S)- CXS(K1,KJ,Z)*HA(KJ-1))	INNR	33
J PA(KJ) = (52)	(1) + UX5(KI+I,KJ,I)=N2(I+I) + CX5(KI,KJ,2)=PA(KJ-1))	/INNR	34
i (UXS(KI,KJ	,3) - UAS(KI,KJ,Z)"HA(KJ-1))	INNR	32

TI IST2 FOR

	KJ = JH	INNR	36
	I = KI + (KJ - 1)*IH	INNR	37
	N2(1) = (S2(1) + CXS(KI+1,KJ,1)*N2(I+1) + CXS(KI,KJ,2)*PA(KJ-	))/INNR	38
	1 (CXS(KI,KJ,3) - CXS(KI,KJ,2)*HA(KJ-1))	INNR	39
	DO 10 KJJ = 2, JN	INNR	40
	KJ = JM - KJJ + 1	INNR	41
	I = KI + (KJ - 1)*IM	INNR	42
10	N2(I) = PA(KJ) + HA(KJ) * N2(I+IN)	INNR	43
	DO 15 KJ = 1,JM	INNR	44
	I = KI + (KJ - 1)*IH	INNR	45
	N2(1)=N0(1)+ORF*(N2(1)+N0(1))	INNR	46
	15 [F(N2(I).LE.0)N2(I)=ABS(N0(I)+(N2(I)-N0(I))/ORF)	INNR	47
C	PRINCIPAL FLUX LOOP	INNR	48
	DO 40 KI = 2,1KB	INNR	49
	KJ = 1	INNR	50
	I = KI + (KJ - 1)*IH	INNR	51
	HA(KJ)= CXS(K1,KJ+1,2)/CXS(K1,KJ,3)	INNR	52
	PA(KJ)= (S2(1) + CXS(KI,KJ,1)*N2(I-1) + CXS(KI+1,KJ,1)*N2(I+1))	)/ INNR	53
	1 CXS(KI,KJ,3)	INNR	54
	DO 25 KJ = 2,JKB	INNR	55
	$I = KI + (KJ - 1)^*IM$	INNR	56
	HA(KJ) = CXS(K1,KJ+1,2)/(CXS(K1,KJ,3)- CXS(K1,KJ,2)*HA(KJ-1))	INNR	57
25	PA(KJ) = (S2(I) + CXS(KI,KJ,1)*N2(I-1) + CXS(KI+1,KJ,1)*N2(I+1)	) + INNR	58
	1 CXS(KI,KJ,2)*PA(KJ-1))/(CXS(KI,KJ,3) - CXS(KI,KJ,2)*HA(KJ-1))	INNR	59
	KJ = JM	INNR	60
	I = KI + (KJ - 1)*IM	I NNR	61
	N2(I) = (S2(I) + CXS(KI,KJ,1)*N2(I-1) + CXS(KI+1,KJ,1)*N2(I+1)	+ INNR	62
	1 CXS(KI,KJ,2)*PA(KJ-1))/(CXS(KI,KJ,3) - CXS(KI,KJ,2)*HA(KJ-1))	INNR	63
	DO 30 KJJ = 2,JM	1 NNR	64
	KJ = JM - KJJ + 1	INNR	65
	I = KI + (KJ - 1)*IM	INNR	66
30	N2(1) = PA(KJ) + HA(KJ) + N2(1+1M)	INNR	67
	DO 35 KJ = 1,JM	INNR	68
	$I = KI + (KJ - 1)^{*}IM$	INNR	69
	N2(1)=N0(1)+ORF*(N2(1)-NO(1))	INNR	70
	35 IF(N2(I).LE.0)N2(I)=ABS(N0(I)+(N2(I)-N0(I))/ORF)	INNR	71
40	CONTINUE	INNR	72
C	CALCULATION OF RIGHT BOUNDARY FLUX	INNR	73

TLIST2.FOR Wednesday, February 21, 1990 12:31 pm Page 36

i Li a	z.rok weakesday, rebidaly zi, 1990 izisi pii	ray	- 31
	KT = 1M		76
	KI = 1	TNNP	75
	I = KI + (KJ - 1)*IM	INNR	76
	HA(KJ)= CXS(K1,KJ+1,2)/CXS(K1,KJ,3)	INNR	77
	PA(KJ)= (S2(1) + CXS(KI,KJ,1)*N2(1-1))/CXS(KI,KJ,3)	INNR	78
	DO 45 KJ = 2, JKB	INNR	79
	I = KI + (KJ - 1)*IH	INNR	80
	HA(KJ) = CXS(KI,KJ+1,2)/(CXS(KI,KJ,3)- CXS(KI,KJ,2)*HA(KJ-1))	INNR	81
45	PA(KJ) = (S2(1) + CXS(KI,KJ,1)*N2(1-1) + CXS(KI,KJ,2)*PA(KJ-1))/	INNR	82
	1 (CXS(KI,KJ,3) - CXS(KI,KJ,2)*HA(KJ-1))	INNR	83
	KJ = JM	INNR	84
	I = KI + (KJ - 1)*IM	INNR	85
	N2(I) = (S2(I) + CXS(KI,KJ,1)*N2(I-1) + CXS(KI,KJ,2)*PA(KJ-1))/	INNR	86
	1 (CXS(KI,KJ,3) - CXS(KI,KJ,2)*HA(KJ-1))	INNR	87
	DO 50 KJJ = 2,JM	INNR	88
	KJ = JM - KJJ + 1	INNR	89
	I = KI + (KJ - 1)*IM	INNR	90
50	N2(I) = PA(KJ) + HA(KJ) * N2(I+IM)	INNR	91
	DO 55 KJ = 1,JM	INNR	92
	$1 = KI + (KJ - 1)^{m}IN$	INNR	93
	N2(1)=NU(1)+ORF*(N2(1)-NU(1))	INNR	94
55	IF(N2(I).LE.U)N2(I)=ABS(NU(I)+(N2(I)-NU(I))/ORF)	INNR	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	1EMP1 = .U	INNR	96
	D0 90 1 = 1,1NJM	INNK	
	IEMP2 = ABS (1.0 - NU(1)/N2(1))	INNK	400
80	17 ((CHP) - (CHP2) 80,90,90 TEND1 - TEND2	THAK	100
on .		TMMD	107
ĉ	CONTINCE	INND	104
ř	THER TREATION CONTROL	INND	105
133		INNE	106
		INNE	107
	IF (11 - 607) 533, 1033, 1033	INNR	117
533	IF(TEMP1-EPS) 633.633.2	INNR	118
633	IF(G06) 733, 1033, 733	INNR	119
733	IF(TEMP1-G06)1033,1033,2	INNR	120
C1033	CONTINUE		
1033	WRITE(NOUT, 213)	HRA2	

TI 1977 FOR

Wednesday, February 21, 1990 12:31 pm

TLIST	12.FOR Wednesday, February 21, 1990 12:31 pm	Page	2 38
213	FORMAT(" GROUP IN. IT. ()	HRA2	
	WRITE(NOUT, 2133)IGV, II	HRA2	
2133	FORMAT(' ',13,' ',14)		
	IF(104.NE.0)GO TO 1133	HRA2	
	CALL IFLUXL (N2,CO,V0,CXS,M0, M2, ITL, IM, JM, CXR,CXT,XR,XD)	HRA2	
1133	CONTINUE	HRA2	
	RETURN	INNR	125
	END	INNR	129
	SUBROUTINE INNER1(MO, M2, CXS, VO, CO, AO, Z5, R5, R4, Z4, A1,	INN1	2
	2 JIM, JJM, JTL, CXR, CXT, XR, XD, R1, Z1)	HRAZ	3
	DIMENSION XR(50),XD(50)	HRA2	
	DIMENSION MO(1), M2(1),CXS(JIM,JJM,3),VO(1), CO(JTL,1),	1NN1	4
	1 A0(1), Z5(1), R5(1), R4(1), Z4(1), A1(1),CXR(1), CXT(1	)1NN1	5
	2 ,R1(1),Z1(1)	HRA2	
	INCLUDE 'ABC.FOR'		
С	THIS SUBROUTINE CALCULATES COEFFICIENTS FOR THE FLUX EQUATION	INN1	7
	P12 = 6.28318	I NN 1	8
	DO 45 KJ = 1, JN	INN1	9
	DO 45 KI = 1, IM	1 NN 1	10
	TEMPA=AO(KI)	HRA2	
	TEMPB=A0(IP)	HRA2	
	TEMPC=A1(KI)	HRAZ	
	GO TO (10,10, 5), IGEP	INN1	1#
5	TEMP = (Z4(KJ) - Z4(KJ-1))*R4(KI)	HRA2	12
	AO(KI)=AO(KI)*(1.0+R1(KI)/BIGR*(SIN(Z1(KJ+1))-SIN(Z1(KJ)))/Z5(KJ)	)HRA2	
	A0(IP)=A0(IP)*(1.0+R1(IP)/BIGR*(SIN(Z1(KJ+1))-SIN(Z1(KJ)))/Z5(KJ)	)HRA2	
	A1(KI)=A1(KI)*(1.0+COS(Z4(KJ))/BIGR)	HRA2	
	GO TO 15	I NN 1	13
10	TEMP = Z4(KJ) - Z4(KJ-1)	I NN 1	14
15	$I = KI + (KJ-1)^{+}IH$	INN1	15
	ITEMP = MO(I)	INN1	16
	ITEMP = M2(ITEMP)	INN1	17
	CXS(K1,KJ,3) = V0(1)*(CO(1HT,ITEMP) - CO(1HS,ITEMP))	INN1	18
	IF(I - 1) 44,44,18	HRA2	19
18	ITENP1 = MO(J-1)	INN 1	20
	ITENP1 = M2(ITENP1)	INN1	21
	IF (ITEMP - ITEMP1) 25,20,25	INN1	22

20	CXS(KI,KJ,1)=AO(KI )*Z5(KJ)/(3.*CO(1HT,ITEMP)*(R4(K1)-R4(KI-1)))	INN1	23
	GO TO 30	INN1	24
25	CXS(KI,KJ,1) = A0(KI)*Z5(KJ)*(R5(KI-1)+R5(KI))/((R4(KI)-R4(KI-1))	*INN1	25
	1 (3.*(R5(K1-1)*CO(IHT,ITEMP1) + R5(KI)*CO(IHT,ITEMP))))	INN1	26
30	1F(1 - 1M) 44,44,32	INN1	27
32	1TEMP3 = MO(I - IM)	INN1	28
	ITEMP3 = M2(ITEMP3)	INN1	29
	IF (ITEMP - ITEMP3) 40,35,40	INN1	30
35	CXS(KI,KJ,2) = A1(KI)/(3.*CO(IHT,ITEMP)*TEMP)	INN1	31
	GO TO 44	HRA2	32
40	CXS(KI,KJ,2) = A1(KI)*(Z5(KJ-1) + Z5(KJ))/(TEMP*	INN1	33
	1 (3.*(25(KJ-1)*CO(INT,ITEMP3) + 25(KJ)*CO(INT,ITEMP))))	INN1	34
44	AO(KI)=TEMPA	SRA1	
	AQ(IP)=TEMPB	HRA1	
	A1(KI)=TEMPC	HRA1	
45	CONTINUE	HRA1	35
	DO 200 KJ = 1, JN	INN1	36
	DO 200 KI = 1, IN	INN1	37
	TEMPA=AD(KI)	HRA2	
	TENPB=A0(1P)	HRA2	
	TEMPC=A1(KI)	HRA2	
	GD TO (55,55,50), IGEP	1NN1	3#
50	TEMP = _5*Z5(KJ)*R4(K1)	HRA2	39
	AO(KI)=AO(KI)*(1.0+R1(KI)/BIGR*(SIN(Z1(KJ+1))-SIN(Z1(KJ)))/25(KJ)	)HRA2	
	A0(IP)=A0(IP)*(1.0+R1(IP)/BIGR*(SIN(Z1(KJ+1))-SIN(Z1(KJ)))/Z5(KJ)	)HRA2	
	A1(K1)=A1(K1)*(1.0+COS(Z4(KJ))/BIGR)	HRA2	
	GO TO 60	INN 7	40
55	TEMP = .5*25(KJ)	INN3	41
60	I = KI + (KJ-1)*IM	INN1	42
	ITEMP = MO(I)	INN1	43
	ITEMP = M2(ITEMP)	INN1	44
	TEMP1 = CXS(KI+1,KJ,1)	ENN1	45
	TEMP2 = CXS(K1,KJ+1,2)	TNN 1	46
	1F(KJ - 1) 65,65,100	J NN 1	47
65	IF(804 - 1) 90,95,70	1 NN 1	48
70	GO TO ( 80, 80, 75), IGEP	3 NN 1	4#
75	TEMP3 = P12*.5*(Z5(KJ) + Z5(JM))	HRAZ	50
	GO TO 85	INN1	51

Wednesday, February 21, 1990 12:31 pm Page 39

80	TEMP3 = .5*(25(KJ) + 25(JM))	INN1	52
85	1TEMP3 = I + IM*(JM - 1)	INN1	53
	(TENP3 = MO(ITENP3)	INN1	54
	ITEMP3 = M2(ITEMP3)	INN1	55
	CXS(KI,KJ,2) = A1(KI)*(Z5(JH) + Z5(KJ))/(TEMP3*	INN1	56
	1 (3.*(Z5(JM)*CO(1HT, ITEMP3) + Z5(KJ)*CO(1HT, ITEMP))))	INN1	57
	GO TO 125	1881	58
90	CXS(K1,KJ,Z) = A1(K1)/(3.*CO(INT,ITEMP)*( TEMP +.71/	1991	59
	1 CO(IHT, ITEMP)))	INN1	60
	GO TO 125	INN1	61
95	CXS(KI,KJ,2) = .0	INN1	62
	GO TO 125	INN1	63
100	IF (KJ - JN) 125,105,105	INN1	64
105	IF (B03 - 1) 115,120,110	3 NN 1	65
110	TENP2 = CXS(K1,1,2)	INN1	66
	CXT(KI) = TEMP2	INN1	67
	GO TO 125	1 NN 1	68
115	TEMP2 = A1(KI)/(3.*CO(IHT,ITEMP)*( TEMP +.71/	INN1	69
	1 CO(IHT, ITEMP)))	J NN 1	70
	CXT(K1) = TEMP2	INN1	71
	GO TO 125	1 NN 1	72
120	TEMP2 = .0	INN1	73
	CXT(KI) = TEMP2	INN1	74
125	IF (KI - 1) 130,130,145	INN1	75
130	IF(B01) 135,135,140	INN 1	76
135	CXS(KI,KJ,1) = A0(KI )*Z5(KJ)/(3.*C0(IHT,ITEMP)*	INN1	π
	1 (.5*R5(KI) + .71/CO(IHT,ITEMP)))	INN1	78
	GO TO 165	ENN1	79
140	CXS(KI,KJ,1) = .0	INN1	80
	GO TO 165	ENN1	81
145	JF (KI - IM) 165,150,150	ENN1	82
150	IF(B02) 155,155,160	ENN1	83
155	TEMP1 = A0(K1+1)*Z5(KJ)/(3.*C0(IHT,ITEMP)*	INN1	84
	1 (.5*R5(K1) + .71/CO(IHT,ITEMP)))	INN1	85
	CXR(KJ) = TEMP1	INN1	86
	GO TO 165	INN1	87
160	TEMP1 = .0	INN1	88
	CXR(KJ) = TEMP1	INN1	89

Wednesday, February 21, 1990 12:31 pm Page 40

TLIST2.FOR

TLIS	ST2.FOR Wednesday, February 21, 1990 12:	31 pm Page	9 41
165	CXS(KI,KJ,3) = CXS(KI,KJ,3) + CXS(KI,KJ,1) + CXS(	K1,KJ,2) INN1	90
	1 + TEMP1 + TEMP2	INN1	91
	AO(KI)=TEMPA	HRA1	
	AO(IP)=TEMPB	HRA1	
	A1(KI)=TEMPC	HRA1	
200	CONTINUE	INN1	92
	RETURN	INN1	93
	END	I NN 1	94
	SUBROUTINE INNER2(NO, N2, CXS, S2, MO, M2, VO, CO	,JIN,JJN, JTL,	
	1 CXR,CXT, HA, PA)	1 NN2	3
	INCLUDE 'ABC.FOR'		
	DIMENSION NO(1), N2(1),CXS(JIM,JJM,3),S2(1), M0(	1), M2(1), INN2	6
	1 VO(1), CO(JTL,1), CXR(1), CXT(1), HA(1	), PA(1) INN2	7
	CALL IFLUXN (N2, CO, VO, CXS, MO, M2, ITL, IN, JM	, CXR,CXT,XR,XD) HRA2	9
2	DO 4 I=1, INJM	INNZ	18
4	NO(1) = N2(1)	INN2	19
С	BEGIN FLUX CALCULATION	ENN2	20
	IKB = IM - 1	INN2	21
	JKB = JM - 1	INN2	22
C	FLUX CALCULATION USING SOR WITH LINE INVERSION	INNZ	23
C		INN2	24
С	CALCULATION OF BOTTOM BOUNDARY FLUX	INN2	25
	KI = 1	INN2	26
	KJ = 1	INN2	27
	I = K1 + (KJ - 1)*IM	INNZ	28
	HA(KI)= CXS(KI+1,KJ,1)/CXS(KI,KJ,3)	INN2	29
	PA(KI)= (S2(I) + CXS(KI,KJ+1,2)*N2(I+IM))/CXS(KI,	KJ,3) INNZ	30
	DO 5 KI = 2,1KB	INNZ	31
	$J = KI + (KJ - 1)^{-1}IN$	INN2	32
	HA(KI) = CXS(KI+1,KJ,1)/(CXS(KI,KJ,5)- CXS(KI,KJ,	1)*HA(KI-1)) INN2	33
	PA(RI) = (S2(I) + CRS(RI, RJ+1, 2) - N2(I+IR) + CRS(RI)	,KJ,1)"PA(KI-1))/INN2	34
	1 (CXS(KI,KJ,S) - CXS(KI,KJ,I)-MA(KI-I))	INNZ	30
	KI = IM	INNZ	- 30 77
	L = KI + (KJ - 1)"IM N3(1) = (03(1) + (V0(V) KI+1 3)*N3(1+1M)+ (V0(V)	INN2	3/
	$\pi c(i) = (ac(i) + ca(ki, kJ+1, 2)^{R2}(i+1) + ca(ki)$	, NU, 17"FA(NI"17)/ INN2	20
		1002	20
	00 10 KII - 2,1M	1882	-0

		KI = IM - KII + 1	1 NN2	41
		I = KI + (KJ - 1)*IH	INNZ	42
10		N2(I) = PA(KI) + HA(KI) * N2(I+1)	1NN2	43
		DO 15 KI = 1, IN	1NN2	44
		$I = KI + (KJ - 1)^{*}IH$	1NN2	45
		N2(1)=N0(1)+ORF*(N2(1)-N0(1))	INN2	46
	15	IF(N2(1).LE.0)N2(1)=ABS(N0(1)+(N2(1)-N0(1))/ORF)	1 NN2	47
С		PRINCIPAL FLUX LOOP	INN2	48
		DO 40 KJ = 2, JKB	INN2	49
		KI = 1	TNN2	50
		I = KI + (KJ - 1)*IM	I NN2	51
		HA(KI)= CXS(KI+1,KJ,1)/CXS(KI,KJ,3)	INN2	52
		PA(KI)= (S2(I) + CXS(KI,KJ,2)*N2(I-IM)+ CXS(KI,KJ+1,2)*N2(I+IM))/	I NN2	53
		1 CXS(KI,KJ,3)	LNN2	54
		DO 25 KI = 2,IKB	ENN2	55
		$I = KI + (KJ - 1)^{+}IH$	I NN2	56
		HA(KI) = CXS(KI+1,KJ,1)/(CXS(KI,KJ,3)- CXS(K1,KJ,1)*HA(KI-1))	INN2	57
25		PA(KI) = (\$2(I) + CXS(KI,KJ,2)*N2(I-IN)+ CXS(KI,KJ+1,2)*N2(I+IM)+	INNZ	58
		1 CXS(KI,KJ,1)*PA(KI-1))/(CXS(KI,KJ,3) - CXS(KI,KJ,1)*HA(KI-1))	ENN2	59
		KI = 1M	[NN2	60
		L = KI + (KJ - 1)*IH	I NN2	61
		N2(1) = (S2(1) + CXS(KI,KJ,2)*N2(1-IM)+ CXS(KI,KJ+1,2)*N2(1+IM)+	INN2	62
		1 CXS(KI,KJ,1)*PA(KI-1))/(CXS(KI,KJ,3) - CXS(KI,KJ,1)*HA(KI-1))	INNZ	63
		DO 30 KII = 2,IM	INN2	64
		KI = IM - KII + 1	INNZ	65
		I = KI + (KJ - 1)*IM	INNZ	66
30		N2(I) = PA(KI) + HA(KI) * N2(I+1)	INN2	67
		DO 35 KI = 1,1M	INN2	68
		I = KI + (KJ - 1)*IN	INN2	69
		N2(1)=N0(1)+ORF*(N2(1)-N0(1))	INN2	70
	35	[F(N2(1).LE.0)N2(1)=ABS(N0(1)+(N2(1)-N0(1))/ORF)	INN2	71
40		CONTINUE	I NN2	72
C		CALCULATION OF TOP BOUNDARY FLUX	LNN2	73
		KJ = JM	TNN2	74
		KI = 1	INN2	75
		1 = KI + (KJ - 1)*IH	1 NN2	76
		HA(KI)= CXS(KI+1,KJ,1)/CXS(KI,KJ,3)	1 NN2	77
		PA(KI) = (S2(I) + CXS(KI,KJ,2)*N2(I-IM))/CXS(KI,KJ,3)	INN2	78

Wednesday, February 21, 1990 12:31 pm

	DO 45 KI = 2. IKB	INN2	79
	$1 = KI + (KJ - 1)^* IM$	INNZ	80
	HA(KI) = CXS(KI+1,KJ,1)/(CXS(KI,KJ,3)- CXS(KI,KJ,1)*HA(KI-1))	INN2	81
45	PA(KI) = (S2(1) + CXS(KI,KJ,2)*N2(1-IM)+ CXS(KI,KJ,1)*PA(KI-1))/	INN2	82
	1 (CXS(KI,KJ,3) - CXS(KI,KJ,1)*HA(KI-1))	INN2	83
	KI = 1M	INN2	84
	$I = KI + (KJ - 1)^*IM$	INNZ	85
	N2(I) = (S2(I) + CXS(KI,KJ,2)*N2(I-IM)+ CXS(KI,KJ,1)*PA(KI-1))/	INN2	86
	1 (CXS(KI,KJ,3) - CXS(KI,KJ,1)*HA(KI-1))	INN2	87
	DO 50 K11 = 2, IN	INN2	88
	KI = IM - KII + 1	INN2	89
	$I = KI + (KJ - 1)^*IM$	INN2	90
50	N2(I) = PA(KI) + HA(KI) + N2(I+1)	INNZ	91
	DO 55 KI = 1,IN	INN2	92
	$I = KI + (KJ - 1)^*IH$	INN2	93
	N2(I)=N0(I)+ORF*(N2(I)-N0(I))	INN2	94
5	5 IF(N2(1).LE.0)N2(1)=ABS(N0(1)+(N2(1)-N0(1))/ORF)	INN2	95
	TEMP1 = .0	INN2	96
	DO 90 I = 1,IMJN	INNZ	97
	TEMP2 = ABS (1.0 - NO(1)/N2(1))	INN2	98
	IF (TEMP1 - TEMP2) 80,90,90	INN2	100
80	TEMP1 = TEMP2	INN2	101
90	CONTINUE	INN2	103
C		INN2	104
C	INNER ITERATION CONTROL	ENN2	105
133	LC = LC + 1	INNZ	106
	11 = 11 + 1	INNZ	107
	IF (II - G07) 533, 1033, 1033	INN2	117
555	IF(TEMP1-EPS) 633,635,2	1882	118
633	IF(G06) 735, 1055, 735	1992	119
733	[F(TEMP1-G06)1033,1033,2	INNZ	120
1033	CONTINUE		
	RETURN	INNZ	125
		INNZ	129
	SUBROUTINE INNERPONU, NZ, CXS, SZ, NO, MZ, VO, CO,JIM,JJM, JTL,	INNP	2
	I LAK, LAI, HA, PA)	INNP	د
	INCLUDE 'ABL.FOK'		

TLIST2.FOR Wednesday, February 21, 1990 12:31 pm Page 43

TLIS	T2.FOR Wednesday, February 21, 1990 12:31 pm	Page	44
	DIMENSION NO(1), N2(1),CXS(JIM,JJM,3),S2(1), MO(1), M2(1),	INNP	5
	1 VO(1), CO(JTL,1), CXR(1), CXT(1), HA(1), PA(1)	INNP	6
C	THIS SUBROUTINE CALCULATES THE FLUX FOR PERIODIC B. C.	INNP	
	CALL IFLUXN (N2, CU, VU, CXS, NO, N2, ITL, IN, JN, CXR,CXT,XR,XD)	HRAZ	8
2	DO 4 J=1, INJN	INNP	
4	NO(1) = NZ(1)	INNP	10
C	BEGIN FLUX CALCULATION	INNP	11
	IKB = IM - 1	INNP	12
	JKB = JM - 1	INNP	15
C	FLUX CALCULATION USING SOR WITH LINE INVERSION	INNP	14
C		INNP	15
C	CALCULATION OF LEFT BOUNDARY FLUX	INNP	16
		INNP	17
		INNP	10
	1 = K1 + (KJ - 1)-1H	INNP	- 19
	N2(1) = UXS(K1, 1, 2)/UXS(K1, KJ, 3)	INNP	20
	HA(KJ)= LAS(KI,KJ+1,2)/LAS(KI,KJ,3)	INNP	21
		1996	22
	IERP = RR(1)	INNP	23
	$PA(KJ) = (32(1) + UX3(K1+1,KJ,1)^{N2}(1+1))/UX3(K1,KJ,3)$	THINP	24
	12872 - PA(KJ)	INNP	25
		THE	20
	I ~ KI T (KJ T I)TIM HAVEIN - CVCVKI KIAT DAVCKOVKI KI TA- CVCVKI KI DAMAKKI-TAA	TMHD	21
	$m(ka) = cx_2(k_1, k_3+1, 2)/(cx_2(k_1, k_3, 3) = cx_2(k_1, k_3, 2) = m(k_3+1))$	THND	20
	ME(1) = GAO(K1, K0, E) = ME(1-1M)	THNP	20
	TEND1 + TEND1 + TEND19/1)	INND	31
	DAVKIN - (27(1) + CVC/KIA1 KI 1)#92(IA1) + CVC/KI KI 2)#DA/KI-1))	/TNND	32
	$\frac{1}{(rys(k1 k  3) - rys(k1 k  2) + ks(k1) + k$		33
	TEND2 = TEND2 + TEND*DA/KI)	TNND	34
5	TEND - TENDEUL (KI)	INND	
		1990	35
	1 = KI + (K) - 1)\$IW	INND	37
	TEMP1 = (TEMP1 + TEMP1#CVC/FT 1 2) + CVC/FT FT 2)#02(T-TM)	TNND	28
	H2/1) = (22/1) + (VC/FIA1 FI 1)*H2/141) + (VC/FI FI 2)*DA(FI-1)	TINND	30
	1 + CYS(KI 1 2)*TEMP2 )/	TNND	40
	1 (FYS(K) KJ 3) - FYS(K) KJ 2)*HA(KJ+1) + TENP1)	TNNP	41
	DO 10 KJJ = 2.JM	INNP	42
	I = KI + (KJ - 1) [*] IN I = KI + (KJ - 1) [*] IN N2(1) = (S2(1) + (XSY(L ¹ +1,KJ,1) [*] N2(1+1) + (XS(KI,KJ,2) [*] N2(I-1)) 1 + (XS(KI,LJ,2) [*] TEMP2 ) 1 (CKS(KI,KJ,3) - (XS(KI,KJ,2) [*] NA(KJ-1) - TEMP1) DO 10 KJJ = 2,JM	INNP INNP INNP INNP INNP INNP	37 38 39 40 41 42

	KJ = JM - KJJ + 1	INNP	43
	$I = KI + (KJ - 1)^{+}IN$	INNP	44
	KII = (JM-1)*IM + KI	INNP	45
10	N2(I) = PA(KJ) + HA(KJ) * N2(I+IM) + N2(I) * N2(KII)	INNP	46
	DO 15 KJ = 1,JM	INNP	47
	$I = KI + (KJ - 1)^*IM$	INNP	48
15	N2(1) = N0(1) + ORF*(N2(1) - N0(1))	INNP	49
С	PRINCIPAL FLUX LOOP	INNP	50
	DO 40 KI = 2, IKB	INNP	51
	KJ = 1	INNP	52
	I = KI + (KJ - 1)*IM	INNP	53
	HA(KJ)= CXS(KI,KJ+1,2)/CXS(KI,KJ,3)	INNP	54
	M2(I) = CXS(KI, 1, 2)/CXS(KI, KJ, 3)	INNP	55
	TEMP1 = N2(I)	INNP	56
	TEMP = HA(1)	INNP	57
	PA(KJ)= (S2(I) + CXS(KI,KJ,1)*N2(I-1) + CXS(KI+1,KJ,1)*N2(I+1))/	INNP	58
	1 CXS(K1,KJ,3)	INNP	59
	TEMP2 = PA(KJ)	INNP	60
	DO 25 KJ = 2,JKB	INNP	61
	I = KI + (KJ - 1)*IN	INNP	62
	HA(KJ) = CXS(KI,KJ+1,2)/(CXS(KI,KJ,3)- CXS(KI,KJ,2)*HA(KJ-1))	INNP	63
	N2(1) = CXS(K1,KJ,2) * N2(1-IM)/	INNP	64
	1 (CXS(KI,KJ,3)- CXS(KI,KJ,2)*HA(KJ-1))	INNP	65
	TEMP1 = TEMP1 + TEMP*N2(1)	LNNP	66
	PA(KJ) = (S2(I) + CXS(KI,KJ,1)*H2(I-1) + CXS(KI+1,KJ,1)*H2(I+1) +	INNP	67
	1 CXS(K1,KJ,2)*PA(KJ-1))/(CXS(K1,KJ,3) - CXS(K1,KJ,2)*HA(KJ-1))	INNP	68
	TEMP2 = TEMP2 + TEMP*PA(KJ)	INNP	69
25	TENP = TEMP*HA(KJ)	INNP	70
	KJ = JM	INNP	71
	$I = KI + (KJ - 1)^{+}IN$	INNP	72
	TEMP1 =(TEMP1 + TEMP)*CXS(KI,1,2) + CXS(KI,KJ,2)*N2(I-IM)	INNP	73
	N2(1) = (S2(1) + CXS(K1,KJ,1)*N2(1-1) + CXS(K1+1,KJ,1)*N2(1+1) +	INNP	74
	1 CXS(KI.1.2)*TENP2 +	INNP	75
	1 CXS(KI,KJ,2)*PA(KJ-1))/(CXS(KI,KJ,3) - CXS(KI,KJ,2)*HA(KJ-1) -	INNP	76
	2 TEMP1)	INNP	77
	DO 30 KJJ = 2,JM	INNP	78
	KJ = JM - KJJ + 1	INNP	79
	I = KI + (KJ - 1)*IN	INNP	80

Wednesday, February 21, 1990 12:31 pm Page 45

TLIST2.FOR

	Isiz.rok wearesoay, rec	adaly 21, 1990 12131 pil	ray	- 40
			11110	
10	N11 = (JH-1)-1H + N1 N2(1) = D4(K1) + N4(K1) + N2(14	1W) + N2(1) + N2(V(1))	TINNE	87
20	N2(1) = PR(KJ) + HR(KJ) * N2(1+	1R) + N2(1) - N2(K11)	THMP	97
	1 - KI + (KI - 1)#1M		THMP	8/
75	1 = KL + (KJ - 1) - IH N2(1) = N0(1) + OPS*(N2(1) - N0	(1))	TNND	85
~0	CONTINUE		TIMAD	86
ř	CALCULATION OF RIGHT BOUNDARY F	a 1 <b>0</b> 7	TNMP	87
	KI = IN		INNP	88
	K1 = 1		INNP	89
	$I = KI + (KJ + 1)^{+}IH$		INNP	90
	HA(KJ)= CXS(K1.KJ+1.2)/CXS(K1.K	(1.3)	INNP	91
	N2(1) = CXS(K1, 1, 2)/CXS(K1, KJ, 3)	b)	INNP	92
	TEMP1 = N2(1)	•	INNP	93
	TEMP = HA(1)		INNP	94
	PA(KJ)= (S2(1) + CXS(KI,KJ,1)*W	(2(1-1))/CXS(KI,KJ,3)	INNP	95
	TEMP2 = PA(KJ)		INNP	96
	DO 45 KJ = 2,JKB		INNP	97
	I = KI + (KJ - 1)*IH		INNP	98
	HA(KJ) = CXS(K1,KJ+1,2)/(CXS(KI	,KJ,3)- CXS(KI,KJ,2)*HA(KJ-1))	INNP	99
	N2(1) = CXS(K1,KJ,2) * N2(1-1M)	1	INNP	100
	1 (CXS(KI	,KJ,3)- CXS(KI,KJ,2)*HA(KJ-1))	INNP	101
	TEMP1 = TEMP1 + TEMP*N2(1)		INNP	102
	PA(KJ) = (S2(I) + CXS(KI,KJ,1)*	N2(1-1) + CXS(KI,KJ,2)*PA(KJ-1))/	I NNP	103
	1 (CXS(KI,KJ,3) - CXS(KI,KJ,2)*	HA(KJ-1))	INNP	104
	TEMP2 = TEMP2 + TEMP*PA(KJ)		INNP	105
45	TEMP = TEMP*HA(KJ)		INNP	106
	KJ = JM		INNP	107
	1 = KI + (KJ - 1)*IM		INNP	108
	TEMP1 =(TEMP1 + TEMP)*CXS(KI,1	<pre>,2) + CXS(KI,KJ,2)*N2(I-IM)</pre>	INNP	109
	W2(I) = (S2(I) + CXS(KI,KJ,1)*	M2(I-1) + CXS(KI,KJ,2)*PA(KJ-1)	INNP	110
	1 + CXS(K1,1,2)*TEMP2)/		INNP	111
	1 (CXS(K1,KJ,3) - CXS(K1,KJ,2)*	HA(KJ-1) - TEMP1)	<b>ENNP</b>	112
	DO 50 KJJ = 2,JH		INNP	113
	KJ = JM - KJJ + 1		INNP	114
	$I = KI + (KJ - 1)^{+}IH$		INNP	115
	KII = (JN-1)*IM + KI		INNP	116
50	N2(1) = PA(KJ) + HA(KJ) + N2(1+	IM) + W2(I) * N2(KII)	INNP	117
	DO 55 KJ = 1,JH		INNP	118

.

nesday, February 21, 1990 12:31 pm

	$I = KI + (KJ - 1)^*IM$	INNP	119
55	N2(I) = NQ(I) + ORF*(N2(I) - NO(I))	INNP	120
С	CALCULATION OF ERROR CRITERION	INNP	121
	TEMP1 = .0	INNP	122
	DO 90 1 = 1,IMJM	INNP	123
	TEMP2 = ABS (1.0 - NO(1)/N2(1))	INNP	124
	IF (TEMP1 - TEMP2) 80,90,90	INNP	125
80	TEMP1 = TEMP2	INNP	126
90	CONTINUE	INNP	128
С		INNP	129
с	INNER ITERATION CONTROL	INNP	130
133	LC = LC + 1	INNP	131
	II = II + 1	INNP	132
	IF (II - GO7) 533, 1033, 1033	INNP	139
533	IF (TEMP1 - EPS) 633,633,2	INNP	140
633	IF(G06) 733, 1033, 733	INNP	141
733	IF (TEMP1 - GO6) 1033, 1033, 2	INNP	142
1033	CONTINUE		
	RETURN	INNP	144
	END	INNP	145
	SUBROUTINE INNERT(MO, M2, CXS, VO, CO, AO, Z5, R5, R4, Z4, A1,	INNT	2
	2 JIN, JJN, JTL, CXR, CXT)	INNT	3
	DIMENSION MD(1), M2(1),CXS(JIM,JJM,3),V0(1), CO(JTL,1),	INNT	4
	1 A0(1), Z5(1), R5(1), R4(1), Z4(1), A1(1),CXR(1), CXT(1 INCLUDE 'ABC.FOR'	) [ NNT	5
С	THIS SUBROUTINE CALCULATES COEFFICIENTS FOR TRIANGULAR GEOMETRY	INNT	7
	DO 45 KJ = 1, JN	INNT	8
	DO 45 KI = 1, IN	1NNT	9
	TEMP = KI - 2* (KI/2) - (KJ - 2* (KJ/2))	INNT	10
	TEMP = ABS(TEMP)	INNT	11
	I = KI + (KJ-1) + IM	INNT	12
	ITEMP = NO(1)	INNT	13
	ITEMP = M2(ITEMP)	INNT	14
	CXS(KI,KJ,3) = VO(1)*(CO(IHT,ITEMP) - CO(IHS,ITEMP))	INNT	15
	IF(I - 1) 45, 45, 18	INNT	16
18	ITEMP1 = MO(I-1)	INNT	17
	ITEMP1 = M2(ITEMP1)	INNT	18

Wednesday, February 21, 1990 12:31 pm

TLIST2.FOR

	IF(ITEMP - ITEMP1) 25, 20, 25	INNT	19
20	CXS(KI,KJ,1) = AO(KI)/(2.*CO(IHT,ITEMP)*Z5(1))	INNT	20
	GO TO 30	INNT	21
25	CXS(KI,KJ,1) = A0(KI)/((CO(IHT,ITEMP1) + CO(IHT,ITEMP))*Z5(1))	INNT	22
30	IF(1 - IM) 45, 45, 32	ENNT	23
32	ITEMP3 = MO(I - IM)	INNT	24
	ITEMP3 = M2(ITEMP3)	INNT	25
	IF(ITEMP - ITEMP3) 40, 35, 40	INNT	26
35	CXS(KI,KJ,2) = A1(KI)*TEMP/(2.* CO(1HT,ITEMP)*Z5(1))	INNT	27
	GO TO 45	INNT	28
40	CXS(KI,KJ,2) = A1(KI)*TEMP/((CO(1HT, ITEMP3)+CO(1HT, ITEMP))*25(1))	INNT	29
45	CONTINUE	INNT	30
	DO 200 KJ = 1, JM	INNT	31
	DO 200 KI = 1, IM	INNT	32
	TEMP = KI - 2*(K1/2) - (KJ-2*(KJ/2))	INNT	33
	TEMP = ABS(TEMP)	INNT	34
	$I = KI + (KJ-1)^{+}IN$	INNT	35
	ITEMP = MO(I)	INNT	36
	(TEMP = M2(ITEMP)	INNT	37
	TEMP1 = CXS(KI+1,KJ,1)	INNT	38
	TEMP2 = CXS(KI,KJ+1,2)	INNT	39
	IF(KJ-1) 65, 65, 100	ENNT	40
65	1F(804-1) 90, 95, 95	ENNT	41
90	CXS(KI,KJ,2) = A1(KI)*TEMP/(3.*CO(IHT,ITEMP)*(25(1)/3. + .71/	ENNT	42
	1 CO(INT,ITEMP)))	INNT	43
	GO TO 125	INNT	44
95	CXS(K1,KJ,2) = .0	INNT	45
	GO TO 125	1NNT	46
100	IF(KJ - JM) 125, 105, 105	INNT	47
105	IF(B03 - 1) 115, 120, 120	INNT	48
115	TEMP = KI - 2*(KI/2) - (KJ + 1 - 2*((KJ+1)/2))	INNT	49
	TEMP = ABS(TEMP)	INNT	50
	TEMP2=A1(KI)*TEMP/( 3.*CO(1KT, ITEMP)*(Z5(1)/3.+.71/CO(1KT, ITEMP)))	INNT	51
	CXT(K1) = TEMP2	INNT	52
	GO TO 125	ENNT	53
120	TEMP2 = .0	INNT	54
	CXT(KI) = TEMP2	INNT	55
125	IF(KI-1) 130, 130, 145	INNT	56

Wednesday, February 21, 1990 12:31 pm Page 48

130         IF(801)         135, 135, 140         INNT 5           135         CXS(K1,KJ,1) = AO(K1)/(3.*CO(IHT,ITEMP)*(25(1)/3.         INNT 5           1 + .71/CO(IHT,ITEMP))         INNT 5           0 CXS(K1,KJ,1) = 0.         INNT 6           00 CXS(K1,KJ,1) = 0.         INNT 6           010 CXS(K1,KJ,1) = 0.         INNT 6           145         IF(K1 - IM) 165, 150, 150         INNT 6           150         IF(4022) 155, 155, 160         INNT 6           150         TENT = AO(K1+)/(3.*CO(IHT,ITEMP)*(25(1)/5.+.71/CO(IHT,ITEMP)*(110,ITEMP)*(25(1)/5.+.71/CO(IHT,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEMP)*(110,ITEM	49
135         CXS(KI,KJ,I) = AO(KI)/(3.*CO(INT,ITEMP)*(25(1)/3.         INNT 5           1         +.7/(CO(INT,ITEMP)))         INNT 5           GD TO 165         INNT 6           GD TO 165         INNT 6           GD TO 165         INNT 6           GD TO 150         INNT 6           150         IF(KI - IN) 165, 150, 150         INNT 6           150         IF(KI - IN) 165, 155, 156, 150         INNT 6           155         TEMPI = AO(KI/S), 3.50, 150         INNT 6           155         TEMPI = AO(KI/S), 3.50, 150         INNT 6	57
1         +.77/CO(ITI,ITEMP)))         INHT 5           00 TO 165         INHT 6           100 CXSYCI, KJ, 11 = .0         INHT 6           00 TO 165         INHT 6           145 IF(KI - IM) 165, 150, 150         INHT 6           150 IF(K022) 155, 155, 160         INHT 6           155 TEMPI = AOK(x1+)/(X3*CO(IHT,ITEMP)*(25(1)/5.+.71/CO(IHT,ITEMP))) INHT 6	58
GO TO 165         INNT 6           100 CXS(KI,KI,1) = .0         INNT 6           GO TO 165         INNT 6           145 IF(K1 - IN) 165, 150, 150         INNT 6           150 IF(R022) 155, 155, 160         INNT 6           155 TENFI = A0K(L+1)/(3.*CO(INT,ITENP)*(25(1)/3.+.71/CO(INT,ITENP))         INNT 6	59
140         CXS(K; k, j, j) = .0         INNET 6           00         T0 105         INNET 6           145         IF(KK1 - IN) 165, 150, 150         INNET 6           150         IF(K02) 155, 155, 160         INNET 6           155         TENPE = A0(K1+1)/(3.*0C(IHT, ITENP)*(25(1)/3.+.71/C0(IHT, ITENP))) INNET 6         INNET 6	60
GO TO 165 INNI 6 145 IF(KI - IN) 165, 150, 150 INNI 6 150 IF(B02) 155, 155, 160 INNI 6 155 TENP1 = A0(KI+1)/(3.*CO(INT,ITENP)*(25(1)/3.+.71/CO(INT,ITENP))) INNI 6	61
145 IF(KI - IM) 165, 150, 150 IMI 6 150 IF(802) 155, 155, 156 IMI 6 155 TEMPI = A0(KI+1)/(3.*CO(IHT,ITEMP)*(25(1)/3.+.71/CO(IHT,ITEMP))) IMI 6	20
150 [F(802) 155, 155, 160 [INT 6 155 TEMP1 = A0(K1+1)/(3.*CO(IHT,ITEMP)*(Z5(1)/3.+.71/CO(IHT,ITEMP))) [INT 6	~
155 [EMP] = AU(KI+1)/(3.*CU(IHI,ITEMP)*(25(1)/3.*./1/CU(IHI,ITEMP))) INNI 0	4
THUT 4	44
	47
	48
	60
	70
1 + TEMD1 + TEMD2	71
200 CONTINUE INT 7	77
	73
FMD INNT 7	74
SUBROUTINE INP	2
INCLUDE 'ABC. FOR'	
COMMW/PACKED/A(50000)	
DIMENSION IDUM(25), DUM(12)	
C THIS SUBROUTINE CONTROLS THE READING OF ALL INPUT DATA INP	8
NCR1 = 5	10
	10
	12
	15
	16
10 EODWAT /26Y /* * * * * P 2 D B * * * * * */)	
PEAN(NINP 20 END=14) (10(1), 1=1,20)	
CO TO 15	
14 STOP	
15 CONTINUE	

TLIS	ST2.FOR	Wednesday, February 21, 1990 12:31 pm	Page	50
20	FORMAT (20A4)	1		
	WRITE(NOUT,3	(ID(I),I=1,20)		
30	FORMAT (1X,	2044//)		
	1=13		HRA2	
	CALL REATZ (	' INP', IDUN(1),1)		
	1=14		HRAZ	
	LEAL REALZ (	. INP', IDUR(14),I)	HKAZ	
	CALL REAG2 (	1 INP/ DUM(1) 1)		
	CALL REAG2	( INP/, DUN(7),1)		
	WRITE (NSCRA	(IDUNCI), [=1.27)	HRA2	
	WRITE (NSCR	T) (DUN(I), 1=1.12)		
	REWIND NSCRA	IT IT		
	READ (NSCRAT	> A02, 104, S02, IGH, IHT, WXCM, MCR, G07, D05, MAXT,	HRA2	
	1 NPRT, NO7, 1	IPUN, IGE, ITOR, NACT, IN, JN, IZN, MT, HO1, BO1,	HRA2	
	2 802, 803, 6	104,12, JZ		
	WRITE (NOUT, 6	0) A02, 104, S02, IGH, IHT, NXCM, MCR	HRA2	
60	FORMAT			
	1 16,' A02	0/1=REGULAR CALCULATION/ADJOINT CALCULATION'/		
	2 16,' 104	EIGENVALUE TYPE (0/1/2/3/4/5=SOURCE/K/ALPHA/CONC/'		
	3.'DELTA/BUCH	017		
	5 16,' SO2	PARAMETRIC EIGENVALUE TYPE (0/1/2=NONE/K/ALPHA)'/		
	716, IGM	NUMBER OF GROUPS'/		
	4 16,' INT	POSITION OF SIGNA TRANSPORT'/	HRA2	
	9 16,' NXCM	NUMBER OF DOWNSCATTERING TERMS'/		
	2 16,' MCR	NUMBER OF MATERIALS FROM CARDS/TAPE (+N/-N)')		
	WRITE (NOUT,	70) G07, D05, MAXT, NPRT, M07, NPUN		
70	FORMAT (			
	1 16,' G07	INNER ITERATION MAX PER GROUP (IF NEG, ALT DIR)'/		
	3,16,' DO5	MAXIMUN NUMBER OF OUTER ITERATIONS'/		
	5 16,' MAXT	MAXIMUM TIME IN MINUTES (IF D, NO EFFECT)'/		
	7 16,' NPRT	PRINT OPTION (0/1/2/3=NINI/MIDI/XS/FLUXES)'/		
	9 16,' M07	FLUX GUESS (0/1=NONE/FLUX FROM TAPE 14)//		
	2 16,' NPUN	FLUX DUMP (0/1=NONE/FLUX DUMP TO TAPE 16)'/)		
	WRITE(NOUT,8	U) IGE, ITOR , NACT, IM, JM, IZM, MT, NO1	HRAZ	60
80	FORMAT(		INP	61
	1 10, ' 1GE	GEOMETRY (U/1/2/3=X-T/R-Z/R-THETA/TRIANGULAR)//		
	4 10,* 1 TOR	TOROIDAL SPECIFIER (U/T=R-THETA/TOROIDAL)//	HKA2	

```
Page 51
TLIST2.FOR
                      Wednesday, February 21, 1990 12:31 pm
    6 16.' NACT ACTIVITIES (0/>0/=NO EFFECT/READ TABLE POSITIONS'
                                                                     HRA2
    8,' FOR ACTIVITIES)'/
                                                                     HRA2
    3 16, ' IM NUMBER OF RADIAL INTERVALS'/
            JH NUMBER OF AXIAL INTERVALS'/
    5 16.1
    7 16. IZM NUMBER OF ZONES'/
    9 16, ' MT TOTAL NUMBER OF MATERIALS INCLUDING MIXES'/
    2 16,' M01
                 NUMBER OF MIXTURE SPECIFICATIONS')
     WRITE(NOUT,90) 801, 802, 803, 804, IZ, JZ
                                                                     INP
                                                                         74
                                                                     INP 75
     FORMATC
90
    1 16,' BO1 LEFT BOUNDARY CONDITION (0/1=VACUUN/REFLECTIVE)'/
    3 16, ' BO2 RIGHT BOUNDARY CONDITION (0/1=VACUUM/REFLECTIVE)'/
    5 16.' BO3 TOP BOUNDARY CONDITION (0/1/2=VACUUM/REFLECT/'
    6.'PERIOD1C)'/
    7 16. BO4 BOTTOM BOUNDARY CONDITION (0/1/2=VACUUH/REFL/'
    8, 'PERIODIC)'/
    9 16, ' 12 NUMBER OF RADIAL ZONES (DELTA OPTION ONLY) '/
    2 16, ' JZ NUMBER OF AXIAL ZONES (DELTA OPTION ONLY)'/)
     READ(NSCRAT) EV, EVM, S03, BUCK, LAL, LAH, EPS, EPSA, G06,
                                                                     IND OO
     1
                     POD, ORF, S01
     REWIND NSCRAT
                                                                     INP 101
     WRITE(NOUT.110) EV. EVN. S03. BUCK. LAL. LAH
                                                                     INP 102
110 FORMAT(
    1 1X, 1PE11.4, ' EV FIRST EIGENVALUE GUESS'/
    3 1x, 1PE11.4, ' EVH EIGENVALUE HODIFIER'/
    5 1x, 1PE11.4, ' S03 PARAMETRIC EIGENVALUE'/
    7 1X, 1PE11.4, BUCK BUCKLING (CH-2) /
    9 1X. 1PE11.4. / LAL LAMBDA LOWER'/
    2 1X.1PE11.4./ LAH LAMBDA UPPER//)
     WRITE (NOUT, 120) EPS, EPSA, GO6, POD, ORF, SO1
                                                                     INP 116
120 FORMATC
     1 1X, 1PE11.4, ' EPS EIGENVALUE CONVERGENCE CRITERION'/
    3 1X, 1PE11.4. / EPSA PARAMETER CONVERGENCE CRITERION //
    5 1X.1PE11.4.4 G06
                         INNER ITERATION TEST (IF ZERO, NO TEST)'/
    7 1X, 1PE11.4, ' POD PARAMETER OSCILLATION DAMPER'/
    9 1X, 1PE11.4, ' ORF
                         OVER-RELAXATION FACTOR'/
    2 1X, 1PE11.4.' SO1 -N/+N=POWER (NWT)/NEUTRON SOURCE RATE')
     IF(ITOR.EQ.1)THEN
                                                                     HRA2
     1=1
                                                                     HRA2
```

TLIST	2.FOR Wedn	esday,	February	21,	1990	12:31	pm	Page	52
	CALL RREAG2 (' INP' WRITE(6,11)BIGR	, BIGR	,1)					HRA2 HRA2	
11	FORMAT(2X,'BIGR=',E13	.6)						HRA2	
	ELSE							HRA2	
	B1GR=1.0E+20							HRA2	
	ENDIF								
	S04=0								
	IF (G07.LE.0) \$04=1								
	G07=ABS(G07)								
	MTP=0								
	IF (MCR .LE. 0) NTP=-	MCR							
	IF (MCR .LE. 0) MCR=0								
	IF(IZ + JZ) 230, 210	, 230						INP	129
210	(F(104 - 4) 230, 220	, 230						INP	130
220	CALL ERRO2 ('***104',	220,1)						HVX	
230	CONTINUE							INP	152
	IF(\$02) 240, 260, 2	40						INP	155
240	IF(\$03) 260, 250, 26	0						INP	1.54
250	CALL ERROZ ('***SUS',	250,1)							
260	CONTINUE							196	130
	FEF = 200.0							196	170
	TSD = FEF*1.602*10.**	(-19)						180	130
CCCC	COMMENT OUT CALL SET	TH ON 1	A VAX					INRAC NO.4	,
C	CALL SETTIM (0,0,0,0	,						1100	140
	THE - 147-1							LINPA	141
								HPA	142
~	11L - HAGH + 1H3							HDA	14
-	181 - 4								
3	170 - 174 + 1								144
	10 - 10 - 1							IND	145
	IP = IN + 1							TND	146
								. AF	140
	ICP = ICM + 1							INP	148
	IGFP = IGF + 1							INP	149
								INP	150
								INP	151
	LAP = .0							INP	152
	LAFV								

TLIST	T2.FOR Wednesday, Februar	y 21,	1990	12:31	pm -	Pag	e 53
	LAPP = .0					INP	153
	LAR = 0.0					INP	154
	DAY = 0.0					INP	155
	ALA = .0					INP	156
	LC = 0					INP	157
	P02 = 0					INP	158
	CVT = 0					INP	159
	CNT = 0					INP	160
	NCON = 0					INP	161
	T06 = 0					INP	163
	IF(104-4) 310, 300, 310					INP	164
300	T06 = 1					INP	165
310	CONTINUE					INP	166
	ORFP =1.0*(ORF - 1.0) + 1.0					INP	167
С	COMPUTE DIMENSION POINTERS						
	LHOLN = 1					HVX	
	LATW = LHOLN + 2*ML						
	LALAM = LATW + ML					HVX	
	LCO = LALAN + ML						
	LNO = LCO + ITL*NT					INP	174
	LN2 = LNO + IMJM					1NP	175
	LAO = LN2 + IMJM					INP	176
	LA1 = LA0 + IP					INP	177
	LFO = LA1 + IM					INP	178
	LF2 = LFO + IMJM					INP	179
	LIO = LF2 + [MJM					INP	180
	LI1 = LIC + MO1					INP	181
	LI2 = LI1 + MO1					INP	182
	LI3 = LI2 + M01					INP	183
	LK6 = L[3 + M01					INP	184
	LK7 = LK6 + 1GN					INP	185
	LNO = LK7 + IGN					INP	186
	LM2 = LMO + IMJM					INP	187
	LRO = LM2 + IZM					INP	188
	LR1 = LRO + IP					INP	189
	LR2 = LR1 + IP					INP	190
	LR3 = LR2 + TO6*IN					INP	191
	LR4 = LR3 + T06*1Z					INP	192

	LR5 = LR4 + IM	INP	193
	LS2 = LR5 + IM	INP	194
	LVO = LS2 + IMJM	INP	195
	LV7 = LVO + INJM	INP	196
	LZO = LV7 + IGH	INP	197
	LZ1 = LZO + JP	INP	198
	LZ2 = LZ1 + JP	INP	199
	L23 = L22 + JM*106	INP	200
	LZ4 = LZ3 + JZ*T06	INP	201
	L25 = L24 + JN	INP	202
	LCXS = LZ5 + JM	INP	203
	LVOL = LCXS + 1MJM*3	INP	204
	LMASS = LVOL + 12M	. INP	205
	LMATN = LMASS + ML*IZM	INP	206
	LNBR = LMATN + ML	INP	207
	LLD = LNBR + ML	INP	208
	LLCN = LLD + ML	INP	209
	LLFN = LLCN + ML*2	INP	210
	LPHIB = LLFN + ML*7	INP	211
	LAXS = LPHIB + IZN	INP	212
С	LT6=LAXS+ML*IZM	HRA	
С	LT8=LT6+HL*IZH	HRA	
C	LNTWON=LT8+ML*IZM	HRA	
CC	LFXS = LAXS + ML*IZM	11	P 2
13			
C Z	LFXS = LNTWON + ML*IZM	HRA	21
,	LACT=LAXS+HL*1ZH	HRA3	
	LACPOS=LACT+HL*IZN*NACT*NL	н	RA3
	LFXS=LACPOS+NACT	HRA3	
	LMASSP = LFXS + ML*IZM	INP	214
	LCXR = LMASSP + ML*IZM	INP	215
	LCXT = LCXR + JM	INP	216
	LHA = LCXT + IN	INP	217
	LPA = LHA + MAXO(IM.JH)	INP	218
	LGAM=LPA + MAXQ(IM.JN)	INP	219
	LAST = LGAH + IZM		
	ITEMP = 1 + ML*(3+IGM*ITL) + IABS(MTP) + MT*ITL		

Wednesday, February 21, 1990 12:31 pm

TLIST2.FOR Wednesday, February 21, 1990 12:31 pm	Page	e 55
LAST-MAXO(LAST, JTEMP) WRITE (HOUT, 316) LAST 315 IF (LAST.GT.50000) CALL ERRO2 (* INP*, 315,1) 316 FORMAT(7MOLAST = ,17) DO 317 1=1, ITEMP		
317 A(I)=0.0 C DEAD CROSS SECTIONS AND WRITE CROSS SECTION TAPE	INP	237
CALL S860(A(LNO).A(LCO).ITL.IGH.HT.HL.A(LATW).A(LHOLN).A(LALA	4))	
DO 325 I=LCO, LAST	W	LP
325 A(1) = .0	INP	240
C READ FLUXES AND WRITE FLUX TAPE	INP	241
CALL SB62(A(LNO), A(LRO), A(LZO))	INP	242
C READ EXTERNAL SOURCE	INP	243
IF (104) 328,326,328	[NP	244
326 CALL \$864 (A(L\$2))		
328 CONTINUE	INP	246
WRITE(NOUT, 330)	INP	247
330 FORMAT(51HOMESH BOUNDARIES (R0/20=RADIAL POINTS/AXIAL POINTS)	) INP	248
C READ RADIAL INTERVALS	INP	249
CALL REAG2(' RO',A(LRO),IP)	HVX	
C READ AXIAL INTERVALS	INP	251
CALL REAG2(' ZO',A(LZO),JP)	HAX .	
C READ ZONE NUMBERS	INP	253
1F (NPRT .GT. 1) GO TO 335		
CALL REARIZ (' INP',A(LMO),IMJM)	HRAZ	
60 10 545		751
335 WRITE(NOUT, 340)	INP	224
340 FORMAT(JUNUZUNE NUMBERS BT MESH INTERVAL)	UDA2	200
CALL REARIZ (* HU", A(LHU), IHJH)	IND	257
C READ MATERIAL NUMBERS	INP	258
343 WRITE(ROUT, 330)	THO	250
SOU FORMAT(ZOROMATERIAL NOMBERS BT ZONE)	UDA2	237
12/10/-51 351 352 351	110	261
351 IE/BICK) 352 358 352	INP	262
352 UDITE/WAIT 3541	INP	263
354 FORMAT(30HOBUCKLING COEFFICIENTS BY ZONE)	INP	264

TLIS	12.FOR Wednesday, February 21, 1990 12:31 pm	Pag	e 56
	CALL REAG2(' GAM', A(LGAM),IZM)	нух	
358	CONTINUE	INP	266
С	READ FISSION FRACTIONS	INP	267
	WRITE(NOUT, 360)	INP	268
360	FORMAT(17HOFISSION SPECTRUM)	INP	269
	CALL REAG2(' K7',A(LK7),IGM)	HAX	
С	READ VELOCITIES	1NP	271
	IF (104 .EQ. 2 .OR. SO2 .EQ. 2) GO TO 365		
	GO TO 375		
365	WRITE(NOUT, 370)	INP	272
370	FORMAT(17HONEUTRON VELOCITY)	INP	273
	CALL REAG2(' V7',A(LV7),IGN)	HVX	
375	IF(M01) 400, 400, 380	INP	275
380	WRITE(NOUT, 390)	INP	276
390	FORMAT ('OMIXTURE SPECIFICATIONS (10/11/12=MIX NUMBER/MAT. NUMBER	1	
	1FOR MIX/WAT. DENSITY)')		
	CALL REARI2(' 10',A(L10),M01)	HRA2	
	CALL REARIZ(' 11',A(L11),M01)	HRAZ	
	CALL REAG2(' 12',A(L12),H01)	HVX	
400	CONTINUE	1NP	282
С	CHECK FOR DELTA CALCULATION	INP	283
	1F(104 - 4) 440, 410, 440	1NP	284
410	WRITE(NOUT, 420)	INP	285
420	FORMAT (1HO, 'DELTA OPTION DATA (R2/R3=RADIAL ZONE NUMBERS/ZONE HC	0	
	1IFIERS)')		
	CALL REARIZ(' R2', A(LR2), IM)	HRA2	
	CALL REAG2(' R3',A(LR3),IZ)	HAX	
	WRITE(NOUT,430)	HRA2	
430	FORMAT (1H0, 'DELTA OPTION DATA (22/23=AXIAL ZONE NUMBERS/ZONE HOL	1	
	1FIERS)')		
	CALL REARIZ(' Z2', A(LZ2), JM)	HRA2	
	CALL REAG2(' Z3',A(LZ3),JZ)	HVX	
440	CONTINUE	INP	292
	IF(NACT.GT.O)THEN	HRA3	
	WRITE(NOUT,490)	HRA3	
490	FORMAT (1HO, 'ACTIVITY POSITION DATA')	HRA3	
	CALL REARIZ(' ACPOS', A(LACPOS), NACT)	HRA3	
	WRITE(NOUT,*)	HRA3	

TLIS	T2.FOR Wednesday, February 21, 1990 12:31 pm	Pag	e 57
	ENDIF CALL MAPR(A(LNO),A(LM2),IN,JN,A(LCO))	HRA3 INP	300
	RETURN END Subroutine inpb(nath,nbr,ld,lcn,lfn,alam,holn,jml,12) Include 'Abc.for'	INP Inpb	302 2
	DIMENSION MATN(1), NBR(1), LD(1),LCN(JNL,1),LFN(JNL,1), ALAM(1), 1 HOLN(JNL,1), I2(1) DIMENSION INTER(1)	INPB	4
c	THIS SUBROUTINE READS AND PRINTS THE BURNUP DATA CALL REAT2 ('INPB', ITEMP, 1)	INPB	6
	DELT = .0 IF (ITEMP .NE. 0) CALL REAG2 (' INPB',DELT,1)		
	DAY = DAY + DELT	INPB	9
	CVT = 0	INPB	10
	CNT = 0	1 NPB	11
	P02 = 0	1 NPB	12
	ALA = 0.0	INPB	13
	LAP = 0.0	INPB	14
	LAPP = 0.0	INPB	15
	LAR = 0.0	INPB	16
	KPAGE = 100	1NPB	17
	IF(ITEMP) 100, 15, 20	WLP	
15	NCON = ITEMP	INPB	19
	GO TO 100	INPB	24
20	NCON = ITEMP	INPB	25
	DO 40 W = 1, NCON	INPB	26
	REWIND NSCRAT		
	CALL REA12 (' INPB', IDUN(1), 12)		
	WRITE (NSCRAT) (IDUM(I), I=1, 12)		
	REWIND NSCRAT		
	READ (NSCRAT) NATN(N),NBR(N),LD(N),(LCN(N,K),K=1,2),(LFN(N,K),	INPB	28
	1 K=1,7)	INPB	29
	REWIND NSCRAT		
	ITENP=MATN(N)		
	CALL REAGZ (' INPB', ALAM(ITEMP), 1)		
40	CONTINUE		

TLIST2	FOR Wednesday, February 21, 1990 12:31 pm	Page	58
	WRITE(NOUT,60)		30
60	FORNAT(12H1BURNUP DATA///)	INPB	31
	RITE(NOUT,70)	INPB	52
70	FORMAT(1H , BURNABLE MAT. NAME LAMBDA NER		
1	,' SOURCE ISOTOPE FOR *****/		
2	TH , ISOTOPE NO. (DATS-1) DECAT,		
1	2X, CAPIURE FISSION'/)	INDE	30
	DU YU NEI, NUUN	LAPO	37
80	FURMAT (10,38,13,38,284,18,29.2,28,13,28,13,28,213,28,113)	INDE	42
1	$\frac{1}{100} = \frac{1}{100} = \frac{1}$		
	$ROR(H)$ , $LO(H)$ , $(LOH(H)K)$ , $K^{-1}(2)$ , $(LOR(H)K)$ , $K^{-1}(1)$		
00	ALAN/ITEND) - ALAN/ITEND//3600 #24 )	INPR	46
100		WLP	
100	PFTIPN		
	END	INPB	48
	SUBROLITINE MAPR (NO.N2.JIN.JJM.K)	MAR .	1
	INCLUDE 'ABC.FOR'		
	DINENSION HO(JIN.JJN), M2(1), K(1)	MAR	3
	DIMENSION FMT1(3), FMT2(3), FMT3(3), PARK(2), PICT(2), MARK(2)	MAR	4
	CHARACTER*6 FMT1, FMT2, FMT3, MARK, PARK, PICT, MARKI	HVX	
	DATA FMT1/ (5x. 13', ', 28- ,', ') '/	HVX	
1	DATA FHT2/(10X, ',' ',') '/	HVX	
1	DATA FMT3/(10X, ',' ',') //	HVX	
1	DATA WARK/	HVX	
1	DATA PARK/'60A2 )','40A3 )'/	HVX	
1	DATA PICT/'6012 )','4013 )'/	HVX	
C I	PRODUCE A PICTURE PRINT BY ZONE AND MATERIAL	MAR	11
1	N1=0	MAR	22
1	DO 100 KZM=1,12M	MAR	23
100	NI=MAXO(NI,M2(KZM)/100)	MAR	24
1	DO 110 I=1,IM	MAR	25
	DO 110 J=1,JM	MAR	26
110	NI=MAXO(N1,MO(I,J)/100)	MAR	27
	NI=N]+1	MAR	28
	IF (N1.GT.2) NI=2	MAR	29
1	FWT1(3)=PICT(NI)	MAR	30

	FWT2(3)=P1CT(W1)	MAR	31
	FMT3(3)=PARK(N1)	MAR	32
	MARKI=NARK(NI)	MAR	33
	NN≠1	MAR	34
	MH=60	MAR	35
	JF (NI.EQ.2) MM=40	MAR	36
120	IF (HM.GT.IM) NM=IM	MAR	37
	WRITE (NOUT, 190) (ID(I), I=1,20)	MAR	38
	DO 130 JJ=1, JM	MAR	39
	J=JH-JJ+1	MAR	40
130	WRITE (NOUT,FNT1) J,(MO(I,J),I=NN,MM)	MAR	41
	WRITE (NOUT,FNT3) (MARKI,I=NN,MM)	MAR	42
	WRITE (NOUT,FMT2) (I,I=NN,MM)	MAR	43
	WRITE (NOUT,200)	MAR	44
	IF (MM.EQ.IM) GO TO 140	MAR	45
	NN=HH+1	MAR	46
	MH=MH+HH - 1	MAR	47
	GO TO 120	MAR .	48
140	CONTINUE	MAR	49
	NN=1	MAR	50
	NH=60	NAR	51
	IF (NI.EQ.2) HH=40	NAR	52
150	IF (NN.GT.IN) NH=IM	MAR	53
	WRITE (NOUT,190) (ID(1),1=1,20)	MAR	54
	DO 170 JJ=1,JM	NAR	55
	\$+LL-ML=L	NAR	56
	DO 160 L=NN,MM	MAK	21
	N=MO(L,J)	MAR	58
160	K(L)=IABS(M2(N))	MAK	27
170	WRITE (NOUT, FWT1) J, (K(L), L=NN, MM)	MAK	00
	WRITE (NOUT, FMT3) (MARKI, I=NN, MH)	MAK	61
	WRITE (NOUT,FMT2) (1,1=NK,MH)	MAK	~~
	WRITE (NOUT, 200)	MAK	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	IF (MM.EQ.IM) GO TO 180	MAR	45
	NN=###+1	MAR	44
		MAR	47
	GO TO 150	MAK	20
180	RETURN	MAR	08

Wednesday, February 21, 1990 12:31 pm

TLIST2.FOR
TLIS	ST2.FOR Wednesday, February 21, 1990 12:31 pm	Page	e 60
190 200	FORMAT (1H1,20A4///) Format (2H a/2H x/2H 1/2H A/2H L//BH RADIAL)	MAR MAR	70 71
	FND	MAR	72-
	SUBROUTINE MARCH(PHIB.MATN.FXS.AXS.VOL.MASS.MASSP.ALAM,LD,LCN,	MARC	2
	1 LFN.JNL.10.11.12.M2)	MARC	3
	DINENSION PHIB(1), WATH(1), FXS(JHL,1), AXS(JHL,1), VOL(1),	MARC	4
	1 MASS(JML,1), MASSP(JML,1), ALAM(1), LD(1), LCN(JML,1),	MARC	5
	2 LFN(JHL,1),10(1), 11(1), 12(1), W2(1) INCLUDE 'ABC.FOR'	MARC	6
			8
L.	TEND - DELT # 24 # 3600 / 10	MARC	ō
	TEMP1 = 0	MARC	10
	00 5 K7 = 1 17M	MARC	11
	PHIR(KZ) = PHIR(KZ) = 10.**(-24)	MARC	12
	DO 5 KN = 1.NCON	MARC	13
	LN = MATN(KN)	MARC	14
5	TENP1 = TEMP1 + FXS(KN,KZ)*PHIB(KZ)*NASS(LN,KZ)*VOL(KZ)	MARC	15
	DO 200 KT = 1,10	MARC	16
	TEMP3 = .0	MARC	17
	DO 20 KZ = 1,12M	MARC	18
	DO 20 KN = 1, NCON	MARC	19
	LN = MATN(KN)	MARC	20
20	MASSP(LN,KZ) = MASS(LN,KZ)	MARC	21
	DO 100 KZ = 1,IZM	MARC	22
	DO 50 KKK = 1,5	MARC	23
	DO 50 KW = 1,NCON	MARC	24
	LN = MATH(KN)	MARC	25
CCC	WARNING WARNING	HRA2	
	TEMP2=-(MASS(LN,KZ)+HASSP(LN,KZ))*(ALAH(LN)+AXS(KN,KZ)*PHIB(KZ))	MARC	26
CC	ONLY USE ABOVE WHEN SIGNA ABS DOES INCLUDE SIGNA FIS	HRA2	
С	TEMP2=-(MASS(LN,KZ)+MASSP(LN,KZ))*(ALAM(LN)+	HRA	2
Ċ	1 (AXS(KN,KZ)+FXS(KN,KZ))*PHIB(KZ))	HRA	22
D	15 (10(28)) 30 30 38	MARC	27
78	17 (LD(NH)) 30, 30, 20	MARC	28
20		MARC	29
	TEMP2 = TEMP2 + ALAN(KK)*(HASS(KK,KZ) + HASSP(KK,KZ))	MARC	30

TLIS	T2.FOR Wednesday, February 21, 1990 12:31 pm	Page	61
30	DO 32 K = 1,2	MARC	21
	KK = LCN(KN,K)	MARC	32
	KL = MATN(KK)	MARC	33
	IF (KK) 32,32,31	HOARC HOARC	34
CCC	WARNING WARNING	MARC	75
51	TEMP2 = TEMP2 + (AXS(KK,KZ) - FXS(KK,KZ))"PHIB(KZ)"	HDA2	35
CC	ONLY USE ABOVE WHEN SIGNA ABS DOES INCLODE SIGNA FIS	HRAZ	
C31	TEMP2 = TEMP2 + (AXS(KK,KZ) )"PHIB(KZ)"	NKAL	3
,	1 (MACC/V) V7) + MACCD/VI V7))	MARC	36
77	( (MASS(KL,KZ) + MASSP(KL,KZ))	MARC	37
32	$p_0 = 36 + r = 1.7$	MARC	38
		MARC	30
	K = LFR(KR,K)	MARC	40
	1 / / / 34 34 34	MARC	41
	THE BEION IS FOR YTEIDS OF FISSION PRODUCT POISONS	HRA2	
C34			
~	IF/KI FO INTHEM		
č	1F(IN.FP.7)YIELD=0.061		
c	1F(LW.ED.8)YIELD=0.003		
č	1F(LN.EQ.9)YIELD=0.0113		
c	IF(LW.EQ.11)YIELD=1.0		
с	ENDIF		
С	IF(KL.EQ.6)THEN		
С	IF(LW.EQ.7)YIELD=0.055		
c	IF(LN.EQ.8)YIELD=0.000		
С	IF(LN.EQ.9)YIELD=0.019		
С	IF(LN.EQ.11)YIELD=1.0		
с	END1F		
C34	TEMP2=TEMP2+YIELD+FXS(KK,KZ)*PHIB(KZ)*(MASS(KL,KZ)+NASSP(KL,KZ))	HRA2	4
2			
CCC	THE ABOVE IS FOR YIELDS OF FISSION PRODUCT POISONS		
34	TEMP2 = TEMP2 + FXS(KK,KZ)*PHIB(KZ)*(MASS(KL,KZ)+MASSP(KL,KZ))	MARC	42
36	CONTINUE	MARC	43
50	MASS(LN,KZ) = MASSP(LN,KZ) + .5*TEMP*TEMP2	MARC	44
	DO 100 KN = 1,NCON	MARC	45
	LN = NATN(KN)	MARC	46
100	TEMP3 = TEMP3 + FXS(KN,KZ)*PHIB(KZ)*MASS(LN,KZ)*VOL(KZ)	MARC	47

TLIST	2.FOR Wednesday, February 21, 1990 12:31 pm	Page 62
	154754033 200 200 110	MARC 48
110	$120 \text{ k7} \approx 1.176$	MARC 49
120	PHIB(KZ) = PHIB(KZ) * TEMP1/TEMP3	MARC 50
200	CONTINUE	MARC 51
	DO 500 KZ = 1.IZM	MARC 52
500	PHIB(KZ) = PHIB(KZ)*10.**(24)	MARC 53
	DO 540 KZ=1, IZM	MARC 54
	DO 540 H=1,M01	MARC 55
	IF(10(M) - M2(KZ)) 540,520,540	MARC 56
520	DO 530 KN=1, NCON	MARC 57
	LN = MATN(KN)	MARC 58
	IF(LN - 11(M)) 530,525,530	MARC 59
525	I2(M) = MASS(LN,KZ)	MARC 60
530	CONTINUE	MARC 61
540	CONTINUE	MARC 62
	RETURN	MARC 65
	END	MAKL 04
	SUBROUTINE REAG2(HOLL, ARRAY, HOUDI)	KEAG2001
CCC	REPLACE ALL FURMAL STATEMENTS WITH - ON A VAA	nee.
	DIMENSION ADDAY (1) HOL(80) HE(60) LE(60)	
	CHAPACTER*6 HOLI	
	CHARACTER*1 HOL	
	CHARACTER*20 HE	
	J=0	
1	READ (NINP, 10) (HOL(I), I=1,80)	
10	FORMAT (80A1)	
	DO 20 L=1,40	
20	LE(L)=0	
	1=0	
	L=0	
30	L=L+1	
40	1=1+1	
	IF(1.LE.80) GO TO 50	
	L=L-1	
	GO TO TOU	
50	IF (HOL(1).EQ. ' ) GO TO 60	
	IF (HOL(I).EQ.'I') GO (U DD	

	IF (HOL(1).EQ./C/) GO TO 55
	IF (HOL(I).EQ. /F/) GO TO 55
	IF (HOL(I).EQ.'R') GO 10 55
	IF (HOL(I).EQ.'I') GO TO 55
	LE(L)=LE(L)+1
	HE(L)(LE(L):LE(L))=HOL(I)
	GO TO 40
55	1F (LE(L).GT.0) L=L+1
	LE(L)=1
	HE(L)(1:1) = HOL(I)
	IF (HOL(1).EQ.'R' .OR. HOL(1).EQ. '1') GO TO 30
	GO TO 100
60	1F (LE(L) .EQ. 0) GO TO 40
	GO TO 30
100	LL=L
	L=0
110	L=L+1
	IF (L .GT. LL) GO TO 1
	IF (HE(L)(1:1).EQ.'T') GO TO 150
	IF (HE(L)(1:1).EQ.'C') GO TO 115
	JF (HE(L)(1:1).EQ. 'F') GO TO 120
	1F (HE(L)(1:1).EQ. 'R') GO TO 130
	IF (HE(L)(1:1).EQ.'I') GO TO 140
	1+L=L
	READ (HE(L)(1:LE(L)),112) ARRAY(J)
C	DECODE (LE(L),112,HE(L)) ARRAY(J)
112	FORMAT (E20.2)
	GO TO 110
с	CYCLE
115	READ (HE(L+1)(1:LE(L+1)),132) J1
C115	DECODE (LE(L+1),132,HE(L+1)) J1
	READ (HE(L+2)(1:LE(L+2)),132) J2
с	DECODE (LE(L+2),132,HE(L+2)) J2
	L = 0L
	DO 119 K1=1,J1
	DO 119 K2=1,J2
	l=↓+1
119	ARRAY(J)=ARRAY(JO - J2 + K2)

Wednesday, February 21, 1990 12:31 pm

Wednesday, February 21, 1990 12:31 pm

Page 64

L=L+2 GO TO 110 с FILL 120 DO 125 JJ=J+1.NCOUNT 125 ARRAY(JJ)=ARRAY(J) J=NCOUNT GO TO 150 REPEAT с 130 READ (HE(L+1)(1:LE(L+1)), 132) J1 C130 DECODE (LE(L+1), 132, HE(L+1)) J1 132 FORMAT (120) READ (HE(L+2)(1:LE(L+2)).112) T1 c DECODE (LE(L+2), 112, HE(L+2)) T1 DO 135 JJ=J+1, J+J1 135 ARRAY(JJ)=T1 J=J+J1 L=L+2 GO TO 110 c INTERPOLATE 140 READ (HE(L+1)(1:LE(L+1)),132) J1 C140 DECODE (LE(L+1), 132, HE(L+1)) J1 READ (HE(L+2)(1:LE(L+2)),112) ARRAY(J+J1+1) DECODE (LE(L+2), 112, HE(L+2)) ARRAY(J+J1+1) c T1= (ARRAY(J+J1+1) - ARRAY(J))/(J1+1) DO 145 JJ=J+1.J+J1 145 ARRAY(JJ)= ARRAY(JJ-1) + T1 J=J +J1+1 1=1+2 GO TO 110 150 1F (HOLL .EQ. ' INP') GO TO 155 IF (HOLL .EQ. ' INPB') GO TO 155 IF (HOLL .EQ. ' \$860') GO TO 155 WRITE (NOUT, 160) HOLL, J, (ARRAY(I), I=1, J) 155 IF (J-NCOUNT) 170,180,170 FORMAT (6X, A6, 16/(6E12.5)) 160 170 CALL ERRO2 ( ' REAG2', 170, 1) 180 RETURN END

TLIS	T2.FOR Wednesday, February 21, 1990 12:31 pm	Page 65
	SUBROUTINE RREAG2(HOLL, A, NCOUNT)	REAG2001
CCC	REPLACE ALL FORMAT STATEMENTS WITH * ON A VAX	HRA2
	COMMON NSORCE, NINP, NOUT	
	DIMENSION ARRAY (1), HOL(80), HE(40), LE(40)	
	CHARACTER*6 HOLL	
	CHARACTER*1 HOL	
	CHARACTER*20 HE	
	0=L	
1	READ (NINP, 10) (HOL(I), I=1,80)	
10	FORMAT (80A1)	
	DO 20 L=1,40	
20	LE(L)=0	
	1=0	
	L=0	
30	L=L+1	
40	[=]+1	
	IF(1.LE.80) GO TO 50	
	L=L-1	
	GO TO 100	
50	IF (HOL(1).EQ.' ') GO TO 60	
	IF (HOL(I).EQ.'T') GO TO 55	
	IF (HOL(I).EQ.'C') GO TO 55	
	IF (HOL(I).EQ.'F') GO TO 55	
	IF (HOL(I).EQ.'R') GO TO 55	
	IF (HOL(1).EQ.(1)) GO TO 55	
	LE(L)=LE(L)+1	
	HE(L)(LE(L):LE(L))=HOL(I)	
	GO TO 40	
>>	IF (LE(L).61.0) L=L+1	
	HE(L)(1:1)= HOL(1)	
	IF (HOL(I).EQ.'R' .OR. HOL(I).EQ. 'I') GO TO 50	
	GO TO 100	
60	IF (LE(L) .EQ. 0) GO TO 40	
	60 10 50	
100		
110	L=L+1	

	1F (L .GT. LL) GO TO 1
	1F (HE(L)(1:1).EQ.'T') GO TO 150
	IF (HE(L)(1:1).EQ.'C') GO TO 115
	IF (HE(L)(1:1).EQ. 'F') GO TO 120
	IF (HE(L)(1:1).EQ. 'R') GO TO 130
	IF (HE(L)(1:1).EQ.'1') GO TO 140
	J=J+1
	READ (HE(L)(1:LE(L)),112) A
C	DECODE (LE(L),112,HE(L)) A
112	FORMAT (E20.2)
	GO TO 110
C	CYCLE
115	READ (HE(L+1)(1:LE(L+1)),132) J1
C115	DECODE (LE(L+1),132,HE(L+1)) J1
	READ (HE(L+2)(1:LE(L+2)),132) J2
C	DECODE (LE(L+2),132,HE(L+2)) J2
	10 = 1
	DO 119 K1=1,J1
	00 119 K2=1,J2
	J=J+1
119	ARRAY(J)=ARRAY(J0 - J2 + K2)
	L=L+Z
	GO TO 110
с	FILL
120	DO 125 JJ=J+1,NCOUNT
125	ARRAY(JJ)=ARRAT(J)
	J=NCOUNT
-	60 10 150
	REPEAT
150	KEAD (ME(LT)(1:LE(LT)), [32) J1
170	DECODE (LE(L+1), (32, HE(L+1)) 31
152	PUKMAI (1207
~	READ (RE(LTE/(ILE(LTE/),  2/
6	DECODE (LE(LTC),   C, NE(LTC))
175	40047711-T1
133	
	1-1-3

TL1ST2.FOR

Wednesday, February 21, 1990 12:31 pm Page 66

Wednesday, February 21, 1990 12:31 pm

Page 67

REAI 2001

GO TO 110 INTERPOLATE С 140 READ (HE(L+1)(1:LE(L+1)),132) J1 C140 DECODE (LE(L+1), 132, HE(L+1)) J1 READ (HE(L+2)(1:LE(L+2)),112) ARRAY(J+J1+1) DECODE (LE(L+2), 112, HE(L+2)) ARRAY(J+J1+1) С T1= (ARRAY(J+J1+1) - ARRAY(J))/(J1+1) 00 145 JJ=J+1, J+J1 145 ARRAY(JJ)= ARRAY(JJ-1) + 11 J=J +J1+1 L=L+2 GO TO 110 150 (F (HOLL .EQ. ' INP') GO TO 155 IF (HOLL .EQ. ' INPB') GO TO 155 IF (HOLL .EQ. ' \$860') GO TO 155 WRITE (NOUT, 160) HOLL, J, (ARRAY(I), 1=1, J) 155 IF (J-NCOUNT) 170, 180, 170 160 FORMAT (6X, A6, 16/(6E12.5)) 170 CALL ERRO2 ( ' REAG2', 170, 1) 180 RETURN END SUBROUTINE REAI2(HOLL, IARRAY, NCOUNT) COMMON MSORCE, NINP, NOUT DIMENSION JARRAY (1), HOL(80), HE(40), LE(40) CHARACTER*6 HOLL CHARACTER*1 HOL CHARACTER*20 HE J=0 1 READ (NINP, 10) (HOL(I), I=1.80) 10 FORMAT (80A1) DO 20 L=1,40 20 LE(L)=0 1=0 L=0 30 L=L+1 40 1=1+1 IF (HOL([) .EQ. '/') GO TO 45 IF(I.LE.80) GO TO 50

L=L-1 45 GO TO 100 50 IF (HOL(1).EQ.' ') GO TO 60 IF (HOL(I).EQ. 'T') GO TO 55 IF (HOL(1).EQ. /F/) GO TO 55 IF (HOL(1).EQ. 'R') GO TO 55 IF (HOL(1).EQ. '1') GO TO 55 IF (HOL(1) .EQ. 'C') GO TO 55 LE(L)=LE(L)+1 HE(L)(LE(L):LE(L))=HOL([) 60 TO 40 55 IF (LE(L).GT.0) L=L+1 LE(L)=1 HE(L)(1:1)= HOL(1) [F (HOL(I) .EQ. 'C') GO TO 30 IF (HOL(I).EQ. 'R' .OR. HOL(I).EQ. 'I') GO TO 30 GO TO 100 IF (LE(L) .EQ. 0) GO TO 40 60 GO TO 30 100 LL=L L=0 110 L=L+1 IF (L .GT. LL) GO TO 1 IF (HE(L)(1:1).EQ.'T') GO TO 150 IF (HE(L)(1:1).EQ. 'C') GO TO 115 IF (HE(L)(1:1).EQ. 'F') GO TO 120 IF (HE(L)(1:1).EQ. 'R') GO TO 130 IF (HE(L)(1:1).EQ.'1') GO TO 140 J=J+1 READ (HE(L)(1:LE(L)),112) IARRAY(J) С DECODE (LE(L), 112, HE(L)) IARRAY(J) 112 FORMAT (120) GO TO 110 с CYCLE 115 READ (HE(L+1)(1:LE(L+1)),112) J1 C115 DECODE (LE(L+1), 112, HE(L+1)) J1 READ (HE(L+2)(1:LE(L+2)),112) J2 DECODE (LE(L+2), 112, HE(L+2)) J2 С

```
Page 68
```

TLIST2.FOR

Wednesday, February 21, 1990 12:31 pm

TLIST2.FOR Wednesday, February 21, 1990 12:31 pm Page 69

	L = 0L
	DO 119 K1=1,J1
	DO 119 K2=1,J2
	j=j+1
119	IARRAY(J)=IARRAY(J0 - J2 + K2)
	L=L+2
	GO TO 110
с	FILL
120	DO 125 JJ=J+1,NCOUNT
125	IARRAY(JJ)=IARRAY(J)
	J=NCOUNT
	GO TO 150
с	REPEAT
130	READ (HE(L+1)(1:LE(L+1)),112) J1
C130	DECODE (LE(L+1), 112, HE(L+1)) J1
	READ (HE(L+2)(1:LE(L+2)),112) 11
С	DECODE (LE(L+2),112,HE(L+2)) 11
	DO 135 JJ=J+1,J+J1
135	IARRAY(JJ)=11
	j=j+j1
	L=L+2
	GO TO 110
C	INTERPOLATE
140	READ (HE(L+1)(1:LE(L+1)),112) J1
C140	DECODE (LE(L+1),112,HE(L+1)) J1
	READ (HE(L+2)(1:LE(L+2)),112) [ARRAY(J+J1+1)
C	DECODE (LE(L+2),112,HE(L+2)) [ARRAY(J+J1+1)
	<pre>I1= (1ARRAY(J+J1+1) - 1ARRAY(J))/(J1+1)</pre>
	DO 145 JJ=J+1,J+J1
145	IARRAY(JJ)= IARRAY(JJ-1) + 11
	J=J +J1+1
	L=L+2
	GO TO 110
150	IF (HOLL.EQ.' INP') GO TO 155
	IF (HOLL .EQ. ' INP8') GO TO 155
	IF (HOLL .EQ. ' \$860') GO TO 155
	WRITE (NOUT,160) HOLL,J,(IARRAY(I),I=1,J)
155	IF (J-NCOUNT) 170,180,170

160 FORMAT (6X,A6,I6/(1016)) 170 CALL ERROZ (' REA12',170,1) 180 RETURN	
END Subgoutine Reariz(Holl,Miarray,McOunt) Common Nsorce, Ninp, Nout Dirmension Miarray (1), Nol(80),He(40),Le(40) Character*6 Holl Character*1 Hol Character*1 Hol Character*20 He J=0	REA I 2001
1 READ (NINP, 10) (HOL(I), I=1,80)	
10 FORMAT (80A1) DO 20 L=1,40	
20 LE(L)=0	
1=0	
30 L=L+1	
17 (NOL(1) .EW. 777) GO 10 45	
45 1-1	
GO TO 100	
50 TE (HOL(1), FR. / /) GO TO 60	
IF (HOL(I),EQ. 'T') GO TO 55	
IF (HOL(1).EQ. 'F') GO TO 55	
IF (HOL(I).EQ.'R') GO TO 55	
IF (HOL(1).EQ./I/) GO TO 55	
IF (HOL(1) .EQ, 'C') GO TO 55	
LE(L)=LE(L)+1	
HE(L)(LE(L):LE(L))=HOL([)	
GO TO 40	
55 JF (LE(L).GT.0) L=L+1	
LE(L)=1	
HE(L)(1:1)= HOL(1)	
1F (NOL(1) .Eq. 'C') GO TO SU	
IF (HOL(I).EQ.'R' .OR. HOL(I).EQ. 'I') GO TO 30 GO TO 100	

Wednesday, February 21, 1990 12:31 pm Page 71

1.

60	IF (LE(L) .EQ. 0) GO TO 40
	GO TO 30
100	LL=L
	L=0
110	L=L+1
	IF (L .GT. LL) GO TO 1
	IF (HE(L)(1:1).EQ.'T') GO TO 150
	IF (HE(L)(1:1).EQ. 'C') GO TO 115
	IF (HE(L)(1:1).EQ. 'F') GO TO 120
	IF (HE(L)(1:1).EQ. 'R') GO TO 130
	IF (HE(L)(1:1),EQ.'1') GO TO 140
	J=J+1
	READ (HE(L)(1:LE(L)).112) HIARRAY(J)
c	DECODE (LE(L), 112. HE(L)) RIARRAY(J)
112	FORMAT (120)
	CO TO 110
r	CYCLE
115	READ (HE(1+1)(1+1E(1+1)) 112) 11
C115	DECODE (IE(I+1) 112 HE(I+1)) .11
0115	DEAD (HE(1+2)(1))E(1+2)) 112) 12
~	DECODE (15(1+2) 112 HE(1+2)) .17
۰.	10 + 1
	50 - 5 Do 110 F1-1 /1
	00 119 KI-1,21
	DU 119 K2=1,42
	J=J+1
119	MIARRAT(J)=HIARKAT(JU - J2 + K2)
	L=L+2
	GO TO 110
С	FILL
120	DO 125 JJ=J+1,NCOUNT
125	MIARRAY(JJ)=MIARRAY(J)
	J=NCOUNT
	GO TO 150
C	REPEAT
130	READ (HE(L+1)(1:LE(L+1)),112) J1
C130	DECODE (LE(L+1),112,HE(L+1)) J1
	READ (HE(L+2)(1:LE(L+2)),112) 11
с	DECODE (LE(L+2),112,HE(L+2)) 11

```
DO 135 JJ=J+1, J+J1
135 MLARRAY(JJ)=11
      .1=.1+.11
      L=L+2
      GO TO 110
      INTERPOLATE
с
140 READ (HE(L+1)(1:LE(L+1)),112) J1
C140 DECODE (LE(L+1), 112, HE(L+1)) J1
      READ (HE(L+2)(1:LE(L+2)).112) MIARRAY(J+J1+1)
      DECODE (LE(L+2), 112, HE(L+2)) NIARRAY(J+J1+1)
c
      11= (HIARRAY(J+J1+1) - HIARRAY(J))/(J1+1)
      DO 145 JJ=J+1, J+J1
145 MIARRAY(JJ)= MIARRAY(JJ-1) + 11
      J=J +J1+1
      L=L+2
      GO TO 110
150 IF (HOLL.EQ.' INP') GO TO 155
      IF (HOLL .EQ. ' INPB') GO TO 155
      IF (HOLL .EQ. ' $860') GO TO 155
      WRITE (NOUT, 160) HOLL, J, (MIARRAY(I), 1=1, J)
     IF (J-NCOUNT) 170,180,170
155
160
     FORMAT (6X.A6, 16/(1016))
170
     CALL ERRO2 (' REAI2', 170.1)
180 RETURN
      END
      SUBROUTINE S860 (C,CO, JTL, JGM, JMT, JML, ATW, HOLN, ALAM)
       INCLUDE 'ABC.FOR'
      DIMENSION COUTL.JGH.JHT), COOJTL.JHT), ATW(1), HOLN(JHL,1), ALAM(1)
      DIMENSION XSD(50,50),XSR(50,50),XD(50),XR(50)
                                                                         HRA2
      THIS SUBROUTINE READS CROSS SECTIONS, PERFORMS ADJOINT
                                                                         S860
                                                                                6
c
                                                                         s860
                                                                                7
      REVERSALS IF REQUIRED, AND WRITES CROSS SECTION TAPE
C
                                                                         S860
                                                                                8
      WRITE(NOUT,5) (1D(1), [=1,20)
                                                                         S860
                                                                                o
5
      FORMAT(1H1,20A4 ///)
                                                                         s860 11
10
      WRITE (NOUT, 20 )
20
      FORMAT (55H CROSS SECTIONS ARE READ-IN FOR THE FOLLOWING MATERIALSS860 12
                                                                        $860 13
     1/)
      DO 50 1=1.ML
```

Wednesday, February 21, 1990 12:31 pm

TLIST2.FOR

TLIST	2.FOR Wednesday, February 21, 1990 12:31 pm	Page	73
	IF (MTP) 40,40,30		
30	READ (15) (HOLN(I,K),K=1,2), ATW(I)		
	READ(15) ((C(L,IIG,I), L=1,ITL), IIG=1,IGH)	5860	19
	GO TO 48		
40	READ (NINP,42) (HOLN(I,K),K=1,Z)		
42	FORMAT (2A4)		
	CALL REAG2 (' SB60', ATW(I), 1)	<b>CP</b> (0)	24
	DO 45 IIG=1,IGH	5000	21
	CALL REAG2 (' \$860',C(1,11G,1), 11L)		
45	CONTINUE		
48	WRITE (NOUT,55) 1, (NULN(1,K),K=1,2)		
50	LOW TINUE		
22	FURMAT (13, DA, 244)	\$860	26
L.	LAELK DA CROSS SECTION CONSISTENCE AND OKOLK	\$860	27
70	1F(MLR) 70,70,70	\$860	28
00	REWIND 15	s860	29
90		\$860	30
	DO 140 J-1,RL	\$860	31
	c = c(7, 1, 1) + c(5, 1, 1)	\$860	32
	0 = 0(2,1,0) + 0(3,1,0)	\$860	33
	KK = 1 + K	\$860	34
	M = 5 + K	\$860	35
	TECKK - LGND 100, 100, 110	<b>\$860</b>	36
100	G = G + C(N,KK,J)	S860	37
110	CONTINUE	S860	38
	XSR(1,J)=G-C(1H5,1,J)	HRA2	
	XSD(1,J)=G-C(1HT-2,1,J)-C(1HS,1,J)	HRAZ	
	(F(C(4.1.J).EQ. 0.0) GO TO 130		
	G=ABS((G-C(4,1,J))/C(4,1,J))	\$860	39
	(F(G0001) 140.130.130	\$860	40
130	WRITE(NOUT.135) J.I.G	S860	41
135	FORMAT (' CHECK MATERIAL ',12, 5X, ' GROUP ',12,G10.4)		
140	CONTINUE	\$860	43
с		S860	44
с	A02=0/1=FLUX CALCULATION/ADJOINT CALCULATION	S860	45
160	IF(A02) 170, 280, 170	\$860	46
170	DO 190 11G=1,1GM	\$860	47

TLIST	2.FOR Wednesday, February 21, 1990 12:31 pm	Page	74
	IGBAR=IGH-IIG+1	<b>\$86</b> 0	48
	DO 180 I = 1HT-3 INS	HRA2	50
	TEMP=C() LIG N)	<b>SB60</b>	51
	C(1 11G N)=C(1 TGBAR.M)	<b>\$860</b>	52
180	C(I IGRAP H)=TEMP	<b>\$860</b>	53
	IF (IGBAR - 11G -1) 200, 200, 190	<b>\$86</b> 0	54
190	CONTINUE	S860	55
200	CONTINUE	S860	56
	KK = ITL - IHS	S860	57
	IF (KK) 280, 280, 210	S860	58
210	CONTINUE	S860	59
	DO 240 M=1,NL		
	DO 240 IIG = 1,IGM	<b>\$860</b>	61
	IGBAR = IGM - IIG + 1	<b>\$860</b>	62
	DO 240 L = 1,KK	S860	63
	1F (L - 11G) 220, 240, 240	S860	64
220	I = L + IHS	S860	65
	ITEMP = IGBAR + L	\$860	66
	IF (IIG - ITEMP) 230, 230, 240	<b>S860</b>	67
230	TEMP = C(I, IIG, M)	S860	68
	C(I,IIG,M) = C(I,ITEMP,M)	\$860	69
	C(1,ITEMP,W) = TEMP	5860	70
240	CONTINUE	5860	
C	WRITE CROSS SECTION TAPE	5000	72
280	DO 300 11G=1,1GM	5000	13
	DO 295 M=1,NF		
	IF(M .LE. ML) GO TO 200		
	DO 284 L=1,ITL		
284	CU(L,M)=0.0		
	60 10 295		
288	CONTINUE	6940	75
2000		\$860	76
230	UULL, M)=ULL, IIG, M)	HPA2	
	AK(M)=A3K(110,M)	HPA2	
705	xU(H)=x3U(110,H)	AL	
295	LUNIINUE	HRA2	
	WEIE (II) (AR(H),H=1,HI)		

TLIST	2.FOR	Wednesday, February 21, 1990 12:31 pm	Page	75
	WRITE (12) (XD	(M),M=1,NT)	HRA2	
	DO 88 M=1,MT		HRA2	
88	CONTINUE		HRA2	
300	WRITE (NCR1)	((CO(L,M),L=1,ITL),H=1,HT)	<b>\$860</b>	77
	REWIND NCR1		S860	78
	REWIND 11		HRA2	
	REWIND 12		HRAZ	
	RETURN		S860	79
	END		\$860	80
	SUBROUTINE S86	2(NO,RF,ZF)	S862	2
	INCLUDE 'ABC.	FOR'		
	DIMENSION NOC	1), RF(1), ZF(1)	S862	4
с	THIS SUBROUTIN	E READS THE INPUT FLUXES AND PREPARES A FLUX TAPE	S862	5
	WRITE(NOUT,5)		\$862	6
5	FORMAT(1H1)		S862	7
С	M07=0/1=N0 FLU	X INPUT/FLUX FROM TAPE 14		
	DO 1000 IIG =	1, IGH	\$862	14
	LF (M07 .GT. 0	) GO TO 120		
	00 59 I=1,IM			
	DO 59 J=1,JM			
	ITEMP= (J-1)*I	N + I		
59	NO(1TEMP) = 1.	O -		
	GO TO 200			
120	READ(14) (NO(I	), I=1, INJN)	<b>\$862</b>	34
200	WRITE(NFLUX1)	(NO(1), I=1, IMJM)	S862	35
1000	CONTINUE		S862	36
	REWIND 14			
	REWIND NFLUX1			
	RETURN		\$862	40
	END		<b>\$862</b>	41
	SUBROUTINE S86 INCLUDE 'ABC.	4 (\$2) For'		
	DIMENSION S2(1	)		
с	THIS SUBROUTIN	E READS THE EXTERNAL SOURCE AND PREPARES A SOURCE	TAS864	6
	DO 50 IIG = 1,	1 GM	<b>\$864</b>	32
	CALL REAG2 ('	SO'.S2.[MJM)	HVX	

TLIS	T2.FOR Wednesday, February 21, 1990 12:31 pm	Page	76
		5864	50
	WRITE (NSONCE) (S2(1), 1 = 1,1MJH)	5864	<i>4</i> 0
50	CONTINUE	\$864	61
	REWIND WSORCE	\$864	62
	RETURN	\$864	63
		SAAT	5
			-
	INCLUDE ABC.FUN		
~	HILDER"E ITT, ITT, ITT, ITT, ITT, ITT, ITT, ITT		
5	CHANCE CETTIN TO CLOCK/IT1 IT2 IT3) ON & VAY	HRA2	
C.	CALL CETTIN (IT1 IT2 IT3 IT4)		
	TI = ELOAT (3600*111 + 60*112 + 113)/60.		
	KDACE = KDACE + 1	s883	7
	IF(KPAGE - 40) 220, 160, 160	\$883	8
160	KPAGE # 0	\$883	9
210	WRITE(NOUT, 213)	\$883	10
213	FORMAT (181. TIME OUTER IN. IT. EIGENV	ALUE	
	1 EIGENVALUE LANBDA')		
	WRITE(NOUT, 215)	S883	13
215	FORMAT (' (MINUTES) ITERATIONS PER LOOP SLOPE'/)		
220	WRITE(NOUT, 225) TI, PO2, LC, EQ, EV, ALA	\$883	16
225	FORMAT (2X, F6.2, 7X, 14, 7X, 14, 6X, 3(E14.7))		
230	P02=P02+1	S883	18
	LC=0	S883	19
	1F(P02-D05)430,430,330	S883	20
330	NGOTO = 1	\$883	21
	GO TO 630	S883	22
430	NGDTO = 4	\$883	23
630	RETURN	\$883	24
	END	\$883	25
	SUBROUTINE \$8847	\$884	2
	INCLUDE 'ABC.FOR'		
c	THIS SUBROUTINE PRINTS THE FINAL NEUTRON BALANCE TABLE		
	E2(IGP) = .0	\$884	4
	E3(1GP) = .0	S884	5
	E4(1GP) = .0	S884	6
	E5(1GP) = .0	\$884	- 7

	E6(IGP) = .0	<b>588</b> 4	8
	E7(1GP) = .0	S884	9
	EB(IGP) = .0	S884	10
	E9(IGP) = .0	S884	11
	DO 10 I = 1, IGH	\$884	12
	E2(1GP) = E2(1GP) + E2(1)	S884	13
	E3(1GP) = E3(1GP) + E3(1)	S884	14
	E4(1GP) = E4(1GP) + E4(1)	S884	15
	E5(IGP) = E5(IGP) + E5(I)	S884	16
	E6(1GP) = E6(1GP) + E6(1)	S884	17
	E7(1GP) = E7(1GP) + E7(1)	S884	18
	E8(IGP) = E8(IGP) + E8(I)	\$884	19
	0 E9(IGP) = E9(IGP) + E9(1)	S884	20
	WRITE(NOUT,20)	<b>\$884</b>	21
	O FORMAT (1H1, 28H FINAL NEUTRON BALANCE TABLE///	S884	22
	1 ' GROUP FISSION IN-SCAT OUT-SCAT ABSORB '		
	2,' L.L. R.L. T.L. B.L. '//)		
	DO 30 [ = 1,[GH	S884	26
	5 FORMAT (14,3X, 1P8E9.2)		
	WRITE(NOUT,25) 1,E1(1),E2(1),E3(1),E4(1),E5(1),E6(1),E7(1),	<b>\$884</b>	28
	1 E8(I)		
	WRITE(NOUT, 35)	S884	30
	5 FORHAT (1H )	S884	31
•	I = IGN + 1	S884	52
	WRITE(NOUT,25) 1,E1(I),E2(I),E3(I),E4(I),E5(I),E6(I),E7(I),	S884	33
	1 E8(I)		
	XK=E1(1)/(E4(1)+E9(1))		
	WRITE(NOUT,70) XK		
	O FORMAT (1H0/5X, 'NEUTRON MULTIPLICATION CONSTANT = ',F10.6)		
	RETURN	5884	33
	END	5884	30
	SUBROUTINE \$8850(F2,N2,R1,Z1,R4,Z4,V7,JIM,JJM,FN2,	\$885	2
	1 CO,NO,MO,MZ,FO,JTL,JNT) Include 'ABC.FOR'		
	DIMENSION F2(JIM JJW) N2(JIM JJW) R1(1), 71(1), R4(1), 74(1),	s885	5
	1 ELIVIA ENZ(1) CO(JTL_JNT), NO(JIN_JJN), MO(JIN_JJN),	s885	6
	2 N2(1) FO(JIN JJN) V7(1)	\$885	7

Wednesday, February 21, 1990 12:31 pm Page 77

TLIST2.FOR

د

TLIS	72.FOR Wednesday, February 21, 1990 12:31 pm	Page	78
с	S8850 FINAL PRINT		
	ICARD = 1	S885	9
	CALL \$8830	\$885	11
	CALL S8847	\$885	13
	IF (NPRT-1) 90,90,15		
15	J=IP	\$885	14
	IF(1P-JP) 30, 30, 20	\$885	15
20	J=JP	\$885	16
30	WRITE (NOUT, 40 ) (1,R1(1),R4(1),21(1),24(1),I=1,J)	\$885	17
40	FORMAT (1H1, 16X, 'RADII', 9X, 'AVG RADII', 11X, 'AXII',		
	1 14X, 'AVG AXII'//(14, 4F18.4))		~~
	J=J+1	\$885	20
	IF(IP-JP) 50, 90, 70	\$885	21
50	WRITE (NOUT, 60 ) (1,21(1),24(1),1=J,JP)	\$665	22
60	FORMAT(14,36X,2F18.4)	5005	23
	GO TO 90	5665	24
70	WRITE (NOUT, 80 ) (I,R1(I),R4(I),I=J,IP)	5005	25
80	FORMAT(14,2F18.4)	5885	20
90	CONTINUE	5665	2/
	DO 100 I=1, IM	5885	28
	DO 100 J=1,JM	5865	29
	NO(1, J) = 0.0	5003	21
100	F2(1,J) = 0.0	5885	31
	DO 220 IIG=1, IGM	5665	32
	IF (NPRT .GT.2) WRITE (NOUT, 110) IIG	POOE	74
110	FORMAT(1H1, 20X,14HFLUX FOR GROUP,13)	3005	34
	READ (NFLUX1)((N2(I,J),[=1,IN),J=1,JH)	5003	74
	READ(NCR1)((CO(11,J), 11 = 1, 11L), J = 1, HI)	5003	30
	DO 120 I=1, IM	0005	20
	DO 120 J=1, JM	5065	30
	NO(1,J) = NO(1,J) + N2(1,J)	3005	37
	ITEMP = MU(I,J)	2002	
	ITEMP = W2(ITEMP)	5885	41
120	FZ(I,J) = F2(I,J) + CU(IHI-5, ITEMP)*H2(I,J)*1000.*ISD	HKAZ	46
	IF(NPUN) 210, 210, 205	5065	43
205	WRITE(16) ((NZ(I,J),I=1,IM),J=1,JM)	5885	63
210	IF (NPRT .GT.2) CALL PRT (IM,JN,N2,Z4,NOUT)		
220	CONTINUE	\$885	65

TLIST	FOR Wednesday, February 21, 1990 12:31 pm	Page	79
	WRITE(NOUT, 230)	S885	67
230	FORMAT(1H1//, 19X,11H TOTAL FLUX//)	S885	68
	CALL PRT(IN.JH.ND.Z4.NOUT)	s885	69
	WRITE(NOUT, 240)	\$885	71
240	FORMAT(1H1//, 19X, 26HPOWER DENSITY (MWT/LITER))	S885	72
	CALL PRT(IN, JM, F2, Z4, HOUT)	S885	73
250	CONTINUE		
	IF(NPUN - 1) 270, 260, 260	\$885	82
260	END FILE 16	S885	83
	WRITE(NOUT, 265)	S885	84
265	FORMAT(1H0,50X,'***** FLUXES, ETC. DUMPED TO TAPE *****')		
270	REWIND NCR1	S885	86
	REWIND NFLUX1	S885	87
	RETURN	S885	88
	END	S885	89
	SUBROUTINE TCHEK(LGH, JUMP)	TCHE	2
	INTEGER*2 1T1,1T2,1T3,IT4		
CC CH	NGE GETTIM TO CLOCK(IT1,IT2,IT3) ON A VAX	HRA2	
	CALL GETTIM (1T1,1T2,1T3,1T4)		
	ISEC = 3600*1T1 + 60*1T2 + 1T3		
	IF(ISEC.GT.60*NAXT.AND.NAXT.GT.0) JUNP=1		
	RETURN	TCHE	<u>•</u>
	END	TCHE	7
CCC T	IS SUBROUTINE MUST BE USED ON THE VAX		
CCC	SUBROUTINE CLOCK (IT1,IT2,IT3)		
C	INTEGER*2 IT1, IT2, IT3		
C	171=0		
С	172=0		
с	173=0		
c	RETURN		
С	END	1047	
	SUBROUTINE IFLUXL (N2, CO, VO, CXS, NO, M2, JIL, JIM, JJM, CXK, CAT	SKA2	~
	,XR,XD)	HKA2	
	INCLUDE 'ABC.FOR'		
		TELU	4
	UIMENSIUM M2(1), CU(312,1), VU(1),CXS(314,334,3),HU(1), H2(1),	TFLU	5
	CAR(I), CAI(I)		-

	DIMENSION XD(50),XR(50)	HRA2	
с	THIS SUBROUTINE NORMALIZES FLUXES BEFORE EACH INNER ITERATION	IFLU	6
с	ABSORPTION AND OUT-SCATTER	IFLU	7
	E3(1GV) = 0.0	IFLU	8
	E4(IGV) = 0.0	IFLU	9
	DO 10 I=1, IMJM	IFLU	10
	TEMP = V0(1)*N2(1)	IFLU	11
	ITEMP = MO(I)	1 FLU	12
	ITEMP = M2(ITEMP)	IFLU	13
	E3(IGV) = E3(IGV) + (XD(ITEMP))*TEMP	HRAZ	14
10	E4(IGV) = E4(IGV) + CO(IHT-2,ITEMP)*TEMP	HRA2	15
C	LEFT LEAKAGE	I FLU	16
	IF(B01) 20, 20, 40	IFLU	17
20	E5(1GV) = 0.0	I FLU	18
	DO 30 KJ = 1, JM	IFLU	19
	I = (KJ - 1)*IM + 1	I FLU	20
30	E5(IGV) = E5(IGV) + CXS(1,KJ,1)*N2(1)	1 FLU	21
	GO TO 50	1 FLU	22
40	E5(IGV) = .0	IFLU	23
С	RIGHT LEAKAGE	I FLU	24
50	1F(802) 60, 60, 80	IFLU	25
60	E6(IGV) = 0.0	IFLU	26
	DO 70 KJ = 1, JH	I FLU	27
	I = KJ*IM	IFLU	28
70	E6(1GV) = E6(1GV) + CXR(KJ)*N2(1)	I FLU	29
	GO TO 90	1 FLU	30
80	E6(IGV) = 0.0	( FLU	31
С	TOP LEAKAGE	TFLU	32
90	JF(803-1) 120, 140, 100	[ FLU	33
100	E7(1GV) =.0	1 FLU	34
	DO 110 KI = 1, IN	1 FLU	35
	I = [NJM - IM + KI	I FLU	36
110	E7(1GV) = E7(1GV) + CXS(K1,1,2)*(N2(1) - N2(K1))	TFLU	37
	E8(IGV) = - E7(IGV)	TFLU	38
	GO TO 190	IFLU	39
120	E7(1GV) = 0.0	IFLU	40
	DO 130 KI = 1, IN	IFLU	41
	I = INJN - IN + KI	IFLU	42

Wednesday, February 21, 1990 12:31 pm

```
130 E7(IGV) = E7(IGV) + CXT(KI)*N2(I)
                                                                             TELL 43
                                                                             IFLU 44
      GO TO 150
                                                                             1FLU 45
140
   E7(16V) = 0.0
                                                                             IFLU 46
c
      BOTTOM LEAKAGE
                                                                             IFLU 47
150
      (F(804) 160, 160, 180
                                                                             1FLU 48
160 E8(IGV) = 0.0
                                                                             1FLU 49
      DO 170 KI = 1. IM
170 E8(1GV) = E8(1GV) + CXS(K1,1,2)*N2(K1)
                                                                             TELU 50
                                                                             IFLU 51
      GO TO 190
180 E8(IGV) = 0.0
                                                                             LFLU 52
                                                                             IFLU 53
190 F9(IGV) = F5(IGV) + F6(IGV) + F7(IGV) + F8(IGV)
      RETURN
                                                                             IFLU 64
                                                                             LELU 65
      END
      PROGRAM ABC.FOR
      COMMON INSORCE
      COMMON NINP.NOUT.NCR1.NFLUX1.NSCRAT.ALA.B07.
     1CNT.CVT.DAY.DELT.E0(51),E1(51),E2(51),E3(51),E4(51),E5(51),
     2E6(51),E7(51),E8(51),E9(51),
     3E01, E02, E03, EQ, EVP, EVPP, FEF, GBAR, GLH, IGEP, IGP, IGV, IHS, IHT, 11,
     4INJM, IP, LTEMP, LTEMP1, LTEMP2, LTL, 12P, JP, K07, KPAGE, LAP, LAPP, LAR,
     5LC, ML, NCON, NGOTO, NPRT, ORFP
      COMMON P02, PBAR, SBAR, SK7, T06, T7, T11, TEMP, TEMP1, TEMP2, TEMP3, TEMP4,
     7TL.TSD.V11
      CONNON ID(20), MAXT, A02, 104, S02, IGH, NXCH, MCR, MTP, MO7, D05, G07, S04,
     1NPUN, 1GE, IM, JM, 1ZM, NT, NO1, B01, B02, B03, B04, 12, JZ, EV, EVM, S03, BUCK,
     2LAL, LAH, EPS, EPSA, GO6, POD, ORF, SO1, NACT, NFD
      CONNON LATH, LHOLN, LALAN, LCO, LNO, LN2, LAO, LA1, LFO, LF2, L10, L11, L12,
     1LI3, LK6, LK7, LM0, LM2, LR0, LR1, LR2, LR3, LR4, LR5, LS2, LV0, LV7, LZ0, LZ1,
     2122.LZ3.LZ4.LZ5.LCXS.LVOL.LMASS.LMATH.LNBR.LLD.LLCN.LLFN.LPHIB,
      3LAXS, LFXS, LMASSP, LCXR, LCXT, LHA, LPA, LT6, LT8, Intwon, bigr
с
```

Wednesday, February 21, 1990 12:31 pm

TLIST2.FOR