2DBTOR -- A TOROIDAL GEOMETRY
 NEUTRON DIFFUSION CODE

A Thesis
 by

CRAIG ANTHONY HRABAL

Submitted to the Office of Graduate Studies of Texas A\&M University in partial fulfillment of the requirements for the degree of
 MASTER OF SCIENCE

August 1990

Major Subject: Nuclear Engineering

2DBTOR -- A TOROIDAL GEOMETRY
 NEUTRON DIFFUSION CODE

A Thesis
by

CRAIG ANTHONY HRABAL

Approved as to style and content by:

Theodore A. Parish
(Chairman of Committee)

August 1990

ABSTRACT
2DBTOR -- A Toroidal Geometry Neutron Diffusion Code (August 1990)
Craig Anthony Hrabal, B.S., Texas A\&M University; Chair of Advisory Committee: Dr. Theodore A.Parish

The objective of the research performed here was to produce a scoping code that could be used for fusion reactor blanket design. To this end, the present research initially explored a technique proposed by Pomraning and Stevens, in which the toroidal diffusion problem in toroidal geometry is cast into cylindrical ($r-\theta$) form by a spatially dependent redefinition of the diffusion coefficient, absorption cross-section, and extraneous source function. This idea was explored but was later abandoned in favor of the direct finite differencing of the toroidal diffusion equation.

The direct finite differencing approach was programmed into an existing two-dimensional($x-y, r-z, r-\theta$, triangular), multi-group neutron diffusion code, 2DB, that had previously been converted to execute on the IBM-AT. Neutronic scoping calculations relevant to fusion reactor design were then performed in a micro-computer environment. The modified code was renamed 2DBTOR.

To verify that 2DBTOR was operating correctly, comparisons were made to both analytical and numerical solutions for several types of problems. Both ANISN and 2DB were used to verify and compare the solutions obtained from 2DBTOR. It was also shown that as the aspect ratio approached infinity (i. e., the major radius became large) the 2DBTOR solution approached the solution for that of 1-D cylindrical geometry. After verifying the solution for a large major radius, the errors associated
with using a non-toroidal scoping code were examined versus using 2DBTOR. To accomplish this, neutron cross-sections for a benchmark problem were input to 2DBTOR and the output was compared to that from ANISN. A method proposed by Price and Chapin, that used volume correction factors to compute the reaction rates in the benchmark blanket, was utilized to provide a means of checking 2DBTOR's results versus those given by a Monte Carlo code. It is also worth noting that 2DBTOR makes possible the calculation of material depletion in the fusion blanket, which is a unique advantage of the new program, 2 DBTOR .

In future versions of the 2DBTOR program, it is recommended that the central vacuum should be modelled through an internal boundary condition. A separate void streaming calculation should be used to define the internal boundary condition by specifying the neutron flux to current ratio as a function of position along the vacuum wall. Improved modelling of the central void region will be required if 2DBTOR is to prove to be an attractive program for Tokamak blanket scoping calculations.

ACKNOWLEDGEMENTS

The author would like to take this opportunity to express his gratitude to several people who have made this work possible. First of all, I would like to thank my committee chairman, Dr. Theodore A. Parish, for suggesting this thesis, and for his guidance in its development. Also, I wish to thank Babatunde O. Shofolu for the help given on the computer and Jodine Jansen for her help with the manuscript preparation. Finally, I would like to thank my wife, Karen, for her constant encouragement and moral support.

TABLE OF CONTENTS

Page
I. INTRODUCTION 1
I.A The Fusion Process 2
I.B The Need for Scoping Codes to Study the Fusion Process 5
I.C Previous Studies 6
I.D Computer Codes Used in This Work 7
I.E Objectives of This Work 8
II. THEORY 10
II. A Introduction. 10
II.B Pomraning and Stevens' Method 22
II.C Finite Difference Approximation to the Diffusion Equation in Cylindrical Coordinates 24
II.D Finite Difference Approximation to the Diffusion Equation in Toroidal Coordinates 33
II.E Analytical Solutions 37
III. RESULTS 40
III.A 2DBTOR Verification and Infinite Cylinder Problems 40
III.B 2DBTOR Verification and Toroidal Problems. 43
III.C Standard Blanket Solutions 46
III.C. 1 Infinite Cylinder 46
III.C. 2 Comparison of Torus and Infinite Cylinder Models 49
IV. SUMMARY AND CONCLUSIONS 64

TABLE OF CONTENTS (CONT.)

Page
REFERENCES 66
APPENDIX A. Pomraning and Stevens' Analytical Solution. 69
APPENDIX B. Average D_{k} Solution. 72
APPENDIX C. XPROC2DB Listing. 75
APPENDIX D. 2DB Errata 79
APPENDIX E. Plasma Source. 81
APPENDIX F. Equivalent Source to the Plasma Source at the Inner Edge of the Blanket 83
APPENDIX G. 2DBTOR Manual. 84
APPENDIX H. 2DBTOR Listing. 147
VITA 237

LIST OF FIGURES

Figure Page
1-1 Reactivity Curves 4
2-1 Toroidal Coordinate Description 20
2-2 Finite Difference Coordinates Used in 2DB and 2DBTOR 25
3-1 Flux versus Poloidal Angle at a Radius of 150 cm for Several Aspect Ratios 44
3-2 Flux versus Poloidal Angle at a Radius of 250 cm for Several Aspect Ratios 45
3-3 Standard Blanket Configuration 47

LIST OF TABLES

Table Page
2-1 Area and Volume Elements in Cylindrical and Toroidal Coordinates. 38
3-1 Standard Blanket Constituents. 48
3-2 Radial Averaged Tritium Breeding Ratio's for 2DB and ANISN, Infinite Cylinder Case 50
3-3 Radial Averaged Tritium Breeding Ratio's for 2DBTOR Versus 2DB, Torus Case (Aspect Ratio $=3$) 52
3-4 Radial Averaged Tritium Breeding Ratio's for 2DBTOR Versus 2DB, Torus Case (Aspect Ratio $=5$). 53
3-5 Zone by Zone Averaged T6 for 2DBTOR Versus 2DB, Torus Case (Aspect Ratio $=3$) 54
3-6 Zone by Zone Averaged T7 for 2DBTOR Versus 2DB, Tons Case (Aspect Ratio $=3$) 55
3-7 Zone by Zone Averaged T6 for 2DBTOR Versus 2DB, Torus Case (Aspect Ratio $=5$) 56
3-8 Zone by Zone Averaged T7 for 2DBTOR Versus 2DB, Torus Case (Aspect Ratio $=5$) 57
3-9 T6 for 2DBTOR Versus Volume Corrected T6 for 2DB, Torus Case (Aspect Ratio $=3$) 60
3-10 T7 for 2DBTOR Versus Volume Corrected T7 for 2DB, Torus Case (Aspect Ratio $=3$) 61
Table Page
3-11 T6 for 2DBTOR Versus Volume Corrected T6 for 2DB, Torus Case (Aspect Ratio $=5$) 62
3-12 T7 for 2DBTOR Versus Volume Corrected T7 for 2DB, Torus Case (Aspect Ratio $=5$) 63

I. INTRODUCTION

In order to sustain the current level of world civilization man requires energy. However, at the present pace of energy demand, it is predicted that coal and U-235 resources will be depleted in the next 25 to 100 years. ${ }^{1}$ To meet the world's energy demand as the above resources become more scarce, new options will have to be employed. Of the methods available to produce energy, only solar energy, fission breeders, and fusion are thought to be capable of meeting the world's long-term needs. Of these three energy resources, fission breeders produce and use special nuclear materials, which makes them undesirable without stringent safeguards. This leaves solar energy and fusion as the most viable energy resources to meet future energy demands. Both will have to be developed, since a stable society needs alternate sources of energy to call upon in an uncertain future.

Because of progress in plasma confinement, fusion has warranted increased attention in the past decade. What makes fusion of most interest is the fact that one of the fuels required, deuterium, is essentially an inexhaustible resource. Deuterium, which has an average abundance of 0.015% in elemental hydrogen, can be separated relatively easily and cheaply from water. ${ }^{2}$ A secondary, but perhaps more important advantage, as regards public perception, is fusion's inherent safety and reduced radioactivity hazard relative to fission. Tritium, one of the more radioactive of the fusion fuels, has a relatively short half-life(12.36y) and decays by emitting low energy β-rays. Unfortunately, activation of structural materials, such as the first wall in a fusion reactor, presents a possible hazard, but this can be controlled by choosing

[^0]suitable materials. In regard to safety, with magnetic confinement fusion, a sudden increase in power is likely to be counteracted by altering the conditions that are necessary to position and heat the plasma. In addition to the above advantages, use of exotic fuels which only produce charged particles, might lead to energy conversion efficiencies approaching 100%, since charged particles can possibly be directly converted to electricity.

I.A The Fusion Process

Fusion is essentially the process of two nuclei coming together to form one or more nuclei with an accompanying release of energy. Since very high temperatures (over $10^{8}{ }^{\circ} \mathrm{C}$) are required to overcome the Coulomb repulsion between the reacting nuclei, a plasma must be produced. The nuclei, which are stripped of electrons at such temperatures, must be confined long enough to fuse. As a consequence of the high temperatures required for fusion, the reactants can not be contained within physical walls, since interactions with the wall material would likely cool the nuclei down below their required temperature for fusion. By virtue of the nuclei being charged particles, however, they can be contained by magnetic fields in various plasma confinement configurations.

Several reactions are considered to be possible for producing power from fusion break-even conditions, but the deuterium-tritium (D-T) reaction has the best chance of being the first to reach the required plasma conditions. The $\mathrm{D}-\mathrm{T}$ reaction is described below:

$$
\begin{equation*}
\mathrm{D}+\mathrm{T} \rightarrow{ }^{4} \mathrm{He}+\mathrm{n}+17.6 \mathrm{MeV} \tag{1}
\end{equation*}
$$

This reaction requires the use of of tritium, which is extremely rare in nature and must be artificially produced. Tritium production is expected to be accomplished by surrounding the plasma with a lithium containing blanket. Tritium is produced from lithium according to the neutron reactions that follow:

$$
\begin{align*}
& \mathrm{n}+{ }^{7} \mathrm{Li} \rightarrow \mathrm{~T}+{ }^{4} \mathrm{He}+\mathrm{n} \tag{2}\\
& \mathrm{n}+{ }^{6} \mathrm{Li} \rightarrow \mathrm{~T}+{ }^{4} \mathrm{He} \tag{3}
\end{align*}
$$

The reaction with $\mathrm{Li}-7$ has a threshold of 2.7 MeV , while the $\mathrm{Li}-6$ reaction takes place with neutrons down to thermal energies. Although the above reactions require consumption of lithium, the known U.S. reserves of lithium are thought to be able to last 600 years. ${ }^{3}$ The D-T reaction discussed above has great potential for fusion due to its large reactivity at relatively low temperatures $\left(<100 \mathrm{keV} ; 1 \mathrm{keV} \approx 10^{9}{ }^{\circ} \mathrm{C}\right)$. The reactivity, $\langle\sigma v\rangle_{j k}$, is defined to be the average of the fusion cross-section multiplied by the relative speed between the reacting particles j and k averaged over Maxwellian distributions. Curves of the reactivity versus energy for several fuels are shown in Figure 1-14. As can be seen, the D-T reactivity is by far the highest at temperatures below 100 keV . Since the reaction rate per unit volume for two nuclei can be shown to be given by

$$
\begin{equation*}
R R_{j k}=a_{j k} n_{j} n_{k}\langle\sigma v\rangle_{j k} \tag{4}
\end{equation*}
$$

Reaction rate parameters for mixtures of Maxwellian distributions at the same temperature. (1) $\mathrm{D}+\mathrm{T} \rightarrow \mathrm{n}+{ }^{4} \mathrm{He}$, (2) $\mathrm{D}+{ }^{3} \mathrm{He} \rightarrow \mathrm{H}+{ }^{4} \mathrm{He}$,
(3) $\mathrm{D}+\mathrm{D} \rightarrow \mathrm{H}+\mathrm{T}$, (4) $\mathrm{T}+\mathrm{T} \rightarrow{ }^{4} \mathrm{He}+2 \mathrm{n}$,
(5) $\mathrm{T}+{ }^{3} \mathrm{He} \rightarrow$ (various products), (6) $\mathrm{H}+{ }^{11} \mathrm{~B} \rightarrow 3\left({ }^{4} \mathrm{He}\right)$.

Figure 1-1. Reactivity Curves.
where $R R_{j k}=$ reaction rate per unit volume for nuclei j and k,

$$
\begin{aligned}
a_{j k} & =1 \text { for } j \neq k \text { and } 1 / 2 \text { for } j=k, \\
n_{j} & =\text { atom density of nuclei } j, \\
\text { and } n_{k} & =\text { atom density of nuclei } k,
\end{aligned}
$$

it is apparent that the D-T reaction for fixed reactant densities will provide the greatest number of fusions per cm^{3} per sec at the lowest temperatures. ${ }^{5}$ Since lowering of the temperature needed for fusion makes the required plasma conditions more achievable, it is likely that the first fusion reactions will use D-T fuel.

I.B The Need for Scoping Codes to Study the Fusion Process

In the past decade, as plasma confinement experiments have advanced nearer to break-even, there has been a concurrent interest in the engineering problems associated with power production from nuclear fusion. Since a magnetically confined plasma burning D-T fuel should be a reality within the next decade, calculations of the transport of 14 MeV neutrons through the first wall and blanket of a fusion reactor have become particularly pertinent. Accurate computations of neutron transport are currently feasible; however, these calculations can be labor intensive and expensive. To evaluate the myriad of possibilities for the first wall and blanket, scoping codes to estimate reaction rates and leakage could be advantageous for design purposes.

Engineers who do neutronic computations for fission reactors commonly use neutron transport and diffusion codes to determine the flux profiles within a nuclear reactor. By using a neutron diffusion code, scoping runs can be made to provide an
initial estimate for the actual flux profiles. Since diffusion calculations can be performed more easily than the more exact calculations based on transport theory, neutron diffusion codes are used to decrease the computational effort involved in the trial and error process that takes place in designing the cores of nuclear reactors. In the same manner, a need has arisen to perform flux computations for the nuclear design of Tokamak-type fusion reactors which have a toroidal or doughnut shape.

I.C Previous Studies

Several computational models have been applied to estimate the flux profile in toroidally shaped blankets. One approach is to perform diffusion or transport calculations in one-dimensional cylindrical geometry and to ignore the curvature associated with the major radius. In particular, the geometry of the toroidal reactor blanket can be approximated as an infinite right circular cylinder, so that a one-dimensional discrete ordinates code, such as ANISN ${ }^{6}$, can be used to solve for the neutron flux in the radial direction. This method is advantageous in that one-dimensional codes are readily available, easy to use, and relatively inexpensive to run. On the other hand, because one-dimensional cylindrical diffusion and transport codes can not model the curvature associated with the major radius present in Tokamaks, such codes are probably not suitable for tori with small aspect ratios.

To take into account the curvature of the major radius as well as the minor radius, two-dimensional cylindrical calculations in $r-z$ geometry have been used to solve for the neutron flux. A typical code for this method is TWOTRAN-II ${ }^{7}$, a two-dimensional discrete ordinates transport code which can be run in r-z geometry. Although it is possible to model the curvature of the major radius adequately using such a code,
small mesh spacings are required to correctiy model curved surfaces in the r-z plane; this can lead to costly and time consuming computations. More recently, computer programs have been developed to perform neutron transport calculations that are more suitable for toroidal geometry. One example of such a code is TRISM ${ }^{8}$, a two-dimensional discrete ordinates transport code developed at Los Alamos National Laboratory. Finally, full three-dimensional and Monte Carlo ${ }^{9}$ programs have also been applied to blanket problems. While these more advanced methods allow fluxes to be calculated accurately, they can be quite cumbersome and expensive to use.

I.D Computer Codes Used in This Work

2DB, a code written primarily for use in fast reactor calculations, provides two options that are potentially useful for fusion reactor design. ${ }^{10}$ First, a fixed source option will enable modeling of fusion blanket problems. Second, material depletion in the blanket of a Tokamak can potentially be calculated by using 2DB's material burn-up option.

ANISN, as stated previously, is a neutron transport code commonly used for fusion blanket analysis in one dimension. It can also be used to provide for a benchmark comparison to the one-dimensional results obtained with 2DB. In addition, ANISN enables one to reduce the number of groups used in the calculations by averaging over the fine groups to produce broad group cross sections. Reducing the number of groups will prove useful in a neutron diffusion code, since run times can be greatly decreased, thus facilitating its use on a micro-computer.

Since ANISN is a transport code, the results for the flux distribution will be more accurate than those obtained based on diffusion theory. In particular, if the validity of
diffusion theory in the vacuum region of a Tokamak inordinately affects the flux distribution in the rest of the Tokamak, then results from ANISN will provide a means to check this in 2DB.

The neutron cross section data used in the above codes will be taken from the CLAW-IV ${ }^{11}$ library. Most of the materials suggested for fusion applications are contained in this multi-group cross section set. Each material in the CLAW-IV library has four cross section matrices ($\mathrm{P}_{0}-\mathrm{P}_{3}$), with 30 neutron groups and 12 photon groups coupled in each. In the diffusion calculations, only the P_{0} matrix is used.

I.E Objectives of This Work

The objective of the research performed here is to produce a scoping code that can be used for fusion blanket design. Pomraning and Stevens ${ }^{12}$ have previously explained a technique in which a toroidal geometry problem can be cast into cylindrical (r- θ) form by a spatially dependent redefinition of the diffusion coefficient, absorption cross-section, and extraneous source function. Use of this method will first be attempted in an existing two-dimensional($\mathrm{x}-\mathrm{y}, \mathrm{r}-\mathrm{z}, \mathrm{r}-\theta$, triangular), multi-group neutron diffusion code, 2DB, that already executes on the IBM-AT. This method will also be assessed and compared to direct finite differencing of the toroidal diffusion equation. The method with the most advantages will then be implemented in a new version of 2DB that will be called 2DBTOR.

To verify that 2DBTOR is operating correctly, comparisons will be made to both analytical and numerical solutions for several types of problems. ANISN and 2DB
will be used to verify the solutions obtained from 2DBTOR.
The modifications that were made to 2 DB , a description of the problems and analytical solutions used to verify 2DBTOR, and the further modifications that were necessary to use 2DBTOR for fusion blanket calculations are presented in the following sections of this thesis.

II. THEORY

II.A. Introduction

The design of tokamak reactors requires an accurate calculation of the flux profile in the toroidally-shaped blanket. As stated previously, an r- θ neutron diffusion code will be used, with the appropriate modifications, to obtain a solution for the flux while taking into account the curvature of the torus. The solution from this modified neutron diffusion code might then be used as a first approximation for later runs in a more accurate transport code, such as TRISM ${ }^{8}$.

In order to make the appropriate changes so that a two-dimensional, $r-\theta$, diffusion code can be made to model toroidal geometry, an understanding of the form of the diffusion equation in toroidal geometry is necessary. The diffusion equation in toroidal geometry can be developed from the equation for the time rate of change of the number of neutrons at energies, E , in an arbitrary differential volume, dV . Neutrons of energies between E and $E+d E$, within $d V$, can be lost or gained by a variety of processes including: (1) production directly from a source, (2) absorption, (3) leakage and (4) scattering. The time rate of change of the number of neutrons in $d V$ and between E and $E+d E$ can be obtained by integrating the neutron density ($n(r, E, t)$) over dV , and balancing this with the gains and losses as follows:

$$
\left.\begin{array}{rl}
\frac{\partial}{\partial t} \int_{\mathrm{v}} \frac{\Phi(\tilde{r}, \mathrm{E}, \mathrm{t})}{v} \mathrm{dV} & =\left[\begin{array}{c}
\text { source neutron } \\
\text { production rate } \\
\text { in } V \text { at } \mathrm{E}
\end{array}\right]
\end{array}\right)-\left[\begin{array}{c}
\text { absorption } \\
\text { rate in } V \tag{5}\\
\text { at } \mathrm{V}
\end{array}\right]-\left[\begin{array}{c}
\text { change due } \\
\text { to leakage } \\
\text { from V at } E
\end{array}\right]
$$

where $\Phi(r, E, t)=$ flux of neutrons in r at E and $t=n(r, E, t) v$ and $v=$ the speed of the neutrons at E.

Equation (5) is known as the neutron continuity equation. Since the energy dependence of the neutron cross sections vary, equation (5) is usually solved for discrete energy groups(groups denoted by g in this case); thus equation (5) can be written as

$$
\begin{align*}
\frac{\partial}{\partial t} \int_{\mathrm{v}} \frac{\Phi_{\mathrm{g}}(\mathrm{r}, \mathrm{t})}{v_{\mathrm{g}}} \mathrm{dV}= & {\left[\begin{array}{c}
\text { source neutron } \\
\text { production rate } \\
\text { in } \mathrm{V} \text { for } \\
\text { group, } \mathrm{g}
\end{array}\right]-\left[\begin{array}{c}
\text { absorption } \\
\text { rate in } \mathrm{V} \\
\text { for group, } \mathrm{g}
\end{array}\right]-\left[\begin{array}{c}
\text { change due } \\
\text { to leakage } \\
\text { from } \mathrm{V} \\
\text { for group, } \mathrm{g}
\end{array}\right] } \\
& -\left[\begin{array}{c}
\text { neutron scattering } \\
\text { rate out of } \\
\text { group, } \mathrm{g} \text { in } \mathrm{V}
\end{array}\right]+\left[\begin{array}{c}
\text { neutron scattering } \\
\text { rate into } \\
\text { group, } \mathrm{g} \text { in } \mathrm{V}
\end{array}\right] \tag{6}
\end{align*}
$$

Before substituting expressions for the terms in equation (6), it is necessary to consider the flow of neutrons in a medium. Since the neutron current vector, $\mathrm{J}(\mathrm{r}, \mathrm{E}, \mathrm{t})$ is a vector quantity, then

$$
\begin{align*}
& \mathrm{J} \cdot \mathrm{n}=\text { net rate of flow across a surface, } \mathrm{A}(\mathrm{n}=\text { outward } \tag{7}\\
& \text { unit normal to a surface, } \mathrm{A}) .
\end{align*}
$$

To determine the total net rate of flow out of a closed surface, S, integration of equation (7) over S yields

$$
\int_{\mathrm{s}} \overrightarrow{\mathrm{~J}}(\overrightarrow{\mathrm{r}}, \mathrm{E}, \mathrm{t}) \cdot \hat{\mathrm{n}} \mathrm{dA},
$$

where n is the unit normal to the surface $d A$. Using the Divergence Theorem, then

$$
\begin{equation*}
\int_{s} \overrightarrow{\mathrm{~J}}(\vec{r}, \mathrm{E}, \mathrm{t}) \cdot \hat{\mathrm{n}} \mathrm{dA}=\int_{\mathrm{V}} \vec{\nabla} \cdot \overrightarrow{\mathrm{~J}}(\overrightarrow{\mathrm{r}}, \mathrm{E}, \mathrm{t}) \mathrm{dV} . \tag{8}
\end{equation*}
$$

Since equation (6) will be used to solve for the neutron flux, it is necessary to relate $\mathrm{J}(\mathrm{r}, \mathrm{E}, \mathrm{t})$ to the flux. In the diffusion approximation the relation between current and flux is assumed to be as follows:

$$
\begin{equation*}
\vec{J}(\vec{r}, \mathrm{E}, \mathrm{t}) \cong-\mathrm{D}(\overrightarrow{\mathrm{r}}) \vec{\nabla} \Phi(\overrightarrow{\mathrm{r}}, \mathrm{E}, \mathrm{t}) \tag{9}
\end{equation*}
$$

where $\mathrm{D}(\mathrm{r})=$ the diffusion coefficient.

Equation (9), known as Fick's Law for Diffusion, describes the flow of neutrons as being proportional to the negative of the density(flux) gradient, since particles tend to flow from a region of higher density to a region of lower density. Fick's Law is only valid for:
1.) points away from a vacuum boundary,
2.) points away from sources (by a few mean free paths),
3.) isotropic scattering (e.g., equal probability of scattering in any direction,
and 4.) a slowly varying flux (absorption \ll scattering). ${ }^{13}$

The above conditions can be somewhat relaxed, depending on the accuracy required for the solution of equation (6).

Using Fick's Law it is now possible to express the balance equation only in terms of the neutron flux. Substituting the right hand side (RHS) of equation (9) into the leakage term found from the Divergence Theorem (equation (8)), then
$\left[\begin{array}{c}\text { change due } \\ \text { to leakage } \\ \text { from } V \text { for } \\ \text { group, }\end{array}\right]=\int_{v} \vec{\nabla} \cdot\left(-D_{g}(\vec{r}) \vec{\nabla} \Phi_{g}(\vec{r}, t)\right) d V$

The use of Fick's Law in the neutron balance equation, equation (6), is known as the diffusion approximation, and the resulting equations are known as neutron diffusion equations.

The source term in equation (6) can be expressed by defining a source density, $\mathrm{S}_{\mathrm{g}}(\mathrm{r}, \mathrm{t})$, for the group, g . If $\mathrm{S}_{\mathrm{g}}(\mathrm{r}, \mathrm{t})$ is integrated over V , then

$$
\left[\begin{array}{c}
\text { source neutron } \tag{11}\\
\text { production rate } \\
\text { in V for } \\
\text { group, }
\end{array}\right]=\int_{v} S_{g}(\overline{\mathrm{r}}, \mathrm{t}) \mathrm{dV} .
$$

If source neutrons are allowed to be produced by either fission or extraneous(independent of the neutron flux) sources, then let

$$
\begin{equation*}
S_{\mathrm{g}}(\overrightarrow{\mathbf{r}}, \mathrm{t})=\mathrm{S}_{\mathrm{g}}^{\mathrm{ext}}(\overrightarrow{\mathrm{r}}, \mathrm{t})+\mathrm{S}_{\mathrm{g}}^{\mathrm{fis}}(\overrightarrow{\mathrm{r}}, \mathrm{t}) \tag{12}
\end{equation*}
$$

where

$$
\mathrm{S}_{\mathrm{g} \text {; }}^{\mathrm{ext}}(\hat{\mathrm{r}}, \mathrm{t})=\text { extraneous source density rate }
$$

and $\quad S_{g}^{\text {fis }}(\vec{r}, t)=$ fission source density rate.

The fission source density rate is given by

$$
\mathrm{S}_{\mathrm{g}}^{\mathrm{fis}}(\overline{\mathrm{r}}, \mathrm{t})=\left[\begin{array}{c}
\text { average number of } \tag{13}\\
\text { fission neutrons emited } \\
\text { within group, } \mathrm{g}
\end{array}\right] \sum_{\mathrm{g}^{\prime}=1}^{\mathrm{G}}\left\{\left[\begin{array}{c}
\text { fission rate in } \\
\text { group, } \mathrm{g}^{\prime} \text { per } \\
\text { unit volume }
\end{array}\right]\left[\begin{array}{c}
\text { average number of } \\
\text { neutrons released } \\
\text { into group, } \mathrm{g}, \text { hat } \\
\text { ocur from fission } \\
\text { in group, } \mathrm{g}^{\prime}
\end{array}\right]\right\}
$$

where $G=$ total number of groups.

It is common to denote the average number of neutrons released into group, g, that occur from fission in group, g^{\prime}, by v_{g} and the average number of fission neutrons emitted within group, g, by $\chi_{\mathrm{g}} .{ }^{14}$ Thus

$$
\mathrm{S}_{\mathrm{g}}^{\mathrm{fis}_{(\bar{r}, \mathrm{t})}}=\chi_{\mathrm{g}} \sum_{\mathrm{g}^{\prime}=1}^{\mathrm{G}} v_{\mathrm{g}^{\prime}}\left[\begin{array}{c}
\text { fission rate } \tag{14}\\
\text { in group, } \mathrm{g}^{\prime} \\
\text { per unit volume }
\end{array}\right]
$$

Since

$$
\left[\begin{array}{c}
\text { reaction rate } \tag{15}\\
\text { per unit } \\
\text { volume }
\end{array}\right]=\Sigma \Phi
$$

where $\quad \Sigma=$ macroscopic cross section,
the expression for the fission source can be written as

$$
\begin{equation*}
\mathrm{S}_{\mathrm{g}}^{\mathrm{fis}}(\overrightarrow{\mathrm{r}}, \mathrm{t})=\chi_{\mathrm{g}} \sum_{\mathbf{g}^{\prime}=1}^{\mathrm{G}} v_{\mathrm{g}} \cdot \Sigma_{\mathrm{f}_{\mathbf{k}}}(\overrightarrow{\mathrm{r}}) \Phi_{\mathrm{g}}(\overrightarrow{\mathrm{r}}, \mathrm{t}) \tag{16}
\end{equation*}
$$

The rest of the terms in the neutron balance equation can be expressed analogously to the above. For the absorption rate term, the absorption rate per unit volume is integrated over V to give

$$
\left[\begin{array}{c}
\text { absorption rate } \tag{17}\\
\text { in V for group, } \mathrm{g}
\end{array}\right]=\int_{\mathrm{V}} \Sigma_{\mathrm{a}_{\mathrm{B}}}(\overrightarrow{\mathrm{r}}) \Phi_{\mathrm{g}}(\overrightarrow{\mathrm{r}}, \mathrm{t}) \mathrm{dV}
$$

where $\Sigma_{\mathrm{ag}_{\mathrm{g}}}(\mathrm{r})=$ the macroscopic absorption cross-section in group g .

Assuming that neutrons can not scatter to groups of higher energy (upscatter), then the neutron outscattering rate term is given by(decreasing group numbers correspond to increasing neutron energy)

$$
\left[\begin{array}{c}
\text { neutron scattering rate } \tag{18}\\
\text { out of group } g \text { in } V
\end{array}\right]=\int_{\mathrm{v}} \sum_{\mathrm{t}=\mathrm{m}}^{0} \Sigma_{\mathrm{s}}\left(\mathrm{~g} \rightarrow \mathrm{~g}^{\prime}\right) \Phi_{\mathrm{g}}(\vec{r}, \mathrm{t}) \mathrm{dV}
$$

and the neutron inscattering rate term is given by

$$
\left[\begin{array}{c}
\text { neutron scattering rate } \tag{19}\\
\text { into group } g \text { in } V
\end{array}\right]=\int_{v} \sum_{v=1}^{r-1} \Sigma_{s}\left(g \rightarrow g^{\prime}\right) \Phi_{g^{\prime}(f, t) d V}
$$

where $\Sigma_{\mathrm{s}}\left(\mathrm{g} \rightarrow \mathrm{g}^{\prime}\right)=$ macroscopic scattering cross-section from g to g^{\prime} and $\quad \Sigma_{s}\left(g \rightarrow g^{\prime}\right)=$ macroscopic scattering cross-section from g^{\prime} to g.

Now that all of the terms in the neutron balance equation have been determined, equation (6) can be rewritten. Assuming steady state $(\partial / \partial \mathrm{t}$ term $=0$) and no upscatter, the neutron balance equation becomes, combining terrns,

$$
\begin{array}{r}
0=\int_{v}\left(S_{g}^{\text {ext }}+\chi_{\mathrm{g}} \sum_{\mathrm{g}^{\prime}=1}^{\mathrm{G}}\left(v_{\mathrm{g}^{\prime}} \Sigma_{\mathrm{f}_{\mathrm{g}}} \Phi_{\mathrm{g}^{\prime}}\right)-\Sigma_{\mathrm{a}} \Phi_{\mathrm{g}}-\sum_{\mathrm{g}^{\prime}=\mathrm{g}+1}^{\mathrm{G}}\left(\Sigma_{\mathrm{s}}\left(\mathrm{~g} \rightarrow \mathrm{~g}^{\prime}\right) \Phi_{\mathrm{g}}\right)\right. \tag{20}\\
\\
\left.+\vec{\nabla} \cdot\left(\mathrm{D}_{\mathrm{g}} \vec{\nabla} \Phi_{\mathrm{g}}\right)+\sum_{\mathrm{g}^{\prime}=1}^{\mathrm{g}-1}\left(\Sigma_{\mathrm{s}}\left(\mathrm{~g} \rightarrow \mathrm{~g}^{\prime}\right) \Phi_{\mathrm{g}^{\prime}}\right)\right) \mathrm{dV}
\end{array}
$$

where the (r, t) has been dropped for clarity. Since the volume, V, was arbitrarily chosen, equation (20) reduces to the form that follows:

$$
\begin{align*}
-\vec{\nabla} \cdot\left(D_{g} \vec{\nabla} \Phi_{\mathrm{g}}\right)+\Sigma_{\mathrm{a}} \Phi_{\mathrm{g}} & +\sum_{\mathrm{g}^{\prime}=\mathrm{g}+1}^{\mathrm{G}}\left(\Sigma_{\mathrm{g}}\left(\mathrm{~g} \rightarrow \mathrm{~g}^{\prime}\right) \Phi_{\mathrm{g}}\right)= \tag{21}\\
\mathrm{S}_{\mathrm{g}}^{\mathrm{ext}} & +\chi_{\mathrm{g}} \sum_{\mathrm{g}^{\prime}=1}^{\mathrm{G}}\left(v_{\mathrm{g}^{\prime}} \cdot \Sigma_{\mathrm{f}_{\mathrm{a}}} \Phi_{\mathrm{g}^{\prime}}\right)+\sum_{\mathrm{g}^{\prime}=1}^{\mathrm{g} \cdot 1}\left(\Sigma_{\mathrm{s}}\left(\mathrm{~g} \rightarrow \mathrm{~g}^{\prime}\right) \Phi_{\mathrm{g}^{\prime}}\right)
\end{align*}
$$

Since the removal of neutrons from group g is caused by both downscattering and absorption, the removal cross section for group g is defined as shown below:

$$
\begin{aligned}
\Sigma_{g}^{r} & \equiv \Sigma_{a_{s}}+\sum_{g^{\prime}=g^{\prime}+1}^{G}\left(\Sigma_{s}\left(g \rightarrow g^{\prime}\right)\right) \\
& =\Sigma_{a_{s}}+\Sigma_{s}(g \rightarrow g)+\left[\sum_{g^{\prime}=g+1}^{G} \Sigma_{s}\left(g \rightarrow g^{\prime}\right)\right]-\Sigma_{s}(g \rightarrow g) \\
& =\Sigma_{\mathrm{tr}_{\mathrm{s}}}-\Sigma_{s}\left(g \rightarrow g^{\prime}\right)
\end{aligned}
$$

where $\Sigma_{\mathrm{trg}}=$ the macroscopic transport cross section $=1 /\left(3 \mathrm{D}_{\mathrm{g}}\right) .{ }^{14}$

Thus the removal rate $/ \mathrm{cm}^{3}$ is

$$
\begin{equation*}
\Sigma_{\mathrm{g}}^{\mathrm{T}} \Phi_{\mathrm{g}}=\Sigma_{\mathrm{a}_{\mathrm{g}}} \Phi_{\mathrm{g}}+\sum_{s^{\prime}=\mathrm{g}+1}^{\mathrm{G}}\left(\Sigma_{\mathrm{s}^{\prime}}\left(\mathrm{g} \rightarrow \mathrm{~g}^{\prime}\right) \Phi_{\mathrm{g}}\right) \tag{22}
\end{equation*}
$$

Finally, substituting equation (22) into equation (21) gives

$$
\begin{equation*}
\vec{\nabla} \cdot\left(D_{g} \vec{\nabla} \Phi_{g}\right)+\Sigma_{g}^{\tau} \Phi_{g}=S_{g}^{e x t}+\chi_{g} \sum_{g^{\prime}=1}^{G}\left(v_{g^{\prime}} \Sigma_{f_{g}} \Phi_{g^{\prime}}\right)+\sum_{g^{\prime}=1}^{g-1}\left(\Sigma_{s}\left(g \rightarrow g^{\prime}\right) \Phi_{g^{\prime}}\right) \tag{23}
\end{equation*}
$$

To apply the above equation to practical problems, the ∇ operator must be written in the coordinate system of interest. In general orthogonal curvilinear coordinates

$$
\vec{\nabla} \Phi=\frac{1 \partial \Phi}{\mathrm{~h}_{1} \partial \mathrm{u}_{1}} \hat{\mathrm{e}}_{1}+\frac{1}{\mathrm{~h}_{2} \partial \mathrm{u}_{2}} \hat{\mathrm{e}}_{2}+\frac{1 \partial \Phi}{\mathrm{~h}_{3} \partial \mathrm{u}_{3}} \hat{\mathrm{e}}_{3}
$$

and

$$
\vec{\nabla} \cdot \vec{A}=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial u_{1}}\left(h_{2} h_{3} A_{1}\right)+\frac{\partial}{\partial u_{2}}\left(h_{3} h_{1} A_{2}\right)+\frac{\partial}{\partial u_{3}}\left(h_{1} h_{2} A_{3}\right)\right]
$$

where
$\mathrm{u}_{1}, \mathrm{u}_{2}$, and u_{3} are the coordinates;
$\mathrm{e}_{1}, \mathrm{e}_{2}$, and e_{3} are the corresponding coordinate vectors;
and $\quad h_{1}, h_{2}$, and h_{3} are scale factors that depend on the coordinates.

For cylindrical coordinates (r, θ, z)

$$
\begin{array}{lll}
\mathrm{h}_{1}=1 & \mathrm{u}_{1}=\mathrm{r} & \mathrm{e}_{1}=\mathrm{r} \\
\mathrm{~h}_{2}=\mathrm{r} & \mathrm{u}_{2}=\theta & \mathrm{e}_{2}=\theta \\
\mathrm{h}_{3}=1 & \mathrm{u}_{3}=\mathrm{z} & \mathrm{e}_{3}=\mathrm{z}
\end{array}
$$

For toroidal coordinates (r, θ, ϕ) (see Figure 2-1)

$$
\begin{array}{lll}
\mathrm{h}_{1}=1 & \mathrm{u}_{1}=\mathrm{r} & \mathrm{e}_{1}=\mathrm{r} \\
\mathrm{~h}_{2}=\mathrm{r} & \mathrm{u}_{2}=\theta & \mathrm{e}_{2}=\theta \\
\mathrm{h}_{3}=\mathrm{R}+\mathrm{r} \cos \theta & \mathrm{u}_{3}=\phi & \mathrm{e}_{3}=\phi .{ }^{15}
\end{array}
$$

Consider the diffusion equation in cylindrical coordinates. From the above,

$\mathrm{R}=$ major radius, $\mathrm{a}=$ minor radius, $\mathrm{r}=$ radial coordinate,
$\theta=$ poloidal angle, and $\phi=$ toroidal angle.
Figure 2-1: Toroidal Coordinate Description.

$$
\begin{equation*}
D \vec{\nabla} \Phi=D \frac{\partial \Phi}{\partial r} \hat{r}+\frac{D \partial \Phi}{r} \hat{\theta} \hat{\theta}+D \frac{\partial \Phi}{\partial z} \hat{z} \tag{24}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\vec{\nabla} \cdot(\mathrm{D} \vec{\nabla} \Phi)=\frac{1}{\mathrm{r}}\left[\frac{\partial}{\partial \mathrm{r}}\left(\mathrm{rD} \frac{\partial \Phi}{\partial \mathrm{r}}\right)+\frac{\partial}{\partial \theta}\left(\frac{\mathrm{D} \partial \Phi}{\mathrm{r}} \frac{\partial \theta}{\partial \theta}+\frac{\partial}{\partial \mathrm{z}}\left(\mathrm{DD} \frac{\partial \Phi}{\partial \mathrm{z}}\right)\right]\right. \tag{25}
\end{equation*}
$$

Analogously for toroidal coordinates,

$$
\begin{equation*}
\mathrm{D} \vec{\nabla} \Phi=\mathrm{D} \frac{\partial \Phi}{\partial \mathrm{r}} \hat{\mathbf{r}}+\frac{\mathrm{D} \partial \Phi}{\mathrm{r}} \partial \hat{\theta}+\frac{\mathrm{D}}{\mathrm{R}+\mathrm{r} \cos \theta \partial \phi} \partial \hat{\phi}_{\hat{\theta}} \tag{26}
\end{equation*}
$$

and
$\vec{\nabla} \cdot(\mathrm{D} \vec{\nabla} \Phi)=\frac{1}{r(R+r \cos \theta)}\left[\frac{\partial}{\partial r}\left(\mathrm{r}(\mathrm{R}+\mathrm{r} \cos \theta) \mathrm{D} \frac{\partial \Phi}{\partial r}\right)+\frac{\partial}{\partial \theta}\left((\mathrm{R}+\mathrm{r} \cos \theta) \frac{\mathrm{D})}{\mathrm{r} \Phi} \frac{\partial}{\partial \theta}+\frac{\partial}{\partial \phi}\left(\mathrm{r}_{(\mathrm{R}+\mathrm{C} \cos \theta) \partial \phi}^{\partial \phi}\right)\right](27)\right.$

The diffusion equation in a cylindrical coordinate system, assuming axial symmetry (i.e., the flux, $\Phi(r, \theta, z)$ depends only on the r and θ coordinates), is given by

$$
\begin{align*}
-\frac{1}{\mathrm{r}}\left[\frac{\partial}{\partial \mathrm{r}}\left(\mathrm{rD} \frac{\partial \Phi_{\mathrm{g}}}{\partial \mathrm{r}}\right)\right. & \left.+\frac{\partial}{\partial \theta}\left(\frac{\mathrm{D}_{\mathrm{g}} \partial \Phi_{\mathrm{g}}}{\mathrm{r}}\right)\right]+\Sigma_{\mathrm{g}}^{\mathrm{r}} \Phi_{\mathrm{g}} \tag{28}\\
& =\mathrm{S}_{\mathrm{g}} \mathrm{ext}^{2 \theta}+\chi_{\mathrm{g}} \sum_{\mathrm{g}^{\prime}=1}^{\mathrm{G}}\left(v_{\mathrm{g}^{\prime}} \Sigma_{\mathrm{f}_{\mathrm{g}}} \Phi_{\mathrm{g}^{\prime}}\right)+\sum_{\mathrm{g}^{\prime}=1}^{\mathrm{g}-1}\left(\Sigma_{\mathrm{s}}\left(\mathrm{~g} \rightarrow \mathrm{~g}^{\prime}\right) \Phi_{\mathrm{g}^{\prime}}\right)
\end{align*}
$$

Similarly the diffusion equation in a toroidal coordinate system with axisymmetry (i.e., the flux, $\Phi(r, \theta, \phi)$ depends only on the r and θ coordinates), is given by

$$
\begin{align*}
& -\frac{1}{r(R+r \cos \theta)}\left[\frac{\partial}{\partial r}\left(r(R+r \cos \theta) D_{g} \frac{\partial \Phi_{g}}{\partial r}\right)+\frac{\partial}{\partial \theta}\left((R+r \cos \theta) \frac{D_{g} \partial \Phi_{g}}{r}\right)\right] \tag{29}\\
& +\Sigma_{g}{ }^{\mathrm{r}} \Phi_{\mathrm{g}}=S_{\mathrm{g}}^{\mathrm{ext}}+\chi_{\mathrm{g}} \sum_{\mathrm{g}^{\prime}=1}^{\mathrm{G}}\left(\nu_{\mathrm{g}^{\prime}} \Sigma_{f_{\mathrm{s}^{\prime}}} \Phi_{g^{\prime}}\right)+\sum_{\mathrm{g}^{\prime}=1}^{\mathrm{g} \cdot 1}\left(\Sigma_{\mathrm{s}}\left(\mathrm{~g} \rightarrow \mathrm{~g}^{\prime}\right) \Phi_{g^{\prime}}\right)
\end{align*}
$$

II.B. Pomraning and Stevens' Method

If the toroidal form of the diffusion equation (equation (25)) is multiplied by ($\mathrm{R}+$ $r \cos \theta) / R$, then

$$
-\frac{1 \partial}{\mathrm{r}} \partial \mathrm{r}\left(\mathrm{r}\left(1+\frac{\mathrm{r}}{\mathrm{R}} \cos \theta\right) \mathrm{D}_{\mathrm{g}} \frac{\partial \Phi_{\mathrm{g}}}{\partial \mathrm{r}}\right)-\frac{1}{\mathrm{r}^{2}} \frac{\partial}{\partial \theta}\left(\left(1+\frac{\mathrm{r}}{\mathrm{R}} \cos \theta\right) \mathrm{D}_{\mathrm{g}} \frac{\partial \Phi_{\mathrm{g}}}{\partial \theta}\right)+\left(1+\frac{\mathrm{r}}{\mathrm{R}} \cos \theta\right) \Sigma_{\mathrm{g}}{ }^{\mathrm{r}} \Phi_{\mathrm{g}}=\left(1+\frac{\mathrm{r}}{\mathrm{R}} \cos \theta\right) \bar{S}_{\mathrm{g}}
$$

where
$\mathrm{S}_{\mathrm{g}}=$ three terms representing sources on the right hand side
of equation (29).

If now one defines

$$
\begin{aligned}
& D_{g}^{\prime}=(1+r / R \cos \theta) D_{g} \\
& \Sigma^{r^{\prime}}=(1+r / R \cos \theta) \Sigma^{r} g \\
& S_{g}^{\prime}=(1+r / R \cos \theta) S_{g}
\end{aligned}
$$

Then the above equation becomes

$$
-\frac{1 \partial}{\mathrm{r}^{\partial \mathrm{r}}}\left(\mathrm{rD}_{\mathrm{g}}^{\prime} \frac{\partial \Phi_{\mathrm{g}}}{\partial \mathrm{r}}\right)-\frac{1}{\mathrm{r}^{2}} \frac{\partial}{\partial \theta}\left(\mathrm{D}_{\mathrm{g}}^{\prime} \frac{\partial \Phi_{\mathrm{g}}}{\partial \theta}\right)+\Sigma_{\mathrm{g}}^{\mathrm{r}^{\prime}} \Phi_{\mathrm{g}}=\bar{S}_{\mathrm{g}}^{\prime}
$$

This equation is just the cylindrical diffusion equation with a modified diffusion coefficient, removal cross section, and source function. Pomraning and Stevens'12 proposed the possibility of using an existing r- θ neutron diffusion code and redefining the diffusion coefficient, removal cross section, and source function to model the
curvature of the torus naturally. This method was the original idea that suggested the topic of this research ; however, this approach was Iater abandoned in favor of direct finite differencing of the toroidal diffusion equation.

II.C. Finite Difference Approximation to the Diffusion Equation in Cylindrical Coordinates

To develop a finite difference approximation for the cylindrical diffusion equation(with axial symmetry), it is first necessary to integrate equation (28) over a small, arbitrary volume ΔV (see Figure 2-2). Thus,

$$
\begin{align*}
&-\int_{\Delta V} \frac{1}{T}\left[\frac{\partial}{\partial r}\left(\mathrm{rD}_{\mathrm{g}} \frac{\partial \Phi_{\mathrm{g}}}{\partial \mathrm{r}}\right)+\frac{\partial}{\partial \theta}\left(\frac{D_{\mathrm{g}}}{\mathrm{r}} \frac{\partial \Phi_{\mathrm{g}}}{\partial \theta}\right)\right] \mathrm{dV}+\int_{\Delta V}\left[\Sigma_{\mathrm{g}}^{\mathrm{r}} \Phi_{\mathrm{g}}\right] \mathrm{dV} \tag{30}\\
&=\int_{\Delta V}\left[\mathrm{~S}_{\mathrm{g}}^{e x t}+\chi_{\mathrm{g}} \sum_{\mathrm{g}^{\prime}=1}^{G}\left(\nu_{g^{\prime}} \Sigma_{\mathrm{f}_{\mathrm{g}^{\prime}}} \Phi_{\mathrm{g}^{\prime}}\right)+\sum_{\mathrm{g}^{\prime}=1}^{\mathrm{g}-1}\left(\Sigma_{\mathrm{s}}\left(\mathrm{~g} \rightarrow \mathrm{~g}^{\prime}\right) \Phi_{\mathrm{g}^{\prime}}\right)\right] \mathrm{dV}
\end{align*}
$$

where the first term on the LHS of the equation is the leakage term, the second term on

Figure 2-2. Finite Difference Coordinates Used in
2DB and 2DBTOR.
the LHS of the equation is the removal term, and the RHS represents the source terms including fission and scatter. Thus for the removal term,

$$
\begin{align*}
\int_{\Delta V} \Sigma_{\mathrm{g}}^{\mathrm{r}} \Phi_{\mathrm{g}} \mathrm{dV} & =\Sigma_{\mathrm{g}_{0}}^{\mathrm{r}} \Phi_{\mathrm{g}_{0}}\left(\mathrm{r}_{\mathrm{i}+1}-\mathrm{r}_{\mathrm{i}}\right)\left(\theta_{\mathrm{j}}+1-\theta_{\mathrm{j}}\right) \mathrm{rave}_{\mathrm{i}} \tag{31}\\
& =\Sigma_{\mathrm{g}_{0}}^{\mathrm{r}} \Phi_{\mathrm{g}_{0}} V_{0}
\end{align*}
$$

where
and

$$
\Phi_{\mathrm{g}_{\mathrm{n}}}=\text { flux associated with meshpointo }
$$

$$
\Sigma_{\mathrm{g}_{0}}^{\tau}=\text { removal cross section associated with meshpoint } 0 .
$$

Just as above, the source term on the RHS can be shown to have a V_{O} given by

$$
\begin{equation*}
V_{o}=\left(r_{i+1}-r_{i}\right)\left(\theta_{j+1}-\theta_{j}\right) r_{a v e_{i}} \tag{32}
\end{equation*}
$$

The leakage term is changed to an integral over the surface area of the volume element, thus from the Divergence Theorem

$$
-\int_{\Delta V} \vec{\nabla} \cdot D_{g} \vec{\nabla} \Phi_{g} \mathrm{dV}=-\int_{\mathrm{A}} \mathrm{D}_{\mathrm{g}} \vec{\nabla} \Phi_{\mathrm{g}} \cdot \hat{\mathrm{n}} \mathrm{dA}
$$

Using equation (24) for the $D_{g} \nabla \Phi_{g}$ term (where $d \Phi / d z=0$)

$$
-\int_{\mathrm{A}} \mathrm{D}_{\mathrm{g}} \vec{\nabla} \Phi_{\mathrm{g}} \cdot \hat{\mathrm{n}} \mathrm{dA}=-\int_{\mathrm{A}}\left(\mathrm{D}_{\mathrm{g}} \frac{\partial \Phi_{\mathrm{g}} \hat{\mathrm{r}}}{\partial \mathrm{r}}+\frac{\mathrm{D}_{\mathrm{g}} \partial \Phi_{\mathrm{g}} \vec{\theta}}{\mathrm{r}} \partial \theta \cdot \hat{\mathrm{n}} \mathrm{dA}\right.
$$

The normal vector, n, is r or θ for those area elements having normals in the positive r or θ, or increasing r or θ, respectively. In the same manner, n is $-r$ or $-\theta$ for those elements in the -r or $-\theta$ directions. The area element corresponding to a normal in the $\pm r$ direction is $\mathrm{rd} \theta$, while the area element for a normal in the $\pm \theta$ direction is $d r$. Thus for the 4 area elements

$$
\begin{aligned}
& -\int_{A}\left(D_{g} \frac{\partial \Phi_{g} \hat{r}}{\partial r}+\frac{D_{g} \partial \Phi_{g} \hat{r}}{r}\right) \cdot \hat{n} d A \\
& =-\int_{\mathrm{A}_{1}}\left(\mathrm{D}_{\mathrm{g}^{\prime}} \frac{\partial \Phi_{\mathrm{g}}}{\partial \mathrm{r}} \hat{\mathbf{r}}+\frac{\left.\mathrm{D}_{\mathrm{g}} \partial \Phi_{\mathrm{g}} \hat{r}\right)}{\mathrm{r} \partial \theta} \cdot \hat{\mathrm{n}} \mathrm{dA} A_{1}\right. \\
& -\int_{A_{2}}\left(\mathrm{D}_{\mathrm{g}} \frac{\partial \Phi_{\mathrm{g}} \hat{r}}{\partial \mathrm{r}}+\frac{\mathrm{D}_{\mathrm{g}} \partial \Phi_{\mathrm{g}} \hat{r}}{\mathrm{r}} \partial \theta \cdot \hat{\mathrm{n}} \mathrm{dA} A_{2}\right. \\
& -\int_{A_{3}}\left(\mathrm{D}_{\mathrm{g}} \frac{\partial \Phi_{\mathrm{g}} \hat{\mathrm{r}}}{\partial \mathrm{r}}+\frac{\mathrm{D}_{\mathrm{g}} \partial \Phi_{\mathrm{g}} \hat{\theta}}{\mathrm{r}} \frac{\partial \theta}{\partial \theta} \cdot \hat{\mathrm{n}} \mathrm{~d} A_{3}\right. \\
& -\int_{A_{4}}\left(D_{g} \frac{\partial \Phi_{g} \hat{r}}{\partial r}+\frac{D_{g} \partial \Phi_{g}}{r} \hat{\theta}\right) \cdot \hat{n} d A_{4}
\end{aligned}
$$

Substituting for n and the dA's (see Figure 2-2) then the RHS becomes

$$
\begin{aligned}
& =-\int_{\theta_{j}}^{\theta_{j+1}}\left(\mathrm{D}_{\mathrm{g}} \frac{\partial \Phi_{\mathrm{g}_{\hat{r}}}}{\partial \mathrm{r}}+\frac{\mathrm{D}_{\mathrm{g}} \partial \Phi_{\mathrm{g}} \hat{\theta}}{\mathrm{r}} \partial \theta \cdot-\left.\hat{\mathrm{r}} \mathrm{r}_{\mathrm{i}} \mathrm{~d} \theta\right|_{\mathrm{A}_{1}}\right. \\
& -\left.\int_{\theta_{j}}^{\theta_{j+1}}\left(D_{g} \frac{\partial \Phi_{g}}{\partial r} \hat{r}+\frac{D_{g} \partial \Phi_{\hat{g}} \hat{\theta}}{\partial}\right) \cdot \hat{r} r_{i+1} d \theta\right|_{A_{2}} \\
& -\int_{r_{1}}^{r_{i+1}}\left(D_{g} \frac{\partial \Phi_{g}}{\partial r} \hat{r}+\frac{D_{g} \partial \Phi_{\hat{g}} \hat{\theta}}{r} \partial \theta \cdot-\left.\hat{\theta} d r\right|_{A_{3}}\right. \\
& -\left.\int_{r_{i}}^{T_{i+1}}\left(D_{g} \frac{\partial \Phi_{g} \hat{r}}{\partial r}+\frac{D_{g} \partial \Phi_{g}}{r} \hat{\theta}\right) \cdot \hat{\theta} d r\right|_{A_{4}}
\end{aligned}
$$

Since $r \cdot \theta=\theta \cdot r=0$ and $r \cdot r=\theta \cdot \theta=1$, then the RHS simplifies to

$$
\begin{equation*}
=\left.\int_{\theta_{j}}^{\theta_{j+1}} D_{g} \frac{\partial \Phi_{g}}{\partial r} r_{i} d \theta\right|_{A_{i}}-\left.\int_{\theta_{j}}^{\theta_{j+1}} D_{g} \frac{\partial \Phi_{g}}{\partial r} r_{i+1} d \theta\right|_{A_{2}}+\left.\int_{r_{i}}^{\mathrm{I}_{\mathrm{i}+1}} \frac{D_{g} \partial \Phi_{g}}{r} \frac{\partial \theta}{\partial \theta} d r\right|_{A_{3}}-\left.\int_{r_{i}}^{T_{i+1}} \frac{D_{g} \partial \Phi_{g}}{r \partial \theta} d r\right|_{A^{2}} \tag{33}
\end{equation*}
$$

Since the partial derivatives of the flux will be obtained by differencing the two neighboring flux values, then letting k be the adjacent mesh point to mesh point o gives

$$
\frac{\mathrm{d} \phi}{\mathrm{dx}} \left\lvert\, \approx \frac{\phi_{\mathrm{k}}-\phi_{0}}{\Delta \mathrm{x}}\right.
$$

where $x=r$ or θ depending on the derivative being considered.

Then

$$
\begin{aligned}
& \left.\int_{\theta_{i}}^{\theta_{i+1}} D_{g} \frac{\partial \Phi_{g}}{\partial r} r_{i} d \theta\right|_{A_{1}}=\left.\bar{D}_{g_{1}} \frac{\partial \Phi_{g}}{\partial r}\right|_{r_{i}} r_{i}\left(\theta_{j+1}-\theta_{j}\right) \\
& =-\bar{D}_{g_{1}} \frac{\phi_{g_{1}}-\phi_{g_{0}}}{r_{\text {ave }_{i}}-r_{\text {ave }_{i+1}}} r_{i}\left(\theta_{j+1}-\theta_{j}\right)
\end{aligned}
$$

where Dg_{k} is defined to be (see Appendix B)

$$
\bar{D}_{g_{k}}=\frac{D_{g_{o}} D_{g_{k}}\left(\Delta r_{o}+\Delta r_{k}\right)}{\left(D_{g_{0}} \Delta r_{k}+D_{g_{k}} \Delta r_{o}\right)} \text { or } \frac{D_{g_{o}} D_{g_{k}}\left(\Delta \theta_{o}+\Delta \theta_{k}\right)}{\left(D_{g_{o}} \Delta \theta_{k}+D_{g_{k}} \Delta \theta_{o}\right)} \text { for } k=1,2,3 \text {, or } 4
$$

and $\mathrm{Dg}_{\mathrm{o}}=$ average D_{g} for volume element o ,
$\mathrm{Dg}_{\mathrm{k}}=$ average D_{g} for volume element k ,
$\Delta r_{0}=\Delta r$ for volume element 0,
$\Delta r_{k}=\Delta r$ for volume element k,
$\Delta \theta_{\mathrm{o}}=\Delta \theta$ for volume element o , and
$\Delta \theta_{\mathrm{o}}=\Delta \theta$ for volume element o.

Let

$$
\begin{aligned}
& A_{1}=r_{i}\left(\theta_{j+1}-\theta_{j}\right) \\
& L_{1}=\mathrm{rave}_{\mathrm{i}} \mathrm{r}_{\mathrm{ave}}^{\mathrm{i} \cdot 1} \mathrm{i}
\end{aligned}
$$

Then

$$
\begin{equation*}
\int_{\theta_{j}}^{\theta_{j+1}} D_{g} \frac{\partial \Phi_{g}}{\partial r} r_{i} d \theta=-\bar{D}_{g 1} \frac{\phi_{g 1}-\phi_{g o}}{L_{1}} A_{1} \tag{34}
\end{equation*}
$$

For r_{i} close to $r_{i+1}, \ln \left(r_{i+1} / r_{i}\right) \approx\left(r_{i+1}-r_{i}\right)$. Thus,

$$
\ln \left(\frac{r_{i+1}}{r_{i}}\right) \approx r_{i+1}-r_{i}
$$

which when used in the third term in equation (33) gives

$$
\begin{aligned}
\int_{\mathrm{r}_{i}}^{\mathrm{r}_{\mathrm{i}+1}} \frac{\mathrm{D}_{\mathrm{g}} \partial \Phi_{\mathrm{g}}}{\mathrm{r}} \mathrm{dr} & =\left.\left.\overline{\mathrm{D}}_{\mathrm{g}_{3}} \frac{\partial \Phi_{\mathrm{g}}}{\partial \theta}\right|_{\theta_{j}} \ln \mathrm{r}\right|_{\mathrm{r}_{\mathrm{i}}} ^{\mathrm{r}_{\mathrm{i}+1}} \\
& \approx-\overline{\mathrm{D}}_{\mathrm{g}_{3}} \frac{\phi_{\mathrm{g}_{3}}-\phi_{\mathrm{g}_{0}}}{\theta_{\mathrm{ave}_{j}}-\theta_{\text {ave }_{j-1}}}\left(\mathrm{r}_{\mathrm{i}+1}-\mathrm{r}_{\mathrm{i}}\right)
\end{aligned}
$$

Let

$$
\begin{aligned}
& A_{3}=\left(r_{i+1}-r_{i}\right) \\
& L_{3}=\theta_{\text {ave }_{1}}-\theta_{\text {ave }_{j-1}}
\end{aligned}
$$

then

$$
\begin{equation*}
\int_{r_{i}}^{r_{i+1}} \frac{D_{g} \partial \Phi_{g}}{r \partial \theta} d r \approx-\bar{D}_{g 3} \frac{\phi_{g 3}-\phi_{g 0}}{L_{3}} A_{3} \tag{35}
\end{equation*}
$$

The above process can be applied to the remaining terms of equation (33) to give

$$
\begin{equation*}
-\int_{\theta_{j}}^{\theta_{j+1}} \mathrm{D}_{\mathrm{g}} \frac{\partial \Phi_{g}}{\partial \mathrm{r}} r_{i+1} \mathrm{~d} \theta=\overline{\mathrm{D}}_{\mathrm{g}_{2}} \frac{\phi_{\mathrm{g}_{2}}-\phi_{\mathrm{r}_{0}}}{\mathrm{ave}_{j+1}-r_{\mathrm{ave}_{i}}} r_{i+1}\left(\theta_{j+1}-\theta_{j}\right) \tag{36}
\end{equation*}
$$

$$
=-\overline{\mathrm{D}}_{\mathrm{g}_{2}} \frac{\phi_{\mathrm{g}_{2}}-\phi_{\mathrm{g}_{0}}}{\mathrm{~L}_{2}} \mathrm{~A}_{2}
$$

and

$$
\begin{align*}
-\int_{r_{i}}^{r_{j+1}} \frac{D_{g} \partial \Phi_{g}}{r} d r & =\bar{D}_{g_{4}} \frac{\phi_{g_{4}}-\phi_{g_{0}}}{\partial \theta e_{j+1}}-\theta_{a_{v e}} \tag{37}\\
\left(r_{i}+1\right. & \left.-r_{i}\right) \\
& \approx-\bar{D}_{g_{4}} \frac{\phi_{g_{4}}-\phi_{g_{0}}}{L_{4}} A_{4}
\end{align*}
$$

where $\quad L_{2}=r_{\text {ave }{ }_{i+1}}-r_{\text {ave }}{ }_{i}$,

$$
\begin{aligned}
& \mathrm{A}_{2}=\mathrm{r}_{\mathrm{i}+1}\left(\theta_{\mathrm{j}+1}-\theta_{\mathrm{j}}\right) \\
& \mathrm{L}_{4}=\theta_{\text {ave }_{\mathrm{j}+1}}-\theta_{\text {ave }_{\mathrm{j}}}
\end{aligned}
$$

and

$$
A_{4}=r_{i}+1-r_{\mathbf{i}}
$$

Combining all of the above terms back into equation (30)

$$
\begin{align*}
& -\sum_{k=1}^{4}\left[\overline{\mathrm{D}}_{\mathrm{g}_{\mathrm{k}}}\left(\frac{\phi_{\mathrm{g}_{\mathrm{k}}}-\phi_{\mathrm{g}_{0}}}{\mathrm{~L}_{\mathrm{k}}}\right) A_{\mathrm{k}}\right]+\Sigma_{\mathrm{g}_{0}} \Phi_{\mathrm{g}_{0}} V_{0} \tag{38}\\
& =\left[S_{g_{0}}^{e x t}+\chi_{g} \sum_{g^{\prime}=1}^{\mathrm{G}}\left(v_{g^{\prime}}, \Sigma_{\mathrm{f}_{s^{\prime}}, \Phi_{g_{0}^{\prime}}}\right)+\sum_{\mathrm{g}^{\prime}=1}^{\mathrm{g}-1}\left(\Sigma_{\mathrm{s}_{0}}\left(\mathrm{~g} \rightarrow \mathrm{~g}^{\prime}\right) \Phi_{\mathrm{g}_{0}^{\prime}}\right)\right] \mathrm{V}_{0} .
\end{align*}
$$

II.D. Finite Difference Approximation to the Diffusion

Equation in Toroidal Coordinates

In a similar manner as was used in the previous section, the diffusion equation in a toroidal coordinate system can be written in finite difference form. Using the Divergence Theorem to transpose the leakage term in the toroidal diffusion equation (equation (29)) from a volume to a surface integral and substituting for the $\mathrm{D}_{\mathrm{g}} \nabla \Phi_{\mathrm{g}}$ term from equation (26), then

$$
\begin{aligned}
& =\int_{V}\left[S_{g}^{e x t}+\chi_{g} \sum_{g^{\prime}=1}^{G}\left(v_{g^{\prime}} \Sigma_{f_{g^{\prime}}} \Phi_{g^{\prime}}\right)+\sum_{g^{\prime}=1}^{g-1}\left(\Sigma_{s}\left(g \rightarrow g^{\prime}\right) \Phi_{g^{\prime}}\right)\right] d V
\end{aligned}
$$

The leakage term in toroidal coordinates becomes (assuming axisymmetry)

$$
-\int_{A} 2 \pi(\mathrm{R}+\mathrm{r} \cos \theta)\left(\mathrm{D}_{8} \frac{\partial \Phi_{\mathrm{g}} \hat{r}}{\partial \mathrm{r}}+\frac{\mathrm{D}_{\mathrm{g}} \partial \Phi_{g} \hat{r}}{\mathrm{r}} \partial \theta\right) \cdot \hat{n} \mathrm{dA}
$$

where the $(R+r \cos \theta)$ term appears from multiplying by $(R+r \cos \theta)$ before taking $d \Phi / d \phi=0$. As in the cylindrical form of the diffusion equation, n and the $d A ' s$ are the same, so the only difference in evaluating the toroidal form of the diffusion equation is the $(\mathrm{R}+\mathrm{r} \cos \theta)$ terms. Thus from the above, the leakage term becomes

$$
\begin{aligned}
& 2 \pi \int_{A}(R+r \cos \theta)\left(D_{g} \frac{\partial \Phi_{g} \hat{g}}{\partial r}+\frac{D_{g} \partial \Phi_{g}}{\mathrm{r}} \hat{\mathrm{~g}} \theta\right) \cdot \hat{n} d A= \\
& \left.2 \pi \int_{\theta_{j}}^{\theta_{j+1}} D_{g}(R+\cos \theta) \frac{\partial \Phi_{g}}{\partial r} r_{i} d \theta\right|_{A_{1}}-\left.2 \pi \int_{\theta_{j}}^{\theta_{j+1}} D_{g}(R+r \cos \theta) \frac{\partial \Phi_{g}}{\partial r} r_{i+1} d \theta\right|_{A_{2}} \\
& +\left.2 \pi \int_{T_{i}}^{T_{r 1}} \frac{D_{g}}{r}(R+r \cos \theta) \frac{\partial \Phi_{g}}{\partial \theta} d r\right|_{A_{3}}-\left.2 \pi \int_{I_{i}}^{T_{i+1}} \frac{D_{g}}{r}(R+r \cos \theta) \frac{\partial \Phi_{g}}{\partial \theta} d r\right|_{A_{4}} \\
& \approx-2 \pi R \bar{D}_{g 1} \frac{\phi_{g 1}-\phi_{g 0}}{L_{1}}\left[r_{i}\left[\left(\theta_{j+1}-\theta_{j}\right)+\frac{r_{i}}{R}\left(\sin \theta_{j+1}-\sin \theta_{j+1}\right)\right]\right] \\
& -2 \pi R \bar{D}_{g 2} \frac{\phi_{g 2}-\phi_{g} 0}{L_{2}}\left[r_{i+1}\left[\left(\theta_{j+1}-\theta_{j}\right)+\frac{r_{i+1}}{R}\left(\sin \theta_{j+1}-\sin \theta_{j+1}\right)\right]\right] \\
& -2 \pi R \bar{D}_{g 3} \frac{\phi_{g 3}-\phi_{g 0}}{L_{3}}\left[\left(r_{i+1}-r_{j}\right)\left[\frac{\cos \theta_{\text {ave }_{j+1}}+1}{R}\right]\right] \\
& -2 \pi R \bar{D}_{g_{4}} \frac{\phi_{g 4}-\phi_{g 0}}{L_{4}}\left[\left(r_{i+1} I^{-}\right)\left[\frac{\cos \theta_{\text {ave }_{j}}}{R}+1\right]\right]
\end{aligned}
$$

For the removal term

$$
\begin{aligned}
\int_{V} \Sigma_{g}{ }^{r} \Phi_{g} d V & =\Sigma_{g_{0}}^{r} \Phi_{g_{0}} \int_{r_{i}}^{r_{i+1}} \int_{\theta_{j}}^{\theta_{j+1}} 2 \pi r(R+r \cos \theta) d r d \theta \\
& =\Sigma_{g_{0}}^{T} \Phi_{g_{0}} 2 \pi R\left[\left(\frac{r_{i+1}^{2}-r_{i}^{2}}{2}\right)\left(\theta_{j+1}-\theta_{j}\right)+\frac{r_{i+1}^{3}-r_{i}^{3}}{3 R}\left(\sin \theta_{j+1}-\sin \theta_{j}\right)\right] \\
& =\Sigma_{g_{0}}^{r} \Phi_{g_{0}} 2 \pi R\left[\left(r_{i+1}-r_{i}\right) r_{a v e}\left(\theta_{j+1}-\theta_{j}\right)+\frac{r_{i+1}^{3}-r_{i}^{3}}{3 R}\left(\sin \theta_{j+1}-\sin \theta_{j}\right)\right] \\
& =\Sigma_{g_{0}}^{r} \Phi_{g_{0}} 2 \pi R V_{0}
\end{aligned}
$$

As in the cylindrical coordinate system diffusion equation, V_{O} for the source term is the same as the above term for V_{o}.

Let

$$
\begin{aligned}
& A_{1}=\left[r_{\mathrm{j}}\left[\left(\theta_{\mathrm{j}+1}-\theta_{\mathrm{j}}\right)+\frac{r_{\mathrm{i}}}{\mathrm{R}}\left(\sin \theta_{\mathrm{j}+1}-\sin \theta_{\mathrm{j}+1}\right)\right]\right] \\
& \mathrm{A}_{2}=\left[\mathrm{r}_{\mathrm{i}+1}\left[\left(\theta_{\mathrm{j}+1}-\theta_{\mathrm{j}}\right)+\frac{\mathrm{r}_{\mathrm{i}+1}}{\mathrm{R}}\left(\sin \theta_{\mathrm{j}+1}-\sin \theta_{\mathrm{j}+1}\right)\right]\right] \\
& A_{3}=\left[\left(\mathrm{r}_{\mathrm{i}+1}-\mathrm{r}_{\mathrm{i}}\right)\left[\frac{\cos \theta_{\text {avg }_{+1}}}{\mathrm{R}}+1\right]\right] \\
& \mathrm{A}_{4}=\left[\left(\mathrm{r}_{\mathrm{i}+1}-\mathrm{r}_{\mathrm{i}}\right)\left[\frac{\cos \theta_{\text {ava }}}{R}+1\right]\right]
\end{aligned}
$$

Using the above, the toroidal diffusion equation in finite difference form after using
equation (39) and dividing through by $2 \pi \mathrm{R}$ becomes

$$
\begin{aligned}
& \sum_{k=1}^{4}\left[\bar{D}_{g_{k}}\left(\frac{\phi_{g_{k}}-\phi_{g_{0}}}{L_{k}}\right) A_{k}\right]+\Sigma_{g_{0}}^{r} \Phi_{g_{0}} V_{0} \\
& \quad=\left[S_{g_{0}}^{e x t}+\chi_{g} \sum_{g^{\prime}=1}^{G}\left(v_{g} \cdot \Sigma_{f_{s^{\prime}},{ }_{g_{0}^{\prime}}}\right)+\sum_{g^{\prime}=1}^{g-1}\left(\Sigma_{s_{0}}\left(g \rightarrow g^{\prime}\right) \Phi_{g_{0}^{\prime}}\right)\right] v_{0}
\end{aligned}
$$

Thus, the finite difference approximation to the diffusion equation in any coordinate system results when appropriate area and volume elements are used. The differences between the cylindrical and toroidal coordinate system area and volume elements are listed in Table 2-1. By changing the area and volume elements to those for toroidal coordinates, a standard neutron diffusion code can be generalized to solve the multi-group diffusion equations in toroidal coordinates and in practice this is easier than the redefinition of cross sections proposed by Pomraning and Stevens.

II.E. Analytical Solutions

In order to insure that the above methodology was implemented correctly, analytical solutions for the flux profiles of an elementary case were obtained. Pomraning and Stevens ${ }^{\prime 12}$ presented the analytical solution for the diffusion of neutrons due to a line source in a homogeneous cylindrical medium of radius, a (see Appendix A). This cylinder did not have a central void. Approximate solutions were then derived for the

Table 2-1. Area and Volume Elements in Cylindrical and Toroidal Coordinates.

$$
\begin{aligned}
& \text { Cylindrical } \\
& \text { Toroidal } \\
& A_{1} \quad \mathrm{r}_{\mathrm{i}}\left(\theta_{\mathrm{j}+1}-\theta_{\mathrm{j}}\right) \\
& {\left[r_{i}\left[\left(\theta_{j+1}-\theta_{j}\right)+\frac{r_{i}}{R}\left(\sin \theta_{j+1}-\sin \theta_{j+1}\right)\right]\right]} \\
& \mathrm{A}_{2} \quad \mathrm{r}_{\mathrm{i}+1}\left(\theta_{\mathrm{j}+1}-\theta_{\mathrm{j}}\right) \\
& {\left[r_{i+1}\left[\left(\theta_{j+1}-\theta_{j}\right)+\frac{r_{i+1}}{R}\left(\sin \theta_{j+1}-\sin \theta_{j+1}\right)\right]\right]} \\
& A_{3} \quad\left(r_{i+1}-r_{i}\right) \\
& {\left[\left(r_{i+1}-r_{i}\right)\left[-\frac{\cos \theta_{\text {ave }}+1}{R}+1\right]\right]} \\
& \mathrm{A}_{4} \quad \mathbf{r}_{\mathrm{i}+\mathrm{I}^{-}} \mathbf{r}_{\mathrm{i}} \\
& {\left[\left(r_{i+1}-r_{i}\right)\left[\frac{\cos \theta_{\text {ave }}}{R} j_{+1}\right]\right]} \\
& \text { Vo } \quad\left(r_{i+1}-r_{i}\right)\left(\theta_{j+1}-\theta_{j}\right) r_{a v e} \quad\left[\left(r_{i+1}-r_{i}\right) r_{a v e}\left(\theta_{j+1}-\theta_{j}\right)+\frac{r_{i+1}^{3}-r_{i}^{3}}{3 R}\left(\sin \theta_{j+1}-\sin \theta_{j}\right)\right]
\end{aligned}
$$

flux profile within a torus of major radius, R, and minor radius, a. The analytical result for the cylindrical problem is

$$
\begin{equation*}
\Phi(r)=\frac{1}{2 \pi}\left[K_{0}\left(\frac{k r}{a}\right)-\frac{K_{0}(k)}{I_{o}(k)} I_{o}\left(\frac{k r}{a}\right)\right] \tag{40}
\end{equation*}
$$

and the approximate result for the toroidal problem is

$$
\begin{equation*}
\Phi(r, \theta)=\frac{1}{2 \pi}\left[K_{d}\left\{\frac{k r}{a} ;-\frac{K_{0}(k)}{I_{0}(k)} I I_{d}\left(\frac{k r}{a}\right)\right]\left(1-\frac{r R \cos \theta}{2}\right)+O\left(\left(\frac{a}{R}\right)^{2}\right)\right. \tag{41}
\end{equation*}
$$

where $k=\left(\Sigma_{a} / D\right)^{1 / 2} ; K_{0}$ and I_{0} are the zero order modified Bessel functions of the first and second kind, respectively; and $O\left((a / R)^{2)}\right.$ denotes an error term of order $(a / R)^{2}$. For the above solutions, the only source is a line source of unit strength at $r=0^{12}$.

III. RESULTS

III.A 2DBTOR Verification and Infinite Cylinder Problems

In order to develop and verify 2 DBTOR , modifications had to be made to 2 DB , as described previously in the theory section. In addition, 2 DB was tested to insure that it was operating correctly. This was done by comparing 2DB's results to both analytical and numerical flux solutions for several types of problems. ANISN was used to obtain numerical results to verify one-dimensional results from 2DB; Pomraning and Stevens' solution for a solid, homogeneous torus with a line source in the center provided an analytical verification in the limit as the aspect ratio of the torus became large (e.g., the torus approximated an infinite cylinder). ${ }^{12}$

The first part of the investigation was to compute, using 2DB, the flux in an infinite, homogeneous cylinder due to a line source. The radius of the cylinder was 300 cm . Graphite was chosen as the material for the cylinder, since graphite has good neutron scattering properties ($\Sigma_{S} \gg \Sigma_{\mathrm{a}}$) and thus should prove to give good results for the flux profile when diffusion theory is used. A source density given by

$$
\begin{equation*}
S_{v}=\frac{D}{\pi r_{v}^{2}} \tag{42}
\end{equation*}
$$

where

$$
S_{v}=\text { source density }\left(\mathrm{n} / \mathrm{cm}^{3}\right)
$$

$$
\begin{aligned}
& \mathrm{D}=1 / 3 \Sigma_{\mathrm{tr}}=\text { diffusion coefficient, } \\
& \Sigma_{\mathrm{tr}}=\text { macroscopic transport cross section, } \\
& \text { and } \quad \mathrm{r}_{\mathrm{V}}=\text { radius of the area for the source, }
\end{aligned}
$$

was input into 2 DB for a small radius $\left(\mathrm{r}_{\mathrm{v}}=6 \mathrm{~cm}\right)$ which would approximate the line source of equation (40) from the theory (see Appendix A 16). ANISN was used to collapse the 30 group graphite cross sections to one group using S_{2} angular quadrature with the P_{0} matrix from the CLAW-IV neutron cross section library. After collapsing to one group, 2DBXPROC, a cross section processor to manipulate the cross sections from ANISN's format into 2DB's format (see Appendix C for a listing of 2DBXPROC), was used so that 2DB could employ the one group cross sections for graphite. Solutions for the flux away from the source for both the analytical calculation and the 2DB run gave results that were in excellent agreement, after errors for both the volume and area elements were corrected (see Appendix D). The one group cross section set for graphite was then input to ANISN with the same conditions as above. Solutions of the flux from ANISN were also in excellent agreement with 2 DB .

After studying the infinite, homogeneous cylinder, computations were made to determine the flux due to a uniformly distributed source of 14 Mev neutrons (see Appendix E) in an infinite homogeneous cylinder with a central void. The source radius was 150 cm and the inner and outer radii of the medium were 200 cm and 300 cm , respectively. ANISN was again used to collapse the 30 group cross section
set for graphite to one group. In order to model the central void region, fictitious cross sections were first input into 2 DB such that the absorption cross section was zero and the scattering cross section was equal to the transport cross section of graphite. This method proved to give somewhat erroneous results, however, since the value for the diffusion coefficient in the vacuum region was arbitrary. To alleviate this problem, a sufficiently thin source equivalent to the plasma source was placed at the inner edge of the annulus (see Appendix F) and the problem was re-run. This quasi-albedo boundary condition overcame the need for a fictitious scattering cross section in the void. Re-runs of the above problem gave 2DB and ANISN results which were in good agreement.

To complete the test of 2 DB , some of the above problems were re-run with more than one energy group. This served to verify that 2DB's use of the downscattering cross sections was being performed correctly. Each problem was solved as before, except that 9 groups were used instead of one. Again the cross sections were obtained by collapsing the 30 group P_{0} matrix using ANISN. Each solution of the flux was correct for each problem done previously for graphite. Since fusion problems would involve ($n, 2 n$) and (n, n^{\prime}) reactions, it was decided to further test 2DB by using $\mathrm{Nb}-93$, which has a significant ($\mathrm{n}, 2 \mathrm{n}$) reaction at high energy for the problems previously studied. The results obtained using $\mathrm{Nb}-93$ in 2DB for the two cases above (with and without central voids) were discovered to be quite different from those of ANISN. An investigation of 2DB's source code was therefore performed to identify the reason for the differences. It was then discovered that 2 DB erroneously computed the downscattering (see Appendix D). After correcting 2DB to compute the proper downscatter contribution, the $\mathrm{Nb}-93$ problem was re-run with a 9 -group cross section
set, and the results were in good agreement with those obtained using ANISN.

III.B 2DBTOR Verification and Toroidal Problems

After making appropriate changes, as described earlier in this thesis (i.e, change the volume and area elements), to change 2DB to compute the flux for toroidal geometry (see Appendices G and H), a new code was produced which was called 2DBTOR. Using the same conditions stated previously for an infinite homogeneous graphite cylinder with one-group cross sections and without a central void, 2DBTOR was run for aspect ratios of 3 and 5 and compared to Pomraning and Stevens' solutions ${ }^{12}$ for the same aspect ratio. The solutions for the flux were in excellent agreement. These solutions for both aspect ratios were then compared to the infinite cylinder solutions at radii of 150 cm and 250 cm from $\theta=0$ to 2π. The results are shown in Figures 3-1 and 3-2 for 150 cm and 250 cm , respectively. As can be seen from Figures 3-1 and 3-2, the flux has a minimum at the outside part of the torus ($\theta=0$) and increased up to the inner part ($\theta=\pi$), where the flux was a maximum. This was an expected result since the area of the inner portion of the torus is smaller than the outer portion. In addition, as the aspect ratio increases the solution approaches that of the infinite cylinder.

Figure 3-1. Flux Versus Poloidal Angle at a Radius of 150 cm for Several Aspect Ratios.

Figure 3-2. Flux Versus Poloidal Angle at a Radius of 250 cm for Several Aspect Ratios.

III.C Standard Blanket Solutions

III.C. 1 Infinite Cylinder

The blanket used for this analysis is shown in Figure 3-3, and it is the so-called 'standard' blanket that was formulated as a benchmark for neutronic calculations. ${ }^{17}$ The materials used and their atom densities are given in Table 3-1. ${ }^{17}$ From Figure 3-3 it can be seen that the blanket consists of 10 zones, or regions, which contain one of 3 mixtures(except for the first 2 zones which are the vacuum and plasma). These are denoted A, B, or C . Each mixture has one or more materials including $\mathrm{Li}-6, \mathrm{Li}-7$, $\mathrm{C}-12$, and $\mathrm{Nb}-93$. When lithium is present in a mixture, the medium is medium is assumed to be homogeneous with volume fractions of 94% lithium and 6% niobium. The lithium serves as both a coolant and tritium producer, while the niobium provides the structural function. The plasma has a radius of 150 cm and occupies zone 1. A vacuum region is located from 150 cm to 200 cm and occupies zone 2. The blanket extends from 200 cm to 300 cm consisting of the first wall $(200-200.5 \mathrm{~cm})$, a tritium production region ($200.5-203.5 \mathrm{~cm}$), the second wall $(203.5-204 \mathrm{~cm}), 3$ tritium production regions of 20 cm thickness each $(204-264 \mathrm{~cm})$, a carbon reflector $(264-294 \mathrm{~cm})$, and a final tritium production region $(294-300 \mathrm{~cm})$.

After setting up the standard blanket problem to run on ANISN, the 30-group cross sections in CLAW-IV for all the materials were collapsed to 9 -group cross sections, with a P_{0} Legendre expansion and S_{2} quadrature to represent a diffusion theory calculation. 50 mesh intervals were used in this computation (see Figure 3-3). The 9 -group cross section set was unable to produce satisfactory results for the tritium

Table 3-1. Standard Blanket Constituents.

Material Code Letter (from Figure 3-3)	Constituents	Atom density (atoms $/ \mathrm{cm}$ $\mathbf{3} \times 10-24$ A
B	$\mathrm{Nb}-93$	0.05556
	$\mathrm{Nb}-93$	0.003334
	$\mathrm{Li}-6$	0.003234
C	$\mathrm{Li}-7$	0.04038
	$\mathrm{C}-12$	0.0804

breeding ratio ($\mathrm{TBR}=$ tritium production rate/ source neutron rate) for both T 6 (TBR from Li-6) and T7 (TBR from Li-7). When the 9-group cross section set was input back into ANISN for comparison to the results of the 30 -group set, differences in the corresponding zone TBR's were detected which were deemed to be unacceptable. To overcome this problem, it was decided to use the 30 -group, uncollapsed, cross section set in 2DB and 2DBTOR for TBR computations. Again as in ANISN, 50 mesh intervals were used in both 2DB and 2DBTOR. The TBR results for 2DB and ANISN were compared in the zones of interest (i.e., zones $4,6,7,8$, and 10 where lithium was present). The results of the 2DB and ANISN computations are given in Table 3-2 for the above 5 zones. It is seen from Table 3-2 that there is agreement between the results from the codes, especially in the T6 values. The T7 values are acceptable in the inner zones but have significant error in the outer zones. Likewise, the total TBR in the entire blanket is in closest agreement for T6, and differs by less than 5% for T7. A comparison of the individual group fluxes showed a similarly acceptable agreement between 2DB and ANISN. All of the above implies that 2DB can now be used successfully to perform fusion scoping calculations in one-dimensional geometry.

III.C. 2 Comparison of Torus and Infinite Cylinder Models

Since 2DB was found to produce adequate results for the standard blanket compared to the ANISN results, a comparison of the results from both 2DBTOR and

Table 3-2. Radially Averaged Tritium Breeding Ratio's for 2DB and ANISN, Infinite Cylinder Case.

Zone Number	Zone Radii (cm)	T6, reaction rate per source		T7, reaction rate per source neutron rate from Li-6	
		ANISN	2DB	neutron rate from Li-7	
4	$200.5-203.5$	0.05043	0.05776	0.08191	0.10119
6	$204.0-224.0$	0.30399	0.34143	0.29809	0.33643
7	$224.0-244.0$	0.24598	0.25690	0.12189	0.09031
8	$244.0-264.0$	0.29518	0.27286	0.05050	0.02108
10	$294.0-300.0$	0.04923	0.03955	0.00093	0.00009
Total		0.94482	0.96850	0.55331	0.54910

2DB was made next. The 2DBTOR analysis was run in both toroidal (aspect ratios = 3 and 5) and cylindrical geometry. To begin the analysis, zones were chosen as in the previous infinite cylinder computation, so that radially averaged TBR's could be computed. In Tables 3-3 and 3-4, the TBR results for aspect ratios of 3 and 5 versus the infinite cylinder results were compared for T6 and T7, respectively. As can be seen there, the total T6 and T7 were about the same for both the toroidal and infinite cylinder calculations. This suggested the idea that if one were only interested in global reaction rates (e.g., not the outside versus inside reaction rates for the torus), then a one-dimensional neutron transport or diffusion code would be adequate for determining these quantities.

To investigate the local effects introduced by the toroidal geometry, the standard blanket was further sub-divided into ten zones of 36° each in the angular or poloidal direction. This resulted in 100 zones for the entire torus cross section (10 radially $\times 10$ poloidally). The infinite cylinder T6 and T7 results are presented in Tables 3-5 and 3-6 for an aspect ratio of 3 and in Tables 3-7 and 3-8 for an aspect ratio of 5. Only the 5 zones from 0 to π are presented since the torus is symmetric about its axis (see Figure 2-1). From these tables, it was noted that the TBR was largest at the outer part of the torus $\left(\theta=0^{\circ}\right.$ to $\left.36^{\circ}\right)$ and decreased to a minimum value at the inner part of the torus ($\theta=144^{\circ}$ to 180°). The effect of different aspect ratios was also seen by comparing the corresponding zone rates -- e.g., the 0° to 36° zone rate for an aspect ratio of 3 was about 7% larger than the 0° to 36° zone rate for an aspect ratio of 5 , while the 144° to 180° zone rate was about 10% smailer for an aspect ratio of 3 . This is a desirable result in a practical sense since the tritium on the outside part of the

Table 3-3. Radially Averaged Tritium Breeding Ratio's for 2DBTOR Versus 2DB, Torus Case (Aspect Ratio $=3$).

Zone	Zone	T6, reaction rate per source		$\begin{array}{c}\text { T7, reaction rate per source } \\ \text { Number }\end{array}$	
Radii (cm)	neutron rate from Li-6				

Table 3-4. Radially Averaged Tritium Breeding Ratio's for 2DBTOR Versus 2DB, Torus Case (Aspect Ratio $=5$) .

Zone Number	Zone Radii (cm)	T6, reaction rate per source		T7, reaction rate per source	
		2DBTOR	2DB	2DBTOR	2DB
4	$200.5-203.5$	0.05781	0.05776	0.10114	0.10119
6	$204.0-224.0$	0.34167	0.34143	0.33619	0.33643
7	$224.0-244.0$	0.25690	0.25690	0.09029	0.09031
8	$244.0-264.0$	0.27286	0.27286	0.02107	0.02108
10	$294.0-300.0$	0.03950	0.03955	0.00009	0.00009
Total		0.96874	0.96850	0.54878	0.54910

Table 3-5. Zone by Zone Averaged T6 for 2DBTOR Versus 2DB, Torus Case (Aspect Ratio $=3$). Angle Measured in Degrees.

Zone	T6							
Number	2DB	$0-36$	$36-72$	$72-108$	$108-144$	$144-180$	$0-360$	
4	0.05776	0.00688	0.00644	0.00503	0.00459	0.00459	0.05504	
6	0.34143	0.04091	0.03824	0.03393	0.02960	0.02691	0.33914	
7	0.25690	0.03110	0.02898	0.02555	0.02209	0.01994	0.25530	
8	0.27286	0.03348	0.03107	0.02714	0.02319	0.02073	0.27123	
10	0.03955	0.00495	0.00456	0.00394	0.00331	0.00292	0.03935	
Total	0.96850	0.11732	0.10929	0.09559	0.08278	0.07509	0.96006	

Table 3-6. Zone by Zone Averaged T7 for 2DBTOR Versus 2DB, Torus Case (Aspect Ratio $=3$). Angle Measured in Degrees .

Zone	T 7						
Number	2 DB	$0-36$	$36-72$	$72-108$	$108-144$	$144-180$	$0-360$
4	0.10119	0.01221	0.01141	0.01012	0.00884	0.00804	0.11240
6	0.33643	0.04074	0.03805	0.03364	0.02926	0.02655	0.33648
7	0.09031	0.01103	0.01027	0.00904	0.00780	0.00703	0.09034
8	0.02108	0.00260	0.00241	0.00211	0.00181	0.00162	0.02108
10	0.00009	0.00001	0.00001	0.00001	0.00001	0.00001	0.00009
Total	0.54910	0.06659	0.06215	0.05492	0.04772	0.04325	0.54924

Table 3-7. Zone by Zone Averaged T6 for 2DBTOR Versus 2DB, Torus Case (Aspect Ratio =5). Angle Measured in Degrees.

Zone	T 6						
Number	2 2DB	$0-36$	$36-72$	$72-108$	$108-144$	$144-180$	$0-360$
4	0.05776	0.00642	0.00617	0.00576	0.00535	0.00510	0.05758
6	0.34143	0.03812	0.03655	0.03402	0.03152	0.03000	0.34043
7	0.25690	0.02888	0.02762	0.02560	0.02360	0.02237	0.25612
8	0.27286	0.03095	0.02950	0.02719	0.02491	0.02347	0.27204
10	0.03955	0.00454	0.00431	0.00395	0.00358	0.00335	0.03946
Total	0.96850	0.11732	0.10929	0.09559	0.08278	0.07509	0.96563

Table 3-8. Zone by Zone Averaged T7 for 2DBTOR Versus 2DB, Torus Case (Aspect Ratio =5). Angle Measured in Degrees.

Zone	T						
Number	2DB	0.36	$36-72$	$72-108$	$108-144$	$144-180$	$0-360$
4	0.10119	0.01136	0.01089	0.01012	0.00935	0.00887	0.10117
6	0.33643	0.03786	0.03624	0.03362	0.03100	0.02938	0.33619
7	0.09031	0.01023	0.00977	0.00903	0.00829	0.00783	0.09030
8	0.02108	0.00240	0.00229	0.00211	0.00193	0.00182	0.02108
10	0.00009	0.00001	0.00001	0.00001	0.00001	0.00001	0.00009
Total	0.54910	0.06186	0.05920	0.05489	0.05058	0.04800	0.54882

torus is probably more accessible than that of the inner part. In addition, the TBR computed in the top zone (72° to 108°) was about the same for both aspect ratios. It also indicates that the toroidal TBR depended on volumetric effects, since an area on the outer part of the torus corresponds to a larger volume than an area on the inner part. ${ }^{18}$
D. L. Chapin of the Princeton Plasma Physics Laboratory presented the above idea concerning volumetric effects in a topical report. ${ }^{18}$ From Table 2-1, the volume occupied by a specified zone is

$$
\begin{equation*}
V_{i}=V\left\{1+\frac{r_{i+1}^{3}-r_{i}^{3}}{3 R\left(r_{i}+1^{-}-r_{i}\right) r_{a v e_{i}}\left(\theta_{j+1}-\theta_{j}\right)}\left(\sin \theta_{j+1}-\sin \theta_{j}\right)\right] \tag{43}
\end{equation*}
$$

where $\quad V_{t}=$ volume of the torus,
and $\quad \mathrm{V}_{\mathrm{c}}=\left(\mathrm{r}_{\mathrm{i}}+1-\mathrm{r}_{\mathrm{i}}\right) \mathrm{r}_{\text {avei }}\left(\theta_{\mathrm{j}}+1-\theta_{\mathrm{j}}\right)=$ volume of the cylinder with the same zone as the torus.

Thus, a volume factor, F_{V}, can be defined as

$$
\mathrm{F}_{\mathrm{v}} \equiv \frac{\text { volume of the torus }}{\text { volume of the cylinder }}=\left[1+\frac{\mathrm{r}_{\mathrm{i}+\mathrm{I}}^{3}-\mathbf{r}_{\mathrm{i}}^{3}}{3 R\left(\mathbf{r}_{\mathrm{i}}+1-\mathbf{r}_{j}\right) \mathrm{r}_{\text {ave }}\left(\theta_{j+1}-\theta_{j}\right)}\left(\sin \theta_{j+1}-\sin \theta_{j}\right)\right](44)^{18}
$$

When F_{v} is multipied by the TBR given by the cylinder, good agreement is expected between the torus TBR values and the volume corrected TBR values of the cylinder according to Chapin. ${ }^{18}$ Tables 3-9 through 3-12 show the differences between using volume corrections on the cylinder T6 and T7 for aspect ratios of 3 and 5 and then comparing to the torus's T6 and T7. This provides another check on the validity of 2DBTOR for doing toroidal scoping calculations, since Chapin's results were produced using a Monte Carlo code, which provides very accurate analysis for toroidal geometry. Since the TBR results from Tables 3-9 through 3-12 were in good agreement, it is apparent that 2 DBTOR worked quite well for doing toroidal geometry scoping computations. Of course, the real test and usefulness of 2DBTOR will be for those designs which are not poloidally symmetric like the standard blanket used here.

Table 3-9. T6 for 2DBTOR Versus Volume Corrected T6 for 2DB, Torus Case (Aspect Ratio = 3). Angle Measured in Degrees.

Zone	T6						
Number	2DBTOR	$0-36$	$36-72$	$72-108$	$108-144$	$144-180$	$0-360$
4	0.05504	0.00699	0.00653	0.00578	0.00503	0.00456	0.05776
6	0.33914	0.04174	0.03884	0.03414	0.02945	0.02654	0.34143
7	0.25530	0.03194	0.02955	0.02569	0.02183	0.01944	0.25691
8	0.27123	0.03449	0.03174	0.02729	0.02283	0.02008	0.27286
10	0.03935	0.00518	0.00471	0.00396	0.00320	0.00273	0.03955
Total	0.96006	0.12034	0.11137	0.09685	0.08233	0.07336	0.96850

Table 3-10. T7 for 2DBTOR Versus Volume Corrected T7 for 2DB, Torus Case (Aspect Ratio = 3). Angle Measured in Degrees.

Zone	T						
Number	2DBTOR	$0-36$	$36-72$	$72-108$	$108-144$	$144-180$	$0-360$
4	0.11240	0.01224	0.01143	0.01012	0.00881	0.00799	0.10119
6	0.33648	0.04113	0.03827	0.03364	0.02901	0.02615	0.33643
7	0.09034	0.01123	0.01039	0.00903	0.00767	0.00683	0.09031
8	0.02108	0.00267	0.00245	0.00211	0.00176	0.00155	0.02108
10	0.00009	0.00001	0.00001	0.00001	0.00001	0.00001	0.00009
Total	0.54924	0.06728	0.06256	0.05491	0.04726	0.04254	0.54910

Table 3-11. T6 for 2DBTOR Versus Volume Corrected T6 for 2DB, Torus Case (Aspect Ratio =5). Angle Measured in Degrees.

Zone	T6							
Number	2DBTOR	$0-36$	$36-72$	$72-108$	$108-144$	$144-180$	$0-360$	
4	0.05758	0.00650	0.00623	0.00578	0.00533	0.00505	0.05776	
6	0.34043	0.03870	0.03696	0.03414	0.03133	0.02958	0.34143	
7	0.25612	0.02944	0.02801	0.02569	0.02337	0.02194	0.25691	
8	0.27204	0.03161	0.02996	0.02729	0.02461	0.02296	0.27286	
10	0.03946	0.00469	0.00441	0.00396	0.00350	0.00322	0.03955	
Total	0.96563	0.11095	0.10556	0.09685	0.08814	0.08275	0.96850	

Table 3-12. T7 for 2DBTOR Versus Volume Corrected 77 for 2DB, Torus Case (Aspect Ratio $=5$). Angle Measured in Degrees .

| Zone | T7 | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | 2DBTOR | $0-36$ | $36-72$ | $72-108$ | $108-144$ | $144-180$ | 0.360 |
| 4 | 0.10117 | 0.01139 | 0.01091 | 0.01012 | 0.00933 | 0.00884 | 0.10119 |
| 6 | 0.33619 | 0.03814 | 0.03642 | 0.03364 | 0.03089 | 0.02915 | 0.33643 |
| 7 | 0.09030 | 0.01035 | 0.00985 | 0.00903 | 0.00822 | 0.00771 | 0.09031 |
| 8 | 0.02108 | 0.00244 | 0.00231 | 0.00211 | 0.00190 | 0.00177 | 0.02108 |
| 10 | 0.00009 | 0.00001 | 0.00001 | 0.00001 | 0.00001 | 0.00001 | 0.00009 |
| Total | 0.54882 | 0.06233 | 0.05950 | 0.05491 | 0.05032 | 0.04749 | 0.54910 |

IV. SUMMARY AND CONCLUSIONS

The objective of the research performed here was to produce a scoping code that could be used for fusion reactor design. To this end, the present research initially explored a technique proposed by Pomraning and Stevens ${ }^{12}$, in which a toroidal geometry diffusion problem is cast into cylindrical ($\mathrm{r}-\theta$) form by a spatially dependent redefinition of the diffusion coefficient, absorption cross-section, and extraneous source function. This idea suggested the approach of a direct finite differencing of the toroidal diffusion equation. Direct finite differencing proved to be more advantageous for incorporation into a computer program and to allow the curvature of the torus to be accounted for naturally.

The direct finite differencing approach was programmed into an existing two-dimensional(x-y, r-z, r- θ, triangular), multi-group neutron diffusion code, $2 \mathrm{DB}^{10}$, that had previously been converted to execute on the IBM-AT. Neutronic scoping calculations relevant to fusion reactor design were then performed in a micro-computer environment. This modified code was called 2DBTOR.

To verify that 2DBTOR was operating correctly, comparisons were made to both analytical and numerical solutions for several types of problems. ANISN and 2DB were used to verify and compare the solutions obtained from 2DBTOR. It was also shown that as the aspect ratio approached infinity (e. g., the major radius became large) the 2DBTOR solution approached the solution for that of 1-D cylindrical geometry. After verifying the solution for a large major radius, the errors associated with using a non-toroidal scoping code were examined versus 2DBTOR. Neutron
cross-sections for a benchmark problem were input into 2DBTOR and the output was compared to that from ANISN. A method proposed by Price and Chapin ${ }^{18}$, that used volume correction factors to compute the reaction rates in the benchmark blanket, was utilized to provide a means of checking 2DBTOR's results versus those given by a Monte Carlo code. It was also noted that 2DBTOR would also make possible the calculation of depletion in the fusion blanket, which was a unique advantage of the new program, 2DBTOR.

In future versions of the 2DBTOR program, it is anticipated that the central vacuum should be modelled through an internal boundary condition. A separate void streaming calculation will be used to define the internal boundary condition by specifying the neutron flux to current ratio as a function of position along the vacuum wall. ${ }^{19}$ Improved modelling of the central void region will be required if 2DBTOR is to prove to be an attractive program for blanket scoping calculations.

REFERENCES

1. R. A. Gross, Eusion Energy, (John Wiley \& Sons, New York, New York ,1984), p. 2.
2. R. A. Gross, Fusion Energy, (John Wiley \& Sons, New York, New York ,1984), p. 16.
3. G. A. Miley, Fusion Energy Conversion, (John Wiley \& Sons, New York, New York ,1970), p. 250.
4. T. J. Dolan, Fusion Research - Volume 1, (Pergamon Press, New York, New York ,1982), p. 29.
5. R. A. Gross, Fusion Energy, (John Wiley \& Sons, New York, New York ,1984), p. 25.
6. D. K. Parsons, "ANISN/PC Manual," EGG-2500, Idaho National Engineering Laboratory Report, Idaho Falls, Idaho ,1987.
7. K. D. Lathrop and F. W. Brinkley, "TWOTRAN-II: An Interfaced, Exportable Version of the TWOTRAN Code for Two Dimensional Transport," LA-4848-MS, Los Alamos Scientific Laboratory, Los Alamos, New Mexico, 1973.
8. J. W. Davidson et al., "Trism: A Two-Dimensional, Finite-Element, Discrete-Ordinates Transport Code with Deterministic Streaming," LA - 7835M, Los Alamos National Laboratory, Los Alamos, New Mexico.
9. Los Alamos Monte Carlo Group, "MCNP: A General Monte Carlo Code for Neutron and Photon Transport," Version 2B, LA-7396-M, Los Alamos National Laboratory,Los Alamos, New Mexico, 1981.
10. W. W. Little, Jr. and R. W. Hardie, "2DB User's Manual," BNWL - 831, Pacific Northwest Laboratory, Richland, Washington, 1968.
11. R. J. Barrett and R. E. MacFarlane, "Coupled Neutron and Photon Cross Sections for Transport Calculations," LA-7808-MS, Informal Report, Los Alamos Scientific Laboratory,Los Alamos, New Mexico ,1979.
12. G. C. Pomraning and C. A. Stevens, "Transport and Diffusion Equations in Toroidal Geometry," Nuclear Science and Engineering: 55,359-367 (1974).
13. J. R. Lamarsh, Introduction to Nuclear Reactor Theory, (Addison Wesley Publishing Company, Reading, Massachusetts, 1972), pp. 129-131.
14. J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor Analysis, (John Wiley \& Sons, New York, New York ,1976), p. 61.
15. T. A. Parish, Personal notes on the ∇ operator, March 1988.
16. T. A. Parish, Personal notes on the plasma source calculation, May 1988.
17. D. Steiner, "Analyses of a Bench-Mark Calculation of Tritium Breeding in a Fusion Reactor Blanket," ORNL-TM-4177, Oak Ridge National Laboratory Report, Oakridge , Tennessee ,1973.
18. W. G. Price and D. L. Chapin, "Comparative Analysis of a Fusion Reactor Blanket in Cylindrical and Toroidal Geometry Using Monte Carlo," MATT-1102, Princeton Plasma Physics Report, Princeton, New Jersey ,1975.
19. W. G. Price and D. L. Chapin, "A Comparison of the D-T Neutron Wall Load Distributions in Several Tokamak Fusion Reactor Designs," MATT-1060, Princeton Plasma Physics Report, Princeton , New Jersey ,1974.

APPENDIX A POMRANING AND STEVENS' ANALYTICAL SOLUTION

For an infinite line source at the center of a non-fissioning medium with radius, a, the monoenergetic neutron diffusion equation is given by the following (assuming that both the diffusion cofficient does not vary with position and the solution is only radially dependent):

$$
\begin{equation*}
\frac{1}{\mathrm{r}} \partial \mathrm{\partial}\left(\mathrm{~T}\left(\frac{\partial \phi}{\partial \mathrm{r}}\right)-\mathrm{k}^{2} \phi=\mathrm{Q}\right. \tag{A-1}
\end{equation*}
$$

and

$$
\begin{aligned}
\mathrm{k}^{2} & =\frac{\Sigma_{\mathrm{a}}}{\mathrm{D}}, \\
\mathrm{Q} & =\frac{\mathrm{S}}{\mathrm{D}}=0 \text { for } \mathrm{r}>0, \\
\phi & =\text { the flux, } \\
\Sigma_{\mathrm{a}} & =\text { the macroscopic absorption cross section, } \\
\mathrm{D} & =\text { the diffusion coefficient } .
\end{aligned}
$$

Solving equation (A-1) gives the following:

$$
\begin{equation*}
\phi(\mathrm{r})=\mathrm{AK}_{\mathrm{o}}(\mathrm{kr})+\mathrm{CI}_{\mathrm{o}}(\mathrm{kr}) \tag{A-2}
\end{equation*}
$$

where both A and C are constants. Using the boundary condition at $r=a$ where $\phi(a)=0$ allows C to be given as

$$
C=-A \frac{K_{0}(k a)}{I_{0}(k a)}
$$

which when substituted into equation (A-2) gives the following:

$$
\begin{equation*}
\phi(r)=A\left[K_{0}(k r)-\frac{K_{0}(k a)}{I_{0}(k a)} I_{0}(k r)\right] \tag{A-3}
\end{equation*}
$$

In order to solve for A , one must use a source condition given by

$$
\begin{equation*}
\lim _{r \rightarrow 0} 2 \pi r J(r)=S \tag{A-4}
\end{equation*}
$$

where $J(r)=-D \frac{\partial \phi(r)}{\partial r}$.
It can be shown that when equation (A-3) is subtituted into equation (A-4) the following results:

$$
\begin{equation*}
\lim _{\mathrm{r} \rightarrow 0} \mathrm{rJ}(\mathrm{r})=\frac{\mathrm{S}}{2 \pi \mathrm{D}}=\frac{\mathrm{Q}}{2 \pi} \tag{A-5}
\end{equation*}
$$

Since equation (A-4) can also be written as

$$
\begin{equation*}
\lim _{r \rightarrow 0} r J(r)=\lim _{r \rightarrow 0} A k r K_{1}(k r) \tag{A-6}
\end{equation*}
$$

which from Meghreblian and Holmes, Reactor Analysis, page 185, is equal to A, this implies that

$$
\begin{equation*}
\mathrm{A}=\frac{\mathrm{Q}}{2 \pi} \tag{A-7}
\end{equation*}
$$

When equation (A-7) is substituted into equation (A-3) the following results:

$$
\begin{equation*}
\phi(r)=\frac{Q}{2 \pi}\left[K_{0}(\mathrm{kr})-\frac{K_{0}(\mathrm{ka})}{I_{0}(\mathrm{ka})} I_{v}(\mathrm{kr})\right] . \tag{A-8}
\end{equation*}
$$

In order to employ equation (A-8) for comparison to 2 DB . it is necessary to determine a volumetric source that is equivalent to the line source used in deriving the flux solution. Thus, the line source is given by

$$
\begin{equation*}
\mathrm{S}_{\mathrm{l}}=\mathrm{S}_{\mathrm{v}} \pi \mathrm{r}^{2} \tag{A-9}
\end{equation*}
$$

where $\quad S_{1}=$ the line source $(\mathrm{n} / \mathrm{cm}-\mathrm{sec})$
and $\quad S_{\mathrm{v}}=$ the volumetric source $\left(\mathrm{n} / \mathrm{cm}^{3}-\mathrm{sec}\right)$.

For $\mathrm{Q}=1$ and since $\mathrm{Q}=\mathrm{S}_{1} / \mathrm{D}$, then this implies that $\mathrm{S}_{1}=\mathrm{D}$. When $\mathrm{S}_{1}=\mathrm{D}$ is substituted into equation (A-9), the resulting equation for S_{V} is given by the following:

$$
\begin{equation*}
S_{v}=\frac{D}{\pi r^{2}} \tag{A-10}
\end{equation*}
$$

This is the $S v$ value that will be input to 2 DB so that comparisons to the analytic solution can be made.

APPENDIX B

AVERAGE D_{k} SOLUTION

From continuity of current for two adjacent mesh points, k and $k+1$ (see Figure B-1), it can be shown that

$$
\begin{equation*}
\frac{\mathrm{D}_{\mathrm{k}}}{\frac{\delta r_{k}}{2}}\left(\phi^{1 / 2}-\phi_{\mathrm{k}}\right)=\frac{\mathrm{D}_{\mathrm{k}+1}}{\frac{\delta r_{k+1}}{2}}\left(\phi_{\mathrm{k}+1}-\phi^{1 / 2}\right) \tag{B-1}
\end{equation*}
$$

where $\quad \frac{\delta r_{k}}{2}=$ distance from mesh point k to mesh point $1 / 2$
and $\quad \frac{\delta r_{k+1}}{2}=$ distance from mesh point $k+1$ to mesh point $1 / 2$.

Figure B-1. Mesh points

Rearranging equation ($B-1$) gives the following:

$$
\begin{equation*}
\left[\frac{D_{k}}{\frac{\delta r_{k}}{2}}+\frac{D_{k+1}}{\frac{\delta r_{k+1}}{2}}\right] \phi^{1 / 2}=\frac{D_{k+1}}{\frac{\delta r_{k+1}}{2}} \phi_{k+1}+\frac{D_{k}}{\frac{\delta r_{k}}{2}} \phi_{k} \tag{B-2}
\end{equation*}
$$

which when solved for $\phi^{1 / 2}$ yields

$$
\phi^{1 / 2}=\frac{\frac{D_{k+1}}{\frac{\delta r_{k+1}}{2}} \phi_{k+1}+\frac{D_{k}}{\frac{\delta r_{k}}{2}} \phi_{k}}{\left[\begin{array}{ll}
\mathbf{D}_{k} \tag{B-3}\\
\frac{\delta r_{k}}{2} & \frac{\delta \mathbf{D}_{k+1}}{2}
\end{array}\right]}
$$

Substituting the RHS of equation (B-3) for the left-hand term in equation (B-1) gives the following:

$$
\begin{equation*}
\mathrm{J}_{\mathrm{k}}=\frac{\mathrm{D}_{\mathrm{k}+1}}{\frac{\delta r_{k+1}}{2}} \frac{\mathrm{D}_{\mathrm{k}}}{\frac{\delta r_{\mathrm{k}}}{2}} \frac{1}{\left[\frac{\mathrm{D}_{\mathrm{k}}}{\frac{\delta r_{k}}{2}}+\frac{\mathrm{D}_{\mathrm{k}+1}}{\frac{\delta r_{k+1}}{2}}\right]}\left\{\phi_{\mathrm{k}+1}-\phi_{\mathrm{k}}\right\} \tag{B-4}
\end{equation*}
$$

Further simplifying equation (B-4) gives

$$
\begin{equation*}
J_{k}=\frac{D_{k+1} D_{k}\left(\delta r_{k}+\delta r_{k+1}\right)}{\left[D_{k} \delta r_{k+1}+D_{k+1} \delta r_{k}\right]}\left(\frac{\phi_{k+1}-\phi_{k}}{r_{k+1}-r_{k}}\right) \tag{B-5}
\end{equation*}
$$

where

$$
r_{k+1}-r_{k}=\frac{\delta r_{k}}{2}+\frac{\delta r_{k+1}}{2}
$$

Thus, D can be defined to be

$$
\begin{equation*}
\overline{\mathrm{D}}=\frac{\mathrm{D}_{\mathrm{k}+\mathrm{l}} \mathrm{D}_{\mathrm{k}}\left(\delta \mathrm{r}_{\mathrm{k}}+\delta \mathrm{r}_{\mathrm{k}+1}\right)}{\left[\mathrm{D}_{\mathrm{k}} \delta \mathrm{r}_{\mathrm{k}+1}+\mathrm{D}_{\mathrm{k}+1} \delta \mathrm{r}_{\mathrm{k}}\right]} \tag{B-6}
\end{equation*}
$$

to yield

$$
\begin{equation*}
\mathrm{J}_{\mathrm{k}}=\overline{\mathrm{D}}\left(\frac{\phi_{\mathrm{k}+1}-\phi_{\mathrm{k}}}{\mathbf{r}_{\mathrm{k}+1}-\mathbf{r}_{\mathrm{k}}}\right) \tag{B-7}
\end{equation*}
$$

APPENDIX C

XPROC2DB LISTING

```
    DIMENSION A(30,46,4,4),B(30,46,4,4)
C OPEN(UNIT=9,FILE='STDXSC.DAT',STATUS='OLD')
C OPEN(UNIT=10,FILE='STDXSC2.DAT,STATUS='UNKNOWN')
    OPEN(UNIT=9,FILE='XPROC30.DAT',STATUS='OLD')
    OPEN(UNTT=10,FILE='XPROC30.OUT',STATUS='UNKNOWN')
    C K = NUMBER OF MATERIALS
    C I = GROUP #
    C J=XSC TARLE #
    C NMAT=NUMBER OF MATERIALS
    C NGRUP=# OF GROUPS
    C NTAB=XSEC TABLE LENGTH
    C NSCAT=SCATTERING ORDER
        NSCAT=3
        NMAT=4
        NGRUP=30
        NTAB=46
        DO 30 K=1,NMAT
        DO 25 L=1,NSCAT+1
            DO 20 I=1.NGRUP
            READ(9,10) (A(I,J,K,L).J=1,NTAB)
10 FORMAT(1X/9(5(E13.5)/),E13.5)
    A(I,14,K,L)=A(I,8,K,L)
```

$\mathrm{K}=4$
$\mathrm{L}=1$
DO $60 \mathrm{I}=1$, NGRUP

$$
A(\mathrm{I}, 17, \mathrm{~K}, \mathrm{~L})=\mathrm{A}(\mathrm{I}, 16, \mathrm{~K}, \mathrm{~L})
$$

60
FORMAT (78X,I2)
CONTINUE
$\operatorname{READ}(9,13)$
FORMAT(1X)
CONTINUE
$\operatorname{READ}(9,13)$
CONTINUE
DO $50 \mathrm{~K}=1$, NMAT
$\mathrm{L}=1$
DO $40 \mathrm{I}=1$, NGRUP

WRITE $(10,99)$
FORMAT(3X, T',2X)
CONTINUE
WRITE(10,16)K
WRITE $(10,13)$
CONTINUE

CONTINUE

WRITE $(10,10)(A(1, J, K, L), \mathrm{J}=1, \mathrm{NTAB})$
$K=4$

```
    L=1
    DO 70 I=1,NGRUP
            DO 65 J=1,15
            A(I.J,K,L)=0.0
6 5
    K=4
    L=1
        DO 260 I=1,NGRUP
                WRITE(10,10) (A(I,J,K,L),J=1,NTAB)
                WRITE(10,99)
        CONTINUE
        WRITE(10,16)K
        WRITE(10,13)
        STOP
        END
```


APPENDIX D

2DB ERRATA

I. The area elements for r- θ geometry can be shown to be given by

$$
\begin{align*}
& \mathrm{A}_{\mathrm{r}}=\mathrm{r}_{\mathrm{ave} 0} \Delta \theta_{0} \tag{D-1}\\
& \mathrm{~A}_{\theta}=\Delta \mathrm{r}_{0} \tag{D-2}
\end{align*}
$$

where $A_{r}=$ radial area element and $A_{\theta}=$ axial area element for a volume element, 0 . In the original 2DB code, the above area elements included a 2π factor. Since this is incorrect, the 2π terms were deleted (see Appendix H, subroutine INIT). For $x-y$ geometry, the axial area element stays the same as above, but the radial element does not have a rave_{0} term and thus, is given by

$$
\begin{equation*}
A_{T}=\Delta \theta_{0} \tag{D-3}
\end{equation*}
$$

Again, the area elements in 2DB included a 2π term. The 2π terms were deleted to cause 2DB to correctly solve the diffusion equation (see Appendix H, subroutine INIT).
II. For the downscattering term in the diffusion equation, 2 DB uses the following:

$$
\begin{equation*}
\mathrm{XD}=\Sigma_{\mathrm{tr}}-\Sigma_{\mathrm{s}}-\Sigma_{\mathrm{a}} \tag{D-4}
\end{equation*}
$$

where $\quad X D=$ the sum of the downscattering cross sections.

It can be shown that

$$
\begin{equation*}
\Sigma_{t r}=\Sigma_{\mathrm{a}}+\Sigma_{\mathrm{s}}+X D-\Sigma_{\mathrm{n}, 2 \mathrm{n}} . \tag{D-5}
\end{equation*}
$$

where $\quad \Sigma_{\mathrm{n}, 2 \mathrm{n}}=(\mathrm{n}, 2 \mathrm{n})$ cross section.

Substituting equation (D-5) into equation (D-4) gives the following:

$$
\begin{equation*}
X D=X D-\Sigma_{n, 2 n} \tag{D-6}
\end{equation*}
$$

Since XD cannot equal XD - $\Sigma_{n, 2 n}$, this implies that 2 DB has incorrectly calculated the downscattering component for those problems which have a significant amount of $(\mathrm{n}, 2 \mathrm{n})$ scattering reactions taking place. Therefore, 2 DB was changed so that the downscattering term was calculated by summing over all the downscattering cross sections for a specified group of neutrons (see Appendix H, subroutine S 860).

APPENDIX E

PLASMA SOURCE

The problem to be solved is the determination of the uniformly distributed source of 14.1 MeV neutrons in the plasma (radius $=\mathrm{R}_{\mathrm{p}}$) impinging upon the blanket's inner wall at R_{w}. It is assumed that $10 \mathrm{MW} / \mathrm{m}^{2}$ will be the maximum wall load, thus, the current on the inner wall is given by

$$
\begin{align*}
\mathrm{J} & =\frac{10 \mathrm{MW}}{\mathrm{~m}^{2}}\left(\frac{10^{6} \mathrm{~W}}{\mathrm{MW}}\right)\left(\frac{\mathrm{J} / \mathrm{s}}{\mathrm{~W}}\right)\left(\frac{\mathrm{m}^{2}}{10^{4} \mathrm{~cm}^{2}}\right)\left(\frac{\mathrm{MeV}}{1.6 \times 10^{-13} \mathrm{~J}}\right)\left(\frac{1}{14.1 \mathrm{MeV} / \mathrm{n}}\right) \tag{E-1}\\
& =4.43 \times 10^{14} \frac{\mathrm{n}}{\mathrm{~cm}^{2}-\mathrm{sec}} .
\end{align*}
$$

Equating the number of neutrons emitted in the plasma to the number of neutrons impinging upon the inner wall, then for a unit width in the toroidal direction the balance is given by

$$
\begin{equation*}
\mathrm{J} 2 \pi \mathrm{R}_{\mathrm{W}}=\mathrm{FRV} \pi \mathrm{R}_{\mathrm{pl}}^{2} \tag{E-2}
\end{equation*}
$$

where $\mathrm{FRV}=$ the unifomly distributed source of 14.1 MeV neutrons in the plasma. Rearranging equation (E-2) to solve for FRV gives the following:

$$
\begin{equation*}
\mathrm{FRV}=\frac{\mathrm{J} 2 \pi \mathrm{R}_{\mathrm{w}}}{\mathrm{R}_{\mathrm{pl}}^{2}} \tag{E-3}
\end{equation*}
$$

Substitiuting for J from equation ($\mathrm{E}-1$), while letting $\mathrm{R}_{\mathrm{w}}=200 \mathrm{~cm}$ and $\mathrm{R}_{\mathrm{pl}}=150 \mathrm{~cm}$, the uniformly distributed source of 14.1 MeV neutrons in the plasma is equal to 7.88 x $10^{12} \mathrm{n} / \mathrm{cm}^{2}$-sec.

APPENDIX F

EQUIVALENT SOURCE TO THE PLASMA SOURCE AT THE INNER EDGE OF THE BLANKET

The problem to be solved is the determination of the equivalent source at the inner edge of the blanket (radius $=\mathbf{R}_{\mathbf{W}}$) to the of the uniformly distributed source of 14.1 MeV neutrons in the plasma (radius $=\mathrm{R}_{\mathrm{pl}}$). Equating the number of neutrons emitted from the plasma to the number of neutrons emitted from a thin source (width $=\Delta r$) at the inner wall (radius $=\mathrm{R}_{\mathrm{W}}$), then for a unit width in the toroidal direction the balance is given by

$$
\begin{equation*}
\frac{F R V \pi R_{p l}^{2}}{2 \pi R_{p l}}=\frac{S_{e} \pi\left(\left(R_{w}+\Delta r\right)^{2}-R_{w}^{2}\right)}{2 \pi R_{w}} \tag{F-1}
\end{equation*}
$$

where $\mathrm{FRV}=$ the unifomly distributed source of 14.1 MeV neutrons in the plasma and $\mathrm{S}_{\mathrm{e}}=$ equivalent source at the inner wall. Rearranging and simplifying equation ($\mathrm{F}-1$) to solve for S_{e} gives the following:

$$
\begin{equation*}
S_{e}=\frac{F R V R_{p l} R_{w}}{\left(\left(R_{w}+\Delta r\right)^{2}-R_{w}^{2}\right)} \tag{F-2}
\end{equation*}
$$

APPENDIX G

2DBTOR MANUAL

2DBTOR MANUAL

Craig Hrabal

Babatunde Shofolu

Theodore Parish

Texas A\&M University

College Station, Texas 77840

Acknowledgements

Much of this manual for 2DBTOR was influenced by both the previous 2DB manual (2DB User's Manual written by W. W. Little, Jr. and R. W. Hardie) and the ANISN/PC manual (ANISN/PC Manual written by D. Kent Parsons). Some of the sections of both manuals were incorporated into the 2DBTOR manual, although the style was based for the most part on the ANISN/PC manual.

Contents

ACKNOWLEDGEMENTS 86
ABSTRACT 89

1. INTRODUCTION 90
2. THEORETICAL FOUNDATIONS 91
2.1 Discretization of the Diffusion Equation. 91
2.1.1 Energy Discretization. 91
2.1.2 Spatial Discretization -- The Finite Difference Method. 94
2.2 Discussion of Boundary Conditions Used in 2DBTOR. 97
2.2.1 Zero Flux Gradient Boundary Condition. 97
2.2.2 Zero Flux Boundary Condition. 98
2.2.3 Periodic Boundary Condition 99
2.3 Discussion of Triangular Mesh Option. 100
2.4 Iterative Solution Methods of 2DBTOR 101
2.4.1 Outer Iterations 102
2.4.2 Inner Iterations. 103
3. USER'S GUIDE. 105
3.1 2DBTOR Input Data Description (Logical Unit 5) 105
3.2 Supplemental Input Information for 2DBTOR 121
3.2.1 Cross Section Considerations. 121
3.2.2 Search Considerations 123
3.2.2.1 Time Absorption (α Calculation). 123
3.2.2.2 Material Concentration (C Calculation) 124
3.2.2.3 Zone Dimensions (δ Calculation) 126
3.2.2.4 Buckling (B^{2} Calculation) 126
3.2.3 Burnup Model 126
3.2.3.1 Remarks on Burnup Equations. 128
3.2.4 Source Problems. 128
3.2.5 Remarks on Code Operation 129
3.3 2DBTOR Format Description. 130
3.3.1 Operators 130
3.4 Printed Output Description. 131
4. PROGRAMMER'S GUIDE TO 2DBTOR 133
4.1 2DBTOR Files Description 133
4.2 2DBTOR Subroutines 134
4.2.1 Subroutine Calling Sequences 136
4.3 Selected Definitions of Variables and Arrays Used 138
5. REFERENCES 146

2DBTOR MANUAL -- REVISION OF 2DB MANUAL (REVISION 1)

ABSTRACT

1. Program Identification: 2 DBTOR is a revised version of $2 \mathrm{DB}{ }^{1}$.
2. Description of Problem: 2DBTOR is a two-dimensional (X-Y, R-Z, R- θ, triangular, toroidal), multi-group neutron diffusion code for use in fast reactor criticality and burnup analysis. In addition, 2DBTOR may also be used to study fusion blanket problems in toroidal geometry. 2DBTOR solves the multi-group diffusion theory eigenvalue, adjoint, time absorption, fixed source and criticality search (concentration, zone thickness, and buckling) problems.
3. Method of Solution: Multi-group finite difference neutron diffusion equations are solved iteratively in 2DBTOR. The power method, accelerated by a fission source over-relaxation factor calculated in the code, is used for the outer iterations. Inner iterations are accelerated by use of an over-relaxation factor input by the user.

1. INTRODUCTION

A number of significant additions and alterations (e.g., a toroidal geometry option and an activity cross section option) have been made to the $2 \mathrm{DB}^{1}$ diffusion-burnup code. In addition, some bugs were discovered in the old 2 DB version which have been corrected in the current code, 2DBTOR. This manual gives a complete description of the code including all modifications. A description of both the mathematical model and user instructions are given in the body of the report; a sample problem is included in the appendix.

2DBTOR is designed for use in both fast reactor and fusion analysis. Eigenvalues are computed by standard source-iteration techniques. Group rebalancing and successive over-relaxation with line inversion are used to accelerate convergence. Adjoint solutions are obtained by inverting the input data and redefining the source terms.

Variable dimensioning is used to make maximum use of the available fast memory. Since only one energy group is in the fast memory at any given time, the storage requirements are insensitive to the number of energy groups.

Criticality searches can be performed on buckling, time absorption, material concentrations, and region dimensions. Alpha and $\mathrm{k}_{\text {eff }}$ can be used as parametric eigenvalues. Criticality searches can be performed during burnup to compensate for fuel depletion.

2. THEORETICAL FOUNDATIONS

2.1. Discretization of the Diffusion Equation

2.1.1. Energy Discretization. The diffusion equation can be developed from the equation for the time rate of change of the number of neutrons within dE of energy, E, in an arbitrary differential volume, $d V$. Neutrons of energies between E and $E+d E$, within dV , can be lost or gained by a variety of processes including: (1) production directly from a source, (2) absorption, (3) leakage and (4) scattering. The time rate of change of the number of neutrons in dV and between E and $\mathrm{E}+\mathrm{dE}$ can be obtained by integrating the neutron density ($n(r, E, t)$) over $d V$, and balancing this with the gains and losses as follows:

$$
\begin{align*}
& \frac{\partial}{\partial t} \int_{v} \frac{\Phi(\vec{r}, E, t)}{v} d V=\left[\begin{array}{c}
\text { source neutron } \\
\text { production rate } \\
\text { in V at } E
\end{array}\right]-\left[\begin{array}{c}
\text { absorption } \\
\text { rate in } V \\
a E E
\end{array}\right]-\left[\begin{array}{c}
\text { change due } \\
\text { to leakage } \\
\text { from } V \text { at } E
\end{array}\right] \\
& -\left[\begin{array}{c}
\text { neutron scattering } \\
\text { rate out of } \\
E \text { in } V
\end{array}\right]+\left[\begin{array}{c}
\text { neutron scattering } \\
\text { rate into } \\
E \text { in } V
\end{array}\right] \tag{1}
\end{align*}
$$

where $\Phi(r, E, t)=$ flux of neutrons at r, E and $t=n(r, E, t) v$ and $v=$ the speed of the neutrons at E.

Equation (1) is known as the neutron continuity equation. Since the energy
dependence of the neutron cross sections vary, equation (1) is usually solved for discrete energy groups(groups denoted by g in this case); thus equation (1) can be written as

$$
\begin{align*}
\frac{\partial}{\partial t} \int_{\mathrm{v}} \frac{\Phi_{\mathrm{g}}(\overrightarrow{\mathrm{r}, \mathrm{t})}}{v_{\mathrm{g}}} \mathrm{dV}= & {\left[\begin{array}{c}
\text { source neutron } \\
\text { production rate } \\
\text { in } V \text { for } \\
\text { group, } g
\end{array}\right]-\left[\begin{array}{c}
\text { absorption } \\
\text { rate in } V \\
\text { for group, } \mathrm{g}
\end{array}\right]-\left[\begin{array}{c}
\text { change due } \\
\text { to ieakage } \\
\text { from V } \\
\text { for group, } \mathrm{g}
\end{array}\right] } \\
& -\left[\begin{array}{c}
\text { neutron scattering } \\
\text { rate out of } \\
\text { group, } \mathrm{g} \text { in } \mathrm{V}
\end{array}\right]+\left[\begin{array}{c}
\text { neutron scattering } \\
\text { rate into } \\
\text { group, } \mathrm{g} \text { in } \mathrm{V}
\end{array}\right] \tag{2}
\end{align*}
$$

Assuming steady state $(\partial / \partial t$ term $=0)$ and no upscattering, equation (2) becomes upon substituting the corresponding mathematical expressions for the RHS terms,

$$
\begin{align*}
-\vec{\nabla} \cdot\left(D_{g} \vec{\nabla} \Phi_{g}\right)+\Sigma_{a_{s}} \Phi_{g}+ & \sum_{g^{\prime}=g+1}^{G}\left(\Sigma_{s}\left(g \rightarrow g^{\prime}\right) \Phi_{g}\right)= \tag{3}\\
S_{g}^{e x t}+ & \chi_{g} \sum_{g^{\prime}=1}^{G}\left(v_{g^{\prime}} \Sigma_{f_{k}} \Phi_{g^{\prime}}\right)+\sum_{g^{\prime}=1}^{g-1}\left(\Sigma_{s}\left(g \rightarrow g^{\prime}\right) \Phi_{g^{\prime}}\right)
\end{align*}
$$

where the (r, t) arguments have been dropped for clarity. This is the multi-group neutron diffusion equation.

Equation (3) can be further simplified by noting that the removal of neutrons from group g is caused by both downscattering and absorption. The removal cross section for group g is defined as shown below:

$$
\begin{aligned}
\Sigma_{g}^{\mathrm{I}} & \equiv \Sigma_{\mathrm{a}_{\mathrm{s}}}+\sum_{g^{\prime}=g^{\prime}+1}^{G}\left(\Sigma_{\mathrm{s}}\left(\mathrm{~g} \rightarrow \mathrm{~g}^{\prime}\right)\right) \\
& =\Sigma_{\mathbf{a}_{\mathrm{g}}}+\Sigma_{\mathrm{s}}(\mathrm{~g} \rightarrow \mathrm{~g})+\left[\sum_{\mathrm{g}^{\prime}=\mathrm{g}+1}^{\mathrm{G}} \Sigma_{s^{\prime}}\left(\mathrm{g} \rightarrow \mathrm{~g}^{\prime}\right)\right]-\Sigma_{\mathrm{s}}(\mathrm{~g} \rightarrow \mathrm{~g}) \\
& =\Sigma_{\mathrm{tr}_{s}}-\Sigma_{s^{\prime}}\left(\mathrm{g} \rightarrow \mathrm{~g}^{\prime}\right)
\end{aligned}
$$

where $\Sigma_{\mathrm{trg}}=$ the macroscopic transport cross section $=1 /\left(3 \mathrm{D}_{\mathrm{g}}\right) .14$

Thus the removal rate/ cm^{3} is

$$
\begin{equation*}
\Sigma_{g}^{r} \Phi_{g}=\Sigma_{a_{k}} \Phi_{g}+\sum_{g^{\prime}=g+1}^{G}\left(\Sigma_{s}\left(g \rightarrow g^{\prime}\right) \Phi_{g}\right) \tag{4}
\end{equation*}
$$

Substituting equation (4) into equation (3) gives

$$
\begin{equation*}
-\vec{\nabla} \cdot\left(D_{g} \vec{\nabla} \Phi_{g}\right)+\Sigma_{g}^{r} \Phi_{g}=S_{g}^{e x t}+\chi_{g} \sum_{g^{\prime}=1}^{G}\left(v_{g} \cdot \Sigma_{f^{\prime}} \Phi_{g^{\prime}}\right)+\sum_{g^{\prime}=1}^{g-1}\left(\Sigma_{s}\left(g \rightarrow g^{\prime}\right) \Phi_{g^{\prime}}\right) \tag{5}
\end{equation*}
$$

the form of the multi-group neutron diffusion equation used in 2DBTOR.
2.1.2. Spatial Discretization - The Finite Difference Method. To develop a finite difference approximation for the diffusion equation(with axial symmetry), it is first necessary to integrate equation (5) over a small, arbitrary volume $\Delta \mathrm{V}$ (see Figure 2-1) where the mesh points are considered to be in the center of the homogeneous mesh interval. Thus,

$$
\begin{align*}
& -\int_{\Delta V} \vec{\nabla} \cdot \mathrm{D}_{\mathrm{g}} \vec{\nabla} \Phi_{\mathrm{g}} \mathrm{dV}+\int_{\Delta V}\left[\Sigma_{g}^{\mathrm{r}} \Phi_{\mathrm{g}}\right] d V \tag{6}\\
= & \int_{\Delta V}\left[\mathrm{~S}_{g}^{e x t}+\chi_{g} \sum_{g^{\prime}=1}^{G}\left(v_{g^{\prime}} \Sigma_{f_{z^{\prime}}} \Phi_{g^{\prime}}\right)+\sum_{g^{\prime}=1}^{g-1}\left(\Sigma_{s}\left(g \rightarrow g^{\prime}\right) \Phi_{g^{\prime}}\right)\right] d V
\end{align*}
$$

where the first term on the LHS of the equation is the leakage term, the second term on the LHS of the equation is the removal term, and the RHS represents the source terms including fission and scatter. Thus for the removal term,

$$
\begin{equation*}
\int_{\Delta V} \Sigma_{g}^{T} \Phi_{g} d V=\Sigma_{g_{0}}^{T} \Phi_{g 0} V_{o} \tag{7}
\end{equation*}
$$

where

$$
\Phi_{\mathrm{g} 0}=\text { flux associated with meshpoint o }
$$

and

$$
\Sigma_{g_{0}}^{\mathrm{T}}=\text { removal cross section associated with meshpoint } a .
$$

The source term on the RHS is done similarly to the above. The leakage term is changed to an integral over the surface area of the volume element, thus from the Divergence Theorem

$$
-\int_{\Delta V} \vec{\nabla} \cdot D_{g} \vec{\nabla} \Phi_{g} d V=-\int_{A} D_{g} \vec{\nabla} \Phi_{g} \cdot \hat{n} d A
$$

The flux partial derivatives will be obtained by differencing the two neighboring flux values. Thus, volume integration of equation (5) for mesh point 0 (see Figure 2-1; where r stands for x or r, and θ stands for y, z, or θ, depending on the geometry) leads to the expression

$$
\begin{align*}
&-\sum_{k=1}^{4}\left[\bar{D}_{g_{k}}\left(\frac{\phi_{g_{k}}-\phi_{g_{0}}}{L_{k}}\right) A_{k}\right]+\Sigma_{g_{0}}^{T} \Phi_{g_{0}} V_{0} \tag{8}\\
&=\left[S_{g_{0}}^{e x t}+\chi_{g} \sum_{g^{\prime}=1}^{G}\left(v_{g^{\prime}} \Sigma_{f_{s^{\prime}}} \Phi_{g_{0}}\right)+\sum_{g^{\prime}=1}^{g-1}\left(\Sigma_{s_{0}}\left(g \rightarrow g^{\prime}\right) \Phi_{g_{0}}\right)\right] V_{0}
\end{align*}
$$

where

$$
\begin{aligned}
\Sigma_{g_{y}}^{\tau} & =\text { removal cross section associated with mesh point } 0 . \\
S_{\mathfrak{g}_{0}}^{c x t} & =\text { extraneous source rale ass ociated with mesh point } 0, \\
V_{0} & =\text { volume associated with mesh point } 0 . \\
\Phi_{g_{k}} & =\text { flux associated with mesh point } 0, \\
L_{k} & =\text { distance between mesh point } k \text { and mesh point } 0, \\
A_{k} & =\text { area of boundary between mesh point } k \text { and mesh point } 0, \\
\bar{D}_{\mathrm{g}_{k}} & =\text { effective diffusion coefficient mesh point } k \text { and mesh point } 0
\end{aligned}
$$

and

$$
\left(\begin{array}{c}
\frac{D_{g_{0}} D_{g_{k}}\left(\Delta r_{0}+\Delta r_{k}\right)}{\left(D_{g_{0}} \Delta r_{k}+D_{g_{k}} \Delta r_{0}\right)} \text { or } \frac{D_{g_{0}} D_{g_{k}}\left(\Delta \theta_{0}+\Delta \theta_{k}\right)}{\left(D_{g_{0}} \Delta \theta_{k}+D_{g_{k}} \Delta \theta_{0}\right)} \\
\text { where } \quad \Delta r_{k}=\Delta r \text { for volume element } k \\
\Delta \theta_{k}=\Delta \theta \text { for volume element } k
\end{array}\right)
$$

Equation (8) can be recast into a form more convenient for performing flux iterations by rearranging equation (8) to that given below:

$$
\begin{align*}
& \phi_{b}=\frac{\left[s_{g_{0}}^{\text {ext }}+\chi_{g} \sum_{g^{\prime}=1}^{G}\left(v_{g^{\prime}} \Sigma_{f_{k_{0}}} \Phi_{g_{0}^{\prime}}\right)+\sum_{g^{\prime}=1}^{g-1}\left(\Sigma_{s_{0}}\left(g \rightarrow g^{\prime}\right) \Phi_{g_{0}^{\prime}}\right)\right] v_{0}+\sum_{k=1}^{4} C_{k} \phi_{k}}{C_{5}}, \tag{9}\\
& \text { where } \quad C_{k}=\frac{\bar{D}_{g_{c}} A_{k}}{L_{k}} k=1, \ldots 4
\end{align*}
$$

and $\quad C_{5}=\sum_{g_{0}}{ }^{\mathrm{T}} \mathrm{V}_{0}+\sum_{k=1} \mathrm{C}_{\mathrm{k}}$.

2.2. Discussion of Boundary Conditions Used in 2DBTOR

Three boundary conditions are available in 2DBTOR: reflective, extrapolated vacuum, and periodic. The reflective boundary conditions is used on boundaries where $\nabla \Phi=0$; the extrapolated vacuum boundary condition is used on boundaries where the flux is assumed to be zero at the extrapolated boundary; and the periodic boundary condition is used on boundaries where material conditions are repeating. The above mentioned boundary conditions are described in more detail below.
2.2.1. Zero Flux Gradient Boundary Condition. Consider the left-hand boundary of the one-dimensional reactor shown in Figure 2-2. Imagine that a

Figure 2-2. Schematic Diagram of 1-D Reactor
pseudo-mesh interval, interval 0 , has been added on the left-hand side of the boundary with the same composition and thickness of interval 1. Clearly, then, if $\nabla \Phi=0$ at the boundary, $\phi_{0}=\phi_{1}$. Therefore, since $\left(\phi_{0}-\phi_{1}\right)=0$, the coefficient of $\left(\phi_{0}-\phi_{1}\right), C_{1}$ (see equations (8) and (10)), is immaterial -- hence C_{1} can be set equal to zero. The calculation is therefore performed assuminf that ϕ_{0} does not exist and $C_{1}=0$.
2.2.2. Zero Flux Boundary Condition. Again, imagine that a pseudo-mesh interval with the same composition as interval IM has been added to the right hand side of the boundary in Figure 2-2. Now, since $\phi_{\mathrm{IM}} \neq 0$ and $\phi_{\mathrm{IM}+1}=0$, the coefficient of ($\phi_{\mathrm{IM}}{ }^{-} \phi_{\mathrm{IM}+1}$) in equation (8) cannot be disregarded. In fact, from equation (10), it is clear that

$$
C_{k}=\frac{D_{k} A_{k}}{.5 \Delta R_{I M}+.71 \lambda_{\mathrm{tr}}}
$$

where $\lambda_{\text {tr }}$ is assumed to equal $1 / \Sigma_{\text {tr }}$
Note, as in the reflective boundary condition case, that there is no contribution of the pseudo-flux in equation (9). For a zero flux gradient, $\mathrm{C}_{\mathrm{k}}=0$; whereas for a zero flux, $\phi_{k}=0$.
2.2.3. Periodic Boundary Condition. Periodic boundary conditions are only available for the top and bottom boundaries(e.g., boundaries in the y, z, or θ direction). In this option(see Figure 2-3),

$$
\begin{aligned}
\phi_{\mathrm{IM}} & =\phi_{0} \\
\phi_{\mathrm{IM}+1} & =\phi_{1}
\end{aligned}
$$

and

$$
\mathrm{C}_{\mathrm{k}}(1 \rightarrow \mathrm{M})=\frac{\overline{\mathrm{D}}_{\mathrm{k}} A_{\mathrm{k}}}{.5\left(\Delta \mathrm{R}_{1}+\Delta \mathrm{R}_{\mathrm{IM}}\right)}
$$

Figure 2-3. Schematic Diagram of 1-D Reactor

It should be stressed that the pseudo-mesh intervals discussed above are not in any way a part of the code. They are mentioned here only for heuristic purposes.

2.3. Discussion of Triangular Mesh Option

Since most fast reactors are composed of hexagonal assemblies, 2DBTOR includes a triangular mesh option. Hexagons are formed by appropriate grouping of six triangular mesh intervals.

In the triangular mesh option, the (i, j) coordinate grid is composed of a rectangular array of triangles. As in the other geometry options, the mesh points are placed in the center of each interval, or triangle. See Figure $2-4$ for a simple 3×4 example. In contrast to the other geomerry options, however, the mesh boundaries must be equally spaced. In fact, the radial $\left(\mathrm{RB}_{\mathrm{i}}\right)$ and axial $\left(\theta_{\mathrm{j}}\right)$ mesh boundaries must be computed by the expressions

$$
\begin{array}{ll}
R B_{i}=(i-1) \frac{F T F}{2 \sqrt{3}}, & i=1, \ldots, I M+1 \\
\theta B_{j}=(j-1) \frac{\text { FTF }}{2}, & j=1, \ldots, J M+1 \tag{13}
\end{array}
$$

where FTF is the flat-to-flat hexagon width.
Only vacuum and reflective boundary conditions are available with the trianguiar mesh option. The user is cautioned against using reflective left and right boundaries since this implies no surface leakage from each mesh interval on the left and right border.

Figure 2-4. Triangular Mesh Example (3×4)

2.4. Iterative Solution Methods of 2DBTOR

Within the 2DBTOR code, two distinct levels of iteration may be found for general problems. The top level of iteration (i.e., outer iterations) is for the spatially and energy-group summed fission sources. The second level of iteration (i.e., inner iterations) is for the individual group fluxes that result from a given source.

The following sections describe both the inner and outer iteration procedures used in 2DBTOR and discuss the methods used to accelerate those procedures.
2.4.1. Outer Iterations. Outer iterations in 2 DBTOR are based on the power iteration method. That is, at each outer iteration, a total fission source is calculated. Upon convergence, the ratio of the latest fission source to the previous fission source is the eigenvalue. Thus, the eigenvalue is used to renormalize the fission sources between outer iterations, and the ratio between normalized fission source iterates approaches 1.0 .

For search problems, the eigenvalue is defined to be the value of the search quantity (e.g., time absorption, zone thickness,etc.) that produces criticality. In these problems, the eigenvalue is used to change the problem at each search step so that the fisdsion source ratio still approaches 1.0 at convergence.

For each outer iteration, the inner iteration procedure starts with group 1 and sweeps through the groups in order of decreasing energy. The downscattering component of the source for the current group is calculated from the latest values of the higher energy fluxes.

Fission source over-relaxation is employed in 2DBTOR to accelerate convergence. The procedure is as follows: After the new fission source rate profile, $\mathrm{F}^{\mathrm{\gamma}+1} 1$, is calculated, a second "new" value, $\mathrm{F}^{\mathrm{V}+1} 2$, is computed by magnifying the difference between the new fission source rate and the old fission source rate. Thus,

$$
F_{2}^{v+1}=F^{v}+\beta^{\prime}\left(F_{1}^{v+1}-F^{v}\right)
$$

where β^{\prime} is the fission source over-relaxation factor. $\mathrm{F}^{\mathrm{v}+1} 2$ is than normalized to give the same total source as $\mathrm{F}^{\mathrm{v}+1} 1$.
2.4.2. Inner Iterations. Inner iterations are computed using successive line over-relaxation (SLOR). That is, the fluxes on each vertical (or horizontal) line are simultaneously computed (by the familiar Crout reduction technique) and then over-relaxed using

$$
\phi^{v+1}=\phi^{v}-\beta\left(\phi^{v+1-} \phi^{v}\right),
$$

where β is the over-relaxation factor. In r - q problems or problems involving periodic boundary conditions, direct inversion is performed on vertical lines beginning at the left boundary and proceeding by column to the right boundary. In triangular problems, direct inversion is performed along horizontal lines beginning at the bottom boundary and proceeding by row to the top boundary. In all other situations, direct inversion is performed along the dimension with the most mesh points. One mesh sweep is defined as one inner iteration.

The flux over-relaxation factor, $\boldsymbol{\beta}$, is an input parameter. The fission source over-relaxation factor, β^{\prime}, is computed internally from the expression

$$
\beta^{\prime}=1.0+0.6(\beta-1) .
$$

As in the original version of 2DB, the flux in each group is normalized (by balancing the total source rate and loss rate) immediately before each group-flux calculation. Thus, a one-region problem with zero-gradient boundary conditions
would be solved in exactly one outer iteration.
It should be mentioned that an alternating direction SLOR scheme (using line inversion for rows and then colums in alternation) is included as an option to enhance convergence for problems involving tight mesh spacing in both directions.

3. USER'S GUIDE

3.1. 2DBTOR Input Data Description (Logical Unit 5)

This section describes the input data for the 2DBTOR code. The input has the following general structure:

Section	Description
A	Title Card
B	Single Integer and Real Numbers
C	Cross Section Data
D	Fixed Source Data (if needed)
E	Miscellaneous Data
F	Burnup Data

Each input section is begun on a new line and ended on a later line by a terminate marker. A "T" anywhere on a nontitle card or on a line by itself constitutes a terminate marker.

Each of the input sections will be described below. Locations of the terminate markers will also be given. The length of each data section is denoted by the number or variable in slashes "//" by the input description. The expression in braces "\{\}" by the input description is the condition that requires the input to be present. If no condition is given, the input is always needed.

The data format conventions used by 2DBTOR are described fully in Section 3.3. Succinctly descibed, however, 2DBTOR uses free format augmented by an operator notation, which conserves space in the input.

Further details about the various input options for 2 DBTOR may be found in Section 3.2, which immediately follows the input data description.
A. Title Card - (4A20 Format)
B. Single Integer and Real Numbers
B. 1 Integer control parameters /13/

	Variable	
	Name	Description
1.	A02	0- regular calculation
		1- adjoint calculation
2.	I04	Eigenvalue type
		0- distributed source (D.)
		1- eigenvalue calculation
		2 - time absorption (α) search
		calculation (E.7.)
		3 - concentration search (C)
		calculation

	Variable Name	Description
9.	D05	Maximum number of outer iterations(suggested value ≥ 50 for general usage but $\mathrm{D} 05=1$ fixed source calculations without fission)
10.	MAXT	Maximum run time (minutes)
11.	NPRT	Print option 0 - mini 1 - midi 2 - cross sections 3 - fluxes
12.	M07	Flux guess 0 - no effect 1 - flux guess from file FOR14.DAT
13.	NPUN	Flux dump 0 - no effect 1 - flux dump to file FOR16.DAT

	Variable	
	Name	Description
1.	IGE	Geometry parameter
		O-X-Y
		1-R-Z
		2 - R-ө or toroidal (B.2.2.)
		3-triangular
		4 - toroidal
2.	ITOR	Toroidal specifier ($0 / 1=\mathrm{R}-\theta /$
		toroidal)
3.	NACT	Number of activities (E.15.)
		$0-\mathrm{no}$ effect
		>0 - read table positions
		for N activities
4.	IM	Number of radial fine mesh
		intervals
5.	JM	Number of axial fine mesh
		intervals
6.	IZM	Number of zones (or regions)
7.	MT	Total number of material
		(IMCRI + mixtures formed in

Variable

Name
Description
mixing table)
8. M01

Mixing table length
$9 . \quad \mathrm{B} 0$
Left boundary condition
0 - vacuum
1 - reflection
10.

B02
Right boundary condition
0 - vacuum
1 - reflection
11.

B03
Top boundary condition
0 - vacuum
1 -reflection
2 - periodic
12. B04

Bottom boundary condition
0 - vacuum
1 - reflection
2 - periodic
13.
14.

JZ

Number of radial zones
0 - no effect
>0 - only if $\mathrm{I} 04=4$
Number of axial zones
0 - no effect
>0 - only if $104=4$

Terminate Marker

B. 3 Floating point control parameters $/ 6 /$

	Variable	
	Name	Description
1.	EV	First eigenvalue guess
2.	EVM	Initial eigenvalue modifier for search problems, zero otherwise
3.	S03	parametric eigenvalue
4.	BUCK	Buckling (cm^{-2}) (E.5)
5.	LAL	Lower limit for λ in search calculations, zero otherwise
6.	LAH	Upper limit for λ in search calculations, zero otherwise

B.4 Floating point control parameters $/ 61$

Variable
Name Description
1.

EPS
Eigenvalue relative convergence criterion (suggested value, $\mathrm{EPS}=0.0001$)
2. EPSA
3.

G06

POD

ORF

S01
6.

Parametric convergence criterion
Pointwise flux relative convergence criterion, zero otherwise (suggested value, $\mathrm{EPSA}=2.0^{*} \mathrm{EPS}$)

Paramater oscillation damper
(suggested value, $\mathrm{POD}=1.0$)
Over relaxation factor (suggested value,
$1.0 \leq O R F \leq 2.0$)

S01<0, power (MWT) for R-Z geometry, (power/height (MWT/cm) for all but

R-Z geometry)
S01>0, neutron source rate $\left(\mathrm{n} / \mathrm{cm}^{3}\right)$ (0.0 for source without fission)

Terminate Marker

B. 4 Floating point control parameters $/ 1 /[I T O R=1\}$

Variable			
	Name		
1.	BIGR		

Terminate Marker

C. Cross Section Data ($\mathrm{MCR}>0$)

Variable		
1.	Name	
2.	HOLN(MCR)	Name of isotope
2.	ATW(MCR)	Atomic weight of isotope

ITL $=$ NXCM + IHT $+1=$ Cross section table length
3. C(ITL,IGM,MT) Read cross sections for first group /TTL/.

4. Terminate Marker

5. Repeat C. 3 and C. 4 for all groups/IGM-1/
6. Repeat C.1-C. 5 for all materials/MT-1/
D. Fixed Source Data $\{\mathrm{I} 04=0\}$

Variable	
Name	Description
S2 $\left(\mathrm{IM}^{*} \mathrm{JM}\right)$	Source in first group

2. Terminate Marker
3. Repeat D.1-D. 2 for all groups /IGM-1/
E. Miscellaneous Data

Description

1. Radial mesh line coodinates defining the IM fine mesh intervals /IM+1/ (should be strictly ascending in order)

Terminate Marker

Description

2. Axial mesh line coordinates defining the JM fine mesh intervals $/ \mathrm{JM}+1 /$ (should be strictly ascending in order)

Terminate Marker

3. Zone numbers by fine mesh interval / $/ \mathrm{M} * \mathrm{JM} /$

Terminate Marker

4. Material numbers by zone /IZM/

Terminate Marker

5. Buckling coefficients by zone $/ \mathrm{IZM} /\{\mathrm{I} 04=5$ or $\mathrm{BUCK}>0\}$

Terminate Marker
6. Fission spectrum data/IGM/ (the sum of the entries should equal 1.0 for eigenvalue calculations ($104=1$))

Terminate Marker

Description

7. Neutron velocities by group/[GM/ $[\mathrm{I} O 4=2$ or $\mathrm{S} 02=2$]

Terminate Marker
8. Mixture material numbers in mixing table /M01/ \{M01>0\}

Terminate Marker

9. Component material numbers of mixtures in mixing table/M01/ \{ $\mathrm{M} 01>0$ \}

Terminate Marker

> 10. Atom densities of component materials in mixing table /M01/ $$
\{\mathrm{M} 01>0\}
$$

Terminate Marker
11. Delta option radial zone numbers by fine mesh interval /IM/ \{IO4=4\}

Terminate Marker
12. Delta option radial zone modifiers /IZ/ $\{104=4\}$

Terminate Marker
13. Delta option axial zone numbers by fine mesh interval /JM/ \{IO4=4\}

Terminate Marker
14. Delta option axial zone modifiers/JZ/ \{104-4\}

Terminate Marker
15. Cross section table position for activities /NACT/ [NACT>0\}

Terminate Marker

16. End of problem identifier (NCON)

0 - End of problem (only if no burnup)
>0 - Take time step of DELT and read burnup data for
N isotopes (F .)
<0 - Take time step of DELT (F.)
(DELT is in Burnup Data)

F. Burnup Data $\{\mathrm{NCON} \neq 0$ \}

F. 1 Integer control parameters /1/

Variable		
1.		
Name	Description	

Terminate Marker
F. 2 Integer control parameters $/ 12 /(\mathrm{NCON}>0)$

1. MATN(NCON) Material sequence number
of burnable isotope
2. $\quad \mathrm{NBR}(\mathrm{NCON})$

0 - No effect
1 - Fertile isotope
2 - Fissile istope
3.

LD(NCON)
0 - No decay source

N - Decay source from
burnable isotope N

	Variable	
	Name	Description
4.	LCN(NCON,1)	0- No capture source
		N - Capture source from burnable isotope N
5.	LCN(NCON,2)	0- No capture source
		N - Capture source from bumable isotope N
6.	LFN(NCON,1)	0 - No fission source
		N - Fission source from burnable isotope N
7.	LFN(NCON,2)	0 - No fission source
		N - Fission source from burnable isotope N
8.	LFN(NCON,3)	0 - No fission source
		N - Fission source from bumable isotope N
9.	LFN(NCON,4)	0- No fission source
		N - Fission source from burnable isotope N
10.	LFN(NCON,5)	0 - No fission source
		N - Fission source from burnable isotope N

	Variable	
	Name	Description
11.	LFN(NCON,6)	0- No fission source
		N - Fission source from burnable isotope N
12.	LFN(NCON,7)	0 - No fission source
		N - Fission source from burnable isotope N

Terminate Marker

F. 3 Integer control parameters / / / (NCON >0)

1. ALAM(TTEMP)	Decay constant for decay
of burnable isotope N (days-1)	
	$(0.0$ for no decay $)$

3.2. Supplemental Input Information for 2DBTOR

3.2.1. Cross Section Considerations. Cross sections input into 2DBTOR are ordered for each group as shown in Table 2.

Table 2. Order of cross sections in 2DBTOR

Cross Section	Group	Position Description
σ activity 1 (optional)	g	
.	-	
.	-	
-	-	
σ activity N (optional)	g	$(\mathrm{N}=\mathrm{IHT}-4)$
σ fission	g	
σ absorption	g	
$v \sigma$ fission	g	
σ transport	g	IHT
σ selfscatter	$g \rightarrow \mathrm{~g}$	IHS
σ downscatter	$\mathrm{g}-1 \rightarrow \mathrm{~g}$	
-	g	
-	g	
-	g	
σ downscatter	$\mathrm{g}-\mathrm{NXCM} \rightarrow \mathrm{g}$	ITL

If activity cross sections are not present, then IHT $=4$.

The absorption cross section is used only for editing purposes. If a removal cross section is to be calculated, then 2DBTOR computes this by subtracting the self scatter cross section from the transport cross section.

Material numbers in 2DBTOR start at 1 and go through MT (the user specified total number of materials). Materials entered by cards or tape start at 1 and run through MCR (the user-specified number of materials from cards or tape). Materials formed in the mixing table are numbered from $\mathrm{MCR}+1$ through MT .

The cross section mixing table is controlled by three input arrays: 10, I1, and I2. The length of the cross section mixing table (M01) is specified by the user. It is important to remember to initialize each array to zero before performing a mix in the mixing table since 2DBTOT does not do this internally in the program.

For each row of entries in the mixing table, three operations are possible. First, all of the cross sections in a given material number may be multiplied by a constant. This option is useful in number density variations. Second, a set of cross sections may be multiplied by a constant and added into another material. This option is useful in mixing cross sections. Finally, all of the cross sections of a material may be multiplied by the eigenvalue. This option is useful in concentration searches ($104=3$).

Table 3 illustrates the three options available from the mixing table:

Table 3. 2DBTOR mixing table options

	Material	Component	Concentration or
	Number	Number	Numeric Constant
Options	(IO)	(I1)	(I2)
1	M	0	X
1	M	0	X
1	M	0	X

3.2.2. Search Considerations. The 2DBTOR code computes implicit eigenvalue searches on time absorption, material composition, zone thickness, and material buckling. In contrast to a $k_{\text {eff }}$ calculation, the fission spectrum is not multiplied by 1λ after each outer iteration. Instead, after a converged λ has been obtained ($\left.\left|\lambda^{v+1}-\lambda^{v}\right|<\varepsilon^{\prime}\right)$ by a sequence of outer iterations, the desired parameter is perturbed to make λ approach unity. That is, first a converged λ is calculated for the initial system. The system is then altered by the amount specified in the input (the eigenvalue modifier) and a second converged λ is calculated. Subsequent parameter changes are determined using either linear or parabolic interpolation procedures. The iteration is continued until $|1-\lambda|<\varepsilon$.
3.2.2.1. Time Absorption (α calculation). For simplicity, consider the one group, time dependent neutron diffusion equation

$$
\begin{equation*}
\frac{1 \partial \phi(\overrightarrow{\mathbf{r}, \mathrm{t})}}{\partial \mathrm{t}}=D \nabla^{2} \phi(\overrightarrow{\mathrm{r}}, \mathrm{t})-\Sigma_{\mathrm{a}} \phi\left(\overrightarrow{\mathrm{r}, \mathrm{t})}+v \Sigma_{\phi} \phi(\overrightarrow{\mathrm{r}}, \mathrm{t})\right. \tag{14}
\end{equation*}
$$

If one now assumes that

$$
\begin{equation*}
\phi(\vec{r}, \mathrm{t})=\phi\left(\dot{\mathrm{r}}^{\alpha \mathrm{r}} .\right. \tag{15}
\end{equation*}
$$

then equation (14) can be rewritten in the form

$$
\begin{equation*}
D \nabla^{2} \phi(\vec{r})-\left(\Sigma_{a}+\frac{\alpha}{v} \phi(\vec{r})+v \Sigma_{f} \phi(\vec{r})=0 .\right. \tag{16}
\end{equation*}
$$

In a time absorption calculation, the parameter α, as defined and used in equations (15) and (16), is computed as the eigenvalue. Note that α / ν is effectively an absorption cross section -- hance the name "time absorption."
3.2.2.2 Material Concentration (C calculation). 2DBTOR can perform an extremely flexible and comprehensive criticality search on material composition. Any number of materials can simultaneously be added, depleted, or interchanged in any number of zones.

The format for specifying concentration searches can best be described by a simple example. Suppose that a zone mixture, say Mix 10, is to be composed of Materials 2 and 4. Further, assume that Material 2, with an initial density of 0.02 (atoms/barn-cm), shall be varied to obtain criticality, and Material 4 shall have a fixed
density of 0.04 (atoms/barn-cm).
The I0, I1, and I2 arrays would then be set up as shown in the following tabulation.

Mix Number (IO)		Material Number(I1)
	0	Density(I2)
10	2	0
10	10	0.02
10	4	0
		0.04

The first row $(10,0,0)$ instructs the code to clear a storage area for Mix 10. The second row ($10,2,0.02$) causes Material 2 to be added to Mix 10 with a density of 0.02 . The third row $(10,10,10)$ cuses the current contents of Mix 10 to be multiplied by the eigenvalue. Finally, the last row $(10,4,0.04)$ instructs the code to add Material 4 to Mix 10 with a density of 0.04 .

All of the foregoing can be summarized by the expression

$$
\begin{equation*}
\Sigma_{10}=0.02 \sigma_{2} \mathrm{EV}+0.04 \sigma_{4} \tag{17}
\end{equation*}
$$

where:
$\Sigma_{10}=$ macroscopic cross section for Mix 10, $\sigma_{2}=$ microscopic cross section for Material 2, $\sigma_{4}=$ microscopic cross section for Material 4, $\mathrm{EV}=$ the eigenvalue.
3.2.2.3 Zone Dimensions (δ calculation). 2DBTOR searches on reactor dimensions by varying the dimensions of each axial an radial mesh interval. Each mesh width, δr^{i}, is computed from the expression

$$
\begin{equation*}
\delta r^{i}=\delta r_{0}^{i}\left[1+(\text { mesh modifier })^{i} E V\right], \tag{18}
\end{equation*}
$$

where δr^{1} is the initial mesh spacing and EV is the eigenvalue. Different mesh modifiers can be specified for each axial and radial mesh interval.
3.2.2.4 Buckling (B^{2} calculation). In a buckling search, the quantity $\mathrm{D}_{\mathrm{i}} \mathrm{B}^{2}$, where D_{i} is the zone dependent diffusion constant for group i , is added to the ith group absorption cross section. The in-group scattering cross section, σ^{i} gg, is reduced by the same amount so that the calculated total cross section remains equal to the input total cross section. The buckling is then computed as the eigenvalue.
3.2.3. Burnup Model. The basic burnup equation for each zone has the form

$$
\begin{equation*}
\frac{d N^{i}}{d t}=-\lambda N^{i}-\bar{\sigma}_{a}^{i} \phi N^{i}+\lambda N^{k}+\sum_{j=1}^{2-j} \sigma_{c}^{j} \phi N^{j}+\sum_{m=1}^{7}-\frac{\sigma_{f}-}{}-N^{m} \tag{19}
\end{equation*}
$$

where:
$N^{i}=$ density of nuclide i,
$N^{i}=$ decay constant for nuclide i,
$-\mathrm{i}$
$\sigma_{\mathrm{a}}=$ spectrum averaged absorption cross section for nuclide i ,

- i
$\sigma_{\mathrm{f}}=$ spectrum averaged fission cross section for nuclide i ,
-i
$\sigma_{\mathrm{c}}=$ spectrum averaged capture cross section for nuclide i ,
$\bar{\phi}=$ total average flux.

The last two terms in equation (19) allow provision for two capture and seven fission sources. The latter option, for example, could be used to compute the fission product buildup.

Each input time step is arbitrarily subdivided into 10 smaller times steps. Equation (19) is then solved as a march-out problem using the subdivided time intervals. If one rewrites equation (19) in the form

$$
\begin{equation*}
\frac{\mathrm{d} \overrightarrow{\mathrm{~N}}}{\mathrm{dt}}=\overrightarrow{\mathrm{f}}(\overrightarrow{\mathrm{~N}}, \mathrm{t}), \tag{20}
\end{equation*}
$$

then the particular march-out algorithm used can be written as

$$
\begin{equation*}
\overrightarrow{\mathrm{N}}_{\mathrm{j}+1}=\overrightarrow{\mathrm{N}}_{\mathrm{j}}+\frac{\delta \mathrm{t}}{2}\left(\overrightarrow{\mathrm{f}}_{\mathrm{j}}+\overrightarrow{\mathrm{f}}_{\mathrm{j}+1}\right) \tag{21}
\end{equation*}
$$

where j is the index on time and $\delta \mathrm{t}$ is the fine-step time interval.
Observe that equation (21) is implicit in the sense that $\mathrm{Nj}+\mathrm{I}$ must be known in
order to compute $\mathrm{fj}+1$. One must therefore iterate on N at each time point. This procedure leads to the algorithm

$$
\begin{equation*}
\overrightarrow{\mathrm{N}}_{\mathrm{j}+1}^{\mathrm{v}+1}=\overrightarrow{\mathrm{N}}_{\mathrm{j}}+\frac{\delta \mathrm{t}}{2}\left(\overrightarrow{\mathrm{f}}_{\mathrm{j}}+\overrightarrow{\mathrm{f}}_{\mathrm{j}+1}\right), \tag{22}
\end{equation*}
$$

where v is the iteration index.
3.2.3.1. Remarks on Burnup Equations. The zone averaged flux and cross sections appearing in equation (19) are computed before each time step. The total reactor power (from the burnable isotopes) and flux profile (relative zone fluxes) are held constant during the fine-step march-out described by equation (22).

It should be clear from the mathematical model presented that relatively short time steps should be employed if rapid variations in isotopic concentrations or flux profiles are anticipated.
3.2.4. Source Problems. 2 DBTOR will compute the flux profiles resulting from an extraneous (in space and energy) source distribution. The following suggestions will assist the user in running source problems:

1. A source problem is meaningless (and will not converge) if $\mathrm{k}>1.0$.
2. Convergence can be accelerated by giving the code an estimate of k (Card 5, Word 1).
3. A good estimate of the initial total neutron production rate (Card 6, Word 6)
will enhance convergence. This value can be estimated using the simple expression

$$
\begin{equation*}
N=\frac{k S}{1-k}, \tag{23}
\end{equation*}
$$

where:
$\mathrm{N}=$ total neutron production rate from fission,
$S=$ total neutron source rate from extraneous source,
$\mathrm{k}=$ multiplication constant.

3.2.5. Remarks on Code Operation.

1. Since the input data is inverted for transposed calculations, all group indicies in the output of adjoint cases are transposed. Furthermore, the balance tables in adjoint calculations do not have a direct physical interpretation.
2. The material inventory tables are inapplicable for a mixture specification more complex than a mix in a mix (e.g., a mix in a mix in a mix).
3. An isotope cannot be mentioned more than once in the same mix in burnup calculations. If mentioned more than once in other calculations, the printed inventory will be incorrect.
4. Although the new eigenvalue and material densities are computed and printed after the last time step, the zone averaged cross sections and reaction rates are not. These can easily be obtained, however, by simply taking 1 extra burnup step of
zero length. Similarly, the zone averaged cross sections and reaction rates can be obtained in non-burnup runs by simply calling for 1 (dummy) burnup step of zero length.
5. A flux dump is given only when:
1) A dump is called for, and
2) The burnup time is zero.

Thus, if a dump is called for in a burnup calculation, only one dump (the initial flux) is given.
6. Tight mesh spacing in the dimension perpendicular to line inversion can cause excessive running time. Thus, if tight mesh spacing is used, it should be along the dimension containing the most mesh intervals. For the same reason, the "dummy" dimension in one-dimensional problems should contain large mesh intervals.

3.3 2DBTOR Format Description

3.3.1 Operators. Generalized Format $=$ OPnn $x x$

1. $\mathrm{nn}=$ first subfield with integer entry
2. $\mathrm{OP}=$ operator $=$ second subfield with character entry
3. $x x=$ third subfield with real or integer entry
4. There must not be a delimiter (blank or end of card) between the first and second subfields.
5. There must be a delimiter between the second and third subfields.
6. There must be a delimiter between the third subfield of one operator and and the first subfield of the following operator.
\qquad
7.

	Operator	Description
1.	C	Continue the current array nn times with the previous xx entries
2.	F	Fill the remainder of the current array with xx
3.	I	Linear interpolation; generate $n n$ entries between xx

Description
and the previous number
4.

R The value xx is generated nn times
5. T Terminate the current array

3.4. Printed Output Description

The first output section of 2DBTOR is a brief edit of the first 37 input data preceded by the title card. The size of the array required to run the problem is printed after the above edit. If more or less than the required 37 entries is read than an error message is printed and the calculation stops.

The next section is an edit of the cross section, source, mesh interval, and zone data. First, a cross section edit is printed with a list of the cross sections read followed by a consistency check. If the problem involves a great amount of inelastic scattering,
then this check can be ignored. Second, if a source problem is run, then the source distribution is printed for each group. Each group source distribution is preceded by the required number of entries. Third, an edit of the mesh intervals is performed for both the radial and axial points. Again, each edit is preceded by the required number of entries. Finally, an edit of the zone numbers by mesh interval followed by an edit of the material numbers by zone is printed. Each of the above edits is preceded by the required number of entries.

The next section consists of an edit of the fission spectrum and mixing table data. The fission spectrum is printed for all groups. Next, the mixing table is printed for the I0, I1, and I2 arrays. Again, the required number of entries is printed.

The next section consists of a map of both the zone numbers by mesh interval and the material numbers by fine mesh interval. This provides a means to get a picture of the problem. If more than approximately 50 mesh intervals are used in the radial direction, then the printed inventory will leave off the excess due to problems with printing off the page. This will cause an error, which will not stop further running of the problem.

The next section is a brief edit of the time in days that the problem was started, of the mixing table in easy to read format, and of the cross sections (NPRT ≥ 2) input into the problem for each group.

After printing out the input edits above, the number of inner iterations per outer iteration with the associate eigenvalue, eigenvalue slope, and lambda after the outer iteration are printed. This is followed by a balance table, which lists the number of fissions, in-scattering neutrons, out-scattering neutrons, absorptions, and leakage for each group. The total for each neutron process follows the above. The neutron
multiplication constant (not $\mathrm{k}_{\text {eff }}$) is printed, followed by an edit of the radii, average radii, axii, and average axii dimensions.

Next, if NPRT >2, then the flux by mesh interval for each group followed by the total flux by mesh interval is printed. This is followed by the power density (MWT/liter) for each mesh interval.

To end the problem (if no burnup is required), a brief edit of both the mass (kilograms) and volume (liters) inventory for each zone is printed followed by their totals. This concludes the problem.

If a burnup run is called for, then the amount of days in the burnup followed by another eigenvalue edit and balance table edit is printed. Next, a brief edit of the burnup input dat is printed in easy to read format. Finally, the absorption and fission
rates for each material burned by zone is printed with the number density of each material called in the burnup.

4. PROGRAMMER'S GUIDE TO 2DBTOR

4.1. 2DBTOR Files Description

Logical

Unit	Name	Format	Usage
3	FOR3.DAT	Unformatted	Cross section storage
4	FOR4.DAT	Unformatted	Scratch storage
5	TORACT5.DAT	Formatted	Input

6	TORACT5.OUT	Formatted	Output
8	FOR8.DAT	Unformatted	Flux storage
9	FOR9.DAT	Unformatted	Source storage
10	FOR10.DAT	Unformatted	Scratch storage
11	FOR11.DAT	Unformatted	Scratch storage
12	FOR12.DAT	Unformatted	Scratch storage
14	FOR14.DAT	Unformatted	Input of a flux dump
15	FOR15.DAT	Unformatted	Scratch storage
16	FOR16.DAT	Unformatted	Output of a flux dump

4.2 2DBTOR Subroutines

Name
CALC
INP

ERR02
S860

S862
S864
REAG2

Function
Main program
Controls reading and printing of all input dat, computes variable dimension pointers, and computes program constants

Prints error messages
Reads cross sections from cards, performs adjoint reversals if required, and writes cross section tape

Reads input fluxes and prepares a flux tape
Reads input source and prepares a source tape
Reads floating point data

Name REAI2

RREAG2
MAPR
INIT

CLEAR
FISCAL

S8830

OUTER
INNER
INNER1
INNERT

INNER2
INNERP

IFLUXN
IFLUXL

Reads integer data
Reads toroidal data (major radius)
Produces a picture by zone and by material
Performs adjoint reversals, mixes cross sections, modifies geometry, and calculates areas, volumes, and fission neutrons

Sets an array of a specified length to a constant Calculates fission sums and performs outer iteration normalization

Prints time, eigenvalue, lambda, etc. after each outer iteration

Performs a complete outer iteration Calculates flux in a specified group Calculates coefficients for the flux equation Calculates coefficients for the flux equation in triangular geometry

Calculates flux in a specified group
Calculates flux in a specified group for periodic boundary conditions

Normalizes flux before each group flux calculation Normalizes flux before each group flux calculation (used for toroidal geometry source problems)

Name	Function		
CNNP	Performs convergence tests and computes a new eigenvalue for search calculations		
S8850	Prints the monitor line, group fluxes, total flux,		
power density, and fission source rate		,	Computes and prints group totals
:---			
S8847			
PRT			
GRAM			
INPB	\quad	Calculates and print the zone volume and the mass	
:---			
AVERAG			

4.2.1. Subroutine Calling Sequences.

Subroutine	Called By	Calls
CALC	---	INP, INIT, FISCAL,
		S8830, ERR02, OUTER,
		CNNP, S8850, GRAM,
		INPB, AVERAG, MARCH
INP	CALC	S860,S862, S864, REAG2,
		REAI2, RREAG2, MAPR,
		ERR02

Subroutine	Called By	Calls
ERR02	CALC, INP, REAI2,	--
	REAG2, INIT, CNNP	
S860	INP	--
S862	INP	REAG2
S864	INP	REAG2
REAG2	INP, S862, S864	ERR02
REAI2	INP	ERR02
RREAG2	INP	--
MAPR	INP	--
INIT	CALC	CLEAR, ERR02
CLEAR	INIT, GRAM	--
FISCAL	CALC	--
S8830	CALC, 58850	--
OUTER	CALC	INNER1, INNER, INNERP
INNER	OUTER	IFLUXN, IFLUXL
INNER1	OUTER	--
INNERT	OUTER	--
INNER2	OUTER	IFLUXN, IFLUXL
INNERP	OUTER	IFLUXN
IFLUXN	INNER, INNER2, INNERP	--
IFLUXL	INNER, INNER2	--

Subroutine	Called By	Calls
CNNP	CALC	ERR02, CLEAR
S8850	CALC	PRT, S8830, S8847
S8847	S8850	--
PRT	S8850	--
GRAM	CALC	CLEAR
INPB	CALC	--
AVERAG	CALC	--
MARCH	CALC	--
4.3. Selected Definitions of Variables and Arrays Used\qquad Variable \qquad Description		
** INTERNAL VARIABLES **		
NINP	Input tape	
NOUT	Output tape	
NCR 1	Cross section tape	
NFLUX1	Flux tape	
NSCRAT	Scratch tape	
NSORCE	Source tape	
ALA	Lambda	
B07	Used for internal computation in FISCAL and INIT	
CNT	Convergence trigger for lambda	
CVT	Convergence trigger	
DAY	Burnup time in days	

Variable
Description

DELT
E0(IGP)
El(IGP)
E2(IGP)
E3(IGP)
E4(IGP)
E5(IGP)
E6(IGP)
E7(IGP)
E8(IGP)
E9(IGP)
E01
E02
E03
EQ
EVP
EVPP
FEF
GBAR
GLH
IGEP
IGP
IGV

Length of time step (days)
Fission rate
Fission source
In-scatter and extraneous source
Out-scatter
Absorptions
Left leakage
Right leakage
Top leakage
Bottom leakage
Total leakage
Temporary
Temporary
Temporary
Temporary for S852(CNNP)
Previous eigenvalue
Eigenvalue for two iterations back
Energy released /fission (215 MeV)
Group indicator
Initial clock time in seconds
IGE + 1
IGM + 1
Group indicator for inner and outer

Variable	Descriprion
IHS	Position of sigma self scatter
IHT	Position of sigma transport
II	Inner iteration count for a single group
IMJM	IM*JM
IP	$\mathrm{IM}+1$
ITEMP	Temporary
[TEMP1	Temporary
TTEMP2	Temporary
ITL	Cross section table length
IZP	$\mathbf{I Z M}+1$
JP	$\mathrm{JM}+1$
K07	Not used
KPAGE	Page counter for monitor print
LAP	Lambda for previous eigenvalue
LAPP	Lambda for two iterations back
LAR	Lambda for previous iteration
LC	Loop count (total II in a single outer iteration)
ML	MCR + MTP
NCON	$-/ 0 /+=$ take time step of DELT/ end of problem/ take time step of DELT and read burnup data
NGOTO	Temporary
ORFP	ORF for (1-lambda) <10*EPS
P02	Outer iteration count

Variable

Variable	Description
PBAR	Temporary
SBAR	Temporary
SK7	Sum of K7 over all groups
T06	$0 / 1=$ no effect/delta calculation
T7	Alpha/velocity
T11	Previous fission total
TEMP	Temporary
TEMP1	Temporary
TEMP2	Temporary
TEMP3	Temporary
TEMP4	Temporary
TI	Time
TSD	(MW-sec)/(fissions)
V11	Total source for the group
**INPUT VAR	
ID(20)	ID card
A02	$0 / 1=$ flux calc./adjoint calc.
I04	Eigenvalue type ($0 / 1 / 2 / 3 / 4=$ source/keff/alpha/ concentration/delta/buckling)
S02	Parametric eigenvalue type ($0 / 1 / 2=$ none/keff/alpha)
IGM	Number of groups
NXCM	Number of downscattering terms
MCR	Number of materials from cards

Variable	Description
MTP	Number of materials from tape
G07	Inner iteration max per group (if neg., alt dir)
D05	Max number of outer iterations
MAXT	Max run time (minutes)
NPRT	Print option ($0 / 1 / 2 / 3=\mathrm{mini} / \mathrm{midi} / \mathrm{Xsec} /$ fluxes $)$
M07	Flux guess ($0 / 1=$ none/flux from FOR14.DAT)
NPUN	Flux dump (0/1 = none/ flux dump to FOR16.DAT)
IGE	Geometry parameter (0/1/2/3/4 $=\mathrm{X}-\mathrm{Y} / \mathrm{R}-\mathrm{Z} / \mathrm{R}-\theta /$ triangular/ toroidal)
IM	Number of radial intervals
JM	Number of axial intervals
IZM	Number of zones
MT	Total number of materials including mixes
M01	Number of mixture specifications
B01	Left B. C. (0/1 = vacuum/reflective)
B02	Right B. C. $(0 / 1=$ vacuum/reflective)
B03	Top B. C. (0/1/2 = vacuum/reflective/periodic)
B04	Bottom B. C. (0/1/2 = vacuum/reflective/periodic)
IZ	Radial zones (delta option only)
JZ	Axial zones (delta option only)
NACT	Number of activations
EV	Eigenvalue
EVM	Eigenvalue modifier

Variable	Description
S03	Parametric eigenvalue
BUCK	Buckling
LAL	Lambda lower
LAH	Lambda upper
EPS	Eigenvalue convergence criterion
EPSA	Pointwise convergence criterion
G06	Inner iteration test (if 0 no test)
POD	Parameter oscillation damper
ORF	Over-relaxation factor
S01	$-/+=$ power(MWT)/neuton source rate
ARRAY VARIABLES	
ATW(ML)	Material atomic weight
HOLN(ML,2)	Material name
ALAM(ML)	Decay constant (days ${ }^{-1}$)
C0(ITL,MT)	Cross section array for current group
NO(IM, JM)	Total flux (old)
N2(IM,JM)	Total flux (new)
A0(IP)	Radial area element
A1(IM)	Axial area element
FO(IM,JM)	Fissions (old)
F2(IM,JM)	Fissions (new)
I0(M01)	Mix number
I1(M01)	Material number for mix

Variable	Description
I2(M01)	Material density
I3(M01)	Material densities for gram calc.
K6(IGM)	Fission spectrum (effective)
K7(IGM)	Fission spectrum (input)
M0(IM, M)	Zone numbers
M2(IM, JM)	Material numbers by zone
R0(IP)	Initial radii
R1(IP)	Current radii
R2(IM)	Radial zone numbers (delta calc. only)
R3(IZ)	Radial zone modifiers (delta calc. only)
R4(IM)	Average radii
R5(IM)	Delta-R
S2(IM, JM)	Fixed source
V0(IM, JM)	Volume elements
V7(IGM)	Neutron velocities
Z0(JP)	Initial axii
Z1(JP)	Current axii
Z2(JM)	Axial zone numbers (delta calc. only)
Z3(JZ)	Axial zone modifiers (delta calc. only)
Z4(JM)	Average axii
Z5(JM)	Delta-Z
CXS (IM, JM, ${ }^{\text {) }}$	Constants involving cross sections for flux calculation
VOL(IZM)	Zone volume (liters)

Variable
MASS(ML,IZM)
MATN(ML)
NBR(ML)
LD(ML)
LCN(ML,2)
LFN(ML,7)
PHIB(IZM)
AXS(ML,IZM)
FXS(ML,IZM)
MASSP(ML,IZM)
CXR(JM)
CXT(IM)
HA(IM OR JM)
PA(IM OR JM)

Description
Material inventory in each zone
Material number for burnable isotopes
$0 / 1 / 2=$ none/fertile/fissile
Source isotope for decay
Source isotopes for capture
Source isotope for fission
Zone averaged flux
Spectrum averaged absorption cross section
Spectrum averaged fission cross section
Material inventory in each zone (previous)
Constants for right boundary
Constants for top boundary
Temp storage for line inversion
Temp storage for line inversion

5. REFERENCES

1. W. W. Little, Jr., and R. W. Hardie. 2DB User's Manual, BNWL - 831

Revision I, Batelle Pacific Northwest Laboratory, Richland, Washington (Unpublished).

APPENDIX H

2DBTOR LISTING

```
PROGRNM 2DB
2 TAPE5=IMPUT,TAPE6=OUTPUT,TAPE3=NCR1,TAPE4=NSCRAT, CALC <
3 TAPEB-MFLUX1,TAPE9=MSORCE, CALC *
4 TAPE14=MFLXI, TAPE 16=MFLXO,TAPE15=NXS) CALC <
    ***** DESCRIPTION OF SUBROUTINES ***** CALC 9
CALC 10
CALC MAIN PROGRAM--SETS UP TAPE UWITS AND CALLS INP, INIT, CALC 11
    FISCAL, S8830, ERRO2, OUTER, CNNP, S8850, GRAH, CALC }1
    1NPB, AVERAG, AND MARCH. CALC 13
    CALC 14
    SUBROUTINE TO CONTROL THE READING AND PRINTING OF ALL CALC 15
    INPUT DATA, CONPUTE VIRIABLE DIMENSION POINTERS AND CALC 16
    PROGRAM CONSTANTS. INP IS CALLED BY CALC AND CALLS CALC 1<
    S860, S862, S864, REAG2, REAI2, MAPR, AND ERRO2. CALC 18
    CALC 19
    erRO2 IS USED tO PRINT AN ERROR MESSAGE. It IS CALLED calc 20
    BY CALC, INP, REAI2, REAG2, INIT, AND CNNP. CALC }2
    CALC }2
    SUBROUTINE TO READ CROSS SECTIONS FROM CARDS, PERFORN CALC }2
    ADJOINT REVERSALS IF REDUIRED, AMD WRITE CROSS SECTION CALC }2
    TAPE. S860 IS CALLED BY JNP. CALC 25
    CALC 26
S862 S862 reads input fluxes and prepares a flux tape. it is calc 27
    CALLED BY INP AND CALLS REAG2. CALC 28
    CALC 29
S864 S864 READS INPUT SOURCE AND PREPARES A SOURCE TAPE. IT CALC 30
    IS CALLED BY INP AND CALlS reag2. calc 31
        AY INP, S862, AND S864. REAG2 CALLS ERRCR.
    CALC 34
    CALC 35
    REAI2 SUBROUTIME TO READ INTEGER DATA. REAI2 IS CALLED BY INP CALC 36
        AND CALLS ERRO2. CALC 37
    CALC 38
    MAPR SUBROUTINE TO PRCDUCE A PICTURE BY ZONE AND CALC 39
```



```
    CALC }4
    CALC }4
```

	ST2.FOR	Wednesday, February 21, 1990 12:42 pm	Page 2	
c		SECTIONS(5807), MODIFIES GECWETRY(S810), AND CALCULATES	CaLC	43
c		AREAS AND VOLUMES(S811), AND F1SSION WEUTRONS(S829).	CALC	44
C		INIT IS CALLED BY CALC AND CALLS CLEAR AND ERRO2.	CALC	45
C			CALC	46
C	CLEAR	CLEAR SETS AN ARRAY OF A SPECIFIED LENGTH TO A GIVEM	Calc	47
c		CONSTANT. THE SUBROUTINE IS CALLED EY INIT AND GRAM.	CALC	48
C			CALC	49
C	FISCAL	CALCULATES F1SSION SUMS(S822) AND PERFORNS	Calc	50
C		NORWAL 12ATION(\$823). F1SCAL IS CALLED BY CALC.	CALC	51
C			CALC	52
c	58830	S8830 IS THE MONJTOR PRINT SUGROUTINE--PRINTS TIME,	CALC	53
C		EIGENYALUE, LGMBda, ETC. AFTER EACH OUTER ITERATION.	CALC	54
c		IT IS CALLED BY CALC AMD S8850.	CALC	55
C			CALC	56
C	OUTER	PERFORM\$ A CONPLETE OUTER ITERATION. CALLS IHNERT,	CALC	57
C		INNER, AND INNERP. OUTER IS CALLED BY CALC.	CALC	58
C			calc	59
C	INNER	CALCULATES THE FLUX IN SPECIFIED GROUP. IT IS CALLED	CALC	60
C		BY CUTER AND CALLS IFLHXX.	calc	61
C			Calc	62
C	[NWER1	CALCULATES COEFFICIENTS FOR THE FLUX EQUATION. INNER1	CALC	63
C		IS CALLED BY CUTER.	CALC	64
c			CALC	65
c	1 NHERT	IMNERT CALCULATES COEFFICIENTS FOR THE FLUX EQUATION FOR	CALC	66
C		TRIANGULAR GEOWETRY. INNERT IS CALLED BY OUTER.	CALC	67
C			CALC	68
C	INHER2	CALCULATES THE FLUX IM SPECIFIED GRCUP. IT IS CALLED	CALC	69
c		BY OUTER AND CALLS IFLUXN.	CALC	70
C			calc	71
C	INNERP	Calculates the flux In specified group for periodic b. C.	CALC	72
C		1t IS CALLED BY OUTER AND CALLS IFLUXN.	CALC	73
C			CALC	74
C	IFLUXM	SUBROUTINE TO MORMALIZE THE FLUXES REFORE EACH	CALC	75
C		GROUP FLUX CALCULATION. IT IS CALLED BY INNER, INNER2,	CALC	76
C		AND INNERP.	CALC	77
C			CALC	78
c	CNHP	PERFORMS COWVERGENCE TESTS (S851) AND COMPUTES A HEW	CALC	79
c		EIGENVALUE FOR SEARCH OPTIONS(5852). CNNP IS CALLED	calc	80

	ST2.FOR	Hednesday, February 21, 1990 12:42 pm	Page 3
c		by call amd calls erroz amd clear.	CALC 81
			CALC 82
c	58850	FINAL PRINT SUBROUTINE--PRINTS THE MOWITOR LINE,	CALC 83
c		group fluxes, total flux, POUER DEMSITY, AND FISSION	CALC 84
c		SOURCE RATE. IT is called by calc and calls prt, s8830,	Calc 85
c		AND S8847.	Calc 86
c			CALC 87
c	\$8847	SUBRCUTINE TO COMPUTE AND PRIMT GROUP TOTALS. S8847 IS	Calc 88
		CALLED BY $\mathbf{5 8 8 5 0}$.	CALC 89
c			Calc 90
C	PRT	Subroutine to print any in* jm array. It is called by	Calc 91
		\$8850.	calc 92
			Calc 93
c	GRAM	calculates and prints the mass of each material im each	Calc 94
		zONE amd the zowe volume. it is called by calc amd	CALC 95
c		calls clear.	CALC 96
			Calc 97
c	IMPB	subroutime to read and print the input burmup data. it	CALC 98
		IS Called 8 Y Calc.	CALC 99
			Calc 100
C	averag	averag calculates zone averaged fluxes, fisstow cross	CALC 104
c		SECTIOMS, ABSORPIIOM Cross sectiows, and breeding ratio.	Calc 102
		the subroutime is called by calc.	calc 103
			CALC 104
c	MARCH	subroutine to calculate the time deperdent isotopic	CALC 105
		COWCEMTRATIONS. MARCH IS CALLED BY Calc.	CALC 106
c			CALC 107
	****	interual variables	CALC 108
C			calc 109
C	NINP	ImPUT TAPE	CALC 110
c	MOUT	CUTPUT TAPE	CALC 111
	MCR 1	CROSS SECTION TAPE	CALC 112
c	Mfluxi	FLUX TAPE	CALC 113
	nscrat	SCRATCM TAPE	CALC 114
c	NCR1	SOURCE TAPE	Calc 115
	ALA	LAMBDA	CALC 116
	307	USED FOR INTERHAL COMPUTATION IN FISCAL AND INIT	CALC 117
c	CNT	COWVERGENCE TRIGGER FOR LAMBDA	CALC 118

c	cvt	COWVERGENCE TRIGger	Calc 119
c	day	burnup time in days	CALC 120
c	delt	LEMGTH Of TIME STEP (DAYS)	Calc 121
c	EO(IGP)	FISSION RATE	CALC 122
c	E1(IGP)	FISSION SOURCE	Calc 123
c	E2(IGP)	In-scatter (amd extranedus source)	CALC 124
c	E3(IGP)	OUT-SCATTER	Calc 125
c	E4(IGP)	ABSORPTIONS	CALC 126
C	E5(IGP)	Left leakage	CALC 127
C	E6(IGP)	right leakage	Calc 128
c	E7(IGP)	top leakage	CALC 129
c	E8(1GP)	BOTTOM LEAKAGE	CALC 130
c	E9(IGP)	TOTAL LEAKAGE	Calc 131
c	E01	temporary	Calc 132
c	E02	TEMPORARY	CALC 133
c	E03	temporary	CALC 134
c	EO	TEMPORARY FOR S852 (CMMP)	CALC 135
c	EVP	Previous etgenvalue	Calc 136
c	EVPP	EIGENVALUE FOR Two Iterations back	CALC 137
c	FEF	ENERGY RELEASED PER FISSION ($=215$ MEV)	CALC 138
c	GBAR	GROUP INDICATOR FOR TAPE MOTION IN S824 (CJTER)	CALC 939
c	GLH	IWITIAL CLOCK TIME IM SECONDS (INTEGER)	
c	IGEP	I6E + 1	Calc 141
c	168	$1 \mathrm{CO}+1$	CALC 142
c	IGV	GROUP INDICATOR FOR INHER AND CUTER	CALC 143
c	IHS	POSITION OF SIGMA SELF SCATTER	CALC 144
c	1HT	POSIFION OF SIEMA TRANSPORT	CALC 145
6	11	INNER ITERATIO COUNT FOR A SINGLE GROUP	Calc 146
c	IMJM		CALC 147
c	IP	IN + 1	CALC 148
c	ITEMP	TEMPORARY	CALC 149
c	1TENP1	TEMPORARY	CALC 150
c	1TEMP2	TEMPORARY	Calc 151
c	ITL	cross sectiow table length	Calc 152
c	12P	I $2 \mathrm{M}+1$	CALC 153
c	JP	JM + 1	Calc 154
c	K07	NOT USED	CALC 155
c	KPAGE	PAGE COUNTER FOR MONITOR PRIMT	CALC 156

	. FOR	Wednesday, February 21, 1990 12:42 pm	Page 5
c	LAP	LAMEDA FOR PREVIOUS EIGENVALUE	CALC 157
C	LAPP	LAMBDA FOR TWO ITERATIONS BACK	CALC 158
c	LAR	LAMBDA FOR PREVIOUS ITERATION	CALC 159
C	LC	LOOP COUNT (TOTAL II IN A SINGLE OUTER ITERATION)	CALC 160
C	ML	MCR + MTP	CALC 161
c	HCON	NEG/ZERO/POS=TAKE TIME STEP OF DELT/END OF PROBLEM/	CALC 162
6		TAKE TIME STEP OF DELT AND READ BURNLP DATA	CALC 163
c	NGOTO	TEMPORARY	CALC 164
c	HPRT	0/1/2/3=MIHI/MIDI/CROSS SECTIOW/FLUX PRINT	
C	ORFP	ORF FOR 1 - LAMBDA LESS THAN 10*EPS	CALC 166
c	P02	OUTER ITERATION COUNT	CALC 167
C	PBAR	TEmporary	CALC 168
C	SBAR	TEMPORARY	CALC 169
C	SK7	SUM OF K7 OVER ALL GROUPS	CALC 170
C	T06	0/1=NOT DELTA/DELTA CALCULATION	CALC 171
C	T7	ALPHA/VELOCITY	CALC 172
C	T11	PREVIOUS FISSION TOTAL	CALC 173
c	TEMP	TEMPORARY	CALC 174
c	TEMP1	TEMPCRARY	CALC 175
C	TEMP2	TEmporary	CALC 176
C	TEAP3	TEMPDRARY	CALC 177
C	TEMP4	TEMPCRARY	CALC 178
C	TI	TIME	CALC 179
C	TSD	(MW-SEC)/(FISSIONS)	CALC 180
c	V11	TOTAL SOURCE FOR THE GROUP	CALC 181
C			CALC 182
C	********)	PUT VARIABLES (CARDS $1-5) * * * *$	Calc 183
C			CALC 184
C	10(20)	IDENTIFICATION CARD	CALC 185
C	102	0/1=FLUX CALCULATION/ADJOINT CALCULATION	CALC 187
c	104	EIGENVALUE TYPE ($1 / 2 / 3 / 4 / 5=1 \mathrm{KEFF} / \mathrm{ALPHA/CONCENTRATION/CA}$	CALC 188
C		DELTA/BUCKLING)	CALC 189
C	502	PARAMETRIC EIGENYALUE TYPE (0/1/2=NONE/KEFF/ALPHA)	CALC 190
C	IGN	MUMBER OF GROUPS	CALC 191
C	NXCN	NUMEER OF DOMNSCATTERING TERMS	CALC 192
C	MCR	MUMAER OF MATERIALS FROM CARDS/TAPE ($+\mathrm{N} / \sim \mathrm{N}$)	
C	MTP	NLMBER OF MATERIALS FRON TAPE	CALC 194
C	607	INNER ITERATION MAX PER GROUP (IF NEG, ALT DIR)	

c	504	INVERSION DIRECTIOM (0/1=NO EFFECT/ALTERNATE DIRECTICALC 199	
c	D05	maximan mumber of outer iterations	
c	MAXT	maximan time (nimutes)	
c	NPRT	PRIWT OPIIOM (0/1/2=AWIMI/MIDI/MAXI)	
c	M07	FLLX GUESS (0/1=NONE/IMPUT FROM TAPE 14)	
c	NPUN	FLUX DLEPP ($0 / 1=$ NONE/DLMP TO TAPE 16)	
c	IGE		calc 202
c	IM	MUNBER OF RADIAL INTERVALS	CALC 203
c	JM	number of axial intervals	CALC 204
c	12M	number of material zones	CALC 205
c	HT	total mumber of materials jncluding mixes	CALC 206
C	M01	NUNBER OF MIXTURE SPECIFICATIONS	Calc 207
c	B01	LEFT BOUNDARY CONDITION (0/1=VACUM/REFLECTIVE)	Calc 208
c	B02	RIGHT BOUNDARY CONDITION (0/1=VACLMM/REFLECTIVE)	calc 209
c	803	TOP BOUNDARY CONDITION (0/1/2=VAC/REFL/PERIOOIC)	calc 210
c	804	BOTTON BOUMDARY CONDITION ($0 / 1 / 2=$ VAC/REFL/PERIODIC)	calc 211
c	12	RADIAL ZONES (DELTA-OPTION ONLY)	Calc 212
c	JZ	AXIAL ZONES (DELTA-OPTION ONLY)	CALC 213
c	NACT	MLMBER OF Activatiows	CALC 214
c	EV	first eigenvalue guess	CALC 220
c	EVM	Etgemvalue mcoifier	CALC 221
c	503	Parametric etgenvalue	Calc 222
c	buck	Bucklimg	Calc 223
c	Lat	LAMEDA LOWER	CALC 224
c	LAM	LAMBDA LPPER	CALC 225
c	EPS	EIGEHVALUE COWVERGENCE CRITERIA	CALC 226
c	EPSA	POINTWISE CONVERGENCE CRITERIA	CALC 227
c	606	InNER ItERATIOM TEST (IF 2ERO, WO test)	Calc 228
c	POD	PARANETER OSCILLATION DAMPER	calc 229
c	ORF	OVER-RELAXATION FACTOR	CALC 230
c	S01	NEG/POS=POWER (MUT)/MEUTROW SCURCE RATE	CALC 231
c			CALC 232
c	*****	bSCRIPTED Vartables *****	Calc 233
c			CALC 234
c	ATU(HL)	material atomic weight	Calc 235
c	HOLM(ML, 2)	material name	CALC 236
c	ALAM(ML)	decay Cowstant (days-1)	CALC 237
c	CO(ITL, MT)	CROSS SECTION array for current group	Calc 238

C	HO(1M, JM)	total flux (OLD)	CALC 239
c	N2 (1M, JM)	total flux (NEW)	Calc 240
c	A0(iP)	Radial area element	CALC 241
c	A1(IM)	axial area element	Calc 242
c	FOCIM, JM)	FISSIOMS (OLD)	CALC 243
c	F2(IM, JM)	FISSIONS (NEW)	Calc 244
c	10(M01)	mix mumer	Calc 245
c	I1(M01)	material mumber for mix	Calc 246
c	12(M01)	material density	CALC 247
c	[3(M01)	material densities for gram calculatiow	CALC 248
c	K6(IGA)	FISSION SPECTRUM (EFFECTIVE)	CALC 249
c	K7(IGM)	FISSION SPECTRUM (IMPUT)	Calc 250
c	NO(1M, JM)	ZONE MLNBERS	Calc 251
c	M2(12M)	material mumbers by zowe	CALC 252
c	RO(1P)	IMITIAL RADII	CALC 253
c	R1(IP)	CURREWT RADII	CALC 254
c	R2(IN)	RADIAL ZONE MUMBERS (DELTA CALCULATION ONLY)	CALC 255
C	R3(IZ)	RADIAL ZONE MODIFIERS (DELTA Calculation owly)	CALC 256
C	R4(IM)	average radit	CALC 257
c	R5(IN)	DELTA-R	CALC 258
c	S2(IM, JM)	FIXED SOURCE	Calc 259
c	vo(IM, JM)	VOLUNE ELEMEMTS	CALC 260
c	v7(IGM)	MEUTRON VELOCITIES	Calc 261
c	20(JP)	IWITIAL axit	Calc 262
c	21(JP)	Current axil	Calc 263
c	22(JM)	AXIAL ZONE NLMBERS (DELTA CALCULATION ONLY)	CALC 264
c	23(J2)	AXIAL ZONE MODIFIERS (DELTA CALCULATION ONLY)	CALC 265
c	24(JM)	average axil	CALC 266
6	25(JM)	DELTA-Z	CALC 267
c	Cxs(tM, Jm,3)	COWSTANTS INVOLVIMG Cross sectiows for flux calc.	CALC 268
c	vol (IZM)	ZONE VOLUME (LItERS)	CALC 269
c	MASS(ML, IZM)	material inventory im each zone	CALC 270
c	MATM (ML)	MATERIAL HMEER FOR BURMABLE ISOTOPES	Calc 271
C	MBR($\mathrm{HL}^{\text {c }}$)	0/1/2=W0 EFFECT/FERTILE/FISSILE 1SOTOPE	calc 272
c	LD(ML)	SOURCE ISOTOPE FOR DECAY	CALC 273
c	LCH(ML, 2)	SOURCE ISOTOPES FOR CAPTURE	CALC 274
c	LFEM ML, 7)	SOURCE ISOTOPES FOR FISSION	CALC 275
C	PHIB(12M)	zONE AVERAGED FLUX	Calc 276

	ST2.FOR	Wednesciay, February 21, 1990 12:31 pm	Page 8
c	AXS(ML, IZN)	SPECTRUM AVERAGED ABSORPTION CROSS SECTION	Calc 277
c		SPECTRUM averaged fission cross section	CALC 278
c	MASSP(ML, IZM)	materlal inventory in each zome (preyious)	CALC 279
c	CXR(JM)	CONSTANTS FOR RIGHT BCOMNDARY	CALC 280
c	CxT(IU)	COWSTAMTS FOR TOP BOUMDARY	Calc 281
c	HA(IM OR JM)	TEMP STORAGE FOR LINE INVERSION	CALC 282
c	PA(IM OR JM)	TEMP StORAGE FOR LINE [NVERSION	CALC 283
c			CALC 284
	INCLUDE 'ABC.FOR'		
	COMHOW/PACKED/A(50000)		
	OPEN(UH1T $=3$, STATUS $=$ ' SCRATCH' , FORM $=$ 'UNFORMATTED')		
	OPEN(UWHT $=4$, STATUS='SCRATCH', FORM ${ }^{\prime}$ 'UNFORMAITED')		
c	USE BELOW ON A Vax		HRA2
c	OPENYUNIT=3,	FILE=' FOR3.DAT', STATUS='SCRATCH' , FORM='UNFORMATTED')	hraz
c			HRA2
	OPEM(UMIT $=5$, FILE $=$ ' ORECE5. DAT', STATUS $=$ 'OLD' , FORN= 'FORMATTED')		
	OPEN(UNIT=6, FILE='toract5.OUT', STATUS干'UNKNOWN', FORH=' FORMATTED')		
	OPEN(UNIT $=8$, STATUS='SCRATCH', FORN= 'UNFORMATTED')		
	OPEN(UNIT $=9$, STATUS='SCRATCH' , FORM= 'UMFDRMATTED')		
c	USE BELCN ON A v/		HRA2
t	OPEMCUNLT=8,F		hrat
C	OPEL (W) 1 T=9, 5	FILE='FOR9.DAT', STATUS='SCRATCH', FORW= 'UNFORMATTED')	HRA2
	OPEN(UW1T=10, FILE='FOR10. DAT' , STATUS $=$ 'UNKNOW ' , FORM = 'UNFORMATTED')		
	OPEN(UWIT=11, FILE='FOR11. DAT', STATUS='UNKHOWN' , FORM = 'UM FORMATTED')		
	OPEN(LUNT $=14$, FILEx'FOR14. DAT', STATUS ='UNKNOWN' 'FORM='UNFORMATTED')		
	OPENCUWIT = 16, FILE='FOR16.DAT' STATUS ' 'GMKWOWM', FORM='UNFORMATTED')		
1	CONTIMEE		
	REW1MD 3		CALC 291
	REWIND 4		CALC 292
	REWIND 8		CALC 293
	REWIMD 9		CALC 294
	CALL INP(BIGR)		HRAL 295
102	CALL INIT(ACLK6), A(LK7), A(LI0), A(LI1), A(LI2), A(LM0), A(LM2), Cal		calc 296
	1 Aclmo		Calc 297

TLIST2.FOR	Wedresday, February 21, 1990 12:31 pm	Page 11	
90	GBAR=1	OUTE	32
100	PBAR = IHS + IGV - 1	OUTE	33
	IF(PBAR - ITL) 115,115,110	OUTE	34
110	PBAR $=1 T \mathrm{~L}$	OUTE	35
115	If (GBAR - IGV) 120, 140, 140	OUTE	36
120	READ (NSCRAT) (M2(I), $\mathrm{I}=1,1 \mathrm{I} . \mathrm{JM}$)	OUTE	37
	DO $130 \quad I=1$, INJM	OUTE	38
	ITEMP1=MO(1) \because	OUTE	39
	ITEMP 1=N2(1TEMP1)	OUTE	40
	ITEMP $=1$ TEMP1	OUTE	41
	TEMP $=$ COCPBAR, ITEMP)	OUTE	42
130	s2(1) $=$ S2(I)+N2(1)*TEMP	OUTE	43
	GO TO 150	OUTE	44
140	READ (NFLUX1) (M2 (1), $1=1$, IMJM)	OUTE	45
150	GBAR $=$ GBAR +1	OUTE	46
	PBAR=PBAR-1	OUTE	47
	IF (GBAR - IGV) 120, 140, 160	OUTE	48
160	IF(IGV - ICM) 180, 170, 180	OUTE	49
170	REWIND HCR1	OUTE	50
	REWIND 11	hraz	
	REWIND 12	hraz	
180	$\mathrm{V} 11=0$.	OUTE	51
	DO 190 I=1, IMJM	OUTE	52
	S2(1)=S2(1)*V0(1)	OLTE	53
190	$\mathrm{v} 11=\mathrm{V} 1 \mathrm{t}+\mathrm{S} 2(1)$	CUTE	54
	E2(IGV) $=$ V11-E1(IGV)	OUTE	55
c	SCURCE-ALPMA	OUTE	56
200	IF(104-2) 210, 240, 210	OUTE	57
210	IF(502-2) 230, 220, 230	OUTE	58
220	r7 $=503 / \mathrm{V} 7$ (IGV)	OUTE	59
	co to 250	CUTE	60
230	T7 $=0.0$	OUTE	61
	60 10270	OUTE	62
240	17 = EV/V7(IGV)	OUTE	63
250	DO $260 \mathrm{~K}=1,12 \mathrm{M}$	OUTE	64
	[TENP1 $=$ M2(K)	OUTE	65
260	COCTHS, ITEMP1) $=$ CO(IHS, ITEMP1) \cdot T7	OUTE	66
270	cowtinue	OUTE	67

TLIS	2.FOR Hechesday, February 21, 1990 12:31 pm	Page 13
	[F(V11) 450, 500, 450	OUTE 112
450	[F(A02) 460, 480, 460	OUTE 113
460	EO(IGV) $=0.0$	OUTE 114
	DO 470 I $=1$, IMJM	OUTE 115
	ITEMP1=H0(1)	OUTE 116
	[TEMP1=\#2(1TEMP1)	OUTE 117
		HRA2 118
470	F2(I) $=$ F2(1)+K6(IGV)*N2(1)	OUTE 119
	GO TO 500	OUTE 120
480	$E D(1 G V)=0.0$	OUTE 121
	DO $490 \quad \mathrm{I}=1$, 1 MJM	OUTE 122
	1 TEMP1=M0(1)	OUTE 123
	1 TEMP1 $=$ N2(1TEMP1)	OUTE 124
	EO(IGV) $=$ E0(IGV) + COCIHT-3, ITEMP1)*N2(I)*VO(1)	HRA2 125
490		OUTE 126
500	cowtinue	OUTE 127
	$1 \mathrm{GV}=1 \mathrm{GV}+1$	OUTE 128
	IF(IGV-IGM) 10, 10, 510	OUTE 129
510	T11 = E1<IGP)	OUTE 130
C	SWITCH TAPE DESIGNATIONS	OUTE 131
	REWIND NCR1	OUTE 132
	REWINO MSCRAT	OUTE 133
	REuIMD NFLUX1	OUTE 134
	REWIN 11	HRA2
	REWIMO 12	HRA2
	1TEMP - MSCRAT	OUTE 135
	NSCRAT = WFLUX1	OUTE 136
	MFLUX1 $=$ ITEMP	OUTE 137
	If (104) 514,512,514	OTE 138
512	REWIND MSORCE	OUTE 139
514	CONTIME	OUTE 140
c		OUTE 141
c	OVER-RELAX FISSION SOURCE	OUTE 142
	ORFF $=1.0+.6 *$ (ORF - 1.0)	OUTE 143
	E02 $=.0$	OUTE 144
	tF(A02) 520,580,520	OUTE 145
520	$E 1$ (IGP) $=.0$	OUTE 146
c	FOR ADJOINT CALCULATION, S2(I) STORES ORFED F2(I)	OUTE 147

```
TLIST2.FOR Wednesday, February 21, 1990 12:31 pm Page 14
\begin{tabular}{|c|c|c|}
\hline & DO 522 I=1, 1M.JM & OUTE 148 \\
\hline \multirow[t]{8}{*}{522} &  & OUTE 149 \\
\hline & DO 540 110 \(=1,1 \mathrm{CN}\) & OUTE 150 \\
\hline & READ(MCR1) ( (CO(I, J), \(\mathrm{J}=1, \mathrm{ITL}), \mathrm{J}=1, \mathrm{MT}\) ) & OUTE 151 \\
\hline & E1(tig) \(=.0\) & OUTE 152 \\
\hline & DO 530 l=1.inJM & OUTE 153 \\
\hline & ITEMP \(=\) MO( l ) & OUTE 154 \\
\hline & ITEMP = M2(ITEMP) & OUTE 155 \\
\hline & E1(IIG) \(=\mathrm{Ef}(\mathrm{IIG})+\mathrm{CO}(1 \mathrm{HT}-1,1\) TEMP)*F2(t)*VO(I) & HRA2 156 \\
\hline 530 & E02 = E02 + CO(IHT-1, ITEMP \({ }^{*}\) S2 \((1) * V O(I)\) & HRA2 157 \\
\hline \multirow[t]{3}{*}{540} & \(E 1(1 G P)=E 1(I G P)+E 1(I I C)\) & OUTE 158 \\
\hline & TEMP1 = E1(IGP)/E02 & OUTE 159 \\
\hline & DO 550 [ \(=1\), IMJM & OUTE 160 \\
\hline \multirow[t]{5}{*}{550} & FO(I) \(=\) TEMP1*S2(1) & OUTE 161 \\
\hline & REWIND WCR! & OUTE 162 \\
\hline & REWIND 11 & HRA2 \\
\hline & REWIND 12 & HRA2 \\
\hline & G0 TO 620 & OUTE 163 \\
\hline \multirow[t]{4}{*}{580} & \(E 01=0.0\) & OUTE 164 \\
\hline & DO \(590 \quad 1=1,1 \mathrm{MJM}\) & OUTE 165 \\
\hline & \(E 01=E 01+V O(I) * F 2(1)\) & OUTE 166 \\
\hline &  & OUTE 167 \\
\hline \multirow[t]{4}{*}{590} & \(E 02=E 02+V 0(1) * F 2(1)\) & OUTE 169 \\
\hline & TEMP1=0. & OUTE 170 \\
\hline & IFSE02.NE.0.0)TEMP \(1 \times\) E01/E02 & OUTE 171 \\
\hline & DO 600 [=1,1MJM & OUTE 172 \\
\hline \multirow[t]{2}{*}{600} & FOCI) \(=\) TENP1*F2(I) & OUTE 173 \\
\hline & \(00610115=1, \mathrm{IGM}\) & OUTE 174 \\
\hline \multirow[t]{2}{*}{610} & E1(1IG) = K6(IIG)*E01 & OUE 175 \\
\hline & IF(104) 620,609,620 & OUTE 176 \\
\hline \multirow[t]{2}{*}{609} & TEMP1 \(=.0\) & \\
\hline & JF(E01.EQ. O.0) 60 TO 613 & OUTE 178 \\
\hline c & acceleration for extraneous source problems & OUTE 179 \\
\hline \multirow[t]{2}{*}{611} & TEMP1 \(=\left(1.0-E V^{*} T 11 / E 01\right) /(1.0-E V)\) & OUTE 180 \\
\hline & IF (T11/E01 - .01) 620,620,612 & OUTE 181 \\
\hline 612 & IF (T11/E01-1./(EV + .0001) \(613,613,620\) & OUTE 182 \\
\hline 613 & D0 \(614 \mathrm{I}=1, \mathrm{IMJM}\) & OUTE 183 \\
\hline 614 & FO(I) \(=\) TEMP 1 * FOC(I) & OUTE 184 \\
\hline
\end{tabular}
```

TLIST2	2.FOR Wechesday, February 21, 1990 12:31 pm	Pege 15
	DO 616 IIG $=1,1 \mathrm{CM}$	OUTE 185
	EOClIG) = TEMP1*EO(IIG)	OUTE 186
616	E1(IIG) $=$ TEMP1*E1(IIG)	OUTE 187
620	$E 7(1 G P)=0.0$	OUTE 188
	EOC(IGP) $=0.0$	OUTE 189
	DO 640 IIG $=1$, IGM	OUTE 190
	$E O(I G P)=E O(1 G P)+E O(I I G)$	OUTE 191
640	$E 1(1 G P)=E 1(I G P)+E 1(I I G)$	OUTE 192
	RETURN	OUTE 193
	END	OUTE 194
	SUBROUTINE PRT (JIM, JJM, N2, 24, NOUT)	PRT 2
	DIMENSION N2(JIM, JJM), 24(1)	PRT
	REAL MZ	PRT
c	DATA XRR/6HXRR /, YZT/6HYZT /	PRT 5
	CHARACTER*6 XRR, YZT	HVX
	DATA XRR/'XRR '/,YZI/'YZT '/	HVX
	DATA LIMES/0/	PRT 6
	$1 \mathrm{~m}=\mathrm{JIM}$	PRT
	$J M=\mathrm{J} \mathrm{NM}$	PRT 8
	DO $50 \mathrm{I}=1, \mathrm{IM}, 6$	
	11=1	PRT 10
	$12=1+5$	
	1F(12-14) 20, 20, 10	PRT 12
10	12=1M	PRT 13
20	URITE(MOUT, 30) YZT, (KRR, JJ, Jd=11, 12)	PRT 14
30	FORHAT ($1 \mathrm{x}, \mathrm{A} 3,6(3 x, 13,14,1 x)$)	
	DO $50 \mathrm{JJ}=1, \mathrm{JM}$	PRT 16
	J=, ${ }^{\text {d }}$	PRT 17
40	FORMAT (14, 6E11.4, F9.3)	
	IF(J.EQ.1)G0 to 45	PRT 19
	DO $42 \mathrm{~K}=11,12$	PRT 20
	JF(N2(K, J).NE.N2(K,J-1)) 60 T0 43	PRT 21
42	CONTINUE	PRT 22
	LINES $=$ LINES +1	PRT 24
	IF(J-JM) 50,43,43	PRT 25
43	IF(LINES.EQ,0)60 to 45	PRT 26
	WRITE(NOUT, 44) LINES	PRT 27
44	FORHAT(' NEXT', 15, lines same as preceding lime's	

TLIST2	2.FOR Wednesday, February 21, 1990 12:31 pm	Page	16
	LINES $=0$	PRT	29
	IF(J-JM) 45,50,45	PRT	30
	WRITE(NOUT, 40) $\mathrm{J},(\mathrm{N} 2(\mathrm{~K}, \mathrm{~J}), \mathrm{K}=11,12), 24(\mathrm{~J})$		
	contimue	PRT	34
	RETURM	PRT	35
	END	PRT	36
	SUBRCUTINE AVERAG(Pht ${ }^{\text {, AXS , FXS, MATM, MASS, ATW, VOL, CO, N2 , MO, VO, }}$	AVER	2
C	1 MOLW, JML, JTL, MBR, T6, T8, MTUOM)	HRAZ	
	1 HOLM, JML, JTL, NBR, ACT, JMACT, IACPOS)	hraz	
	OIMENSION PHIB(1), AXS(JML, 1), FXS(JML, 1), MATN(1), MASS(JML, 1),	AVER	4
	1 ATW(1), VOL(1), CO(JTL, 1), N2(1), MO(1), VO(1),		
	2 MOLN(JML, 1), MBR(1)		
c	DIMENSION T6(JML, 1), T8(JML, 1)	hraz	
	DIMENSION ACT (JML, 1, JML, 1), 1ACPOS(JMACT), T1(20, 20), ACTIV(20,20) INCLLDE 'ABC.FOR'	hras	
c	this surroutime calculates zowe averaged fluxes, fissiow cross	AVER	8
c	SECTIONS, AND AESORPTION CROSS SECTIONS.	AVER	9
	$\mathrm{RL}=0.0$	AVER	10
	RC $=0.0$	AVER	11
	DO $10 \mathrm{KZ}=1,1 \mathrm{IM}$	AVER	12
	PHIB(KZ) $=0.0$	AVER	13
	DO $10 \mathrm{kN}=1$, NCOW	AVER	14
	AXS(KK, KZ) $=0.0$	Aver	15
	FXS(KN, KZ) $=0.0$	AVER	16
c	T6(KN, KZ $)=0.0$	hraz	
c	TTCTAL $=0.0$	hraz	
c	TB(KN, $K Z)=0.0$	hraz	
	DO $1000 \mathrm{~J}=1$, MACT	HRA3	
	$\mathrm{K}=1$ / $\mathrm{CPOSOS}(1)$	HRAS	
	LM = MATM (KN)	HRAH	
	$A C T(L N, K, K N, K Z)=0.0$	hras	
1000	CONTINUE	Mra3	
	LH $=$ MATM(KN)	AVER	17
	IF (MASS(LH, KZ) .EQ. 0) CO TO 10		
	MASS(LN,KZ) $=$ (MASS(LN,KZ)*.6023)/(ATW(LW)*VOL(KZ))	AVER	18
10	COnt imue		
	DO $100 \mathrm{IIG}=1,1 \mathrm{TM}$	AVER	19
	READ (MCR1) ($(\operatorname{CO}(11,5), 11=1, I T L), J=1, M T)$	AVER	20

TLIST	T2.FOR Wednesday, February 21, 1990 12:31 pm	Page 17
	READ(MFLUX1) (N2(1), $1=1$, IMJM) DO $11 \mathrm{~J}=1, \mathrm{MCR}$	AVER 21
		HRA2
c	CALL REAG2(' RO',ACO(1, MT) , 3)	HRA2
11	CONTINUE	HRA2
	DO 100 [$=11$ IMJM	AVER 22
	K2 = MO(1)	AVER 23
	PHIB(KZ $)=$ PHIB(KZ $)+$ N2(I)*VO(I)	AVER 24
	DO $100 \mathrm{KN}=1$,NCOW $\quad \therefore$.	AVER 25
	LN = MATN(KN)	AVER 26
c	CO(5,1 AND 2) ARE ACTIVITIES FOR TPRCD	HRA2
c	IFILN.EQ.1)THEN	hraz
c	T6(KN, KZ $)=16(\mathrm{KN}, \mathrm{KZ})+\mathrm{CO}(5, \mathrm{LN})^{ \pm N} 2(1)^{ \pm} \mathrm{VO}(1)$	HRA2
c	ENDIF	HRA2
c	IF(LN.EQ.2)THEN	hraz
C	T8(KN, KZ) $=$ T8(KN, KZ $)+\mathrm{CO}(5, \mathrm{LH}) * \mathrm{NZ} 2(\mathrm{I}) * \mathrm{VO}(1)$	HRA2
c	ENDIF	hraz
	DO $2000 \mathrm{~K}=1$, NACT	HRA3
	J=]ACPOS(K)	HRA3
	$A C T(L H, J, K M, K Z)=$ ACT (LH, $J, K 1, K Z)+C O(J, L M) * N 2(I) * V O(I)$	HRA3
c	WRITE(6,*)J, ACT($J, K N, K Z$, IACPOS(K)	
2000	COMTIMUE	hras
	AXS $(K N, K Z)=A X S(K N, K Z)+C O(I H T-2, L N) * N 2(1) * V O(1)$	HRA2 27
100	FXS(KN,KZ) $=$ FXS $(10 N, K Z)+\operatorname{CO}(1 H T-3, L N) * W 2(1) * V O(I)$	HRA2 28
c	DO $200 \mathrm{KZ}=1$, 12M	HRA2 29
	DO $209 \mathrm{KZ}=1$, IZM	HRA2 29
c	TRIT $6=0.0$	hraz
c	TRIT $7=0.0$	HRA2
	DO $2500 \mathrm{Kl}=1$, NACT	hra3
	DO $2480 \mathrm{LL=1}$, HCO	HRAH
	WHIAMTM(LL)	HRAH
	ACTIV $\left(1 M_{1}, \mathrm{KL}\right)=0.0$	HRA3
2480	comtinue	HRAH
2500	contimue	hraz
	TENPS $=$ PHIB(KZ $)$	AVER 30
	IF (PHI日 (KZ) .EQ. O) GO TO 105	
	PHIB(KZ) $=$ PHIB(KZ)/(VOL(KZ)*1000.)	AVER 31
105	cowtimue	
	WRITE(NOUT, 110) KZ, PHIB(KZ), VOL (KZ)	AVER 32

```
TLIST2.FOR Wechesday, February 21, 1990 12:31 pm Page 18
```


TLIST	2.FOR Wednesday, February 21, 1990 12:31 pm	Page	
c134	FORMAT(' TG=',E11.4, 3X, 'T7E', E11.4)	HRA2	
	DO $5500 \mathrm{JJ}=1$, MCON	HRAH	
	LN=MATm(JJ)	hrah	
	DO $5000 \mathrm{KKK}=1$, NACT	HRA3	
	WRITE (6, 1340)KKK, LM, ACTIV(LN, KKK)	hras	
1340	FORMAT' ${ }^{\text {a ACTIVITY', 12,' FOR MAT. MO.', 12,' }=1, E 11.4) ~}$	HRAS	
5000	cowtinue	HRA3	
5500	contimue	HRAH	
	WRITE(6,*)		
	WRITE(6,*)		
	WRITE (6,*)		
209	CONTINUE	HRAL	
	IF (RL.EO.0.0)THEN	HRA2	
	TEMP $=0.0$	HRA2	
	co TO 340	HRA2	
	ENDJF	HRA2	
	TEMP $=$ RC/RL	AVER	56
c	WR1TE(NOUT, 350) TEMP	AVER	5
7 7			
340	WRITE(NOUT,350) TEMP	HRA2	
350	FORMAT(1H ///' BREEDIMG RATIO $=$ (,F7.4)		
c	WRITE (6,401) TTOTAL	hraz	
C401	FORMAT(' TTOTAL ${ }^{\text {',EE11.4) }}$	HRA2	
	REWIND NCR1	AVER	59
	REVIMD NFLUX1	Aver	60
	RETURN	AVER	61
	ENO	AVER	62
	SUBROUTINE CLEAR ($\mathrm{X}, \mathrm{Y}, \mathrm{N}$)	CLER	2
	DIMEMSIOW Y(1)	CLER	3
	DO 1 1=1, m	CLER	4
1	$\mathrm{Y}(\mathrm{I})=\mathbf{X}$	CLER	5
	RETURN	CLER	6
	EMD	CLER	7
	SUBROUTIME CNMP (F2,K6)	CNWP	2
	DIMENSIOM F2(1), K6(1)	CNAP	3
	IMCLIDE 'ABC.FOR'		

TLIST2	2.FOR Wednesday, F	Wednesday, February 21, 1990 12:31 pm	Page 20	
10	Juwp $=2$		CMMP	5
	CALI TCMEK(GL, J, JMP)		CNHP	6
	60 TO (15,25 , , JUNP		CNHP	*
15	WRITE (WOUT, 20)		CNMP	8
20	FORMAT 53 HI ** RUNWIMG TIME	E EXCEEDED--FORCED CONVERGENCE	*//)CNWP	9
	60 T0 90		CNMP	10
25	CONTIMUE		CMMP	11
30	E01-1.0-ALA		CNWP	12
	IF (ABS (E01)-10.0*EPS) 40,	40, 45	CNWP	13
40	ORF $=$ ORFP		CNWP	14
45	CONTIMUE		CNAP	15
	E02=ABS(E01)		CNWP	16
50	1F(E1(IGP)) 55, 130, 55		CNWP	17
55	IF (E02-EPS) 60, 60, 70		CNMP	18
60	CVT=1		CWNP	19
70	CALL CLEAR (0.0, F2, IMJM)		CNAP	23
	60 70105		CNWP	24
80	$E V=E V+P C 0 * E Q+E 01$		CNWP	25
	CO TO 170		CNMP	26
c	FIMAL PRINT		CNWP	27
90	MGOTO-1		CNUP	28
	IF (104-1) 135, 95, 80		CNMP	29
95	$\mathrm{EV}=0.0$		CNIM	30
	DO $100 \quad 1=1,19 \mathrm{M}$		CNMP	31
100	$\mathrm{EV}=\mathrm{EV}+\mathrm{K} 6$ (1)		CNWP	32
	EVESK7/EV		CNMP	33
	C0 10135		CMMP	34
105	[F(CVT-1) 110, 90, 110		CMMP	35
110	IF(104-1) 115, 120, 140		CIMP	36
c	MONITCR PRINT		CNMP	37
115	Mcotocz		CNHP	38
	60 70135		CNNP	39
120	EV=0.		CMMP	40
	D0 $125 \mathrm{I}=1,1 \mathrm{tm}$		CIMP	41
125	EV=EV+K6(${ }^{\text {) }}$		CMNP	42
	EV=5K7/Ev		CNNP	43
	60 TO 115		CNNP	44
130	IF(104.EO.0) 60 TO 55		CNNP	45

this	T2.FOR Wechesday, February 21, 1990 12:31 pm	Page 22
245	IF (E02-LaL) 265, 265, 250	CNWP 84
250	If (E02-LAM) 260, 260, 255	CNINP 85
255	E01=SIGN (LAH,E01)	CNNP 86
260	LAPP=LAP	CMNP 87
	LAP=ALA	CNIP 88
	EVPP $=$ EvP	CMNP 89
	EVPIEV	CNMP 90
	GO 70205	CMMP 91
265	CNT=1	CMMP 92
	LAP $=0.0$	CMHP 93
	LAPP $=0.0$	CMIP 94
	GO TO 205	CINP 95
270	1F (E03-EPSA) 275, 275, 165	CHNP 96
c	calculate duadratic coefficients.	CMMP 97
275	TEMP1=EVP-EV	CINP 98
	TEMPZ=EVPP-EV	CMNP 99
	TEMP3-EVPP-EVP	CWNP 100
		CWNP 101
	TEMP5 $=$ - TEMPZ*(EY+EVPP)	CMMP 102
	TEMPG=TEMP3* (EVPP + EVP)	CINEP 103
	DENOM=TEMP3*TEMP2*TENP1	CIMP 104
	EOA $=\left(\right.$ LLAPP-1.0)*TEMP ${ }^{\text {(*EVV*EV- }}$ LAP-1.0)*TEMP2	CMMP 105
	1*EV*EVPP+(ALA-1.0)*TEMP3*EVPP*EVP)/DEMOM	CMNP 106
	EQ8=-(LAPP*TEMP4+LAP*TENP5+ALA*TEMP6)/DENCM	CIMP 107
	EOC=(LAPP*TEMP1-LAP*TEMP2+ALA*TEWP3)/DEWOH	CMMP 108
	DISCR=EOB*EOA-4.0*ECA*EOC	CNWP 109
	IF (DISCR) 235, 280, 280	CNMP 110
280	IF (E02-LAL) 265, 265, 285	CWMP 111
285	TEMP1=EQC+EOC	CNMP 112
	TEMPASORT (DISCR)	CMMP 113
	EQ $=1.0 /$ (EQB + EV*TEMP1)	CNMP 114
	LAPP=LAP	CNAP 115
	LAPmala	CNMP 116
	EVPP=EVP	CMNP 117
	EVP=EV	CIMP 118
	EV1 $=($ TEMP-E08)/TEMP1	CNMP 419
		CNNP 120
	EVAAABS (EV-EV1)	CNWP 121

this	2.FOR Wechesday, February 21, 1990 12:31 pn	Page 23
	EVB=ABS (EV-EV2)	CWNP 122
	1F (EVA-EVB) 290, 290, 295	CMMP 123
290	EV=EV1	CNMP 124
	co to 210	CNMP 125
295	$\mathrm{EV}=\mathrm{EV} 2$	CNMP 126
	60 TO 210	CNMP 127
	EMD	CMMP 128
	SUBROUTINE ERROR(HOL, JSUBR,1) -.	ERR2 2
	COMMON NSORCE, NINP, NOUT, NCR1, NFLUX1, NSCRAT	ERR2 3
	CHARACTER*6 HOL	HVX
	DATA MERR/O/	ERR2 4
	WERR=MERR+1	ERR2 7
	WRITE (NOUT, 1) HOL, JSUBR	ERR2 8
1		ERR2 9
	IF (MERR.EQ. 100)GO TO 3	
	GO TO (3,4), 1	ERR2 1*
3	STOP	ERR2 12
4	RETURM	ERR2 13
	Ekd	ERR2 14
	SUBROUTINE FISCAL (NO, FO, VO, CO, KG, MO, M2, JTL, JMT) IMCLUDE 'ABC.FOR'	FISC 2
	DIMEMSION NO(1), FO(1), VO(1), CO(JTL, 1),X6(1), MO(1), M2(1) $L A R=A L A$	FISC 5
c	FISSION SLMS	FIsc 6
	IF(807) 90,90,10	FISC 7
10	$1 F(402) 20,40,20$	FISC 8
20	D0 30 11G=1,1GM	FISC 9
	REND (NCRT) ((COC $1, J), I=1, I T L), J=1, M T)$	FISC 10
	E1(116) $=0$.	Flsc 11
	DO 30 [=1, IMJM	FISC 12
	ITEMP=*N(1)	FISC 13
		Fisc 14
30		FISC 15
	REWIND NCR1	F15C 16
	co jo 70	FISC 17
40	E01=0.	FISC 18
	DO $50 \mathrm{l}=1$, IMJM	FISC 19

TLIST2.FOR		Page	24
50	E01=E01+V0(I)*FO(I)	fisc	20
	DO 60 IIG=1, IGA	FISC	21
60	E1(IIG) $=K 6$ (IIG)*E01	FISC	22
70	$E 1(1 G P)=0$.	fisc	23
	EO(IGP) $=0$.	FISC	24
	DO 80 [IG=1, IGM	FISC	25
	EO(IGP) $=E 0(1 G P)+E 0(11 G)$	FISC	26
80	E1(IGP)=E1(IGP)+E1(IIG)	FISC	27
	IF(B07) 140, 90, 140	FISC	28
90	IF(T11.EQ. O.0)GO 1095		
	ALA $=$ E1(1 GP)/T 19		
	TEMP $=1.0 / \mathrm{ALA}$	FISC	31
95	IF(104-1) 230,100,140		
100	DO $110 \mathrm{ItG}=1, \mathrm{IGM}$	F1SC	32
	E1(IIG)=E1(IIG)*TEMP	FISC	33
110	K6(IIG)=K6(IIG)*TEMP	FISC	34
		Fisc	35
	IF(A02) 120, 140, 120	FISC	36
120	D0 $130 \quad 1=1$, IMJM	FISC.	37
130	$F O(1)=F 0(1) * T E M P$	FISC	38
140	CONTIMUE	FISC	39
c		FISC	40
c	MORMALIZATIOM	FISC	41
	807 $=0$	FISC	42
150	1F(S01) 160, 230, 170	FISC	43
160	E01 $=$ ABS(SO1)/(EOC(IGP)*TSD)	FISC	44
	00 T0 180	FISC	45
170	E01=S01/E1 (IGP)	FISC	46
180	DO 190 11G=1, IGP	FISC	47
190	E1(1IG) $=$ E01*E1(IIG)	FISC	48
	DO $200 \mathrm{I}=1,1 \mathrm{MJM}$	fisc	49
200	FO(t) $=$ E01*FO(1)	FISC	50
230.	RETURM	FISC	51
	END	FISC	52
	SUBROUTIME GRAM(MASS, VOL, ATY, HOLN, JIM, JJM, WO, M2, VO,	GRAM	2
	1 10, 11, 12, JML, 13)	GRAM	3
	INCLUDE 'ABC.FOR'		


```
    GO TO 190 GRAN 43
470 IF(L) 190, 190, 180 GRAN 44
180 EO1 =I3(M) GRANH 45
MASS(L,M)=((E01*ATW(L)*VOL(N))/.6023) + MASS(L,N) GRAMM 46
190 CONTINUE
CRNM 47
    DO 260 L = 1, IZM,5 GRAN 49
    LL = L + 4 GRNM 50
    IF(LL - IZM) 210, 210, 200 GRAN 51
200 LL = IZM GRAM 52
210 WRITE(NOUT, 220) ((K), K=L, LL)
220 FORMAT (//' MATERIAL ATOMIC WT. ',2X,5(' 2ONE',13,3X)/)
    DO 240 K=1,ML GRAN 57
    DO 233 [=L,LL UPD1 3
    1F(MASS(K,I).NE. O.) GO TO 238 UPD1 4
    233 CONTINUE UPD1 5
    EO TO 240 UPD1 6
    238 URITE(NOUT,250) K,(HOLN(K,N),N=1,2),ATH(K), (MASS(K,1), 1=L,LL)
    240 CONTINUE UPD1 8
250 FORMAT (1x,13, 1x, 2A4, F12.2, ix, 5E11.3)
    IF(LL * IZM) 260, 270, 270 GRAM 60
260 CONTINUE GRAN 61
C COMPUTE TOTAL MASSES LIPD1 9
270 WRITE (NOUT, 275)
275 FORMAT (//' MATERIAL ATOMIC WT. TOTAL'/)
    DO 310 K=1,ML
    TENP=0.0
    DO 280 L=1,12M
    280 TEMP=TEMP+MASS(K,L)
310 WRITE(NOUT, 250) K, (HOLN(K,N),H=1,2),ATW(K),TEMP
    WRITE (NOUT,350)
350 FORMAT (////' ZONE MUMEER VOLUNE (LITERS)'/)
    DO 400 L=1,12M
    WRITE (NOUT,360) L,VOL(L)
360 FORHAT (6X,14,6X,1PE12.3)
400 CONT1NUE
    RETURN
UPD1 18
```

```
TLISI2.FOR
Wecresday, February 21, 1990 12:31 pm
Page 27
    END GRAN 63
    SLGBROUTINE tFLUXN (N2, CO, VO, CXS, MO, M2, JTL,JIM,JJM, CXR, CXT HRAZ 2
    1 ,XR,XD)
                                HRAZ
    INCLUDE 'ABG.FOR'
    DIMENSION N2(1), CO(JTL,1), VO(1),CXS(JIM,JJM,3),MO(1), M2(1), IFLU 4
    1 CXR(1), CXT(i) IFLU 5
    DIMENSION XD(50),XR(50) HRA2
C THIS SUBROUTINE MDRMALIZES FLUXES BEFORE EACH INNER ITERATION IFLU 6
C ABSORPTION AND OUT-SCATTER IFLU 7
        E3(IGV) = 0.0 IFLU 8
        E4(IGV) =0.0 IFLU 9
        DO 10 I=1, IMJM IFLU 10
        TENP = VO(I)*N2(I) IFLU 11
        ITEMP = MO(1)
        IFLU 12
        ITEMP = M2(1TEMP) IFLU 13
        E3(IGV) = ES(IGY) + \XD(ITEMP))*TEMP
        HRA2 14
    10 EL(IGV) = EG(IGV) + CO(IHT-2,ITEMP)*TEMP HRA2 15
C LEFT LEAKAGE IFLU 16
        1F(B01) 20, 20, 40 IFLU 17
20 ES(IGV) =0.0 IFLU 18
        DO 30 KJ= 1, JM
        I=(KJ - 1)*IM + 1 IFLU 20
        IFLU 19
30 E5(IGV) = ES(IGV) + CXS(1,KJ,1)*N2(1) 1FLU 21
        GO TO 50
        1FLU }2
40 E5(IGV) = .0
IFLU 23
C RIGHT LEAKAGE
50 IF(BO2) 60, 60,80 [FLU 25
IFLU }2
60 E6(1GV) =0.0 IFLU 26
        DO 70 KJ = 1, JM IFLU 27
        I= KJ*IM IFLU 28
70 ES(IGV) = EO(IGV) + CXR(KJ)*N2(I) IFLU 29
        co TO 90
        1FLU }3
80 EG(IGV) = 0.0 1FLU 31
C TOP LEAKAGE IFLU 32
90 IF(803-1) 120, 140, 100 IFLU 33
$00 E7(IGV) =.0 IFLU 34
DO 110 KI = 1,IM IFLUJ 35
```

```
TLIST2.FOR Wechesday, February 21, 1990 12:31 pm Page 28
I= IMMM - IM + KI IFLU 36
110 E7(IGV) = E7(IGV) + CXS(KI,1,2)*(N2(1) - N2(K1)) IFLU 37
    E8(tGV) = - E7(IGV) 1FLU 38
    GO TO 190
IFLU }3
120 E7(IGV) =0.0 IFLU 40
    DO 130 KI = 1, IM
    I = IMJM - IM + KI
130 E7(IGV) = E7(IGV) + CXT(KI)*N2(t) IFLU 43
    60 TO 150
140 E7(IGV) =0.0
C BOTTOM LEAKAGE
150 JF(B04) 160, 160, 180
160 E8(IGY) = 0.0
DO 170 KI = 1, 1M IFLU 49
170 EB(IGV) = E8(1GV) + CXS(KI,1,2)*N2(KI) IFLU 50
    G0 to 190
180 E8(IGY) = 0.0
190 E9(IGV) = E5(IGV) + E6(IGV) + E7(IGV) + E8(IGV)
    TEMP = (E1(IGV) + E2(IGV))/(E3(IGV) + E4(IGV) + Eq(IGV)) IFLU 54
    00200 1 = 1, IMJM
    IFLU 41
    IFLU 42
IFLU 44
IFLU 46
    00 200 t = 1, IMJM IFLU 55
200 N2(I) = TEMP*N2(I)
IFLU 56
    E3(IGV) = TEMP*E3(IGV) IFLU 57
    EL(IGV) = TEMP*EL(IGV) 1FLU 58
    E5(IGV) = TEMP*E5(IGV) IFLU 59
    E6(IGV) = TEMP*EG(IGV) IFLU 60
    E7(IGV) = TEMP*E7(IGV) IFLU 61
    E8(IGV) = TEMP*E8(IGV) IFLU 62
    E9(IGV) = TEMP*E9(IGV) IFLU 63
    RETURN IFLU 64
    END IFLU 65
    SURROUTINE IN1T <KG, K7, IO, I1, 12, MO, N2, NO, RO, R1, R2, INIT 2
    1 R3, R4, R5, 20, 21, 22, 23, 24, 25, A0, A1, INTT 3
    2 FO,CO,VO, JTL, JIM, V7, JJM, JMT , JML ,GAM , HOLN)
    INCLUDE 'ABC.FOR'
    DIMENSION K6(1), K7(1), 10(1), 11(1), 12(1), RO(1), R1(1), INIT 6
    1 R2(1), R3(1), R4(1), R5(1), ZO(1), Z1(1), 22(1), 1NIT 7
    2 Z3(1), Z4(1), Z5(1), AO(1), A1(1), CO(JTL,JMT), INIT 8
```



```
    63 FORMAT(I5,19,115,E28.8,12x,204)
        IF(J.EQ. MO1 .OR. IO(J).EQ. IO(J+1)) GO TO 67 UPD1 31
66 FORMAT (1X, 15(5H-\cdots.--))
    MRITE(NOUT,66) UPD9 33
    67 CONTTMUE UPD1 34
70 IF(NPRT-1) 85, 85,75
75 URITE (HOUT,80) [NIT 41
80 FORMAT(/19HICROSS-SECTION EDIT)
85 REWIND HCR1
    DO 180 IIG=1,IGM
    READ (NCR1) ((CO(I,J),I=1,ITL),J=1,NT) IN1T 45
    c READ(11) (XR(J), J=1,MT) HRA2
    READ(12) (XD(J),J=1,MT) HRAZ
        IF(M01) 90, 145,90
    INIT 46
90 DO 140 M=1,MO1 [NIT 47
    [F(10(M)-MT) 100, 100,95
    95 CALL ERROZ('**IN1T',95,1)
    100 [F(I1(M)-MT) 105, 105,95 EWIT 50
    105 N=10(N)
        L=11(N)
        E01=12(H) [H1T 53
        IF(L) 125, 125, 110
    110 IF(EO1) 125, 115, 125 IWIT 55
    115 IF (N-L) 125, 120, 125
120 E01 = EV
L=0
125 DO 140 I=1,1TL
    IF (L) 130, 135,130
130 CO(1,N)=CO(I,N)+CD(I,L)*EO1
    co to 140
135 CO(1,N)=CO(1,N)*E01
140 cOntINUE
    IF(M01) 900, 145,900
900 DO 1140 M=1,M01
    IF(IO(M)-MT) 1000, 1000, 950 HRA2 48
950 CALL ERRO2('**1NIT',950,1)
1000 IF(11(M)-HT) 1050, 1050,950
1050 H=10(N)
INIT 42
    IN1T 43
    INIT 44
        INIT 48
    HVX
    [NIT 51
        IWIT 52
        IHIT 53
    IWIT 55
INIT }5
INIT 57
    58
    INIT 60
INIT 61
INIT }6
IN1T 63
INIT }6
HRA2 }4
HRA2 47
HRAZ 4B
HRAZ hvx
HRA2 }5
HRAZ 51
```

```
    L=[1(N) HRA2 52
    E01=12(N)
    HRA2 53
    JF(L) 1125, 1125, 1110 HRA2 54
1110 1F(EO1) 1125, 1115, 1125 HRA2 55
1115 IF (N-L) 1125, 1120, 1125 HRAZ 56
1120 E01 = EV
L=0
HRA2 57
HRA2 58
1125 contimue
HRA2 }5
    IF (L) 1130, 1135, 1130
1130 XD(N)=XD(N)+XD(L)*E01
    60 to 1140
HRA2 60
HRA2 }6
    60 }101140\mathrm{ HRA2 62
1135 XD(N)=XD(N)*EO1 HRA2 63
1140 CONTINUE HRA2 64
145 [F(PO2) 175, 150, 175 [WIT 65
150 [F(NPRT-1) 175, 175, 155
155 WRITECMOUT, 160) IIG
INIT 68
160 FORMAT (' GROUP ', 13, 'CROSS-sEctIONS')
DO 165 N=1,MT
INIT 70
165 WRITE (NOUT,170) N,(CO(I,N),I=1,ITL) INTT 71
    170 FORHAT(4H MAT, I3, (6E12.4))
175 LRITE (MSCRAT) ((COC (1,N),I=1,ITL),J=1,MT) INIT TS
    MRITE(11) (XD(J), J= \,MT)
HRA2
180 CONTINUE INJT 74
REHIND WCR1 IN1T 75
    REWIMD 11
    REWIND 12
C WRITE(12) (XD(d),J=1,MT)
C WR1TE(11) (XR(J),J=1,MT)
    REWIND 11
    REWIND }1
    REWINO MSCRAT
C SWITCH TAPE DESIGMATIONS
    ITEMP=#NSRAT
    NSCRAT=MCR1
    NCR1=1TEMP
185 IF(104-5) 190, 205, 190
190 1F(Buck) 200, 245, 200
200 TEMP = BUCK
IN1T 75
HRA2 }7
HRA2 75
HRA2 75
HRA2 }7
HRA2 75
HRA2 }7
INJT 76
IMIT 77
INIT 78
IWIT 79
1NIT 80
IMIT }8
INIT }8
INIT &S
```


TLIST2.FOR Wednesday, February 21, 1990 12:31 pm Page 33
$\mathrm{K}=22(\mathrm{~d})$ WLP
$285 \quad$ Z1($\mathrm{J}+1$) $=$ Z1 (J$)+(Z 0(\mathrm{~J}+1)-Z 0(\mathrm{~J}))^{*}\left(1,0+E V^{*} Z 3(\mathrm{~K})\right)$ WLP
1F(IGE-2) 305, 290, 305 WLP
290 IF(ABS (21 (JP)-1.0)-1.0E-04) 305, 305, 300 WLP
300 CALL ERRO2('**INIT',300,1) HVX
305 COWTIMUE WLP
c WLP
C areas and volumes WLP
PI2 $=6.28318$ WLP
IF(PO2) 310, 315, 310 WLP
310 1F(104-4) 375, 315, 373 WLP
315 Continue WLP
DO 345 I=1, 1M WLP
$R 4(I)=(R 1(1+1)+R 1(I)) * 0.5$ WLP
RS(I)=R1(1+1)-R1(1) WLP
IF(R5(1)) 320, 320, 325 WLP
320 CALL ERRO2 ('*R5(1)',320,1) HVX
325 CONTINUE WLP
GO TO ($330,335,340,342$), IGEP ULP
$330 \quad A(1)=1.0$ WLP
$A 0(I P)=1.0$ ULP
A1 (I) $=R 5(1)$ ULP
GO 10345 HLP
$335 \quad \mathrm{AO}(1)=\mathrm{PI} 2^{* R}$ 1 (1) HLP
A0(1P)=P12*R1(IP) NLP
A1(1) $=$ P12*R5(1)*R4(I) M.P
GO TO 345 HLP
340 AO(I) $=$ R1 (1) HRAZ
$A 0(I P)=R 1$ (IP) hraz
A1(I) $=R 5$ (I) HRA2
CO TO 345 WLP
342 AO(I) $=2 . * R 5(1)$ HLP
$A 0(1 P)=2 . *_{R} 5(1)$ WLP
A1(I) $=2 . * R 5(I)$ WLP
345 CONTINUE ULP
DO $370 \mathrm{~J}=1$, JM WLP

```
        Z4(J)=(Z1(J+1)+Z1(J))*0.5
        WLP
        Z5(J)=21(J+1)-21(J)
        HLP
        IF(Z5(J)) 350, 350, 355
        WLP
350 CALL ERRO2 ('*25(J)',350,1) HVX
355 COWTIMUE WLP
    DO 370 1=1,1M
    HLP
    GO TO (360,365,367,360), IGEP HRA2
360 V0(1,J)=R5(I)*25(J) WLP
    60 10 370
365 VO(1,J)=PI2*R5(I)*25(J)*R4(1)
    GO TO 370 HRA2
367VO(1,J)={R5(I)*25(J)*R4(I)+((R1(I*1))**3-(R1(1))**3)/3.0 HRA2
    1/B1GR*(SIN(21(J+1))-SIN(Z1(J)))) HRA2
370 CONTINUE HLP
375 CONTINUE WLP
C [WIT 170
C MATERIAL ADDRESSES
380 IF(P02) 405, 385, 405 [NIT 172
385 5K7=0.
    DO 400 IIG=1,IGM
    IF(502-1) 395, 390, 395
390 K6(IIG)=K7(IIG)/S03
    60 TO 400
395 K6(IIG)=K7<IIG) INTT 178
400 SK7=SK7+K7(IIG)
405 cONTIMUE
C
C FISSION MEUTRONS
T11=E1(1GP)
410 CALL CLEAR(0.0,F0,IMJM)
    DO 425 IIG=1,1GN
    EO(IIG) = .0
READ (NFLUX1) (NO(I),1=1,IMJN)
READ (NCR1) (<CO(I,J),1=1,ITL),J=1,MT) INIT 188
DO 425 J = 1, JM
    DO 425 K=1, im
I=K+(J-1)*IM
INII. }17
[WIT 173
IWIT }17
INIT 175
INIT }97
INLT 177
INLT 178
1N[T }17
1N[T 180
IWIT }18
IWIT 182
INIT 183
INIT 184
IWIT 185
INIT 186
INIT 187
```

TLIST2.FDR Wednesday, February 21, 1990 12:31 pm Pege 35

	ITEMP \# \# (1)	IN1T 192
	ITEMP $=$ N2 (I TEMP)	IWIT 193
	EOC(IIG) $=$ EOC(IG) + VO(K, J)*NO(I)*COCIHT-3, ITEMP)	HRA2 194
	1F(A02) 415, 420, 415	IN1T 195
415	FO(1) $=$ F0(1$)+K 7(11 G) * N 0(1)$	1W1T 196
	G0 70425	IW1T 197
420	FO(I) $=\mathrm{FO}(\mathrm{I})+\mathrm{CO}(1 \mathrm{HT}-1,1$ TEMP) *NO(I)	INIT 198
425	CONTIMEE ${ }^{\text {C. }}$	INIT 199
	REWIND MFLUX1	INIT 200
	REWIND NCR1	INIT 201
	return	INIT 202
	END	IHIT 203
	SUBROUTINE IMNER (NO, N2, CXS, S2, MO, M2, VO, CO, JIM, JJM, JTL,	INAR 2
	CXR, CXT, HA, PA, XR, XD)	HRA2
	INCLLIDE 'abC.for'	
		INNR 6
	1 VO (1), CO(JTL, 1), CXR(1), CXT(1), HA(1), PA(1)	INWR 7
	DIMENSION XD(50), XR(50)	hraz
	CALL IFLUXN (N2, 0 , VO, CXS, MO, M2, ITL, IM, JM, CXR, CXT, XR, XD)	hraz 9
2	DO 4 I=1, [MJM	INNR 18
4	NO(I) $=$ W2(1)	[WMR 19
C	begin flux calculation	INMR 20
	$\mathrm{JKB}=\mathrm{IM}-1$	IWNR 21
	$\mathrm{JKB}=\mathrm{JM}-1$	INNR 22
c	flux calculation using sor with line inversiow	INMR 23
c		INNR 24
c	calculatiow of left boundary flux	INWR 25
	$K 1=1$	INNR 26
	$\mathrm{Kd}_{\mathrm{d}}=1$	INNR 27
	$\underline{I}=\mathrm{KI}+(\mathrm{KJ}-1) \pm 1 \mathrm{M}$	IMNR 28
	HA(KJ) $=$ CXS(KI, KJ $+1,2) / \mathrm{CXS}(\mathrm{K} 1, \mathrm{KJ}, 3)$	INNR 29
	$\mathrm{PA}(\mathrm{KJ})=(S 2(1)+\mathrm{CXS}(\mathrm{K} 1+1, \mathrm{KJ}, 1) * \mathrm{~N} 2(1+1)) / \mathrm{CXS}(\mathrm{KI}, \mathrm{KJ}, 3)$	INNR 30
	DO $5 \mathrm{KJ}=2, \mathrm{JKB}$	1NWR 31
	$\mathrm{I}=\mathrm{KI}+\mathbf{K J}$ - 1$\rangle^{*} \mathrm{IM}$	1MHR 32
	HA(KJ) $=$ CXS(K1, KJ $+1,2) /\left(\begin{array}{c}\text { c }\end{array}\right.$	INHR 33
5		INHR 34
	1 (CXS(KI,KJ,3)-CXS(KI, KJ, 2)*HA(KJ-1))	INNR 35

```

\begin{tabular}{|c|c|c|c|}
\hline TLIST2. & 2.FOR Wednesday, February 21, 1990 12:31 pm & & \\
\hline & \(\mathrm{KI}=1 \mathrm{M}\) & INNR & 74 \\
\hline & XJ = 1 & INMR & 75 \\
\hline & \(1=K 1+(k J-t)^{\star} 1 M\) & INNR & 76 \\
\hline & HA(KJ) \(=\) CXS \((\mathrm{KI}, \mathrm{KJ}+1,2) / \mathrm{CXS}(\mathrm{KI}, \mathrm{KJ}, 3)\) & INAR & 77 \\
\hline &  & INNR & 78 \\
\hline & DO \(45 \mathrm{~kJ}=2, \mathrm{JKB}\) & IMNR & 79 \\
\hline &  & IMNR & 80 \\
\hline &  & IMNR & 81 \\
\hline 45 P & PA(KJ) \(=(\mathbf{S 2}(1)+\) CXS(KI,KJ, 1)*N2(1-1) + CXS(K1, KJ, 2)*PA(KJ-1) \() /\) & IMNR & 82 \\
\hline & 9 (CXS(KI, KJ, 3) - CXS(KI, KJ, 2)*HA(KJ-1)) & 1 \({ }^{\text {NHR }}\) & 83 \\
\hline & \(\mathrm{KJ}=\mathrm{JM}\) & INNR & 84 \\
\hline &  & INNR & 85 \\
\hline & \(\mathrm{N} 2(1)=(\mathrm{S} 2(1)+\mathrm{CxS}(\mathrm{KI}, \mathrm{KJ}, 1) * \mathrm{~N} 2(1-1)+\mathrm{CXS}(\mathrm{K1}, \mathrm{KJ}, 2) * \mathrm{PA}(\mathrm{KJ}-1)) /\) & INMR & 86 \\
\hline & 1 (CXS(KI, KJ, 3) - CXS(KI, KJ, 2)* \(\mathrm{HA}(\mathrm{KJ}-1)\) ) & IMNR & 87 \\
\hline & DO \(50 \mathrm{KJJ}=2, \mathrm{JM}\) & INNR & 88 \\
\hline & \(K J=J M-K J J+1\) & 1NNR & 89 \\
\hline & \(1=k 1+(K J)-1)^{*} 1 M\) & INHR & 90 \\
\hline 50 N & \(\mathrm{NL} 2(\mathrm{I})=\mathrm{PA}(\mathrm{KJ})+\mathrm{HA}(\mathrm{KJ})\) * \(\mathrm{N} 2(\mathrm{I}+\mathrm{IM})\) & JWMR & 91 \\
\hline & DO \(55 \mathrm{KJ}=1 . \mathrm{JM}\) & INNR & 92 \\
\hline & \(1=K I+(K J .1) * I M\) & INNR & 93 \\
\hline &  & INMR & 94 \\
\hline & IF (N2 (I) -LE.0)N2(I)=ABS (NO(1)+(N2(1)-N0(1))/ORF) & INNR & 95 \\
\hline & TEMP1 \(=.0\) & INMR & 96 \\
\hline & D0 \(90 \mathrm{t}=1, \mathrm{INJM}\) & INWR & 97 \\
\hline & TEMP2 = ABS ( \(1.0-N 0(t) / N 2(1)\) ) & INNR & 98 \\
\hline & LF (TEMP1 - TEMP2) 80,90,90 & INMR & 100 \\
\hline 80 T & TEMP1 \(=\) TEMP2 & IMMR & 101 \\
\hline 90 & Cowitnue & INNR & 103 \\
\hline C & & IMNR & 104 \\
\hline c 1 & jnem iteration control & IMWR & 105 \\
\hline 133 LC & \(L C=L C+1\) & INWR & 106 \\
\hline & II \(=1!+1\) & INMR & 107 \\
\hline & If (11 - G07) 533, 1033, 1033 & INNR & 117 \\
\hline 533 If & TF(TEMP1-EPS) 633,633,2 & INWR & 118 \\
\hline 633 IF & IF(G06) 733, 1033, 733 & INWR & 119 \\
\hline 733 IF & IF(TEMP1-G06)1033, 1033,2 & INNR & 120 \\
\hline 61033 & COwtinue & & \\
\hline 1033 Wh & WRITE (NOUT, 213) & HRA2 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TLIST & 2.FOR Wechesday, February 21, 1990 12:31 pm & Page 38 \\
\hline \multirow[t]{2}{*}{213} & FORMAT( GROUP IN. IT. ') & HRA2 \\
\hline & URITE(NOUT, 2133)IGV, I1 & hraz \\
\hline \multirow[t]{3}{*}{2133} & FORMAT(' ' 'i3,' ',14) & \\
\hline & 1F(I04.NE.0)GO TO 1133 & hraz \\
\hline & CALL IFLUXL (N2,CO,VO,CXS,M0, H2, ITL, IM, JM, CXR,CXT, XR, XD ) & hraz \\
\hline \multirow[t]{10}{*}{1133} & continue & HRA2 \\
\hline & RETURN & INNR 125 \\
\hline & END & INRR 129 \\
\hline & SUBROUTINE INKER1(MO, M2, CXS, VO, CO, AO, Z5, R5, R4, Z4, A1, & INN1 2 \\
\hline & 2 JIK, JJH, JTL, CXR, CXT, XR, XD, R1, 21) & hraz 3 \\
\hline & DIMENSION XR(50), \(\mathrm{XD}(50)\) & HRA2 \\
\hline & DIMENSION MO(1), M2(1), CXS \({ }^{\text {d }}\) (IM, JJM, 3), VO(1), CO(JTL, 1), & INN1 \\
\hline & \(1 \quad \mathrm{AO}(1), \mathrm{Z5}(1), \mathrm{R} 5(1), \mathrm{R} 4(1), 24(1), \mathrm{A}(1), \mathrm{CXR}(1), \operatorname{CXT}(1)\) & INN1 \\
\hline & 2 ,R1(1),21(1) & HRA2 \\
\hline & INCLLDE 'ABC.FOR' & \\
\hline \multirow[t]{8}{*}{c} & this subroutine calculates coefficients for the flux equation & INN1 7 \\
\hline & \(\mathrm{P} 12=6.28318\) & INNI 8 \\
\hline & DO \(45 \mathrm{KJ}=1\), JM & INN1 9 \\
\hline & DO \(45 \mathrm{Kt}=1\), 1M & 1 NW1 10 \\
\hline & TEMPA=AOCKI) & HRA2 \\
\hline & TEMPB=A0(IP) & HRA2 \\
\hline & TEMPC=A1(K1) & HRA2 \\
\hline & GO TO ( \(10,10,5)\), IGEP & INN1 1* \\
\hline \multirow[t]{5}{*}{5} & TEMP \(=(26(K J)-24(K J-1))^{*} R 4(K I)\) & HRAZ 12 \\
\hline &  & HRR2 \\
\hline &  & HRA2 \\
\hline & A1(KI) \(=\) A1(KI)* \((1.0+\cos (24(K J)) /\) /BIGR \()\) & hraz \\
\hline & GO TO 15 & TWN1 13 \\
\hline 10 &  & INM 14 \\
\hline \multirow[t]{5}{*}{15} & t = Kt + (KJ-1)*IM & INM1 15 \\
\hline & ITEMP \(=\) MOC 1\()\) & INN1 16 \\
\hline & ITEMP = M2(ITEMP) & INN1 17 \\
\hline & CXS(KI, KJ, 3) \(=\mathrm{VO}(1) *(\mathrm{CO}(1 \mathrm{HT}, \mathrm{ITEMP}) \cdot \mathrm{CO}(1 \mathrm{HS}, \mathrm{ITEMP}))\) & INW1 18 \\
\hline & 1F(t - 1) 44,44,18 & HRA2 19 \\
\hline \multirow[t]{3}{*}{18} & ITENP1 \(=\) MO( \(1-1\) ) & INN1 20 \\
\hline & [TEMP1 \(=\) M2 (ITEMP1) & INN1 21 \\
\hline & IF (ITEMP - ITEMP1) \(\mathbf{2 5 , 2 0 , 2 5}\) & INN1 22 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & 2.FOR Wednesday, February 21, 1990 12:31 pm & Page 39 \\
\hline 20 & CXS(KI,KJ, 1) \(=\) AO(KI )*25(KJ)/(3.*CO(1HT, [TEMP)*(R4(KI)-R4(KI-1)) \()\) & INN1 23 \\
\hline & co ro 30 & INH1 24 \\
\hline 25 & CXS(KI, KJ, 1) \(=\) A0(KI)*25(KJ)*(R5(KI-1)+R5(KI) \() /\left((R 4(K 1)-R 4(K I-1))^{*}\right.\) & TNM1 25 \\
\hline & 1 (3.*(R5(K1-1)*CO(IHT, ITEMP1) + R5(K1)*CO(1HT, ITEMP) ) ) & INW1 26 \\
\hline 30 & 1F(t - 1M) 44,44,32 & INN1 27 \\
\hline 32 & ITEMP3 = MOCI \(\cdot\) IM ) & IMN1 28 \\
\hline & 1TEMP3 = M2(ITEMP3) & INW1 29 \\
\hline & IF (ITEMP - ITEMP3) \(40,35,40\) & INN1 30 \\
\hline 35 & CXS(KI,KJ,2) \(=\) A1(KI)/(3.*CO(IHT, 1TEMP)*TEMP) & INN1 31 \\
\hline & GO TO 44 & HRA2 32 \\
\hline 40 &  & 1NN1 33 \\
\hline &  & 1NW1 34 \\
\hline 44 & AOCKI \()=\) TEMPA & HRA1 \\
\hline & AO(IP) \(=\) TEMPB & HRA1 \\
\hline & A1(KI) \(=\) TEMPC & HRA1 \\
\hline 45 & comtinue & HRA1 35 \\
\hline & 00 \(200 \mathrm{KJ}=1\), JM & JNM1 36 \\
\hline & DO \(200 \mathrm{KI}=1\), IM & INM1. 37 \\
\hline & TEMPA=AO(KI) & HRA2 \\
\hline & TEMPEAOO(IP) & HRA2 \\
\hline & TEMPC=At(KI) & HRA2 \\
\hline & G0 TO ( \(55,55,50\) ), IGEP & 1NM1 3 \\
\hline 50 & TEMP \(=.5{ }^{*} \mathbf{Z 5}(\mathrm{KJ}){ }^{*} \mathrm{R} 4\) (KI) & HRA2 39 \\
\hline & AO(KI) \(=\) AO(KI)* \((1.0+R 1(K I) / 81 G R *(S 1 N(Z 1(K J+1))-\operatorname{SIN}(21(K J))) / 25(K J))\) & HRA2 \\
\hline &  & HRA2 \\
\hline & \(A 1(K 1)=A 1(K 1) *(1.0+\cos (24(K J)) / B I G R)\) & HRA2 \\
\hline & 601060 & 1NM1 40 \\
\hline 55 & TEMP \(=.5 \pm \mathbf{7 5}(\mathrm{KJ})\) & INW1 41 \\
\hline 60 &  & INN1 42 \\
\hline & ITEMP \(=\) WO(1) & INN1 43 \\
\hline & ITEMP \(=\) M2 (ITEMP) & INM1 44 \\
\hline & TEMP1 \(=\) CXS \(\langle K 1+1, K J, 1\rangle\) & INW 45 \\
\hline & TEMP2 \(=\) CXS(K1, \(\mathrm{KJ}+1,2)\) & INH1 46 \\
\hline & 1F(KJ - 1) \(65,65,100\) & INN1 47 \\
\hline 65 & 1FCBOK - 1) 90,95,70 & INN1 48 \\
\hline 70 & 60 T0 ( 80, 80, 73), IGEP & 1NW1 4\% \\
\hline 75 & TEMP3 \(=912^{*} .5^{*}(25(\mathrm{~K}\).\() + 25(\mathrm{JM})\) ) & HRAZ 50 \\
\hline & GO 7085 & IMN1 51 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{2.FOR Wednesday, February 21, 1990 12:31 pm} & \multicolumn{2}{|l|}{Page 40} \\
\hline \multirow[t]{6}{*}{} & \multicolumn{2}{|l|}{TEMP3 \(=.5\) ( \(\mathbf{2 5}(\mathrm{KJ})+\mathbf{2 5}(\mathrm{JM})\) )} & INM1 & 52 \\
\hline & \multicolumn{2}{|l|}{} & INN1 & 53 \\
\hline & \multicolumn{2}{|l|}{1 TEMP3 \(=\) M0( 1 TEMP3)} & INN4 & 54 \\
\hline & \multicolumn{2}{|l|}{ITEMP3 \(=\) M2(1TEMP3)} & INN1 & 55 \\
\hline & \multicolumn{2}{|l|}{} & INN1 & 56 \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
1 \text { فо TO } 125^{(3 . *(Z 5(J M) * C O(I H T,[T E M P 3)+25(K J) * C O(1 H T,[T E M P))))}
\]}} & INN1 & 57 \\
\hline & & & 1NM1 & 58 \\
\hline \multirow[t]{3}{*}{90} &  & +.71/ & INM1 & 59 \\
\hline & \multicolumn{2}{|l|}{1 CO(IHT, (TEMP) )} & INN1 & 60 \\
\hline & \multicolumn{2}{|l|}{GO TO 125} & INW1 & 61 \\
\hline \multirow[t]{2}{*}{95} & \multicolumn{2}{|l|}{\(\operatorname{cxs}(\mathrm{KI}, \mathrm{KJ}, 2)=.0\)} & INW1 & 62 \\
\hline & \multicolumn{2}{|l|}{GO TO 125} & INN1 & 63 \\
\hline 100 & \multicolumn{2}{|l|}{1F (KJ - JM) 125,105,105} & INN1 & 64 \\
\hline 105 & \multicolumn{2}{|l|}{IF (B03 - 1) 115,120,110} & INH1 & 65 \\
\hline 110 & \multicolumn{2}{|l|}{TEMP2 \(=\operatorname{CXS}(\mathrm{K1}, 1,2)\)} & INW 1 & 66 \\
\hline & \multicolumn{2}{|l|}{\(\operatorname{CXT}(\mathrm{KI})=\) TEMP2} & INM1 & 67 \\
\hline & \multicolumn{2}{|l|}{G0 To 125} & INW1 & 68 \\
\hline \multirow[t]{4}{*}{115} &  & +.71/ & 1 सม1. & 69 \\
\hline & \multicolumn{2}{|l|}{1 CO(IHT, ITEMP) )} & INม 1 & 70 \\
\hline & \multicolumn{2}{|l|}{\(\operatorname{cxT}(\mathrm{K} 1)=\operatorname{TEMP2}\)} & INM1 & 71 \\
\hline & \multicolumn{2}{|l|}{GO TO 125} & INW1 & 72 \\
\hline \multirow[t]{2}{*}{120} & \multicolumn{2}{|l|}{TEWP2 \(=.0\)} & INW1 & 73 \\
\hline & \multicolumn{2}{|l|}{\(\operatorname{CXT}(\mathrm{KI})=\) TEMP2} & INW1 & 74 \\
\hline 125 & \multicolumn{2}{|l|}{IF (KI - 1) 130, 130,145} & INN1 & 75 \\
\hline 130 & \multicolumn{2}{|l|}{IF(B01) 135,135,140} & INN1 & 76 \\
\hline \multirow[t]{3}{*}{135} & \multicolumn{2}{|l|}{} & IWN1 & 77 \\
\hline & \multicolumn{2}{|l|}{1 (.5*R5(K1) + .71/CO(1HT, ITEMP) )} & INM1 & 78 \\
\hline & \multicolumn{2}{|l|}{co 10165} & INM 1 & 79 \\
\hline \multirow[t]{2}{*}{140} & \multicolumn{2}{|l|}{CXS(KI, KJ, 1) \(=.0\)} & INM1 & 80 \\
\hline & \multicolumn{2}{|l|}{©0 TO 165} & INN1 & 81 \\
\hline 145 & \multicolumn{2}{|l|}{JF (KI - IM ) 165, 150, 150} & INM1 & 82 \\
\hline 150 & \multicolumn{2}{|l|}{IF(B02) 155,155,160} & INM 1 & 83 \\
\hline \multirow[t]{4}{*}{155} & \multicolumn{2}{|l|}{} & INNI & 84 \\
\hline & \multicolumn{2}{|l|}{1 (.5*R5(KJ) + .71/CO(IHT, ITEMP) )} & INHI & 85 \\
\hline & \multicolumn{2}{|l|}{\(\operatorname{CXR}(\mathrm{KJ})=\) TEMP1} & JNN1 & 86 \\
\hline & \multicolumn{2}{|l|}{co 10165} & 1NN1 & 87 \\
\hline \multirow[t]{2}{*}{160} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { TEMP1 }=.0 \\
& \operatorname{CXR}(K J)=\text { TEMP1 }
\end{aligned}
\]}} & IMN1 & 88 \\
\hline & & & INW1 & 89 \\
\hline
\end{tabular}
```

TLIST2.FOR
Wecnesday, February 21, 1990 12:31 pmPage41
165 CXS(KI,KJ,3)= CXS(KI,KJ,3) + CXS(KI,KJ,1) + CXS(KI,KJ,2) INN1 90
1 + TEMP1 + TEMP2 INN1 91
AO(KI)=TEMPA HRA1
AO(IP)=TEMPB HRA1
A1(KI)=TEMPC HRA1
200 CONTINUE
INN1 92
RETURN INN1 93
END INN1 94
SUBROUT]NE [MNER2(NO, N2, CXS, S2, MO, M2, VO, CO,JIM,JJM, JTL,
1 CXR,CXT, HA, PA) INN2 3
INCLUDE 'ABC.FOR'
DIMENSIOW NO(1), N2(1),CXS(JIM, JJM,3),S2(1), MO(1), M2(1), INN2 6
VO(1), CO(JTL,1), CXR(1), CXT(1), HA(1), PA(1) INN2 }
CALL IFLUXN (N2, CO, VO, CXS, MO, M2, ITL, IM, JM, CXR,CXT,XR,XD) HRA2 9
DO 4 I=1, [MJM INN2 18
4 NO(I) = NZ(I) INN2 19
C BEGIN FLUX CALCULATION INN2 20
IKB = IM - 1 INN2 21
JKB = JM - 1 INN2 22
C FLUX CALCULAJION USING SOR HITH LINE INVERSION INN2 23
c INN2 24
C CALCULATION OF BOTTOM BOUNDARY FLUX INN2 25
KI =1 INN2 26
KJ = 1 INN2 27
I=K1 + (KJ - 1)\#1M INN2 28
HA(KI)= CXS(KI+1,KJ,1)/CXS(KI,KJ,3) INN2 29
PA(KI)= (S2(I) + CXS(KI,KJ+1,2)*N2(1+1M))/CXS(KI,Kd,3) INN2 30
DO 5 K1 =2,1KB INN2 31
1=KI + (KJ = 1)*IN INM [MN2
HA(KI) = CXS(KI+1,KJ,1)/(CXS(K1,KJ,3)= CXS(KI,KJ,1)*HA(KI-1)) [NN2 33
5 PA(KI) = (S2(I) + CXS(KI,KJ+1,2)*NZ(I+IM) + CXS(KI,KJ,1)*PA(KI-1))/[NN2 34
1 (CXS(KI,KJ,3) = EXS(KI,KJ,1)*HA(KI-1)) [NN2 35
KI = IM INN2 36
I=KI + (KJ - 1)*IM INN2 37
N2(I) = (S2(1) + CXS(KI,KJ+1,2)*N2(1+IM) + CXS(KI,KJ,1)*PA(K1-1))/1NN2 38
1 (CXS(KI,KJ,3) - CXS(KI,KJ,1)*HA(KI-1)) INN2 39
DO 10 KII = 2,IM INN2 40

```
\(I=K I+(K J-1)^{*} I M \quad\) INN2 42
\(10 \mathrm{~N} 2(I)=P A(K I)+H A(K I) * N 2(1+1) \quad\) INN2 43
DO \(15 \mathrm{KI}=1, \mathrm{IM} \quad\) INH2 44
\(1=K 1+(K J-1)^{* 1 M} \quad\) INN2 45
N2 (I) =NO (I) +ORF*(N2(1)-NO(I)) INN2 46
    15 IF (N2(I).LE, O)N2(1)=ABS(NO(1)+(M2(1)-NO(I))/ORF) INN2 47
C PRINCIPAL FLUX LOOP \(\quad\) INN2 48
\(\begin{array}{lll}\text { DO } 40 \mathrm{KJ}=2, \text { JKB } & \text { INN2 } & 49\end{array}\)
\(\begin{array}{ll}K I=9 & \text { INN2 } 50\end{array}\)
\(I=K I+(K J-1)^{*} 1 M \quad\) INN2 51
\(H A(K I)=\operatorname{CXS}(K I+1, K J, 1) / C X S(K I, K J, 3) \quad\) INN2 52
    \(P A(K I)=(S 2(I)+\operatorname{CXS}(K I, K J, 2) * N 2(I-1 M)+\operatorname{CXS}(K], K J+1,2) * N 2([+[M)) /[N W 253\)
    1 CXS(KI,KJ,3) INN2 54
    DO \(25 \mathrm{KI}=2, I \mathrm{~KB} \quad\) [NN2 55
    \(I=K I+(K J-1) \pm I M \quad\) INN2 56
    \(H A(K I)=C X S(K I+1, K J, 1) /(C X S\langle K I, K J, 3)-C X S\langle K I, K J, 1) * H A(K 1-1)) \quad\) [NN2 57
\(25 \mathrm{PA}(\mathrm{KI})=(S 2\langle I)+\operatorname{CXS}(K I, K J, 2) * \mathrm{~N} 2(1-I M)+\operatorname{CXS}(K I, K J+1,2) * \mathrm{~N} 2(I+I M)+[\mathrm{HM} 258\)

    \(\begin{array}{lll}K I=I M & \text { [NH2 } 60\end{array}\)
    \(I=K I+(K J-1) * I M \quad\) INN2 61
    \(\mathrm{N} 2(1)=(52(I)+\operatorname{CXs}(K I, K J, 2)+N 2(1-1 M)+\operatorname{CXS}(K I, K J+1,2) * N 2(I+1 M)+1 N W 2 \quad 62\)
    \(1 \operatorname{CXS}(K I, K J, 1)\) PA(KI-1) \(/(C X S(K I, K J, 3)-\operatorname{CXS}(K 1, K J, 1) * H A(K I-1))\) INN2 63
    DO \(30 \mathrm{KII}=2, \mathrm{IM} \quad\) INN2 64
    \(K I=I M-K I I+1 \quad 1\) NNZ 65
    \(J=K I+(K J-1)^{*} I N \quad 1 N N 2 \quad 66\)
\(30 \mathrm{~N} 2(1)=\mathrm{PA}(K I)+\mathrm{HA}(K I) * N 2(1+1) \quad\) INN2 67
    DO \(35 \mathrm{KI}=1,1 \mathrm{M} \quad\) INN2 68
    \(I=K I+(K J-1) * I M \quad\) INN2 69
    \(\begin{array}{ll}\text { N2(1) } & \text { NO (I) }+ \text { ORF } \\ \text { (M2(1)-NO(1)) } & \text { INN2 } 70\end{array}\)
    35 [F(N2(I).LE.OSN2(1)=ABS \((N O(I)+(N 2(1)-N O(1)) / O R F)\) INN2 71
40 CONTINUE \(\quad\) [NN2 72
C CALCULATION OF TOP BOUNDARY FLUX INM2 73
    \(K J=J M\)
    \(K 1=1 \quad\) INN2 75
    INN2 74
    \(1=K I+(K J-1) \star I M \quad\) INN2 76
    \(H A(K I)=C X S(K I+1, K J, 1) / C X S(K I, K J, 3) \quad\) 1NN2 77
    \(P A(K I)=(52(I)+\) CXS(KI,KJ,2)*W2(I-IM))/CXS(KI,KJ,3) JNH2 78
\begin{tabular}{|c|c|c|}
\hline TLIST2 & T2.FOR Wednesday, February 21, 1990 12:31 pm & Page 43 \\
\hline & DO \(45 \mathrm{KI}=2, \mathrm{IKB}\) & IWN2 79 \\
\hline & \(1=K 1+(K J-1) * 1 M\) & INM2 80 \\
\hline &  & IMN2 81 \\
\hline 45 & PA \((K I)=(S 2(1)+C X S(K I, K J, 2) * N 2(I-I W)+C X S(K I, K J, 1) * P A(K I-1)) /\) & INN2 82 \\
\hline & 1 (CXS(KI, KJ, 3) - CXS(KI,KJ, 1 ) \({ }^{\text {Ha( }}\) (K1-1)) & IMN2 83 \\
\hline & KI \(=1 \mathrm{Im}\) & INN2 84 \\
\hline & \(1=K 1+(K J-1) * 1 M\) & IMN2 85 \\
\hline &  & INN2 86 \\
\hline & 1 (CXS(KI, KJ,3)-CXS(KI, KJ, 1)*HA(K1-1)) & INN2 87 \\
\hline & DO \(50 \mathrm{KII}=2.1 \mathrm{M}\) & INN2 88 \\
\hline & \(\mathbf{K I}=\mathbf{I M}-\mathbf{K I I}+1\) & INN2 89 \\
\hline &  & INH2 90 \\
\hline 50 &  & INM2 91 \\
\hline & \(0055 \mathrm{Kl}=1, \mathrm{Im}\) & INH2 92 \\
\hline &  & INN2 93 \\
\hline & N2 (I) \(=\mathrm{NO}(1)+\) ORF \({ }^{*}(\mathrm{H2} 2(\mathrm{I})-\mathrm{NO}(1))\) & INN2 94 \\
\hline & If(N2(1)-LE.0)N2(I)=ABS(NO(1)+(N2(I)-NO(I))/ORF) & 1NN2 95 \\
\hline & TEMP1 \(=.0\) & 1NN2 96 \\
\hline & DO \(90 \mathrm{t}=1.1 \mathrm{MMM}\) & INNZ 97 \\
\hline & TEMP2 = ABS (1.0-N0(I)/N2(1)) & INN2 98 \\
\hline & If (TEMP1 - TEMP2) \(80,90,90\) & INR2 100 \\
\hline 80 & TEMP1 \(=\) TEMP2 & IMN2 101 \\
\hline 90 & Cowtimue & INM2 103 \\
\hline c & & INN2 104 \\
\hline c & InNer iteration comtrol & INN2 105 \\
\hline 133 & \(L C=L C+1\) & INM2 106 \\
\hline & \(\mathrm{JI}=\mathrm{J}+\mathrm{t}\) & INM2 107 \\
\hline & 1F (II - GO7) 533, 1033, 1033 & INN2 117 \\
\hline 533 & 1 (TEMP1-EPS) 633,633,2 & IMN2 118 \\
\hline 633 & IF(606) 733, 1033, 733 & 13N2 119 \\
\hline 733 & IF(TEMP1-G06)1033, 1033,2 & INN2 120 \\
\hline 1033 & COwtimue & \\
\hline & RETURN & INN2 125 \\
\hline & END & INW2 129 \\
\hline & SUBROUTIME INNERP(NO, N2, CXS, S2, MO, M2, vo, CO,JIM, JJM, JTL, & INNP 2 \\
\hline & 1 CXR, CXT, HA, PA) & INAP 3 \\
\hline & INCLUDE 'ABC.FOR' & \\
\hline
\end{tabular}
```

ILIST2.FOR Wednesciay, February 21, 1990 12:31 pm Page 44

```

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{TLIST2.FOR Wednesday,} & \multicolumn{2}{|l|}{Page 45} \\
\hline & \(K J=J M-K J J+1\) & IMNP & 43 \\
\hline & \(1=K I+(K J-1) * I M\) & IMNP & 44 \\
\hline & KII = ( JM-1)*IM + KI & IMNP & 45 \\
\hline 1 & \(\mathrm{N2} 2(\mathrm{I})=\mathrm{PA}(\mathrm{KJ})+\mathrm{HA}(\mathrm{KJ})\) * \(\mathrm{N} 2(\mathrm{I}+\mathrm{IW})\) + \(\mathrm{N} 2(\mathrm{I})\) * \(\mathrm{N} 2(\mathrm{KIII})\) & INNP & 46 \\
\hline & DO \(15 \mathrm{KJ}=1, \mathrm{JM}\) & INNP & 47 \\
\hline & \(1=K I+(K J-1) \pm I M\) & INNP & 48 \\
\hline 1 & \(N 2(t)=N O(I)+\) ORF* \((N 2(I)-N O(I))\) & IMNP & 49 \\
\hline \multirow[t]{20}{*}{c} & PRIMCIPAL FLUX 100P & IMNP & 50 \\
\hline & DO \(40 \mathrm{KI}=2,1 \mathrm{~KB}\) & INWP & 51 \\
\hline & \(K J=1\) & IMIP & 52 \\
\hline & \(1=K I+(K J-1) * I M\) & INEP & 53 \\
\hline & HA \((\mathrm{KJ})=\mathrm{CXS}(\mathrm{KI}, \mathrm{KJ}+1,2) / \mathrm{CXS}(\mathrm{KJ}, \mathrm{KJ}, 3)\) & INEP & 54 \\
\hline & H2(I) \(=\) cXS \((\mathrm{KI}, 1,2) / \mathrm{CXS}(\mathrm{KI}, \mathrm{KJ}, 3)\) & INMP & 55 \\
\hline & TEMP1 \(=\) N2( 1\()\) & INMP & 56 \\
\hline & TEMP \(=\) HA(1) & 1 MNP & 57 \\
\hline &  & INNP & 58 \\
\hline & 1 CXS(KI, KJ, 3 ) & INWP & 59 \\
\hline & TEMP2 \(=\) PA(KJ) & INNP & 60 \\
\hline & DO \(25 \mathrm{KJ}=2\), JKB & INNP & 61 \\
\hline &  & IMMP & 62 \\
\hline & HA(KJ) \(=\) CXS(KI, KJ \(+1,2) /(\operatorname{CXS}(K 1, K J, 3)-\text { CXS(KI, KJ, } 2)^{\star} \mathrm{HA}(\mathrm{KJ}-1)\) ) & INTP & 63 \\
\hline &  & IMMP & 64 \\
\hline & 1 (CXS(K1, XJ, 3)- CXS(K1, KJ, 2)*HA(KJ-1)) & IMNP & 65 \\
\hline & TEMP1 \(=\) TEMP1 + TEMP*N2(1) & INNP & 66 \\
\hline &  & IMNP & 67 \\
\hline & \(1 \mathrm{CXS}(\mathrm{KI}, \mathrm{KJ}, 2)^{ \pm} \mathrm{PA}(\mathrm{KJ}-1) \mathrm{/}\) (CXS\(\left.(X I, K J, 3)-\operatorname{CxS}(K 1, K J, 2) * H A(K J-1)\right)\) & IMNP & 68 \\
\hline & TEMP2 \(=\) TEMP2 + TEMP4PA(KJ) & INWP & 69 \\
\hline \multirow[t]{11}{*}{25} & TEMP \(=\) TEMP*HA(KJ) & INMP & 70 \\
\hline & KJ = JM & INMP & 71 \\
\hline & \(I=K I+(K J-1) * T M\) & INMP & 72 \\
\hline &  & IWNP & 73 \\
\hline & \(\mathrm{N} 2(1)=\left(S 2(1)+\operatorname{CXS}(\mathrm{K} 1, \mathrm{KJ}, 1) * \mathrm{~N} 2(t-1)+\mathrm{CXS}(\mathrm{K} 1+1, \mathrm{KJ}, 1)^{*} \mathrm{~N} 2(1+1)+\right.\) & IWNP & 74 \\
\hline & + CXS(KI, 1,2)*TEMP2 * & IMNP & 75 \\
\hline &  & IMNP & 76 \\
\hline & 2 TEMP1) & IMNP & 77 \\
\hline & DO \(30 \mathrm{KJJ}=2 . \mathrm{JM}\) & INNP & 78 \\
\hline & \(K J=5 M-K . J J+1\) & INWP & 79 \\
\hline & \(I=K I+(K J-1) * I M\) & INAP & 80 \\
\hline
\end{tabular}



```

TLIST2.FOR
Wednesday, February 21, 1990 12:31 pm
Page 49

130	IF(B01) 135, 135, 140	INNT	57
135	CXS(K1, KJ, 1) $=40(K 1) /(3 . * C O(1 K T, I T E M P) *(25(1) / 3$.	INET	58
	$1+.71 / \mathrm{CO}\left(1 \mathrm{HT}^{\text {, }}\right.$ 1TEMP $)$) $)$	INNT	59
	6010165	INNT	60
140	$\operatorname{CXS}(\mathrm{KI}, \mathrm{KJ}, 1)=.0$	INNT	61
	GO TD 165	INMT	62
145	[F(KI - IM) 165, 150, 150	INWT	63
150	[F(B02) 155, 155, 160	INNT	64
155	TEMP $1=A 0(K 1+1) /(3 . * C O(1 H T, 1 T E M P) *(25(1) / 3 .+.71 / C O(1 H T, I T E M P)))$	INNT	65
	CXR(KJ) $=$ TEMP1	INWT	66
	50 T0 165	INNT	67
160	TEMP1 $=.0$	INNT	68
	CXR(KJ) = TEMP1	INNT	69
165	$\operatorname{CXS}(\mathrm{KI}, \mathrm{KJ}, 3)=\operatorname{CXS}(\mathrm{KI}, \mathrm{KJ}, 3)+\operatorname{CXS}(\mathrm{KI}, \mathrm{KJ}, 1)+\operatorname{CXS}(\mathrm{KI}, \mathrm{KJ}, 2)$	INNT	70
	1 - TEMP1 + TEMP2	INNT	71
200	CONTINUE	INNT	72
	RETURN	INWT	73
	END	INNT	74
	SUBROUTINE INP	1NP	2
	INCLUOE 'ABC.FOR'		
	COMMON/PACKED/Aく50000)		
	DIMENSION IDUN(25), DUM (12)		
C	THIS SUBROUTINE CONTROLS THE READING OF ALL INPUT DATA	INP	8
	NCR1 = 3		
	NSCRAT $=4$	INP	10
	NINP $=5$	INP	11
	NOUT $=6$	IWP	12
	NFLUX1 $=8$	INP	13
	MSORCE $=9$	INP	14
	WRJTE (NOUT,9)	INP	15
9	FORMAT(1H1)	INP	16
	Hel ${ }^{\text {de (}}$ (NOUT, 10)		
10			
	READ (N]NP, 20,END=14) (ID(1), I=1,20)		
	co TO 15		
14	STOP		
15	CONTIMUE		

```
```

20 FORHAT(2OA4)
WRITE(NOUT,30) (ID(1),1=1,20)
30 FORMAT (1X, 20M4/I)
I=13 HRA2
CALL REAl2 (" IMP', IDUN(1),1)
I=14 HRA2
CALL REAI2 (' IMP', IDUN(14),I) HRAZ
I=6
CALL REAG2 (' IWP', DUM(1),1)
CALL REAG2 (' IMP', DUW(7),I)
WRITE (NSCRAT) (IDLM(I), t=1,27) HRA2
WRITE (NSCRAT) (DUM(1), 1=1,12)
REWIND HSCRAT
READ (NSCRAT) A02, [04, S02, IGM,IMT, NXCM, MCR, GO7, D05, MAXT, HRA2
1 NPGT,MOT, NPUN, TGE, ITOR, NACT, TM, JM, 12M, MT, MO1, B01, HRA2
2 B02, B03, B04,IZ, J2
WRITE(NOUT,60) A02, 104, S02, IGM,IHT, NXCM, MCR HRAZ
60 FORMATS
1 16,' a02 0/1=REguLar calculation/adjOINT CALCULATION'/
2 16,' 104 EIGENVALUE TYPE (0/1/2/3/4/5=SOURCE/K/ALPHA/CONC/*
3,'DELTA/BUCK)'/
5 I6,' S02 PARAMETRIC EIGENVALUE TYPE (0/1/2=NONE/K/ALPHA)'/
7 16,' IGM NUMBER OF GROUPS'/
4 16,' IHT POSITION OF SIGHA TRANSPORT'/
HRA2
9 16,' HXCM NUNBER OF DOWNSCATTERING TERHS'/
2 [6,' MCR MLNBER OF MHTERIALS FROM CARDS/TAPE (+N/-N)')
URITE (NOUT,70) GO7, D05, MAXT, NPRT, M07, MPUN
70 FORmATt
1 16,' GO7 INNER ITERATIOM mAX PER GROUP (IF NEG, ALT DIR)'/
3,16,' DOS MAXIMUN MLMBER OF CUTER ITERATIONS'/
5 16,' maxt maximan time IN mjmutes (IF 0, NO EFFECT)'/
7 16,' NPRT PRINT OPTION (0/1/2/3=NINI/MIDI/XS/FLUXES)'/
9 16,' M07 FLUX GUESS (0/1=mONE/FLUX FROM TAPE 14)'/
2 16,' NPUN FLUX DLMP (0/1=NONE/FLUX DUMP TO TAPE 16)'/)
WRIPE(NOUT,80) [GE, ITOR , NACT, IM, JM, IZM, MT, NO1 HRAZ 60
80 FORMATS
1 16,' IGE GEONETRY (0/1/2/3=x-Y/R-Z/R-THETA/TR1ANGULAR)'/
4 16,' ITOR TOROIDAL SPECIFIER (0/1=R-THETA/TOROIDAL)'// HRA2

```
```

 6 16,' mACT ACTIVITIES (0/>0/=NO EFFECT/READ TABLE POSITIONS' HRA2
 8,' FOR ACTIVITIES)'/
 HRA2
3 16,' IM NUNBER OF RADIAL INTERVALS'/
5 16,' JMF NLMBER OF AXIAL INTERVALS'/
716.' IZM MUNBER OF ZONES'/
9 16;' MT TOTAL NLMBER OF MATERIALS INCLLDING MIXES'/
2 16,' MO1 NLMBER OF M[XTURE SPECIFICATIONS')
LRITE<NOUT,90) B01, B02, B03, 804, IZ, JZ INP 74
90 FORMAT(
1 I6,' BO1 LEFT BOUNDARY CONDITION (0/1=VACUUN/REFLECTIVE)'/
3 16,' BO2 RIGHT BOUNDARY CONDITION (0/1=VACURM/REFLECTIVE)'/
5 16,' BO3 TOP BOUNDARY CONDITION (0/1/2=VACUUN/REFLECT/'
6,'PERICOIC)'/
7 I6,' BO4 BOTTOM BOUNDARY CONDITIOM CO/1/2=VACUUM/REFL/'
8,'PERIODIC)'/
916.' 12 NLMBER OF RADIAL ZONES (DELTA OPTION ONLY)'/
2 16,' J2 MUNBER OF AXIAL ZONES (DELTA OPTION ONLY)'/'
READ(NSCRAT) EV, EVM, SO3, BUCK, LAL, LAH, EPS, EPSA, GO6,
1 POO, ORF, S01 INP 99
REUIND NSCRAT
HRITE(NOUT,110) EV, EVN, S03, BUCK, LAL, LAH INP 101
110 FORMAT\ INP 102
1 1X,1PE11.4,' EV FIRST EIGENVALUE GUESS'/
3 1X,1PE11.4,' EVM EIGENYALUE MCOIFIER'/
5 1X,TPE11.4,' S03 PARAMETRIC EIGENVALUE'/
71X,1PE11.4;' BUCK BUCKLING (CN-2)'/
91X,IPE11.4,' LAL LAMBDA LOWER'/
2 1X,1PE11.4,' LAH LAMBDA UPPER'//)
WRITE (NOUT, 120) EPS,EPSA,G06,POD,ORF,S01
FORMATC
1NP 116
1 1x,1PE11.4,' EPS EIGENVALUE CONVERGENCE CRITERIOW'/
3 1x, IPE11.4,' EPSA PARAMETER CONVERGENCE CRITERIOW'/
5 1X,1PE14.4,' GO6 INNER ITERATIOM TEST (IF ZERO, NO TEST)'/
7 1X,1PE11.4,' POO PARAMETER OSCILLATION DNMPER'/
9 1X,TPE11.4,' ORF OVER-RELAXATION FACTOR'/
2 1X,1PE11.4;' S01 -N/+N=PONER (MNT)/NEUTRON SOURCE RATE')
1F(ITOR.EO.1)THEN
HRA2
1=1 HRA2

```
\begin{tabular}{|c|c|c|}
\hline TLIST2 & 2.FOR Wechesday, February 21, 1990 12:31 pm & Page 52 \\
\hline & Call reate (\% INP', bigr, 1 ) & HRA2 \\
\hline & WR1TE 6 , 11) BIGR & hraz \\
\hline 19 & FORMAT ( 2 X , 'BIGR=', E13.6) & hraz \\
\hline & ELSE & HRA2 \\
\hline & BIGR=1.0E+20 & hraz \\
\hline & ENDIF & \\
\hline & S04=0 & \\
\hline & 1F (G07.LE.0) 504=1 & \\
\hline & 607=ABS(G07) & \\
\hline & \(\boldsymbol{M T P}=0\) & \\
\hline & IF (MCR .LE. 0) MTP=-MCR & \\
\hline & IF (MCR .LE. 0) MCR \(=0\) & \\
\hline & If(tz + JZ ) 230, 210, 230 & INP 129 \\
\hline 210 & IF (104-4) 230, 220, 230 & INP 130 \\
\hline 220 & CALL ERRO2 ('Mt* \(\left.104{ }^{\prime}, 220,1\right)\) & HVX \\
\hline 230 & continue & INP 132 \\
\hline & \(\mathrm{IF}(502)\) 240, 260, 240 & INP 133 \\
\hline 240 & IF(503) 260, 250, 260 & INP 134 \\
\hline 250 & CALL ERRO2 ('m**S03', 250,1) & \\
\hline 260 & continue & INP 136 \\
\hline & FEF \(=200.0\) & INP 137 \\
\hline & TSD = FEF*1.602*10.*** (-19) & INP 138 \\
\hline ccce & coment out call settim on a vax & HRA2 \\
\hline c & CALL SETTIM ( \(0,0,0,0\) ) & MRA2 \\
\hline & KPAGE \(=100\) & INP 140 \\
\hline & \(\mathrm{IHS}=1 \mathrm{HT}+1\) & HRA 141 \\
\hline & ITL \(=\) HXCN + IHS & HRA 142 \\
\hline & IHT \(=4\) & HRA 14 \\
\hline 3 & & \\
\hline & \(12 P=12 M+1\) & INP 144 \\
\hline & \(1 P=I M+1\) & INP 145 \\
\hline & \(J P=J M+1\) & INP 146 \\
\hline & ML \(=\) MCR + MTP & \\
\hline & \(16 P=1 G M+1\) & INP 148 \\
\hline & IGEP \(=1\) IGE + 1 & INP 149 \\
\hline & \(I M J M=1{ }^{*}{ }^{\text {J M }}\) & INP 150 \\
\hline & \(E Q=.0\) & INP 151 \\
\hline & LAP \(=.0\) & 1NP 152 \\
\hline
\end{tabular}
LAPP \(=.0\) ..... JNP 153
\(L A R=0.0\) INP 154
DAY \(=0.0\) ..... INP 155
ALA \(=.0\) ..... INP 156
\(L C=0\) ..... INP 157
\(P 02=0\) ..... INP 158
CVT \(=0\) IMP 159
CNT \(=0\) ..... INP 160
NCON \(=0\) ..... INP 161
\(\mathrm{TOS}=0\) ..... INP 163
IF(104-4) 310, 300, 310 ..... INP 166
300 T06 \(=1\) ..... INP 165
310 CONTINUE ..... INP 166
ORFP \(=1.0^{*}\) (ORF - 1.0\()+1.0\) ..... INP 167
C COMPUTE DIMENSION POINTERS
LHOLN \(=1\) ..... HVX
LATW = LHOLN + 2"ML
LALAM = LATW + ML ..... HVX
\(L C O=L A L A M+M L\)
\(L M O=L C O+1 T L * N T\) ..... JNP 174
\(L M 2=L N O+1 M J M\) ..... 1MP 175
\(L A O=L W 2+1 M J M\)\(L A 1=L A O+I P\)JMP 177
\(L F O=L A 1+I M\) IMP 178
LF2 \(=\) LFO + IMJM ..... IKP 179
\(L I O=L F 2+I M J M\)\(L I 1=L 10+M 01\)IMP 181
\(\mathrm{LI2}=\mathrm{LII}+\mathrm{MO1}\) ..... INP 182
\(L I 3=L I 2+M 01\) ..... IMP 183
LK6 \(=L 13+\) M01 IMP ..... 184
LK7 \(=\) LK6 +164LMO \(=\mathbf{L K} 7+\mathrm{ICM}\)INP 186
LM2 \(=\mathrm{LMO}+\) IMJM ..... INP 187
LRO \(=L M 2+12 M\)\(L R I=L R O+I P\)INP 189
\(L R 2=L R 1+I P\) ..... IMP 190
LR3 \(=\mathbf{L R 2}+\) TO6*IM ..... INP 191
LR4 = LR3 + TOS*12 ..... INP 192
\begin{tabular}{|c|c|c|c|c|}
\hline & 2.FOR Vednesciay, & February 21, 1990 12:31 pm & & \\
\hline & LR5 = LR4 + IM & & INP & 193 \\
\hline & \(L S 2=L R 5+I M\) & & INP & 194 \\
\hline & \(L V O=L S 2+I M J M\) & & INP & 195 \\
\hline & \(\mathrm{LV7}=\mathrm{LVO}+\mathrm{IMJM}\) & & 1NP & 196 \\
\hline & \(L Z O=L V 7+15 M\) & & INP & 197 \\
\hline & \(L Z 1=L Z O+J P\) & & INP & 198 \\
\hline & \(L Z 2=L Z 1+J P\) & & INP & 199 \\
\hline & \[
L L 3=L 22+J M^{*} 106
\] & - & INP & 200 \\
\hline & \(L 24=L 23+J Z^{* T 06}\) & & INP & 201 \\
\hline & \(\mathrm{LZ5}=\mathrm{LZ4}+\mathrm{JM}\) & & INP & 202 \\
\hline & LCXS \(=\mathrm{LZ5}+\mathrm{JM}\) & & INP & 203 \\
\hline & LYOL \(=\) LCXS + 1 M MM \(^{\text {\# }}\) 3 & & INP & 204 \\
\hline & LMASS \(=\) LVOL + IZM & & INP & 205 \\
\hline & LMATN = LMASS + ML\#I2M & & IMP & 206 \\
\hline & \(L\) LSR \(=\) LMATN + ML & & IMP & 207 \\
\hline & \(L L D=L N B R+M L\) & & INP & 208 \\
\hline & \(L L C N=L L D+M L\) & & IMP & 209 \\
\hline & \[
L L F N=L L C N+M L * 2
\] & & IWP & 210 \\
\hline & LPHIB = LLFN + ML*7 & & INP & 211 \\
\hline & LAXS = LPHIB + IZM & & INP & 212 \\
\hline C & LT6=LAXS*NL*IZM & & HRA & \\
\hline C & LT8=LT6+ML*IZM & & HRA & \\
\hline 6 & \[
\text { LNTHON=LT8+ML" } 12 \mathrm{M}
\] & & HRA & \\
\hline CC & LFXS = LAXS + ML*IZM & & & 2 \\
\hline 13 & & & & \\
\hline C & LFXS \(=\) LMTWON * ML*IZM & & HRA & 21 \\
\hline 3 & & & & \\
\hline & LACT \(=\) LAXS + ML* 12 M & & HRAS & \\
\hline & LACPOS \(=\) LACT+ME*I ZM*NACT*ML & & & 2 A \\
\hline & LFXS=LACPOS+MACT & & HRA3 & \\
\hline & LMASSP \(=\) LFXS + ML*IZM & & INP & 214 \\
\hline & LCXR \(=\) LMASSP + ML*IZM & & 1NP & 215 \\
\hline & LCXT \(=\) LCXR +JM & & 1NP & 216 \\
\hline & \[
L H A=L C X T+I M
\] & & INP & 217 \\
\hline & \(L P A=L H A+M A X O(I M, J M)\) & & INP & 218 \\
\hline & LGAM \(=\) LPA + MAXO(IM, JN \()\) & & INP & 219 \\
\hline & LAST \(=\) LGAM + I LM & & & \\
\hline &  & + 1ABS(MTP) + MT*ITL & & \\
\hline
\end{tabular}
TLISIZ.FOR Wedrescday, February 21, 1990 12:31 pm Page 55
LAST = MaxO(LAST, ITEMP)WRITE (NOUT, 316) LAST
315 IF (LAST.GT.50000) CALL ERR02 (' INP',315,1)
316 FORBUT(THOLAST \(=\), 17)DO 317 1=1, ITEMP
\(317 \quad \mathrm{~A}(1)=0.0\)
C READ CROSS SECTIONS AND WRITE CROSS SECTION TAPE ..... INP 237
CALL S860(A(LHO),A(LCO),ITL,IGN,MT,ML,A(LATW),A(LHOLN),A(LALAM)) DO 325 I=LCO, LAST ..... WLP
\(325 \quad \mathrm{~A}(1)=.0\) ..... 1HP 240
C READ FLUXES AND WRITE FLUX TAPE ..... INP 241
CALL SB62(ACLNO), A(LRO), A(LZO)) ..... INP 242
C READ EXTERMAL SOURCE ..... INP 243
If (104) 328,326,328 ..... INP 244
326 CALL SB64 (A(LS2))
328 CONTIME ..... IMP 246
WRITE (NOUT, 330) ..... IMP 247
330 FORMAT(51HOMESH BOUNDARIES (RO/ZO=RADIAL POINTS/AXIAL POINTS)) ..... INP 248
C READ RADIAL INTERVALS ..... IWP 249
CALL REAG2(' RO', A(LRO), IP) ..... HVX
- READ axial intervals ..... INP 251
CALL REAG2(' Z \(\left.\mathbf{Z O}^{\prime}, \mathrm{A}(\mathrm{LZO}), \mathrm{JP}\right)\) ..... HVX
C READ ZONE MLHBERSINP 253
1F (WPRT .GT. 1) 60 to 335
CALL REARI2 (' IMP',A(LMO), IMJM) ..... hRA2
CO TO 345
335 LRITE (MOUT, 340) ..... INP 254
340 FGRMAT( \(30 H O Z O W E\) MUNBERS BY MESH INTERVAL) ..... INP 255
CALL REART2 (' M0', A(LMO),IMJM) ..... HRA2
c READ MATERIAL HLNBERS ..... INP 257
345 WRITE(MOUT,350) ..... IMP 258
350 FORNAT (25HOMATERIAL NUMBERS BY ZONE) ..... INP 259
CALL REAR12(' M2',A(LM2),IZH) HRAZ
[F(JO6-5) 351,352,351 ..... INP 261
351 IF (BUCK) 352,358,352 ..... INP 262
352 URITE (NOUT,354) ..... INP 263
354 FORMAT(3OHOBUCKLING COEFFICIENTS BY ZONE) ..... IMP 264
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{TLIST} & T2.FOR Wechesday, February 21, 1990 12:31 pm & & \\
\hline & Call reagz(' GAM', A(LGAM), IzM ) & HVX & \\
\hline 358 & continue & INP & 266 \\
\hline \multirow[t]{2}{*}{c} & READ FISSIOM fractions & INP & 267 \\
\hline & WRITE (NOUT, 360) & INP & 268 \\
\hline \multirow[t]{2}{*}{360} & FORMAT (17THOFISSION SPECTRUW) & INP & 269 \\
\hline & CALL REAG2(' K7',A(LK7), IGM) & HVX & \\
\hline \multirow[t]{2}{*}{c} & read velocities & 1NP & 271 \\
\hline & ```
IF (104 .EO. 2 .OR. SO2 .EQ. 2) CO TO 365
GO TO 375
``` & & \\
\hline 365 & HRITE(NOUT,370) & INP & 272 \\
\hline \multirow[t]{2}{*}{370} & FORMAT (17HONEUTROW VELOCITY) & INP & 273 \\
\hline & CALL REAG2(' V7',A(LV7), 1GM) & HVX & \\
\hline 375 & IF(M01) 400, 400, 380 & INP & 275 \\
\hline 380 & WRITE(NOUT, 390) & IMP & 276 \\
\hline \multirow[t]{5}{*}{390} & format ('OnIXture spectfications (10/[1/I2=mix number/mat. number & & \\
\hline & 1FOR MIX/MAT. DEMSITY)' & & \\
\hline & CALL REARI2(' \(\left.10^{\prime}, \mathrm{A}(\mathrm{L} 10), \mathrm{MO} 1^{\prime}\right)\) & HRA2 & \\
\hline & CALL REARI2(') 11',A(L11),M01) & HRAZ & \\
\hline & Call reagz(' 12',A(LI2),M01) & HVX & \\
\hline 400 & CONTINSE & 1 MP & 282 \\
\hline \multirow[t]{2}{*}{c} & Check for delta calculation & 1MP & 283 \\
\hline & 1F(104-4) 440, 410,440 & INP & 284 \\
\hline 410 & WRITESNOUT,420) & 1 MP & 285 \\
\hline \multirow[t]{5}{*}{420} & FORMAT (1H0, delta optiow data (r2/R3=RADIAL ZONE MUMBERS/ZONE MOO & & \\
\hline & (1FIERS)') & & \\
\hline & Call reariz(' R2',A(LR2), tm) & HRA2 & \\
\hline & CALL REAG2(' R3',A(LR3),12) & NVX & \\
\hline & WRITE(NOUT, 430) & HRA2 & \\
\hline \multirow[t]{4}{*}{430} & FORMAT (1HD, 'DELTA OPTIOM DATA (Z2/23=AXIAL ZOWE NUWBERS/ZONE MCOI & & \\
\hline & (fiers)') & & \\
\hline & CALL REARI2(' Z2',A(LZ2), JM) & hraz & \\
\hline & call reagz(' 23',A(l23), JZ) & HVX & \\
\hline \multirow[t]{3}{*}{440} & cowtimue & INP & 292 \\
\hline & If (nact.gt.0)then & HRA3 & \\
\hline & WRITE (NOUT,490) & HRA3 & \\
\hline \multirow[t]{3}{*}{490} & FORMAT (1HO, 'ACTIVITY POSITION DATA') & HRA3 & \\
\hline & call reariz(' acpos', A(Lacpos), nact) & HRA3 & \\
\hline & WRITE(NOUT,*) & HRA3 & \\
\hline
\end{tabular}
```

TLIST2.FOR
Wechesday, February 21, 1990 12:31 pm
Page 57
ENDIF HRA3
CALL MAPR(A(LMO),A(LM2),IM, JM,A(LCO)) INP 300
RETURM
END INP 302
SUBROUTINE INPBCMATM,NBR,LD,LCN,LFN,ALAM,HOLM, JML,12) INPB 2
IMCLUDE 'ABC.FOR'
DIMENSION MATN(1), NBR(1), LD(1),LCM(JNL,1),LFN(JML,1), ALAM(1), IMPB 4
1 HOLH(JML,1), I2(1)
DIMENSION IDUN(12)
CALL REAI2 (' INPB',ITEMP,1)
DELT =.0
1F (ITEMP .NE. 0) CALL REAGZ (' INPG*,DELT, 1)
DAY = DAY + DELT INPB 9
CVT =0 1NPB 10
CNT = 0
PO2 = 0 INPA 12
ALA =0.0
LAP =0.0 INPB 14
LAPP = 0.0
LAR=0.0 INPB 16
KPAGE =100 INPB 1
IF(1TEMP) 100, 15, 20 LLP
NCON = ITENP INPB 18
60 T0 100 INPB 24
INPB 6
THIS SUBROUTINE READS AND PRINTS THE BURNUP DATA
INPS 10
INPB 13
INPB }1
20 NCON = ITEMP INPB 25
DO 40 M=1, NCON 1NPG 26
RENIND MSCRAT
CALL REAI2 (' [NPA',IDUN(1),12)
LRITE (NSCRAT) (IDUM(I),I=1,12)
REWIND NSCRAT
READ (NSCRAT) MATN(N),NBR(N),LD(N),(LCN(N,K),K=1,2),(LFN(N,K), INPB 28
1K=1,7)
INPB 29
REWIMD NSCRAT
1TEMP=MATN(N)
CALL REAG2 (' INPB' ALAN(ITEMP),1)
4 0
CONTINUE

```
\begin{tabular}{|c|c|c|c|}
\hline & WRITE(MOUT, 60) & INPB & 30 \\
\hline \multirow[t]{2}{*}{60} & FORMAT (12H1日URNUP DATA///) & IMPB & 31 \\
\hline & MRITE (NOUT, 70) & INPB & 32 \\
\hline \multirow[t]{5}{*}{70} & FORMATC1H,'BURMABLE MAT. NAME LAMBDA NBR ***' & & \\
\hline & 1, SOURCE ISOTOPE FOR * * * * \(/\) & & \\
\hline & 2 1H, ISOTOPE NO. (DAYS-1) DECAY', & & \\
\hline & \(12 \mathrm{X},{ }^{\text {' CAPTURE }}\) (FiSSION'/) & & \\
\hline & DO \(90 \quad N=1\), NCOM & INPB & 39 \\
\hline \multirow[t]{4}{*}{80} & & & \\
\hline & ITEMP = MATN(N) & INPB & 42 \\
\hline & WR1TE(MOUT, BO) \(N\), MATN(\(N\)), (HOLN(ITEMP, K), \(K=1,2)\), ALAM(ITEMP), & & \\
\hline & 1 NBR(N), LD(N), (LCN(\(N, K\), \(, K=1,2), \quad(L F N(N, K), K=1,7)\) & & \\
\hline 90 & ALAM (ITENP) \(=\) ALAN(ITEMP)/(3600.*24.) & 1NPB & 46 \\
\hline \multirow[t]{14}{*}{100} & CONT INUE & WLP & \\
\hline & RETURN & & \\
\hline & END & INPB & 48 \\
\hline & SUBROUTINE MAPR (MO,M2, JIM, JJM, K) & MAR & 1 \\
\hline & IWCLLDE 'ABC.FOR' & & \\
\hline & DIMEMSION MO(JIM, JJM), N2(1), K(1) & MAR & 3 \\
\hline & DIMEMSION FKT1(3), FMT2(3), FMT3(3), PARK(2), PICT (2), MARK(2) & MAR & 4 \\
\hline & CMARACTER*6 FNT1, FMT2, FMT3, MARK, PARK, PICT, MARK1 & HVX & \\
\hline & & HVX & \\
\hline & DATA FIT2/' (10x, ', ', ', \({ }^{\prime}\) (\({ }^{\text {, }}\) & HVX & \\
\hline & DATA FMT3/'(10x, ', ', '') '/ & HVX & \\
\hline & DATA MARK/" "s'," "\%/ & HVX & \\
\hline & DATA PARK/'60A2)',40A3)' & HVX & \\
\hline & DATA PICT/'6012)', 4013)'/ & HVX & \\
\hline \multirow[t]{3}{*}{C} & PROOLICE A PICTURE PRINT BY ZONE AND MATERIAL & MAR & 11 \\
\hline & M \(1=0\) & MAR & 22 \\
\hline & DO \(100 \mathrm{KZH}=1,12 \mathrm{H}\) & MAR & 23 \\
\hline \multirow[t]{3}{*}{100} & \(\mathrm{NI}=\mathrm{MaxO}(\mathrm{NI}, \mathrm{M} 2(\mathrm{~K} 2 \mathrm{M}) / 100)\) & MAR & 24 \\
\hline & D0 \(110 \mathrm{l}=1\), IM & MAR & 25 \\
\hline & D0 110 J=1, JM & MAR & 26 \\
\hline \multirow[t]{4}{*}{110} & NI \(=\) MaxO \((N 1, M 0(I, d) / 100)\) & MAR & 27 \\
\hline & \(\mathrm{NL}=\mathrm{N}]+1\) & MAR & 28 \\
\hline & IF (N1.GT. 2) \(\mathrm{NL}=2\) & MAR & 29 \\
\hline & FMT1(3)=PICT(NL) & MAR & 30 \\
\hline
\end{tabular}
FMT2(3) \(=\mathrm{P} 1 \mathrm{CT}\) (N1) MAR 31FMT3(3)=PARK(NI)MAR 32
MARKI -MARK (NI) MAR 33
\(\mathrm{NN}=1\) MAR 34
 MAR 35
JF (M1.EQ.2) \(M=40\) MAR 36
12015 (MN.GT.IM) MM=1M MAR 37
WRTTE (NOUT, 190) (ID (I), I=1,20) MAR 38
DO \(130 \mathrm{JJ=1}\), JM MAR 39
\(\mathrm{J}=\mathrm{JM}-\mathrm{J} \mathrm{J}+1\) MAR 40
130 WRITE (NOUT, FMT1) \(\mathrm{J}_{\mathrm{l}}(\mathrm{MO}(1, \mathrm{~J}), \mathrm{I}=\mathrm{NN}, \mathrm{MM})\) MAR 41
WRITE (NOUT, FMT3) (HARKI, \(I=N \mathrm{NH}\), MH) MAR 42
WRITE (NOUT, FHT2) (\(\mathrm{I}, \mathrm{I}=\mathrm{NN}, \mathrm{NW}\)) MAR 43
WRITE (NOUT, 200) MAR 44
[F (NN.EQ.IN) GO TO 140 MAR 45
\(\mathrm{NN}=\mathbf{y}+\mathrm{M}+1\) MAR 46
\(\mathrm{MM}=\mathrm{M} \mathrm{M}+\mathrm{NN}-1\) MAR 47
EO TO 120140 CONTINUEMAR 49
\(\mathrm{MH}=1\) MAR 50
\(N_{M}=60\) MAR 51
IF (NI.EO.2) MN=40 MAR 52
150 IF (NN.GT.IM) MNIM MAR 53
LRITE (MONT, 190) (IO(1), \(I=1,20\)) MAR 54
DO \(170 \mathrm{JJ}=1, \mathrm{JM}\) MAR 55
\(\mathrm{J}=\mathrm{JM}-\mathrm{JJ}+1\) MAR 56
DO \(160 \mathrm{~L}=\mathrm{NH}, \mathrm{NH}\) MAR 57
\(\mathrm{NaHO}(\mathrm{L}, \mathrm{J})\) MAR 58
160 K(L) \(=1 A B S(M 2(N))\) MAR 59
170 WRITE (NOUT, FNT1) J, (K(L),L=NN,NW) MAR 60
WRITE (NOUT, FMT3) (HARKI, I =NN, MN) MAR 61
LRITE (NONT, FMT2) (\(1, I=N N, W N\)) MAR 62
WRITE (NOUT, 200) MAR 63
IF (MA.EQ.IM) tO TO 180 MAR 64
\(N \mathrm{~N}=\mathrm{V}+\mathrm{N}+1\) MAR 65
\(\mathrm{MN}=\mathrm{F}+\mathrm{NHN}-1\) MAR 66
GO TO 150 MAR 67
180 RETURN MAR 68
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{TLIST2.FOR Wechesday, February 21, 1990 12:31 pm} & \multicolumn{2}{|l|}{Page 60} \\
\hline 190 & FORMAT (\(1 \mathrm{H} 1,20 \mathrm{~A} / / / /\)) & MAR & 70 \\
\hline \multirow[t]{8}{*}{200} & & MAR & 71 \\
\hline & END & MAR & 72 \\
\hline & SUBROUTINE MARCHCPHIB, MATN, FXS, AXS, VOL , MASS, MASSP, ALAH, LD, LCN, & MARC & 2 \\
\hline & 1 LFN, JML, 10, I1, I2, M2) & MARC & 3 \\
\hline & DIMENSION PHIB(1), MATM(1), FXS(JML, 1),AXS(JML, 1), VOL (1), & MARC & 4 \\
\hline & 1 MASS(JML, 1), MASSP (JML, 1), ALAM(1), LD(1), LCN(JML, 1), & MARC & 5 \\
\hline & 2 LFW(JML, 1), 10(1), 11(1), 12(1), M2(1) & MARC & 6 \\
\hline & \multicolumn{3}{|l|}{INCLUDE 'ABC.FOR'} \\
\hline \multirow[t]{7}{*}{c} & this subroutime computes the time dependent isotopic concentration & NMARC & 8 \\
\hline & TEMP \(=\) DELT * 24. * 3600. / 10. & MARC & 9 \\
\hline & TEMP1 \(=.0\) & MARC & 10 \\
\hline & \(005 \mathrm{kz}=1,1 \mathrm{~mm}\) & Marc & 11 \\
\hline & PHIB(KZ) \(=\) PHIB(KZ) * 10.** (-24) & MARC & 12 \\
\hline & DO \(5 \mathrm{kN}=1\), NCON & MARC & 13 \\
\hline & \(L \times=\) MATH (KN) & MARC & 14 \\
\hline \multirow[t]{6}{*}{5} & TENP1 = TEMP1 + FXS(KM,KZ)*PHIB(KZ)*MASS(LN,KZ)*VOL(KZ) & MARC & 15 \\
\hline & DO \(200 \mathrm{KT}=1,10\) & MARC & 16 \\
\hline & TEMP3 \(=.0\) & MARC & 17 \\
\hline & DO \(20 \mathrm{KZ}=1.12 \mathrm{M}\) & Marc & 18 \\
\hline & DO \(20 \mathrm{KH}=1, \mathrm{nCON}\) & MARC & 19 \\
\hline & LN = MATH(KN) & MARC & 20 \\
\hline \multirow[t]{5}{*}{20} & MASSP(LH, KZ) \(=\) MASS \((L M, K Z)\) & Marc & 21 \\
\hline & Do \(100 \mathrm{KZ}=1,12 \mathrm{M}\) & MARC & 22 \\
\hline & DO \(50 \mathrm{KKK}=1,5\) & MARC & 23 \\
\hline & DO \(50 \mathrm{KN}=1, \mathrm{NCOM}\) & MARC & 24 \\
\hline & \(L M=\) MATM(KN) & MARC & 25 \\
\hline \multirow[t]{2}{*}{cce} & WARNING Warnimg & HRA2 & \\
\hline & & MARC & 26 \\
\hline cc & Owty use above hhen siciu abs does include sigma fis & hraz & \\
\hline c & & hraz & \\
\hline c & \(1(A X S S K N, K Z)+\) FXS \((K W, K Z)\rangle * P H 1 B(K Z))\) & HRA2 & 2 \\
\hline \multicolumn{4}{|l|}{6} \\
\hline & 1 F (LD(KH)) 30, 30, 28 & MARC & 27 \\
\hline \multirow[t]{3}{*}{28} & KK \(=\) LD(KN) & MARC & 28 \\
\hline & KK = MATN(KK) & marc & 29 \\
\hline & TEMP2 \(=\) TEMP2 + ALAM \((K K) *\) (MASS \((K X, K Z)+\) MASSP \((K K, K Z))\) & MARC & 30 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & T2.FOR Wednesday, February 21, 1990 12:31 pm & \multicolumn{2}{|l|}{Page 61} \\
\hline \multirow[t]{4}{*}{} & D0 \(32 \mathrm{~K}=1,2\) & MARC & 31 \\
\hline & \(\mathbf{K K}=\mathrm{LCN}(\mathrm{KH}, \mathrm{K})\) & MARC & 32 \\
\hline & \(K L=\operatorname{MaTn}(\mathrm{KK})\) & MARC & 33 \\
\hline & IF (KK) 32,32,31 & MARC & 34 \\
\hline CCC & WARWING MARWING & hraz & \\
\hline 31 & & MARC & 35 \\
\hline cc & Only use above when sigin abs does thclude sigua fis & HRA2 & \\
\hline C31 & TEMPZ \(=\) TEMPZ + (AXS (KK, KZ) \()^{\text {\# P PHIE }}\) (KZ \()^{*}\) & HRA2 & 3 \\
\hline \multicolumn{4}{|l|}{5} \\
\hline & 1 (MASS (KL, KZ) * MASSP (KL, KZ)) & MARC & 36 \\
\hline \multirow[t]{5}{*}{32} & contimue & MARC & 37 \\
\hline & Do \(36 \mathrm{~K}=9,7\) & MARC & 38 \\
\hline & \(\mathrm{KK}=\mathrm{LFH}(\mathrm{KN}, \mathrm{K})\) & MARC & 39 \\
\hline & \(K L=\operatorname{MATN}(\mathrm{KK})\) & MARC & 40 \\
\hline & IF (KK) 36,36,34 & MARC & 41 \\
\hline CCC & THE BELON IS FOR YIELDS OF FISSION PRCDUCT POISOWS & HRA2 & \\
\hline C34 & YIELO \(=1.0\) & & \\
\hline c & IFCKL.EQ.1)THEN & & \\
\hline c & IF (LN.EQ.7)YIELD=0.061 & & \\
\hline c & IFCLW.EQ.8)YIELD \(=0.003\) & & \\
\hline c & IF [LW.EO.9)YIELD \(=0.0113\) & & \\
\hline c & IF(LN.EQ.11)YIELD=1.0 & & \\
\hline c & ENDIF & & \\
\hline c & IF (KL.EQ.6)THEN & & \\
\hline c & IFCLN.EQ.7)YIELD=0.055 & & \\
\hline c & IF(LH.EQ.8)YIELD \(=0.000\) & & \\
\hline c & IFIL. \(E\) O.9)YIELD \(=0.019\) & & \\
\hline c & IF(LM.EQ.11)YIELD=1.0 & & \\
\hline c & ENDIF & & \\
\hline C34 & TEMP2=TEMP2+YTELD+FXS(KK,KZ) \#PHIB(KZ)*(MASS \((K L, K Z)+\) MASSP(KL, KZ) \()\) & HRAZ & 4 \\
\hline \multicolumn{4}{|l|}{2} \\
\hline ccc & The above is for yieldo of fissiow proouct poisows & & \\
\hline 34 & & MARC & 42 \\
\hline 36 & cowtinue & MARC & 43 \\
\hline \multirow[t]{3}{*}{50} & MASS \((L W, K Z)=\) MASSP(LN, KZ \()+.5 * T E M P * T E M P Z ~\) & MARC & 44 \\
\hline & DO \(100 \mathrm{KN}=1\), NCON & MARC & 45 \\
\hline & \(\mathbf{L N}=\mathrm{MATN}(\mathrm{KN})\) & MARC & 46 \\
\hline 100 & & MARC & 47 \\
\hline
\end{tabular}

```

    If (HOL(I).EQ.'C') GO TO 55
    If (HOL(I).EQ.'F') GO TO 55
    If (HOL(I).EQ.'R') GO TO 55
    IF (HOL(T).EO.'1') GO TO 55
    LE(L)=LE(L)+1
    HE(L)(LE(L):LE(L))=HOL(L)
    G0 to 40
    55 IF (LE(L).GT_0) L=L+1
LE(L)=1
HE(L)(1:1)= HOL(1)
IF (HOL(I).EQ.'R' .OR. HOL(1).EQ. '1') GO TO 30
GO TO 100
60 IF (LE(L) .EO. 0) GO TO 40
G0 TO 30
100 LL=L
L=0
110 L=L+1
IF (L .GT. LL) GO TO 1
If (HE(L)(1:1).EQ.'T') क0 To 150
IF (HE(L)(1:1).EQ.'C') GO To 115
IF (HE(L)(1:1).EQ. 'F') }60\mathrm{ TO 120
1F (HE(L)(1:1).EO. 'R') GO TO 130
IF (HE(L)(1:1).EQ.'I') GO TO 140
J=J+1
READ (HE(L)(1:LE(L)),112) ARRAY(J)
C DECODE (LE(L),112,HE(L)) ARRAY(J)
112 FORMAT (E20.2)
co TO 110
c crCle
115 READ (HE{L+1)(1:LE(L+1)),132) J1
C115 DECOOE (LE(L+4),132,HE(L+1)) J1
READ (HE(L+2)(1:LE(L+2)),132) J2
C DECOOE (LE(L+2),132,HE(L+2)) J2
J0 = J
d0 119 K1=1,J1
DO 119 k2=1, J2
J=\
119 ARRAY(J)=ARRAY(JO - J2 + K2)

```
```

TLIST2.FOR
Wednesday, February 21, 1990 12:31 pm

```
```

        L=L+2
    ```
 L=L+2
 60 TO 110
 60 TO 110
 c FILL
 c FILL
 120 DO 125 JJ=J+1,NCOUNT
 120 DO 125 JJ=J+1,NCOUNT
 125 ARRAY(JJ)=ARRAY(J)
 125 ARRAY(JJ)=ARRAY(J)
 J=NCOUNT
 J=NCOUNT
 GO TO }45
 GO TO }45
 C REPEAT
 C REPEAT
 130 READ (HE{L+1)(1:LE(L+1)),132) J1
 130 READ (HE{L+1)(1:LE(L+1)),132) J1
 C130 DECOOE (LE(L+1),132, HE(L+1)) J1
 C130 DECOOE (LE(L+1),132, HE(L+1)) J1
 132 FORMAT (I20)
 132 FORMAT (I20)
 REAO (HE(L+2)(1:LE(L+2)),112) T1
 REAO (HE(L+2)(1:LE(L+2)),112) T1
 C DECCOE (LE(L+2),112,HE(L+2)) I1
 C DECCOE (LE(L+2),112,HE(L+2)) I1
 DO 135 JJ=J+1, J+J1
 DO 135 JJ=J+1, J+J1
 135 ARRAY(JJ)=T1
 135 ARRAY(JJ)=T1
 J=\+J1
 J=\+J1
 L=L+2
 L=L+2
 so 10 110
 so 10 110
 c IMTERPOLATE
 c IMTERPOLATE
 140 READ <HE(L+1)(1:LE(L+1)),132) J1
 140 READ <HE(L+1)(1:LE(L+1)),132) J1
 C140 DECOOE (LE(L+1),132,HE(L+1)) J1
 C140 DECOOE (LE(L+1),132,HE(L+1)) J1
 REND (HE(L+2)(1:LE(L+2)),112) ARRAY(J+J1+1)
 REND (HE(L+2)(1:LE(L+2)),112) ARRAY(J+J1+1)
 C DECOCE (LE(L+2),112,HE(L+2)) ARRAY(J+J1+1)
 C DECOCE (LE(L+2),112,HE(L+2)) ARRAY(J+J1+1)
 T1= (ARRAY(J+J1+1) - ARRAY(J))/(J1+1)
 T1= (ARRAY(J+J1+1) - ARRAY(J))/(J1+1)
 D0 145 JJ=J+1, J+J1
 D0 145 JJ=J+1, J+J1
 145 ARRAY(JJ)= ARRAY(JJ-1) + TI
 145 ARRAY(JJ)= ARRAY(JJ-1) + TI
 J=\ +J1+1
 J=\ +J1+1
 L=L+2
 L=L+2
 co TO 110
 co TO 110
 150 1F (HOLL .EQ. ' INP') GO TO 155
 150 1F (HOLL .EQ. ' INP') GO TO 155
 1F (HOLL .EQ. ' INPB') GO TO 155
 1F (HOLL .EQ. ' INPB') GO TO 155
 IF (HOLL .EQ. ' S860') 60 TO 155
 IF (HOLL .EQ. ' S860') 60 TO 155
 HRJTE (MOUT, 160) HOLL,J,(ARRAY(I),I=1,J)
 HRJTE (MOUT, 160) HOLL,J,(ARRAY(I),I=1,J)
 155 IF (J-NCOUNT) 170,180,170
 155 IF (J-NCOUNT) 170,180,170
 160 FORMAT (6X,A6,16/(6E12.5))
 160 FORMAT (6X,A6,16/(6E12.5))
 170 call ERRO2 (' REAG2',170,1)
 170 call ERRO2 (' REAG2',170,1)
 180 RETURN
 180 RETURN
 END
```

        END
    ```
Page 64
```

        SUBROUTINE RREAG2(HOLL, A, MCOUNT)
        REAG2001
    cec replace all format statements uith * on a vax
HRA2
COMWON MSORCE,NINP, NOUT
DIMENSION ARRAY (1), HOL(80), HE(40),LE(40)
CRARACTER*6 HOLL
CHARACTER*1 HOL
CHARACTER*20 HE
J=0
1 READ (NINP, 10) (HOL(1),1=1,80)
10 FORMAT (80A1)
DO 20 L=1,40
20 LE(L)=0
I=0
L=0
30 L=L+1
40 t=I+1
IF(I.LE.80) GO TO 50
L=L-1
60 TO 100
50 IF (HOL(t).EO.' ') 60 TO 60
IF (HOL(I).EO.'T') GO TO 55
IF (HOL(I).EO.'C') GO TO 55
IF (HOL(I).EQ.'F') GO TO 55
IF (HOL(I).EO.'R') GO TO 55
tF (HOL(I).EO.'I') 6O TO 55
LE(L)=LE(L)+1
HE(L)(LE(L):LE(L))=HOL(I)
GO TO 40
55 IF (LE(L).6T.0) L=L+1
LE(L)=1
HE(L)(1:1)= HOL(I)
IF (HOL(I).EQ.'R' .OR. HOL(I).EQ. 'I') GO TO 30
GO TO 100
60 1F (LE(L) .EO. 0) GO TO 40
60 TO 30
100 LL=L
L=0
110 L=L+1

```
```

    IF (L .GT. LL) GO TO 1
    IF (HE(L)(1:1).EQ.'T') GO TO 150
    IF (HE(L)(1:1).EO.'C') GO TO 115
    IF (HE(L)(1:1).EQ. 'F') CO TO 120
    IF (HE(L)(1:1).EQ. 'R') GO TO 130
    If (HE(L)(1:1).EQ.'1') कO TO 140
    Ja.j+1
    READ (HE(L)(1:LE(L)),112)A
    C DECOOE (LE(L),112,HE(L)) A
112 FORMAT (E20.2)
GO TO 110
C CYCLE
115 READ (HE(L+1)(1:LE(L+1)),132) J1
C115 DECODE (LE(L+1),132,HE(L+1)) J1
READ (HE{L+2)(1:LE(L+2)),132) J2
C DECODE (LE(L+2),132,HE(L+2)) J2
J0 = J
DO 119 K1=1, J1
00 119 K2=1, J2
J=J+1
119 ARRAY(J)=ARRAY(JO - J2 + KZ)
L=L+2
GO TO 110
G FILL
120 DO 125 JJ=J+1, NCOUNT
125 arRAY(JJ)=ARRAY(J)
J=NCOUNT
GO TO 150
C repeat
130 READ (HE(L+1)(1:LE(L+1)),132) J1
C130 DECOOE (LE{L+1),132,HE(L+1)) J1
132 FORMAT (120)
READ (HE(L+2)(1:LE(L+2)),112) T1
C DECOOE (LE(L+2),112,HE(L+2)) T1
DO 135 JJ=\+1,J+J1
135 ARRAY(JJ)=T1
J=J+J1
L=L+2

```
```

TLIST2.FOR
Wechesday, February 21, 1990 12:31 pm

```
 GO TO 110
```

        GO TO 110
    c Interpolate
c Interpolate
140 REND (HE(L+1)(1:LE(L+1)),132) d1
140 REND (HE(L+1)(1:LE(L+1)),132) d1
C140 DECODE (LE(L+1),132,HE(L+1)) J1
C140 DECODE (LE(L+1),132,HE(L+1)) J1
READ (HE{L+2)(1:LE(L+2)),112) ARRAY(J+J1+1)
READ (HE{L+2)(1:LE(L+2)),112) ARRAY(J+J1+1)
c DECODE (LE (L+2),112,HE(L+2)) ARRAY(J+J1+1)
c DECODE (LE (L+2),112,HE(L+2)) ARRAY(J+J1+1)
Tf= (ARRAY(J+J1+1) - ARRAY(J))/(J1+1)
Tf= (ARRAY(J+J1+1) - ARRAY(J))/(J1+1)
DO 145 JJ= J+1,J+J1
DO 145 JJ= J+1,J+J1
145 ARRAY(JJ)= ARRAY(JJ-1) + T1
145 ARRAY(JJ)= ARRAY(JJ-1) + T1
J=J +J1+1
J=J +J1+1
L=L+2
L=L+2
GO TO 110
GO TO 110
150 [F (HOLL .EQ. ' [NP') GO TO 155
150 [F (HOLL .EQ. ' [NP') GO TO 155
If (HOLL .EQ.' INPB') GO TO 155
If (HOLL .EQ.' INPB') GO TO 155
If (HOLL .EQ. ' S860') GO TO }15
If (HOLL .EQ. ' S860') GO TO }15
WR1TE (WOUT,160) HOLL, J,(ARRAY(I),1=1,J)
WR1TE (WOUT,160) HOLL, J,(ARRAY(I),1=1,J)
155 IF (d-NCOUNT) 170,180,170
155 IF (d-NCOUNT) 170,180,170
160 FORMAT (6X,A6,16/(6E12.5))
160 FORMAT (6X,A6,16/(6E12.5))
170 CALL ERRO2 (' REAG2', 170,1)
170 CALL ERRO2 (' REAG2', 170,1)
180 RETURN
180 RETURN
EWD
EWD
SURROUTINE REAI2(HOLL,IARRAY,NCOUNT) REAI2001
SURROUTINE REAI2(HOLL,IARRAY,NCOUNT) REAI2001
COWNON MSORCE, WINP, NOUT
COWNON MSORCE, WINP, NOUT
DIMENSION JARRAY (1), HOL(80),ME(40),LE(40)
DIMENSION JARRAY (1), HOL(80),ME(40),LE(40)
CHARACTER*6 HOLL
CHARACTER*6 HOLL
CHARACTER*1 MOL
CHARACTER*1 MOL
CHARACTER*2O HE
CHARACTER*2O HE
J=0
J=0
1 READ (NINP, 10) (HOL(I),I=1,80)
1 READ (NINP, 10) (HOL(I),I=1,80)
10 FORHAT (80A1)
10 FORHAT (80A1)
DO 20 L=1,40
DO 20 L=1,40
20 LE(L)=0
20 LE(L)=0
1=0
1=0
L=0
L=0
30 L=L+1
30 L=L+1
40 t=}+1
40 t=}+1
IF (HOL(I) .EQ. '/') GO TO 45
IF (HOL(I) .EQ. '/') GO TO 45
IF(I,LE.80) GO TO 50

```
 IF(I,LE.80) GO TO 50
```

```
45 L=L-1
 co TO 100
 50 IF (HOL(I).EQ.' ') GO TO 60
 IF (HOL(I).EQ.'T') GO TO 55
 IF (HOL(1).EQ.'F') CO TO 55
 IF (HOL(I).EQ.'R') CO TO 55
 IF (HOL(I).EQ.'I') GO TO 55
 IF (HOL(I) .EO. 'C') GO TO 55
 LE(L)=LE(L)+1
 HE(L)CLE(L):LE(L))=HOL(I)
 GO TO 40
55 IF (LE(L).GT,O) L=L+1
 LE(L)=1
 HE(L)(1:1)= HOL(1)
 IF (HOL(I) .EQ. 'C') GO TO 30
 IF (HOL(I).EO.'R' .OR. HOL(I).EQ. 'I') GO TO 30
 G0 TO 100
 60 IF (LE(L) .EQ. 0) GO TO 40
 GO TO 30
 100 LL=L
 L=0
 110 L=L+1
 1F (L .GT. LL) GOTO %
 IF (HE(L)(1:1).EQ.'T') GO TO 150
 If (HE(L)(1:1).EQ. 'C') GO TO 115
 IF (HE(L)(1:1).EQ. 'F') क0 TO 120
 IF (HE(L)(1:1).EQ. 'R') GO TO 130
 IF (HE(L)(1:1).EQ.'I') SO TO 140
 J=J+1
 READ (HE(L)(1:LE(L)),112) IARRAY(J)
 c DECODE (LE(L),112,HE(L)) IARRAY(J)
 112 FORMAT (I20)
 GO TO }11
 c CYCLE
 115 READ (HE(L+1)(1:LE(L+1)),112) J1
 C115 DECODE (LE(L+1),112,HE(L+1)) J1
 READ (HE(L+2)(1:LE(L+2)),112) J2
C DECODE (LE(L+2),112,HE(L+2)) J2
```

```
TLIST2.FOR
Wednesday, February 21, 1990 12:31 pm
```

```
 J0 = J
```

        J0 = J
        DO 119 K1=1,J1
        DO 119 K1=1,J1
        DO 119 K2=1, J2
        DO 119 K2=1, J2
        J=J+1
        J=J+1
    119 IARRAY(J)=IARRAY(JO - J2 + KZ)
119 IARRAY(J)=IARRAY(JO - J2 + KZ)
L=L+2
L=L+2
GO TO 110
GO TO 110
C FILL
C FILL
120 DO 125 JJ=J+1, NCOUNT
120 DO 125 JJ=J+1, NCOUNT
125 IARRAY(JJ)=IARRAY(J)
125 IARRAY(JJ)=IARRAY(J)
J=uCOUNT
J=uCOUNT
GO TO 150
GO TO 150
c REPEAT
c REPEAT
130 READ (HE(L+1)(1:LE(L+1)),112) J1
130 READ (HE(L+1)(1:LE(L+1)),112) J1
C130 DECOOE (LE(L+1),112,HE(L+1)) J1
C130 DECOOE (LE(L+1),112,HE(L+1)) J1
READ (HE(L+2)(1:LE(L+2)),112) I1
READ (HE(L+2)(1:LE(L+2)),112) I1
C DECOOE (LE(L+2),112,HE(L+2)) 11
C DECOOE (LE(L+2),112,HE(L+2)) 11
DO 135 JJ=J+1, J+\sqrt{}{1}
DO 135 JJ=J+1, J+\sqrt{}{1}
135 IARRAY(JJ)=11
135 IARRAY(JJ)=11
J=J+J1
J=J+J1
L=L+2
L=L+2
co TO 110
co TO 110
c InTERPOLATE
c InTERPOLATE
140 READ (HE(L+1)(1:LE(L+1)),112) d1
140 READ (HE(L+1)(1:LE(L+1)),112) d1
C140 DECODE (LE(L+1),112,HE(L+1)) ل1
C140 DECODE (LE(L+1),112,HE(L+1)) ل1
REND (HE(L+2)(1:LE(L+2)),112) IARRAY(J+J1+1)
REND (HE(L+2)(1:LE(L+2)),112) IARRAY(J+J1+1)
C DECOOE (LE(L+2),112, ME (L+2)) larRRAY(J+J1+1)
C DECOOE (LE(L+2),112, ME (L+2)) larRRAY(J+J1+1)
I1= (IARRAY(J+J1+1) - IARRAY(J))/(J1+1)
I1= (IARRAY(J+J1+1) - IARRAY(J))/(J1+1)
DO 145 JJ=J+1,N+J1
DO 145 JJ=J+1,N+J1
145 IARRAY(JJ)= IARRAY(JJ-1) * 11
145 IARRAY(JJ)= IARRAY(JJ-1) * 11
J=J +J\+1
J=J +J\+1
L=L+2
L=L+2
GO TO \$10
GO TO \$10
150 IF (HOLL.EQ.' INP') GO TO 155
150 IF (HOLL.EQ.' INP') GO TO 155
IF (HOLL .EQ. ' IMPG') GO TO 155
IF (HOLL .EQ. ' IMPG') GO TO 155
IF (HOLL .EQ. ' S860') GO TO 155
IF (HOLL .EQ. ' S860') GO TO 155
WRITE (NOUT,160) HOLL,J,(IARRAY(I),I=1,J)
WRITE (NOUT,160) HOLL,J,(IARRAY(I),I=1,J)
155 IF (J-NCOUNT) 170,180,170

```
 155 IF (J-NCOUNT) 170,180,170
```

```
TLIST2.FOR
Wechesday, February 21, 1990 12:31 pm
Page 70
160 FORMAT (6X,A6,16/(1016))
170 CALL ERRO2 (' REA12', 170,1)
180 RETURN
 EMD
 SUBROUTINE REARIZ(HOLL,MIARRAY,NCOBNT) REAI2001
 COMNON WSORCE, HINP, NOUT
 dIMEMSION MIARRAY (1), HOL(80),HE(40),LE(40)
 CHARACTER*G HOLL
 character*1 hol
 CHaracter*zo he
 J=0
1 READ (NINP, 10) (HOL(I), I=1,80)
10 FORMAT (BOA1)
DO 20 L=1,40
20 LE(L)=0
 I=0
 L=0
 L=L+1
40 I=1+1
 IF (HOL(I) .EO. '/') GO TO 45
 IF(I.LE.80) GO TO 50
 45 L=L-1
 GO TO 100
50 IF (HOL(I).EQ.' ') GO TO 60
 IF (HOL(I).EQ.'T') GO TO 55
 IF (HOL(I).EQ.'F') GO TO 55
 IF (HOL(I).EQ.'R') GO TO 55
 IF (HOL(I).EQ.'I') GO TO 55
 IF (HOL(I) .EQ, 'C') GO TO 55
 LE(L)=LE(L)+1
 HE(L)(LE(L):LE(L))=HOL(I)
 GO TO 40
 1F (LE(L).GT.0) L=L+1
 LE(L)=1
 HE(L)(1:1)= HOL(1)
 IF (HOL(I) .EQ. 'C') GO TO 30
 IF (HOL(I).EQ.'R' .OR. HOL(I).EQ. 'I') GO TO 30
 co To 100
```

```
TLIST2.FOR
60 IF (LE(L) .EO. 0) GO TO 40
 GO TO 30
100 LL=L
 L=0
110 L=L+1
 IF (L .GT. LL) GO TO 1
 IF (HE(L)(1:1).EQ.'T') GO TO 150
 IF (HE(L)(1:1).EQ. 'C') GO to 115
 IF (HE(L)(1:1).EO. 'F') GO TO 120
 IF (HE(L)(1:1).EQ. 'R') GO TO 130
 1F (HE(L)(1:1).EQ.'I') GO TO 140
 J=\+1
 REND (HE(L)(1:LE(L)),112) MIARRAY(J)
C DECOOE (LE(L),112,HE(L)) RIARRAY(J)
112 FORMAT (I20)
 GO TO 110
C CYCLE
115 READ {HE(L+1)(1:LE(L+1)),112) J1
C115 DECODE (LE(L+1),112,HE(L+1)) J1
 READ (HE(L+2)(1:LE(L+2)),112) J2
C DECODE (LE(L+2),112,HE(L+2)) J2
 J0 = J
 DO 119 K1=1,\1
 DO 119 kZ=1,J2
 J=J+1
419 NIARRAY(J)=N1ARRAY(JO - J2 * K2)
 L=L+2
 GO T0 110
c FILL
120 DO 125 JJ=J+1,MCOUNT
125 MIARRAY(JJ)=WIARRAY(J)
 J=MCOUNT
 GO TO $50
C REPEAT
130 RENS (HE(L+1)(1:LE(L+1)),112) J1
c130 DECODE (LE(L+1),112,HE(L+1)) J1
 READ (HE(L+2)(1:LE(L+2)),112) 11
C DECOOE (LE(L+2),112,HE(L+2)) I1
```

Wechesday, February 21, 1990 12:31 pm

```
TLIST2.FOR
Wechesday, February 21, 1990 12:31 pm
Page 72
```

```
 D0 135 JJ= J+1,J+J1
```

        D0 135 JJ= J+1,J+J1
    135 M(ARRAY(JJ)=11
135 M(ARRAY(JJ)=11
J=\+\sqrt{}{1}
J=\+\sqrt{}{1}
L=L+2
L=L+2
GO TO }11
GO TO }11
c INTERPOLATE
c INTERPOLATE
140 READ (HE(L+1)(1:LE(L+1)),112) J1
140 READ (HE(L+1)(1:LE(L+1)),112) J1
C140 DECODE (LE(L+1),112,HE(L+1)) \1
C140 DECODE (LE(L+1),112,HE(L+1)) \1
READ (HE(L+2)(1:LE(L+2)),112) MIARRAY(J+J1+1)
READ (HE(L+2)(1:LE(L+2)),112) MIARRAY(J+J1+1)
C DECCOE (LE(L+2),112,HE(L+2)) MIARRAY( }++J1+1
C DECCOE (LE(L+2),112,HE(L+2)) MIARRAY( }++J1+1
I1= (MIARRAY(J+J{+1) - MJARRAY(J))/(J1+1)
I1= (MIARRAY(J+J{+1) - MJARRAY(J))/(J1+1)
DO 145 JJ= J+1, J+J1
DO 145 JJ= J+1, J+J1
145 miarRaY(JJ)= MIARRAY(JJ-1) + I1
145 miarRaY(JJ)= MIARRAY(JJ-1) + I1
J=J +J1+1
J=J +J1+1
L=L+2
L=L+2
tO TO }11
tO TO }11
150 IF (HOLL.EQ.' INP') 60 TO 155
150 IF (HOLL.EQ.' INP') 60 TO 155
IF (HOLL .EQ. , JMPS') Co To 155
IF (HOLL .EQ. , JMPS') Co To 155
IF (HOLL .EQ. ' S860') 60 to 155
IF (HOLL .EQ. ' S860') 60 to 155
WRITE (MOUT, 160) HOLL,J,(M1ARRAY(1),I=1,J)
WRITE (MOUT, 160) HOLL,J,(M1ARRAY(1),I=1,J)
155 IF (J-NCOUNT) 170,180,170
155 IF (J-NCOUNT) 170,180,170
160 FORMAT { }6\times,A6,16/(1016)
160 FORMAT { }6\times,A6,16/(1016)
170 CALL ERRO2 (' REAI2',170,1)
170 CALL ERRO2 (' REAI2',170,1)
180 RETURM
180 RETURM
EMD
EMD
SUBRCUTIME S860 (C,CO, JTL, JGM, JMT, JML, ATM, HOLW, ALNM)
SUBRCUTIME S860 (C,CO, JTL, JGM, JMT, JML, ATM, HOLW, ALNM)
INCLUDE 'ABC.FOR'
INCLUDE 'ABC.FOR'
DIWENSION C(JTL,JGM,JMT), CO(JTL,JMT), ATW(1), HOLN(JML,1),ALAM(1)
DIWENSION C(JTL,JGM,JMT), CO(JTL,JMT), ATW(1), HOLN(JML,1),ALAM(1)
DIMENSION XSD(50,50),XSR(50,50),XD(50),XR(50) HRA2
DIMENSION XSD(50,50),XSR(50,50),XD(50),XR(50) HRA2
C THIS SUBROUTINE READS CROSS SECTIONS, PERFDRMS ADJOINT S86 6
C THIS SUBROUTINE READS CROSS SECTIONS, PERFDRMS ADJOINT S86 6
C REVERSALS IF REquIRED, ANO LRITES CROSS SECTION TAPE S860 7
C REVERSALS IF REquIRED, ANO LRITES CROSS SECTION TAPE S860 7
WR!TE(NOUT,5) (ID(1), I=1,20) S860 B
WR!TE(NOUT,5) (ID(1), I=1,20) S860 B
5 FORMAT(1H1,20M4 ///) \$860 9
5 FORMAT(1H1,20M4 ///) \$860 9
10 WRITE (NOUT, 20) S860 11
10 WRITE (NOUT, 20) S860 11
20 FORMAT (55H CROSS SECTIOWS ARE READ-IN FOR THE FOLLOWING MATERIALSS860 12
20 FORMAT (55H CROSS SECTIOWS ARE READ-IN FOR THE FOLLOWING MATERIALSS860 12
1/) \$860 13
1/) \$860 13
DO 50 1=1,ML

```
 DO 50 1=1,ML
```

```
TLIST2.FOR
Wednesday, February 21, 1990 12:31 pm
Page 73
\F (NTP) 40,40,30
 READ (15) (HOLN(I,K),K=1,2), AIN(1)
 co TO 48
40 READ (NINP,42) (HOLN(I,K),K=1,2)
42 FORMAT (2A4)
 CalL REAG2 (' S860', ATH(1), 1)
 DO 45 [IG=1,TCM S860 21
 CALL REAG2 (' $860',C(1,1IG,1), ITL)
 CONTIMUE
 WRITE (NOUT,55) I, (HOLN(1,K),K=1,2)
 CONTIMUE
 FORMAT (13, 6X, 2A4)
C CHECK ON CROSS SECTION CONSISTENCY AND ORDER S860 26
 IF(MCR) 70,70,90 $860 27
70 REWIMD 15 $860
90 CONTINUE 5860
 DO 140 J=1,ML $860 30
 DO 140 1=1,1GM S860 31
 G=C(2,1,d)+C(5,1,) <
 DO 110 K=1, NXCM $860 33
 KK=1+K $860 34
 M=5+K $860 35
 IF(KK - 1GN) 100, 100, 110 S860 36
 G=G+C(N,KK,J) S860 37
110 CONTINUE S860 38
 XSR(I,J)=G-C(1HS,t,J) HRA2
 XSO(I,d)=G-C(1HT-2,1,d)-C(IHS,1,d) HRA2
 IF(C(4,I,d).EQ. 0.0) GO TO 130
 G=ABS((G-C(4,1,J))/C(4,1,d))
 IF(G-.0001) 140,130,130 S860 40
130 WRITE(NOUT,135) J,I,G S860 41
135 FORMAT (' CHECK MATERIAL ',I2, 5X,' GROUP ',12,G10.4) $860 43
c SO60 44
C AO2=0/1=FLUX CALCULATION/ADJOINT CALCULATION SB60 45
160 IF(A02) 170, 280, 170 S860 46
170 DO 190 1IG=1,IGN $860 47
```

TL1ST2.FOR	.FOR Wechesday, February 21, 1990 12:31 pm	Page 74	
	IGBAR $=1 \mathrm{CM}-\mathrm{IIG}+1$	\$860	48
	DO $180 \mathrm{M}=1, \mathrm{ML}$		
	DO $180 \mathrm{~L}=$ IHT-3,IHS	HRA2	50
	TEMP=C(L, $1[G, M)$	5860	51
	$C(L, 1 I G, M)=C(L$, IGBAR , $M$ )	5860	52
180	C(L, IG8AR, M $)=$ TEMP	S860	53
	IF (IGBAR - 1IG -1) 200, 200, 190	5860	54
190	continue	\$860	55
200	Continue	\$850	56
	KK = ITL - IHS	\$860	57
	1 F (KK) $280,280,210$	5860	58
210	continue	S860	59
	DO 240 IIG $=1,1 \mathrm{~cm}$	5860	61
	IGBAR $=$ IGM - IIG + 1	5860	62
	DO $240 \mathrm{~L}=1, \mathrm{KK}$	5860	63
	IF (L - 116) 220, 240, 240	\$860	64
220	$\mathrm{I}=\mathrm{L}+\mathrm{IHS}$	5860	65
	ITENP $=$ JGEAR + L	5860	66
	IF (IIG - ITEMP) 230, 230, 240	S860	67
230	TEMP = C(I, IIG, M)	S860	68
		S860	69
	$\mathrm{C}(1, \mathrm{ITEMP}, \mathrm{M})=\operatorname{TEMP}$	S860	70
240	continue	5860	71
c	LRITE CROSS SECTION TAPE	5860	72
280	DO 300 11G=1,164	5860	73
	DO $295 \mathrm{n}=1$, MT		
	IF(N .LE. ML) GO TO 288		
	DO 284 L=1,ITL		
284	$\mathrm{cos}(\mathrm{L}, \mathrm{M})=0.0$		
	60 TO 295		
288	CONTIMUE		
	DO 290 L=1, ITL	S860	75
290	$C O(L, M)=C(L, I I G, M)$	5860	76
	$X R(H)=X S R(11 G, M)$	hraz	
	$\mathrm{XD}(\mathrm{H})=\mathrm{XSO}(11 \mathrm{G}, \mathrm{H})$	HRA2	
295	CONTIMUE		
	WR1TE (11) ( XR (M), $\mathrm{M}=1, \mathrm{NT}$ )	HRAZ	

```
TLIST2.FOR
Wechesday, February 21, 1990 12:31 pm
Page 75
```




	E6(IGP) $=.0$	5884	8
	$E 7$ (tGP) $=.0$	5884	9
	$E 8(1 G P)=.0$	S884	10
	E9(IGP) $=.0$	\$884	11
	DO $10 \mathrm{l}=1,1 \mathrm{CM}$	\$884	12
	$E 2(1 G P)=E 2(I G P)+E 2(1)$	5884	13
	$E 3(1 G P)=E 3(I G P)+E 3(1)$	S884	14
	$E 4(1 G P)=E 4(1 G P)+E 4(1) \quad \therefore$	S884	15
	$E 5(I G P)=E 5(I G P)+E 5(1)$	S884	16
	$E 6(I G P)=E 6(1 G P)+E 6(1)$	5884	17
	ET(IGP) $=$ E7(1GP) + E7(1)	S884	18
	$E 8(1 G P)=E 8(1 G P)+E 8(1)$	5884	19
10	E9(IGP) $=$ E9(1GP) + E9(1)	\$884	20
		\$884	21
20	forrat (1H1, 28 f final neutrom balance table///	\$884	22
	1 - group fissiom in-scat out-scat absorb ,		
	$\begin{aligned} & \text { 2, L.L. R.L. T.L. B.L. '///) } \\ & 0030 I=1, I G M \end{aligned}$	S884	26
25	format ( $14,3 \mathrm{X}, \mathrm{TP8E9.2}$ )		
30	WR1TE(NOUT, 25) 1,E1(1),E2(1),E3(1),E4(1), E5(1),E6(t),E7(t),	5884	28
	$1 \mathrm{~EB}(\mathrm{t})$		
	URITE(MOUT, 35)	5884	30
35	format (1h)	\$884	31
	$1=15 M+1$	5884	32
	WR1TE(NOUT, 25) 1,E1(1),E2(1),E3(1),E4(1),E5(1),E6(1),E7(I),	5884	33
	1 EB (1)		
	$\mathrm{XK}=\mathrm{E1}$ (1)/(E4(1)+E9(1))		
	WRITE (NOUT, 70) XK		
70	FORMAT (1HO/5X, 'NEUTRON MULTIPLICATION COMSTAMT $=$ ',F10.6)		
	RETURM	5884	35
	EmD	5884	36
	SUBROUTINE S8850(F2, N2, R1, 21, R4, 24, V7, JIM, JJM, FN2,	\$885	2
	$1 \mathrm{CO}, \mathrm{NO}, \mathrm{MO}, \mathrm{N} 2, \mathrm{FO}, \mathrm{JTL}, \mathrm{NWT})$		
	INCLUDE 'ABC.FOR'		
	DIMENSION F2(JIM, JJM), N2(JIM, JJM), R1(1), 21(1), R4(1), 24(1),	5885	5
	1 FLUX(6), FN2(1), CO(JTL, JMT), NO(JIM, JJM), MO(JJM, JJM),	S885	6
	2 ML (13, FO(JIM, JJM), V7(1)	5885	7

```
TLIST2.FOR
Wednesday, February 21, 1990 12:31 pu
Page 78
C SBS5O FINAL PRINT
 ICARD = 1 5885 9
 CALL S8830 $885 11
 CALL 58847
 $885 13
 IF (MPRT-1) 90,90,15
15 J=IP S885 14
 IF(1P-JP) 30, 30, 20 S885 15
 J=JP S885 16
20 J=JP
40 FORMAT (1H1, 16X, 'RADII', 9X, 'AVG RADIT', 11X, 'AXI1',
 1 14X, 'AVG AXII'//(14, 4F18.4))
 J=\+1 S895 20
 IF(IP-JP) 50, 90, 70 5885 21
50 WRITE (NOUT, 60) (1,21(1),24(1),1=\,JP) S885 22
60 FORMAT(14,36X,2F18.4) 5885 23
 CO TO 90 MOU, 80) (T,R1(1),R4(I),I=J,IP)
5885 24
```



```
90 CONTINUE
 DO 100 I=1, IM
 DO 100 J=1,JM
 NO(I,J) = 0.0
100 F2(t, J) = 0.0
 30
 F2(t,J)=0.0 S885 31
 DO 220 ITG=1, IGM S885 32
 IF (NPRT .GT.2) WRITE (NOUT, 110) IIG
110 FORMAT(1H1, 20X,14HFLUX FOR GROUP,13) 5885 34
 READ (NFLUX1)(CN2(I, J), [=1,IN),J=1, JM) s885 35
 READ(NCR1)((CO(IT,N), II =1,ITL), J = 1,MT) S885 36
 DO 120 I=1, IM S885 37
 DO 120 J=1, JM 5885 38
 NO(I,J) = MO(I,J) + N2(L,J) 5885 39
 ITEMP = NO(1,d) S885 40
 1TEMP = N2(1TEMP) S885 41
120 F2(I,J) = F2(1,J) + CO(IHT-3,ITEMP)*N2(1,J)*1000.*TSD HRAZ 42
 1F(NPUN) 210, 210, 205
 $885 43
205 URITE(16) ((M2(I,J),I=1,IM),J=1,JM) S885 63
210 1F (NPRT .GT.2) CALL PRT (IM,JM,N2, 24,NOUT)
220 contimue
5885 65
```

If (NPRT .LE. 0) GO TO 250			
	WRITE (NOUT, 230)	\$885	67
230	FORMAT(1H1//, 19x, 11\% TOTAL FLUX//)	\$885	68
	CALL PRT (IM, JM, MO, 24, HOUT)	S885	69
	URITE (NOVI, 240 )	5885	71
240	FORMAI(1H1//, 19X, 26HPOWER DENSITY (MNT/LITER))	5885	72
	CALL PRT(1M, JM, F2, 24 , WOUT)	S885	73
250	COWT INUE		
	1F(NPUM - 1) $270,260,260$	\$885	82
260	END FILE 16	S885	83
	URITE(NOUT, 265)	5885	84
265	FORMAT(1HO, 50x, ***** FLUXES, ETC. DUMPED TO TAPE *****')		
270	REWIMD MCR1	5885	86
	REWIND WFLUX1	\$885	87
	RETURN	S885	88
	END	5885	89
	SUBROUTINE TCHEK(LGH, JUMP)	TCHE	2
	INTEGER*2 1T1,1T2,1T3,1T4		
CC. Cha	ance gettim to clock(iti, 1T2, [t3) on a vax	HRA2	
	CALL GETTIM (IT1, IT $2,173,174$ )		
	ISEC $=3600 \pm 1 \mathrm{T1}+60 \pm 172+153$		
	RETURM	TCHE	6
	EMD	TCHE	7
cce this surroutine must be used on the vax			
ccc	SUeroutine clock (1T1,1T2,1T3)		
c	IMTEGER*2 IT1,1T2,1T3		
c	1T100		
c	172=0		
c	113=0		
c	RETURN		
c	END		
	Starcout ine ifluxl (n2, CO, vo, CXS, MO, M2, JTL, JIM, JJM, CXR, CXT	hraz	2
	1 , XR,XD)	HRA2	
	IMCLIDE 'ABC.FOR'		
	O1MENSIOW N2(1), CO(JTL, 1), VO(1),CXS(JIM,JJM, 3), MO(1), M2(1),	IFLU	4
	CXR(1), $\operatorname{CXT}(1)$	IFLU	5


TLIST	2.FOR Wednesday, February 21, 1990 12:31 pr	Page	
	DIMENSION XD(50), XR(50)	hraz	
c	this subroutine normalizes fluxes before each inmer iteration	IFLU	6
c	absorption and out-scatter	IFLU	7
	$\mathrm{ES}(1 \mathrm{GV})=0.0$	IFLU	8
	$E 4$ (IGV) $=0.0$	IFLU	9
	DO 10 I=1, IMJM	IFLU	10
	TEMP $=\mathrm{VO}(1){ }^{\text {* }} \mathrm{N} 2(\mathrm{I})$	1 FLU	11
	1 TEMP $=$ MOC( 1 )	1 FLU	12
	1 TEMP = MZ(ITEMP)	1 FLU	13
	E3(IGV) $=$ ES(IGV) $+(\text { (XD(1TEMP) })^{*}$ TEMP	HRAL	14
10	E4(IGV) $=$ E4(IGV) $+\operatorname{CO}(1 \mathrm{HT}-2,1$ TEMP)*TEMP	HRAZ	15
C	left leakage	IFLU	16
	[F(B01) 20, 20, 40	IFLU	17
20	E5(1GV) $=0.0$	IFLU	18
	DO $30 \mathrm{KJ}=1$, JM	IFLU	19
	$I=(K J J-1) * I M+1$	1 FLU	20
30	E5(IGV) $=$ ES(IGV) + CXS(1, X, 1, 1)*M2(1)	1 FLU	21
	60 TO 50	1 FLU	22
40	ES(IGV) = . 0	IFLU	23
c	right leakage	IFLU	24
50	$1 F(802) 60,60,80$	IFLU	25
60	E6(tig) $=0.0$	IFLU	26
	DO $70 \mathrm{KJ}=1$, JM	IFLU	27
	$1 \equiv \mathrm{KJ} \mathrm{m}^{\text {M }}$	IFLU	28
70	E6(IGV) $=$ E6(IGV) + CXR(KJ)*N2(1)	IfLU	29
	60 TO 90	IFLU	30
80	$E 6(1 G V)=0.0$	IFLU	31
c	top leakage	IFLU	32
90	1F(803-1) 120, 140, 100	[FLU	33
100	E7(IGV) $=0$	[FLU	34
	D0 $110 \mathrm{KI}=1,1 \mathrm{l}$	1 FLu	35
	$1=$ IMJM - IM + Kt	tFLU	36
110	E7(IGV) $=$ E7(IGV) + CXS(K1, 1, 2)*(N2(I) - W2(K1) )	IFLU	37
	E8(IGV) $=\cdot \mathrm{ET}(\mathrm{IGV})$	IFLU	38
	co TO 190	IFLU	39
120	$E 7(10 v)=0.0$	IFLU	40
	DO $130 \mathrm{KI}=1$, IM	IFLU	41
	$\mathrm{t}=\mathrm{IMJN}=\mathrm{IM}+\mathrm{KI}$	1 FLU	42




[^0]:    This thesis follows the style of Nuclear Technology.

