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ABSTRACT 

The Characterization and Stereochemical Utilization of 

Phosphorothioates Produced by Chemical and Enzymatic Synthesis 

(August 1987) 

Joey Scott Newborn, B. S. , Berry College, Mt. Berry, Georgia 

Chair of Advisory Committee: Dr. Frank M. Raushel 

Sucrose synthetase (UDP-glucose-fructose glycosyl transferase, 

E. C. 2. 4. 1. 13) catalyzes the production of uridine diphosphoglucose 

and fructose from uridine diphosphate and sucrose, An overall 

stereochemical course for this enzyme has not been established for 

the P phosphorus of its substrate uridine diphosphoglucose (UDP- 

glucose). This thesis presents a method for the determination of 

this stereochemical course through the use of phosphorothioates. 

The phosphorothioate analogues of glucose-1-phosphate and 

uridine diphospho-glucose (UDP-glucose P(S) or UDP-P(S) glucose) were 

synthesized, purified, and characterized by P NMR and by HPLC. In 31 

addition, the overall relative rate kinetics of these 

phosphorothioates are compared to the natural oxygen analogue for 

each enzyme studied. Uridine diphosphoglucose-P(S) obtained from 

uridine diphosphoglucose pyrophosphorylase (E. C. 2. 4. 2. 9) is not a 

kinetically competent substrate for sucrose synthetase. An attempt 

to synthesize, specify the opposite isomer by using a combination of 

galactose-1-phosphate uridylyl transferase (E. C. 2. 7. 12) and 

phosphoglucomutase (E. C. 2. 7. 5. 1) with glucose-1-phosphorothioate 

only produced the identical isomer as determined by high field NMR. 



Attempts were also made to produce thiocarbamoyl phosphate, 

carbamoyl phosphorothioate, and thiocitrulline for possible 

investigation as substrates of enzymes of the urea cycle (carbamoyl 

phosphate synthetase E. C. 2. 7. 2. 5, ornithine transcarbamoylase E. C. 

2. 1. 3. 3, and arginosuccinate synthetase E. C. 6. 3. 4. 5). 
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INTRODUCTION 

Phosphate eaters occupy a central role in biochemistry. Not 

only is the genetic blueprint for all living organisms stored in 

phosphodiester polymer form as DNA, but di- and tri-phosphates of 

nucleosides are important energy carriers in that groups are 

activated by phosphorylation. Since phosphate eaters are so 

prevalent, the mechanisms of phosphoryl transfer are important 

subjects for study. 

The mechanism of any enzyme catalyzed reaction is closely 

related to its stereochemical course. The knowledge of the 

stereochemical course of a reaction is recognized as one of the most 

useful kinds of information for distinguishing among possible 

mechanisms. For a molecule to be able to convey the stereochemistry 

of a reaction it must contain prochirality at a position essential to 

the catalytic mechanism of the enzyme. The tetrahedral phosphorus 

molecule is not chiral and there are only a few examples of naturally 

occurring phosphodiesters that are chiral. However, phosphates can 

be made chiral if the tetrahedral phosphorus is labeled with sulfur, 

0, 0, and 0 atoms. Shown in Scheme I is a phosphorothioate 16 17 18 

which contains four different groups about the phosphorus molecule 

and is thus chiral. 

In over thirty stereochemical studies of enzymatic substitution 

at phosphorus the findings have suggested that there is an in-line 

The style and format of the Journal of Biolo ical Chemistr has been 
used in this thesis. 



Scheme I 

mechanism of reaction which inverts the configuration at the chiral 

center. The use of chiral phosphorothioates can distinguish between 1 

single and double displacement mechanisms at this center. Since all 

such in-line interactions at chiral phosphorus lead to inversion of 

configuration, a a single displacement will yield an overall 

inversion at phosphorus whereas a double displacement will yield 

retention of the original configuration. 

The technique of stereochemical analysis by the use of chiral 

phosphorothioates was first developed by Eickstein and has been 

extended and improved upon by a number of researchers. 3, 4, 5, 6, 7 

The most pertinent work for our purposes has been that of 

Knowles ~e . and Frey et al. Specifically, Knowles' et al. 8 

success with glycolytic enzymes was most important. In proving that 

pyruvate kinase, glycerol kinase, and hexokinase transfer their 

phosphorothioate substrates with an identical stereochemical course, 

Knowles et al. found that some eleven glycolytic enzymes handle 

phosphorothioates smoothly. Frey ~et a . , were able to chemically and 

enzymatically produce both the S and R isomers of uridine 

diphosphoglucose-a(S). Using these isomers and P NMR, they were 31 

able to establish an overall stereochemical course for both uridine 

diphosphoglucose pyrophosphorylase and galactose-1-phosphate uridylyl 



transferase according to Scheme 2. Uridine diphosphoglucose 

pyrophosphorylase was found to catalyze the reaction with inversion 

of configuration while galactose-1-phosphate uridylyl transferase 

proceeded with retention of configuration at the a phosphorus. Thus, 

two enzymes previously thought to operate by similar mechanisms were 

shown to follow fundamentally different mechanistic paths. 

For our purposes we hoped to employ similar techniques to 

determine the overall stereochemical course of reactions of sucrose 

synthetase which catalyzes according to the reaction below. 

1)l)1'- g Iucuse 

II II D 
HP P ~ () — O-CHs 

I 

Sucrose 
Reaction I 

UI) P 

Since almost all glycolytic enzymes handle phosphorothioates well, it 
is reasonable to assume that a disaccharide phosphorylase like sucrose 

phosphorylase could handle a phosphorothioate to produce glucose-1- 

phosphorothioate according ro Scheme 4. 
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Glucose-1-phosphorothioate could then replace glucose-1-phosphate as 

a substrate in the reaction catalyzed by uridine diphosphoglucose 

pyrophosphorylase to produce uridine diphosphoglucose-P(S), a 

molecule that is chiral at the P position. Scheme 4 is shown below. 
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Scheme 4 



Once uridine diphosphoglucose-P(S) (diastereomer A) is produced, 

a few questions can be answered with regard to sucrose synthetase. 

For example, does this enzyme handle phosphorothioates? If sucrose 

synthetase does catalyze uridine diphosphoglucose-P(S) (diastereomer 

A) to uridine diphosphate-P(S) then the obvious answer is yes. 

However, the diastereomer A is not a substrate for sucrose synthetase 

then there could exist a stereochemical requirement for the opposite 

diastereomer. To investigate this possibility the synthesis of a 

mixture of the R and S diastereomers of uridine diphosphoglucose 

was undertaken according to modifications of readily available 

methods. Synthesis of the opposite diastereomer (diastereomer 8) 9 

could possibly be effected enzymatically by using glucose-1- 

phosphorothioate as a substrate for galactose-1-phosphate uridylyl 

transferase, this enzyme operates by a different mechanism than 

uridine diphosphoglucose pyrophosphorylase. 

If neither diastereomer is not a substrate, then sucrose synthe- 

tase obviously will not tolerate the substitution of sulfur for 

oxygen. However, if the diastereomer 8 is a substrate, then we can 

investigate this stereochemical requirement by observing the 0 18 

labeling via high field P NHR spectroscopy. If uridine 

diphosphate-P(S), P 0 can be produced by employing known 18 

modifications to synthesize the adenine analogue of this compound 11 

then uridine diphosphoglucose-P(S), P 0 would be produced in the 18 

back reaction by sucrose synthetase with either the 0 in a bridging 

position or in an apical position as in Scheme 5. 

If the 0 occupies a bridging position (S isomer) then it will 
P 

have a bond order of one and we will see a . 02 ppm upfield shift for 
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the P phosphorus (relative to no labeling). If the 0 is not 

bridging and has a bond order of two (as in the R isomer) a . 04 ppm 

shift will be observed. Thus careful analysis of the high field 12 

NMR spectrum should enable a determination of the stereochemical 

course of sucrose synthetase. 

Other potential studies could include the use of derivatives of 

carbamoyl phosphate. Carbamoyl phosphate is a key intermediate in 

both pyrimidine biosynthesis and urea biosynthesis. Carbamoyl 

phosphate synthetase catalyzes the synthesis of carbamoyl phosphate 

according to Scheme 6. 

2 ATP + HC03 + NH3 -----& 2 ADP + NH2COP03 + P. 

Reaction 2 

Carbamoyl phosphate can also be synthesized chemically by the 

method of Jones and Lippman according to the scheme, 

0 

N C 0 + HO P — OH 

0- 

0 0 
II II 

H2N — C — 0 — P OH 

0- 

cyanare + orthophosphate carbamoyl phosphate 

Reaction 3 

By substituting thio containing reactants for the oxygen containing 

reactants in this synthesis, it shou1d be possible to synthesize 

phosphorothioate molecules of interest. The potential significance 

of these analogues is as follows. 



If carbamoyl phosphorothioate is a substrate for carbamoyl 

phosphate synthetase in the reverse reaction, we could possibly see 

the production of adenosine triphosphate 7(S) as shown in Scheme 6. 

0 S 

II 
NH2 C 0 P 0 + ADP -----) ATP 7(S) 

II 
0 

0 
il 

+ NH2 — C-O 

Scheme 6 

If carbamoyl phosphorothioate is produced with the thio group in the 

carbonyl position it could prove to be interesting in that a 

rotational equivalence between the sulfur and oxygen might be seen: 

0 0 
ll I 

H2N — C — S — P — OH + ADP 

II 
0 

0 
ll 

H N C S + ATP 2 

S 0 S 

li tl l1 
H2N~C 0 P OH + ADP &----- H2N C 0 

I 
0 

Sc'berne 7 

Previous studies by Raushel and Villafranca have indicated that 14 

1 there is a rotational equivalence of the carboxylate oxygens in 

carbamoyl phosphate. 

Ornithine transcarbamoylase catalyzes the conversion of carbamoyl 

phosphate and ornithine to citrulline. If thiocarbamoyl phosphate 



10 

can be synthesized, it could prove to be a precursor to 

thiocitrulline. Thio-carbamoyl phosphate might substitute as a 

substrate for ornithine transcarbamoylase according to the following 

scheme. 

S 
H N — I:-o — P 

— uH + 
Z 

l V— 

U 
I-I N — CH — CH — Cl-I — CH — C — & 

z z 

HN 

Thiocnrbamoyl E'hos~diote Ore i tlli lie 

S 
H N — C — N-CH — CH — CH — CH — C 

z z t 

H N„ 
Thiocitrulline Orthophosphate 

Scheme 8 

Thiocitrulline, which could substitute as a substrate for 

arginosuccinate synthetase, might possibly provide some insight into 

the mechanism of this enzyme. Argininosuccinate synthetase has been 

hypothesized to follow one of three possible mechanisms which are all 

characterized by the formation of a citrullyl-adenosine monophosphate 

intermediate shown in Scheme 9. 
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Scheme 9 

Substitution of a sulfur for oxygen in the bridging bond of the 

citrullyl intermediate will undoubtedly have an effect on this inter- 

mediate. If thiocitrulline cannot be synthesized by the above method, 

it could most likely be synthesized chemically by employing a 

combination of methods for polypeptide synthesis and those 16 

readily available for synthesis of thio ureas. 17, 18 

In summary, the objective of this project was to synthesize the 

aforementioned compounds, purify them through DEAE-cellulose, 

characterize them through P NMR and HPLG, and to investigate the 

kinetic consequences of their use as enzyme substrates. 



EXPERIMENTAL 

Decem osition of Carbamo 1 te 

Exactly 0. 158 g of the dilithium salt of carbamoyl phosphate was 

weighed out as a solid. The decomposition reaction was begun by the 

addition of the solid carbamoyl phosphate to 10 mL of 200 mM of PIPES 

buffer containing 30% D20 at pH 6. 8. Vigorous stirring was applied 

to ensure that the carbamoyl phosphate dissolved sufficiently. Then 

3 mL of this solution was pipetted into a 10 mM NMR tube and the 

reaction was monitored by P NMR spectroscopy at room temperature 

with the the FT-80 NMR spectrometer at a frequency of 32. 203 MHz. 

Because the peaks for the product orthophosphate and carbamoyl 

phosphate are separated by only 3 ppm, a small sweep width of 400 Hz 

was used to view the appearance of the orthophosphate. Other 

important parameters included an acquisition time of 1. 0 second and a 

seven microsecond pulse width (45' angle). Data were accumulated 

over a six hundred second interval and were then stored on floppy 

disk either manually or by the program KINETICS. Kinetic data were 

acquired by measuring the relative decrease in intensities of the 

peak associated with the carbamoyl phosphate of the plotted P NMR 

spectrum plotted with respect to time. 

The reference orthophosphate peak was established by using 100 mM 

potassium phosphate in 100 mM PIPES buffer that was 33% in D20 at 

pH 6. 8. Carbamoyl phosphate was stored over magnesium sulfate in a 

dessicator below 0 'C when not in use. 



13 

Reaction of KOCN with Ortho hos hate o Pr duce Carbamo 1 Phos te 

Exactly 0. 081 grams (0. 001 mole) of solid potassium cyanate was 

mixed with a 100 mM solution of orthophosphate. This mixture was 

buffered with 100 mM MES that was 33% in D20 at PH 5. 8 to Provide a 

100 mM total cyanate solution. Then 3 mL of this 100 mM potassium 

cyanate reaction mixture was pipetted into a 10 mM NMR tube and the 

31 P NMR spectrum was then obtained at room temperature by using the 

FT-80 NMR spectrometer at a frequency of 32. 203 MHz. A total of 

eight frames were obtained over 10 minute intervals (600 transients 

at 1 second acquisition time) and stored on floppy disk via the 

KINETICS program. Other NMR parameters were similar to those used 

for carbamoyl phosphate decomposition experiment except that a sweep 

width of 2, 000 Hz was used and the orthophosphate reference was not 

centered. 

Atte S nthesis of Thiocarba o 1 Phos hate 

Exactly 0. 097 g of potassium thiocyanate was added as a solid to 

10 mL of a 100 mM MES/33% D20 solution of 100 mM orthophosphate at pH 

5. 8. This 100 mM potassium thiocyanate solution was left for 24 

hours at room temperature. A 3 mL aliquot of this reaction mixture was 

then subjected to P NMR analysis on the Varian FT-80 NMR. The P 
31 

NMR spectra were obtained using the parameters of the carbamoyl 

phosphate synthesis experiment. 

Reaction of OCN wi h Ortho hos horothio e 

Exactly 0. 203 g (. 0025 mole) of potassium cyanate was added to a 

solution consisting of 250 mM tetra sodium orthophosphorothioate and 

250 mM MES buffer that was 33% in D20 and the pH was adjusted to 5. 8. 
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A 3 mL aliquot of this reaction solution was then pipetted to a 10 mM 

NMR tube and the reaction followed at room temperature via P NMR 
31 

spectroscopy on the FT-80 NMR spectrometer. P NMR parameters were 31 

similar to those used to follow the synthesis of carbamoyl phosphate 

except that an acquisition time of 0. 5 seconds was used. Therefore, 

1200 transients were accumulated per frame to yield 10 minute time 

intervals between spectra. Kinetic data were compiled by measuring 

the relative peak intensity of the emerging orthophosphate peak at 10 

minute intervals. Further investigation of this phenomenon was made 

by monitoring a solution that was only 100 mM in potassium cyanate, 

but 250 mM in tetra sodium orthophosphorothioate. A similar solution 

contained the opposite ratio of 250 mM potassium cyanate to 100 mM 

tetra sodium orthophosphate. The latter reaction was followed for 

120 minutes to accommodate the longer reaction time and to confirm 

the nature of the reaction. 

Attem ted Removal of ur f m AMPS via KOCN 

Potassium cyanate was employed as a possible reagent for the 

removal of sulfur from phosphorothioate nucleotides. Assays were run 

at 4 different pH levels. Assays at pH 2 and pH 4 were maintained by 

sodium acetate buffer titrated by HC1 to the desired pH. PIPES 

buffer was used at pH 6. 0 and TRIS buffer was employed at pH 8. 0. 

All buffer concentrations were at 100 mM. Assays were also subjected 

to controlled heating at a constant 50 'C for 24 hours by using a 

Neslab constant temperature bath. Control samples lacking potassium 

cyanate were run at each pH level and at room temperature. A typical 

assay contained a 7 mM concentration of adenosine monophosphorothioate. 
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The concentrations of potassium cyanate ranged from 7 mM to 200 mM. 

Any potential progress with this reaction was monitored using a 

Gilson Model 802B HPLC interfaced with an Apple II computer. UV 

detection was employed using a detector at 254 nm wavelength. The 

column employed was a Whatman partisil-10 SAX of the anion exchange 

type. The elution buffer was orthophosphate at 125 mM in 

concentration. The pH of the elution buffer was adjusted to 3. 5 

using phosphoric acid. All other HPLC parameters included a range of 

1. 0 Aufs, and a flow rate for the elution buffer of 1. 0 mL per 

minute. The program controlled essays were 25 minutes in duration 

and all injections were 20 sL. A standard of adenosine monophosphate 

was used to affix the retention times. 

S thesis o n-But 1 Thioure 

The synthesis of n-butyl thiourea was undertaken by a 

modification of the method of Neville and McGee. Exactly 0. 73 

grams (0. 01 mole, or 1 mL) of dry n-butyl amine were dissolved in dry 

tetrahydrofuran (THF). Then 0. 0025 mole (0. 49 grams) of silicon 

tetra isothiocyanate that was previously dissolved in dry THF was 

added dropwise with stirring to a three neck 250 mL reaction flask, 

The reaction flask was sealed under an argon atmosphere and was 

placed in a water bath to mediate the exothermic reaction. Once the 

reaction had cooled to room temperature the solution was refluxed 

under argon for 30 minutes. The THF solvent was removed via rotary 

evaporation. Dilute isopropyl alcohol (10 mL/2 mL H20) was then 

added to the residue and the whole mixture was refluxed for 30 

minutes. Filtration through a course grade sintered glass funnel was 
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used to remove silica gel. The residue was then washed with 5 mL 

aliquots of acetone and the resulting liquid was rotary evaporated to 

a brown oil. Recrysta1ization was attempted using isopropyl alcohol. 

Silicon tetra isothiocyanate was prepared by a modified synthe- 

sis of Neville and McGee. Approximately 38 grams (0. 5 moles) of 19 

dry ammonium thiocyanate was stirred rapidly in a suspension of 200 

mL of dry benzene in a sealed 500 ml 3-neck flask filled with argon 

gas. Exactly 8. 5 grams of fresh silicon tetrachloride (0. 1 mole) was 

then added slowly via syringe. Typically, a 5 minute period between 

2 mL injections was sufficient to control the reaction. The mixture 

was then heated under reflux for 3 hours and allowed to cool to 70 'C 

and then filtered hot through a course glass sintered funnel. Hot 

THF was then used to wash the compound. The filtrate was distilled 

to a residual volume of 40 mL and the contents of the reaction flask 

transferred to a 400 mL beaker. The cold crystals were rapidly 

filtered, washed with cold THF, pressed and drained, and then weighed 

(22 grams or a 55% yield). They were stored with in tightly stoppered 

flask. The crystals of silicon tetra isothio-cyanate melted at 144- 

146 'C, (Lit. value 144 'C). ' Silicon tetra isothiocyanate was 

stored in a magnesium sulfate filled dessicator below 0 'C. 

An alternative synthesis of the target molecule n-butyl thiourea 

was explored using a modified method of Nair. A 5 mL portion (0. 05 3 

moles) of dry n-butyl smine was slowly added to 6 mL (0. 05 mole) of 

tert-butyl isothiocyanate that was previously dissolved in dry petro- 

leum ether. The reaction vessel was allowed to sit at room 

temperature for 30 minutes and was then warmed at 30 'C for 2 hours. 
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Upon returning to room temperature, approximately 7 grams of white 

crystals precipitated. These crystals were collected and washed with 

cold petroleum ether, dried, and recrystallized by using a water/ethanol 

system. The 3-tert-butyl thiocarbamide melted at 91'C (vs 94 'C for 

the literature value). 18 

A 2. 2 g (0. 012 moles) sample of the purified 3-tert-butyl 

thiocarbamide crystals was then subjected to acid hydrolysis using 

25 mL of concentrated HC1. The mixture was warmed for 10 minutes at 

90 'C. Once cool, the liquid was diluted and neutralized with a 18 

sodium bicarbonate solution and the precipitate was washed with 

benzene to remove the yellow oil from crystals. The remaining solid 

was recrystallized using a mixture of chloroform and carbon tetra- 

chloride to yield 1. 1 gram of colorless crystals that melted at 72 'C. 

[(lit. value 79']. TLC was then used to check the purity using 50% 

ethyl acetate and 504 hexane as solvent. pre-coated silica gel, 60 F 

TLC plates from EM Reagents, were employed. Potassium iodide was 

used to develop the chromatograms, 

1 
H NMR spectra was taken of all starting materials and products 

using the Varian XL-200 NMR spectrometer operating at a frequency of 

200. 06 MHz. The acquisition time was 2. 5 seconds, the pulse width was 

5. 0 @seconds, and the sweep width was 3200 Hz. A total of 128 tran- 

sients were taken and peaks were referenced to zero ppm with TMS. 

Lock was obtained using CDC13 solvent. 

n-Butyl amine was dried by refluxing under argon atmosphere over 

calcium hydride for 24 hours. The n-butyl amine was then stored over 

KOH pellets. Benzene was dried under an argon atmosphere in a 



18 

similar way, but was stored over 4 A molecular sieves. 

S nthesis of 0 u e-1-Phos horothioat d Kinetic Gom ar s n to its 
Ox en Analo ue 

An assay consisting of 150 pmoles of tetrasodium 

phosphorothioate and 300 pmoles of sucrose was prepared in 

150 mN HEPES buffer that had been titrated to pH 7. 5. The deuterium 

oxide content was 30%. The total volume of the solution was 3 mL. 

The reaction was initiated by the addition of 6. 5 units of sucrose 

phosphorylase isolated from Leuco e mesc tero de . A similar 

assay was employed using the potassium salt of orthophosphate as a 

substrate. Exactly 2 units of sucrose phosphorylase were used to 

initiate this reaction. Both essays were 3 mL in total volume. 

The progress of both the glucose-1-phosphorothioate and glucose- 

1-phosphete reaction assay was monitored on the XL-200 NNR 

operating at a frequency of 81 NHz. The spectral data were collected 

in 10 minute frames (500 seconds with 1 second acquisition time). 

Since the difference in chemical shift for glucose-1-phosphate and 

orthophosphate is very small, a sweep width of only 300 Hz was 

employed with the oxygen analogue. However, the difference in 

chemical shift for glucose-1-phosphorothioate and orthophosphorothioate 

was much greater. Therefore, a much larger sweep width of 5500 Hz 

was used. Exactly 18 frames were collected and the data stored for 

the oxygen analogue experiment, Only 12 frames were collected for 

the thio analogue because of the large disc space required to store 

the greater amount of data inherent in a longer sweep width. A five 

minute delay was imposed between the initial non-enzyme spectrum 
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and the beginning of accumulations for the first spectrum on the 

experiment. This was necessary in order to allow time to properly 

shim the instrument after the addition of sucrose phosphorylase. 

Other parameters included a transmitter offset of 2400 Hz, a 

sensitivity enhancement of 0. 3, the incorporation of the absolute 

intensity mode, and a pulse width of 10 @seconds. Data points for 

the plots for comparison of kinetic relative rates were taken from 

the integrals of peaks versus time. 

Isolat o Purification o c se-1-Phos horot pate 

A large scale synthesis of glucose-1-phosphorothioate was used to 

prepare enough material for purification. This consisted of a 25 mL 

reaction mixture that was 75 mN in orthophosphorothioate, 100 mN in 

sucrose, and 200 mN in HEPES buffer at pH 7. 5. This assay was also 

30% in D20. Some 15 units of sucrose phosphorylase were added to 

initiate the reaction. The reaction was then checked periodically by 
31 P NNR spectroscopy on the FT-80 using similar parameters as 

mentioned for earlier experiments. Once the orthophosphorothioate 

was totally consumed (about 24 hours) the mixture was placed in an 

Amicon ultrafiltration membrane cone and centrifuged for 30 minutes 

using a Dupont Sorvall RC-58 refrigerated centrifuge to remove 

sucrose phosphorylase. The supernatant solution was then sealed in 

several 8 mL plastic test tubes and stored at -78 'C. 

Glucose-1-phosphorothioate was purified using a 50 x 3. 0 cm 

column of DEAE-52 cellulose. A 2 mL solution containing 150 pmoles 

of glucose-1-phosphorothioate was diluted to 500 mL with dionized 

water and then titrated to pH 7. 8 using dilute KOH. This was then 
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loaded onto the column at a flow rate of 2 mL/min. The column was 

eluted with a 3. 2 liter gradient of TEA/C02 from 50 mN to 350 mN. 

The TEA/C02 buffer was ad]usted to pH 7. 5 with dry ice. The flow rate 

of the elution buffer through the column was 2 mL/min. Glucose-1- 

phosphorothioate eluted behind glucose-1-phosphate at a buffer 

concentration between 110 and 150 mN. 

Since glucose-1-phosphorothioate contains no UV or visible 

chromophore, detection in the column fractions was accomplished using 

modifications of 3 methods; the Bochner spray method, the colormetric 

method of Ames, and the reaction of Ellmans reagent [DTNB, 5', 5-dithio 

bis(2-nitrobenzoic acid] with terminal phosphorothioate groups. 22 

Both the Bochner and Ames method rely upon free phosphate reaction 

with molybdate with the reduction of this complex accomplished by 

ascorbate to produce a blue color detectable at 660 nm. Ellmans 

reagent will produce a yellow color that can be detected at 412 nm 

only if a terminal phosphorothioate is present. 

The modified Ames method employed the following procedure: 1 

drop of concentrated HC1 was added to a 0. 3 mL aliquot of a fraction 

collected from the column and this mixture was then boiled for 25 

minutes. Then 0. 7 mL of a mixture consisting of 1 part 10% ascorbate 

to 6 parts 0. 42% molybdate in 1N H2S04 was then added to the boiled 

0. 3 mL aliquot. This 1 mL solution was then warmed for 20 minutes at 
45 'C and then diluted to 3 mL and the absorbance measured at a 660 

nm wavelength. Each sample was checked against a blank consisting of 

water and mix. 



21 

The Bochner spray assay consisted of the following mixture: 

2 g of ammonium molybdate were dissolved in 200 mL of methanol with 

heating and vigorous stirring. The molybdate did not dissolve 

totally, but when the solution was warm to the touch, 20-30 mL of 

concentrated nitric acid was added which facilitated the dissolution 

of the molybdate, After this solution had cooled, approximately 2 g 

of ascorbate were added and the solution swirled until the ascorbate 

was totally dissolved, Then approximately 2 g of para-amino benzoic 

acid was added and allowed to completely dissolve. This produced a 

harvest gold colored solution that remained stable for 45 minutes. 

After this time the solution turned to green and then later to red. 

Once the color of the solution was red, the mix was essentially 

useless. The chromatograms used were 3. 5 inch by 1 inch strips of 

P. E. I. cellulose plates. The plates were developed in 1. 5 M L101/H20 

solution. The Bochner spray assay produces a blue color upon reaction 

with free phosphate. All spots were checked against reference 

standards. The reference standards had the following Rf values: 

glucose-1-phosphate; 1. 0, glucose-1-phosphorothioate; 0. 5, orthophos- 

phate; 0. 5, and orthophosphorothioate; 0. 2. 

The Ellmans reagent assay was considered the easiest to use and 

the most accurate and so was employed more often than the others. 

A typical assay consisted of a 100 mL solution that was 2 mN in DTNB. 

This assay was buffered at pH 7. 5 by 50 mN in HEPES. A ratio of 9 

parts of this solution was used to 1 part column fraction (usually 

. 9 mL mix to . 1 mL fraction) and the resulting mixture was checked at 

412 nm on a Gilford 260 spectrophotometer. Fractions identified as 
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terminal phosphorothioate positive were pooled and rotary evaporated 

to dryness and then washed with three successive 10 mL aliquots of 

dry methanol. The resulting residue was taken up in 5 mL of buffer 

solution and the pH adjusted to 9. 0. The glucose-1-phosphorothioate 

was then analyzed quantitatively via Ellmans reagent to determine 

the concentration. Decoupled and non-decoupled P NMR spectra were 31 

taken using the XL-200 NMR spectrometer and parameters already de- 

scribed earlier. The purified material was then stored at -78 'C 

as a 28 mN solution. 

S thesis of Uridine Di hos o u se- S via Uridine 

Di hos ho lucose P ro hos ho 

Glucose-1-phosphorothioate was tested as a substrate for the 

enzyme uridine diphosphoglucose pyrophosphorylase from Bakers Yeast. 

A typical 4 mL reaction mixture for the kinetic essays consisted of 4 

mM uridine triphosphate (UTP), 4 mN magnesium chloride, 3 mN 

dithiothreitol (DTE, Cleland's reagent) and 2 mN glucose-1- 

phosphorothioate. Exactly 15 units of inorganic pyrophosphatase from 

Bakers Yeast were incorporated into the assay to degrade 

pyrophosphate to orthophosphate as it was formed. The reaction was 

initiated by the addition of 2 units of uridine diphosphoglucose 

pyrophosphorylase. The glucose-1-phosphate assay was similar except 

that dithiothreitol was not used and the reaction was initiated by 

only . 25 units of uridine diphosphoglucose pyrophosphorylase. 

The progress of both reaction essays was followed on a Gilson 

Model 811 HPLC employing a Whatman 10 SAX partisil anion exchange 

column. The disappearance of the peak corresponding to uridine 
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triphosphate was recorded and the area under the curve was then used 

to determine the rate of the reaction. The HPLC scale used was 0. 2 

Aufs, the column elution buffer was 450 mM orthophosphate at a pH of 

3. 5. The injection volume was 20 yL. All runs were at room tempera- 

ture and followed at a wavelength of 254 nm. 

Purificati. on and Characterizatio of Urid n Di hos ho lucose- S 

A large scale reaction mixture for the synthesis of uridine 

diphosphoglucose-P(S) consisted of a 25 mL stock solution that was 

50 mN in glucose-l-phosphorothioate, 60 mN in uridine triphosphate, 

50 mN in magnesium chloride, 50 mN in dithiothreitol, and 200 mN in 

HEPES buffer at pH 7. 5. The assay also contained 100 units of 

inorganic pyrophosphatase. The reaction was initiated by the 

addition of 20 units of uridine diphosphoglucose pyrophosphorylase. 

At random time intervals the progress of the reaction was measured by 

removing 0. 1 mL aliquots and diluting them to 2 mL for analysis by 

HPLC. 20 pL of this solution was then injected onto the column and 

the disappearance of the uridine triphosphate peak checked. HPLC 

parameters were the same as those used for the kinetic assays. After 

the uridine triphosphate had been consumed, the reaction mixture was 

centrifuged through an Amicon ultrafiltration membrane cone. 

Approximately 150 pmoles of uridine diphosphoglucose-P(S) (3 mL 

of solution) was then diluted to 400 mL with distilled H20 and the pH 

adjusted to 7. 5. This solution was then loaded onto a 50 x 3. 0 cm 

column of DEAE-52 cellulose anion exchange material and the column was 

then eluted with a 3. 2 liter linear gradient of TEA/C02 from 50 mM to 

400 mM concentration. The fractions collected were 20 mL in volume. 
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Those containing uridine diphosphoglucose and uridine diphosphoglucose- 

P(S) were identified by their recorded UV absorbance at 254 nm. 

Uridine diphosphoglucose-)3(S) eluted well behind uridine diphospho- 

glucose between buffer concentrations of 220 to 270 mN. Fractions 

containing uridine diphosphoglucose-P(S) were pooled and rotary 

evaporated to dryness and then washed 3 times with 10 mL of methanol. 

The residue was then taken uP in 30% 020/HEPES buffer at PH 9. 0. P 31 

NMR spectra of the purified compounds were recorded on the XL-200 

RK operating at a frequency of 81 MHz. Other parameters included a 

sweep width of 7000 Hz, an acquisition time of 2. 3 seconds, a pulse 

width of 15 pseconds, and a transmitter offset of 1, 000 Hz. A total 

of 2, 000 transients were completed. Uridine diphosphoglucose-P(S) 

was then stored at -78 C as a 25 mM solution in plastic test tubes, 

Glucose-1-phosphorothioate was tested as a substrate for the 

galactose-1-phosphate uridylyl transferase enzyme isolated from adapted 

yeast. The galactose-1-phosphate uridylyl transferase reaction assay 

included a phosphoglucomutase/glucose-6-phosphate dehydrogenase 

coupling system to remove glucose-1-phosphate as it was released from 

galactose-1-phosphate uridylyl transferase. This assay was 3 mL in 

total volume and consisted of 3 mM glucose-l-phosphorothioate, 1 mN 

uri. dine diphosphoglucose, 5 mM nicotinamide adenine dinucleotide, 4 

mM of magnesium chloride, glucose 1, 6 diphosphate and 75 mN HEPES 

buffer pH adjusted to 7. 5. The enzymes used were 50 units of 

phosphoglucomutase from rabbit muscle, and 15 units of glucose-6- 

phosphate dehydrogenase from Bakers Yeast. Two units of galatose-1- 

phosphate uridylyltransferase were added last to initiate the 
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reaction. An alternative assay was utilized that did not incorporate 

the glucose-6-phosphate dehydrogenase enzyme and its potentially 

bothersome nicotinamide adenine dinucleotide (HAD ) which would most + 

likely coelute with uridine-diphosphoglucose-P(S). 

S nthe is of U idine Di hos ho lucose- S from Galatos -1-Phos hate 

rid 1 1 Transferase 

The appearance of uridi. ne diphosphoglucose-P(S) was monitored at 

254 mN using a Gilson 811 HPLC with a Whatman Partisil 10-SAX Anion 

exchange column. The elution buffer was 75 mN Pi at. a pH of 4. 5. 

The flow rate was 1. 0 mL per minute, the range 0. 1 Aufs, and a 

typical run of 20 minutes was long enough to allow the uridine 

diphosphoglucose-p(S) to elute from the column. All injections were 

20 pL in volume. 

P ri ication a d Characterization of Uridine Di hos ho lucose- S 

from Galactose-1-P o ate rid 1 1 Transferase 

In order to obtain a sufficient quantity of UDP-P(S)-glucose for 

further study a large scale synthesis was employed. The large scale 

assay consisted of 30 pmoles of glucose-l-phosphorothioate, 20 pmoles 

of uridine diphosphoglucose, 40 pmoles of magnesium chloride, glucose 

1, 6-diphosphate, and 125 mN HEPES buffer at pH 7. 5. Exactly 250 

units of phosphoglucomutase were used. The reaction was initiated by 

the introduction of 40 units of galactose-1-phosphate uridylyl 

transferase. The total volume of the assay was 40 mL. The reaction 

was followed for 36 hours or until the assay developed a cloudy tint. 

The solution containing 8 pmoles of uridine diphosphoglucose- 

p(S) was diluted to 400 mL with H20 and pH adjusted to 7. 5. This 



solution was then loaded onto a 50 x 3. 0 cm column of DEAE-52 

cellulose. The column was eluted with a 3. 2 liter linear gradient of 

TEA/002 at a PH of 7. 5 from 50 mM to 400 mM. The 20 mL fractions 

were collected in 160 tubes. Uridine diphosphoglucose-P(S) eluted 

well behind uridine diphosphoglucose and was collected in tubes 95 

through 100. The uridine diphosphoglucose-P(S) was then rotary 

evaporated to dryness at 20'. The residue was dissolved 3 times with 

10 mL of dry methanol and rotary evaporated to dryness. This step 

was repeated 2 more times. The resulting residue was then dissolved 

in 3 mL of orthophosphate buffer that was 30% in deuterium oxide. The 

pH of the buffer solution was 9. 0. 

The pure uridine diphosphoglucose-P(S) was then examined by 

P NMR spectroscopy. Spectra were taken on the XL-400 NMR 

spectrometer operating at a frequency of 162 MHz. Other parameters 

included an acquisition time of 1. 2 seconds, a pulse width of 15 

Mseconds, and a transmitter offset of 2900 Hz. The 300 transients 

were accumulated with reference to orthophosphate buffer. 

To determine the stereochemical make-up of the P phosphorus 

position, a portion of 23 mM uridine diphosphoglucose-P(S) made from 

uridine diphosphoglucose pyrophosphorylase was diluted and then mixed 

with the same compound made via galatose-1-phosphate uridylyl trans- 

ferase. A P NMR spectrum was taken within the region from 

-39. 6 to -40. 6 ppm to examine for diastereomers. 

Uridine Di hos ho lucose- S Assa with Gl co en S nthetase 

Purified uridine diphosphoglucose-P(S) from the uridine 

diphosphoglucose pyrophosphorylase reaction was tested as a substrate 
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for glycogen synthetase from rabbit muscle. The reaction assay 

incorporating uridine diphosphoglucose-P(S) was as follows: 1 mN 

uridine diphosphoglucose ))(S), 6 mg of glycogen and 50 mN HEPES 

buffer at pH 7. 5. A catalytic amount of glucose-6-phosphate was also 

included for the glucose-6-phosphate dependent form of the enzyme. 

The reaction was catalyzed by 1 unit of glycogen synthetase. The 

assay using the natural substrate was similar. Incorporated into 

this assay were 1 mM uridine diphosphoglucose, 6 mg solid glycogen 

50 mN HEPES buffer at pH 7. 5, glucose-6-phosphate, and 1 unit of 

glycogen synthetase. The total volume of both essays was 3. 0 mL. 

The progress of both reactions essays was followed on a Gilson 

811 HPLC. The parameters included an elution buffer of 250 mN phos- 

phate at pH 4. 5, a flow rate through the Whatman Partisil 10-SAX 

anion exchange column of 1. 0 mL per minute, and a range of . 7 Aufs. 

The chart speed was 5 mm per minute, the collect time was 15 minutes, 

and each in]ection was 20 HL. Upper limits were derived from the 

uridine diphosphoglucose-P(S) reaction by comparison to the reaction 

of the oxygen analogue and by estimating the least amount of product, 

uridine diphosphate (UDP) that could be confidently detected at the 

range of Aufs used. 

U dine Di hos ho lucose- S Assa with Sucrose S t t 
Uridine diphosphoglucose was tested as a substrate for sucrose 

synthetase that was isolated from wheat germ. The enzyme used in this 

experiment contained 0. 76 units per mL. A typical assay involving 

uridine diphosphoglucose as a substrate consisted of the following: 2 

mM uridine diphosphoglucose-P(S), 4 mN dithiothreitol, 50 mN fructose, 

and 1 unit or 1. 3 mL of enzyme solution. The solution was buffered 
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by 50 mM of HEPES at a pH of 7, 3, A control was run for this experi- 

ment consisted of the assay listed above except that fructose was 

omitted. The assay for the reaction of uridine diphosphoglucose with 

sucrose synthetase consisted of the following: 2 mM UDP-glucose, 50 

mM fructose, and 0. 7 units of enzyme solution. This assay was also 

buffered at pH of 7. 5 by 50 mN HEPES. Total volume of both essays 

was 4. 0 mL. Each reaction was initiated by addition of fructose. 

The HPLC parameters for this experiment were exactly as those used 

for the glycogen synthetase experiment. Upper limits for detection 

were also calculated in a similar manner as for the glycogen 

synthetase experiment. 

G ucose-1-Phos horothioate Assa with Phos ho lucomutase 

The activity of phosphoglucomutase was checked on a Gilford 260 

UV-VIS spectrometer by coupling the product glucose-6-phosphate to a 

glucose-6-phosphate dehydrogenase enzyme and following the reduction 

of HAD to NADH at 340 nm. A typical assay consisted of 5 mN 

glucose-l-phosphate, 2 mN cysteine, 1 mN magnesium chloride, glucose- 

1, 6 diphosphate, and 10 mM HAD+. The enzymes used were 2 units of 

phosphoglucomutase and 10 units of glucose-6-phosphate dehydrogenase. 

The total reaction volume of 3 mL was effectively buffered by 20 mM 

HEPES at pH 7. 5. 

The reaction assay using glucose-1-phosphorothioate consisted of 

the following: a crude sample of 30 mM in concentration of glucose- 

1-phosphorothioate that was also 20 mN cysteine, 1. 5 mN of magnesium 

chloride, and contained glucose-1, 6 diphosphate. Sucrose 

phosphorylase had been removed by centrifugation using an Amicon 
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ultrafiltration membrane cone. The pH of this enzyme assay was 7. 4 

throughout the experiment. The reaction was buffered for a concen- 

tration of 100 mM HEPES that contained 25% D20. The reaction was 

initiated by the addition of 15 units of phosphoglucomutase. An 

assay containing glucose-1-phosphate was also run and consisted of 50 

mM glucose-l-phosphate, 20 mM cysteine, 1. 5 mM magnesium chloride, 

and glucose-1, 6 diphosphate. This assay was also buffered at 100 mM 

HEPES and 30% deuterium oxide at pH 7. 5. The reaction was initiated 

by the addition of 5 units of phosphoglucomutase. 

The reactions were followed by P NMR spectroscopy using the 31 

FT-80 multi-nuclear instrument. P NMR parameters for the FT-80 

included a frequency of 32. 203 MHz, a sweep width of 200 Hz, an acqui- 

sition time of 0. 5 seconds, and a pulse width of 7 pseconds. Exactly 

1200 transients were accumulated to allow for 10 minute frames to be 

collected and stored. Upper limits were established using the best 

estimate of what could easily be seen in the signal to noise ratio. 
Materials Used 

The following chemicals were purchased from the Aldrich Chemical 

Company: deuterium oxide, deuterated chloroform, trimethylsilane, 

ammonium molybdate, ascorbate, and p-amino benzoic acid. Alpha 

Chemical Company purchases included: potassium cyanate, potassium 

thiocyanate, tetra sodium orthophosphorothioate, and silicon tetra 

isothiocyanate. Purchases from Sigma Chemical Company included: 

sucrose, DEAE-cellulose, P. E. I. cellulose plates, triethyl amine, 

Ellmans reagent, NAD , NADH, adenosine monophosphate and adenosine 
+ 

triphosphate. The buffers TRIS, PIPES, and HEPES were all purchased 
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from Sigma Chemical Company as were all the enzymes used except 

sucrose synthetase which was purified by Dr. A. H. Singh. Adenosine 

monophosphorothioate was provided by Tim Shull as a 28 mH solution. 

Dry THF was kindly provided by Dr. Hartin E. Newcomb's laboratory. 

All other chemicals were purchased from Fisher Scientific. 
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RESULTS 

S thesis of Carbamo 1 Phos hate and Related Reactions 

The reaction of potassium cyanate and orthophosphate was 

followed by P NMR spectroscopy as shown in Figure 1. The carbamoyl 

phosphate appears with time at 3. 2 ppm upfield from orthophosphate. 

The reaction was followed for 90 minutes and the time course for the 

synthesis of carbamoyl phosphate was computed from the intensities 

of the peaks of carbamoyl phosphate as a percentage of the total 

phosphate resonance. Figure 2 shows a plot of this time course. 

Potassium thiocyanate was then substituted for potassium cyanate 

in an attempt to produce thiocarbamoyl phosphate. This reaction 

failed. After 24 hours the P NMR spectrum showed in Figure 3 does 31 

not differ significantly from the original orthophosphate spectrum. 

There are no other peaks that could account for thiocarbamoyl 

phosphate. 

When the orthophosphorothioate was substituted for 

orthophosphate, a reaction was clearly visible by P NMR 

spectroscopy. Figure 4 shows that there is a disappearance of the 

orthophosphorothioate peak and a corresponding appearance of a peak 

in the region associated with orthophosphate. Further investigation 

was undertaken by altering the concentration of reactants. Figure 5 

shows how the reactants were varied and how this affected the rate 

and final product composition. When excess potassium cyanate was 

used, orthophosphorothioate was totally and rapidly converted to 

orthophosphate. Shown in Figure 6 is the result of allowing this 

reaction assay to incubate for 90 minutes. The formation of a peak, 
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Figure 1: P NMR spectra at 32. 2 HHz showing the formation with 

time of carbsmoyl phosphate (bottom spectrum) from orthophosphate 

(top spectrum). The difference between the peaks is 3. 2 ppm. 
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Figure 2; Time course of carbamoyl phosphate synthesis followed by 

gip mm. 
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Figure 3: P NMR spectra at 32. 2 MHz showing ortho(phosphate at 31 

time zero (top spectrum) and again after 24 hours (bottom spectrum), 

The initial spectrum is essentially unchanged. 
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Figure 4: P NMR spectra of orthophosphorothioate at time zero 31 

(note contaminating orthophosphate) is shown in the top spectrum. 

The bottom spectrum shows the results after 10 minutes had passed 

since the addition of potassium cyanate in a 2:1 ratio (200 mH to 100 

mM of orthophosphorothioate). 
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Figure 5: The time course of the reaction of orthophosphorothioate 

with cyanate at different ratios of potassium cyanate to 

orthophosphorothioate. Top: 2:1, middle: 1:1, and bottom: 1:2. 
Points were acquired by a comparison of the P NMR peak intensities 31 

vs time. 
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Figure 6: The P spectrum at 32. 2 MHz shows the peak resulting from 

the reaction of potassium cyanate and thiophosphate (top). After 90 

minutes the formation of a peak 3 ppm from the peak in the top 

spectrum is seen (bottom). A comparison to Figure 1 suggests that 

the more downfield peak is orthophosphate while that peak forming at 

3 ppm upfield is carbamoyl phosphate. 
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at 3. 2 ppm from orthophosphate, confirms that orthophosphate has been 

produced. 

Several attempts were made to try to utilize potassium cyanate 

in a desulfurization reaction as a method for the possible introduc- 

tion of 0 or 0 isotopes of oxygen into phosphate esters as 

according to Scheme 10. 

0 - C - N + AMP(S) -----& AMP(0) + NH3 + 0 - C - S 

Scheme 10 

The pH as well as the potassium cyanate concentration and assay 

temperature were all varied in different combinations. No conditions 

were found that resulted in the loss of sulfur from AMP(s). 

Atte ted esis of Thiocitrulline 

After the attempt to produce thiocarbamoyl phosphate failed, we 

attempted the chemical synthesis of thiocitrulline. It was hoped 

that thiocitrulline could be easily synthesized by modifications to 

the method of Nevell and McGee shown in the Scheme 11. 

S 

II Si (N - C - S)A + R — NH2 -----& R — N — C NH 2 
H 

Scheme 11 

However, crystals of n-butyl thiourea were very difficult to obtain 

when this method was employed. An efficient method of recrystallizing 

the brown oil that was isolated was not devised, However, more 

favorable results were obtained by using the modification of the 

method of G. V. Nair as shown in Scheme 12. 
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1) N-C-S + RMH2 substituted, tert butyl 

thiocarbamide 

8 

il 
2) R'-N — C N — R 

hydrolysis 
H H 

H2N — C — N — R + t-butylchloride 
H 

Scheme 12 

The tert-butyl thiocarbamide was easily obtained and recrystallized in 

excellent yield. However, the hydrolysis of this thiocarbamide 

produced a messy product that had to be washed and recrystallized 

several times in order to obtain a compound that melted within a 

reasonably close range to the accepted literature value for the 

target. compound n-butyl thiourea. The proton NHR of the 

recrystallized compound did not yield encouraging results. The 

pertinent spectra are shown in Figures 7 and 8. Although the 

spectrum of the final isolated compound does contain resonances one 

would expect for an alkyl thiourea, it also contains other nitrogen 

containing species that are very difficult to attribute to a pure 

compound. The method of Nair was deemed an insufficient method for 

the synthesis of thiocitrulline. 

S thesis nd C rac zatio of Gluco e-1-Phos horothioate 

Orthophosphorothioate was submitted to the action of sucrose 

phosphorylase in the presence of excess sucrose. Orthophosphate was 

likewise used as a substrate to yield a comparison to the enzymes 

natural substrate. Since the reaction assay did not contain an 

easily identifiable chromophore the rate of the reaction was 

monitored by following the P NMR spectrum and recording the 



Figure 7: H NMR at 200 HHz of n-butyl, t-butyl thio carbamide. 1 
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Figure 8: H NMR at 200 MHz of the compound hydrolyzed from n-butyl, 1 

t-butyl thio carbamide. "Humps" at 7. 0, 6. 5, and 3. 3 could be 

attributed to nitrogen containing compounds. 
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integrals of the peaks over time. In Figure 9, the P NMR spectrum 31 

does show that orthothiophosphate is well utilized as a substrate, 

but the rate of the reaction of the thio analogue is much slower than 

that of the oxygen analogue (Figure 10). The overall rate of reac- 

tion for the thio analogue was found to be 0. 13 smoles per minute 

whereas that for the oxygen analogue was 0. 54 smoles per minute. 

Therefore, the thio analogue was utilized at only 24% of the reaction 

rate that was seen with orthophosphate as a substrate. 

The purification of glucose-1-phosphorothioate was achieved by 

DEAE cellulose chromatography and was confirmed by comparing the P 

NMR spectrum of pre-column assay material to post-column material as 

shown in Figure 11. The purified sample is essentially free of phos- 

phates except for the peak at -45. 9 ppm that represents glucose-1- 

phosphorothioate. The undecoupled P NMR spectra yielded a single 31 

doublet with a coupling constant of 9. 72 Hz versus 6. 16 Hz for the 

oxygen analogue. Approximately 150 pmoles of crude assay material 

were loaded onto the column and 125 pmoles were isolated for a 83% 

yield. 

Glucose-1-Phos horothioate as a Substrate for Phos ho lucomutase 

Glucose-1-phosphorothioate was tested as a substrate for 

phosphoglucomutase according to Scheme 13. 

S 
5 

0 / +~ ~ ~ OH 

glucose-1-phosphorothioate glucose-6-phosphorothioate 

Scheme 13 
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Figure 9: Shows the P NMR at 81 MHz of the reaction of 31 

orthophosphorothioate and sucrose catalyzed by sucrose phosphorylase. 

Glucose-1-phosphorothioate is easily seen approximately 10 ppm 

downfield of orthophosphorothioate after 10 minutes (second frame 

from left). The glucose-1-phosphorothioate peak continues to grow 

with time as seen in the successive frames, 
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Figure 10: A comparison of the observed rate of the orthophosphate 

(top line) and orthophosphorothioate (bottom line) as pmoles of 

product produced per unit per minute. The points were taken from the 

integrals of the peaks obtained from the P spectra. 
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Figure 11: The P NMR spectrum (top) of glucose-1-phosphorothioate 31 

(at -45. 9 ppm) before undergoing column purification. The P NMR 

spectrum (bottom) after column purification does not contain glucose- 

1-phosphate (at -5 ppm). 



This would have enabled us to monitor the conversion of orthophos- 

phorothioate to glucose-1-phosphorothioate on a smaller and perhaps 

more accurate scale by coupling glucose-1-phosphorothioate to 

glucose-6-phosphate dehydrogenase enzyme and consequently following 

the reduction of NAD to NADH. However, phosphoglucomutase does not + 

accept glucose-1-phosphorothioate as a substrate. The P NMR 
31 

spectrum shown in Figure 12 remains essentially unchanged in the 

glucose-1-phosphorothioate region at room temperature with time even 

after the addition of the dithiothreitol. However, it is easily 

noticed that there has been a reaction between the glucose-1- 

phosphate and the enzyme to produce glucose-6-phosphate. The upper 

limit for the reaction of glucose-1-phosphorothioate with phosphoglu- 

comutase was calculated to be less than 1. 25% of the rate of the 

oxygen analogue. 

S th sis and Characterizatio f Uridine Di hos ho lucose- S 

Glucose om Uridine Di hos o lucose P ro hos hor lese 

Glucose-1-phosphorothioate was subjected to the action of yeast 

uridine diphosphoglucose pyrophosphorylase in the presence of excess 

uridine triphosphate. The inclusion of inorganic pyrophosphatase 

insured that the pyrophosphate produced would be hydrolyzed to 

orthophosphate. Dithiothreitol was imperative to the success of all 

essays that contained glucose-1-phosphorothioate. Dithiothreitol was 

not needed for essays that included glucose-1-phosphate. According 

to Figure 13, glucose-1-phosphorothioate was utilized at 12. 5% of the 

rate of the natural substrate glucose-1-phosphate. Glucose-1- 

phosphorothioate had a rate of 0. 02 pmoles per minute vs 0. 16 pmoles 



A. glucose-1-phosphoro'thioate, 
orthophosphorthioate, 
and glucose-1-phosphate 
before addition of 
phosphoglucomutase, 

B. 1 hour after the addition 
of phosphoglucos&utase: 
glucose-6-phosphate has 
formed slightly downfield 
from glucose-l-phosphate. 

C. After 24 hours only 
glucose-1-phosphorothioate 
is seen. Spectrum resembles 
A except that glucose-1- 
phosphate has been converted 
to glucose-6-phosphate. 

A+f'Vak« 
I 

Figure 12: P NOIR spectra at 32 l1llz. 31 
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Figure 13: A comparison of the observed rate of the glucose-1- 

phosphorothioate and glucose-1-phosphate as pmoles of UTP consumed 

per unit per minute. These points were taken from the integrals of 

the HPLC peaks corresponding to UTP. 
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per minute for the oxygen analogue for a given amount of enzyme. 

Purification of uridine diphosphoglucose-P(S) is shown in Figure 

14, and was achieved by DEAE cellulose chromatography with the elution 

profiles recorded at 254 nm showing clear separation between uridine 

diphosphoglucose and uridine diphosphoglucose-P(S). 270 @mules of 

uridine diphosphoglucose-P(S) were loaded onto the column and 190 

ymoles were isolated for a 75% yield. The P NNR spectra are shown 31 

before and after column purification in Figure 15. The spectrum 

shows that uridine diphosphoglucose-)9(S) has been purified from 

orthophosphate, uridine diphosphoglucose-P(S), and any unreacted 

uridine triphosphate. Doublets are seen at -45. 9 and 11. 0 ppm for 

the thio analogue and 8. 6 and 10. 4 for the oxygen analogue. The P 

NMR also yielded coupling constants of 27. 81 for Ja, P(S) and Ja, 

P vs 20. 25 Ja, P, respectively. (Literature value 20. 75). 4 

U 'd' D' h h 1 . Sr ** H br fr Gl ~Sh 
and Sucrose S nthetase 

Uridine diphosphoglucose-P(S) was tested as a substrate for both 

sucrose synthetase and glycogen synthetase (E. C. 2. 4. 1. 11) enzymes, 

The reaction for glycogen synthetase is shown below. 

Uridine diphosphoglucose + (glycogen) -----) UDP + (glycogen) +1 

The reactions were followed by HPLC and monitored for the appearance 

of any peak with a retention time similar to uridine diphosphate 

(approximately 11. 5 minutes). Both sucrose synthetase and glycogen 

synthetase catalyzed the natural uridine diphosphoglucose substrate 
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Figure 14: The purification of uridine diphosphoglucose-P(S) on 

DEAE-cellulose. The HPLC spectrum on the left shows uridine diphos- 

phoglucose-P(S) before purification (peak at 10. 5 minutes is UDP- 

glucose). The HPLC trace on the right shows uridine diphosphoglucose- 

P(S) after purification. 
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Figure 15: P NNR at 81 NHz of uridine diphosphoglucose-P(S). The 
31 

figure at the top is unpurified material. The figure at the bottom 

shows the result of the column purification: uridine diphosphoglucose 

and orthophosphate have been removed. 
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initial overnight 

L~J 

5. 0 

, I 

initial overnight 

5. 0 11. 5 

Figure 16: Reaction of uridine diphosphoglucose-JS(S) with sucrose 

synthetase (top) and fructose shows no appearence of uridine 

diphosphoglucose-JS(S). The control without fructose is shown at 

bottom. Uridine diphosphoglucose and uridine diphosphate-)5(S) eluted 

at 5. 0 minutes. 
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very efficiently with sucrose synthetase producing uridine diphosphate 

at . 149 pmole per minute and with glycogen synthetase producing 

uridine diphosphate at . 054 Smole per minute. No uridine diphosphate- 

P(S) could be detected by HPLC (Figures 16 and 17). It would be safe 

to conclude from the data that at best uridine diphosphoglucose-p(S) 

is an extremely poor substrate for sucrose synthetase and glycogen 

synthetase. The upper limi. ts for the reaction were calculated at 

less than 0. 01% of the rate of the natural substrate for eucrose 

synthetase and less than 0. 2% of the rate of the natural substrate 

for glycogen synthetase. 

G e- -Phos horothioate as a S bstrate for Galactose- -Phos hate 

Grid 1 f rase 

Glucose-1-phosphorothioate was submitted as a substrate for 

galactose-1-phosphate uridylyl transferase. The process of the reac- 

tion is outlined in Figures 18, 19, and 20. This reaction was followed 

by HPLC and the results are shown in Figure 21. The reaction proceeded 

to 75% completion with a rate of . 0021 pmoles per minute. It was 

determined that the glucose-6-phosphate dehydrogenase enzyme was not 

essential in order to produce uridine diphosphoglucose-P(S), This 

enabled us to scale up the reaction assay for characterization of 

this substrate. 

The uridine diphosphoglucose-)3(S) from galactose-1-phosphate 

uridylyl transferase was purified on a column of DEAE cellulose 

according to methods used to purify the uridine diphosphoglucose-P(S) 

produced from uridine diphosphoglucose pyrophosphorylase. Eight 

pmoles were loaded onto the column and six pmoles were isolated for 
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initial UDP-glucose 45 minutes 

11. 5 

initial 
UDP-G P(S)glucose 

overnight 

5. 0 
11. 5 

Figure 17: HPLC comparison of UDP-glucose (top) and UDP-G P(S) 

glucose (bottom) with glycogen synthetase. UDP is quite visable 

after 45 minutes (second frame at top at 11. 5 minutes retention time) 

but there is not any UDP like peak with UDP-P(S) glucose as substrate 

(second. frame at bottom) even after 24 hours. 



UDP-glucose glucose-1-phosphate galactose-1-p'nospha e UDP galactose 

(A) (5) (P) 

EAQ EAB EP 

Figure 18: Bi-Bi order for binding of uridyl transferase enzyme 

showing binding of substrates and release of products. 



phosphoglucomutase glucose-6- 

UDP-glucose glucose-1-phosphate 

NAD 

NADH 

6-phosphogluconate 

EA ----------& EA'Q 

Figure 19: Full enzyme substrate complex is not allowed to form since 

galactose-1-phosphate was not included in the assay. UDP-glucose is bound, 

E ----& EA, and glucose-1-phosphate is released as UHP remains bound as EA'. 

Glucose-1-phosphate is then coupled with phosphoglucomutase and glucose-1- 

phosphate dehydrogenase to formed non-substrate 6-phosphogluconate. 



UDP-))(S)-glucose glucose-1-phosphorothioate 

EA(s) EA(s) ' EP' 

Figure 20: Excess glucose-1-phosphorothioate is then bound by the 

EA-like complex (EA(s)' enzyme and reforms the complex (sulfur is now 

substituted at the P phosphorus position) . The EA'(s) complex is then 

converted to the EA(s) complex and UDP-P(S) glucose is released. 
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9. 0 10. 5 

IV 

9. 0 10. 5 
Figure 21: Shown are five frames from the HPLC. 

I is at time 0. II is at 100 minutes after the addition of the 

enzyme. III is at 170 minutes and IV is at 240 minutes since the 

addition of enzyme. V shows the HPLC after 24 hours. Retention 

times were as follows: NAD , 6. 5 minutes; NADH, 15 minutes; uridine + 

diphosphoglucose, 9. 0 minutes; and uridine diphosphoglucose-P(S) at 

10. 5 minutes. 
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a 75% yield. The P NNR spectrum showed that uridine diphospho- 31 

glucose-)9(S) contained no other phosphorus containing compounds 

except for the orthophosphate buffer. 

In order to best test for diastereomerism, an authentic sample 

of uridine diphosphoglucose-P(S) from the uridine diphosphoglucose 

pyrophosphorylase reaction (Figure 22) was mixed with that produced 

by galactose-1-phosphate uridylyl transferase (Figure 23) and the P 

NMR spectrum of the mixture was recorded. The resulting P NMR 
31 

spectra shown in Figure 24 yielded a single doublet between -38 ppm 

to -43 ppm instead of the doublet of doublets that one would expect 

for a mixture of two diastereomers. Therefore, the uridine 

diphosphoglucose-P(S) produced from uridine diphosphoglucose 

pyrophosphorylase and that produced by uridylyl transferase are the 

same isomer unless the P resonances are coincidentally identical. 31 
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Figure 22: P NMR from uridine diphosphoglucose pyrophosphorylase. 31 

Doublets appear at -40. 2 ppm and 14. 5 ppm when referenced to 

orthophosphate buffer. 
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Figure 23: P NNR from galactose-1-phosphate uridylyl transferase. 31 

Doublets appear at -40 ppm and 14. 6 ppm when referenced to 

orthophosphate buffer. 



62 

40. 4 40. 2 40. 0 

Figure 24: The P NMR spectrum of the region from -39. 9 to -40. 5. 
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DISCUSSION 

e S t s s of Carbamo 1 Phos hate Derivat ves 

The synthesis and decomposition of carbamoyl phosphate have been 

well studied. In our investigation we found that the synthesis of 

carbamoyl phosphate could be followed on the FT-80 accurately. Any 

differences from the literature rate of synthesis most likely would 

arise from differences in method. Jones ~et a . , employed the Fiske- 

Subbarrow method for analysis of free phosphate. However, 13 

carbamoyl phosphate reacts with molybdate to produce free phosphate. 

This could lead to an artificially high concentration of 

orthophosphate and thus a net slower appearance of carbamoyl 

phosphate. Once the reliability of the P NMR method was 

established, our attention turned toward the synthesis of target 

compounds thio carbamoyl phosphate and carbamoyl phosphorothioate. 

Thiocarbamoyl phosphate failed to form from thiocyanate and 

orthophosphate at the optimum synthesis pB of 5. 8. However, in the 

attempt to form carbamoyl phosphorothioate from cyanate and 

orthophosphorothioate, we encountered surprising results. It was 

clear from the P NMR that the phosphorothioate monoanion was being 

catalyzed to orthophosphate since the contaminating orthophosphate 

peak grew in direct proportion to the decrease in the phosphorothioate 

peak. This suspicion was confirmed when an excess of cyanate produced 

a new resonance at 3 ppm upfield from orthophosphate. This could 

only have happened had the excess cyanate reacted with orthophosphate 

to produce carbamoyl phosphate. Obviously the simple mechanistic 
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scheme outline envisioned earlier does not apply to this reaction. 

The mechanistic pathway of Figure 25 is a more likely approach. 

It was conceivable that the highly electropositive carbonyl 

carbon of cyanate is attacked by the nucleophilic sulfur of the 

phosphorothioate to form an intermediate compound highly susceptible 

to P-S bond cleavage which could then lead to the formation of carbon 

oxysulfide or carbon dioxide (depending on the rate sulfur is "washed 

out" during the reaction) and ammonia. Catalyzed desulfurizations 

are known in the literature. This mechanism is also consistent 23 

with gas build up that was observed in the reaction vessel. 

Since the above reaction undoubtedly involves the substitution 

of an oxygen from a water' molecule for sulfur on the 

phosphorothioate, we attempted to repeat this experiment using 

adenosine monophosphorothioate. This could have proven to be an 

effective method for the introduction of 0 or 0 labeling. 18 

However, with adenosine monophosphorothioate the loss of sulfur was 

not catalyzed. The cause of this failure was not investigated. 

Att ed S nthesis of io trulline 

We were unsuccessful in our attempts to synthesize a n-butyl 

thiourea precursor to thiocitrulline. The failure of the synthesis 

of n-butyl thiourea according to the method of Nevel and HcGee 17 

could be attributed to the inability to produce totally anhydrous 

conditions in the reaction mixture. Since the starting material of 

silicon tetraisothiocyanate reacts readily with H20 to produce Si02, 

the conditions must be strictly anhydrous for success. Our 

experience with silicon tetraisothiocyanate showed it to be 
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Figure 25: Mechanistic scheme showing the formation of thio- 

carbamoyl phosphorothioate with the sulfur in the bridging position. 

This molecule then is possibly decomposed to carbonyl oxysulfide, 

ammonia, and orthophosphate. 



extremely sensitive to atmospheric moisture. Silicon tetra- 

isothiocyanate will decompose from an off-white color to bright 

orange when left to the open air even after a few seconds. This 

extreme sensitivity to moisture made the method of Nevel and McGee 

unsuitable for work with the milligram quantities which we expected 

to use with the blocked ornithine. 

The method of G. V. Nair displayed some initial success. The 
18 

intermediate disubstituted n-butyl, t-butyl thiocarbamate was 

successfully synthesized in high yield and purity. However, the 

hydrolysis of this compound yielded a sample that was difficult to 

purify by recrystalization. Since the Nair method involves the 

formation of an alkyl cation it is reasonable to assume that there 

must exist some degree of carbocation rearrangement that could lead 

to a mix of similar alkyl monosubstituted thioureas. The disappoint- 

ing results with the hydrolysis of the thiocarbamide and the 

potential for unspecific hydrolysis with the blocked ornithine led us 

to conclude that the method of Nair was also unsuitable for producing 

thiocitrulline. 

Phos horoth o tes as Substrates r Sucrose Phos hor lese, 

Phos ho lucomutase U ine Di hos ho lu se P ro hos hor lese, 

Galacto -1-Phos horothioate U id 1 1 Transfers e Sucrose S thetase, 

and Gl co en S hetase 

Sucrose phosphorylase was able to catalyze the reaction 

of sucrose and orthophosphorothioate to glucose-1-phosphorothioate 

although this production was quite sluggish in comparison to the 

orthophosphate substrate. The slower overall rate is a direct 



67 

consequence of the subtle chemical differences between sulfur and 

oxygen. Phosphorothioates are almost always poorer substrates than 

their oxygen analogues although there are some exceptions. 24, 25 

Glucose-1-phosphorothioate also exhibits the characteristic downfield 

chemical shift that is typical of phosphorothioates. In addition, 

glucose-1-phosphorothioate also exhibits a greater affinity for ion 

exchange material than does its oxygen relative glucose-l-phosphate, 

Glucose-1-phosphorothioate was also a typical phosphorothioate 

in that it was not catalyzed to glucose-6-phosphorothioate by 

phosphoglucomutase. Once again, this is not surprising when one 

considers that another well studied phosphosugar mutase, 

phosphoglycerate mutase, does not accept the phosphorothioate 

analogues of 3' or 2' phosphoglycerate. 24 

However, glucose-1-phosphorothioate was accepted by both uridine 

diphosphoglucose pyrophosphorylase and galactose-1-phosphate uridylyl 

transferase. Once again, a reduced rate was seen with each enzyme. 

The inclusion of * thiol reducing agent such as dithiothreitol was 

essential to the catalytic integrity of uridine diphosphoglucose 

pyrophosphorylase. This suggests that glucose-1-phosphorothioate is 

acting in an inhibitory manner by forming disulfide bonds either 

directly in the active site or in close proximity to it, Glucose-1- 

phosphorothioate did not necessitate the use of thiol reducing agents 

with galactose-1-phosphate uridylyl transferase. Both uridine 

diphosphoglucose-P(S) products from galactose-1-phosphate uridylyl 

transferase and uridine diphosphoglucose pyrophosphorylase showed the 

downfield P NMR chemical shifts characteristics of phosphorothioate 31 



analogues of uridine diphosphoglucose. They also had a greater 

affinity for ion exchange since they eluted on the HPLC and DEAE- 

cellulose at longer times than the oxygen analogue. However, the 

HPLC of purified uridine diphosphoglucose-)3(S) did show that this 

compound was unstable at room temperature. 

Since uridine diphosphoglucose-P(S) is a chiral molecule with 

respect to the )3 phosphorus, the possibility of isomerism was 

investigated using high field P NMR. It was hoped that the 

different enzymes would produce different isomers. Unfortunately, 

the only conclusion that could be reached from the P NHR results is 
that uridine diphosphoglucose-P(S) from uridine diphosphoglucose 

. pyrophosphorylase and galactose-1-phosphate contained the same 

stereochemistry at the P phosphorus position since the highfield P 31 

NHR resonances were identical. It is possible that the existence of 

diastereomers could not be detected by high field NMR (i. e. the P 

NHR resonances could be identical for both the S and R 

diastereomers). However, Frey was able to clearly account for the 

existence of R and S diastereomers of uridine diphosphoglucose-a(S) 

by their easily distinguishable P NHR spectra. Nucleotide phos- 

phorothioate compounds that could not be distinguishable by their P 

NMR were shown to be the same isomer. Therefore, it would be highly 

unlikely for the beta-sulfur substituted diastereomers of uridine 

diphosphoglucose to exhibit strikingly dissimilar P NMR resonance 31 

behavior. 

Uridine diphosphoglucose-P(S) was tested as a substrate for both 

sucrose synthetase and glycogen synthetase with the same negative 
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result. Since uridine diphosphoglucose-P(S) is undoubtedly a single 

isomer, it is likely that the opposite isomer may prove to be a 

substrate for one or both of these enzymes. 
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CONCLUSION 

The modifications of the method of Jones for the synthesis 13 

of carbamoyl phosphate failed to produce the desired thio-derivatives 

of carbamoyl phosphate; thiocarbamoyl phosphate and carbamoyl 

phosphorothioate. The investigation of the 0 labeling 18 

possibilities of cyanate with phosphorothioates proved to be negative 

in that the monophosphorothioate, adenosine monophosphorothioate 

showed no signs of sulfur cleavage, 

The chemical synthesis of thiocitrulline was not undertaken 

since all attempts to produce a precursor compound, n-butylthiourea, 

were unfruitful. 

The strategy for producing uridine diphosphoglucose-P(S) was 

successful. Unfortunately, the isomer produced by uridine 

diphosphoglucose pyrophosphorylase and that produced by galactose-1- 

phosphate uridylyl transferase were the same. This diastereomer was 

not a kinetically competent substrate for sucrose synthetase nor was 

it a substrate for a similar enzyme, glycogen synthetase. Further 

investigation of sucrose synthetase must await the synthesis of the 

opposite diastereomer of uridine diphosphoglucose-P(S) for the back 

reaction catalyzed by this enzyme. 
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ABSTRACT 

The Characterization and Stereochemical Utilization of 

Phosphorothioates Produced by Chemical and Enzymatic Synthesis 

(August 1987) 

Joey Scott Newborn, B. S. , Berry College, Mt. Berry, Georgia 

Chair of Advisory Committee: Dr. Frank M. Raushel 

Sucrose synthetase (UDP-glucose-fructose glycosyl transferase, 

E. C. 2. 4. 1. 13) catalyzes the production of uridine diphosphoglucose 

and fructose from uridine diphosphate and sucrose. An overall 

stereochemical course for this enzyme has not been established for 

the P phosphorus of its substrate uridine diphosphoglucose (UDP- 

glucose). This thesis presents a method for the determination of 

this stereochemical course through the use of phosphorothioates. 

The phosphorothioate analogues of glucose-1-phosphate and 

uridine diphospho-glucose (UDP-glucose 7)(S) or UDP-p(S) glucose) were 

synthesized, purified, and characterized by P NMR and by HPLC. In 31 

addition, the overall relative rate kinetics of these 

phosphorothioates are compared to the natural oxygen analogue for 

each enzyme studied. Uridine diphosphoglucose-P(S) obtained from 

uridine diphosphoglucose pyrophosphorylase (E. C. 2. 4. 2. 9) is not a 

kinetically competent substrate for sucrose synthetase. An attempt 

to synthesize, specify the opposite isomer by using a combination of 

galactose-1-phosphate uridylyl transferase (E. C. 2. 7. 12) and 

phosphoglucomutase (E. C. 2. 7. 5. 1) with glucose-1-phosphorothioate 

only produced the identical isomer as determined by high field NMR. 



Attempts were also made to produce thiocarbamoyl phosphate, 

carbamoyl phosphorothioate, and thiocitrulline for possible 

investigation as substrates of enzymes of the urea cycle (carbamoyl 

phosphate synthetase E. C. 2. 7. 2. 5, ornithine transcarbamoylase E. C. 

2. 1. 3. 3, and arginosuccinate synthetase E. C. 6. 3, 4, 5). 
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INTRODUCTION 

Phosphate esters occupy a central role in biochemistry. Not 

only is the genetic blueprint for all living organisms stored in 

phosphodiester polymer form as DNA, but di- and tri-phosphates of 

nucleosides are important energy carriers in that groups are 

activated by phosphorylation. Since phosphate cstars are so 

prevalent, the mechanisms of phosphoryl transfer are important 

subjects for study. 

The mechanism of any enzyme catalyzed reaction is closely 

related to its stereochemical course. The knowledge of the 

stereochemical course of a reaction is recognized as one of the most 

useful kinds of information for distinguishing among possible 

mechanisms. For a molecule to be able to convey the stereochemistry 

of a reaction it must contain prochirality at a position essential to 

the catalytic mechanism of the enzyme. The tetrahedral phosphorus 

molecule is not chiral and there are only a few examples of naturally 

occurring phosphodiesters that are chiral. However, phosphates can 

be made chiral if the tetrahedral phosphorus is labeled with sulfur, 
16 17 18 0, 0, and 0 atoms. Shown in Scheme I is a phosphorothioate 

which contains four different groups about the phosphorus molecule 

and is thus chiral. 

In over thirty stereochemical studies of enzymatic substitution 

at phosphorus the findings have suggested that there is an in-line 

The style and format of the Journal of Biolosical Chemistry has been 
used in this thesis. 



Scheme I 

mechanism of reaction which inverts the configuration at the chiral 

center. The use of chiral phosphorothioates can distinguish between 1 

single and double displacement mechanisms at this center, Since all 

such in-line interactions at chiral phosphorus lead to inversion of 

configuration, a a single displacement will yield an overall 

inversion at phosphorus whereas a double displacement will yield 

retention of the original configuration. 

The technique of stereochemical analysis by the use of chiral 

phosphorothioates was first developed by Eickstein and has been 2 

extended and improved upon by a number of researchers. 3, 4, 5, 6, 7 

The most pertinent work for our purposes has been that of 

Knowles ~e al. and Frey ~et a . Specifically, Knowles' et al. 3 8 

success with glycolytic enzymes was most. important. In proving that 

pyruvate kinase, glycerol kinase, and hexokinase transfer their 

phosphorothioate substrates with an identical stereochemical course, 

Knowles et al. found that some eleven glycolytic enzymes handle 

phosphorothioates smoothly. Frey et al. , were able to chemically and 

enzymatically produce both the S and R isomers of uridine 

diphosphoglucose-a(S), Using these isomers and P NNR, they were 31 

able to establish an overall stereochemical course for both uridine 

diphosphoglucose pyrophosphorylase and galactose-1-phosphate uridylyl 



I 

transferase according to Scheme 2. Uridine diphosphoglucose 

pyrophosphorylase was found to catalyze the reaction with inversion 

of configuration while galactose-1-phosphate uridylyl transferase 

proceeded with retention of configuration at the a phosphorus. Thus, 

two enzymes previously thought to operate by similar mechanisms were 

shown to follow fundamentally different mechanistic paths. 

For our purposes we hoped to employ similar techniques to 

determine the overall stereochemical course of reactions of sucrose 

synthetase which catalyzes according to the reaction below, 

Q P Q 
/ 

Q-CI IZ 

I (1 ((- 

I' r ( I (' ') 0 s (( I I I) I' - g I u c o s c 

HQ P ~ ~) — Q-Clh~ 

Sucrose 
Reaction I 

U I) P 

Since almost all glycolytic enzymes handle phosphorothioates well, it 
is reasonable to assume that a disaccharide phosphorylase like sucrose 

phosphorylase could handle a phosphorothioate to produce glucose-1- 

phosphorothioate according to Scheme 4. 



S 
G 

UTPa(S) (Rp) UDPa(S) Glucose (S ) 

G 

+ ~H — Ol 

Il 0 

Glucose-1-Phosphace 

5 
I 

II 
0 Q 

UDPa(S) Galeccose (R ) 

G — 
P 

— Cga- ( ~D 

UDPa(S) Glucose (R ) 
P 

Scheme 2. 



(-io~~HW ~W GH 

Sucrose Phosphorothioate 

o — j -CH 

Glucose-1-Phosphorothioate Fructose 

Scheme 3 

Glucose-1-phosphorothioate could then replace glucose-1-phosphate as 

a substrate in the reaction catalyzed by uridine diphosphoglucose 

pyrophosphorylase to produce uridine diphosphoglucose-P(S), a 

molecule that is chiral at the P position. Scheme 4 is shown below. 

Glucose-1-Phosphorothioate 
UTP 

L'DP-P(S)-glucose (S or (1 ) P Pyrophosphate 

Scheme 4 



Once uridine diphosphoglucose-P(S) (diastereomer A) is produced, 

a few questions' can be answered with regard to sucrose synthetase. 

For example, does this enzyme handle phosphorothioates? If sucrose 

synthetase does catalyze uridine diphosphoglucose-)3(S) (diastereomer 

A) to uridine diphosphate-)3(S) then the obvious answer is yes. 

However, the diastereomer A is not a substrate for sucrose synthetase 

then there could exist a stereochemical requirement for the opposite 

diastereomer. To investigate this possibility the synthesis of a 

mixture of the R and S diastereomers of uridine diphosphoglucose P P 

was undertaken according to modifications of readily available 
9 methods. Synthesis of the opposite diastereomer (diastereomer 8) 

could possibly be effected enzymatically by using glucose-1- 

phosphorothioate as a substrate for galactose-1-phosphate uridylyl 

transferase, this enzyme operates by a different mechanism than 

uridine diphosphoglucose pyrophosphorylase. 10 

If neither diastereomer is not a substrate, then sucrose synthe- 

tase obviously will not tolerate the substitution of sulfur for 

oxygen. However, if the diastereomer 8 is a substrate, then we can 

investigate this stereochemical requirement by observing the 0 

labeling via high field P NMR spectroscopy. If uridine 31 7 

diphosphate-P(S), P 0 can be produced by employing known 
18 

modifications to synthesize the adenine analogue of this compound 

then uridine diphosphoglucose-P(S), P 0 would be produced in the 18 

back reaction by sucrose synthetase with either the 0 in a bridging 18 

position or in an apical position as in Scheme 5. 

If the 0 occupies a bridging position (S isomer) then it will 18 
P 

have a bond order of one and we will see a . 02 ppm upfield shift for 
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the P phosphorus (relative to no labeling). If the 0 is not 18 

bridging and has a bond order of two (as in the R isomer) a . 04 ppm 

shift will be observed. Thus careful analysis of the high field 12 

NHR spectrum should enable a determination of the stereochemical 

course of sucrose synthetase. 

Other potential studies could include the use of derivatives of 

carbamoyl phosphate. Carbamoyl phosphate is a key intermediate in 

both pyrimidine biosynthesis and urea biosynthesis. Carbamoyl 

phosphate synthetase catalyzes the synthesis of carbamoyl phosphate 

according to Scheme 6. 

2 ATP + HC03 + NH3 -----& 2 ADP + NH2COP03 + P. 1 

Reaction 2 

Carbamoyl phosphate can also be synthesized chemically by the 

method of Jones and Lippman according to the scheme. 13 

ll 
N=0 0 + HO P — OH 

0- 

0 0 
II II 

H2N — C — 0 — P — OH 

I 0- 

cyanate + orthophosphate carbamoyl phosphate 

Reaction 3 

By substituting thio containing reactants for the oxygen containing 

reactants in this synthesis, it should be possible to synthesize 

phosphorothioate molecules of interest. The potential significance 

of these analogues is as follows. 



If carbamoyl phosphorothioate is a substrate for carbamoyl 

phosphate synthetase in the reverse reaction, we could possibly see 

the production of adenosine triphosphate 7(S) as shown in Scheme 6. 

0 S 

II 
NH2 — C — 0 — P — 0 + ADP - - - - -& ATP 7(S) 

IJ 

0 
11 

+ NH2 — C 0 

Scheme 6 

If carbamoyl phosphorothioate is produced with the thio group in the 

carbonyl position it could pro~a to be interesting in that a 

rotational equivalence between the sulfur and oxygen might be seen: 

0 0 
il 

HPN C S P — OH + ADP 

If 
0 

11 

H2N C S + ATP 

S 0 S 
ll II II 

H2N~C 0 P OH + ADP (----- H N~ 0 
I 

2 

0 

Sc'berne 7 

Previous studies by Raushel and Villafranca have indicated that 14 

'I there is a rotational equivalence of the carboxylate oxygens in 

carbamoyl phosphate. 

Ornithine transcarbamoylase catalyzes the conversion of carbamoyl 

phosphate and ornithine to citrulline. If thiocarbamoyl phosphate 
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can be synthesized, it could prove to be a precursor to 

thiocitrulline. Thio-carbamoyl phosphate might substitute as a 

substrate for ornithine transcarbamoylase according to the following 
scheme. 

S 
I-I N — C — O — P 

— uH + 
J O— 

I-I Iq-CH — CH — CH — CM, — t- — O 
1 t t r 

H, N 

Ihiocarbntsoyl phosphate Ornithine 

H N C — N-CH — CH — CH — CH — C — O 
2 t r 

H, N„ 
Ihrocrtrullrne 0r. t!&opliosptiate 

Scheme 8 

Thiocitrulline, which could substitute as a substrate for 
arginosuccinate synthetase, might possibly provide some insight into 
the mechanism of this enzyme. Argininosuccinate synthetase has been 

hypothesized to follow one of three possible mechanisms which are all 
characterized by the formation of a citrullyl-adenosine monophosphate 

intermediate shown in Scheme 9. 15 
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Substitution of a sulfur for oxygen in the bridging bond of the 

citrullyl intermediate will undoubtedly have an effect on this inter- 

mediate. If thiocitrulline cannot be synthesized by the above method, 

it could most likely be synthesized chemically by employing a 

combination of methods for polypeptide synthesis and those 

readily available for synthesis of thio ureas. 17, 18 

In summary, the objective of this project was to synthesize the 

aforementioned compounds, purify them through DEAE-cellulose, 

characterize them through P NNR and HPLC, and to investigate the 
31 

kinetic consequences of their use as enzyme substrates. 



EXPERIMENTAL 

Decem osition of Carbarn 1 Phos hat 

Exactly 0. 158 g of the dilithium salt of carbamoyl phosphate was 

weighed out as a solid. The decomposi. tion reaction was begun by the 

addition of the solid carbamoyl phosphate to 10 mL of 200 mM of PIPES 

buffer containing 30% D20 at PH 6. 8. Vigorous stirring was applied 

to ensure that the carbamoyl phosphate dissolved sufficiently. Then 

3 mL of this solution was pipetted into a 10 mM NMR tube and the 

reaction was monitored by P NMR spectroscopy at room temperature 
31 

with the the FT-80 NMR spectrometer at a frequency of 32. 203 MHz. 

Because the peaks for the product orthophosphate and carbamoyl 

phosphate are separated by only 3 ppm, a small sweep width of 400 Hz 

was used to view the appearance of the orthophosphate. Other 

important parameters included an acquisition time of 1. 0 second and a 

seven microsecond pulse width (45' angle). Data were accumulated 

over a six hundred second interval and were then stored on floppy 

disk either manually or by the program KINETICS. Kinetic data were 

acquired by measuring the relative decrease in intensities of the 

peak associated with the carbamoyl phosphate of the plotted P NMR 

spectrum plotted with respect to time. 

The reference orthophosphate peak was established by using 100 mM 

potassium phosphate in 100 mM PIPES buffer that was 33% in D20 at 
pH 6. 8. Carbamoyl phosphate was stored over magnesium sulfate in a 

dessicator below 0 'C when not in use. 
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Reaction of KOCN with Ortho os hate to Produce Carbamo 1 Phos hate 

Exactly 0. 081 grams (0. 001 mole) of solid potassium cyanate was 

mixed with a 100 mM solution of orthophosphate. This mixture was 

buffered with 100 mM MES that was 33S in D20 at PH 5. 8 to Provide a 

100 mM total cyanate solution. Then 3 mL of this 100 mM potassium 

cyanate reaction mixture was pipetted into a 10 mM NMR tube and the 
31 P NMR spectrum was then obtained at room temperature by using the 

FT-80 NMR spectrometer at a frequency of 32. 203 MHx. A total of 
eight frames were obtained over 10 minute intervals (600 transients 

at 1 second acquisition time) and stored on floppy disk via the 

KINETICS program. Other NMR parameters were similar to those used 

for carbamoyl phosphate decomposition experiment except that a sweep 

width of 2, 000 Hz was used and the orthophosphate reference was not 

centered. 

Attem ted S thesis of Thiocarbamo 1 Phos hate 

Exactly 0. 097 g of potassium thiocyanate was added as a solid to 

10 mL of a 100 mM MES/33% D20 solution of 100 mM orthoPhosPhate at PH 

5, 8. This 100 mM potassium thiocyanate solution was left for 24 

hours at room temperature. A 3 mL aliquot of this reaction mixture was 

then subjected to P NMR analysis on the Varian FT-80 NMR, The P 
31 

NMR spectra were obtained using the parameters of the carbamoyl 

phosphate synthesis experiment. 

Reaction of KOCN with Ortho hos horothioate 

Exactly 0. 203 g (. 0025 mole) of potassium cyanate was added to a 

solution consisting of 250 mM tetra sodium orthophosphorothioate and 

250 mM MES buffer that was 33% in D20 and the PH was adjusted to 5. 8. 
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A 3 mL aliquot of this reaction solution was then pipetted to a 10 mN 

NMR tube and the reaction followed at room temperature via P NNR 
31 

spectroscopy on the FT-80 NMR spectrometer. P NMR parameters were 31 

similar to those used to follow the synthesis of carbamoyl phosphate 

except that an acquisition time of 0. 5 seconds was used. Therefore, 

1200 transients were accumulated per frame to yield 10 minute time 

intervals between spectra. Kinetic data were compiled by measuring 

the relative peak intensity of the emerging orthophosphate peak at 10 

minute intervals. Further investigation of this phenomenon was made 

by monitoring a solution that was only 100 mN in potassium cyanate, 

but 250 mN in tetra sodium orthophosphorothioate. A similar solution 

contained the opposite ratio of 250 mM potassium cyanate to 100 mN 

tetra sodium orthophosphate. The latter reaction was followed for 

120 minutes to accommodate the longer reaction time and to confirm 

the nature of the reaction. 

Attem ted Remove of Sulfur rom AMPS via KOCH 

Potassium cyanate was employed as a possible reagent for the 

removal of sulfur from phosphorothioate nucleotides. Assays were run 

at 4 different pH levels. Assays at pH 2 and pH 4 were maintained by 

sodium acetate buffer titrated by HC1 to the desired pH. PIPES 

buffer was used at pH 6. 0 and TRIS buffer was employed at pH 8. 0. 
All buffer concentrations were at 100 mN. Assays were also subjected 

to controlled heating at a constant 50 'C for 24 hours by using a 

Heslab constant temperature bath. Control samples lacking potassium 

cyanate were run at each pH level and at room temperature. A typical 

assay contained a 7 mN concentration of adenosine monophosphorothioate. 
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The concentrations of potassium cyanate ranged from 7 mM to 200 mM. 

Any potential progress with this reaction was monitored using a 

Gilson Model 802B HPLC interfaced with an Apple II computer. UV 

detection was employed using a detector at 254 nm wavelength. The 

column employed was a Whatman partisil-10 SAX of the anion exchange 

type. The elution buffer was orthophosphate at 125 mM in 

concentration. The pH of the elution buffer was adjusted to 3. 5 

using phosphoric acid. All other HPLC parameters included a range of 

1, 0 Aufs, and a flow rate for the elution buffer of 1. 0 mL per 

minute. The program controlled assays were 25 minutes in duration 

and all injections were 20 pL. A standard of adenosine monophosphate 

was used to affix the retention times. 

S nthesis of n-But 1 Thiou ea 

The synthesis of n-butyl thiourea was undertaken by a 

modification of the method of Neville and McGee. Exactly 0. 73 

grams (0. 01 mole, or 1 mL) of dry n-butyl amine were dissolved in dry 

tetrahydrofuran (THF). Then 0. 0025 mole (0. 49 grams) of silicon 

tetra isothiocyanate that was previously dissolved in dry THF was 

added dropwise with stirring to a three neck 250 mL reaction flask. 

The reaction flask was sealed under an argon atmosphere and was 

placed in a water bath to mediate the exothermic reaction. Once the 

reaction had cooled to room temperature the solution was refluxed 

under argon for 30 minutes. The THF solvent was removed via rotary 

evaporation. Dilute isopropyl alcohol (10 mL/2 mL H20) was then 

added to the residue and the whole mixture was refluxed for 30 

minutes. Filtration through a course grade sintered glass funnel was 



used to remove silica gel. The residue was then washed with 5 mL 

aliquots of acetone and the resulting liquid was rotary evaporated to 

a brown oil. Recrystalization was attempted using isopropyl alcohol. 

Silicon tetra isothiocyanate was prepared by a modified synthe- 

sis of Neville and McGee. Approximately 38 grams (0. 5 moles) of 19 

dry ammonium thiocyanate was stirred rapidly in a suspension of 200 

mL of dry benzene in a sealed 500 ml 3-neck flask filled with argon 

gas. Exactly 8. 5 grams of fresh silicon tetrachloride (0. 1 mole) was 

then added slowly via syringe. Typically, a 5 minute period between 

2 mL injections was sufficient to control the reaction. The mixture 

was then heated under reflux for 3 hours and allowed to cool to 70 'C 

and then filtered hot through a course glass sintered funnel. Hot 

THF was then used to wash the compound. The filtrate was distilled 

to a residual volume of 40 mL and the contents of the reaction flask 

transferred to a 400 mL beaker. The cold crystals were rapidly 

filtered, washed with cold THF, pressed and drained, and then weighed 

(22 grams or a 55% yield). They were stored with in tightly stoppered 

flask. The crystals of silicon tetra isothio-cyanate melted at 144- 

146 'C, (Lit. value 144 'C). ' Silicon tetra isothiocyanate was 17, 19 

stored in a magnesium sulfate filled dessicator below 0 'C. 

An alternative synthesis of the target molecule n-butyl thiourea 

was explored using a modified method of Nair. A 5 mL portion (0. 05 

moles) of dry n-butyl amine was slowly added to 6 mL (0. 05 mole) of 

tert-butyl isothiocyanate that Qas previously dissolved in dry petro- 

leum ether. The reaction vessel was allowed to sit at room 

temperature for 30 minutes and was then warmed at 30 'C for 2 hours. 
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Upon returning to room temperature, approximately 7 grams of white 

crystals precipitated. These crystals were collected and washed with 

cold petroleum ether, dried, and recrystallized by using a water/ethanol 

system. The 3-tert-butyl thiocarbamide melted at 91'C (vs 94 'C for 

the literature value). 

A 2. 2 g (0. 012 moles) sample of the purified 3-tert-butyl 

thiocarbamide crystals was then subjected to acid hydrolysis using 

25 mL of concentrated HC1. The mixture was warmed for 10 minutes at 

90 'C. Once cool, the liquid was diluted and neutralized with a 

sodium bicarbonate solution and the precipitate was washed with 

benzene to remove the yellow oil from crystals. The remaining solid 

was recrystallized using a mixture of chloroform and carbon tetra- 

chloride to yield 1. 1 gram of colorless crystals that melted at 72 'C. 

[(lit. value 79']. TLC was then used to check the purity using 50% 

ethyl acetate and 50% hexane as solvent. Pre-coated silica gel, 60 F 

TLC plates from EM Reagents, were employed. Potassium iodide was 

used to develop the chromatograms. 

1 
H NMR spectra was taken of all starting materials and products 

using the Varian XL-200 NMR spectrometer operating at a frequency of 

200. 06 MHz. The acquisition time was 2. 5 seconds, the pulse width was 

5. 0 pseconds, and the sweep width was 3200 Hz. A total of 128 tran- 

sients were taken and peaks were referenced to zero ppm with TMS. 

Lock was obtained using CDC13 solvent. 

n-Butyl amine was dried by refluxing under argon atmosphere over 

calcium hydride for 24 hours. The n-butyl amine was then stored over 

KOH pellets. Benzene was dried under an argon atmosphere in a 



similar way, but was stored over 4' A molecular sieves. 

S thee's of Glucose-1-Phos horothioate a d Kinetic Com arise to its 

Ox en Ana ue 

An assay consisting of 150 pmoles of tetrasodium 

phosphorothioate and 300 pmoles of sucrose was prepared in 

150 mN HEPES buffer that had been titrated to pH 7. 5. The deuterium 

oxide content was 30%. The total volume of the solution was 3 mL. 

The reaction was initiated by the addition of 6. 5 units of sucrose 

phosphorylase isolated from u o s oe mesenteroide . A similar 

assay was employed using the potassium salt of orthophosphate as a 

substrate. Exactly 2 units of sucrose phosphorylase were used to 

initiate this reaction. Both essays were 3 mL in total volume. 

The progress of both the glucose-1-phosphorothioate and glucose- 

1-phosphate reaction assay was monitored on the XL-200 NMR 

operating at a frequency of 81 MHz. The spectral data were collected 

in 10 minute frames (500 seconds with 1 second acquisition time). 

Since the difference in chemical shift for glucose-1-phosphate and 

orthophosphate is very small, a sweep width of only 300 Hz was 

employed with the oxygen analogue. However, the difference in 

chemical shift for glucose-1-phosphorothioate and orthophosphorothioate 

was much greater. Therefore, a much larger sweep width of 5500 Hz 

was used. Exactly 18 frames were collected and the data stored for 

the oxygen analogue experiment. Only 12 frames were collected for 

the thio analogue because of the large disc space required to store 

the greater amount of data inherent in a longer sweep width. A five 

minute delay was imposed between the initial non-enzyme spectrum 
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and the beginning of accumulations for the first spectrum on the 

experiment. This was necessary in order to allow time to properly 

shim the instrument after the addition of sucrose phosphorylase. 

Other parameters included a transmitter offset of 2400 Hz, a 

sensitivity enhancement of 0. 3, the incorporation of the absolute 

intensity mode, and a pulse width of 10 sseconds. Data points for 
the plots for comparison of kinetic relative rates were taken from 

the integrals of peaks versus time. 

Isolat on and Purif ation o Glucose-1-Phos horothioate 

A large scale synthesis of glucose-1-phosphorothioate was used to 

prepare enough material for purification. This consisted of a 25 mL 

reaction mixture that was 75 mN in orthophosphorothioate, 100 mN in 

sucrose, and 200 mN in HEPES buffer at pH 7. 5. This assay was also 
30% in D20. Some 15 units of sucrose phosphorylase were added to 
initiate the reaction. The reaction was then checked periodically by 
31 P NNR spectroscopy on the FT-80 using similar parameters as 

mentioned for earlier experiments. Once the orthophosphorothioate 

was totally consumed (about 24 hours) the mixture was placed in an 

Amicon ultrafiltration membrane cone and centrifuged for 30 minutes 

using a Dupont Sorvall RC-58 refrigerated centrifuge to remove 

sucrose phosphorylase. The supernatant solution was then sealed in 

several 8 mL plastic test tubes and stored at -78 'C. 

Glucose-1-phosphorothioate was purified using a 50 x 3. 0 cm 

column of DEAE-52 cellulose. A 2 mL solution containing 150 pmoles 

of glucose-1-phosphorothioate was diluted to 500 mL with dionized 

water and then titrated to pH 7. 8 using dilute KOH. This was then 
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loaded onto the column at a flow rate of 2 mL/min. The column was 

eluted with a 3. 2 liter gradient of TEA/C02 from 50 mH to 350 mM. 

The TEA/C02 buffer was adjusted to pH 7. 5 with dry ice. The flow rate 

of the elution buffer through the column was 2 mL/min. Glucose-1- 

phosphorothioate eluted behind glucose-1-phosphate at a buffer 

concentration between 110 and 150 mH. 

Since glucose-1-phosphorothioate contains no UV or visible 

chromophore, detection in the column fractions was accomplished using 

modifications of 3 methods; the Bochner spray method, the colormetric 20 

method of Ames, and the reaction of Ellmans reagent [DTNB, 5', 5-dithio 

bis(2-nitrobenzoic acid] with terminal phosphorothioate groups. 

Both the Bochner and Ames method rely upon free phosphate reaction 

with molybdate with the reduction of this complex accomplished by 

ascorbate to produce a blue color detectable at 660 nm. Ellmans 

reagent will produce a yellow color that can be detected at 412 nm 

only if a terminal phosphorothioate is present. 

The modified Ames method employed the following procedure: 1 

drop of concentrated HC1 was added to a 0. 3 mL aliquot of a fraction 

collected from the column and this mixture was then boiled for 25 

minutes. Then 0. 7 mL of a mixture consisting of 1 part 10% ascorbate 

to 6 parts 0, 42% molybdate in 1N H2SO4 was then added to the boiled 

0. 3 mL aliquot. This 1 mL solution was then warmed for 20 minutes at 

45 'C and then diluted to 3 mL and the absorbance measured at a 660 

nm wavelength. Each sample was checked against a blank consisting of 

water and mix. 
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The Bochner spray assay consisted of the following mixture: 

2 g of ammonium molybdate were dissolved in 200 mL of methanol with 

heating and vigorous stirring. The molybdate did not dissolve 

totally, but when the solution was warm to the touch, 20-30 mL of 
concentrated nitric acid was added which facilitated the dissolution 

of the molybdate. After this solution had cooled, approximately 2 g 

of ascorbate were added and the solution swirled until the ascorbate 

was totally dissolved. Then approximately 2 g of para-amino benzoic 

acid was added and allowed to completely dissolve. This produced a 

harvest gold colored solution that remained stable for 45 minutes. 

After this time the solution turned to green and then later to red. 
Once the color of the solution was red, the mix was essentially 
useless. The chromatograms used were 3. 5 inch by 1 inch strips of 
P. E. I. cellulose plates. The plates were developed in 1. 5 N LiC1/H20 

solution. The Bochner spray assay produces a blue color upon reaction 
with free phosphate. All spots were checked against reference 

standards. The reference standards had the following Rf values; 

glucose-1-phosphate; 1. 0, glucose-1-phosphorothioate; 0. 5, orthophos- 

phate; 0. 5, and orthophosphorothioate; 0. 2. 

The Ellmans reagent assay was considered the easiest to use and 

the most accurate and so was employed more often than the others. 
A typical assay consisted of a 100 mL solution that was 2 mN in DTNB. 

This assay was buffered at pH 7. 5 by 50 mN in HEPES. A ratio of 9 

parts of this solution was used to 1 part column fraction (usually 

. 9 mL mix to . 1 mL fraction) and the resulting mixture was checked at 
412 nm on a Gilford 260 spectrophotometer. Fractions identified as 
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terminal phosphorothioate positive were pooled and rotary evaporated 

to dryness and then washed with three successive 10 mL aliquots of 

dry methanol. The resulting residue was taken up in 5 mL of buffer 

solution and the pH adjusted to 9. 0. The glucose-1-phosphorothioate 

was then analyzed quantitatively via Ellmans reagent to determine 

the concentration. Decoupled and non-decoupled P NMR spectra were 31 

taken using the XL-200 NMR spectrometer and parameters already de- 

scribed earlier. The purified material was then stored at -78 'C 

as a 28 mM solution. 

S thesis of Uridine Di h s ho lucose- S v a Urid ne 

Di hos o lucose P ro hos hor las 

Glucose-1-phosphorothioate was tested as a substrate for the 

enzyme uridine diphosphoglucose pyrophosphorylase from Bakers Yeast. 

A typical 4 mL reaction mixture for the kinetic essays consisted of 4 

mM uridine triphosphate (UTP), 4 mM magnesium chloride, 3 mM 

dithiothreitol (DTE, Cleland's reagent) and 2 mM glucose-1- 

phosphorothioate. Exactly 15 units of inorganic pyrophosphatase from 

Bakers Yeast were incorporated into the assay to degrade 

pyrophosphate to orthophosphate as it was formed. The reaction was 

initiated by the addition of 2 units of uridine diphosphoglucose 

pyrophosphorylase. The glucose-1-phosphate assay was similar except 

that dithiothreitol was not used and the reaction was initiated by 

only . 25 units of uridine diphosphoglucose pyrophosphorylase. 

The progress of both reaction essays was followed on a Gilson 

Model 811 HPLC employing a Whatman 10 SAX partisil anion exchange 

column. The disappearance of the peak corresponding to uridine 
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triphosphate was recorded and the area under the curve was then used 

to determine the rate of the reaction. The HPLC scale used was 0. 2 

Aufs, the column elution buffer was 450 mM orthophosphate at a pH of 

3. 5. The injection volume was 20 pL. All runs were at room tempera- 

ture and followed at a wavelength of 254 nm. 

Purification and Characterization of Uridi e Di hos ho lucose- S 

A large scale reaction mixture for the synthesis of uridine 

diphosphoglucose-)3(S) consisted of a 25 mL stock solution that was 

50 mM in glucose-l-phosphorothioate, 60 mN in uridine triphosphate, 

50 mM in magnesium chloride, 50 mM in dithiothreitol, and 200 mM in 

HEPES buffer at pH 7. 5. The assay also contained 100 units of 
inorganic pyrophosphatase. The reaction was initiated by the 

addition of 20 units of uridine diphosphoglucose pyrophosphorylase. 

At random time intervals the progress of the reaction was measured by 

removing 0. 1 mL aliquots and diluting them to 2 mL for analysis by 

HPLC. 20 pL of this solution was then injected onto the column and 

the disappearance of the uridine triphosphate peak checked. HPLC 

parameters were the same as those used for the kinetic essays. After 

the uridine triphosphate had been consumed, the reaction mixture was 

centrifuged through an Amicon ultrafiltration membrane cone. 

Approximately 150 Smoles of uridine diphosphoglucose-P(S) (3 mL 

of solution) was then diluted to 400 mL with distilled H20 and the pH 

adjusted to 7. 5. This solution was then loaded onto a 50 x 3. 0 cm 

column of DEAE-52 cellulose anion exchange material and the column was 

then eluted with a 3. 2 liter linear gradient of TEA/CO2 from 50 mN to 

400 mN concentration. The fractions collected were 20 mL in volume. 
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Those containing uridine diphosphoglucose and uridine diphosphoglucose- 

P(S) were identified by their recorded UV absorbance at 254 nm. 

Uridine diphosphoglucose-)3(S) eluted well behind uridine diphospho- 

glucose between buffer concentrations of 220 to 270 mM. Fractions 

containing uridine diphosphoglucose-)3(S) were pooled and rotary 

evaporated to dryness and then washed 3 times with 10 mL of methanol. 

The residue was then taken up in 304 D20/HEPES buffer at pH 9. 0. P 31 

NNR spectra of the purified compounds were recorded on the XL-200 

NMR operating at a frequency of 81 MHz. Other parameters included a 

sweep width of 7000 Hz, an acquisition time of 2. 3 seconds, a pulse 

width of 15 @seconds, and a transmitter offset of 1, 000 Hz. A total 

of 2, 000 transients were completed. Uridine diphosphoglucose-P(S) 

was then stored at -78 'C as a 25 mM solution in plastic test tubes, 

Glucose-1-phosphorothioate was tested as a substrate for the 

galactose-1-phosphate uridylyl transferase enzyme isolated from adapted 

yeast. The galactose-1-phosphate uridylyl transferase reaction assay 

included a phosphoglucomutase/glucose-6-phosphate dehydrogenase 

coupling system to remove glucose-1-phosphate as it was released from 

galactose-1-phosphate uridylyl transferase. This assay was 3 mL in 

total volume and consisted of 3 mN glucose-l-phosphorothioate, 1 mM 

uridine diphosphoglucose, 5 mM nicotinamide adenine dinucleotide, 4 

mN of magnesium chloride, glucose 1, 6 diphosphate and 75 mN HEPES 

buffer pH adjusted to 7. 5. The enzymes used were 50 units of 

phosphoglucomutase from rabbit muscle, and 15 units of glucose-6- 

phosphate dehydrogenase from Bakers Yeast. Two units of galatose-1- 

phosphate uridylyltransferase were added last to initiate the 
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reaction. An alternative assay was utilized that did not incorporate 

the glucose-6-phosphate dehydrogenase enzyme and its potentially 

bothersome nicotinamide adenine dinucleotide (HAD ) which would most 

likely coelute with uridine-diphosphoglucose-P(S). 

S nth si. s of U idine Di hos ho lucose- S fro Galatose-1-Phos hate 

Urid 1 Transferase 

The appearance of uridine diphosphoglucose-P(S) was monitored at 
254 mN using a Gilson 811 HPLC with a Whatman Partisil 10-SAX Anion 

exchange column. The elution buffer was 75 mN PE at a pH of 4, 5. 
The flow rate was 1. 0 mL per minute, the range 0. 1 Aufs, and a 

typical run of 20 minutes was long enough to allow the uridine 

diphosphoglucose-p(S) to elute from the column. All injections were 

20 yL in volume. 

Purification and Chars terizatio of Uridine Di hos ho lucose- S 

from Galactose-1-Phos hate Urid 1 1 Transferase 

In order to obtain a sufficient quantity of UDP-P(S)-glucose for 
further study a large scale synthesis was employed. The large scale 

assay consisted of 30 @males of glucose-l-phosphorothioate, 20 pmoles 

of uridine diphosphoglucose, 40 pmoles of magnesium chloride, glucose 

1, 6-diphosphate, and 125 mN HEPES buffer at pH 7. 5. Exactly 250 

units of phosphoglucomutase were used, The reaction was initiated by 

the introduction of 40 units of galactose-1-phosphate uridylyl 

transferase. The total volume of the assay was 40 mL. The reaction 

was followed for 36 hours or until the assay developed a cloudy tint. 
The solution containing 8 smoles of uridine diphosphoglucose- 

P(S) was diluted to 400 mL with H20 and PH adjusted to 7. 5. This 



solution was then loaded onto a 50 x 3. 0 cm column of DEAR-52 

cellulose. The column was eluted with a 3. 2 liter linear gradient of 

TEA/C02 at a PH of 7. 5 from 50 mM to 400 mM. The 20 mL fractions 

were collected in 160 tubes. Uridine diphosphoglucose-)9(S) eluted 

well behind uridine diphosphoglucose and was collected in tubes 95 

through 100. The uridine diphosphoglucose-P(S) was then rotary 

evaporated to dryness at 20'. The residue was dissolved 3 times with 

10 mL of dry methanol and rotary evaporated to dryness. This step 

was repeated 2 more times. The resulting residue was then dissolved 

in 3 mL of orthophosphate buffer that was 30% in deuterium oxide. The 

pH of the buffer solution was 9. 0. 

The pure uridine diphosphoglucose-P(S) was then examined by 
31 P NMR spectroscopy. Spectra were taken on the XL-400 NMR 

spectrometer operating at a frequency of 162 MHz. Other parameters 

included an acquisition time of 1. 2 seconds, a pulse width of 15 

pseconds, and a transmitter offset of 2900 Hz. The 300 transients 

were accumulated with reference to orthophosphate buffer. 

To determine the stereochemical make-up of the P phosphorus 

position, a portion of 23 mM uridine diphosphoglucose-P(S) made from 

uridine diphosphoglucose pyrophosphorylase was diluted and then mixed 

with the same compound made via galatose-1-phosphate uridylyl trans- 

ferase. A P NMR spectrum was taken within the region from 

-39. 6 to -40. 6 ppm to examine for diastereomers. 

Uridine Di hos ho lucose- S Assa with Gl co en S nthetase 

Purified uridine diphosphoglucose-P(S) from the uridine 

diphosphoglucose pyrophosphorylase reaction was tested as a substrate 
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for glycogen synthetase from rabbit muscle. The reaction assay 

incorporating uridine diphosphoglucose-P(S) was as follows: 1 mN 

uridine diphosphoglucose )3(S), 6 mg of glycogen and 50 mN HEPES 

buffer at pH 7. 5. A catalytic amount of glucose-6-phosphate was also 

included for the glucose-6-phosphate dependent form of the enzyme. 

The reaction was catalyzed by 1 unit of glycogen synthetase. The 

assay using the natural substrate was similar. Incorporated into 

this assay were 1 mN uridine diphosphoglucose, 6 mg solid glycogen 

50 mN HEPES buffer at pH 7. 5, glucose-6-phosphate, and 1 unit of 

glycogen synthetase. The total volume of both essays was 3. 0 mL. 

The progress of both reactions essays was followed on a Gilson 

811 HPLC. The parameters included an elution buffer of 250 mN phos- 

phate at pH 4. 5, a flow rate through the Mhatman Partisil 10-SAX 

anion exchange column of 1. 0 mL per minute, and a range of . 7 Aufs. 

The chart speed was 5 mm per minute, the collect time was 15 minutes, 

and each injection was 20 pL. Upper limits were derived from the 

uridine diphosphoglucose-p(S) reaction by comparison to the reaction 

of the oxygen analogue and by estimating the least amount of product, 

uridine diphosphate (UDP) that could be confidently detected at the 

range of Aufs used. 

Uridine Di hos ho lucose- S Assa with Sucrose S nthetase 

Uridine diphosphoglucose was tested as a substrate for sucrose 

synthetase that was isolated from wheat germ. The enzyme used in this 

experiment contained 0. 76 units per mL. A typical assay involving 

uridine diphosphoglucose as a substrate consisted of the following: 2 

mN uridine diphosphoglucose-P(S), 4 mN dithiothreitol, 50 mN fructose, 

and 1 unit or 1, 3 mL of enzyme solution. The solution was buffered 
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by 50 mN of HEPES at a pH of 7. 3. A control was run for this experi- 

ment consisted of the assay listed above except that fructose was 

omitted. The assay for the reaction of uridine diphosphoglucose with 

sucrose synthetase consisted of the following: 2 mM UDP-glucose, 50 

mM fructose, and 0. 7 units of enzyme solution. This assay was also 

buffered at pH of 7. 5 by 50 mN HEPES. Total volume of both assays 

was 4. 0 mL. Each reaction was initiated by addition of fructose. 

The HPLC parameters for this experiment were exactly as those used 

for the glycogen synthetase experiment. Upper limits for detection 

were also calculated in a similar manner as for the glycogen 

synthetase experiment. 

Glucose-1-Phos horothioate ssa wi h Phos ho lucomutase 

The activity of phosphoglucomutase was checked on a Gilford 260 

UV-VIS spectrometer by coupling the product glucose-6-phosphate to a 

glucose-6-phosphate dehydrogenase enzyme and following the reduction 

of HAD to HADH at 340 nm. A typical assay consisted of 5 mM 

glucose-l-phosphate, 2 mN cysteine, 1 mM magnesium chloride, glucose- 

1, 6 diphosphate, and 10 mN HAD . The enzymes used were 2 units of 
+ 

phosphoglucomutase and 10 units of glucose-6-phosphate dehydrogenase. 

The total reaction volume of 3 mL was effectively buffered by 20 mM 

HEPES at pH 7. 5. 

The reaction assay using glucose-1-phosphorothioate consisted of 
the following: a crude sample of 30 mM in concentration of glucose- 

1-phosphorothioate that was also 20 mM cysteine, 1. 5 mM of magnesium 

chloride, and contained glucose-1, 6 diphosphate. Sucrose 

phosphorylase had been removed by centrifugation using an Amicon 
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ultrafiltration membrane cone. The pH of this enzyme assay was 7. 4 

throughout the experiment. The reaction was buffered for a concen- 

tration of 100 mM HEPES that contained 25% D20. The reaction was 

initiated by the addition of 15 units of phosphoglucomutase. An 

assay containing glucose-1-phosphate was also run and consisted of 50 

mM glucose-l-phosphate, 20 mM cysteine, 1. 5 mM magnesium chloride, 

and glucose-1, 6 diphosphate. This assay was also buffered at 100 mM 

HEPES and 30% deuterium oxide at pH 7. 5. The reaction was initiated 

by the addition of 5 units of phosphoglucomutase. 

The reactions were followed by P NMR spectroscopy using the 

FT-80 multi-nuclear instrument. P NMR parameters for the FT-80 31 

included a frequency of 32, 203 MHz, a sweep width of 200 Hz, an acqui- 

sition time of 0. 5 seconds, and a pulse width of 7 pseconds. Exactly 

1200 transients were accumulated to allow for 10 minute frames to be 

collected and stored. Upper limits were established using the best 

estimate of what could easily be seen in the signal to noise ratio. 
Materials Used 

The following chemicals were purchased from the Aldrich Chemical 

Company: deuterium oxide, deuterated chloroform, trimethylsilane, 

ammonium molybdate, ascorbate, and p-amino benzoic acid. Alpha 

Chemical Company purchases included: potassium cyanate, potassium 

thiocyanate, tetra sodium orthophosphorothioate, and silicon tetra 

isothiocyanate. Purchases from Sigma Chemical Company included: 

sucrose, DEAR-cellulose, P. E. I. cellulose plates, triethyl amine, 

Ellmans reagent, NAD , NADH, adenosine monophosphate and adenosine 

triphosphate. The buffers TRIS, PIPES, and HEPES were all purchased 
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from Sigma Chemical Company as were all the enzymes used except 

sucrose synthetase which was purified by Dr. A. H. Singh. Adenosine 

monophosphorothioate was provided by Tim Shull as a 28 mM solution. 

Dry THF was kindly provided by Dr. Martin E. Newcomb's laboratory. 

All other chemicals were purchased from Fisher Scientific. 
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RESULTS 

S thesis of Carbamo 1 os hate a Re d e ctions 

The reaction of potassium cyanate and orthophosphate was 

followed by P NMR spectroscopy as shown in Figure 1. The carbamoyl 

phosphate appears with time at 3. 2 ppm upfield from orthophosphate. 

The reaction was followed for 90 minutes and the time course for the 

synthesis of carbamoyl phosphate was computed from the intensities 

of the peaks of carbamoyl phosphate as a percentage of the total 

phosphate resonance. Figure 2 shows a plot of this time couzse. 

Potassium thiocyanate was then substituted for potassium cyanate 

in an attempt to produce thiocarbamoyl phosphate. This reaction 

failed. After 24 hours the P NNR spectrum showed in Figure 3 does 31 

not differ significantly from the original orthophosphate spectrum. 

There are no other peaks that could account for thiocarbamoyl 

phosphate. 

When the orthophosphorothioate was substituted for 

orthophosphate, a reaction was clearly visible by P NMR 

spectroscopy, Figure 4 shows that there is a disappearance of the 

orthophosphorothioate peak and a corresponding appearance of a peak 

in the region associated with orthophosphate. Further investigation 

was undertaken by altering the concentration of reactants. Figure 5 

shows how the reactants were varied and how this affected the rate 

and final product composition. When excess potassium cyanate was 

used, orthophosphorothioate was totally and rapidly converted to 

orthophosphate, Shown in Figure 6 is the result of allowing this 

reaction assay to incubate for 90 minutes. The formation of a peak, 
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Figure 1: P NMR spectra at 32. 2 NHz showing the formation with 

time of carbamoyl phosphate (bottom spectrum) from orthophosphate 

(top spectrum). The difference between the peaks is 3. 2 ppm. 
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Figure 2: Time course of carbamoyl phosphate synthesis followed by 

'lp m. 
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Figure 3: P NMR spectra at 32. 2 8Hz showing orthoPhosphate at 31 

time zero (top spectrum) and again after 24 hours (bottom spectrum). 

The initial spectrum is essentially unchanged. 



Figure 4: P NMR spectra of orthophosphorothioate at time zero 

(note contaminating orthophosphate) is shown in the top spectrum. 

The bottom spectrum shows the results after 10 minutes had passed 

since the addition of potassium cyanate in a 2. '1 ratio (200 mH to 100 

mM of orthophosphorothioate). 
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Figure 5: The time course of the reaction of orthophosphorothioate 

with cyanate at different ratios of potassium cyanate to 

orthophosphorothioate. Top: 2:1, middle: 1:1, and bottom: 1:2. 
Points were acquired by a comparison of the P NNR peak intensities 31 

vs time. 
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Figure 6: The P spectrum at 32. 2 MHz shows the peak resulting from 

the reaction of potassium cyanate and thiophosphate (top). After 90 

minutes the formation of a peak 3 ppm from the peak in the top 

spectrum is seen (bottom). A comparison to Figure 1 suggests that 

the more downfield peak is orthophosphate while that peak forming at 

3 ppm upfield is carbamoyl phosphate. 
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at 3. 2 ppm from orthophosphate, confirms that orthophosphate has been 

produced. 

Several attempts were made to try to utilize potassium cyanate 

in a desulfurization reaction as a method for the possible introduc- 

tion of 0 or 0 isotopes of oxygen into phosphate eaters as 

according to Scheme 10. 

0 C N + AMP(S) AMP(0) + NH3 + 0 C S 

Scheme 10 

The pH as well as the potassium cyanate concentration and assay 

temperature were all varied in different combinations. No conditions 

were found that resulted in the loss of sulfur from AMP(s) 

Attem ed S the 's of Thiocit lline 

After the attempt to produce thiocarbamoyl phosphate failed, we 

attempted the chemical synthesis of thiocitrulline. It was hoped 

that thiocitrulline could be easily synthesized by modifications to 

the method of Nevell and McGee shown in the Scheme 11. 

Si (N - C - S)g + R — NH2 -----& R — N — C NH2 
H 

Scheme 11 

However, crystals of n-butyl thiourea were very difficult to obtain 

when this method was employed. An efficient method of recrystallizing 

the brown oil that was isolated was not devised. However, more 

favorable results were obtained by using the modification of the 

method of G. V. Nair as shown in Scheme 12. 
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1) N C - S t RW2 ------------& substituted, tert butyl 

thiocarbamide 

S 

II 
2) R'-N — C N — R 

hydrolysis 
H 

H2N — C — N — R + t-butylchloride 
H 

Scheme 12 

The tert-butyl thiocarbamide was easily obtained and recrystallized in 

excellent yield. However, the hydrolysis of this thiocarbamide 

produced a messy product that had to be washed and recrystallized 

sevezal times in order to obtain a compound that melted within a 

reasonably close range to the accepted literature value for the 

target compound n-butyl thiourea. The proton NHR of the 

recrystallized compound did not yield encouraging results. The 

peztinent spectra are shown in Figures 7 and 8. Although the 

spectrum of the final isolated compound does contain resonances one 

would expect for an alkyl thiourea, it also contains other nitrogen 

containing species that are very difficult to attribute to a pure 

compound. The method of Nair was deemed an insufficient method for 

the synthesis of thiocitrulline. 

S thea s and Characterization of Glucose-1-Phos horothioate 

Orthophosphorothioate was submitted to the action of sucrose 

phosphorylase in the presence of excess sucrose. Orthophosphate was 

likewise used as a substrate to yield a comparison to the enzymes 

natural substrate. Since the reaction assay did not contain an 

easily identifiable chromophore the rate of the reaction was 

monitored by following the P NMR spectrum and recording the 31 



Figure 7: H NHR at 200 HHz of n-butyl, t-butyl thio carbamide. 1 
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Figure 8: H NMR at 200 HHz of the compound hydrolyzed from n-butyl, 1 

t-butyl thio carbamide. "Humps" at 7. 0, 6. 5, and 3. 3 could be 

attributed to nitrogen containing compounds. 
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integrals of the peaks over time. In Figure 9, the P NMR spectrum 31 

does show that orrhothiophosphate is well utilized as a substrate, 

but the rare of the reaction of the thio analogue is much slower than 

that of the oxygen analogue (Figure 10). The overall rate of reac- 

tion for the thio analogue was found to be 0. 13 pmoles per minute 

whereas that for the oxygen analogue was 0. 54 pmoles per minute. 

Therefore, the thio analogue was utilized at only 24e of the reaction 

rate that was seen with orthophosphate as a substrate. 

The purification of glucose-1-phosphorothioate was achieved by 

DEAE cellulose chromatography and was confirmed by comparing the P 31 

NMR spectrum of pre-column assay material to post-column material as 

shown in Figure 11. The purified sample is essentially free of phos- 

phates except for the peak at -45. 9 ppm that represents glucose-1- 

phosphorothioate. The undecoupled P NMR spectra yielded a single 
31 

doublet with a coupling constant of 9. 72 Hz versus 6. 16 Hz for the 

oxygen analogue. Approximately 150 smoles of crude assay material 

were loaded onto the column and 125 pmoles were isolated for a 83' 

yield. 

Glucose-1-Phos horothioste as a Substrate or Phos ho lucomutase 

Glucose-I-phosphorothioate was tested as a substrate for 

phosphoglucomutase according to Scheme 13. 

S 
S 

H PY ozH 

5 5 

glucose-1-phosphorothioate glucose-6-phosphorothioate 

Scheme 13 
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Figure 9: Shows the P NMR at 81 MHz of the reaction of 31 

orthophosphorothioate and sucrose catalyzed by sucrose phosphorylase. 

Glucose-1-phosphorothioate is easily seen approximately 10 ppm 

downfield of orthophosphorothioate after 10 minutes (second frame 

from left). The glucose-1-phosphorothioate peak continues to grow 

with time as seen in the successive frames. 
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Figure 10: A comparison of the observed rate of the orthophosphate 

(top line) and orthophosphorothioate (bottom line) as pmoles of 

product produced per unit per minute. The points were taken from the 

integrals of the peaks obtained from the P spectra. 
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Figure 11: The P NMR spectrum (top) of glucose-1-phosphorothioate 
31 

(at -45. 9 ppm) before undergoing column purification. The P NNR 

spectrum (bottom) after column purification does not contain glucose- 

1-phosphate (at -5 ppm). 
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This would have enabled us to monitor the conversion of orthophos- 

phorothioate to glucose-1-phosphorothioate on a smaller and perhaps 

more accurate scale by coupling glucose-1-phosphorothioate to 

glucose-6-phosphate dehydrogenase enzyme and consequently following 

the reduction of NAD to NADH. Howe~sr, phosphoglucomutase does not 
+ 

accept glucose-1-phosphorothioate as a substrate, The P NMR 
31 

spectrum shown in Figure 12 remains essentially unchanged in the 

glucose-1-phosphorothioate region at room temperature with time even 

after the addition of the dithiothreitol. However, it is easily 
noticed that there has been a reaction between the glucose-1- 

phosphate and the enzyme to produce glucose-6-phosphate. The upper 

limit for the reaction of glucose-1-phosphorothioate with phosphoglu- 

comutase was calculated to be less than 1. 25% of the rate of the 

oxygen analogue. 

S thesis and Characterization of Uridine Di hos ho lucose- S 

Glucose from Uridine Di hos ho lucose P ro hos hor lese 

Glucose-1-phosphorothioate was subjected to the action of yeast 
uridine diphosphoglucose pyrophosphorylase in the presence of excess 

uridine triphosphate. The inclusion of inorganic pyrophosphatase 

insured that the pyrophosphate produced would be hydrolyzed to 

orthophosphate. Dithiothreitol was imperative to the success of all 
essays that contained glucose-1-phosphorothioate. Dithiothreitol was 

not needed for assays that included glucose-1-phosphate. According 

to Figure 13, glucose-1-phosphorothioate was utilized at 12, 5% of the 

rate of the natural substrate glucose-1-phosphate. Glucose-1- 

phosphorothioate had a rate of 0. 02 pmoles per minute vs 0. 16 pmoles 



A. glucose-1-phosphoro'thioate, 
orthophosphorthioate, 
and plucose-1-phosphate 
before addition of 
phosphoglucomutase. 

B. 1 hour after the addition 
of phosphoglucomutase: 
glucose-6-phosphate has 
formed slightly downfield 
from glucose-l-phosphate. 

C. After 24 hours only 
glucose-1-phosphorothioate 
is seen. Spectrum resembles 
A except that glucose-1- 
phosphate has been converted I 

to glucose-6-phosphate. 

Figure 12: P NIIR spectra at 32 IUlz. 
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Figure 13: A comparison of the observed rate of the glucose-1- 

phosphorothioate and glucose-1-phosphate as pmoles of UTP consumed 

per unit per minute. These points were taken from the integrals of 

the HPLC peaks corresponding to UTP. 
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per minute for the oxygen analogue for a given amount of enzyme. 

Purification of uridine diphosphoglucose-P(S) is shown in Figure 

14, and was achieved by DEAE cellulose chromatography with the elution 

profiles recorded at 254 nm showing clear separation between uridine 

diphosphoglucose and uridine diphosphoglucose-)9(S). 270 smoles of 
uridine diphosphoglucose-P(S) were loaded onto the column and 190 

pmoles were isolated for a 75% yield. The P NNR spectra are shown 
31 

before and after column purification in Figure 15. The spectrum 

shows that uridine diphosphoglucose-P(S) has been purified from 

orthophosphate, uridine diphosphoglucose-P(S), and any unreacted 

uridine triphosphate. Doublets are seen at -45. 9 and 11. 0 ppm for 
the thio analogue and 8. 6 and 10. 4 for the oxygen analogue. The P 

NMR also yielded coupling constants of 27. 81 for Jo, )3(S) and Ja, 
P vs 20. 25 Ja, )3, respectively. (Literature value 20. 75). 
U'dDrhh 1 -HHb f G1~Sh 
and Sucrose S nthetase 

Uridine diphosphoglucose-P(S) was tested as a substrate for both 

sucrose synthetase and glycogen synthetase (E. C. 2. 4. 1. 11) enzymes. 

The reaction for glycogen synthetase is shown below, 

Uridine diPhosPhoglucose + (glycogen)n -----& UDP + (glycogen)n+1 

The reactions were followed by HPLC and monitored for the appearance 

of any peak with a retention time similar to uridine diphosphate 

(approximately 11. 5 minutes). Both sucrose synthetase and glycogen 

synthetase catalyzed the natural uridine diphosphoglucose substrate 
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Figure 14: The purification of uridine diphosphoglucose-P(S) on 

DEAE-cellulose. The HPLC spectrum on the left shows uridine diphos- 

phoglucose-P(S) before purification (peak at' 10. 5 minutes is UDP- 

glucose). The HPLC trace on the right shows uridine diphosphoglucose- 

P(S) after purification. 
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Figure 15: P NMR at 81 MHz of uridine diphosphoglucose-P(S), The 

figure at the top is unpurified material. The figure at the bottom 

shows the result of the column purification: uridine diphosphoglucose 

and orthophosphate have been removed. 
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5. 0 

, J 

11. 5 

initial overnight 

5. 0 11. 5 

Figure 16: Reaction of uridine diphosphoglucose-P(S) with sucrose 

synthetase (top) and fructose shows no appearence of uridine 

di hosphoglucose-P(S). The control without fructose is shown at P 

bottom. Uridine diphosphoglucose and uridine diphosphate-P(S) eluted 

at 5. 0 minutes. 
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very efficiently with sucrose synthetase producing uridine diphosphate 

at . 149 pmole per minute and with glycogen synthetase producing 

uridine diphosphate at . 054 pmole per minute. No uridine diphosphate- 

P(S) could be detected by HPLC (Figures 16 and 17). It would be safe 

to conclude from the data that at best uridine diphosphoglucose-)9(S) 

is an extremely poor substrate for sucrose synthetase and glycogen 

synthetase. The upper limits for the reaction were calculated at 

less than 0. 01% of the rate of the natural substrate for sucrose 

synthetase and less than 0. 2% of the rate of the natural substrate 

for glycogen synthetase. 

Glucose-1-Phos orothioat as a Substrate fo Galact se-1-Phos hate 

id 1 1 T ansferase 

Glucose-1-phosphorothioate was submitted as a substrate for 

galactose-1-phosphate uridylyl transferase. The process of the reac- 

tion is outlined in Figures 18, 19, and 20. This reaction was followed 

by HPLC and the results are shown in Figur'e 21. The reaction proceeded 

to 75% completion with a rate of . 0021 pmoles per minute. It was 

determined that the glucose-6-phosphate dehydrogenase enzyme was not 

essential in order to produce uridine diphosphoglucose-P(S). This 

enabled us to scale up the reaction assay for characterization of 

this substrate. 

The uridine diphosphoglucose-)5(S) from galactose-1-phosphate 

uridylyl transferase was purified on a column of DEAE cellulose 

according to methods used to purify the uridine diphosphoglucose-)7(S) 

produced from uridine diphosphoglucose pyrophosphorylase. Eight 

pmoles were loaded onto the column and six pmoles were isolated for 
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I 1. 5 

initial 
VDP-G P(S)glucose 

overnight 

I) 
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11. 5 

Figure 17: HPLC comparison of UDP-glucose (top) and UDP-G P(S) 

glucose (bottom) with glycogen synthetase. UDP is quite visable 

after 45 minutes (second frame at top at ll. 5 minutes retention time) 

buc chere is not any UDP like peak with UDP-P(S) glucose as substrate 

(second frame at bottom) even after 24 hours. 



UDP-glucose glucose- 1- phospnate galactose-1-phosphate UDP-galac ose 

(A) (Q) (3) (P) 

EA Q E/8 EP 

Figure 1B: Bi-Bi order for binding of uridyl transferase enzyme 

showing binding of substrates and release of products. 



phosphoglucomutase glucose-6- 

VDP-glucose glucose-1-phosphate 

NAD 

NADH 

6-phosphogluconate 

EA ----------& EA'Q 

Figure 19: Full enzyme substrate complex is not allowed to form since 

galactose-1-phosphate was not included in the assay. UDP-glucose is bound, 

E ----& EA, and glucose-1-phosphate is released as UNP remains bound as EA', 

Glucose-1-phosphate is then coupled with phosphoglucomutase and glucose-1- 

phosphate dehydrogenase to formed non-substrate 6-phosphogluconate, 



UDP-P(S)-glucose glucose-1-phosphorothioate 

EA(s) EA(s) ' 

Figure 20; Excess glucose-1-phosphorothioate is then bound by the 

EA-like complex (EA(s)' enzyme and reforms the complex (sulfur is now 

substituted at the i) phosphorus position). The EA'(s) complex is then 

converted to the EA(s) complex and VDP-p(S) glucose is released. 



9. 0 10. 5 

IV 

9. 0 10. 5 
Figure 21: Shown are five frames from the HPLC. 

I is at time 0. II is at 100 minutes after the addition of the 

enzyme. III is at 170 minutes and IV is at 240 minutes since the 

addition of enzyme. V shows the HPLC after 24 hours. Retention 

times were as follows: NAD , 6. 5 minutes; NADH, 15 minutes; uridine 

diphosphoglucose, 9. 0 minutes; and uridine diphosphoglucose-P(S) at 

10. 5 minutes. 
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a 75% yield. The P NMR spectrum showed that uridine diphospho- 

glucose-P(S) contained no other phosphorus containing compounds 

except for the orthophosphate buffer. 

In order to best test for diastereomerism, an authentic sample 

of uridine diphosphoglucose-P(S) from the uridine diphosphoglucose 

pyrophosphorylase reaction (Figure 22) was mixed with that produced 

by galactose-1-phosphate uridylyl transferase (Figure 23) and the P 

NMR spectrum of the mixture was recorded. The resulting P NNR 

spectra shown in Figure 24 yielded a single doublet between -38 ppm 

to -43 ppm instead of the doublet of doublets that one would expect 

for a mixture of two diastereomers. Therefore, the uridine 

diphosphoglucose-P(S) produced from uridine diphosphoglucose 

pyrophosphorylase and that produced by uridylyl transferase are the 

same isomer unless the P resonances are coincidentally identical. 
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Figure 22: P NMR from uridine diphosphoglucose pyrophosphorylase. 31 

Doublets appear at -40. 2 ppm and 14. 5 ppm when referenced to 

orthophosphate buffer. 
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Figure 23: P NNR from galactose-1-phosphate uridylyl transferase. 31 

Doublets appear at. . 40 ppm and 14. 6 ppm when referenced to 

orthophosphate buffer. 
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Figure 24: The P NMR spectrum of the region from -39. 9 to -40. 5. 
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DISCUSSION 

The S thesis o Carbamo 1 Phos hate Derivatives 

The synthesis and decomposition of carbamoyl phosphate have been 

well studied. In our investigation we found that the synthesis of 
carbamoyl phosphate could be followed on the FT-80 accurately. Any 

differences from the literature rate of synthesis most likely would 

arise from differences in method. Jones et al. , employed the Fiske- 
Subbarrow method for analysis of free phosphate. However, 13 

carbamoyl phosphate reacts with molybdate to produce free phosphate. 
This could lead to an artificially high concentration of 
orthophosphate and thus a net slower appearance of carbamoyl 

phosphate. Once the reliability of the P NMR method was 
31 

established, our attention turned toward the synthesis of target 
compounds thio carbamoyl phosphate and carbamoyl phosphorothioate. 

Thiocarbamoyl phosphate failed to form from thiocyanate and 

orthophosphate at the optimum synthesis pB of 5. 8. However, in the 
attempt to form carbamoyl phosphorothioate from cyanate and 

orthophosphorothioate, we encountered surprising results. It was 

clear from the P NMR that the phosphorothioate monoanion was being 
31 

catalyzed to orthophosphate since the contaminating orthophosphate 

peak grew in direct proportion to the decrease in the phosphorothioate 
peak. This suspicion was confirmed when an excess of cyanate produced 

a new resonance at 3 ppm upfield from orthophosphate. This could 

only have happened had the excess cyanate reacted with orthophosphate 

to produce carbamoyl phosphate. Obviously the simple mechanistic 
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scheme outline envisioned earlier does not apply to this reaction. 

The mechanistic pathway of Figure 25 is a more likely approach. 

It was conceivable that the highly electropositive carbonyl 

carbon of cyanate is attacked by the nucleophilic sulfur of the 

phosphorothioate to form an intermediate compound highly susceptible 

to P-S bond cleavage which could then lead to the formation of carbon 

oxysulfide or carbon dioxide (depending on the rate sulfur is "washed 

out" during the reaction) and ammonia. Catalyzed desulfurizations 

are known in the literature. This mechanism is also consistent 23 

with gas build up that was observed in the reaction vessel. 

Since the above reaction undoubtedly involves the substitution 

of an oxygen from a water' molecule for sulfur on the 

phosphorothioate, we attempted to repeat this experiment using 

adenosine monophosphorothioate. This could have proven to be an 

effective method for the introduction of 0 or 0 labeling. 18 

however, with adenosine monophosphorothioate the loss of sulfur was 

not catalyzed. The cause of this failure was not investigated. 

Attem ted S thesis of Thiocitrull'n 

We were unsuccessful in our attempts to synthesize a n-butyl 

thiourea precursor to thiocitrulline. The failure of the synthesis 

of n-butyl thiourea according to the method of Navel and McGee 

could be attributed to the inability to produce totally anhydrous 

conditions in the reaction mixture, Since the starting material of 

silicon tetraisothiocyanate reacts readily with H20 to produce Si02, 

the conditions must be strictly anhydrous for success. our 

experience with silicon tetraisothiocyanate showed it to be 
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Figure 25: Hechanistic scheme showing the formation of thio- 

carbamoyl phosphorothioate with the sulfur in the bridging position. 

This molecule then is possibly decomposed to carbonyl oxysulfide, 

ammonia, and orthophosphate. 
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extremely sensitive to atmospheric moisture. Silicon tetra- 

isothiocyanate will decompose from an off-white color to bright 

orange when left to the open air even after a few seconds. This 

extreme sensitivity to moisture made the method of Nevel and McGee 17 

unsuitable for work with the milligram quantities which we expected 

to use with the blocked ornithine. 

The method of G. V. Nair displayed some initial success. The 

intermediate disubstituted n-butyl, t-butyl thiocarbamate was 

successfully synthesized in high yield and purity. However, the 

hydrolysis of this compound yielded a sample that was difficult to 

purify by recrystalization. Since the Nair method involves the 

formation of an alkyl cation it is reasonable to assume that there ' 

must exist some degree of carbocation rearrangement that could lead 

to a mix of similar alkyl monosubstituted thioureas. The disappoint- 

ing results with the hydrolysis of the thiocarbamide and the 

potential for unspecific hydrolysis with the blocked ornithine led us 

to conclude that the method of Nair was also unsuitable for producing 

thiocitrulline. 

hos horothioate as Subst tes for Sucrose hos ho lese, 

Phos ho luc mutase Uridine Di hos ho lucose P o hos ho 1 se, 

Galactose-1-Phos horothioa e Urid 1 Trans e ase Sucrose S thetase, 

and Gl co n S thetase 

Sucrose phosphorylase was able to catalyze the reaction 

of sucrose and orthophosphorothioate to glucose-1-phosphorothioate 

although this production was quite sluggish in comparison to the 

orthophosphate substrate. The slower overall rate is a direct 
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consequence of the subtle chemical differences between sulfur and 

oxygen. Phosphorothioates are almost always poorer substrates than 

their oxygen analogues although there are some exceptions. 

Glucose-1-phosphorothioate also exhibits the characteristic downfield 

chemical shift that is typical of phosphorothioates. In addition, 

glucose-1-phosphorothioate also exhibits a greater affinity for ion 

exchange material than does its oxygen relative glucose-l-phosphate. 

Glucose-1-phosphorothioate was also a typical phosphorothioate 

in that it was not catalyzed to glucose-6-phosphorothioate by 

phosphoglucomutase. Once again, this is not surprising when one 

considers that another well studied phosphosugar mutase, 

phosphoglycerate mutase, does not accept the phosphorothioate 

analogues of 3' or 2' phosphoglycerate. 24 

Howe~sr, glucose-1-phosphorothioate was accepted by both uridine 

diphosphoglucose pyrophosphorylase and galactose-1-phosphate uridylyl 

transferase. Once again, a reduced rate was seen with each enryme. 

The inclusion of a thiol reducing agent such as dithiothreitol was 

essential to the catalytic integrity of uridine diphosphoglucose 

pyrophosphorylase. This suggests that glucose-1-phosphorothioate is 

acting in an inhibitory manner by forming disulfide bonds either 

directly in the active site or in close proximity to it. Glucose-1- 

phosphorothioate did not necessitate the use of thiol reducing agents 

with galactose-1-phosphate uridylyl transferase. Both uridine 

diphosphoglucose-P(S) products from galactose-1-phosphate uridylyl 

transferase and uridine diphosphoglucose pyrophosphorylase showed the 

downfield P NMR chemical shifts characteristics of phosphorothioate 31 
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analogues of uzidine diphosphoglucose. They also had a greater 

affinity for ion exchange since they eluted on the HPLC and DEAE- 

cellulose at longer times than the oxygen analogue. However, the 

HPLC of purified uridine diphosphoglucose-P(S) did show that this 

compound was unstable at room temperature. 

Since uzidine diphosphoglucose-P(S) is a chizal molecule with 

respect to the )3 phosphorus, the possibility of isomerism was 

investigated using high field P NMR. It was hoped that the 

different enzymes would produce different isomers. Unfortunately, 

the only conclusion that could be reached from the P NMR results is 31 

that uridine diphosphoglucose-P(S) from uzidine diphosphoglucose 

pyrophosphorylase and galactose-1-phosphate contained the same 

stereochemistry at the P phosphorus position since the highfield P 

NMR resonances were identical. It is possible that the existence of 

diastereomezsnooutd not be detected by high field NMR (i. e. the P 

NMR resonances could be identical for both the S and R 
P 

diasrereomers). However, Frey was able to clearly account for the 

existence of R and S diastereomers of uridine diphosphoglucose-a(S) 

by their easily distinguishable P NMR spectra. Nucleotide phos- 31 

phozothioate compounds that could not be distinguishable by their P 
31 

NMR were shown to be the same isomer. Therefore, it would be highly 

unlikely for the beta-sulfur substituted diastereomers of uridine 

diphosphoglucose to exhibit strikingly dissimilar P NMR resonance 

behavior. 

Uridine diphosphoglucose-P(S) was tested as a substrate for both 

sucrose synthetase and glycogen synthetase with the same negative 
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result. Since uridine diphosphoglucose-P(S) is undoubtedly a single 

isomer, it is likely that the opposite isomer may prove to be a 

substrate for one or both of these enzymes. 
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CONCLUSION 

The modifications of the method of Jones for the synthesis 13 

of carbamoyl phosphate failed to produce the desired thio-derivatives 

of carbamoyl phosphate; thiocarbamoyl phosphate and carbamoyl 

phosphorothioate. The investigation of the 0 labeling 

possibilities of cyanate with phosphorothioates proved to be negative 

in that the monophosphorothioate, adenosine monophosphorothioate 

showed no signs of sulfur cleavage. 

The chemical synthesis of thiocitrulline was not undertaken 

since all attempts to produce a precursor compound, n-butylthiourea, 

were unfruitful. 

The strategy for producing uridine diphosphoglucose-S(S) was 

successful. Unfortunately, the isomer produced by uridine 

diphosphoglucose pyrophosphorylase and that produced by galactose-1- 

phosphate uridylyl transferase were the same. This diastereomer was 

not a kinetically competent substrate for sucrose synthetase nor was 

it a substrate for a similar enzyme, glycogen synthetase. Further 

investigation of sucrose synthetase must await the synthesis of the 

opposite diastereomer of uridine diphosphoglucose-P(S) for the back 

reaction catalyzed by this enzyme. 
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