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ABSTRACT  
 
 

Geographic and Temporal Variation in the Genetic Mating Systems of Pipefish. 

(August 2007) 

Kenyon Brice Mobley, B.S., Louisiana State University; M.S., Georgia Southern 

University 

Chair of Advisory Committee: Dr. Adam G. Jones 

 
Understanding the processes that govern mating behaviors is a fundamental goal 

of evolutionary biology and behavioral ecology.  Population-level patterns of mate 

acquisition and offspring production, otherwise known as the genetic mating system, 

play a central role in the sexual selection on morphological and behavioral traits and 

may facilitate speciation.  The central hypothesis of this research is that variation in 

environmental conditions, such as temperature, turbidity, and habitat, and demographic 

influences such as population density, sex ratios and temporal availability of mates, may 

limit mating and reproductive success in a predictive manner.  Therefore the goal of this 

dissertation is to examine the contributions of geographic and temporal variation on the 

plasticity of the genetic mating system in two species of pipefish.   

The first study examined whether meaningful variation in the genetic mating 

system exists between two natural populations of the dusky pipefish, Syngnathus 

floridae.  Results of this investigation provide evidence that the genetic mating system 

differs among different geographic locations. 
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The second study considered the relative contributions of environmental 

conditions and population demographics on differences in the genetic mating system of 

dusky pipefish from five natural populations.  The results of this investigation show 

strong trends for demographic and environmental factors to strongly influence the 

genetic mating system between populations.     

The third study considered how variation in the number of available mates 

predicts the outcome of sexual selection during the course of a breeding season in the 

broad-nosed pipefish, Sygnathus typhle.  The results of this study indicate a strong 

influence of the operational sex ratio on the genetic mating system. 

In addition to these studies, a study was conducted to investigate whether 

phylogeographic relationships may be responsible for geographic variation in the genetic 

mating system of the dusky pipefish of pipefish.  Mitochondrial DNA analysis does not 

substantiate subspecies designations for this species and microsatellite analysis show a 

clear pattern of isolation by distance.   

Taken together, these studies significantly enhance the understanding of how 

mating systems are organized over broad environmental gradients and temporal/spatial 

scales and to the evolution of sexual selection on the whole.  
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CHAPTER I 
 

INTRODUCTION 
 

 
Background 

In their seminal article, Emlen & Oring (1977) put forth the first unified theory of 

mating system evolution. This conceptual framework has provided the basis for various 

studies on the ecology and evolution of mating behavior in the decades since their 

original proposal.  Emlen & Oring (1977) proposed that mating systems comprise various 

components of reproductive behavior, most notable of which are 1) the number of mates 

acquired, 2) the manner of mate acquisition, 3) the presence and characteristics of pair 

bonds, and 4) the patterns of parental care provided by each sex.  Mating systems can be 

further divided into the social mating system and genetic mating system. The social 

mating system is primarily concerned with the formation of pair ponds and other 

behavioral interactions between potential mates and rivals (Jones & Avise 2001a). The 

genetic mating system, on the other hand, is concerned only with the number of mates 

acquired and the number of offspring produced by each breeding adult during one well 

defined breeding interval (Andersson 1994, Jones & Avise 2001). The genetic mating 

system is of particular interest to evolutionary biologists since the numbers of mates 

acquired and the numbers of offspring produced by each mate are directly related to 

sexual selection, or the competition for mates (Darwin 1859, 1871, Jones & Avise 2001, 

Shuster & Wade 2003).  Sexual selection is a powerful selective process that  

_______________ 
This dissertation follows the style of Molecular Ecology. 
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drives the evolution of morphology and behaviors that are related to the competition for 

mates (Shuster & Wade 2003).  The genetic mating system, therefore, has a profound 

influence on sexual selection within a species as well as contributing significantly to a 

species’ life history strategy.  

Two recent developments have brought mating system biology back to the 

forefront in scientific inquiry. The first development is the application of sexual 

selection theory to mating system biology by employing selection gradients to 

characterize the genetic mating system (Bateman 1948, Arnold & Wade 1984, Jones & 

Avise 2001, Jones et al. 2002, Shuster & Wade 2003, Jones et al. 2005).  Selection 

gradients can then be compared across sexes, populations and breeding seasons in a 

statistically rigorous manner.  The second development in mating system theory is the 

application of molecular techniques to accurately and unambiguously assign parentage 

to offspring.  Studies that employ molecular parentage techniques have linked classical 

behavioral studies with direct measurements of sexual selection thereby providing a 

statistically rigorous framework for hypothesis testing (see Shuster & Wade 2003 for 

review).  By combining and applying these two recent developments to genetic mating 

systems, we can now take advantage of powerful molecular-based techniques to 

calculate both mating and reproductive success while providing a theoretical framework 

for testing hypothesis-driven questions regarding mating systems.  
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Measurement of sexual selection by means of Bateman’s principles  

In The Origin of Species (1859) Darwin originally proposed the concept of 

sexual selection arising from inter- and intra-sexual competition for access to mates. 

However, direct measurement of the strength and direction of sexual selection has 

provided a challenge to modern research (Jones et al. 2002, Shuster & Wade 2003). In 

the time since Darwin, researchers have proposed several measures such as relative 

parental investment (Trivers 1972), the operational sex ratio (OSR, Emlen & Oring 

1977) and the maximum potential reproductive rates of the sexes (Clutton-Brock & 

Vincent 1991) to evaluate sexual selection and mating system organization.  None of 

these indices of sexual selection directly measure the intensity of selection, although 

some, like the operational sex ratio, certainly have dramatic effects on sexual selection 

(Kvarnemo & Ahnesjö 1996, Shuster & Wade 2003).  

Bateman (1948) provided a theoretical framework for sexual selection by 

articulating three specific points now referred to as “Bateman’s principles” (Arnold & 

Duvall 1994).  Based on Bateman’s original work, Arnold & Duvall (1994) recognized 

that 1) the sex experiencing the strongest sexual selection has higher reproductive 

success (measured in terms of the total number of offspring produced), 2) the sex 

experiencing the strongest sexual selection has a greater variance in mating success 

(measured in terms of number of mates), and 3) the slope of the regression relating 

reproductive success to mating success increases with the intensity of sexual selection 

(Arnold & Duvall 1994). Bateman’s first principle measures the strength of selection 

arising from the standard variance in reproductive success also known as the opportunity 
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for selection or I [I = variancers / meanrs
2]. This measure can best be described as the 

theoretical maximum strength of selection that may act on a population in terms of 

offspring production (Crow 1958, 1962). Bateman’s second principle measures the 

strength of sexual selection arising from the standard variance in mating success and is 

known as the opportunity for sexual selection, Is [Is = variancems / meanms
2]. The 

opportunity for sexual selection indicates the maximum strength of sexual selection 

acting in a population (Wade & Arnold 1980).  Arnold & Duvall (1994) proposed that 

the strength of sexual selection could be measured by the relationship between mating 

success and reproductive success, quantified by the Bateman gradient, βss.  Since mating 

success and reproductive success must translate into increased fitness for individuals this 

relationship must be positive in order for sexual selection to operate (Jones et al. 2002).  

The Bateman gradient is the slope of the weighted regression line comparing 

reproductive success to mating success (Arnold and Duvall 1994).  Finally the sex 

difference in opportunity for selection, Imates, [Imales – Ifemales = Imates] has also been used 

as a measurement of sexual selection (Wade 1979; Wade & Arnold 1980; Wade 1995; 

Shuster & Wade 2003).  The advantages of theses variance related approaches are 1) 

they are directly related to Darwin’s original hypothesis for sexual selection (Jones et al. 

2004) and 2) they add a statistically rigorous component to compare the strength of 

sexual selection between sexes and among populations and species (Shuster & Wade 

2003).  A major disadvantage to applying Bateman’s principles to natural populations is 

that the population would need to be small enough so that a majority of adults can be 
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sampled in order to accurately calculate the variation in mating success including the 

proportions of individuals that do not mate.   

Recently, a renewed interest in mating system organization has established 

Bateman’s principles as an appropriate method for comparing mating systems across 

populations and taxa (Bateman 1948, Arnold & Duvall 1994, Jones & Avise 2001, 

Shuster & Wade 2003, Jones et al. 2004, Jones et al. 2005, Mills et al. 2007). The 

modern iteration of Bateman’s principles provides a rigorous and statistically 

quantitative measure of the potential for sexual selection (Jones & Avise 2001, Shuster 

& Wade 2003) and may lead to insights that help to explain observed patterns of 

diversity in animal mating systems.  For example, I and Is have been used to predict the 

outcome of competition between sexes in species with conventional sex roles including 

insects (Markow 2002), fishes (Downhower et al. 1987, Jirotkul 1999, Kelly et al. 1999, 

Lindström 2001), amphibians (Jones et al. 2002, Tennessen & Zamudio 2003), reptiles 

(Prosser et al. 2002), birds (Weatherhead & Boag 1997, Griffith et al. 1999, Richardson 

& Burke 2001, Webster et al. 2001) and mammals (Coltman et al. 1999, Galimberti et al. 

2002). Additionally Bateman’s principles have been applied to species that have 

alternative mating behaviors (Mills & Reynolds 2003, Shuster & Wade 2003), are 

obligate brood parasites (Woolfenden et al. 2002) and are sex role-reversed (Jones et al. 

1999). A recent study by Jones et al. (2002) documents that two sexually selected traits 

in male rough-skinned newts, Taricha granulosa, are correlated to the direction and 

intensity of sexual selection by means of the Bateman gradient. This is the first study 

that made the definitive link of sexually selected traits and Bateman’s principles thus 
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demonstrating the utility of such techniques. Also the application of Bateman’s 

principles is useful to compare sexual selection between sexes, populations, species and 

higher taxa (Bateman 1948, Jones et al. 1999, Jones & Avise 2001, Shuster & Wade 

2003).  Despite the potential benefit of applying Bateman’s principles to quantify sexual 

selection, they remain an underutilized proxy for sexual selection in natural populations.   

 

Other methods for calculating the genetic mating system 

Two additional variance methods, the index of resource monopolization 

(Ruzzante et al. 1996) and the Morisita index (Morisita 1962) have been recently 

introduced as alternative measures of the potential for sexual selection (Kokko et al. 

1999, Fairbairn & Wilby 2001).  The index of resource monopolization is defined as  

( )
( )xxn
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−

−
= 2
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δ , where n is the 

number of individuals, xi is the value of the resource (e.g., mating success or 

reproductive success) for the individual i, x is the mean value across the n individuals, 

and σ2 is the variance.  Fairbairn & Wilby (2001) advocated the application of Morisita’s 

index for populations with female-biased sex ratios instead of I and Is.  The argument for 

these methods is that these measures based on Poisson distributiond are not as sensitive 

to population means and therefore are a better metric of sexual selection.  Neither of 

these techniques have gained wide acceptance for quantifying sexual selection to date 

and are heavily criticized for their redundancy (Jones et al. 2004, Mills et al. 2007).  

Perhaps the major drawback to applying Iδ and Q is a lack of connection to formal 
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selection theory based on Darwin’s original concept of competition for mates (Jones et 

al. 2004, Jones et al. 2005).   

 

Geographic variation in mating systems  

Only a handful of studies investigating variation in genetic mating systems on 

broad geographical scales have been conducted and they have not provided clear trends 

with respect to mating system organization among sites.  For example, a few studies that 

investigated the degree of multiple mating have found little or no variation between 

geographically distant populations (Jones et al. 2001b, Goodisman et al. 2002).  Another 

study discerned differences in mating success that are correlated with phenotypic 

variation in traits between populations such as male size in sailfin mollies (Trexler et al. 

1997).  Still other studies have provided evidence that there are significant differences 

between mating and reproductive success among distant populations, although the 

ecological factors responsible for such differences are not yet well understood 

(Weatherhead & Boag 1997, Griffith et al. 1999). Finally, only one model system has 

clearly shown a positive relationship between an ecological parameter (predation) and a 

mating system parameter, the degree of multiple insemination in Trinidadian guppies 

(Kelly et al. 1999, Bronikowski et al. 2002).   

Despite the relative importance of environmental variation to other aspects of 

ecological and evolutionary biology, it remains a relatively understudied aspect of 

mating system organization. Few empirical studies have specifically tested how 

environmental factors influence the mating system of species (Turner & McCarty 1998). 
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Because of this, the study of biotic and abiotic factors that may constrain mating and 

reproductive success that do not specifically pertain to the acquisition of mates are often 

ignored and therefore little understood. We do know, however, that environmental 

factors may set limits on reproductive success.  For example, temperature (Ahnesjö 

1995, Kvarnemo 1997, Fischer et al. 2003), resource abundance (Kvarnemo 1997, 

Turner & McCarty 1998), habitat structure and fragmentation (Turner & McCarty 1998, 

Aguilar & Galetto 2004), parasite load (Fitze et al. 2004), resource competition (Martin 

& Martin 2001) and predation (Bronikowski et al. 2002) all may influence variation in 

the number of offspring produced by each mate. Environmental factors may also 

influence the mating success of a population. For example, length and synchrony of the 

breeding season (Emlen & Oring 1977, Shuster & Wade 2003, Spottiswoode & Møller 

2004), local population density (Lloyd 1967, Griffith et al. 2002, Prohl 2002), the 

operational sex ratio (Emlen & Oring 1977, Kvarnemo & Ahnesjö 1996, Prohl 2002) 

and predation-risk (Kelly et al. 1999) have all been shown to affect the mating success of 

particular populations. The next logical step in mating system theory is to correlate 

sources of environmental variation with differences in mating system organization.  

 

Temporal variation in mating systems  

Emlen & Oring (1977) proposed that males compete with one another for access 

to females and male reproduction is thus limited by the spatial and temporal availability 

of sexually receptive females. Extending this idea further, Emlen & Oring (1977) 

suggested that the temporal pattern of female receptivity to mating may further limit a 
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male’s opportunity to monopolize mates. For example, if all females become receptive at 

one particular time, then a male’s ability to monopolize many females simultaneously 

may be reduced. Therefore the degree of mating synchrony, as well as the spatial 

dispersion of females, may play an important role in the intensity of sexual selection and 

the mating system. Few studies have specifically addressed how temporal variation in 

receptivity to mates may affect the mating system. Among isopods that dwell in the 

spongocoels of marine sponges, asynchrony in temporal receptivity of female isopods 

increases Is (Shuster & Wade 2003). In at least two species of sex-role reversed pipefish, 

asynchrony in temporal receptivity of males to females has been hypothesized to 

decrease the OSR thereby increasing female competition for mates during the breeding 

season (Vincent et al. 1994, Vincent et al. 1995).  

 

Dissertation justification 

The justification for this dissertation is to resolve the role of phylogenetic history, 

environmental variation, population density and temporal variation on the organization 

of genetic mating systems. The central hypothesis of this research is that variation in 

environmental conditions, population density, sex ratios and temporal availability of 

mates may limit mating and reproductive success in a predictive manner.  I will quantify 

the genetic mating system by applying Bateman’s principles to draw comparisons 

between different sexes, populations and time periods (Bateman 1948, Arnold & Wade 

1984). By investigating ecological parameters that may affect the local mating system, 

we may gain valuable insight into how species may modify their mating behavior in 
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response to environmental change.  Details of ecological relevance, these studies take 

the next logical step in filling the gap of knowledge as to how ecological factors may 

affect mating systems.  Thus, results from these studies will significantly enhance our 

understanding of how mating systems are organized over broad environmental gradients 

and temporal/spatial scales.   

 

Study species 

To test these hypotheses, I will take advantage of the well documented genetic 

mating system of two sex-role reversed, polygynandrous pipefish, Syngnathus floridae 

and S. typhle (Jones & Avise 1997b, Jones et al. 1999). Like other members of the 

Genus Syngnathus, these species have male pregnancy characterized by the depositing of 

unfertilized eggs by the females into a specialized brood pouch on the male’s ventral 

surface.  Males fertilize the eggs and then provide all parental care to offspring until 

birth. These species are ideally suited to this type of inquiry for several reasons: 1) they 

are intimately associated with their natural seagrass habitat, 2) they have a broad 

geographical distribution that spans a wide range of ecological settings that vary with 

respect to temperature, habitat and community structure, 3) local population density and 

sex ratios vary spatially and temporally, and 4) mating behavior can easily be 

characterized by employing powerful molecular markers that have already been 

developed for these species (Jones & Avise 1997b, Jones et al. 1999).  
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Chapter outline 

In CHAPTER II, I explore the biogeographic phylogenetic relationship between 

Atlantic and Gulf of Mexico populations of S. floridae to explore how patterns of gene 

flow affect the distribution and evolutionary history of this species.  To accomplish this 

goal, I use both nuclear and mitochondrial molecular markers to reconstruct 

phylogenetic relationships between populations.  I use six microsatellite markers to 

construct an FST matrix on individuals from five populations (two Atlantic, three Gulf of 

Mexico) and sequence a 394bp fragment of the mitochondrial cytochrome b gene from 

10 populations found throughout their continental US range.   

In CHAPTER III, I compare the genetic mating system from a population of S. 

floridae from the Gulf coast of Florida to a population from the Atlantic coast of 

Virginia.  To accomplish this goal, I collected adult populations from these two 

populations in 2003 and I investigated adult sex ratios, operational sex ratios, population 

densities, and the size of the adult population from each site to investigate their effect on 

the genetic mating system.   

In CHAPTER IV, I explore the influence of population demographics 

(population density, operational sex ratio, adult sex ratio), and several environmental 

factors (daily and yearly water temperature, turbidity, salinity and seagrass height, 

density and biomass) on the genetic mating system of five populations S. floridae.   

In CHAPTER V, I investigate how the availability of mates may affect the 

mating system of S. typhle. Syngnathus typhle undergo three semi-synchronous breeding 

events during a summer breeding season. At the start of the breeding season, males and 
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females arrive in shallow seagrass beds at roughly the same time, thus limiting any 

particular individual from monopolizing all mates. Because males’ receptivity to females 

is constrained by the length of male pregnancy, females become in excess as the 

breeding season progresses, thereby increasing female competition for males.  

In CHAPTER VI, I summarize the results of each study and will draw 

comparisons between each study with emphasis on their significance to mating system 

evolution, evolutionary biology and science in general.   
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CHAPTER II 

GEOGRAPHIC VARIATION IN THE GENETIC MATING SYSTEM OF THE 

DUSKY PIPEFISH, SYNGNATHUS FLORIDAE.   

I: PHYLOGEOGRAPHY  

 
Introduction 

 
 A fundamental goal of evolutionary research is to explain geographic patterns of 

variation among populations and species.  Phylogeography, the study of patterns of 

genetic variation in nature through the reconstruction of genealogies, has played a major 

role in modern attempts to understand geographic patterns of biodiversity (Avise 2000).  

Phylogeographic studies have revealed historical patterns of population range 

expansions and bottlenecks and have clarified the extent to which populations are 

connected to one another by contemporary gene flow (Avise 2000).  Comparisons of 

phylogeographic data across taxa have also revealed several naturally occurring barriers 

to gene flow (Avise 2000, Avise 2004).  Perhaps the most famous natural barrier to gene 

flow is Wallace’s Line, named after Sir Alfred Russel Wallace, who first noted distinct 

avian assemblages west of the island of Bali in the Malaysian Archipelago (Wallace 

1869).  Although the mechanism responsible for the divergent faunal assemblages were 

unclear to Wallace at the time, it was later determined that the Malaysian Archipelago 

was divided by a deep ocean trench and faunal assemblages on either side of the trench 

had extensive historical land connection (Voris 2000, Hall 2002).   

Among the first studies that highlighted molecular support for such a barrier to 

gene flow were those conducted by Avise and colleagues (see Palumbi 1994, Hare & 
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Avise 1998, Avise 2000, 2004 for review).  Using a variety of molecular markers, they 

documented a strong genetic discontinuity between populations of a variety of 

Southeastern United States maritime taxa.  This biogeographic split separates species 

into Atlantic and Gulf of Mexico populations with the break roughly occurring on the 

mid-Atlantic coast of Florida.  Similar to Wallace’s line, there is no obvious physical 

barrier that characterizes this natural interruption to gene flow.  It appears that this multi-

species concordance in phylogeography is the result of historical vicariant events in this 

region.  The prevailing hypothesis for the geographic patterns of genetic variation in this 

region is that populations were isolated after the last glacial maxima in the Pleistocene 

(Avise 2000).  For instance, Reeb & Avise (1990) suggested that populations of the 

oyster, Crassostrea virginica, have been isolated during periods of low sea level in the 

Pleistocene.  Populations of marine species across the northern portion of Florida may 

have also been connected much earlier during the Miocene via the Suwannee Seaway 

(Cunningham et al. 1991).  Ecological conditions and temperature gradients may also 

provide a mechanism for the maintenance of phylogenetic divergence because a faunal 

transition zone occurs at this location separating temperate species of the north Atlantic 

from southern subtropical species (Avise 2000).  Strong oceanic currents such as the 

Gulf Stream or the Gulf Loop Current provide one avenue of gene flow and may 

transport larvae and juveniles hundreds of kilometers, although the success rate of long 

distance dispersers may be small (Palumbi 1994).   

The purpose of this study is to document the phylogeographic distribution of the 

dusky pipefish along the continental United States shoreline to test the hypothesis that 
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patterns of gene flow in this coastal fish are consistent with the biogeographical split 

between the Atlantic Ocean and the Gulf of Mexico.  The dusky pipefish, Syngnathus 

floridae (Jordan & Gilbert), occurs in the Western Atlantic Ocean from the Chesapeake 

Bay south to Seabrooks Beach, South Carolina, Bermuda, the southeastern Florida coast 

south to Panama, the Gulf of Mexico, and the Caribbean (Herald 1965, Dawson 1982, 

Fig. 2.1).  On the continental U.S., there is a break in the distribution of S. floridae 

between Seabrooks Beach SC and Fort Pierce, FL (Dawson 1982), making this species a 

particularly good candidate to show a pattern of genetic variation consistent with the 

observations for other marine species from the same region.   

Because the dusky pipefish displays substantial among-population variation in 

body size, coloration, and meristic characters, such as fin ray, trunk ring and tail ring 

counts, throughout its range, there has been some debate with respect to subspecies 

designations in this pipefish species.  A preliminary survey by Herald (1962), based on 

morphological characteristics and geographic distribution, designated S. floridae a 

polytypic species consisting of four subspecies.  In Herald’s (1962) scheme, the 

subspecies S. f. hubbsi ranged from the Chesapeake Bay (Plum Point, Maryland) to 

South Carolina (Seabrooks Beach).  The second subspecies, S. f. floridae, occurred 

throughout the Gulf of Mexico from the west coast of Florida to Corpus Christi, Texas.  

The third subspecies, S. f. mckayi, included populations from Biscayne Bay, Florida 

through the Florida Keys and likely occurred in parts of the Caribbean, including the 

Bahamas, but records were scarce in the Caribbean.  The fourth subspecies in Herald’s 

classification (1962), S. f. nesiotes, was proposed to occur only in Bermuda.  After a 
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more complete and thorough review of existing collections of S. floridae, Dawson 

(1982) doubted the existence of such a species complex.  Although he documented 

variation in meristic traits among different populations of S. floridae, he suggested that 

perceived differences between populations could have resulted from undetermined 

ecological influences (Dawson 1982).  He also suggested that gene flow between 

populations was likely as a consequence of dispersal of juveniles drifting in floating 

vegetation.     

To investigate geographic patterns of genetic variation in the dusky pipefish, two 

different methods of estimating population structure and phylogeography were 

employed.  First, microsatellite data were used to examine population subdivision via 

FST, RST, and a Bayesian cluster analysis.  Second, mitochondrial DNA (mtDNA) 

sequence data from the cytochrome b gene were used to estimate a haplotype network 

and to reconstruct the phylogeny of the dusky pipefish using both parsimony and 

maximum likelihood techniques.   

 

Materials and Methods 

Sample collection  

Adult S. floridae were collected from 10 locales within their continental U.S. 

distribution during the summers of 2003-2006 (Table 2.1, Fig. 2.1).  Fishes were 

collected from shallow seagrass beds using a 3m hand-drawn seine net with a 3.2mm 

mesh or trawled by boat using a 5m trawl with a 3mm mesh at a rate of approximately 

1.8-2.2 km/hr.  All fishes were sacrificed in the field by severing their spinal columns  
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Figure 2.1.  Map of the distribution of Syngnathus floridae within the continental US 
(shaded areas).  Collection sites (circles) correspond with locations given in Table 2.1.  
No substantiated records for the species exist between Seabrooks Beach, South Carolina 
and Fort Pierce, Florida (Dawson 1982).   
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above the operculum.  Whole fish either were immediately preserved in 95% EtOH in 

the field or were frozen on ice and transferred to 95% EtOH upon return to the 

laboratory.  Total DNA was isolated from fin tissue using a Gentra Puregene® Cell 

Tissue Kit for microsatellite and mitochondrial analyses.   

 

Microsatellite markers 

Microsatellite loci were assayed in five populations of S. floridae that had 

sufficiently large samples sizes for meaningful analysis (n > 30).  The five populations 

examined consisted of two from the Atlantic Coast (Virginia, North Carolina), two from 

the Eastern Gulf of Mexico (Tampa Bay, FL, St. Joseph Bay, FL) and one from the 

Western Gulf of Mexico (Texas).  A total of five variable microsatellite markers isolated 

from other species were used in this analysis (Jones & Avise 1997a, Jones et al. 1999).  

A sixth microsatellite, Scov5 (Scov5 forward 5’- CGATAAGTGAGAGAGAGG-3’, 

Scov5 reverse 5’-CACCGTGGGTTCAACTTTG-3’) that amplified a AGC repeat motif, 

developed for S. scovelli was also used.  

Microsatellite markers were amplified using polymerase chain reaction (PCR) 

conditions modified from Jones & Avise (1997b) and Jones et al. (1999).  We used 

annealing temperatures of 54°C for Micro11.1 and Micro22.3, 55°C for Typh12 and 

56°C for Micro25.10, Micro25.22 and Scov5.  All thermal cycling ran for 36 cycles, 

except that for Micro11.1, which ran for 40 cycles to yield sufficient PCR product for 

analysis.  Primers were labeled with a fluorescent dye, multiplexed and sized on an ABI 

3730 Genetic Analyzer (Applied Biosystems, Foster City, CA) by the Nevada Genomics 

 



 

Table 2.1.  Sites, abbreviation (abb), date(s) of collection, number of adults collected and GPS coordinates of collection of 
Syngnathus floridae.   
 
 

Site   
  

Abb Date
GPS Coordinates

(N, W) 
ATLANTIC     

Mobjack Bay, VA VA 8/03 
 

  
 
 

 
 
 

241 37°1842’, 76°2475’ 
Morehead City, NC NC 7/04 82 34°4334’, 76°7619’ 

GULF OF MEXICO  
Spanish Harbor Bridge, FL FK 6/04 3 24°6497’, 81°3169’ 
Jug Creek Shoal, FL JC 7/06 4 26°7069’, 82°1981’ 
Tampa Bay, FL TB 6/04-7/04 126 28°0307’, 82°4756’ 
Crystal River, FL CR 8/06 2 28°8323’, 82°8502’ 
Cedar Key, FL CK 8/06 2 29°1354’, 83°0987’ 
Turkey Point Shoal, FL  TP 8/05, 7/06, 8/06 

 
12 29°8867’, 84°5023’ 

St. Joseph Bay, FL SJ 7/03-8/03 99 29°4776’, 85°1824’ 
Aransas Pass, TX TX 8/05, 7/06 100 27°8806’, 97°1019’ 
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Center (Reno, NV).  All microsatellite fragment analysis was accomplished using 

Genemapper® software (Applied Biosystems, Foster City, CA).   

Microsatellite data were analyzed with GENEPOP version 3.4 (Raymond & 

Rousset 1995) to test for Hardy-Weinberg equilibrium (Fisher’s exact test) and for 

genotypic disequilibrium for pairs of loci within the population (Fisher’s exact test).  

Global and population pairwise FST and RST values were calculated with SPAGeDi version 

1.2 (Hardy & Vekemans 2002).  Permutation tests (10,000 iterations) were applied to 

global and pairwise FST and RST values to test for departures from the null hypothesis of 

panmixia in SPAGeDi.  To evaluate whether mutation played a significant role in 

population differentiation, an allele size permutation test was conducted by using 

SPAGeDi with 10,000 permutations of allele size for each population pair.  A Bonferroni 

correction was implemented to correct for multiple comparisons for all above tests 

wherever necessary.   

A Mantel’s test, implemented in the ISOLDE program within GENEPOP, was used 

to examine the relationship between geographic distance (natural log transformed) and 

divergence in allele frequencies (FST/1 – FST) among sites.  A 100km maximum for 

immigration was assumed for immigration between populations for the Mantel’s test.  

Although juveniles have been found in floating vegetation in major ocean currents 

(Dawson 1982), and thus may represent gene flow between populations, a 100km 

maximum is likely much larger than the maximum distance for migration of breeding 

adults.  This analysis was run with both 100km and 1000km as a minimum distance 
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between samples to investigate the robustness of the effect of migration on isolation by 

distance.     

 The Bayesian analysis program STRUCTURE version 2.1 (Pritchard et al. 2000) 

was used to infer population structure and to calculate the probability of assigning 

individuals to parent populations from the five sampled populations.  The program was 

first run using the admixture model that assumes all individuals potentially have mixed 

ancestry and assigns each individual to a designated population (K).  Ten independent 

runs, incorporating burn-ins of 105 Monte Carlo Markov chain (MCMC) replicates 

followed by 106 replicates of data collection were performed with admixture model 

program defaults for K fixed at 1-6 populations.  A second model that incorporates 

information regarding the home population of each individual was executed using run, 

burn-in, MCMC parameters and program defaults similar to the admixture model.  The 

probability of recent immigration to each population (v) was fixed at 5% for both the 

admixture and no admixture models.    

 

mtDNA markers 

A 1201 bp fragment of the mitochondrial cytochrome b gene was amplified using 

primers L14725 (Pääbo et al. 1991) and H15926 (Wilson et al. 2001) on a minimum of 

16 randomly chosen individuals for each heavily sampled locality.  When fewer than 16 

individuals were sampled at a particular locality, all individuals were sequenced.  

Fragments were amplified by PCR in 30uL volumes containing 3µl of 10X buffer, 3µl of 

dNTPs (2µM), 1.8ul of MgCl2 (25mM), 1.5 µl of each primer (10uM), and 0.5 µl of Taq 
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(1Unit/µl).  The thermal profile for amplification of both fragments consisted of an 

initial denaturation for 5 min at 96ºC, followed by 40 cycles of 94ºC (1 min), 48ºC (1 

min), 72ºC (1 min) and a final extension at 72ºC for 4 min.  PCR products were purified 

with a Qiagen quick prep PCR cleanup kit and sequenced with the L14725 primer by the 

Nevada Genomics Center (Reno, NV) on an ABI 3730 DNA Analyzer.  Sequences were 

proofread and first aligned with CLUSTALW (Chenna et al. 2003).  Alignments were 

verified by eye using the program BIOEDIT (Hall 1999).  Several other species from the 

genus Syngnathus, including S. louisianae, S. scovelli, S. fuscus and S. leptorhynchus, 

were chosen as outgroups, and cytochrome b sequences were obtained from Genbank 

(Genbank accession numbers: AF356056, AF356064, AF356068, AF356070; Wilson et 

al. 2001).  Poorly amplified and truncated sequences were removed and all sequences 

were trimmed to a 394 bp fragment prior to final phylogenetic analysis.   

Gene diversity and nucleotide diversity statistics were calculated using 

ARLEQUIN version 2.1 (Schneider et al. 2000).  A parsimony-based haplotype network 

was constructed with the program TCS version 2.1 (Clement et al. 2000) using program 

defaults with and without S. louisianae as an outgroup.  TCS was first run using the 

outgroup S. louisianae and failed to link with S. floridae within the limits of 95% 

confidence limits of parsimony (10 mutational steps).  It was then determined that S. 

louisianae could be linked to S. floridae via 93% parsimony (10 mutational steps) and 

the outgroup was then removed and the analysis was rerun excluding S. louisianae.   

Common haplotypes were removed from the data set using COLLAPSE version 1.2 

(Posada 2007) prior to phylogenetic reconstruction.  Phylogenetic relationships were 
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reconstructed using both Parsimony and Maximum-likelihood methods.  Parsimony was 

preformed using PAUP* version 4.02b10 (Swofford 2003) with 100 heuristic search 

bootstrap replicates (1000 random addition sequences per search with the MullTrees 

option and TBR branch swapping).  Maximum-likelihood was carried out using 500 

bootstrap replicates of data collection using PhyML version 2.4.4 (Guindon et al. 2005), a 

BIONJ starting tree, and a GTR+I+Γ model of nucleotide substitution found with 

MODELTEST version 3.8 (via the MODELTEST Web Server) (Posada & Crandal 1998).   

 

Results 

Microsatellite analysis 

All six microsatellite loci were polymorphic, with from six to 73 alleles 

segregating per locus across the five populations (Table 2.2).  Fisher’s exact tests 

indicated no significant departures from Hardy-Weinberg equilibrium among loci and 

among population after applying a Bonferroni adjustment (Rice 1989).  Tests of linkage 

disequilibrium among loci were non-significant, supporting independent assortment of 

these microsatellite loci.   

Significant population differentiation was evident from both pairwise and global 

FST and RST values in all pairs of populations except SJ and TB (permutation test P < 

0.0017 after Bonferroni adjustment, Table 2.3).  To assess whether mutation had a 

significant effect on population differentiation, an allele size permutation test was 

applied. In all population pairs, the multilocus pRST values did not differ from RST 

suggesting that stepwise mutations are not a primary source of allelic variation among  
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populations (Hardy et al. 2003).  A Mantel’s test showed a positive relationship between 

geographic distance and global FST values (1000 permutations, R2 = 0.71, 9 d.f., P < 

0.003; Fig. 2.2).  Different migration distances of 100km and 1000km did not affect the 

results of the linear regression.   

The admixture model as implemented by STRUCTURE returned similar posterior 

likelihood probabilities for two (K =2; Atlantic/Gulf split) and three (K = 3; 

Atlantic/Eastern Gulf/Texas) and had non-symmetric FST designations for each 

respective reconstructed parent population.  Therefore, the three Gulf of Mexico 

populations were analyzed with the admixture model excluding two Atlantic populations 

with K fixed at 1-4 populations.  However after this analysis was preformed, no support 

for a Gulf of Mexico split existed and STRUCTURE was rerun to calculate posterior 

likelihood probabilities of individuals from known populations for K = 2 using the no 

admixture model.  The results of these analyses suggest that there are two parent 

populations for S. floridae congruent with a genetic split between Atlantic and Gulf of 

Mexico populations (Fig. 2.3).  
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Table 2.2.  Microsatellite data comparing the number of alleles (A), sample sizes (N), 
observed and expected heterozygosity (HO and HE respectively) between adult 
Syngnathus floridae collections.   
 

Locus A  VA NC TB SJ TX 
Micro11.1 73 N 85 77 124 91 103 
  A 33 34 52 44 34 
  HO 0.882 0.844 0.919 0.890 0.913 
  HE 0.877 0.902 0.968 0.956 0.943 
        
Micro22.3 31 N 84 71 126 93 101 
  A 19 20 26 24 25 
  HO 0.798 0.915 0.8927 0.892 0.960 
  HE 0.833 0.901 0.940 0.931 0.915 
        
Micro25.1 17 N 31 31 26 29 26 
  A 13 13 12 13 11 
  HO 0.839 0.806 0.923 0.724 0.885 
  HE 0.883 0.883 0.866 0.840 0.860 
        
Micro25.22 31 N 76 78 122 92 103 
  A 17 18 26 22 22 
  HO 0.882 0.872 0.918 0.946 0.835 
  HE 0.890 0.883 0.930 0.923 0.904 
        
Scov5 8 N 28 31 23 25 31 
  A 5 4 5 6 5 
  HO 0.821 0.516 0.652 0.720 0.742 
  HE 0.677 0.651 0.663 0.705 0.694 
        
Typh12 6 N 31 29 27 27 31 
  A 4 3 4 5 2 
  HO 0.258 0.310 0.556 0.407 0.097 
  HE 0.389 0.472 0.576 0.530 0.152 
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Table 2.3.  Population pairwise FST and RST estimates (below diagonal, FST appears in 
bold) versus distance (km, above diagonal) for the five populations examined with 
microsatellite loci.  Global FST and RST values were 0.026 and 0.040 respectively.  All 
estimates are significant after sequential Bonferroni (Rice 1989) unless otherwise noted.   
  

 VA NC TB SJ TX 

VA --- 415 2213 2560 3664 

NC 0.001 
0.005 --- 1798 2145 3249 

TB 0.029 
0.086 

0.017 
0.042 --- 347 1451 

SJ 0.028 
0.061 

0.018 
0.023 

-0.001NS

-0.002NS --- 1104 

TX 0.054 
0.041 

0.051 
0.021 

0.037 
0.057 

0.029 
0.032 --- 

 
NS = non significant after sequential Bonferroni.
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mtDNA analysis 

Both gene and nucleotide diversity estimates were lowest at the westernmost 

(TX) and northernmost (VA, NC) extent of S. floridae’s range in the continental United 

States (Table 2.4).  High levels of gene and nucleotide diversity throughout the eastern 

Gulf of Mexico suggest high levels of gene flow among these populations, although 

caution should be exercised in populations where the number of individual samples is 

low.  The highest nucleotide diversity and genetic divergence were encountered in the 

three samples from the Florida Keys (FK) and may represent gene flow from Caribbean 

and south Atlantic populations of dusky pipefish.   

The TCS analysis identified 28 unique haplotypes of S. floridae with the limits of 

95% parsimony (Fig. 2.4).  For the most part, no major genetic break between Atlantic 

and Gulf populations was found.  However, a single nucleotide position displayed a clear 

distinction between Atlantic and Gulf populations.  The nucleotide substitution was a 

silent 3rd position transition (T→C) at nucleotide position 374 in the cytochrome b 

sequence (Fig. 2.4).  All individuals in the Texas population were found to have C in this 

position and all Atlantic (Virginia and North Carolina) populations were fixed for T.  

Sites throughout the eastern Gulf of Mexico had both character states present (Fig. 2.4).  

The TCS haplotype network was characterized by a general absence of reticulation, 

except for one sequence from Tampa Bay, which displayed affinities with both Cedar 

Key, Florida, and North Carolina samples.  Linkage to the outgroup S. louisianae was  
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Figure 2.2.  Relationship between genetic divergence (FST) and geographic distance.  
Each point represents a single pairwise comparison between the five populations.  This 
relationship is significant (Mantel Test, 10,000 permutations: R2 = 0.71, 9 d.f., P < 
0.003).

 



 

  
Figure 2.3.  Results of Bayesian population structure for microsatellite data indicating two parent populations (K = 2) shown 
in orange (Atlantic), and blue (Gulf of Mexico).  Individual probabilities of assignment are shown on the y-axis and are 
grouped by parent populations calculated by the admixture program in STRUCTURE 2.1 (Pritchard et al. 2000).
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Table 2.4. Statistics for mtDNA data.  Number of individuals sequenced per population 
(n), number of unique mtDNA haplotypes, gene diversity and nucleotide diversity 
statistics are listed for each population.   
 

Site n 
mtDNA 

haplotypes 
mtDNA gene 

diversity (± SD) 
mtDNA nucleotide 
diversity (π)( ± SD) 

VA 13 3 0.295 ± 0.156 0.0008 ± 0.0010 
NC 15 5 0.476 ± 0.155 0.0017 ± 0.0015 
FK 3 3 1.000 ± 0.272 0.0288 ± 0.0225 
JC 4 4 1.000 ± 0.177 0.0051 ± 0.0046 
TB 13 12 0.987 ± 0.035 0.0071 ± 0.0045 
CR 2 2 1.000 ± 0.500 0.0076 ± 0.0087 
CK 2 2 1.000 ± 0.500 0.0025 ± 0.0036 
TP 10 6 0.778 ± 0.137 0.0025 ± 0.0021 
SJ 12 8 0.894 ± 0.078 0.0057 ± 0.0038 

TX 12 3 0.318 ± 0.164 0.0021 ± 0.0018 
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closest to the major Gulf haplotype.  

 Parsimony and Maximum-likelihood failed to demonstrate reciprocal monophyly 

among Atlantic/Gulf lines (Fig. 2.5).  Thus our phylogenetic analysis provides no 

signature of the historical vicariant event hypothesized to have shaped the patterns of 

genetic differentiation in other coastal marine species from the Southeastern United 

States. 

 

Discussion 

 On a local scale, populations of the dusky pipefish demonstrate significant 

genetic population structure due to a strong isolation by distance effect.  On a regional 

scale, Bayesian microsatellite analysis supports a genetic break between Atlantic and 

Gulf of Mexico populations of S. floridae.  This result is slightly incongruent with 

mtDNA analyses that fail to demonstrate reciprocal monophyly between Atlantic and 

Gulf populations.  Moreover, high levels of gene flow from mtDNA analyses suggest 

that a barrier to gene flow between Atlantic and Gulf populations for this species is 

unsubstantiated.  Thus, although population structuring is evident within the two 

geographic provinces, gene flow is not sufficiently restricted between Atlantic and Gulf 

of Mexico populations to justify the subspecies designations that were once in place for 

those particular populations of dusky pipefish.  The inclusion of additional data likely 

would not change this outcome, because other phylogeographic studies of pipefish found 

well-supported reciprocal monophyly over smaller distances and with less sequence 

information (300bp) from the mitochondrial cytochrome b gene than was 
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Figure 2.4.  Statistical parsimony (95%) network for 28 mtDNA haplotypes identified in 
S. floridae samples.  Each connection is a single mutational step and black circles 
represent inferred haplotypes.  Numbers in parentheses indicate the frequency of the 
haplotype in that particular location; single occurrences of a haplotype do not have a 
number.  Size of circles is proportional to the number of individuals with that haplotype.  
Grey-shaded haplotypes code for Thymidine at position 374 of cytochrome b fixed for 
all individuals sampled from the Atlantic sites.  
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Figure 2.5.  Bootstrap consensus trees of unique haplotypes.  Numbers below branches indicate bootstrap support and partitions with < 50% bootstrap support are not shown.  Colored circles 
code for Thymidine at position 374 of cytochrome b fixed for all individuals sampled from the Atlantic sites.  Numbers in parentheses correspond to numbers of individuals that share that 
haplotype; single occurrences of a haplotype do not have a number.  Major haplotypes for each basin are shown in boxes (grey = Atlantic; no fill = Gulf).  (a) Parsimony consensus tree. 
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Fig 2.5 continued (b) Maximum Likelihood consensus tree. 
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employed in the present study (Chenoweth et al. 2002).    

  A strong isolation by distance pattern suggests this species is philopatric with 

limited migration and dispersal between populations and between ocean basins.  All 

members of the family Syngnathidae have a mating behavior characterized by male 

parental care, and most species lack a free-living larval stage.  Because syngnathids lack 

a larval stage and have poor swimming capabilities, dispersal of juveniles and adults 

likely is limited (Lourie & Vincent 2004).  Other species of fish without a pelagic larval 

stage have shown strong genetic structuring between populations (Doherty et al. 1995, 

Hoffman et al. 2005).  However, the dusky pipefish may differ from some of these other 

species, because this and other species of pipefish migrate to deeper waters during the 

winter months (Brown 1972, Mercer 1973, Lazzari & Able 1990).  Individuals from 

distinct populations may mix during the winter, possibly even mating in the deeper 

water, or may return to different shallow seagrass meadows from one year to the next.  

Juveniles of this species are also often found in floating vegetation that may provide 

shelter to transport individuals several hundred kilometers in ocean currents (Dawson 

1982).  While this may explain the existence of this species in Bermuda (Dawson 1982), 

it is unlikely that migration of individuals from the Atlantic to the Gulf of Mexico takes 

place because of the strong northerly influence of the Gulf Stream Current on larval fish 

transport (Hare et al. 2002) and the dearth of suitable seagrass habitat along the eastern 

coast of Florida (Dawson 1982).     

The result that Atlantic and Gulf of Mexico populations of dusky pipefish share 

genetic material across the Avise’s biogeographical line in southeastern Florida, as 
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evidenced by mitochondrial data, is interesting given the widespread support for this 

barrier to gene flow in range of other coastal martime taxa (Avise 2000).  This 

phylogeographic pattern is far from universal however, and several species of fishes and 

at least one species of bivalve do not show the expected phylogenetic separations 

between the Atlantic and Gulf (Gold & Richardson 1998, Lee & Foighil 2005).  It is 

interesting to note that coastal species that register little or no geographic divergence are 

species that undergo extensive migrations to and from adult breeding grounds (Avise et 

al. 1986, Gold & Richardson 1998) and/or species that have pelagic larvae that may be 

transported over several hundred kilometers (Gold & Richardson 1998, Lee & Foighil 

2005).  Given the diminutive potential for dispersal and adult migration in this species, 

this is an unlikely scenario to explain the apparent gene flow between populations of 

pipefish. 

Other species of syngnathids have shown congruence with documented natural 

barriers to gene flow (Lourie & Vincent 2004).  For example, the unique life history of 

this family may explain the distribution patterns of haplotype groupings of the three-spot 

seahorse, Hippocampus trimaculatus, on either side of Wallace’s Biogeographic Line 

(Lourie & Vincent 2004).  Other species of syngnathids have shown strong divergence 

in the absence of any known natural barrier to gene flow such as the hairy pipefish, 

Urocampus carinirostris, found on the west coast of Australia.  This species shows two 

monophyletic groups that have a strong clinal intergradation signal over a small (130km) 

distance (Chenoweth et al. 2002).  The authors attribute this biogeographic pattern to 

secondary contact owing to a recent population expansion from a small refuge 
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population during recent glaciation events (Chenoweth et al. 2002).  Similarly a recent 

investigation in the population genetics of the bay pipefish, Syngnathus leptorhynchus, 

has documented a recent post-glaciation radiation into Alaskan waters from southern 

glacial refugia (Wilson et al. 2006).  Interestingly, this species shows no reduction in 

gene flow across Point Conception, a natural boundary thought to limit gene flow in 

several marine species on the west coast of North America (Palumbi 1994, Wilson et al. 

2006).  Finally, at least one species of the seahorse shows a lack of mitochondrial 

structuring as estuarine populations share haplotypes over relatively small spatial scales 

(Teske et al. 2003).   

The results of this study present a particular challenge to explain in the context of 

gene flow across Avise’s biogeographic line.  One plausible explanation is that these 

populations were recently isolated from one another and have not yet reached 

equilibrium with respect to genetic diversity in the east coast of Florida (Palumbi 1994).  

Another explanation is that these populations underwent secondary contact on the east 

coast of Florida recently.  A third possibility is that a third population representing 

Caribbean and southern Atlantic populations may influence the genetic structure of the 

east coast of Florida.  Two highly divergent sequences were obtained from the Florida 

Keys and may represent recent immigration from southern gene pools.  At least one 

species of bivalve does not show a genetic disjunction across peninsular Florida due to 

the influx of genetic material from the Caribbean basin suggesting that 

pseudocongruence would explain the pattern of the biogeographic split if Caribbean 

samples were not entered into analysis (Lee & Foighil 2005).  Although these 
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explanations are beyond the scope of this investigation, future studies that incorporate 

additional samples throughout the dusky pipefish’s range may shed light on the patterns 

of phylogeography within this species.   
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CHAPTER III 
 

GEOGRAPHIC VARIATION IN THE GENETIC MATING SYSTEM OF THE 

DUSKY PIPEFISH, SYNGNATHUS FLORIDAE.   

II: ATLANTIC VERSUS GULF OF MEXICO CASE STUDY* 
 
 

Introduction 

Sexual selection can lead to rapid evolution of behavioral and morphological 

traits, and thus may be a salient force in species divergence (Kraaijeveld & 

Pomiankowski 2004).  The recent flood of molecular appraisals of mating behavior has 

established that the genetic mating system is closely related to the intensity of sexual 

selection in nature (Jones et al 2001a; Shuster & Wade 2003).  Consequently, it is now 

clear that knowledge of the mating system is fundamental to a complete understanding 

of sexual selection in any system.  Data on mating systems from a wide variety of 

species indicate that mating behavior can be evolutionarily labile with important 

evolutionary consequences (Kusmierski et al. 1997, Petrie & Kempenaers 1998; Griffith 

2000; Avise et al. 2002).  However, genetic characterizations of the mating system for 

most species involve only a single exemplar population, despite the fact that mating 

systems likely vary over space and time (Jones et al. 2001b).  Such geographic or 

temporal variation in mating systems would provide excellent opportunities for 

comparative studies of mating system evolution.  For example, understanding the causes 

of mating system variation among populations could resolve why some lineages 

_______________ 
*Reprinted with permission from “Geographical variation in the mating system of the dusky pipefish 
(Syngnathus floridae)” by KB Mobley & AG Jones, Molecular Ecology, 16, 2596-2606. © 2007 by The 
Authors. 
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 experience intense sexual selection whereas others do not (Panhuis et al. 2001).  

Arguably, this question is one of the central issues in the study of sexual selection.  

Mating system divergence among populations also theoretically facilitates speciation 

(Kraaijeveld & Pomiankowski 2004).  Lande (1982) showed that sexual selection has the 

potential to initiate sexual isolation and character divergence as distinct populations 

diverge with respect to secondary sexual traits and mating preferences.  Such divergence 

is most effective when populations evolve dissimilar mating systems.  In addition, Zeh & 

Zeh (2000) have speculated that mating system divergence could facilitate speciation 

through parent-offspring conflict.  Despite the apparent potential of studies of 

geographically or temporally varying mating systems, such studies are thus far rare. 

Several factors have slowed progress in the comparative study of mating systems 

within species.  An understanding of evolutionary processes such as sexual selection 

requires the knowledge of biological parentage at a level of detail that in most species 

can be achieved only through the application of molecular methods (Avise 2004).  Such 

studies are expensive and time consuming.  A comprehensive study of the mating system 

in a single population may involve hundreds or thousands of genotypes (Avise et al. 

2002), so scaling up to multiple populations can be a major logistical problem.  Mating 

system studies also require samples of breeding adults and their offspring, which can be 

difficult to obtain from multiple populations across the range of a species, especially for 

species whose abundance varies temporally and geographically.  As a consequence of 

these limitations, studies of sexual selection often are forced to assume that mating 

systems are fixed or nearly fixed over time and space within a species.  For many species 
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this assumption may be false since populations that inhabit distinct environments may 

experience local environmental selection pressures, such as predation, that can influence 

the genetic mating system (Kelly et al. 1999, Bronikowski et al. 2002).  In addition to 

geographic variation in mating systems, populations can be temporally dynamic with 

respect to population density, the availability of mates, and the breeding condition of 

individuals, all of which may affect the mating system (Emlen & Oring 1977, Shuster & 

Wade 2003, Soucy & Travis 2003).  Thus, to gain a more complete understanding of the 

ecological factors that influence the evolution of genetic mating systems, a deeper 

appreciation of within-species mating system dynamics is necessary.  

The few studies that have addressed geographic variation in mating systems have 

produced mixed results, ranging from significant intraspecific variation among 

populations of fishes (Trexler et al. 1997, Kelly et al. 1999, Soucy & Travis 2003), birds 

(Griffith et al. 1999, Griffith 2000, Durrant & Hughes 2005) and mammals (Taylor et al. 

2000, Clinchy et al. 2004) to essentially no variation between geographically distinct 

populations (Zane et al. 1999, Jones et al. 2001b, Goodisman et al. 2002).  A handful of 

comparative studies have attempted to correlate variation in mating patterns with 

environmental factors.  While these studies have also led to mixed results (Weatherhead 

& Boag 1997, Griffith et al. 1999), some biologically important patterns have emerged.  

First, in birds, extra-pair fertilizations are more frequent in mainland populations than in 

island populations (Griffith et al. 1999, Griffith 2000, Griffith et al. 2002).  Second, in 

Trinidadian guppies the frequency of multiple insemination is related to the intensity of 

predation (Kelly et al. 1999, Bronikowski et al. 2002).  Finally, in a study of three 
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populations of least killifish, rates of multiple paternity were higher in populations with 

greater population densities (Soucy & Travis 2003).  These studies provide an interesting 

preliminary glimpse into environmental factors that likely shape mating systems, and 

hence sexual selection, in nature, but are of insufficient number and taxonomic breadth 

to provide any clear generalities.  Additional studies of geographic variation in mating 

systems are warranted. 

In this study we characterize the genetic mating system of two geographically 

distinct populations of the dusky pipefish, Syngnathus floridae.  The reproduction of this 

species is characterized by male pregnancy in which females transfer eggs into a 

specialized brood pouch on the male’s trunk during copulation (Dawson 1982; Jones & 

Avise 2003).  Males then provide parental care during development until the young are 

released as independent juveniles (Dawson 1982).  This species is likely sex-role 

reversed with respect to the intensity of sexual selection, such that sexual selection acts 

more strongly on females than on males (Jones & Avise 1997b).  The high paternal 

investment in this and other syngnathid species can depress the potential reproductive 

rates of males to such an extent that the direction of sexual selection becomes reversed 

relative to that of most taxa (Berglund et al. 1989, Jones et al. 2005).  Characterization of 

the mating system is facilitated in this species because maternal genotypes can be 

reconstructed from genetic analysis of pipefish embryos contained within the male brood 

pouch through the use of highly polymorphic molecular markers (Jones & Avise 1997b).  

The dusky pipefish is ideally suited for this type of inquiry because it has a wide 

geographic distribution and large numbers of pipefish can be harvested from relatively 
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small areas during the breeding season, yielding high numbers of pregnant males and 

their potential mates.   

The study of geographic variation in the mating system of the dusky pipefish 

provides a good opportunity to take advantage of quantitative measures of the potential 

for sexual selection based on Bateman’s principles.  Even though these techniques have 

been advocated as methods for the quantification and comparison of mating systems 

(e.g. Arnold 1994, Arnold & Duvall 1994, Jones et al. 2001a), they have not yet been 

employed to compare mating systems among populations of the same species.  One 

major advantage to the application of Bateman’s principles for the characterization of 

mating systems in an inter-population framework is that it allows strict quantitative 

comparison of the potential for sexual selection between populations and between sexes.    

The present study has several goals.  First, we use Bateman’s principles to test 

for significant geographic variation in the mating systems of two geographically isolated 

populations of dusky pipefish.  Second, we examine temporal variation in the mating 

system by comparing two collections made in 2003 within one Florida population.  

Third, we consider the results in light of differences in population density and other 

environmental factors that may influence the genetic mating system.   
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Materials and Methods 

Study species 

The dusky pipefish, S. floridae, is a geographically widespread species, occurring 

in the Western Atlantic Ocean from the Chesapeake Bay and Bermuda to the Southern 

Florida coast and the Florida Keys as well as in the Gulf of Mexico from the West coast 

of Florida to Panama (Dawson 1982).  This species inhabits shallow seagrass beds in 

coastal waters, and its diet comprises primarily zooplankton such as copepods, 

amphipods, isopods and mysids (Brown 1972, Mercer 1973).  During mating, females 

deposit eggs in a highly specialized brood pouch on the male’s ventral surface.  The 

male then fertilizes the eggs and carries the embryos until they hatch approximately 10 

days later (Dawson 1982).  In the Chesapeake Bay, near the northern limit of its range, 

S. floridae migrates inshore during the spring and breeds from April to October with 

peaks in population density and male pregnancy in July and August (Mercer 1973).  In 

the Northern Gulf of Mexico, populations of S. floridae mate from April through 

November with a peak in population density and male pregnancy in August and 

September (Brown 1972).   

 

Collection of specimens 

 We collected 150 adult male and 91 adult female S. floridae on 5 and 6 August 

2003 from Mobjack Bay (N37°18.423’, W76°24.752’), near the mouth of the York 

River, Virginia (Table 3.1).  Two samples of S. floridae were collected from St. Joseph 

Bay, Florida (N29°47.765’, W85°18.237’) on 18-20 July 2003 (19 males, 34 females) 

 



 45

and 24-25 August 2003 (17 males, 30 females) near the collection site reported in Jones 

& Avise (1997b).  Individuals were captured at each location by seine net (2 mm mesh) 

from measured plots marked with stakes inside a shallow (depth less than 1m), 

continuous seagrass meadow.  Our goal was to capture as many pregnant males as 

possible along with their potential mates within the designated area.  Each plot was 

seined completely during low tide a minimum of three full sweeps or until a full sweep 

of the area captured less than five percent of the original sweep.  We measured standard 

lengths (SL, tip of snout to base of caudal fin) of all individuals.  All fishes were 

sacrificed in the field by severing their spinal column above the operculum and 

preserved in 95% EtOH.   

Males were considered sexually mature if they possessed a mature brood pouch, 

whereas females were considered sexually mature if they possessed ripe ova.  All 

females of less than 120mm standard length were dissected to assess the presence of ripe 

ova, whereas females longer than 120mm were assumed to be sexually mature (Brown 

1972).  This assumption was confirmed by random dissections on 15 females >120mm 

from each population, all of which contained ripe ova.  Based on these criteria all 

individuals collected from these sites were sexually mature adults and were included in 

all analyses.  The adult sex ratio (ASR) is given as the number of adult males divided by 

the total number of adults collected, whereas the operational sex ratio (OSR) is the ratio 

of receptive adult males to the total number of receptive adults.  In the case of sex-role-

reversed pipefish, such as S. floridae, the OSR is the number of non-pregnant males 

 



 

Table 3.1.  Comparison of sample sizes of adults (n), males (m), non-pregnant males (m') and females (f), adult sex ratios 
(ASR; ratio of males to total adults), operational sex ratios (OSR; ratio of non-pregnant males to females + non-pregnant 
males), population density (ind/m2) and mean adult female population size (estimated using the modified Lincoln-Peterson 
method with 95% confidence intervals) of Syngnathus floridae from different sample sites.   
 
 

  Sample Size  ASR   OSR  Population Density 
(ind/m2)  

Site Date n m m' f  m / n      m'/(m'+f) Total m f  

Adult Female 
Population 

Size 
(95% CI) 

Mobjack Bay, VA 8/03  241 150 3 91  0.62  0.03  0.18 0.11 0.07   635 (323-947) 
              

             

  
St. Joseph Bay, FL 7/03  53 19 6 34  0.36  0.15  0.06 0.02 0.04  122 (52-191) 

 8/03  47 17 6 30  0.36  0.17  0.03 0.01 0.02  162 (42 – 282) 
 7/941 93 50 7 43 0.54 0.14 --- --- ---  138 (85 – 192)

1Data for the June 1994 St. Joseph Bay collection from Jones & Avise (1997b) 
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divided by the sum of non-pregnant males and adult females (Kvarnemo & Ahnesjö 

1996). 

 

Molecular parentage analysis 

Parentage analysis was conducted on the broods of 30 pregnant males from the 

Virginia population and 11 pregnant males from each of the Florida collections.  Brood 

pouches were dissected following the protocol of Jones & Avise (1997b).  Briefly, each 

brood pouch was divided into 14 roughly equal sections (once lengthwise and six times 

laterally) and marked with an alcohol resistant pen.  Three embryos were selected at 

random from each section, extracted with flame-sterilized forceps and placed into a 96-

well plate for genotyping.  Using this sampling scheme, we genotyped a total of 42 

offspring from each male’s brood pouch and counted the total number of embryos in 

each section of the pouch.   

We used three polymorphic microsatellite loci to characterize the mating system 

of S. floridae (Micro11.1, Micro22.3 and Micro25.22) and four polymorphic 

microsatellite loci to genotype all sexually mature adults in each population (Micro11.1, 

Micro22.3, Micro25.10 and Micro25.22, Table 3.2).  Microsatellite markers employed in 

this study were originally developed for the Gulf pipefish, S. scovelli (Jones & Avise 

1997a; Jones et al. 1999).  DNA was extracted using a standard Proteinase K and 5% 

Chelex digestion in 96-well plates (Miller & Kapuscinski 1996), and microsatellite 

markers were amplified using polymerase chain reaction (PCR) conditions modified 

from Jones & Avise (1997a).  We used annealing temperatures of 54°C for Micro11.1 

 



 

Table 3.2.  Microsatellite data comparing the number of alleles (A), sample sizes (N), observed and expected heterozygosities 
(HO and HE respectively) and FST estimates between Virginia and pooled Florida adult Syngnathus floridae collections. 
 

 Mobjack Bay, VA  St. Joseph Bay, FL     

Locus  A     N HO HE A N HO HE  A FST
 

Micro11.1  43 228          0.820 0.855  47 99 0.950 0.960 65 0.076  
Micro22.3             

             
             

     

21 191 0.859 0.800  22 68 0.882 0.927 27 0.101  
Micro25.10 18 185 0.838 0.871  21 71 0.859 0.886 25 0.007  
Micro25.22

 
20

 
228 0.842 0.873  22 98 0.918 0.916 25 0.015  

   Global FST 0.051  
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and Micro22.3, and 56°C for Micro25.10 and Micro25.22.  All thermal cycling ran for 

36 cycles, except that for Micro11.1, which ran for 40 cycles to yield sufficient PCR 

product for analysis.  Primers were labeled with a fluorescent dye and sized on an ABI 

3730 Genetic Analyzer (Applied Biosystems, Foster City, CA).  All microsatellite 

fragment analysis was accomplished using Genotyper® or Genemapper® software 

(Applied Biosystems, Foster City, CA).   

Maternal genotypes were reconstructed from progeny arrays using GERUD2.0 

(Jones 2001, 2005), and the resulting inferred maternal genotypes were compared with 

each other and with the genotypes of collected adult females in the population using 

Microsatellite Toolkit 3.1 for Microsoft Excel (Park 2001).  Because eggs are spatially 

segregated by maternity in male brood pouches (Jones & Avise 1997b), we were able to 

assign embryos to mothers with great accuracy based on data from the genotyped 

offspring in each of the 14 demarcated sections.   If only one maternal genotype was 

found in all three embryos for a particular section, all embryos counted in that section 

were ascribed to that inferred female.  When a section transitioned from one mother to 

the next, we assigned one third and two thirds of the total embryos to each of the two 

mothers, depending upon the proportion of genotyped embryos genetically assigned to 

each mother.   

Female reproductive contribution was calculated by tallying all embryos assigned 

to each mother for all sections.  Eggs that had no visible signs of embryonic 

development were considered undeveloped eggs.  These eggs were likely the result of 

unsuccessful fertilization or incomplete development.  Because undeveloped eggs 
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contribute a small proportion to the numbers of eggs received by males (2.4% ± 1.5 SE 

for the Virginia population and 8.4% ± 1.7 SE for July and August Florida populations) 

and because it is unlikely that these eggs would result in viable offspring, undeveloped 

eggs were not included in the female reproductive contribution or estimates of male 

reproductive success.  

All microsatellite data were analyzed with GENEPOPv3.4 (Raymond & Rousset 

1995) to test for Hardy-Weinberg equilibrium (Fisher’s exact test) and for genotypic 

disequilibrium for pairs of loci within the population (Fisher’s exact test).  Wright’s F-

statistic (FST) was also calculated using GENEPOPv3.4 (Table 3.2).  The cumulative 

probability of identity (PID) was estimated from microsatellite data for adult females and 

reconstructed female genotypes from the two different populations using 

LOCUSEATERv2.4 (Hoyle et al. 2005).  A modified Lincoln-Peterson method of capture-

recapture was used to estimate female local population size in the Virginia and Florida 

populations based on number of reconstructed female genotypes (Jones & Avise 1997b).   

 

Quantification of the genetic mating system by Bateman’s principles 

The genetic mating system for males from each geographic location was 

quantified using mean mating success (
__
X ms), mean reproductive success (

__

X rs) and 

Bateman’s three principles: the opportunity for selection (I), the opportunity for sexual 

selection (Is), and the sexual selection gradient or Bateman gradient (βss).  Mean mating 

success is the average number of mates per male for each population.  Similarly, 
__

X rs is 

the mean number of offspring per male for each population.  The opportunity for 
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selection is the standardized variance in reproductive success [I  =σrs
2/

__
X rs

2], and the 

opportunity for sexual selection is the standard variance in mating success [Is = 

σms
2/

__
X ms

2] (Arnold 1994, Arnold & Duvall 1994).  The Bateman gradient is the slope of 

the weighted least-squares regression of relative reproductive success (number of 

offspring divided by the mean) on mating success (Arnold 1994, Jones et al. 2002).  All 

measures of the genetic mating system include an estimate of non-breeding males (Wade 

1979, Arnold 1994, Shuster & Wade 2003).  The number of non-breeding males was 

calculated based on the frequency of non-pregnant males encountered at each location 

and during each sampling period.  

 

Statistical analysis 

Statistical analyses were performed with JMP IN™ v5.1 statistical software 

package (SAS Institute Inc., Cary NC).  All statistics were analyzed first for normality 

and equal variances.  If these assumptions were not met, data were transformed or if no 

transformation satisfied a priori assumptions, appropriate non-parametric tests were 

applied.  Statistical tests as well as any transformations are indicated throughout the text. 

All means are reported ± one standard error of the mean (SE).   

  

Results 

Microsatellite markers 

Four microsatellite loci revealed high levels of polymorphism and heterozygosity 

among adult S. floridae in both populations (Table 3.2).  The Virginia population 
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displayed between 18 and 43 alleles per locus with expected heterozygosities ranging 

from 0.80 to 0.87 (Table 2).  The Florida sample displayed between 21 and 47 alleles per 

locus with expected heterozygosities ranging from 0.89 to 0.96 (Table 2).  Fisher’s exact 

tests indicated no significant departures (α = 0.05) from Hardy-Weinberg equilibrium or 

linkage equilibrium.  A low-frequency (0.002) null allele was detected at Micro11.1 in 

the maternal parent of the brood of a single male from the Virginia population.  The 

allele was discovered after GERUD2.0 (Jones 2001, Jones 2005) indicated the presence of 

two maternal genotypes in the male’s offspring that were inconsistent with the expected 

spatial clustering of offspring by maternity.  The null allele manifested itself clearly as 

sets of embryos homozygous for each paternal allele with an absence of embryos 

possessing the expected heterozygous genotype comprising both paternal alleles.  A 

second null allele at Micro11.1 was discovered in the maternal contribution to the broods 

of two Florida males that apparently had mated with the same female, as evidenced by 

identical reconstructed maternal genotypes.  These null alleles were infrequent enough in 

both populations that their presence did not cause a heterozygosity deficit (Fisher’s exact 

test, P < 0.05), and they did not compromise the interpretation of the parentage analysis.  

Moderate population differentiation was evident from the FST values estimated for these 

four microsatellite markers (Table 2).  Single locus FST estimates ranged from 0.007 – 

0.101 with a global FST value of 0.051. 
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Comparison between Virginia and Florida populations 

The Florida and Virginia sites differed in both ASR and OSR estimates.  The 

ASR of the Virginia population caught in August 2003 was heavily male biased with a 

significant departure from an equal sex ratio (χ2 = 14.4, d.f. = 1, P < 0.0001, Table 3.1).  

The ASRs of the Florida collections were similar to one another and showed a 

significant female bias in the July (χ2 = 9.3, d.f. = 1, P = 0.002) but not the August 

sample (χ2 = 3.6, d.f. = 1, P = 0.058; Table 3.1).  In contrast, OSRs were heavily female 

biased in all of the populations due to the rarity of non-pregnant males (Table 3.1).  The 

two Florida collections showed similar OSRs, both of which were less female biased 

than the OSR in the Virginia population, suggesting that competition for males may be 

more intense in the latter population.   

Males and females were significantly larger in body size (as measured by SL) in 

both Florida collections than in the Virginia population as shown by an two-way analysis 

of variance (ANOVA) and a Tukey-Kramer post-hoc analysis (male ANOVA: F2,184 F = 

43.6, P < 0.0001, female ANOVA: F2,153 F=30.8, P < 0.0001).  Some evidence of sexual 

dimorphism is present in the Virginia collection as females were slightly, but 

significantly, larger than males (male SL = 128 ± 1 mm, female SL = 133 ± 2 mm, 

ANOVA: F1,238 = 5.94, P = 0.016).  No evidence of sexual dimorphism was present in 

the Florida samples as ANOVA detected no significant difference in SL between sexes 

(F1,96  = 0.0050, P = 0.94).  However a significant difference in body size between the 

two Florida collections was observed (ANOVA: F1,96  = 7.37, P = 0.008).  Adult S. 

floridae were, on average, 8 mm larger in the August population (July SL = 148 ± 2 mm; 
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August SL = 156 ± 2 mm).  No significant interaction between time and sex was 

observed between Florida populations (ANOVA: F1,96  = 0.0095, P = 0.92).   

 

Male mating behavior 

An evaluation of the July and August Florida collections revealed similar mating 

system estimates.  The July population had six unmated males, one singly mated male, 

seven males that mated with two females, and three males that mated with three females 

(
__

X ms = 1.5 ± 0.3).  The August population had six unmated males, five singly mated 

males, four males that mated with two females, one triply mated male, and one male that 

mated with four females (
__

X ms = 1.2 ± 0.3).  Males from the two Florida collections also 

contained similar numbers of embryos, with an average of 182.0 ± 39.3 embryos per 

male in July and 177.6 ± 38.2 in August.  Because the mating frequency (χ2 = 6.17, d.f.  

= 4, P = 0.19), mean reproductive success (ANOVA: F1,31 = 0.0089, P = 0.93), mean 

mating success (ANOVA: F1,31 0.63, P = 0.43) and the variance in mean mating success 

(Levene’s homogeneity of variances test: F1,31 = 0.095, P = 0.76) were not significantly 

different between males in the July and August Florida collections, the two collections 

were pooled together to draw a more robust comparison against the Virginia population. 

 Males in Virginia had higher rates of mating and higher numbers of viable 

embryos per male than the Florida population.  Among the 30 males analyzed, only two 

males had broods consisting entirely of full siblings.  Of the remaining 28 males, 11 had 

two mates, 14 had three mates, three had four mates and three were unmated (
__

X ms = 2.5 

 



 

Table 3.3.  Comparison of the opportunity for selection, I, the opportunity for sexual selection, Is, and the Bateman gradient 

(βss ± SE) between Florida and Virginia populations of male Syngnathus floridae.  Average reproductive (
__

X rs) and mating 

(
__

X ms) successes per male and their respective variances (σ2), including unmated males, are also listed.   
 
 

  
 

Reproductive success 
 

Mating success 
 

Bateman gradient 

Site  Date
 __

X rs σ2
rs I 

 __

X ms σ2
ms Is

 
βss (± SE) 

Mobjack Bay, VA 8/03  251.3    9165.8 0.15  2.52 0.79 0.13  0.25 ± 0.07 
        

      

       

    
St. Joseph Bay, FL 7-8/03  180.2 23911.8 0.74  1.33 1.35 0.76  0.59 ± 0.08 

7/941  440.4 60837.4 0.31  1.58 0.81 0.33  0.50 ± 0.09 
1Data for the June 1994 St. Joseph Bay collection from Jones & Avise (1997b)
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± 0.2, Table 3.3).  A chi square test showed a significant difference in the distributions 

of mating success between the Florida and Virginia populations (χ2 = 13.1; d.f. = 4, P = 

0.011; Fig. 3.1).  Virginia males had, on average, a mean reproductive success of 251.3± 

95.2, a value significantly higher than the pooled Florida estimate of 180.2 ± 26.91 

(ANOVA: F1,62 = 4.82, P = 0.032).  The lower mean estimate of reproductive success for 

Florida males is driven primarily by the relatively high frequency of unmated males in 

the Florida population, despite similar values for the number of viable embryos per 

mated male in both Florida and Virginia collections (FL = 270.2 ± 20.0, VA = 259.7 ± 

17.1; ANOVA: F1,52 = 0.16, P = 0.69).   

An analysis of covariance (ANCOVA) revealed mean mating success was 

positively correlated with SL for males in both populations (F1,49 = 26.90, P < 0.0001; 

Fig. 3.2).  Similarly, the relationship between number of embryos and SL was 

significantly positive in both populations (ANCOVA: F1,40 = 7.14, P = 0.01), and mated 

Virginia males were significantly smaller than their Florida counterparts (ANCOVA: 

F1,49 = 23.81, P < 0.0001; Fig. 3.3).   

Estimates of both I and Is were significantly higher in the Florida than in the 

Virginia population (Levene’s homogeneity of variances test: F1,64 = 33.04, P < 0.0001; 

F1,64 = 25.15, P < 0.0001, respectively; Table 3.3).  An analysis of covariance revealed 

that Florida males have a significantly steeper estimate of βss than Virginia males (F3,64 = 

9.32, P = 0.003, Table 3.3, Fig. 3.4).  Both the Virginia and Florida collections exhibited 

a significant positive relationship between relative fitness and mating success, resulting  
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Figure 3.1.  Frequency histogram of male mating success comparing Virginia (VA) and 
pooled Florida (FL) populations.  The histogram is derived from genetic analysis of 
offspring from male brood pouches in the VA and FL collection, coupled with the 
consideration that 12 of the 36 males collected in Florida and 3 of the 150 males from 
Virginia had not mated.  Distributions of mated individuals were significantly different 
between populations (χ2 = 13.120, d.f. = 4, P = 0.0107).
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Figure 3.2.  Mean standard length (±SE) of dusky pipefish males showing the increase in 
body size with increasing numbers of mates from the Virginia (VA) and pooled Florida 
(FL) collections.  Numbers at the base of each bar represent the sample size.  Bars with 
like letters have means that were not significantly different from one another (Tukey-
Kramer HSD Test, α = 0.05).  
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Figure 3.3.  Relationship between numbers of embryos within the brood pouch and the 
standard length of mated male Syngnathus floridae from the Virginia (VA) and pooled 
Florida (FL) collections.  Regression slopes of pooled Florida (solid, R2 = 0.50) and 
Virginia (dashed, R2 = 0.18) populations are shown.  There is a significant positive 
relationship between number of embryos and male standard length for both populations 
(ANCOVA: F1,49 = 7.14, P = 0.01).  Males from Virginia have significantly more 
offspring for a given body size than males from Florida (ANCOVA: F1,49 = 23.8, P < 
0.0001).  
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Figure 3.4. Relationship between reproductive success and mating success for male 
Syngnathus floridae from Virginia (VA) and Florida (FL) populations.  Reproductive 
success is shown as relative fitness, i.e., number of offspring produced divided by the 
mean number of offspring produced.  The sexual selection (Bateman) gradient is shown 
as the weighted least-squares regression line for FL (solid line) and VA (dashed line).  
The slopes of both the FL and VA Bateman gradients are significantly greater than zero 
(FL, P < 0.0001; VA, P = 0.0007). 
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in slopes of Bateman gradients significantly greater than zero (VA P = 0.0007; FL P < 

0.0001, Fig. 3.4).   

 

Female mating behavior 

 The high variability of the microsatellite markers allowed reconstruction of 

female genotypes, which we then compared to the genotypes of individual females 

caught in the field.  We reconstructed 77 female genotypes from the Virginia population, 

24 from the July Florida collection and 20 from the August Florida collection.  The 

average probability of identity for collected adult females (FL = 8.6 X 10-7, VA = 8.1 X 

10-5) and reconstructed female genotypes (FL = 3.6 X 10-7, VA = 3.5 X 10-5) were low, 

suggesting that a match between a reconstructed genotype and a female would only 

occur if we had collected the true mother of a progeny array.  Ten adult females in the 

Virginia population shared identical three-locus genotypes with particular inferred mates 

of sampled males.  Although not present in collected females, two identical 

reconstructed female genotypes were detected in more than one male’s brood from the 

Virginia population, indicating that females have the potential to mate with more than 

one male.  The July Florida population yielded five reconstructed maternal genotypes 

that matched females caught in the field.  Two of these reconstructed genotypes were 

each recovered in the embryos of two distinct males (i.e., each of two females had 

deposited eggs in two of our sampled males).  In addition to these two collected females 

that mated with at least two males, two additional reconstructed female genotypes were 

each found in two separate progeny arrays.  Thus, two females that we did not collect 
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also mated with at least two males each.  Similarly, three females collected from Florida 

in August possessed genotypes that matched reconstructed maternal genotypes.  Hence 

both Virginia and Florida populations are polygynandrous, an observation consistent 

with the data for dusky pipefish reported by Jones & Avise (1997b).  Although the July 

and August collections were taken in the same seagrass meadow, no reconstructed 

female genotypes matched field-caught females across the two separate collections.    

Females from the Virginia and Florida populations differed in the number of 

eggs transferred per copulation.  Females from the Florida population produced 

significantly more embryos per successful mating event than did those from the Virginia 

population (FL = 135.1 ± 10.1; VA = 99.9 ± 7.6; Mann-Whitney U-test: χ2
1,120 4.3, P = 

0.038).  Hence, females exhibit a lower rate of multiple mating in Florida but transfer a 

larger number of eggs per mating event than do females in Virginia.  The fact that every 

offspring has exactly one mother and one father, coupled with our estimate of male 

mating success, allows calculation of the mean mating success of females for a given sex 

ratio.  The mean mating success for females (including females with zero mating 

success) is the product of the ratio of males to females and the mean mating success of 

all males.  By this reasoning, the mean mating success, including non-mating females 

with zero mating success, for females in Virginia must be about 4.2 on average [(2.52 

mates per male * 150 males)/91 females], whereas the mean mating success for females 

in Florida is only about 0.75 mating events per female [(1.33 mates per male * 36 

males)/64 females], a dramatic difference between populations. 
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Population size and density 

Mean Population size for the Virginia site was estimated to have 635 adult 

females using the modified Peterson-Lincoln mark-recapture method (Jones & Avise 

1997b, Table 1).  This result contrasts sharply with the estimates of 122 and 162 adult 

females in the July and August Florida collections, respectively (Table 1).  Given the 

observed adult sex ratios, these values translate into local breeding population sizes of 

1682 adults for the Virginia population and 190 and 254 for the July and August Florida 

collections, respectively.   

Direct measurements of population density based on the numbers of individuals 

collected given the area seined showed that the Virginia population was between three to 

six times as dense as the Florida populations (Table 1).  This difference in density is 

similar to the difference in population size estimates based on the modified mark-

recapture method, which showed a 6- to 9-fold higher number of breeding adults in 

Virginia.  Overall, these results show clearly that dusky pipefish in the Virginia 

population occur at higher densities and exhibit larger local breeding populations than 

those in our Florida population (Table 1).   

 

Discussion 

Our results show that two genetically distinct populations of the dusky pipefish 

exhibit significant inter-population variation in the genetic mating system.  Males from 

the Virginia population mate more frequently than males from the Florida population.  

The two populations also show significant differences in male reproductive success 
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despite similar number of embryos per mated male.  This difference is driven primarily 

by the high frequency of unmated males in the Florida population.  The observed 

variation in mating and reproductive success between populations translates directly into 

significant differences in intensity of sexual selection, as measurements of the genetic 

mating system using Bateman’s principles indicate a greater potential for sexual 

selection on males in the Florida population.  Other sources of evidence also support the 

notion that sexual selection on males is stronger in the Florida population.  A less 

female-biased ASR is consistent with stronger sexual selection on males and weaker 

sexual selection on females in the Florida population.   

Observed differences in the genetic mating systems of the two populations are 

likely driven by selection on male and female fecundity.  Both populations show a 

significant trend for larger males to carry more eggs and have more mates per pregnancy 

than smaller males, suggesting that selection is acting on male body size.  However, 

larger males may require more mating events to fill their brood pouches to capacity than 

smaller males.  Since females from the Virginia population provide fewer eggs per 

mating event than females from the Florida population, more mating events are required 

to fill the brood pouch of Virginia males than those of Florida males.  Thus, the 

difference in mating success may represent a fundamental difference in life history 

strategies between populations.  One hypothesis that may explain these results is that the 

potential reproductive rate (number of offspring produced per unit of time) is different 

between the two populations (Ahnesjö 1995).  For example, if the rate of egg production 

is lower in the Virginia population, it may be sufficient to explain the difference in 
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female reproductive contribution and hence male mating and reproductive success.  

Definitive resolution of this hypothesis awaits further detailed study on the mating 

behavior of females from the different populations.   

 

Temporal variation in the genetic mating system 

It is clear from other studies of syngnathid fishes that both the adult sex ratio and 

operational sex ratio vary throughout the breeding season, providing the potential for the 

intensity of sexual selection to vary temporally (Vincent et al. 1995).  In earlier studies 

of Atlantic and Gulf Coast populations conducted throughout the year, females on 

average tended to be more abundant than males (Brown 1972, Mercer 1973).  However, 

the adult sex ratios tend to show a higher proportion of males during the summer (June 

to August) than during the fall and winter months (September to April), presumably 

because males depart the seagrass beds for deeper waters earlier than females (Brown 

1972, Mercer 1973).  An alternative hypothesis is that males may suffer higher mortality 

than females, as has been observed in other species with high paternal investment in 

offspring (Forsgren et al. 2004).   

While previous studies (Brown 1972; Mercer 1973; Vincent et al. 1995) of 

syngnathids have shown that adult and operational sex ratios can vary throughout the 

year, we did not find temporal variation in several population parameters between the 

two sampling periods of the Florida collections.  The collections made in the same 

seagrass bed during July and August of 2003 showed similar ASRs and OSRs, as well as 

similar population densities and population sizes (Table 1).  Genetic mating system 
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parameters such as 
__

X ms, 
__

X rs, I, Is, and βss also did not differ significantly between the 

two time periods.  These data suggest that population demographics and the genetic 

mating system are locally stable over short periods of time.    

Between-year temporal variation also has the potential to contribute to 

meaningful variation in the genetic mating system.  However, the genetic mating system 

also shows a pattern of long-term stability in S. floridae.  An earlier study of the St. 

Joeseph Bay site by Jones & Avise (1997b) in July of 1994 revealed a similar OSR and 

estimated population size of females despite dissimilar ASRs (Table 1).  The Bateman 

gradient, βss, and the number of mates per male also show surprisingly similar estimates 

between years (Table 3) despite differences in body size (SL), mean number of eggs 

transferred per copulation by females and mean number of eggs per male.  In the Florida 

1994 collection, adults were significantly larger, females transferred significantly more 

eggs per copulation and males had more viable embryos than in the 2003 collections 

(Jones & Avise 1997b).  The differences in number of eggs transferred per copulation 

and male reproductive success are a direct result of the larger body size of the 1994 

collections and may represent variable growth rates among years.  In addition, the 

differences in body size may also be related to the differences in I and Is between the 

1994 and 2003 samples.  Thus, even though we see some interesting temporal changes in 

life history and mating parameters across a nine-year period in the Florida population, 

the among-population differences appear to be much larger than the temporal 

differences.  Nevertheless, this study suggests that the study of temporal variation in 

pipefish mating systems could be a fruitful area for future research. 
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The effect of population density on the genetic mating system 

Higher population densities may facilitate greater rates of multiple mating by 

both sexes as a consequence of a higher rate of mate encounter (Kokko & Johnstone 

2002, Kokko & Rankin 2006).  In the present study, the Virginia site exhibited a three to 

six fold higher population density than the Florida population.  Our results are consistent 

with the prediction that higher population densities result in higher rates of multiple 

mating since the Virginia population had higher mating and reproductive success.  We 

also observed evidence for significantly stronger sexual selection on males in the less 

dense Florida population.  Lower population density may make it difficult for small, 

unattractive males to find suitable mates, because larger females probably prefer to mate 

with larger males, as has been observed in S. typhle (Berglund et al. 1988).   

While our study represents a comparison of only two populations and hence 

cannot resolve whether population density affects the genetic mating system of S. 

floridae by itself, it is instructive to consider our results in light of other comparative 

studies of mating systems as a function of population density.  For example, Soucy & 

Travis (2003) found that rates of multiple paternity were higher in populations with 

greater densities of adult individuals in the least killifish, Heterandria formosa.  Several 

studies of other taxa also have shown a positive relationship between rates of multiple 

mating and population density.  For example, in some species of birds, increasing 

breeding density appears to be associated with a higher rate of extra-pair paternity at the 

within-species level (Møller 1991; Reyer et al. 1997; Westneat & Sherman 1997; 

Richardson & Burke 2001; Charmantier & Perret 2004; Mougeot 2004).  However, other 
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studies in a variety of taxa have failed to find a positive relationship between population 

density and multiple paternity.  In several species of birds, for example, there appears to 

be no relationship between extra-pair fertilization frequency and nesting density (Dunn 

et al. 1994; Conrad et al. 2001; Veiga & Boto 2000; Ratti et al. 2001).  Similarly, 

population density was not positively related to the frequency of concurrent multiple 

paternity in Drosophila melanogaster (Ochando et al. 1996).  Very few studies thus far 

have focused on non-avian taxa, so additional research on the relationship between 

population density and mating patterns in a wider variety of taxa is clearly warranted. 

 

Other environmental factors that may affect the genetic mating system 

 In addition to population density, a wide range of other parameters could 

conceivably contribute to the observed variation in mating patterns between our 

populations.  Differences in mating preferences among males and females with respect 

to body size (Berglund et al. 1988), parasite load (Rosenqvist & Johansson 1995), or 

ornaments (Berglund & Rosenqvist 2001) may contribute to variation in local genetic 

mating systems.  A large number of biotic and abiotic environmental factors, such as 

food availability (Kvarnemo 1997) and predation (Kelly et al. 1999, Bronikowski et al. 

2002), may also shape genetic mating systems.  Probably the most important abiotic 

environmental parameter for pipefish reproduction is water temperature.  Previous 

investigations of S. typhle show that as little as a 4ºC difference in temperature regimes 

has a large effect on the potential reproductive rates of males and females (Ahnesjö 

1995, Kvarnemo & Ahnesjö 1996).  Our Virginia population occupied a site with lower 
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mean water temperatures than those experienced by the Florida population.  The yearly 

temperature for the Chesapeake Bay near the York River, Virginia averages 15ºC (data 

available from the Chesapeake Bay Observing System, www.cbos.org), whereas the 

yearly surface water temperature of Panama City Florida (~50 km from St. Joe Bay) 

averages 20ºC (data available from Environmental Protection Agency, 

http://www.epa.gov/storet/index.html).  Additional studies, possibly including common 

garden mating experiments, will be needed to resolve the effects of temperature on 

mating patterns in this species.   

 

Conclusions 

Understanding the biotic and abiotic factors affecting genetic mating systems is a 

central goal of much research in evolutionary biology and behavioral ecology.  Our 

study contributes to this goal by providing empirical evidence that critical mating system 

parameters, such as 
__

X ms, 
__

X rs, I, Is, and βss, can vary among populations within a 

species.  Such variation may underlie divergent evolutionary trajectories for population-

specific morphology, and thus play a significant role in the process of speciation.  Much 

more work on geographic variation in genetic mating systems of this and other species 

will be required for a complete understanding of the ecological factors contributing to 

mating system evolution.  
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CHAPTER IV 

GEOGRAPHIC VARIATION IN THE GENETIC MATING SYSTEM OF THE 

DUSKY PIPEFISH, SYNGNATHUS FLORIDAE.  III: INFLUENCE OF 

DEMOGRAPHIC AND ENVIRONMENTAL FACTORS  

 
Introduction 

 
Current quantitative theory of animal genetic mating systems can be 

characterized as the populational response to selection in terms of variation in mating 

and reproductive success (Arnold 1994, Shuster & Wade 2003).  This approach 

emphasizes processes that influence selection on the morphological and behavioral traits 

that are directly responsible for the acquisition of mates, fecundity and fitness of 

individuals (Shuster & Wade 2003).  The appeal of such an approach is that it applies a 

statistically rigorous framework for testing hypotheses concerning the evolution of traits 

as a consequence of sexual selection (Shuster & Wade 2003).  Thus far, studies using 

this quantitative approach have validated such techniques (Jones et al. 1999, Jones et al. 

2002, Jones et al. 2004, Jones et al. 2005, Mills et al. 2007) and have shown their 

flexibility to the application of a host of evolutionary processes (Shuster & Wade 2003).   

Despite this recent progress in theory, only a handful of studies have investigated 

the effects of specific ecological factors on mating and reproductive success.  The length 

and synchrony of the breeding season (Shuster & Wade 2003, Spottiswoode and Møller 

2004), local population density (Lloyd 1967, Griffith et al. 2002, Prohl 2002), the 

operational sex ratio (Kvarnemo & Ahnesjö 1996, Prohl 2002, Jones et al. 2005, Mills et 

al. 2007), and predation (Kelly et al. 1999, Bronikowski et al. 2002, Lodé et al. 2004) 
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have all been shown to influence mating success at the population level.  Ecological 

factors may also set limits on reproductive success.  For instance, temperature (Ahnesjö 

1995, Kvarnemo 1997, Fischer et al. 2003), resource abundance (Kvarnemo 1997, 

Turner & McCarty 1998), habitat structure and fragmentation (Turner & McCarty 1998, 

Aguilar & Galetto 2004), parasite load (Fitze et al. 2004), resource competition (Martin 

& Martin 2001) and predation (Bronikowski et al. 2002) all may influence variation in 

offspring production.  These studies represent the beginning of a more complete 

understanding of mating system organization that encompasses ecological conditions 

that are both environmental and demographic in nature.   

One method to partition the relative affects of ecological factors on genetic 

mating system components is to sample multiple geographically isolated populations 

that experience disparate ecological regimes.  In this manner, population-level responses 

to ecological conditions can be measured under natural conditions.  However, only a 

handful of studies that have investigated variation in mating systems on broad 

geographical scales exist and they have not provided clear trends with respect to mating 

system organization among sites.  For example, a few studies that investigated the 

degree of multiple mating have found little or no variation between geographically 

distant populations (Jones et al. 2001b, Goodisman et al. 2002).  In contrast, other 

studies have provided evidence that there are significant differences between mating and 

reproductive success among distant populations, although the ecological factors 

responsible for such differences are not yet well understood (Weatherhead & Boag 1997, 

Griffith et al. 1999).  Finally, a handful of studies appear to have documented variation 
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in mating patterns and to have pinpointed the possible causal factors leading to the 

differences among populations.  For example, differences in mating success appear to be 

correlated with female size in sailfin mollies (Trexler et al. 1997).  Finally, one study has 

clearly shown a positive relationship between an ecological parameter (predation) and a 

mating system parameter, the frequency of multiple insemination, in Trinidadian guppies 

(Kelly et al. 1999, Bronikowski et al. 2002).   

The goal of this study is to elucidate the combined effects of specific ecological 

phenomena that influence genetic mating system parameters in the dusky pipefish, 

Syngnathus floridae.  The dusky pipefish is widely distributed in the western Atlantic 

Ocean and Gulf of Mexico (Dawson 1982).  Populations of S. floridae are now known to 

have different morphological characteristics and have been shown to experience 

different demographic regimes with respect to population density, adult sex ratios, 

operational sex ratios and adult population sizes.  In addition, different populations are 

characterized by quantitative differences in their genetic mating systems (CHAPTER 

III).  Populations of S. floridae also likely encounter a wide range of environmental 

conditions such as temperature, salinity, turbidity and seagrass habitat that may also 

have direct effects on individual fitness, mating and reproductive success.   

To study the effects of specific ecological conditions on genetic mating system 

correlates, adult collections of dusky pipefish were made in five locations from both the 

Atlantic coast of North America and the Gulf of Mexico.  These five sites differed in 

several abiotic environmental conditions such as mean yearly water temperature and 

turbidity, and experienced disparate demographic regimes in adult sex ratios, adult 
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population density and adult population size.  Multiple regression analysis was used to 

partition the effects of specific environmental, morphological and demographic factors 

on male and female genetic mating system correlates including Bateman’s three 

principles, the opportunity for selection (I), the opportunity for sexual selection (Is), and 

the Bateman gradient (βss).   

 

Materials and Methods 

Sample collection 

Adult dusky pipefish were collected during the summer mating season (June – 

August) from five sites between July 2003 and August 2005.  Two of the sites were from 

the Atlantic coast (VA and NC) and three were from the Gulf of Mexico (TB, SJ, TX; 

Fig. 2.1, Table 2.1).  These five sites have previously been shown to show strong 

isolation by distance with respect to population genetic structure (CHAPTER II).  The 

TB and SJ sites were revisited approximately one month after the first sample was taken 

to improve the sample size.  Individuals were captured at each location by seine net (2 

mm mesh) during low tide from measured plots marked with stakes inside shallow (< 

1m) seagrass meadows.  Each plot was completely seined a minimum of three full 

sweeps or until a full sweep of the area captured less than five percent of the original 

sweep.  Individuals were assessed for sex and maturity by criteria outlined in 

CHAPTER III.  All adults captured were measured for standard length (SL) to the 

nearest mm and all females were measured for body depth (BD) with calipers to the 

nearest mm.  Males were assessed for pregnancy and stage of development of embryos. 
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Pregnant males that did not have sufficient brood development for genetic analyses were 

maintained in buckets of seawater supplied with an air stone and fed freshly hatched 

Artemia nauplii.  Once embryos developed eyespots, pregnant males were sacrificed for 

parentage analysis.  All other adults were sacrificed in the field by severing their spinal 

column above the operculum and preserved in 95% ethyl alcohol.   

 

Abiotic environmental data collection 

Environmental data were collected at each site visitation.  Measured 

environmental variables included temperature, salinity, and turbidity.  Mean, maximum, 

and minimum yearly sea surface water temperatures were calculated from mean monthly 

temperatures using data available from U.S. government agencies (VA: The Chesapeake 

Buoy Observing System, www.cbos.org; TB, SJ, NC: The Environmental Protection 

Agency, www www.epa.gov/storet/index.html; TX: the Department of Nearshore 

Research/Texas Coastal Ocean Observation Network http://lighthouse.tamucc.edu/pq).  

Field measurements of temperature were measured with a standard mercury 

thermometer, salinity was measured with a refractometer, and turbidity was measured 

with a Secchi disk.   

 

Seagrass data collection 

Mean seagrass percent cover, shoot height, shoot density, above ground biomass, 

and percent composition were measured for each seagrass species encountered at the 

five sampling sites on the first visitation.  At each site a 0.5 X 0.5 m quadrat (0.25 m2) 

 



 75

divided into 25 0.1 X 0.1 m (0.1m2) sections was randomly thrown into the area staked 

for fish collection.  Five sections were selected using a random number table and all 

vegetation inside each selected section was harvested above the sediment level.  This 

process was repeated for a total of five replicates at each site.  All plant material above 

the rhizomes was then placed in individual Ziploc® bags, placed on ice and transferred to 

a -20ºC freezer until processing.  For processing, seagrass shoots were thawed, rinsed in 

fresh water, and separated by species.  To calculate mean shoot height, at least ten shoots 

of each seagrass species were randomly selected and measured lengthwise to the nearest 

mm.  If less than 10 shoots were encountered, all shoots were measured.  The remainder 

of the shoots were then counted and averaged for each quadrat to calculate mean shoot 

density (shoots per m2) for each species and total species.  All epiphytes were cleaned 

off each shoot and all seagrass material for each species was dried in a 55ºC incubator 

for 24 hours before determining dry mass for biomass estimates for each quadrat.   

 

Demographic data collection 

In order to assess the influence of demographic features on the genetic mating 

system of dusky pipefish, several population-level measurements were investigated, 

including the adult sex ratio (ASR), the operational sex ratio (OSR), population density, 

and population size.  The adult sex ratio (ASR) is given as the number of adult males 

divided by the total number of adults collected, whereas the operational sex ratio (OSR) 

is the ratio of non-pregnant males to non-pregnant males plus adult females (Kvarnemo 

& Ahnesjö 1996).  Population density amounted to the total number of individuals 
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caught per m2 for each sex and for the total number of adults.  A modified Lincoln-

Peterson method of capture-recapture was used to estimate female local population size 

in all samples based on number of matched reconstructed female genotypes to field 

caught individuals (Jones & Avise 1997b, Methods CHAPTER III). 

 

Parentage analysis and genetic mating system correlates 

Individual adult male and female S. floridae from each population were 

genotyped using four polymorphic microsatellite DNA loci previously employed to 

characterize the mating system in S. floridae (Jones & Avise 1997b).  Brood pouches 

were dissected and genotyped according to protocols in the Methods section of 

CHAPTER III.  Parentage analysis was conducted according to protocols in the 

Methods section of CHAPTER III.  Several measures of the genetic mating system, 

including the mean reproductive success (
__
X ms), mean reproductive success (

__

X rs), and 

the three Bateman’s principles, i.e., the opportunity for selection (I), the opportunity for 

sexual selection (Is) and the Bateman gradient (βss), were calculated following protocols 

outlined in the Methods section of CHAPTER III.   

 

Statistical analysis 

Statistical analyses were performed with JMP IN™ v5.1 statistical software 

package (SAS Institute Inc., Cary NC).  All statistics were analyzed first for normality 

and equal variances.  If these assumptions were not met, data were transformed or if no 

transformation satisfied a priori assumptions, appropriate non-parametric tests were 
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applied.  Statistical tests as well as any transformations are indicated throughout the text. 

All means are reported ± one standard error of the mean (SE).   

A stepwise multiple linear regression model (Sokal & Rohlf 1995) was used to 

test for significant relationships between mating system parameters and morphological, 

environmental and demographic criteria pooled for the five sites.  Environmental data 

were averaged for the two TB and two SJ collections and samples were combined for 

genetic mating system correlates.  Estimates of total population density were calculated 

by multiplying the female population size by the adult sex ratio to first get an estimate of 

male population size.  The male and female population sizes were then summed to 

estimate total population density for each site.  The criterion for adding steps to the 

regression model was P = 0.25, and retaining steps P = 0.10.  Because the criterion for 

retaining steps was greater than P = 0.05, it allowed for best-fit regression line 

construction that included some non-significant individual regressions (Sokal & Rohlf 

1995).  Prior to final fitting of models, these non-significant regressions were removed 

and only significant partial regressions are reported.   

 

Results 

Morphological differences between sites 

 The five sites sampled in this study showed significant differences in adult mean 

body size (SL) pooled between all samples for each site and after natural log 

transformation of data to fit normality and equal variance assumptions (ANOVA: F4,581 

= 72.83, P < 0.0001, Fig. 4.1). The largest body sizes for adult male and female S.  
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Figure 4.1.  Mean standard length (± SE) of male and female dusky pipefish captured 
from different sampling sites (Table 2.1, Fig. 2.1).  Numbers at the base of each bar 
represent the sample size.  Bars with like letters have adult population means that were 
not significantly different from one another (Tukey-Kramer HSD test, α = 0.05).  
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floridae were encountered in the TX site (166 ± 4 mm).  Intermediate body sizes were 

encountered in the TB and SJ collection and there was no significant difference in SL 

between sexes in either the TB or SJ samples (2 way ANOVA: TB sex F1,125 = 3.34, P = 

0.07; SJ sex F1,96 = 0.007, P = 0.97).  However, there were significant differences 

between the collection times (2-way ANOVA: TB time F1,125 = 18.97, P < 0.0001; SJ 

time F1,96 = 7.53, P = 0.007).  These differences in SL amounted to an 8mm increase in 

the adult SL between the July and August sample in SJ (July 148 ± 2 mm; August 156 ± 

2mm) and a 9mm increase in adult SL between the June and July sample in TB (June SL 

131 ± 1 mm; July SL 142 ± 2 mm).  The smallest adult SL was recorded in the VA and 

NC samples (VA 129 ± 1 mm; NC 126 ± 1.6).  The only significant sexual dimorphism 

in body length was recorded in the VA sample where males were, on average, 5mm 

smaller than females (ANOVA1,238 = 5.94, P = 0.016).  

 

 Abiotic environmental data 

The five sites investigated in this study were different with respect to the abiotic 

environmental criteria measured.  Mean, maximum, and minimum yearly water 

temperatures were most similar between the NC and SJ sites as well as between the TB 

and TX sites (Table 4.1).  The VA site had the lowest estimates for mean, maximum and 

minimum yearly water temperature.  All sites yielded temperatures near the maximum 

yearly water temperature during the time of collection (Table 4.1).  Salinity was variable 

between sites and between sampling times within sites.  The highest salinities were  
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Table 4.1.  Summary of abiotic environmental data.  Calculated yearly water temperature 
(mean, maximum and minimum) and water temperature, salinity and turbidity (Secchi 
disk depth) measured at each of the five sites.   
 

 WATER TEMP1   FIELD DATA 

Site 
Mean 
(ºC) 

Max 
(ºC) 

Min 
(ºC)  Date 

Water temp 
(ºC) 

Salinity 
(‰) 

Secchi disk 
depth (m) 

VA 15 31  0  8/03 29.5 15 0.4 
         
NC 19 34  3  7/04 29.0 28 0.7 
         
TB 24 31 13  6/04 30.5 28 1.5 

     7/04 31.0 32 1.2 
         
SJ 20 32  6  7/03 29.0 15 2.1 
     8/03 30.5 25 1.8 
         
TX 24 33 11  8/05 33.0 36 0.6 

 
1Maximum, minimum and mean yearly surface water temperatures are based on monthly averages 
recorded by the following: Mid Bay Buoy recorded from 7/01/02 – 7/01/03 for the VA site (data available 
from the Chesapeake Bay Observing System, www.cbos.org); Neuse River estuary approximately 40km 
NNE of Morehead City recorded from 1/01/05 – 12/31/05 for the NC site (data available from EPA, 
http://www.epa.gov/storet/index.html); Dunedin Sound recorded 12/31/03 – 11/01/04 for the TB site (data 
available from EPA, http://www.epa.gov/storet/index.html); St. Andrews Bay situated approximately 
50km NW from St. Joseph Bay recorded 1/01/03 – 12/31/03 for the SJ site (data available from EPA, 
http://www.epa.gov/storet/index.html); Port Aransas recorded from 1/01/05-12/31/05 for the TX site (data 
available from the Department of Nearshore Research/Texas Coastal Ocean Observation Network 
http://lighthouse.tamucc.edu/pq).
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recorded in the TX site and the lowest in the VA and July SJ site (Table 4.1).  Turbidity 

is negatively correlated with light penetration and Secchi disk depth.  The highest Secchi 

disk depth and hence the least turbidity was recorded at the SJ site.  The smallest Secchi 

disk depth was recorded in the VA site and intermediate Secchi disk depths were found 

in the NC, TX and TB sites (Table 4.1). 

 

Seagrass estimates 

Collection sites differed in composition, percent cover, mean shoot height, mean 

shoot density and mean biomass of living seagrass (Table 4.2).  Seagrasses encountered 

at the Atlantic sites included eelgrass, Zostera marina, and shoal grass, Halodule 

wrightii.  Seagrasses encountered in the Gulf of Mexico populations included H. 

wrightii, manatee grass, Syringodium filiforme, and turtle grass, Thalassia testudinium.  

A sand/silt substrate and Z. marina characterized the VA site.  A sand/silt substrate and a 

mixed community comprised of H. wrightii and Z. marina characterized the NC site.  

The TB site had a sand/silt substrate and was primarily dominated by S. filiforme.  The 

SJ site had a substrate comprised of shell hash and sand and was dominated by T. 

testudinum.  The TX site was also dominated by T. testudinum and had a substrate of 

shell hash and silt.  All sites had nearly 100% cover of living seagrass, except the NC 

site, which had small patches of seagrass interspersed with bare substrate (Table 4.2).  

Mean shoot height was greatest in the TX and TB sites, which yielded similar estimates.  

Similar intermediate mean shoot height estimates were encountered the SJ and NC 

samples.  The lowest mean shoot height was encountered in the VA site.  Seagrass shoot 

 



 

Table 4.2.  Summary of seagrass data for collection sites.  Listed are substrate, species composition, percent cover (% Cover), 
mean shoot height (mm ± SE), shoot density (shoots m-2 ± SE) and biomass (g dry weight m-2 ± SE) calculated for each species 
of seagrass and totaled for all species at each site. 
 

Site Date Substrate Species % Cover  
Mean shoot 

height 
Shoot 

density 
Seagrass 
biomass 

VA 8/03 sand/silt Z. marina 92 90.1 ± 18.0 4248 ± 625 72.3 ± 26.3 
        

 
 

   
    

 
 

    

   

NC 7/04 sand/silt
 

 H. wrightii 56 117.6 ± 21.4 8460 ± 5115 65.0 ± 40.8 
 Z. marina 56 131.6 ± 2.1  3304 ± 1478 58.5 ± 26.1 

Total 60 124.6 ± 11.7 
 

11764 ± 5977 
 

123.5 ± 56.7 
  

TB 6/04 sand/silt
 

 S. filiforme 100 152.6 ± 14.8 7188 ± 1837 114.8 ± 41.5 
H. wrightii 52 185.4 ± 45.9 1096 ± 624 5.4 ± 2.5 

  Total 100 169.0 ± 29.6 
 

8284 ± 1617 
 

120.2 ± 40.0 
  

SJ 7/03 T. testudinum 100 144.8 ± 10.7 2548 ± 219 146.1 ± 10.6 
  

sand/ 
shell hash S. filiforme 44 72.1 ± 7.4 844 ± 514 6.1 ± 3.7 

  Total 100 120.4 ± 8.1 
 

3392 ± 423 
 

152.3 ± 12.8 
  

TX 8/05 T. testudinum 96 201.8 ± 25.2 3888 ± 880 135.0 ± 34.5 
  

silt/shell 
hash H. wrightii 60 118.0 ± 3.8 3288 ± 1814 31.0 ± 19.8 

  Total 96 170.0 ± 16.6 7176 ± 1031 166.0 ± 20.1 
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density (shoots per m2) was highest in the NC site and lowest at the VA and SJ sites.  

Seagrass biomass (g dry weight per m2) was highest in the TX and SJ sites and lowest in 

the VA site.    

 

Demographic data 

All sites had a slightly male-biased ASR except for the VA and TX sites where 

more males were caught than females (Table 4.3).  Only the VA site had an ASR that 

had a significant departure from equality (χ2: P < 0.01).  In sites that were sampled more 

than once (TB, SJ), the ASR was similar for all samples.  The OSR, on the other hand, 

was highly variable among temporal samples (Table 4.3).  All sites except for the TX 

sample had a significantly male-biased OSR (Table 4.3).  Population density (individuals 

per m2) measured in the field was highest in the NC sample and lowest in the SJ and TX 

sites (Table 4.3).  Population density was not estimated for the July TB sample.  Adult 

female population size was estimated for each sampling time using the Lincoln-Peterson 

mark-capture-recapture technique (Jones & Avise 1997b) except the July TB sample 

since no reconstructed female genotypes matched individuals captured in the field.  The 

VA site yielded the highest estimate of adult female population size whereas the TX site 

had a very small adult female population size (Table 4.3).   

  

Male mating behavior  

An evaluation of the July and August SJ collections revealed no significant 

differences in the number of mates, number of embryos and SL per mated male between 

 



 

Table 4.3.  Summary of demographic data for each collection site.  Listed are sample sizes of adults (n), males (m), non-
pregnant males (m') and females (f), adult sex ratios (ASR; ratio of males to total adults), operational sex ratios (OSR; ratio of 
non-pregnant males to females + non-pregnant males), population density (ind m-2) and mean female population size 
(estimated using the modified Lincoln-Peterson method with 95% CE) of adult S. floridae from different sample collections.   
 

*
*

* Denotes significant departure from equality (χ : p < 0.01) 
2 1)

 

 Sample Size  ASR  OSR  

Population 
density 

(ind m-2) 

2

Site Date n m m' f  m / n  m'/(f+m')  Total m f 

Adult Female 
Population 

Size 
(95% CE) 

VA 8/03 241 150 3 91  0.62**  0.03***  0.18 0.11 0.07 635 (323-947) 

               

NC 7/04 82 33 7 49  0.40  0.13***  0.27 0.07 0.20 87 (68-105) 

               

TB 6/04 92 37 8 55  0.40  0.13***  0.11 0.04 0.06 146 (76-216) 

 7/04 36 13 0 23  0.36  0.00***  --- --- --- --- 

               

SJ 7/03 53 19 6 34  0.36  0.15***  0.06 0.02 0.04 122 (52-191) 

 8/03 47 17 6 30  0.36  0.17**  0.03 0.01 0.02 162 (42-281) 

               

TX 8/05 37 20 5 17  0.54  0.22  0.06 0.03 0.03 47 (24-70) 

 

** Denotes significant departure from equality (χ : p < 0.00

 

84



85 

sampling times and these collections were therefore combined for analysis (CHAPTER 

III, Table 4.4).  Similarly the June and July collection at the TB site did not significantly 

differ in the number of embryos per mated male (ANOVA: F1,28 = 1.05, P = 0.31).  

However these two collections significantly differed in number of mates (Mann-Whitney 

U-test: χ2 = 14.20, 1 d.f., P > 0.0002) and SL of mated males (ANOVA: F1,28 = 10.13, P 

< 0.004).  This variation may be due to the small sample size (n = 9) of mated males 

during this sampling time.  Because of the small sample size encountered in the second 

collection and because reconstructed female genotypes from the first collection matched 

females caught in the second collection, these collections were assumed to be the same 

breeding population and therefore the two TB estimates were pooled between samples 

for mating system estimates.   

Males differed among sites in the maximum number of mates and the number of 

mates per mated male, but not in the number of embryos per mated male among sites 

(Table 4.4).  The highest numbers of mates per mated male were found in the VA site, 

and this estimate was significantly higher than all other sites (ANOVA: F4, 118 = 21.97, P 

< 0.0001, Tukey-Kramer post hoc analysis: α = 0.05, Table 4.4).  The TX, TB and NC 

sites had the fewest number of mates per mated male and were not significantly different 

from one another in this estimate.  The SJ site had intermediate numbers of mates per 

mated male and was significantly different from all other sites except the NC site.  

Estimates of the number of embryos per mated male were not significantly different 

between sites (Tukey-Kramer post hoc analysis: α = 0.05).  The highest number of 
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Table 4.4.  Summary statistics for pregnant males analyzed for parentage.  Site, number 
of males analyzed (nm), max number of mates (max), mean number of mates (mates), 
mean number of embryos (embryos) and mean standard length (SL) are listed.   
 

Site Date nm Max  
Mates 
(± SE) 

Embryos  
(± SE) 

SL 
(mm ± SE) 

VA 8/03 30 4 2.60 ± 0.13 259.7 ± 16.4 132.0 ± 2.2 
       
NC 7/04 22 3 1.75 ± 0.14 197.0 ± 18.4 124.2 ± 2.4 
       
TB 6/04 21 2 1.24 ± 0.10 194.2 ± 20.1 134.0 ± 2.1 
 7/04 9 2 2.00 ± 0.00 228.3 ± 19.2 145.7 ± 2.6 
       
SJ 7/03 11 3 2.18 ± 0.2 265.9 ± 33.7 150.4 ± 3.9  
 8/03 11 4 1.82 ± 0.3 274.5 ± 30.8 153.9 ± 3.0 
       
TX 8/05 13 2 1.31 ± 0.16 256.2 ± 38.3 158.2 ± 4.8 
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embryos per mated male was encountered in the SJ site and the lowest was encountered 

in the NC site (Table 4.4).   

Significant differences were detected for SL of mated males between sample 

sites (Kruskal Wallace Rank Sums Test: χ2 = 51.25, 4 d.f., P < 0.0001, Table 4.4).  

Pregnant males were largest in the TX and SJ site and smallest in the NC site (Table 

4.4).  The relationship between the number of embryos per unit of SL in males was not 

significantly different between sites (site*SL ANCOVA: F4,109 = 0.13, P = 0.97) and this 

relationship was significantly positive (SL ANCOVA: F1,113 F = 73.55, P < 0.0001).  

Males had significantly more embryos on average in the SJ and NC sites, whereas the 

TX sample had the fewest number of embryos (site ANCOVA: F4,113 = 6.52, P < 

0.0001).  The relationship between number of mates and SL was not significantly 

different among sites (site*mates 2-way ANOVA: F4,104 = 1.03, P = 0.39) and the 

relationship was significantly positive (mates 2-way ANOVA: F1,113 = 35.46, P < 

0.0001).  According to this two-factor ANOVA, the highest numbers of mates per 

pregnant male were found in the NC and VA sites and the lowest number of mates per 

pregnant male was found in the TX site.   

Estimates of male mean mating (
__
X ms) and reproductive success (

__
X rs) differed 

between sites.  Males from the VA site had a significantly higher 
__
X ms than all other 

sites that shared similar values of 
__
X ms (ANOVA: F4,140 = 11.46, P < 0.0001; Table 4.5).  

Males also had significantly higher mean reproductive success,
__
X rs, in the VA site than 

in the NC site (ANOVA: F4,140 = 2.62, P < 0.04).  This difference in 
__
X rs was not 

 



 

Table 4.5.  Quantitative characterization of male mating system estimates.   Shown estimates are mean mating success (
__
X ms), 

the variance in mating success (σms), the opportunity for sexual selection (Is), mean reproductive success (
__
X rs), the variance in 

reproductive success (σrs), the opportunity for selection (I), and the Bateman gradient (βss ± SE).   
 

   Mating Success  Reproductive Success   

Site  Date n 
__
X ms σms Is  

__
X rs σrs I  βss (± SE) 

VA 8/03 31 2.52 ± 0.17 0.7914 0.13  251.3 ± 21.5 9165.8 0.15  0.25 ± 0.07 
    

   

  

          

        
NC 7/04 33 1.40 ± 0.17 

 
0.8690 
 

0.44  157.6 ± 21.8 
  

13040.5 
 

0.53  0.52 ± 0.11 
    

TB 6-7/04 
 

35 1.26 ± 0.16 
 

0.4908 
 

0.31  175.2 ± 18.6 
  

11237.7 
 

0.37  0.65 ± 0.10 
    

SJ 7-8/04 31 1.33 ± 0.16 1.3542 0.76  180.2 ± 20.8 23911.7 0.74  0.59 ± 0.08 
  
TX 8/05 16 1.06 ± 0.19 0.4625 0.41  208.2 ± 40.5 25561.6 0.59  0.95 ± 0.16 
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Figure 4.2.  Relationship between reproductive success and mating success for males 
from different sampling sites.  Reproductive success is shown as relative fitness.  The 
sexual selection (βss) gradient is shown as the colored weighted least-squares regression 
line for each site.   

 



 

Table 4.6.  Summary statistics for females.  Listed are the number of unique females caught (f), mean standard length (SL), 
mean body depth (BD), number of unique female reconstructed genotypes (fc), number of reconstructed female genotypes 
matched to individuals caught in the field (fr), percent recaptured (%r), probability of identity for females caught (PID-f), the 
probability of identity for reconstructed genotypes (PID-fr), number of mates for individual females constructed from recaptured 
females, number of identical female reconstructed genotypes matching reconstructed genotypes (in parentheses), and the mean 
female reproductive contribution per mated male (FRC ± SE).   
 

   SL  BD       Mates  

Site        Date f (mm ± SE)  (mm ± SE)  fc fr %r PID -f PID-fr 1 2 3 4 FRC
VA 8/03 91 132.7 ± 1.7  5.2 ± 0.1  75 10  11 8.1 X 10-5 3.5 X 10-5 10 (2)   99.9 ± 7.6 
              

  
      

    
    

             

          

   
NC 7/04 49 128.5 ± 2.4 

 
 5.2 ± 0.1  34 19

 
39

 
8.5 X 10-6 8.0 X 10-6 12 6 1  112.6 ± 10.4 

        
TB 6/04 55 128.9 ± 2.2  4.2 ± 0.1  20 7 13 

 
2.2 X 10-7 4.7 X 10-7 3 3(5)

 
 1 154.9 ± 15.7

 7/04 23 140.0 ± 3.4  5.2 ± 0.2  17 0 0   114.2 ± 13.3
    
SJ 7/03 34 148.1 ± 2.8  5.3 ± 0.2  20 5 15 8.6 X 10-7 3.6 X 10-7 3 2(2)   121.9 ± 15.7 
 8/03 30 155.7 ± 3.1 

 
 6.2 ± 0.2  20 3 10 

 
  3    151.0 ± 17.2 

     
TX 8/05 17 173.3 ± 4.0  6.9 ± 0.2  15 5 29 1.5 X 10-5 2.6 X 10-5 3 2   195.9 ± 37.8 

 

 

90



91 
 
 

encountered among any other sites (Tukey-Kramer post hoc analysis: α = 0.05).  The 

genetic mating system was estimated using Bateman’s three principles for each site 

(Table 4.5).  Estimates of the opportunity for sexual selection (Is) and the opportunity for 

selection (I) were significantly different among sites (Levene homogeneity of variance 

test I: F4,140 = 6.74, P < 0.0001; Is F4,140 = 5.03, P < 0.0008).  An analysis of covariance 

revealed significant difference in the slope of the Bateman gradient (βss) among sites 

(mates*site ANCOVA: F4,135 = 4.23, P < 0.003).  Estimates were highest in the TX site 

and lowest in the VA site (Table 4.5, Fig. 4.2).  Both of these estimates were 

significantly different from the NC, TB and SJ that shared similar estimates of βss.   

 

Female mating behavior  

Females from the NC and VA sample had a high ratio of body depth (BD) to SL, 

whereas intermediate ratios were encountered in the SJ and TX site.  The lowest ratio 

occurred in the TB site (Table 4.6). The slope of the relationship between BD and SL 

was similar in all sites except a significant interaction between BD and SL was 

discernable in the VA sample compared to all other sites (BD*site ANCOVA: F4,288 = 

4.35, P = 0.002).  Modest recapture rates and low probabilities of identity (with respect 

to multi-locus microsatellite genotypes) for field-collected females and female genotypes 

reconstructed from progeny arrays allowed for the partial reconstruction of mating 

frequencies for females among sites (Table 4.6).  The maximum number of mates 

reconstructed for any individual female was three.  The evidence consisted of clutches of 

eggs attributable to the same female genotype that were present in the brood pouches of 
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three distinct males.  Evidence for females mating with at least three males was found in 

both the TB and NC sites (Table 4.6).  The female reproductive contribution (FRC) 

equal to the mean number of embryos contributed by females to pregnant males per 

mating event was significantly greater among TX and TB sites than in the VA site after 

natural log transformation (ANOVA: F = 4,220 = 4.19, P < 0.003).  The SJ and NC sites 

were not statistically different from TX, TB or VA sites with respect to female 

reproductive contribution (Tukey-Kramer post hoc analysis: α = 0.05).   

 

Multiple regression analysis 

Stepwise multiple linear regression analysis was used to predict mating system 

correlates as a function of specific morphological, environmental, and demographic 

phenomena (Tables 4.7 & 4.8).  Because pairwise comparisons found significant 

correlations between mean yearly water temperature and minimum yearly water 

temperature, field temperature and maximum yearly temperature, adult population 

density and male and female densities, and adult population size and male and female 

population size, these variables were collapsed and only mean yearly water temperature, 

field water temperature, adult population density and adult population size were used in 

the final analysis.  Other significant pairwise correlations such as the OSR and seagrass 

biomass were included in these analyses since these factors are not known to causally 

influence one another.   

In all mating system predictors investigated, nearly all variance could be 

explained (R2 > 0.85) using the specific model criteria measured in this study except for 
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Table 4.7.  Stepwise multiple linear regression models of ecological criteria loaded on 

female reproductive contribution (FRC), variance in male mating success (
__
X ms), and the 

variance in male reproductive success (
__
X rs).  Slope (b) and R2 values of the partial 

regression (pR2) and model are listed.  All values for the slope are significant at P < 0.05 
unless otherwise noted. 
 

 FRC 
__
X ms

__
X rs

Criteria b pR2 b pR2 b pR2

Environmental       
Temperature: field 16.76 0.78 -0.11 0.26   
Temperature: mean yearly       
Salinity       
Secchi disk depth       
Seagrass: mean height       
Seagrass: total shoot density       
Seagrass: total biomass 0.39 0.22     

Morphological       
Standard length: males       
Standard length: females       
Body Depth: females       

Demographic       
Sex ratio: adult   0.79 0.03 300.7 0.85 
Sex ratio: operational       
Population density: adult       
Population size: adult   < 0.001 0.71   
Model R2  1.00  1.00  0.85 
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Table 4.8.  Stepwise multiple linear regression models of ecological criteria loaded on 
the three Bateman’s principles.  The opportunity for sexual selection in males (Is), the 
opportunity for selection in males (I) and the male Bateman Gradient (βss) are dependant 
variables.  Slope (b) and R2 values of the partial regression (pR2) and model are listed.  
All values for the slope are significant at P < 0.05. 
 
 

 

 Is I βss

Criteria b pR2 b pR2 b pR2

Environmental       
Temperature: field   -0.08 0.23   
Temperature: mean yearly     0.05 0.81 
Salinity       
Secchi disk depth       
Seagrass: mean height       
Seagrass: total shoot density       
Seagrass: total biomass   0.008 0.76   

Morphological       
Standard length: males       
Standard length: females       
Body Depth: females     0.12 0.17 

Demographic       
Sex ratio: adult       
Sex ratio: operational       
Population density: adult       
Population size: adult       
Model R2  0.00  0.99  0.98 
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estimates of Is for males (Tables 4.7 & 4.8).  The female reproductive contribution is 

highly correlated by field temperatures and, to a lesser extent, total seagrass biomass, 

accounting for 78 and 22 percent of the total variation, respectively.  Male 
__
X ms loads 

highest for adult population size and is negatively correlated with field water 

temperature with a very small but significant influence of adult sex ratio.  Male 
__
X rs was 

influenced only by the adult sex ratio which accounted for 85% of the model variation.  

The three Bateman’s principles, I, Is and βss calculated for males also varied in the 

relative contributions of ecological factors.  No dependent or combination of dependent 

variables accounted for any of the variation in Is.  Male I was highly influenced by field 

temperature, although the highest loading was from Secchi disk depth, negatively 

correlating with turbidity.  Similar to mating success, I loaded highest for a temperature 

estimate, in this case temperature recorded in the field.  Seagrass biomass and male 

population density also contributed significantly to I.  Finally, βss was highly influenced 

by mean yearly temperature and to a morphological character, female body depth.   
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Discussion 

This study documents variation in the genetic mating system of the dusky 

pipefish from several populations throughout their distribution from the continental U.S. 

coast.  Populations of S. floridae differed in adult and operational sex ratios, population 

density and population size and experienced dissimilar environmental regimes such as 

temperature, salinity, turbidity and seagrass habitat.  Both males and females were 

demonstrated to mate multiply in all populations and the female reproductive 

contribution varied among different populations.  Populations also differed in the 

numbers of mates and embryos per pregnancy and male mating system correlates such as 

the mean mating success, mean reproductive success, and the Bateman gradient.  Results 

of this study also provide good evidence that mating system correlates and Bateman’s 

principles are significantly influenced by specific ecological criteria.  Both demographic 

and environmental factors play a major role in shaping the genetic mating system, 

whereas morphological factors such as body size, which are important in regulating 

specific mate choice behaviors in pipefishes (e.g. Berglund et al. 1988), appear not to 

have a major influence on the mating system over a broad geographic scale.   

 

The effect of morphology on the genetic mating system 

As previously stated, morphological differences in males and females between 

populations appear to play a diminished role in shaping the genetic mating system in S. 

floridae.  Previous investigations show a clear link between male body length and the 

number of embryos per brood and female body length to the number of eggs transferred 
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by females (Berglund et al. 1988).  Larger body length in males is also correlated with 

an increase the mean number of mates per male within natural populations of S. floridae 

(Jones & Avise 1997b, CHAPTER III).  Despite differences in mean body length 

between populations, there was no apparent effect on the genetic mating system.  It may 

therefore be concluded that differences in male and female body depth do not explain 

geographic patterns of genetic mating systems, but rather play a more significant role in 

modulating specific mating behaviors within each population.   

Female body depth does appear to play a small but significant a role in the 

relationship between mating and reproductive success as populations with greater than 

average female body depth had higher estimates of the slope of the Bateman gradient.  

This result is likely due to the relative increase in fecundity with female body size found 

in other syngnathids (Berglund et al. 1988) and a significant correlation with female 

body size and body depth (P < 0.03) found in this study.   

 
The effect of abiotic environmental factors on the genetic mating system 

Of the abiotic environmental factors investigated in this study, only mean yearly 

water temperature and water temperature measured in the field at the time of collection 

explained a significant portion of the variation in several mating system estimates 

including the number of eggs transferred by females, male mating success, the 

opportunity for selection and the Bateman gradient.  These results are not surprising 

given that water temperature plays a significant role in the potential reproductive rates of 

adults in congeners (Ahnesjö 1995).  As water temperature increases, the potential 

reproductive rate, or the number of potential offspring produced by either males or 
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females, increases in both sexes of the broad-nosed pipefish, S. typhle (Ahnesjö 1995).  

As evidence of this relationship, populations measured that experienced lower mean 

yearly water temperatures such as the VA and NC sites, had fewer eggs transferred by 

females than sites that experienced warmer mean yearly water temperatures, conforming 

to expectations based on the results from S. typhle.  Given this depression in the number 

of eggs transferred, it would require more females to fill a male with a full complement 

of eggs and therefore affect the number of mates per male and the male genetic mating 

system.   

Mean yearly water temperature may also affect the genetic mating system in 

different populations as warmer water is strongly correlated with the initiation and 

length of breeding season in S. floridae (Brown 1972, Mercer 1973).  Populations of S. 

floridae from the Gulf of Florida have a longer mating season than the Virginia 

population (Brown 1972, Mercer 1973).  Similarly, temperature affects the onset and 

duration of the breeding season in other species of syngnathids (Ahnesjö 1995, Vincent 

et al. 1995, Monteiro et al. 2001, Watanabe & Wantanabe 2001, Power & Attrill 2003) 

and may serve to explain the high influence of this parameter on the mating system.   

Other environmental factors such as salinity and turbidity investigated in this 

study appeared not to have any effect on the genetic mating system of S. floridae.  

Salinity likely plays a more significant role in restricting the species to saline waters as 

this species can tolerate a wide range of salinities but is not found in habitats lower than 

10 ‰ (Dawson 1982).  It was surprising that turbidity did not influence the genetic 

mating system since increased turbidity has recently been linked to a reduction in the 
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strength of sexual selection among several species of fish (Seehausen et al. 1997, 

Järvenpää & Kindström 2004, Candolin et al. 2007).  Because all of these studies have 

focused on manipulating turbidity or chronicling the change in turbidity due to 

anthropomorphic sources, turbidity may be more influential to the genetic mating system 

if disturbed rather than the norm experienced in each population. 

 

The effect of habitat on the genetic mating system 

Many species of pipefishes are attracted to seasonal seagrass beds during the 

breeding season to find mates and likely rely on seasonal seagrass beds for protection 

from predation and to serve as a nursery for young (Vincent et al. 1995, Wantanabe & 

Wantanabe 2001).  Theoretically, the type and density of habitat may be important in 

structuring the genetic mating systems of vertebrates (Weatherhead & Robertson 1997, 

Turner & McCarty 1998).  In this study, there is a positive relationship between mean 

shoot height and both mean yearly temperature (P < 0.003) and salinity (P < 0.03), but 

no correlation with mating system parameters was detected.  Similarly, total shoot 

density was not positively correlated with any genetic mating system criteria.  However, 

there was a significant effect of total aboveground seagrass biomass on both the 

opportunity for selection and the female reproductive contribution.  This result is 

interesting since it is not clear how a causal relationship between the genetic mating 

system and seagrass biomass could exist and thus may be a spurious result.  For 

example, seagrass biomass is correlated with species of seagrass, levels of ambient light, 

nutrient availability and grazing levels (Estes & Peterson 2000, Heck & Valentine 2006), 
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none of which were investigated in this study.  Seagrass biomass, on the other hand, may 

influence the genetic mating system by governing species interactions because this 

measure was significantly correlated with two demographic factors; the operational sex 

ratio (P < 0.007) and the total adult population size (P < 0.05).   

 

Demographic influences on the genetic mating system 

Adult sex ratios explained a large portion of the variation in male mating and 

reproductive success experienced between populations.  This result is driven, in part by 

the high mean male mating success experienced by the two populations that had a male-

biased sex ratio (VA and TX).  This result is interesting because these two populations 

had large differences in the number of mates per pregnancy and body length of males.  

The high number of unmated males in the Texas population and the low number of 

unmated males in the VA population cast a large influence on the mating success of 

males and may help to explain the similarities between sites in terms of the ASR and 

hence the male mating success.    

Adult population size was a major influence on the mean mating success between 

populations.  A larger population size may result in more mate encounters for 

individuals and may increase the chance of finding suitable mates.  This result should be 

viewed with caution however, since adult population size is strongly correlated with 

mean yearly temperature and mean mating success may be directly related to 

temperature-dependant female potential reproductive rates encountered in other pipefish 

species (Ahnesjö 1995). 
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The fact that the operational sex ratio did not explain a significant amount of the 

variation in any mating system parameter in this study is remarkable, given the emphasis 

placed on the operational sex ratio as the prime mating system determinant (i.e., 

Kvarnemo & Ahnesjö 1996).  However, because the operational sex ratio can fluctuate 

over the course of the mating period, estimates taken at the time of collection may not 

represent the ecological conditions experienced by individuals during mating.  

Therefore, the influence of the operational sex ratio cannot be definitively ruled out as a 

major influence on the genetic mating system (see CHAPTER V).   

 

Conclusions 

This study is the first to attempt to link genetic mating system correlates to 

specific ecological variables in a systematic manner on a broad geographic scale.  

Although ecological variables selected in this model are specific to this particular 

system, it highlights the importance of investigating ecological factors in a systematic 

and comprehensive fashion to make accurate predictions concerning mating system 

evolution.  Assessment of the multiple criteria such as demographic and environmental 

factors that likely play an important role of shaping and defining the genetic mating 

system is thus critical to our understanding of how genetic mating systems are organized 

and evolve.  
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CHAPTER V 

TEMPORAL VARIATION IN THE MATING SYSTEM OF THE  

BROAD-NOSED PIPEFISH, SYNGNATHUS TYPHLE 

 
Introduction 

 
A fundamental determinant of mating system organization is the availability and 

spatial distribution of mates (Emlen & Oring 1977, Shuster & Wade 2003).  In species 

with conventional sex roles, males compete with one another for access to females.  The 

degree to which females are spatially distributed may affect the ability of a male to 

monopolize mates.  For instance, if females are crowded around a particular resource, 

the ability of one male to monopolize a larger proportion of females increases because of 

his close proximity to several females (Emlen & Oring 1977).  In addition to spatial 

dispersion of females, temporal patterns of female receptivity may also affect a male’s 

opportunity to monopolize access to mates (Emlen & Oring 1977).  If all females 

become receptive at one particular time, then a male’s ability to monopolize many 

females simultaneously is reduced.  Hence, the spatial dispersion of mates and the 

degree of mating synchrony play important roles in determining the intensity of sexual 

selection (Shuster & Wade 2003).   

In light of the temporal and spatial dispersions of available mates, one 

particularly enlightening mating system variable is the operational sex ratio (OSR, 

Emlen & Oring 1977).  The OSR is the ratio of potentially breeding males to all 

potentially breeding adults in the population (i.e., it is the proportion of receptive adults 

that are male).  Because the proportion of potential breeders of each sex determines the 
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OSR, it is related to the relative variances in mating success of the two sexes.  

Departures from an OSR of 0.5 signify a sex-biased situation in which competition for 

mates is expected to be stronger in the more abundant sex, thus increasing the 

environmental potential for polygamy (Emlen & Oring 1977, Kvarnemo & Ahnesjö 

1996, Shuster & Wade 2003).  Of course, increased competition should favor the 

evolution of traits that increase the chances of their bearers to find and monopolize 

mates (Shuster & Wade 2003).  

Many species undergo dramatic shifts in the OSR during a breeding season.  

Examples include such species as bushcrickets (Simmons 1992), fishes (Vincent et al. 

1994, Kvarnemo 1996, Oliveira et al. 1999, Forsgren et al. 2004), anurans (Lodé et al. 

2005), and birds (Johnson et al. 2002).  Competition for resources, such as high quality 

food, territories, nesting sites and mates, can dramatically change the OSR for a 

particular sex during the course of the breeding season (Simmons 1992, Vincent et al. 

1995, Forsgren et al. 2004).  However, it is unclear what effect a fluctuating OSR may 

have on the genetic mating system, fitness components of individuals, or selection on 

particular sexually selected traits.  Thus far, insufficient empirical work has been done to 

allow accurate predictions of the outcome of such a scenario.  Therefore the detailed 

genetic study of natural shifts in the OSR may be a fruitful approach to the development 

of a more complete theory of sexual selection.   

The purpose of this study is to investigate the extent to which a changing OSR 

influences the genetic mating system in the broad-nosed pipefish, Syngnathus typhle.  

The questions posed during the study were: (1) does an increasingly female-biased OSR 
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affect the genetic mating system? And (2) do measures of the genetic mating system 

correctly predict and respond to changes in hypothesized mate competition as measured 

by the OSR?   

The broad-nosed pipefish is well suited to this type of inquiry because the OSR 

changes substantially during the course of a relatively short breeding season (Vincent et 

al. 1994, Vincent et al. 1995).  Both male and female S. typhle invade seagrass beds in 

early May and commence mating when water temperatures reach approximately 16°C 

(Vincent et al. 1994, Vincent et al. 1995, Ahnesjö 1995). Upon the arrival of the fish into 

the shallow seagrass, at the commencement of mating, the OSR is close to 0.5 (i.e., equal 

number of receptive males and females; Berglund et al. 1986, Vincent et al. 1994).  

During mating, females transfer unfertilized eggs to a pouch on the male’s ventral 

surface and the male fertilizes the eggs within the pouch.  Hence, male S. typhle provide 

all parental care to embryos, and the “pregnant” males are unable to mate until they give 

birth to their progeny.  A typical male receives eggs from multiple females per 

pregnancy, and the process of filling the brood pouch occurs over a time period of a few 

days at most (Berlund et al. 1988).  Once males receive a full compliment of eggs, the 

brood pouch seals.  Males give birth four to six weeks later, depending on water 

temperature (Berglund et al. 1989, Ahnesjö 1995).  Because the receptivity of males is 

constrained by the length of male pregnancy, an excess of females appears and grows as 

the breeding season progresses, resulting in an increase in female competition for males 

and a decrease in the operational sex ratio (Vincent et al. 1994).  The OSR is 

consequently female-biased and female-female competition for mates is predicted to 
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increase (Vincent et al. 1994; Vincent et al. 1995; Kvarnemo & Ahnesjö 1996, Shuster 

& Wade 2003).  Because the length of pregnancy varies among males, they become 

receptive after their first pregnancy in an asynchronous fashion (Vincent et al. 1994).  

Consequently, we would predict that this increase in competition to mate with males 

among females likely has a dramatic affect on the direction and intensity of sexual 

selection as the mating season progresses.   

 

Materials and Methods 

Sample collection  

The study was conducted on the west coast of Sweden during the summers of 

2005 and 2006.  Five sites (Table 5.1, Fig. 5.1) were visited prior to and during the 

breeding season in the summer of 2005 and two sites were revisited in 2006.  During 

each visit, adult S. typhle were collected from shallow (1-6m) eelgrass (Zostera marina) 

beds by using a beam trawl with a 2mm mesh towed from a motorized boat.  Each site 

was trawled for approximately two hours (8-10 trawls) during each visit.  Once caught, 

males and females were separated into buckets containing seawater.  Each individual 

was measured for standard length to the nearest mm (SL; tip of rostrum to the base of the 

caudal peduncle).  Additionally, males were assessed for pregnancy status including 

presence of eggs, proportion of brood pouch filled with eggs and stage of development 

of embryos.  After all measurements were taken individuals were released back to their 

corresponding collection sites.   
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Table 5.1.  GPS coordinates for Swedish sampling sites.  Letters correspond to locations 
in Fig. 5.1.   
 

 Site Coordinates 
A Trinnhålet N58º14.441’, E11º22.849’ 
B New Galveston N58º14.314’, E11º23.079’ 
C Bökevik N58º14.926’, E11º26.709’ 
D Kvarnbukten N58º15.627’, E11º28.381’ 
E Tjuvsund N58º15.820’, E11º29.753’ 
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Figure 5.1. Collection sites on the Swedish west coast. A = Trinnhålet, B = New 
Galveston, C = Bökevik, D = Kvarnbukten, E = Tjuvsund.   
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Adult sex ratios (ASR) and operational sex ratios (OSR) were calculated for all 

site visits.  The ASR is the number of adult males divided by the total number of adults 

collected and the OSR is equivalent to the ratio of receptive males to the total number of 

receptive adults.  Because males may take several days to fill their brood pouches, 

receptive males included those males that could still accept eggs in their brood pouch as 

evidenced by space in the top of the brood pouch and an open (non-sealed) brood pouch 

(Vincent et al. 1994).  The ASR and OSR were tested at each sampling time for 

departures from equality with a χ2 test.   

The Trinnhålet site was chosen for an intensive capture-mark-recapture study to 

estimate population size, to gauge the progression of the breeding cycle and to measure 

physical attributes of potential mates during the 2005 breeding season.  The site was 

visited twice a week and adult males and females were collected and measured.  In 

addition, a small fin clip from the caudal fin was taken from each adult and preserved in 

95% EtOH.  Recaptured individuals were remeasured and fin clipped before returning 

them to the site.  Population size based on fin clips was calculated using the Lincoln-

Peterson capture-mark-recapture method (Pollock et al. 1990).   

Prior to the birth of the earliest broods of the first pregnancy in 2005, the 

Trinnhålet and New Galveston sites were visited on several days (6/16-6/26) to harvest 

pregnant males for parentage analysis and to estimate population size.  Similarly, the 

Trinnhålet, New Galveston and Tjuvsund sites were visited during the second pregnancy 

of 2005 (7/16-7/28) and Tjuvsund and Trinnhålet sites were revisited during the first 

pregnancy in 2006 (6/15-6/19).  During these visits all adults were measured and fin 

 



109 
 
 

clipped, and all pregnant males were harvested.  Pregnant males were transported to 

Kristineberg Marine Research Center and sacrificed by severing their spinal column 

anterior to the operculum.  Whole fish, including the embryos, were preserved in 95% 

ethyl alcohol for parental analysis.  Fin clips taken from all adults (males and females) 

during these collection episodes were genotyped and the genotypes were used to match 

sampled adult females to the genotypes of the mates of pregnant males that we 

constructed using the genotypes of embryos.  These data were used to estimate female 

population size using the modified Lincoln-Peterson capture-mark-recapture method for 

parentage studies (Jones & Avise 1997b).  Marks for pregnant males removed for 

parentage analysis that were marked earlier in the study were deducted from the total 

number of marks for subsequent sampling times.   

 

Genetic analysis 

A Gentra PureGene™ cell and tissue kit was used to extract DNA from adult fin 

tissue.  Each adult was genotyped using four polymorphic microsatellite loci (Typh04, 

Typh12, Typh16, Typh18) previously employed in S. typhle (Jones et al. 1999).  Brood 

pouches of pregnant males were dissected, and all developed embryos were plucked 

from the male brood pouch with flame-sterilized forceps after noting the relative 

position of each embryo and any abnormal or undeveloped embryos.  Developed 

embryos were then digested using a 5% Chelex/Protenase K digestion in a 96 well plate 

(Miller & Kapuschinski 1996).  Three microsatellite loci, Typh04, Typh16 and Typh18 

were used to genotype all embryos and to assign parentage to offspring (Jones et al. 
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1999).  Every fourth embryo was amplified using PCR conditions outlined by Jones et 

al. (1999).  Maternal genotypes were reconstructed following the protocols outlined in 

the Methods section of CHAPTER III.  When a reconstructed maternal genotype was 

only supported in one embryo, additional embryos surrounding that physical location in 

the brood pouch were genotyped.  All microsatellite fragment analyses were preformed 

on an ABI Prism® 3730 DNA Analyzer and resulting fragments were scored using ABI 

Prism® GeneMapper™ software (Applied Biosystems, Foster City, CA).   

 

Quantification of the genetic mating system by Bateman’s principles 

Several measures of the genetic mating system, including the mean mating 

success (
__
X ms), mean reproductive success (

__

X rs), the index for resource monopolization 

(Qms, Qrs), the Morisita index (Iδ-ms, Iδ-rs), the opportunity for selection (I), the 

opportunity for sexual selection (Is), and the Bateman gradient (βss), were calculated for 

males following formulas presented in the CHAPTER I and the Methods section of 

CHAPTER III.   

 

Statistical analysis 

All statistics were analyzed first for normality and equal variances.  If these 

assumptions were not met, data were transformed or if no transformation satisfied a 

priori assumptions, appropriate non-parametric tests were applied.  Statistical tests as 

well as any transformations are indicated throughout the text.  All statistical analyses 

were performed with JMP IN™ statistical software package version 5.1 (SAS Institute  

 



111 
 
 

Inc. Cary NC).  Means are reported throughout the text ± the standard error of the mean 

(± SE).   

Results 

The ASR and OSR 

In all sites visited during the 2005 and 2006 field seasons, the ASR indicated 

either equal numbers of males and females or a significant excess of males (Table 5.2 & 

5.3, Fig. 5.2).  The Tjuvsund site was found to have a highly significant male-biased 

ASR in both years as few females were encountered during these times.  The OSR, on 

the other hand, underwent a predictable decrease toward an excess of females during the 

2005 sampling year, mirroring the pattern previously recorded for this species (Vincent 

et al. 1995).  The OSR reached an extreme female-bias during the 1st pregnancy except 

in the Tjuvsund site where the OSR was found to fluctuate from male-biased to female-

biased on different sampling dates (Tables 5.2 & 5.3, Fig. 5.3).  As males gave birth and 

became available for additional matings, the extreme excess of females disappeared (Fig. 

5.3). 

 

Mark-recapture data 

Capture-mark-recapture data from the Trinnhålet focal site showed a relatively 

small adult population size when compared to population size values in Tjuvsund during 

2005 and 2006 (Fig. 5.2 & 5.3).  The New Galveston site yielded a similar adult 

population size to Trinnhålet (Fig. 5.2 & 5.3).  The large increase in the  

population size in Trinnhålet after the first pregnancy (7/3,7/8) is likely an overestimate 
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Table 5.2.  Data from 2005 and 2006 sites.  Sample sizes of total adults (n), males (m), 
non-pregnant males (m’) and females (f) are listed and adult sex ratios (ASR) and 
operational sex ratios (OSR) are calculated for each sampling time.  Population size is 
estimated in all sites except Bökevik and Kvarnbukten using the Peterson-Lincoln 
capture-mark-recapture method.  Asterix denote significant departures from equality (χ2 
test P value *< 0.05, ** < 0.01, *** < 0.001). 

 

  Sample Size ASR  OSR   
Date  n m m’  f m/n m’(f+m’) nm nr

Population size 
(± 95% CI) 

2005         
Bökevik         

5/13  46 24 21 22 0.52 0.49 --- --- --- 
5/17  24 13 10 11 0.54 0.48 --- --- --- 
5/19  22 15 14 7 0.68 0.67 --- --- --- 
5/30  107 59 29 48 0.55* 0.38 --- --- --- 
6/01  24 15 0 9 0.63* 0.00 --- --- --- 

         
Kvarnbukten       

5/12  35 18 18 17 0.51 0.51 --- --- --- 
5/14  52 35 35 17 0.67** 0.67** --- --- --- 
6/02  37 21 2 16 0.57 0.11* --- --- --- 
6/04  19 11 1 8 0.58 0.11** --- --- --- 
6/28  17 13 3 4 0.76* 0.43 --- --- --- 
7/11  21 13 1 8 0.62 0.11** --- --- --- 

         
New Galveston       

6/17  26 12 0 14 0.46 0.00** --- --- --- 
6/18  31 16 0 15 0.52 0.00** --- --- --- 
7/25  18 16 6 2 0.89* 0.75 14 --- --- 
7/27  25 15 8 10 0.60 0.44 --- 1 350 (153-547) 

              
Tjuvsund          

7/20  46 31 13 15 0.67** 0.46 34 --- --- 
7/21  43 22 9 21 0.51 0.30* 25 0 --- 
7/22  21 17 11 4 0.81* 0.73* 13 2 620 (229 –1010) 
7/24  36 27 16 9 0.75** 0.64 --- 2 1296 (468-2124) 

              
2006              

Trinnhålet            
6/19  32 18 1 14 0.56  0.07* 18 --- --- 
6/20  62 37 2 25 0.60  0.07*** --- 10 112 (75-148) 

          
Tjuvsund        

6/15  138 120 34 18 0.87***  0.65* 118 --- --- 
6/16  99 89 24 10 0.90***  0.71 --- 3 3894 (1382-6406) 
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Table 5.3.  Detailed study of Trinnhålet Bay 2005.  Sample sizes of total adults (n), 
males (m), non-pregnant males (m’) and females (f) are listed and adult sex ratios (ASR) 
and operational sex ratios (OSR) are calculated for each sampling time.  Each adult was 
finclipped when captured and the total numbers of individuals marked (nm) and 
recaptured (nr) are listed.  Dates in bold represent times when pregnant males were 
harvested from the sites.  Marked pregnant males that were removed from the site are 
subtracted from the total of marked individuals (data not shown).  Population size is 
estimated using the Peterson-Lincoln capture-mark-recapture method.  Asterix denote 
significant departures from equality (χ2 test P value* < 0.05, ** < 0.01, *** < 0.001). 
 
 
 

  Sample Size ASR  OSR  
Date  n  m  m’  f m/n  m’(f+m’) nm nr

Population size  
(± 95% CI) 

5/12  39  23  20  16 0.59  0.56 19 --- --- 
5/16  29  15  14  14 0.52  0.50 40 1 551 (240-862) 
5/20  17  13  9  4 0.76  0.69 54 3 227 (91-362) 
5/24  24  15  7  9 0.63  0.44 70 8 162 (93-231) 
6/03  27  16  5  11 0.59  0.31 84 11 185 (116-253) 
6/12  47  26  0  21 0.55  0.00*** 110 16 247 (167-326) 
6/16  18  6  0  12 0.33  0.00** 113 9 220 (138-302) 
6/17  29  12  1  17 0.41  0.06** 123 14 234 (160-308) 
6/21  8  2  0  6 0.25  0.00* 125 3 328 (149-507) 
6/26  11  8  1  3 0.73  0.25 127 2 250 (121-379) 
7/03  10  9  5  1 0.90  0.83 136 1 1397 (610-2184)
7/08  7  4  3  3 0.57  0.50 142 1 952 (419-1485) 
7/12  5  4  3  1 0.80  0.75 145 2 355 (159-551) 
7/18  10  5  1  5 0.50  0.17 148 6 241 (148-335) 
7/19  5  3  0  2 0.60  0.00 146 3 246 (135-358) 
7/21  6  4  2  2 0.67  0.50 149 3 292 (146-438) 
7/28  6  4  2  2 0.67  0.50 --- 4 223 (135-312) 

          Total 149 87 436 (390-484) 
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Figure 5.2.  Adult sex ratio (number of males/divided by total number of adults) 
recorded for the 2005 sampling locals.  The line at 0.5 denotes equal numbers of males 
and females captured.  
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Figure 5.3.  The operational sex ratio (proportion of males available for mating divided 
by the total number of adults available for mating) for the 2005 sampling locals.  A solid 
line denotes an equal OSR at 0.5.  Competition for males among females should be 
highest when the OSR is lowest.  
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since this increase coincided with the removal of marked males from the site and may 

represent new migration into the site.  Genetic analysis of fin clips revealed multiple 

recaptures of the same adults in the in all sites and years.  Some individuals were 

recaptured up to five times in the Trinnhålet site during the 2005 intensive sampling.  

Genetic analysis failed to record migration between sites and no individuals were 

recaptured in 2006 that were fin clipped in 2005. 

 

Analysis of pregnant males 

 The pregnant males subjected to parentage analysis were analyzed with respect to 

the number of mates per pregnancy, the number of embryos per pregnancy and body 

length (Table 5.4).  All sites and times were used except the collections made in New 

Galveston and Trinnhålet during the 2nd pregnancy due to low numbers of pregnant 

males collected during these times (Table 5.4).  There were no significant differences 

between sites in the number of mates per mated males (ANOVA F1,129 = 2.39, P = 

0.054) and the number of embryos per mated male among sites and times (ANOVA 

F1,129 = 1.44, P = 0.23).  A significant difference in body length (SL) was encountered 

between sites (Kruskal-Wallace Rank Sums Test: χ2
1,129 = 24.30, P < 0.0001).  Captured 

pregnant males were significantly larger in the Trinnhålet site in both years than in the 

Tjuvsund site in 2005. Pregnant males also were larger in the Trinnhålet site in 2005 

than in the Tjuvsund site in 2006.  This difference in male standard length did not alter 

the relationship between number of embryos and standard length (Site*SL ANCOVA: 

F1,124 = 0.69, P = 0.60), and all males had a similar positive relationship between  

 



117 
 
 

Table 5.4.  Summary statistics for pregnant males analyzed for parentage.  Site, date and 
time (1 = 1st pregnancy, 2 = 2nd pregnancy), number of males analyzed (nm), number of 
mates (mates), number of embryos (embryos) and standard length (SL) are listed.  
Asterix denote sites/times not included in final analyses due to small sampling sizes (n) 
encountered during these times.    

 

Year Site Date Time nm

Mates 
(± SE) 

Embryos 
(± SE) 

SL 
(mm ± SE) 

2005 Trinnhålet  6/16-6/26 1 27 3.44 ± 0.27  73.4 ± 5.3 194.0 ± 5.2 
New Galveston 6/17-6/18 1 20 3.80 ± 0.32 69.1 ± 6.1 177.9 ± 6.1 

        
 Trinnhålet* 7/18-7/28 2 6 2.33 ± 0.59 108.3 ± 11.2 201.0 ± 11.1 
 New Galveston* 7/25-7/27 2 2 3.00 ± 1.01 78.5 ± 19.4 153.5 ± 19.1 
 Tjuvsund 7/20-7/24 2 27 3.33 ± 0.28 61.9 ± 5.3 157.6 ± 5.2 
        
2006 Trinnhålet 6/19-6/20 1 30 3.87 ± 0.26 79.0 ± 5.0 178.5 ± 4.9 
 Tjuvsund 6/15-6/16 1 30 4.40 ± 0.26 71.6 ± 5.0 167.4 ± 4.9 
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standard length and number of embryos (Site ANCOVA: F1,128 = 0.91, P = 0.46; SL 

ANCOVA: F1,128 = 11.69, P = 0.0008).  However significant differences in the number 

of mates as a function of SL was detected among sites (site ANCOVA: F1,128 = 3.59, P = 

0.0083) and this relastionship was positive (SL ANCOVA: F1,128 = 14.41, P = 0.0002).  

The Trinnhålet site had significantly more mates per unit of SL than all other sites and 

the 2005 Tjuvsund site had significantly fewer mates per unit of SL than all other sites 

(SL ANOVA F4,128 = 3.59, P = 0.0083).  The slope of the relationship between number 

of mates and standard length was not significantly different between sites (SL*Site 

ANCOVA: F1,124 = 1.10, P = 0.36).   

 

Quantification of the male genetic mating system 

Despite similarities among the number of mates and embryos per mated male, 

significant differences in mating system estimates were apparent.  Mean male mating 

success (
__
X ms) was significantly lower in the 2nd pregnancy in the Tjuvsund site than all 

the 1st pregnancy collections except for the 2006 Trinnhålet collection (ANOVA F4,153 = 

3.76, P = 0.006; Tukey-Kramer post-hoc test, α = 0.05; Table 5.5).  This low estimate of 

__
X ms in the 2nd pregnancy collection is due to the high proportion of unmated males 

encountered during the sampling period.  Estimates of Is, Qms, and Iδ-ms were highest for 

the 2005 2nd pregnancy at Tjuvsund relative to all other samples, although estimates of Is 

were not significantly different among sites or sampling times (Levene Homogeneity of 

Variance Test: F4, 153 = 1.72, P = 0.1488).   
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In a similar fashion, estimates of
__
X rs were lowest in the 2nd pregnancy sample for 

Tjuvsund during 2005 (F4,153 = 5.27, P = 0.0005) and significantly different from all 

other sites except the 2006 Trinnhålet collection (Tukey-Kramer post-hoc test, α = 0.05).  

This difference was mirrored in the standardized variance in reproductive success, I 

(shown here as the relative fitness of reproductive success), showing a significant 

increase in the variance in 2005 Tjuvsund and 2006 Trinnhålet site (Levene 

Homogeneity of Variance Test: F4, 153 = 6.99, P < 0.0001, Table 5.5).  Estimates of Qrs 

and Iδ-rs were also highest for the 2005 Tjuvsund sample (Table 5.5).   

The relationship between mating and reproductive success as measured by the 

Bateman gradient (βss) was significantly different among sites and sampling times 

(Site*Mates ANCOVA: F9,157 = 7.73, P < 0.0001, Fig. 5.4).  The 2nd pregnancy had a 

significantly larger estimate of βss than all 1st pregnancy sites surveyed (Table 5.5, Fig. 

5.4).  The smallest estimate of βss was recorded for the 2006 Trinnhålet site during 2006.  

This estimate was significantly smaller than the Trinnhålet 2005 collection and both 

Tjuvsund site collections but not the New Galveston site collection.   

 

Female mating behavior 

 Females displayed morphological differences among sites during the 2005 and 

2006 sampling years.  The largest females were encountered in the Trinnhålet and New 

Galveston sites during 2005 (Table 5.6).  These females were of similar size to those 

collected from Trinnhålet in 2006 but were larger than females encountered in both 

 



 

Table 5.5.  Quantitative characterization of mating system estimates for the 2005-2006 collection sites.   Shown estimates are 

mean mating success (
__
X ms), the variance in mating success (σms), the opportunity for sexual selection (Is), the index of 

resource monopolization for mating success (Qms), the Morisita index for mating success (Iδ-ms), mean reproductive success 

(
__
X rs), the variance in reproductive success (σms), the opportunity for selection (I), the index of resource monopolization for 

reproductive success (Qrs), the Morisita index for reproductive success (Iδ-rs) and the Bateman gradient (βss ± SE).   

 

   Mating Success  Reproductive Success   

Date Site Time 
__
X ms σms Is Qms Iδ-ms

 __
X rs σrs I Qrs Iδ-rs  βss (± SE) 

2005 Trinnhålet  1 3.32 ± 0.35          2.3002 0.21 -0.0047 0.91 70.8 ± 6.4 1217.1 0.24 0.0083 1.22  0.22 (0.05)
 New Galveston 1 3.80 ± 0.41         

  
          

 
         

           

1.9579
 

0.14 
 

-0.0058
 

1.10
 

69.1 ± 7.6 
 

903.0 0.19
 

0.0059
 

1.44
 

 0.18 (0.06) 
      

 Tjuvsund 2 2.25 ± 0.29 3.1154
 

0.62 
 

0.0154
 

1.17
 

41.8 ± 5.4 
 

1747.2
 

0.69
 

0.0500
 

1.65
 

 0.38 (0.05)
      

2006 Trinnhålet 1 3.62 ± 0.33 4.5645 0.35 0.0026 1.06 74.1 ± 6.0 912.3 0.17 0.0041 1.15  0.08 (0.03)
Tjuvsund 1 3.47 ± 0.30 4.5804 0.38 0.0032 0.88 56.5 ± 5.5 1492.9 0.47 0.0115 1.17  0.23 (0.04)
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Figure 5.4.  Relationship between reproductive success and mating success for males 
from different sites and sampling times.  Bateman gradients (βss) are shown as colored 
lines corresponding to the symbol color for each site/time.  Reproductive success is 
shown as relative fitness, i.e., number of offspring produced divided by the mean 
number of offspring produced.  

 



 

Table 5.6.  Summary statistics for females caught during the 2005 and 2006 sampling times.  Number of unique females 
caught (f), standard length (SL, mm ± SE), number of unique female reconstructed genotypes (fc), number of reconstructed 
female genotypes matched to individuals caught in the field (fr), percent recaptured (%r), probability of identity for females 
caught (PID-f), the probability of identity for reconstructed genotypes (PID-fr) and the female population size (± 95% CI) 
calculated using the modified Lincoln-Peterson method for genetic mark-recapture (Jones et al. 1997b) are listed.   

 
 
 
 
 
 
 
 

Date 
Site Time f 

SL  
(mm ± SE) fc fr %r PID-f PID-fr

Female population 
size (± 95% CI) 

 

2005 Trinnhålet 1 90 209.7 ± 5.9 77 23 26 4.6 X 10-7 3.2 X 10-7 295 (212-378)  
 New Galveston 

 
1 29 213.4 ± 6.4 

 
73 

 
0 0 

 
3.1 X 10-6 1.2 X 10-4 ---  

    

   

    
 Tjuvsund 2 47 183.3 ± 5.8 

 
84 

 
6 13 

 
1.5 X 10-6 3.2 X 10-7 582 (224-939) 

 
 

     
2006 Trinnhålet 1 37 190.2 ± 5.8 85 17 46 8.3 X 10-6 2.9 X 10-7 181 (128-233)  
 Tjuvsund 1 28 159.4 ± 6.5 128 0 0 7.5 X 10-7 3.8 X 10-7 ---  
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Tjuvsund collections, where females were significantly smaller on average (ANOVA 

F4,156 11.90, P < 0.0001, Kruskal-Wallace post hoc test α = 0.05).   

 Reconstructed female genotypes had low probabilities of identity (Table 5.6) and 

were therefore matched to females caught in the field with high certainty.  A high 

proportion of females fin clips with identical three locus genotypes were encountered in 

the Trinnhålet site in both years (Table 5.6), indicating a high rate of recapture of 

females.  As a result of this high recapture rate, female population size calculated with 

the modified Lincoln-Peterson capture-mark-recapture method (Jones & Avise 1997b) 

was small compared to that of the Tjuvsund 2005 sample.  Estimates of female 

population size based on genetic parentage data for all samples agreed with physical 

capture-mark-recapture population sizes taken during these times (Tables 5.2, 5.3 & 

5.6).  In the New Galveston and Tjuvsund 2006 collections, no female genotypes 

reconstructed from progeny arrays were matched to actual fin-clipped females, so female 

population size could not be estimated for these samples.   

In all samples, females mated with multiple males and samples with high 

recapture rates revealed high levels of polyandry (Table 5.7).  The number of eggs 

transferred per female to mated males, also known as the female reproductive 

contribution (FRC), was highest among the Trinnhålet and New Galveston 2005 

collections and lowest in the Tjuvsund 2006 site (Table 5.6).  However, the FRC 

estimates were not significantly different between sites (ANOVA F4,502 = 2.30, P = 

0.0578).  
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Table 5.7.  Summary statistics for female mating behavior.  Number of mates for 
individual females constructed from recaptured females, number of identical female 
reconstructed genotypes matching reconstructed genotypes (in parentheses), and the 
mean female reproductive contribution per mated male (FRC ± SE) are listed.  
 

 
 
 
 
 
 
 
 
 
 

   Mates 
Date Site Time 1 2 3 4 5 

FRC 
(± SE) 

2005 Trinnhålet 1 14 6(2) 3(1)   21.3 ± 1.6 
 New Galveston 1  (3)    18.2 ± 1.6 
         
 Tjuvsund 2 5 1(3) 1   18.7 ± 1.9 
         

2006 Trinnhålet 1 10 2(8) 2(3) 2 1 21.1 ± 1.6 
 Tjuvsund 1  (6)    16.1 ± 1.2 
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 Figure 5.5.  Relationship of the OSR at the time of collection with various male mating system estimates: 

a) mean mating success (
__
X ms), b) mean reproductive success (

__
X rs), c) variance in mating success (σ2

ms), 
d) variance in reproductive success (σ2

rs), e) the opportunity for sexual selection (Is), f) the opportunity for 
selection (I), g) the index for resource monopolization for mating success (Qms), h) the index for resource 
monopolization for reproductive success (Qrs), i) the Morisita index for mating success (Iδ-ms), j) the 
Morisita index for reproductive success (Iδ-rs) and k) the Bateman gradient (βss).  
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Figure 5.5 continued.

 



 127

Dependence of genetic mating system correlates on the OSR 

 The natural variation in the genetic mating system between sites and sampling 

times allowed for the exploration of the relationship between OSR and estimates of the 

male genetic mating system.  All estimates of the male genetic mating system were not 

significantly correlated with OSR except the variance in reproductive success (σ2
rs) 

which was significantly correlated with OSR (F1,4 = 10.65, 4 d.f., P < 0.05).  Estimates 

of the mean mating and reproductive success decreased with an increasing estimate of 

the OSR during time of collection.  Variance, variance-based estimates (I, Is, βss) and the 

index for resource monopolization (Qms, Qrs) increased with increasing OSR whereas the 

Morisita index (Iδ-ms, Iδ-rs) appeared to have no relationship with the OSR.   

 

Discussion 

 This study is the first to document temporal variation in the genetic mating 

system among natural populations of the pipefish S. typhle.  A significant increase in the 

male mating and reproductive success and the estimates of the three Bateman’s 

principles between the first and second pregnancy in the Tjuvsund site demonstrate that 

male S. typhle experience different sexual selection regimes during the course of the 

summer breeding season.  This study also is the first to show a positive relationship 

between the operational sex ratio and Bateman’s principles in natural populations 

thereby demonstrating the flexibility and usefulness of their application to natural 

systems.   
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A major goal of this study was to document the effects of a changing OSR on the 

genetic mating system of S. typhle.  The expectation was that an increase in the OSR 

towards female-bias during the second pregnancy would produce stronger female-female 

competition and affect the number of mates and embryos of males similar to the 

measured response in mesocosm experiments that artificially manipulated sex ratios 

(Jones et al. 1999, Jones et al. 2004, Jones et al. 2005, Mills et al. 2007).  In these 

experiments, individuals placed in equal sex ratios experienced lower sexual selection 

and these treatment subsequently had lower estimates of the opportunity for selection, 

the opportunity for sexual selection and the Bateman gradient.  Skewed sex ratio 

treatments, on the other hand, resulted in systematic increases in variance-based 

measurements of the genetic mating system of the non-limiting sex while having a 

minimal effect on these measures in the limiting sex (Jones et al. 1999, Jones et al. 2004, 

Jones et al. 2005, Mills et al. 2007).  In the case for S. typhle, males limit reproduction of 

females by only being available to mate during the initiation of the mating season and 

after giving birth.  Therefore one would expect that highly skewed OSRs would affect 

females the greatest and males to a lesser extent.  In this study there is an increase in the 

standardized variance in mating and reproductive success between the first and second 

pregnancy in the Tjuvsund site.  This surprising result suggests that the males experience 

higher sexual selection in the second time period contrary to expectations and that the 

male genetic mating system is more flexible in S. typhle than previously hypothesized.   

Despite differences in the genetic mating system estimates, neither the number of 

mates nor the number of embryos per mated male differed between the two samples 
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from Tjuvsund.  One explanation why we might not see a difference between the first 

and second pregnancy is that the Tjuvsund site had a male-biased adult sex ratio.  Males 

may therefore experience an OSR closer to 0.5 during the second pregnancy than other 

populations might experience.  Similarly, female behavior in terms of the female 

reproductive contribution does not differ in samples with variable OSRs and the mean 

values of female reproductive contribution appear to be primarily a function of female 

body length.  We know from behavioral studies that larger females contribute more eggs 

per copulation than do smaller females (Berglund et al. 1986) and that both 

morphological and behavioral traits may vary between sites separated by as little as 4 km 

for this species (Robinson-Wolrath 2006).  Given the significant difference in adult 

female body size between sites, this may help to explain variation in female reproductive 

contribution between sites and times.  It is difficult to disentangle the effect of the OSR 

on mate competition based on this study alone and further investigation of this 

relationship is clearly warranted.   

A second goal of this study was to explore the relationship between the OSR and 

different methods for estimating the genetic mating system.  Despite similarities in the 

number of mates and number of embryos per mated male at each sampling time, 

estimates of the genetic mating system showed significant differences between sites and 

times.  All measures of the genetic mating system consistently showed the greatest 

estimates for mating and reproductive success during the 2nd pregnancy of the Tjuvsund 

site in 2005, suggesting that sexual selection acts most strongly on males during the 

second mating period.  However caution should be exercised with this result since 
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perceived differences in the genetic mating system are a direct result of the inclusion of 

non-mated males in the estimate.  In S. typhle, the pregnancy in males can last between 

4-6 weeks (Berglund et al. 1989).  Because of the length of the pregnancy and 

fluctuations in the OSR, individuals may experience a different OSR at the time of 

sampling than that experienced at the start of the mating period.  As a result of this lag in 

OSR, a temporal disconnect between the OSR at the time of collection and the time prior 

to the first pregnancy may exist in this species.  Therefore estimates of the genetic 

mating system that rely on the estimate of unmated individuals may be vulnerable to 

errors based on temporal sampling of mates as unmated individuals may have a 

disproportionate affect on the variance in mating and reproductive success in this 

species.   

Variance-based measures of the male genetic mating system were positively 

correlated to the OSR although only the variance in reproductive success was 

significantly correlated with OSR.  While the OSR may predict the outcome of 

competition an individual experiences at a particular point in time, it may not be directly 

correlated with the ecological and demographic conditions that males and females are 

subjected to at the time of copulation.  For example, species with high costs to 

reproduction such as long gestation times, long periods of parental care or low 

reproductive turnover act to increase the length of time an individual can be considered 

able to mate (Clutton-Brock & Vincent 1991, Kvarnemo & Ahnesjö 1996).  This issue 

of temporal variation in the OSR is likely not a problem for species that do have 

negligible costs to reproduction as the number of unmated individuals would be heavily 
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influenced by the OSR and ASR (Kvarnemo & Merilaita 2006).  A recent simulation 

study has provided theoretic evidence that the OSR is influenced by the distribution of 

matings in time when the male mating was limited by parental care.  A delay in the 

effect of ‘times-out’, or the time a male is unavailable for mating, increases with 

increasing mate variation (Kvarnemo & Merilaita 2006).  Simulation-based modeling of 

this nature may help to fill in the gaps of knowledge between the response of mating 

system estimates to a fluctuating OSR.   

This study highlights the inherent problems with measuring sexual selection in 

natural populations.  For smaller populations where a high proportion of mates can be 

captured such as the Trinnhålet site in this study, one may be able to reconstruct and 

compare the genetic mating system of both sexes with reasonable certainty.  However, in 

large populations, such as the Tjuvsund site, where the collection of a large proportion of 

individuals and their actual mates is unlikely, the reconstruction of the genetic mating 

system is not possible for the sex of interest.  Often times collections made in the field 

are the only time the site is visited and therefore estimates such as the OSR and ASR 

may be subject to temporal stochasticity that does not accurately reflect the true 

conditions under which mating took place.  Despite these obstacles, the measurement of 

sexual selection can and should remain a primary goal of sexual selection research and 

poses an interesting methodological and theoretical challenge for future studies.   
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CHAPTER VI 

CONCLUSIONS 

 
Behavioral ecology has capitalized on the application of powerful molecular 

markers to investigate patterns of parentage in natural populations (Avise 2004).  These 

tools have added a statistically rigorous component to a growing theoretical framework 

for testing sexual selection theory and have opened new doors to the study of genetic 

mating systems (Arnold 1994, Arnold & Duvall 1994, Shuster & Wade 2003). Although 

there has been much effort put forth to understand many aspects of mating system 

evolution, large scale tests of mating system theory over broad spatial and temporal 

scales are generally lacking. Two major stumbling blocks contribute to our lack of 

understanding of this phenomenon. First, mating systems are assumed to be fixed for 

many species as most studies that concern mating systems take place in one population 

at one geographic locale at one particular time. Second, we have a good understanding 

of factors that are responsible for mating system behavior such as the direction and 

intensity of sexual selection on each sex, yet we lack a basic understanding of 

environmental factors extrinsic to the mating system that may influence mating 

behavior.  Therefore, the main focus of this dissertation was to contribute significantly to 

the understanding of how genetic mating systems are organized with respect to temporal 

and geographic variation.   

In order to test more specific hypotheses about geographic variation in the 

genetic mating system of the pipefish species Syngnathus floridae, it was necessary to 

first investigate whether or not populations of S. floridae represented different 
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populations of the same species rather than multiple collections of subspecies.  By doing 

so, it diminishes the possibility that genetic mating systems are regulated by the genetic 

architecture of populations.  In CHAPTER II, microsatellite data revealed that 

populations sampled from the Atlantic and Gulf of Mexico that populations of S. 

floridae follow a strong isolation by distance trend and show some regional structuring 

according to ocean basins.  Mitochondrial DNA analysis, on the other hand, provided 

support that Atlantic and Gulf of Mexico populations share gene flow between ocean 

basins, although mechanisms for such gene flow remain elusive and would likely require 

more samples throughout the entire geographic range of S. floridae.  Because these 

results provide little support for deep phylogenetic splits between ocean basins, it is fair 

to conclude that differences in the genetic mating system between populations are not 

likely due to any phylogeographic relationship.  Rather, differences between populations 

are likely the result of particular environmental and demographic factors that are specific 

to each site and each time period sampled.   

CHAPTER III investigates the genetic mating systems of two geographically 

distinct populations of S. floridae from the Atlantic Coast of Virginia and the Gulf Coast 

of Florida.  This species is characterized by polygynandry and male pregnancy.  The 

results of parentage analysis of pregnant males revealed significant inter-population 

variation in mating and reproductive success.  Estimates of the opportunity for selection, 

the opportunity for sexual selection and the Bateman gradient were higher among males 

in the Florida population than in the Virginia population, suggesting that sexual selection 

on males is stronger in the Florida population.  The Virginia population is larger and 
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more dense than the Florida population suggesting that population demographics may be 

one of many causal factors shaping inter-populational mating patterns.  This study also 

provides evidence that the adult sex ratio, operational sex ratio, population density and 

genetic mating system of S. floridae may be temporally stable over time scales of a 

month in the Florida population.  Overall, these results show that this species is a good 

model for the study of mating system variation in nature and that Bateman’s principles 

may be a useful technique for the quantitative comparison of mating systems between 

populations.  Moreover, the results of this comparison set the stage for further 

comparison of environmental and demographic factors that may influence the genetic 

mating system among several more populations of S. floridae (CHAPTER IV).   

In CHAPTER IV, the investigation of geographic variation in S. floridae is 

expanded to include three additional populations including North Carolina along the 

Atlantic coast and Tampa Bay, Florida and Port Aransas, Texas along the Gulf of 

Mexico coast.  The addition of these populations allowed for the partitioning of the 

relative associations of specific demographic and environmental factors on the mating 

system measures of the female reproductive contribution and mean mating success, 

mean reproductive success, the opportunity for selection, the opportunity for sexual 

selection and the Bateman gradient of males.  Populations of S. floridae differed in body 

length of males and females and female body depth.  Populations also varied in 

demographic criteria such as adult and operational sex ratios, population density and 

population size and experienced dissimilar environmental regimes such as temperature, 

salinity, turbidity and seagrass habitat.  Mean yearly water temperature and temperature 
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measured in the field explained a high proportion of the variance in female reproductive 

contribution, male mating success, the opportunity for selection and the Bateman 

gradient.  This result is likely due to the strong correlation of temperature over the 

potential reproductive rates of males and females.  Total seagrass biomass was also 

shown to be significantly correlated with the female reproductive contribution and 

played a small but significant role in the variance experienced in the male opportunity 

for selection.  Demographic processes such as the adult sex ratio and the adult 

population size and density also significantly contributed to variation in the mating 

system of S. floridae.  The results of this study provide the first conclusive evidence that 

mating system correlates and Bateman’s principles are correlated with specific 

ecological criteria.  The significance of this result is that both demographic and 

environmental factors play a major role in shaping the genetic mating system, whereas 

morphological attributes such as body size, which are important in regulating specific 

mate choice behaviors in pipefishes, appear not to have a major influence on the mating 

system over a broad geographic scale.   

The purpose of this study in CHAPTER V was to investigate the extent to which 

a changing operational sex ratio influences the genetic mating system in natural 

populations of the broad-nosed pipefish, Syngnathus typhle.  The questions posed during 

the study were: (1) does an increasingly female-biased operational sex ratio affect the 

genetic mating system? And (2) do measures of the genetic mating system such as the 

mean mating success, mean reproductive success, the three Bateman’s principles, the 

opportunity for selection, the opportunity for sexual selection, and the Bateman gradient, 
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and two additional measures of the genetic mating system the Morisita Index and the 

index for resource monopolization correctly predict and respond to changes in 

hypothesized mate competition as measured by the operational sex ratio?  The results of 

this study show a significant increase in the male mating and reproductive success and 

the estimates of the three Bateman’s principles between the first and second pregnancy 

concomitant with an increase in the female-bias in the operational sex ratio.  This study 

is also the first to show a positive relationship between the operational sex ratio and 

variance-based measures of the male genetic mating system such as Bateman’s 

principles in natural populations thereby demonstrating the flexibility and usefulness of 

their application in natural systems.  However, while the operational sex ratio may 

predict the outcome of competition an individual experiences at a particular point in 

time, it may not be directly correlated with the ecological and demographic conditions 

that males and females are subjected to at the time of copulation.   

Taken on the whole, these studies detailed herein significantly contribute to the 

growing empirical support of a quantitative approach to mating system organization.  

These studies are revolutionary in the sense that these are the first large scale tests of 

mating system theory conducted in natural populations and over broad geographic and 

temporal scales.  Because these studies rely on a whole systems approach, these studies 

take the next logical step in filling the gap of knowledge as to how ecological factors 

may affect mating systems.  These studies also point out specific flaws and areas of 

improvement for the broad-scale application of these techniques to natural systems. 

Furthermore, these studies also provide data to help build predictive models how mating 
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systems may respond to changing environmental conditions and global climate change. 

In addition, given the unusual nature of pipefish mating systems, these studies also 

provide novel insight on the evolution of pipefish mating behavior and mating systems 

in general. Thus results from these studies significantly enhance our understanding of 

how mating systems are organized over broad environmental gradients and 

temporal/spatial scales.   
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