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ABSTRACT 

A Methodology of Mathematical Models 

with an Application. (December 1972) 

Richard Brian Wood, B. S. , University 

of Texas at Arlington 

Directed by: Dr. Darald J. Hartfiel 

The objective of this thesis is to develop a methodology for the 

construction of mathematical models. The principle results are a 

statement of a methodology of mathematical models and an example of a 

Markov chain model constructed using that method. 

The methodology is based on the traditional axiomatic method. It 
is stated in very general terms for universality of application. 

The Markov chain model is discussed and developed as well as the 

necessary results from Markov chain theory. The model is ddveloped 

strictly from the stated methodology. 
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CHAPTER I 

A METHODOLOGY OP MATHEMATICAL MODELS 

We begin our discussion of mathematical models with some 

definitions. 

An umiom is an assumption in a logical discourse. It is 

expressed in undefined technical terms called primitives. A collec- 

tion of several axioms is called a system of' azioms. 

A &&so&sm is any statement which may be logically deduced from 

a system of axioms. 

A system of axioms is said to be oonsisten& if there is no 

statement S so that S and not S may both be deduced from the system. 

An interpretation of a system of axioms is an assignment of 

meanings to the primitives in the system in such a way that the axioms 

become simultaneously "true. " If an interpretation exists for a 

system of axioms, then the system is said to be satisfiab'Le. A 

mathematical. modsI is a set of mathematical expressions resulting 

from an interpretation of a system of axioms. If these expressions 

involve probabilities, then the model is said to be 

s&«hustings 

Otherwise, the model is said to be deterministic 

We now wish to examine why mathematical models are of value and 

consider the extent of their usefulness. 

The format of this paper is patterned after the Proceedings of 
the American Mathematical Society. 



A mathematical model is a means by which some concrete 

phenomenon may be studied through abstract expressions using the tools 

of mathematics and logic. At best, the model is a partial description 

of certain aspects of reality. Its value depends upon how closely it 
approximates the characteristics of the phenomenon under study. 

In any mathematical model certain assumptions are made. These 

assumptions are based on a study of the phenomenon to be modeled. 

This should result in a consistent system of axioms since we tacitly 

assume nature to be consistent. Any other statements made in the 

course of developing the model should be logically deduced from the 

system of axioms, even if they are intuitively clear. 

Mathematical models allow concise analysis of complicated 

physical systems. Very often a study of the mathematics involved will 

lead to previously unknown information about the physical system. 

Thus mathematical models may be predictive as well as descriptive. 

From the preceding discussion it is clear that the method by 

which mathematical models are constructed should be explicitly 

stated. We now wish to develop that method. 

The approach to the construction of a mathematical model is 

essentially the same as that of solving any scientific problem. It 
is necessary to produce a clear statement of the problem. More 

precisely, a statement of what we wish to model and what information 

we wish to obtain from our model should be stated at the outset. This 

description should include a discussion of terminology, definitions, 

and any notation to be introduced, 



After a thorough description of the problem, the basic 

assumptions upon which the model will be based should be clearly 

stated. These assumptions form the system of axioms from which all 

other conclusions must be logically deduced. 

Based upon these axioms, mathematical expressions are derived. 

These expressions form the basis of the mathematical model. Further, 

these expressions, under suitable interpretation, describe the 

phenomenon under study and may be used to predict novel occurrences. 

When the mathematical development of the model has been 

completed, the results should be translated into the nonmathematical 

terms of the situation we are trying to model. All conclusions drawn 

from the mathematical model should be stated in terms of what they 

infer in the "real" world. 

With the finished mathematical model we now need to evaluate to 

what degree it is valid. Many statistical tools are available to 

determine this. The test known as chi square is probably the best 

known. It gives a measure of the difference between expected and 

observed values. Hence it is a natural choice to use to test the 

validity of mathematical models. 

The following chapters develop an example of how mathematical 

models are constructed using the method we have gust set forth. 



CHAPTER II 

FINITE MARKOV CHAINS 

This chapter develops those tools of Markov chain theory which 

are necessary to the development of our model. For this we assume 

the results of matrix theory, probability theory, and statistics. The 

language and notation of matrix theory is consistent with [4]. The 

language and notation of' probability and statistics is consistent with 

Consider a sequence of trials whose outcomes x , x , . . . satisfy 

the following conditions: 

1) Each outcome belongs to a finite set of outcomes 

(SI , S2 , . . . , S ); if the outcome on the nth trial is S 
m 

then we say the system is in state S at the nth step. 

2) The outcome of any trial depends at most upon the outcome of 

the immediately preceding trial; with each pair of states S 

and S there is a probability p that S occurs immediately 

after S occurs. 

Such a process is called a finite Markoo chain, The numbers p 

called the transitional probabilities can be arranged in a matrix 

called the transitional probability matrix as follows: 

11 12 

21 22 

P 
lm 

p 
2m 

P P 
ml m2 



The matrix P is nonnegative and row stochastic, i. e. , all row sums 

equal one. 

THEOREM 2. 1. The probability of moving from state S to state S in 

precisely n steps, denoted by p , is the i, jth entry of P . (n) 

PROOF. Clearly p p , the i, jth entry of P. The probability of (1) 
ij ij 

moving from state Si to state S in two steps is the sum of the 

probabilities of moving from state S to each of the possible states i 
on the first step and then moving to state S on the second step. j 
Therefore 

(2) 
ij ik kj k~1 

Matrix multiplication shows p is the i, j th entry of P . In (2) 2 

general, the probability of moving from state S to state S in 

precisely n steps is the sum of the probabilities of moving from 

state S to each of the possible states in n-1 steps and then moving 

to state S on the nth step. Therefore 

ij p ~ I p p p 

(k) 

where the summation is over all (k) where (k) (kl, k2 ~, k I) 
is any n-1 selection of (1, 2, 3, . . . , n). Again matrix multiplication 

shows p is the i, jth entry of P (n) n 

THEOREM 2. 2. If v is a row vector giving the probabilities of being 

n in each state at the present step, vp gives these probabilities after 



n additional steps. 

PROOF. Let v (x , x , . . . , x ), where x is the probability of 

being in state S at the present step. From the previous theorem, 

p is the probability of moving from state S to state S in (n) 
i 

precisely n steps. Then x p is the probability of the chain being (n) 

in state Si after n additional steps from state S given that the 

probability of initially being in state S is x . Therefore the 

probability of the chain being in state S after n additional steps 

is 

(n) 
ki 

This is the ith entry of rg . 
A path is said to exist from state S to state S if there is a i 

sequence of positive transitional probabilities p , p 

pk k , pk , ~ ~ i. e. , it is possible to reach state S from state 
r-1 r ~ k ~ ~ ~ 

S 

A state S is said to be an absorbirq s0ate if and only if i 
pii ~ 1, i. e. , once the state is entered it cannot be left. A chain 

is said to be an absorbing chain if it has at least one absorbing 

state and if a path exists from every state to an absorbing state. 

Given any transitional probability matrix P for an absorbing 

Markov chain there exist permutation matrices P and P such that 
4 ht 
P P P P where P is of the form -(:) (2. 1) 



where I is an r x r identity matrix given r absorbing states; Q is r 
s x s given s nonabsorbing states; R P 0 is s x r, and 0 is an r x s 

matrix of zero entries. 

THEOREM 2. 3. Let B be a square matrix. Then 

B converges if and only if lim B ~ 0. Moreover if k k 
k~O co 

-1 
Z B converges, it converges to (I — B) 
k~O 

PROOF. Let (B , B , . . . ) be an infinite sequence of square matrices. 

The series E B converges if E bi converges where b is the 
CO (k) (k) 
k~1 k~1 ij 

i, jth element of B . From calculus we know that if E b converges (k) 

(k) k~1 
then lim (bi ) 0. Thus if Z B converges, lim B 0. Therefore 

k ~ ~ k 1 k~~ 
as a consequence we have that if E B converges, lim B ~ 0. Con- 

k~0 k~ 
versely if lim B ~ 0, the eigenvalues of B are less than one in 

k ~ ~ 
magnitude [3, p. 112] and hence the eigenvalues of I — B are all non- 

-1 zero. Thus I - B is nonsingular, i. e. , (I — B) exists. But I + B 

2 3 k -1 k+1 k + B + B +. . . + B (I — B) (I — B ). Hence as B approaches 0, 
k -1 then E B ~ (I — B) [91 ~ 

k~O 

From (2. 1) we see that 

— n 
P 

R' 
(2. 2) 

A basic result of finite absorbing Markov chain theory is; 



THEOREN 2. 4. Suppose P is any transitional probability matrix for an 

absorbing Narkov chain. Then lim Q ~ 0. n 

n~~ 

PROOF. 

Case l. Q irreducible. 

Let S be the row sum of the ith row of Q. Let S ~ max S and 
n 

s min S . Let o g i , a min q and k be the least of the i i ln 
positive off-diagonal elements of Q. Let r be the Perron root of Q. 

Brauer found that 

s + c(o — s) & r & S — c(S - o), (2. 3) 
k n-1 

where c ~ [ — ] [10, p. 157]. Comparable results were also found S-o 

by Hartfiel [5]. Now 0 & S & 1 by hypothesis. Also we know that 

0 & o & 1 since 0 & S & 1 for at least one i by hypothesis. Further i 
t&0 since k is positive. Hence 0 & S — o & 1 and S — t (S — o) & S 

which implies r & 1. Therefore as r is the maximal eigenvalue of 

Q [10], all of the eigenvalues of Q are less than one, which implies 

lim Q ~ 0 [3, p. 112]. 
n + ~ 

Case 2. Q reducible. 

If Q is reducible then there exists a permutation matrix P so 

r. hat 

t 

Rl 

(2 4) 



whereQ isn xn andQ is (s-n)x (s-n). 1fbothQ andQ2 1 1 1 2 

are irreducible, then by the argument of Case 1, all of the eigen- 

values of Q are less than one and the conclusion follows. 

Without loss of generality, suppose Q is reducible. Then there 1 
exists a permutation matrix P so that 

P Q 
Pt 11 Q 

212 
Rl1 

(2. $) 

where Q and Q are both square matrices. Hence 

P 0 P 0 
0 

11 12 (2. 6) 

0 I 0 I R s-nl s-n 1 1 2 

By continuing this argument we will eventually obtain a permutation 

matrix P so that 

"t 
PQ P 

Q 0 0 0 

R Q 0 0 

R R Q30 

where each Q 
' (i ~ 1, ~ ~ ~ , n) is square and irreducible. (Each 1 x 1 

matrix is irreducible by definition. ) Again by arguing as in Case 1 

the eigenvalues of Q are all less than one which implies 

lim Q ~ 0. 
n M (Q 
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As a consequence of Theorems 2. 3 and 2. 4 we have that the matrix 

2 3. -1 series N I + Q t Q + Q 
~ ~ ~ always converges and N ~ (I — Q) 

The matrix N is called the fundamental matrt'm of the chain. 

DEFINITION 2. 1. Let f be any numerical function defined on a 

possibility space S. Then the mean of the function f is 

M [f] I j ' Pz [f j] (2. 7) 

~22 l. A t t 9 M t t . 1'1 tt p lttllty 9 9 

[HHp HT, TH, TT) where H denotes heads, T denotes tails. Let f be 

the number of heads that turn up. Then 

M[f] = 2 ~ 1/4 + 1 ~ 1/4 + 1 ~ 1/4 + 0 ~ 1/4 '1. 

~9* 1 2. L t A 71, 2, 7, 9, 97. A 9 t 9 t % 1 

this set. The possibility space is simply the set A itself. Let f 

be the outcome function. Then 

M[f] 1 1/5 + 2 ' 1/5 + 7 ' 1/5 + 9 ' 1/5 + 9 ' 1/5 = 

5 3/5. 

THEOREM 2. 5. Consider the following possibility space S ~ x , x , x 

. . . , x , where x S , and x s(S , . . . , S ) for i 0, 1, 2, . . . ls 0 i' 
Let 

1 for all members of S where x S 

ij (2. S) 
0 otherwise 

(k) Set f ~ I X . Then n = M[f], i. e. , M[f] is the mean ij ij 
number of times the chain passes through a fixed nonabsorbing state 



S starting at a fixed nonabsorbing state S i 

PROOF. Prom Definition 2. 1 we have 

( )] (k) 
ij ij 

(k) . k ~h~~e q is the i, jth entry of Q . It can be shown that 

(2. 9) 

M[Z f ] M Z M[f ] ~ 

n~O n n~O n 

(For proof see [7]. ) 
Using (2. 10), we define B as follows: 

(2. 10) 

n ~ M[Z X ) Z M[X ]. 
k~O k 0 

Then from (2. 9) and (2. 11) we have that 

(2. 11) 

(o) ~ (1) ~ (2) ~ . . . 
2 3 Thus B ~ n, the i, jth entry of the matrix N I + Q ~ Q + Q + ij ij 

which is the fundamental matrix. 

THEOREM 2. 6. Let b be the probability that an absorbing chain will 

be absorbed in state S if it starts in nonabsorbing state S . Let B 

be the matrix with entries b . Let R be the s x r matrix as defined 

in (2. 1). Then B ~ HR where H is the fundamental matrix. 

PROOF. From (2. 1) we have 

P 

Then 

— 2 P 
RtgR 

2 
and 

Q 



3 
P 

R+QR+QR Q 
2 

Continuing this multiplication we have 

— n 
P 

R+QR+QR+ ''' +Q R 

From Theorems 2. 3 and 2. 4 we have the following: 

CO 

P 

(I + Q + Q + ''')R 2 

Hence by definition B ~ NR, and B is row stochastic. 
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CHAPTER III 

A MARKOV CHAIN MODEL IN SOCIOLOGY 

3. 1 Un'"oduotion. 

Many sociological and psychological experiments deal with the 

behavior of small groups of individuals. This chapter will attempt 

to develop a mathematical model for one such type of experiment. 

3. 2 Statement of the problem. 

The experiment to be modeled was first performed by Asch [1] with 

subsequent development by Cohen [2] and Kemeny and Snell [8]. 
A subject is seated with a group of confederates. They are shown 

two cards, card A and card B. Card A has three lines of different 

lengths while card B has only one line. Each person is asked to 

choose which one of the lines on card A they feel is the same length 

as the line on card B. 

The group of confederates consistently and unanimously give 

wrong answers. The uninformed subject is then confronted with the 

following dilema: he may conform with the majority and answer in- 

correctly, or he may reject the pressure of the majority and answer 

correctly. 

The date for this experiment is a sequence of responses. The 

letters a and b are used to denote correct and incorrect responses 

respectively. 



The same number of trials are performed for each subject. A 

sufficiently large number of trials are performed so that each 

subject will eventually give a sequence of consistent responses. 

This sequence of consistent responses is called the tervninal segment. 

The consistent response given in the terminal segment is called the 

terminal response. The others form the initial segment. 

3. 3 The model. 

We begin a discussion of the model by stating several axioms. 

AXIOM 3. 1. On any given trial the subject must be in one of four 

states: 

State Sl — If the subject is in this state, he will answer 

correctly on this trial and all those which follow. 

State S — If the subject is in this state, he will answer 

correctly on this trial, but not necessarily on those 

which follow. 

State S - If the subject is in this state, he will answer 

incorrectly on this trial, but not necessarily on 

those which follow. 

State S — If the subject is in this state, he will answer 

incorrectly on this trial and all those which follow. 

AXIOM 3. 2. The probability of being in a particular state on trial 
n depends only on the state the subject was in on the preceding trial. 
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AXIOM 3. 3. Each sub)act is initially in state S, and must at some 2' 
time be in either state S or state S 

Based on Axiom 3. 3 we may consider a as the "0th" response. We 

then define n as the total number of a to a transitions in all aa 
modified initial segments. Define n similarly. We define n 

b 
and ab 

n. as the total number of a to b and b to a transitions in all seg- Da 

ments. Define n to be the total number of a responses in all modi- a 
fied initial segments. Define n similarly. 

The following relations follow from these definitions: 

n ~n +n a aa ab (3 ' I) 

nbb + nb (3. 2) 

Define t and t to be the total number of subjects whose 

terminal responses are a and b respectively. Then it follows that 

'b "b (3. 3) 

AXIOM 3. 4. The following state-to-state transitions are not allowed: 

State S to States S , S , oz S4. 

State S4 to States Sl, S2, or S 

State S2 to State S4. 

State S3 to State Sl. 
Let S (k, n) denote the state person k is in on the nth trial. 

Then p is the probability that S(k, n+1) S given S(k, n) S 

It is possible to arrange the transitional probabilities into a 

transitional probability matrix as follows: 
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1 0 0 

P ~ 21 22 23 

32 33 

0 0 0 

(3. 4) 

From Axiom 3. 1, p p = 1. From Axiom 3 ' 4, p = p P14 
= 

12 13 14 

P24 P31 P41 P42 P43 

is strictly positive. 

From Axiom 3. 3, either p or p 

3. 4 Objectives of the model. 

1) To formulate a method of determining the unknown entries of 

the matrix P. 

2) To predict the mean number of correct responses. 

3) To predict the mean number of times a subject will change 

from one response to another. 

4) To predict. the proportion of subjects who will not be 

intimidated. 

5) To find the mean number of subjects who will change 

responses exactly k times. 

3. 5 Mathematical treatment 

Markov chain theory (see Chapter II) permits rewriting the 

transitional probability matrix P listing the absorbing states first: 
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I 0 

R Q 

1 0 0 0 

0 1 0 0 
. (3 ~ 3) 

P21 P22 P23 

P32 

The fundamental matrix is then 

-1 
N ~ (I — Q) P22 

32 33 

(3. 6) 

Computing this inverse by the ad)oint method yields 

~di 
det (I — Q) 

1 
6 

P33 

P32 

P23 

'22 

"22 n23 

n32 n33 
(3. 7) 

where6=(1-p)(1-p) — pp 
The matrix B of absorption probabilities is 

(3. 8) 

1 33 21 23 34 B = NR 
6 (3. 9) 

32 21 (1-p22) p34 

21 24 (3. 10) 

31 34 
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and B is row stochastic. 

Since the n entry of the matrix N gives the mean of the total 

number of times a subject is in state S during a sequence of trials, 

then 

M[ — ]~n -f 'b 
n 23 23 (3. 11) 

where f2 is the mean number of times a subject is in state S in 

the terminal segment, n is the total number of subjects, and ~ is 
the average number of b responses per subject in the initial segments. 

Let q be the probability of exactly m occurrences of state S 

in the terminal segment. If the terminal state is S then there can 

be no occurrences of state S3 Thus/ 

b21 (3. 12) 

Suppose we know q . We may then find q very easily. The 

probability of m+1 occurrences of state S is, by elementary laws of 

probability, the probability of m occurrences of state S multiplied 

by the probability of one more occurrence of state S . Therefore 

SP33 

qlP33 (3. 13) 

Now 

I m E q a q 
m ~ 0 

+ E q 
m~l 

21 

bgl 

+ E q 
m 1 

qi ~P33 ' 
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since Z q is a geometric series by (3. 13). From (3. i4) we have 
m 1 

ql = ( - P33) ( - 21) 

Hence, 

m-1 

33 24 

m=1 

24 

24 

m-1 
33 ( P33 24 

Z mp (1 — p ) 
m-1 
CO 

'33 
m 0 

24 

6(1 — p 3) 
Then from (3. 11) we have 

b 23 23 34 
M [ — ] n 6 6(1-p3) 

23 33 P34 

P23 
6 (1 

Similarly we may write 
n 

M[ — ]~n -f 
n 22 22 

(3. 15) 

Using a computational 

procedure analagous to the one above we find 
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1 — p3 21 (1-p ) 
M[ — ] n 6 6(1- p 22 

P23 (1 — 
p33) 

5515p~ ~ 

From (3. 9) and (3. 10) we find 

(3. 16) 

23 p p 

n 24 6 (3. 17) 

and 

t (1-p )p 
M[ ] b 33 21 

n 21 6 (3. 18) 

Suppose the chain is only observed when a change of state occurs, 

rather than a change of response. Then the transitional probability 

matrix for this chain is 

P21 
1 — 

P22 

0 0 

0 
P 

32 0 

(3. 19) 

0 0 0 1 

To see this, consider the original chain. Suppose k subjects are 

S S 

in state S . Then the distribution after one step would be as follows: 

P21 
P 2 p23 

Sl 

p k p k p23k 
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Now if we consider the chain in which only changes of state are 

considered, then the distribution after one step will be as follows: 

S S S 2 p23 3 

21 22 22 023 P22 

Hence, 

P21 22 21 

p 
21 

21 1 — 
P22 

The other entries of P may be found in a sdnnilar manner. 

The fundamental matrix N for this chain is 
(1 — P22) ( — P33) P23 ( P33) 

N — P 2 (1 — p22) (1 — p 2) (1 — p33) 

where 6 is defined as in (8. 8). 
The n element of N is the mean number of changes from state S 

to state S before absorption. This is the same as the mean number 

of changes from response a to response b since changes from state S 

to state S are not permitted. Thus 

b - 23 (1 — p33) 
M -M[ — ] n 4 (3. 20) ab n 23 6 

n 
The mean of — may be computed from (3. 1), (3. 16) and (3. 20): n 
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n n — n 
=M[ — ] =M[ '] 

aa n n 

n n 
M[ — ] — M[ — ] a ab 

n n 

23 33 23 33 
6 (1-p ) 6 

22 23 33 
d (1 — p ) (3. 21) 

Similarly from (3. 3), (3. 17) and (3. 20), 

ba] 23 32 p p 

n (3. 22) 

and from (3. 1), (3. 11) and (3. 22), 

M[bb] 
bb 

™ 

n 6 (1 — p33) 
(3. 23) 

It is possible to determine the transitional probabilities from 

the means (3. 20)-(3. 23). Thus, in a sense, the transitional proba- 

bilities are group mean probabilities rather than individual subject 

probabilities. If we consider the elementary definition of proba- 

bility as number of successes divided by the number of possible out- 

comes and use means, then a natural assumption would be as follows: 

M 
aa 

22 M +M aa ab 
(3. 24) 

This result may be easily verified from (3. 20) and (3. 21). Similarly 

from (3. 22) and (3. 23) we have that 



23 

"bb ™b (3. 25) 

Using the row stochastic property of the matrix P, we can verify that 

P21 

P23 

P32 

M (1 — M +M ) 
(M +M )(1+M ) 

2 
M 

b 
(M +M )(1+M ) 

2 

"ab'b ' "bb' 

(3. 26) 

P36 
ba ab ba 

M~~(N + l(, b 

Further it is seen that these are the only solutions. 

3. 6 Znterpretatton of z'esu'Lts. 

The Law of Large Numbers says that if an experiment is repeated 

a large number of times then computed averages will approach their 

predicted means. In other words, given an arbitrarily small positive 

number c, there is some positive integer N such that for all n greater 
nab 

than N, the difference between — and M will be less than c. For 
n ab 

purposes of interpretation, we assume this difference will be zero, 

i. e. , the averages exactly equal the predicted means. 

In one of Cohen's experiments, it was found that 

n = 196, n b 117, n. 106, n 102, n = 313, 
aa ' ab 

n = 208, t 22, t 11, n 33. 



The assumption then yields 

196 117 106 102 

From (3. 24)-(3. 26) we obtain the transitional probability matrix 

1 0 0 0 

. 06 . 63 . 31 0 

0 . 46 . I'49 . 05 
(3. 27) 

0 0 0 1 

We now examine this model to see if it meets the objectives 

stated previously. 

1) The model clearly gives a method of finding the unknown 

entries of the transitional probability matrix. 

2) Using (3. 20), (3. 21) and (3. 27), we may predict the mean 

number of correct responses as M + M 
b aa ab 

3) Using (3. 20), (3. 22) and (3. 27), we may predict the mean 

number of times a subject will change from one response to 

another as M 
b 

+ M 

4) To predict the proportion of subjects who will not be 

intimidated, i. e. , who will never answer incorrectly, we must 

find the proportion of subjects who change responses zero 

times. We note that those who answer incorrectly consis- 

tently, those who give b responses on every trial, are not 

considered to be among those who change responses zero times. 

This is because the "0th" response of each subject is a. 

Hence these individuals have changed responses once. Thus 
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those who change responses zero times are those who give 

response a consistently. Therefore the probability of 

changing response zero times is the same as the probability 

p from the transition matrix (3. 19). Thus the model 

predicts that, for n total subjects, p n of those subjects 

will not be intimidated. 

5) To find the mean number of subjects who will change responses 

exactly k times it is necessary to expand the idea presented 

in 4). It should be explained that two cases shall be 

considered, k even and k odd. This is because if k is even 

the terminal response is a, if k is odd the terminal response 

is b. It has already been shown that for k 0, the proba- 

bility of exactly k changes is p . Now if k 1, the 

terminal response is b, hence the terminal state is S 

Since everyone is initially in state S , the probability of 

one change in response is given by p p . By continuing 

this argument, we see that the probability of 2k changes is 

p [p p ] . Similarly the probability of 2k + 1 changes 

k 
23 34 23 32 

We will use the predicted quantities in 4) and 5) above to test 

the model. The following table gives the observed values and the 

predicted values for the mean number of subjects who change responses 

exactly k times. 
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Number of subjects 
who switched responses 

exactly k times 

Mean number 

predicted b 

the model 

2 or 4 

3 or 5 

8 or 10 

9 or 11 
r e even 

arge odd 

10 5. 34 

2. 71 

7. 16 

3. 63 

5. 47 

2. 77 

4. 02 

2. 01 

otal 33 33. 11 

The standard statistical test used to measure the difference 

between predicted values and observed value is the chi square test. 
If we apply this test to this data, we find the deviations to be with- 

in the expected margin of error 90 percent of the time. Depending 

upon the tolerance needed for an experiment of this type, this may or 

may not be judged a suitable model. Normally 95 per cent reliability 

is considered acceptable. 

3. 7 ConoIudtrq7 zsmcu ks. 

If ninety per cent reliability is judged to be inadequate, two 

courses of action are possible: (1) reject the system of axioms, or 

(2) retain the system of axioms. Assuming case 1, it could be argued, 
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for example, that it is erroneous to consider an experiment of this 

type to be Markov. This would require new axioms and result in a 

completely new model. Another possible source of error is the assump- 

tion that the predicted means are exactly equal to the computed 

average. Increases in the number of subjects or the number of re- 

sponses per sub)ect could give better results. If all of the axioms 

and assumptions are accepted, then the model as stated must be 

accepted. 

Computational errors could also be a problem source. One could 

possibly calculate the transition matrix (3. 27) with more significant 

digits to reduce the effects of roundoff error for more accurate 

results. 

The method presented is one of many possible ways in which 

problems of this nature may be handled. Further experimentation would 

probably lead to a more sophisticated approach. 
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CHAPTER IV 

CONCLUSION 

The principle results of this thesis were a methodology for the 

construction of mathematical models, and a Markov chain model con- 

structed using this method. 

The model presented in this thesis was deliberately chosen from 

a nonmathematical, nonscientific field of study to demonstrate the 

fact that mathematical models are powerful and useful tools regard- 

less of the area of application. It was developed strictly from the 

stated methodology. The presentation differs from that of Kemeny and 

Snell [8] in that proofs of important results are included rather than 

relying on intuitive explanations. 

The study of Markov chain models is useful since so many 

stochastic processes exhibit Markov properties. These models also 

offer an opportunity to study certain properties of irreducible 

matrices. 

The methodology stated in this thesis is an attempt to give an 

organized approach to the task of constructing mathematical models. 

It is felt that the more rigorous the methodology, the more useful the 

resulting model will be. 
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