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ABSTRACT 

The Endomorphism Near Ring on th- Ouaterni. on Group . (August 1969) 

Mary Katherine King, B, A. , Vanderbilt University; 

Oip. Ed. , Makerere College; 

Oirected by: Or. J. J. Malone, Jr. 

The study of near rings is motivated by consideration of the 

system generated by the endomorphisms of a group. ln this thesis, 

the near ring generated by the endomorphisms on the quaternion 

group of order eight is displayed. 

In addition, certain subrings, right ideals, and the radical 

of the near ring are displayed. 
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CHAPTER I 

INTRODUCTION 

Endomorphism near rings furnish the motivation for distri- 

butively generated near rings, as well as for near rings in 

general. Distributively generated near rings have been studied 

by Biedleman [2], Frohlich [6] and Laxton [10]. Frohlich [7] 

also studied the near ring generated by the inner automorphisms 

of a finite simple group. Chandy [4] gave a necessary and 

sufficient condition that the near ring generated by the inner 

automorphisms of a group be a ring. Gupta [8] presented a 

necessary and sufficient condition that the near ring generated 

by the mappings of the form p :g ~ — g — x + g + x and 
X 

;g ~ — x — g + x + g of a group be a ring. Malone and 
x 

Lyons [11] bave investigated the endomorphism near ring on S 

Guthrie [9] has investigated the endomorphism near zing on the 

dihedral group of order eight. However, there is at present no 

general theory of the structure of endomorphism near rings. This 

thesis will provide another example of such a near ring and thus, 

hopeiully, contribute to the formulat'on of the general theory. 

The citations on the following pages follow the style of the 
Proc~eedin s of the American Mathematical ~Societ 



Definition 1. 1. A near r~in is an ordered triple 

(R, +, ~ ) such that 

a) (R, +) is a group, 

b) (R, ~ ) is a semigroup, 

c) . is left distributive over +, i. e. rj (r2 + 13) 

= r r + r r for each r , r , r s R. 

D*ft t ' 1. 2. A . ' 
g 

' dt ~ t 'b t' ly@ d 

(d, g. ) if there exists S & R such that 

a) (S, ~ ) is a subsemigroup of (R, ~ ), 
b) each element of S is right distributive, 

c) S is an additive generating set for (R, +). 

The near ring generated additively by the endomorphisms of 

a group (G, +) is d. g. with S the set of endomorphisms. Such a 

near zing will be called an endomorphism near ring and will be 

denoted by E(G). 

Some basic theorems on the decomposition of near rings 

follow. 

Theorem 1. 3. [3] Let e be an idempotent element in the 

near ring R. Then each r s R has two unique decompositions 

r = (r — er) + er = er + (- er + r). Thus R = A + M e e 

=M +A whereA =(r-er 
~ 

r ER) =(t tR ) 
et=0), 

e ' e e 

M (er 
~ 

rcR), andA AM 0. e e e 



Theorem 1. 4. [11] Let R be a near ring such that (R, +) 

is generated by (r 
~ 

Y c I', an index set). Then A is the e 

normal subgroup generated by (r — er 
~ y c I') and bt( is the 

v e 

subgroup generated by (er 
~ y E I'). 

Y 

~C11 1 5. [9] 1tg' b 1 bg Pl! gbg 

(r — er ). Then A consists of the elements of A' and any 
Y Y e 

conjugate of an element of A' by an element of N 'e' 



C H A P T E R II 

THE EL:~ilENTS OF E(Q) 

Let (Q, +) designate the non-abelian group of order eight 

with addition as given in Table I. This group is called the 

quaternion group of order eight. In thi. s chapter the elements 

of E(Q) will be displayed. 

Since Q is finite each element of E(Q) can be expressed as 

a finite sum of endomorphisms of Q. It is obvious that each 

function in E(Q) maps 0 to 0. Fac'n function i. n E(Q) can be 

represented as a seven-tuple, the first coordinate being the 

image of a, the second the image of 2a, etc. For example, the 

seven-tuple (a, 2a, 3a, b, a+b, 2a+b, 3a+b) represents the 

identity function. In E(Q) the addition of elements is point- 

wise and multiplicaticn is composition of functions. 

Table II, a list of the endomorphisms of. Q, is taken 

from [5]. 
Haxson and Clay [12] have shown that no quaternion group 

has an idempot nt endomorphism other than the identity and the 

zero. Consequently, the question of how to produce a non- 

trivial idempotent arises. The idempotent is necessary in order 

to use Theorem 1. 3. For this particular example, 1 + I + 8 + 12 

is an idempotent element of E(Q). In gener. -l there has been no 

investigation of necessary or sutficient conditions to produce 



TABLE I 

THE QUATERNION GROUP OF ORDER EIGHT 

a 2a 3a b a+b 2a+b 3a+b 

0 a 2a 3a 

a 2a 3a 0 

b a+b 

a+b 2a+b 

2a+b 

3a+b 

3a+b 

2a 

3a 

28 3a 0 

3a 0 a 

b 3a+b 2a+b 

2a 3a+b 

a+b 2a 

a 2a+b 3a+b 

a+b 

a+b 

2a+b 

3a 

a+b b 3a+b 2a+b 3a 2a 

2a+b 2a+b a+b b 3a+b 

3a+b 2a+b a+b b 

3a 2a 

3a 2a 

G(a, b~2a = 2b [a, b], 4a = I) 



TAELE II 

THE ENDGl'lGRPHI SHS OF Q 

0. 
a 2a 

0 0 

2a 

a 2a 

3a 

3a 
3a 2a+b 

a+b 

a+b 

3a+b 

2a+b 

2a+b 

3 a+b 

3a+b 

a+b 

6. 
7. 
8. 
9. 

10. 

a 2a 

a 2a 

3a 2a 

3a 2a 

3a 2a 

3a 2a 

b 2a 

b 2a 

3a a+b 

3a 3a+b 

2a+b 3a 

2a+b 

a+b 

a 3a+b 

2a+b 

2a+b 

3 a+b 

a+b 

2a+b 

3a+b 

a+b 

3a+b 

a+b 

2a+b 

3a+b 

3a 

2a+b 

a+b 

3a+b 

2a+b 

a+b 

3a+b 

b 2a 2a+b a+b 3a+b 3a 

12. 
13. 

15. 

b 

2a+b 

2a+b 

2a+b 

2a 

2a 

2a 

2a 

2a+b 3a+b 

3a 
a+b 

3a 

a+b 

3a+b 

3a 

a+b 

3a 

3a+b 

3a+b 

a+b 

2a+b 2a b 3a+b a+b 3a 

17. 
18. 
19. 
20, 
21 ' 
22. 
23. 
24. 
25. 
26. 
27. 

a+b 2a 
a+b 2a 
a+b 2a 
a+b 2a 

3a+b 2a 

3a+b 2a 
3a+b 2a 
3a+b 2a 

0 0 
2a 0 

2a 0 

3a+b 
3a+b 
3a+b 
3a+b 

a+b 

a+b 
a+b 
a+b 

0 
2a 

2a 

a 
3a 
b 

2a+b 

3a 
b 

2a+b 
2a 
0 

2a 

b 
2a+b 

'3a 

a 
2a+b 

a 
3a 
2a 
2a 

3a 
a 

2a+b 
b 

3a 

a 
2a+b 

b 
2a 

0 

2a 

2 a+b 

b 

a 
3a 
b 

2a+b 
3a 

a 
2a 
2a 



a non-trivial idempotent in E(G), for. an arbitrary group G. 

From Table II, 1 + 1 + 8 + 12 = (a+b, 0, a+b, 0, a+b, 0, a+b) 

is an idempotent of E(Q) . Using e = 1 + 1 + 8 + 12, Theorem 1. 3 

is applied to determine the elements of E(Q) . The decompositions 

of the endomorphisms (in the sense of Theorem 1. 4) are given in 

Table III and Table IU. 

From Table III and Theorem 1. 4 it follows that 

M ((y, 0, y, 0, y, 0, y)~y Q). Also, A', the group 
e 

generated by (r — er ), is 
Y I 

((x, 0, x, x, 0, x, 0)~x e Q) + ((0, 2a, 2a, 0, 0, 2a, 2a)). 

Let B = ((x, 0, x, x, 0, x, 0))x e Q) and let 

C = ((0, 2a, 2a, 0, 0, 2a, 2a)). ThenA' =B+C =C +B. 

Let. m t M, b c B, and cl = (0, 2a, 2a, 0, 0, 2a, 2a). Then e' 
m + b — m (y, 0, y, 0, y, 0, y) + (x, 0, x, x, 0, x, 0) 

(y, 0, y, 0, y, 0, y). Since Z(Q), the center of Q, is (0, 2a) 

and the commutator of every pair of elements lies in the center, 

-y + x + y = x or -y + x + y = x + 2a. Consequently m + b — m 

(x, 0, x, x, 0, x, 0) or (x + 2a, 0, x + 2a, x, 0, x, 0). 

Thus m + b — m c B + CZ where C2 
= ((2a, 0, 2a, 0, 0, 0, 0)) and 

m + b + r. - m = m + b — m + c since every entry of C e Z(Q). 
1 1 1 

Thus m + b + cl — m t B + CZ + C . From Corollary 1. 5 it follows 

'that'AB+C2+Ci and the order of A is 32. Since the 
e 2 1 e 



TABLE III 

{r — ez ) 
7 7 

a 2a 3a 2a+b 3a+b 

0. 

3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27, 

0 0 

b 2a 

2a+b 

a+b 

3a+b 

b 

2a+b 

2a 

2a 

2a 

2a 

2a 

b 

2a+b 
2a 

0 
2a 

2a 

2a 
0 
0 
0 

a+b 2a 
3a+b 2a 

a 2a 
3a 2a 

a+b 2a 

3a+b 2a 

a 2a 

38 28 

a+b 2a 
3a+b 2a 

a 2a 

3a 2a 

b 2a 
2a+b 2a 

a 2a 

3a 2a 

3a+b a+b 

a+b 3a+b 

2a+b 

b 2a+b 

3a+b 
a+b 

38 

3a+b 

a+b 
3 a+b 

a 
38 

a+b 

a+b 3a+b 

3a 
3a 

3a+b 
a+b 

3a 

2a+b 

b 
3a 

2a+b 

b 
2a 

0 
2a 

a+b 
3a+b 

3a 
b 

2a+b 

38 

2aeb 
2a 

0 
2a 

2a+b 

b 2a+b 

0 

0 

0 
0 

0 
0 

0 
0 
0 
0 
0 
0 

0 

0 
0 

0 
0 
0 

0 

0 

0 
0 
0 

0 

0 
0 
0 
0 

2a+b 

3a+b 

a+b 

2a+b 

3a+b 
a+b 

38 

3a+b 

a+b 

3a 

3a+b 
a+b 

3a 

2a+b 

b 

3a 

2a+b 

b 

2a 

0 
2a 

2a 

2a 

2a 

2a 

28. 

2a 

2a 
2a 
2a 
28 

2a 

2a 

2a 

2a 
2a 
2a 

2a 
2a 

2a 
28 

2a 

2a 

ja 
0 
0 
0 



TABLE IV 

(er ) 
Y 

0. 
1. 
2. 
3. 

a 2a 

0 

a+b 
3a+b 
2a+b 

3a 

a+b 
3a+b 
2a+b 

a+b 

a+b 
3a+b 
2a+b 

2a+b 3a+b 

a+b 
3 a+b 
2a+b 

6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 

b 
3a+b 

a+b 
b 

2a+b 

3a+b 

a+b 
a 

3a 
a+b 

3a+b 

3a 
a 
b 

2a+b 
3a 
a 

2a+b 

a 

3a 
2a 
2a 

0 

0 
0 
0 
0 
0 

0 

0 
0 
0 

0 
0 

0 
0 

0 

0 
0 
0 

0 

0 
0 
0 
0 
0 

0 

b 
3 a+b 

a+b 
b 

2a+b 

3a+b 

a+b 

3a 
a+b 

3a+b 

2a+b 
3a 

2a+b 
b 

3a 
2a 
2a 

0 
0 
0 
0 
0 

0 

0 
0 

0 

0 
0 

0 
0 

0 

0 
0 
0 
0 
0 
0 

0 
0 
0 

0 

b 
3a+b 

a+b 
b 

2a+b 

3a+b 

a+b 

3a 
a+b 

3a+b 

3a 

2a+b 
3a 

2a+b 
b 

3a 
2a 
2a 

0 
0 
0 
0 
0 

0 

0 
0 
0 

0 
0 

0 

0 

0 

0 
0 
0 

0 
0 
0 
0 
0 
0 

0 

b 
3a+b 

a+b 
b 

2a+b 

3a+b 

a+b 

a+b 
3a+b 

3a 

2a+b 
3a 

2a+b 
b' 

3a 
2a 
2a 



order of Yi is 8, the order of E(Q) is 256. That is, every 
e 

element of E(Q) is of the form ((x, 0, x, x, 0, x, 0) ~x c Q) 

+ ((0, 2a, 2a, 0, 0, 2a, 2a)) + ((2a, 0, 2a, 0, 0, 0, 0)) 

+ ((y, 0, y, 0, y, o y) ly s Q). 

Table V gives a complete listing of the idempotent elements 

of E(Q) . These idempotents can be used to induce other decom- 

positions of E(Q). 



TABLE V 

IQEMPOTENTS OF E(Q) 

1. 0 

2, 0 

3. 0 

4. 0 

5. 0 

6. 0 
0 

8. 0 
9. 0 

1Q. a 
11. 
12. 2a 

13 2a 

14. 2a 

15. 2a 

3a 
17. 3a 
18. b 

19, a+b 

20. 2a+b 

21. 3a+b 

22. 0 

23. 0 
24. 0 

25. 0 
26. 
27. 

2a 
2a 
2a 
2a 

0 

0 
2a 

2a 

2a 
2a 
2a 
2a 

0 
2a 
2a 
0 
0 

0 

2a 

2a 0 

0 3a 

Q 3a 

0 
0 a+b 

2a 

0 

3a 

0 2a+b 2a+b 

0 3a+b 

2a 

2a 
2a 
2a 
0 
0 

2a 

2a 
2a 
2a 

b 
a+b 

3a+b 
b 

b 

2a 3a 

0 0 

0 0 

0 0 

0 0 2a+b 

0 0 3a+b 

a+b 

a+b 

2a+b 

3a+b 

2a 
0 

2a 
0 

2a 

2a 

3a 

a+b 

3a+b 

b 

2a+b 
a+b 

a+b 
a+b 

3a+b 

2a+b 

a+b 

2a+b 

3a+b 

2a 
0 
0 

2a 
0 

2a 

2a 

3a 

2a+b 

0 
2a+b 

2a+b 

3a+b 
a+b 

b 
b 

3a+b 

a+b 

2a+b 

3a+b 

2a 
0 

2a. 
a 
0 

2a 

2a 

3a 

a+b 

3a+b 

2a+b 

b 

3a+b 
3a+b 

a+b 
3a+b 



12 

29. a 
0 a 2a+b 

0 a 2a+b 

a+b 

3a+b 

2a+b 

2a+b 

a+b 

3a+b 
30. 3a 
31. 3a 
32. 3a 
33. 3a 
34. 2a 
35. 2a 
36. 2a 

37. 2a 

38. a 
39. a 

40. a+b 

41. 3a+b 
42. a 
43. a 
44. b 

45. 2a+b 

46. a 

48. a+b 

49. 3a+b 
So. 
51. a 
52. b 
53. 2a+b 

s4. 

2a 
2a 

3a 
3a 

2a 3a+b 
2a a+b 
2a 3a 
2a 3a 
2a 2a+b 
2a b 

2a 3a 

0 3a 
0 3a 
0 3a 
0 3a 

2a 0 
2a 0 
2a 0 

2a 0 
2a 3a 
2a 3a 
2a 3a+b 

2a a+b 
2a 3a 
2a 3a 
2a 2a+b 

2a b 

b 

b 

2 a+b 

2a+b 

b 
b 

a+b 

3a+b 

0 

a 
3a 

b 

2a 
2a 

2a 
2a 

a 
3a 

a+b 

3a+b 
a+b 

3a+b 

b 

2 a+b 
a+b 

a+b 

3a 
a+b 

a+b 

0 
0 
0 

3a 
a+b 
a+b 

2a 
2a 

2a 
2a 

aab 

b 
2a+b 
2a+b 

2a+b 
2a+b 
3a+b 

2a 

2a 

3a 

2a+b 

2a+b 

0 
0 

0 
0 

3a 

2a+b 
2a+b 

2a+b 

a+b 

3a+b 
a+b 

3a+b 

2a+b 

b 
3a+b 

3a+b 

3a 

3a+b 

3a+b 
2a 
2a 
2a 
2a 

3a+b 
3a+b 

0 

0 

3a+b 
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C H A P T E R III 
CERTAIN SUBRINGS OF E(Q) 

Definition 3, 1. A subset K of a near ring R is a 

subnear ~rin of R if (K, +, ) is also a near ring with 

respect to the operations + and of R. 

Definition 3. 2. A group G is metabelian if G', the 

commutator subgroup, is abelian. 

Definition 3. 3. A group is n-metabelian if every 

n-generator subgroup is metabelian. 

Definition 3. 4. [8]. With each element x s G associate 

a mapping p :g ~ — g — x + g + x of G into G. Let R(G) denote x' 

the smallest near ring containing all sums and products of P's. 
Theorem 3. 5. [8], R(G) is a ring if and only if G is 

3-metabelian. 

Theorem 3. 6, . R(G) c: I(G), the near ring generated by the 

inner automorphisms of G for any group G. 

Proof: Let m be the inner automorphism of G induced by x, x 

i. e. m :g ~ — x + g + x and m :g ~ g. Note that x 0 

g(- z ) = — (ge ) = — g. Certainly — z t I(G) and 0 0 0 

p — w + m . Thus each p s I(G) and consequently all x 0 x x 
finite sums of P s t I(G). Since P = P + P + P P x+y y x x y 

(see (8) of [8]), — p — p + p = p p . Thus products x y x+y x y 
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of p's are contained in I(G). Consequently R(G) ~ I(G). 

Df''137. 1171~2 f 1 2f' 
G/Z(G) is abelian. 

Theorem 3. 8. P g: ~ — g — x + g + x is an endomorphism 
x 

if and only if G is nilpotent of at most class 2. 

Proof: Suppose G is nilpotent of at most class 2. This 

implies the commutator of every pair of elements of G is in 

Z(G). Thus (g + g )P = - g - g - x + g + g + x, 
1 2 x 2 1 

=-g -g -x+g +x-x+g +x, 

=-g + [g, x] -x+g +x, 

[g , x] — g — x + g + x, 

[g , x] + [g , x], 

glP + g2P ~ 

Now suppose p is an endomorphism for every g, g x 

x c G. Then gl p + g2p gl + g2 p 1 x 2 x 1 2 

— g — x+g +x-g -x+g +x=--g -g -x+g +g +x, 
1 1 2 2 2 1 1 2 

g-x+g+x — gx= — g — g — x+g ~ 1 1 2 2 1 1' 

— g -x+g +x- 
1 1 g2 gl x + gl + xg 

[g, x] — 
g& 

= — g + [g, x]. 
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Since every x E G determines a p and g aud g2 are 

arbitrary, G' u Z(G). Thus G is nilpotent of at most class 2. 

Since Q is obviously 3-metabelian, R(Q) is a subring of 

E(Q) and since Q is nilpotent of class 2 each p is in fact an x 

endomorphism. R(Q) = (0, 25, 26, 27) of Table II. 

(R(Q), +) = (C , +) 8 (C , +) where C represents a cyclic 

group of order 2; the product of two elements of R(Q) is the 

zero map. 

Definition 3. 9. A group is an ~L- rou if [[x, y], y] = 0 

for all x, y c G. [x, y] = — x — y + x + y. 

Chandy [4] has shown that the near ring I(G) is a ring 

if and only if G i. s an L-group and that any group nilpotent 

of class at most 2 is an L-group. Consequently, I(Q) is a 

subring of E(Q) and I(Q) ([1, 2, 5, 6)) where 1, etc. are 

from Table II. (I(Q), +) = (C4, +) + (C2, +) + (C2 +) ~ 

The elements of I(Q) are displayed in Table VI. 

Theorem 3. 10. G is nilpotent of class 2 if and only if 

p p = 0, the map which takes every element of G to the 
x y 

identity of G. 

Proof: Since g(p p ) = (gp )p x y x y 

(- g — x + g + x) p 

-x -g+x+g — y — g-x+g+x+y 
[x, g] -y+ [g, x]+y 



TABLE VI 

THE ELEHE'ATS OF 1(Q) 

a 2a 3a 

1. 0 0 0 

2. a 2a 

3. a 2a 3a 2a+b 

4. 3a 2a a 

5. 3a 2a a 2a+b 

a+b 

a+b 

3a+b 

3a+b 

a+b 

2a+b 

2a+b 

2a+b 

3a+b 

3a+b 

a+b 

a+b 

3a+b 

6. 2a 0 2a 

7. 2a 0 2a 

8. 0 0 0 

9. 0 0 0 

2a 

2a 

2a 

2a 

2a 

2a 

2a. 

2a 

10. 3a 2a a 2a+b 

11. 3a 2a a 

3a+b 

a+b 2a+b 

a+b 

3a+b 

12. a 2a 3a 2a+b 

a 2a 3a 

a+b 

3a+b 2a+b 

3'-b 
a+b 

14. 0 0 0 

15. 2a 0 2a 

16. 2a 0 2a 

2a 

2a 

2a 

2a 

2a 

2a 

2a 

2a 

2a 
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— y + [x, g] + [g, x] + y 

The converse follows in a similar manner. 

~C11 3. 11. If 2 ' 'lp t t ~ f I I, 

+ p x y x+y 

Theorem 3. 12. If G is nilpotent of cia s 2, 

R(G) c: Z(E(G), +). 

Proof: Let e represent any element of E(G). Since G is 

nilpotent of class 2 any element of R(G) is a p for some 

x t G. Let ge = g'. Then g(p + e) = [g, x] + g' 

= g' + [g, x] 

= g(e + p ). 
Thus R(G) 2: Z(E(G), +) ~ 
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CHAPTER IV 

THE RADICAL OP E(Q) 

Since the radical of E(Q) depends on cert ain right 

ideals more definitions and theorems are necessary. 

Definition 4. 1. A subset K of a near ring R is a left 

ideal provided 

a) (K, +) is a normal subgroup of R, 

b) rk s K for each r t R and k s K. 

K is a right ideal provided 

kcK. 

a) (K, +) is a normal subgroup of R, 

b) (rl + k)r2 rlr2 c K for each r , r c R and 

K is an ideal if it is a left ideal and a right ideal. 

It is noted in [6] that in a d. g. near ring 

(r + k)r — r r r K is equivalent to kr t K. Since E(Q) 

is d. g. , kr s K will be sufficient as a condition for a normal 

subgroup K to be a right ideal. 

Theorem 4. 2. [11]. Let T be a non-empty subset of a 

group G. Let IT — — (r E E(G)~Tr = G), then IT is a right 

ideal in E(G). 

Definition 4. 3. A subgroup K of the near ring R is an 

R-su~b rou~ if KR c: K. 

Definition 4. 4. n If K is an R-subgroup such that K = 0 
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f . p' t 'tg*, gt 'dt b'~t ~ 

~Rb 
Definition 4. 5. The radical, J(R), of a d. g. near ring 

is the intersection of the right ideals of R which are 

maximal R-subgroups. If no such right ideals exist J(R) is 

defined to be R. 

Recall that C = ((0, 2a, 2a, 0, 0, 2a, 2a)), 

C = ((2a, 0, 2a, 0, 0, 0, 0)), B = ((x, 0, x, x, 0, x, 0)~ 

x c Q), and M = ((y, 0, y, 0, y, 0, y))y s Q). Let 
e 

B = ((2a, 0, 2a, 2a, 0, 2a, 0)) and N = ((2a, 0, 2a, 0, 2a, 

0, 2a)). Some of the right ideals of E(Q) along with their 

respective subsets T (in the sense of Theorem 4. 2) are given 

below: 

(a, b, a+b) Cl 

(2a, b, a+b) C2 

(2a) 

(b) 

(a + b) 

B + C + M e 

C +C +M e 

B+0 +C 

Also it is easily seen that B and M are right ideals. 

Since, in a d. g. near ring, the sum of right ideals is a right 
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ideal, it follows that B + C + C2+ M and B+ C + C +M e 

are right ideals. 

Since B + C + M is obviously a maximal right ideal, it e 

follows that B + C + M is a maximal E(Q)-subgroup. Now 
2 

Bl + Cl + C2 + M and B + Cl + C2 + Ml have been shown to be e 

right ideals. If they are also maximal E(Q)-subgroups, it 
will follow that J(E(Q)) ~ (B + C2 + M ) ll (Bl + Cl + C2 + M ) e 1 1 2 e 

" " ' '1 ' '2 ™I' " ' ' '1 ' '2 4 Ml " "" -'" 
there exists a proper E(Q)-subgroup, R', such that 

B+ C + C +N CR CE(Q) If B+ C + C +M cR', there 
1 2 

' 
1 1 2 1 

is at least one r c E(Q) such that r s R' and r f B + Cl + C 

+ M . Consequently the N -term of r must be in 1' e 

N — ((2a, 0, 2a, 0, 2a, 0, 2a), (G, 0, 0, 0, 0, 0, 0)), and, e 

in fact, this N -term is in R'. But, an E(Q)-subgroup con- 

taining an element of the form (x, 0, x, 0, x, 0, x), 

x ] 0, 2a, must contain N since there exist functions in e 

E(Q) which map such an x to any given element in Q. Hence 

R' = E(Q) and B + Cl + C2 + Ml is a maximal E(Q)-subgroup. 

Similarly, it can be shown Bl + Cl + C2 + M is a maximal e 

E(Q)- subgroup. Thus 

J(E(Q)) ct(B + C 4 N ) () ( 1 1 + 
2 

+ n + 1 + 
2 

+ N ' 

2 e 1 1 2 e 

B +C +N 
1 

Theorem 4 S [9). The radical of a d. g. near ring F. 



contains all the nilpotent R-subgroups of R. 

Since B , C , and M are each nilpotent E(Q) -subgroups 

it follows that B + C, + M ~ J(E(Q)). 1 

Thus it has been shown that J(E(Q)) = Bl + C2 + M 

Because the radical is an ideal [1], we may consider 

E(Q)/J(E(Q)) ~ Since E(Q) has a multiplicative identity, 1 

of Table II, E(Q) /J(E(Q)) has the multiplicative identity 1, 

the coact containing 1. From 1 + 1 = (2a, 0, 2a, 2a, 2a, 2a) 

t J(E(Q)) it follows that 1 has additive order 2 in 

E(Q) /J (E(Q)) . Thus this quotient near ring has characteristic 

2. But this implies that the additive group of E(Q) /J(E(Q)) 

is abelian. Since it was shown in [6] that a d. g. near ring 

whose additive group is abelian is a ring, E(Q)/J(F(Q)) is 

a ring of order 32. 
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