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ABSTRACT
The Endomorphism Near Ring on the Quaterniom Group. (August 1949}
Mary Katherine King, B.A., Vanderbilt University;
) Dip. Ed., Makerere College;

Directed by: Dr. J.J. Malone, Jr.

The study of near rings is motivated by consideration of the
system generated by the endomorphisms of a group. In this thesis,
the near ring generated by the endomorphisms on the quaternion
group of order eight is displayed.

In addition, certain subrings, right ideals, and the radical

of the near ring are displayed.
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CHAPTER 1
INTRODUCTION

Endomorphism near rings furnish the motivation for distri-
butively generated near rings, as well as for near rings in
general. Distributively generated near rings have been studied
by Biedleman [2], Frohlich [6] and Laxton [10]. Frshlich [7]
also studied the near ring generated by the inner automorphisms
of a finite simple group. Chandy [4] gave a necessary and
sufficient condition that the near fing generated by the inner
automorphisms of a group be a ring. Gupta {8] presented a
necessary and sufficient condition that the near ring generated
by the mappings of the form P8 T "8~ X + g + x and
Ax:g + —-X-g+x+ g of a group be a ring. Malone and
Lyons [11] bave investigated the endomorphism near ring on 53.
Guthrie [9] has investigated the endomorphism near ring on the
dihedral group of order eight. However, there is at present no
general theory of the structure of endomorphism near rings. This
thasis will provide another example of such a near ring and thus,

hopefully, contribute to the formulation of the general theory.

Ihe citations on the following pages follow the style of the
cedings of the American Mathematical Society.




Definition 1.1. A near ring i; an ordered triple
(R, +, +) such that
a) (R, +) is a group,
b) (R, *) is a semigroup,
c) - is left distributive over +, i.e. 1:1-(:.'2 + r3)

=T, *1t,+r

1 2 1Ty for each Ty, Ty, Ty € R.

Definition 1.2. A near ring is distributively generated

(d.g.) 1f there exists S G R such that
a) (S, ) is a subsemigroup of (R, *),
b) each element of § is right distributive,
¢) 8 is an additive gemerating set for (R, +).

The near ring generated additively by the endomorphisms of
a group (G, +) is d.g. with S the set of endomorphisms. Such a
near ring will be called an endomorphism near ring and will be
denoted by E(G).

Some basic theorems on the decomposition of near rings
follow.

Theorem 1.3. [3] Let e be an idempotent element in thé
near ring R. Then each r e R has two unique decompositions
r=( ~er) +er =er+ (- er + ). ’1“nusR=AE+Me
=M, + A where A = {r - er | reRY={t eRrR |et=0},

M, = {er | rcR), and &, NM, = 0.



Theorem 1.4. [11] Let R be a near ring such that R, +)
is generated by (rY ] v € T, an index set}, Then Aa is the
normal subgroup generated by (rY -er, | vy €T} and M, is the

subgroup generated by {erY | vyer).

Corollary 1.5. [9] Tet A' be the subgroup generated by
{ry - ery). Then A_ consists of the elements of A' and any

conjugate of an element of A" by an element of Me.



CHAPTER II
THE ELEMENTS OF E(Q)

Let (Q, +) designate the non-abelian group of order eight
with addition as given in Table I. This group is called the
quaternion group ;E order eight. In this chapter the elements
of E(Q) will be displayed.

Since Q 1s finite each element of E(Q) can be expressed as
a finite sum of endomorphisms of Q. It is obvious that each
function in E(Q) maps O to 0. Each function in E(Q) can be
represented as a seven-tuple, the first coordinate being the
image of a, the second the image of 2a, gtc. TFor example, the
seven-tuple (a, 2a, 3a, b, atb, 2a+b, 3atb) represents the
identity function.. In E(Q) the addition of elements is point-
wise and multiplication is composition of functionms.

Table II, a list of the endomorphisms of Q, is taken
from [5].

Maxson and Clay [12] have shown that no quaternion group
has an idempotsut endomorphism other than the identity and the
zero. Consequently, the question of how to produce a non-
trivial idempotent arisés. The idempotent is necessary in order
to use Theorem 1.3. For this particular example, 1+ 1 + 8 + 12
is an idempotent element of E(Q). In general there has been no

investigation of necessary or sufficient conditions to produce



TABLE I

THE QUATERNION GROUP OF ORDER EIGHT

X ¢] a 2a 3a . b ath 2atb 3atb
0 0 a | 2a 3a b at+b 2ath 3at+b
a a 2a 3a 0 atb 2atb 3atb b
2a 2a 3a 0 a 2atb 3atb b atb
3a 3a 0 a 2a  3atb b atb 2a+b
b b 3atbh 2a+b atb 2a a 0 3a
at+b atb b 3a+b 2a+b 3a 2a a 0
2atb | 2atb atb b 3atb 0 3a 2a a
3ath | 3atb  2atb atb b a 0 3a 2a
G(a,b|2a = 2b = [a,b}, 4a = 1)
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13.
14.
15.
16.
17.
18.
19.
20.
21.
22,
23.
24,
25.
26.
27.

3ath
3atbh
3atb
3at+b

2a
2a

TABLE IT

THE ENDCMORPHISMS OF Q

3at+b
3atb
3ath
3atb

ath
atb
atb

0

2a+b
atb
3atb

2atb
atb
3atb

3a
atb
3atb

atb
0
atb
3atb
2atb
b
3atb

2atb

2atb

3a+b

3atb
ath
3a

2atb

3a

2atb

2a

2a

3atb

3atb

2atb
3a

2a



2 non-trivial idempotent in E(G), for an arbitrary group G.

From Table IT, 1 + 1 + 8 + 12 = (atb, 0, ath, 0, atb, 0, atb)
is an idempotent of E(Q). Using e = 1 + 1 + 8 + 12, Theorem 1.3
is applied to determine the elements of E(Q). The decompositions
of the endomorphisms (in the sense of Theorem 1.4) are given in
Table III and Table IV.

From Table IIT and Theorem 1.4 it follows that
M, = {(y, 0,5, 0,9, 0, vy € Q}. Also, A', the group

generated by {rY - erY}, is

{(x, 0, x, X, 0, x, 0)|x e Q) + ((0, 2a, 2a, 0, 0, 2a, 2a)).

Let B = {(x, 0, %, %, 0, x, 0)|x € Q} and let

Cl = ((0, 2a, 2a, 0, 0, 2a, 2a)). Then A' =B + Cl =C, + B.

1
Let m e M, b e B, and ¢y = (0, 2a, 2a, 0, 0, 2a, 2a). Then
m4+b-m=(,0,v,0,v, 0, 9+ (%, 0, x, x, 0, x, 0)

- (y, 0, y,0,y,0, y). Since Z(Q), the center of Q, is {0, 2a}
and the commutator of every pair of elements lies in the center,
-y+x+y=xor-y+x+y=x+Za. Consequently m+ b - m

= (x, 0, x, x, 0, x, 0) or (x + 2a, 0, x + 2a, %X, 0, x, 0). -
Thus m+b -mec B+ CZ where 02 = ((2a, 0, 2a, 0, 0, 0, 0)) and
m+b+c1—mj—‘m+b—m+clsince every entry of CIEZ(Q).

Thus m +b +¢; -me B+C, + C,. From Corollary 1.5 it follows

1
+ Cl and the order of Ae is 32. Since the

1

that A =B+ C
e 2
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2.
3.
4,
5.
6.
7.
8.
9.
10.
11.
12,
13.
14,
15,
16.
17.
18.
19.
20.
21.
22,
23,
24,
25,
26.
27,

TABLE IIT

{r_ -~ er }
Y Y
a 2a 3a b atb 2ath 3atb
0 0 0 0 1] 0 0
b 2a 2a+b b 0 2a+b 2a
2a+b 2a b 2atb 0 b 2a
atb 2a 3ath ath Q 3atb 2a
3atb 2a atb  3atb 0 atb 2a
b 2a 2at+b b 0 2atb 2a
2atb 2a b 2ath [¢] b 2a
atb 2a 3atb ath 0 3ath 2a
3atb 2a atb  3atb 0 atb 2a
a 2a 3a a ] 3a 2a
3a 2a a 3a 0 a 2a
at+b 2a 3atb atb 0 3a+b 2a
3atb 2a atb  3atb 0 atb 2a
a 2a 3a a 0 3a 2a
3a 2a a 3a [4] a 2a
atb 2a 3atb atb 0 3atb 2a
3at+b 2a atb  3atb 0 atb 2a
a 2a 3a a 0 3a 2a
3a 2a a 3a 0 a 2a
b 2a 2atb b 0 2atb 2a
2a+b 2a b 2atb 0 b 2a
a 2a 3a a 0 3a 2a
3a 2a a 3a [} a 2a
b 2a  2ath b 0 2atb 2a
2atb 2a b 2atb o} b 2a
2a Q 2a 2a 0 2a 0
] 0 0 0 0 0 0
2a o 2a 2a ¢ 2a 0



TABLE IV

{er }
Y

a 2a 3a b a+b 2at+b 3atb
0. 0 0 0 [ 0 0 0
1. atb [ ath 0 atb 0 atb
2. 3atb 0 3at+b 0 3atb 0 3a+b
3. 2atb 0 2at+b 0 2a+b 0 2at+b
4. b 0 b 0 b 4] b
5. 3atb 0 3at+b 0 3atb o} 3atb
6. ath 0 atb 0 atb 0 ath
7. b 0 b 0 b 0 b
8. 2atb 0 2a+b 0 2a+b 0 2atb
9. 3atb 0 3atb 0 3a+b ] 3a+b
10. atb 0 ath 0 atb ] atb
11. a 0 a 0 a Q a
12. 3a 1] 3a 0 3a 0 3a
13. atb 0 atb 0o atb 0 atb
4.  3atb o 3a+b 0 3a+b 0 3a+b
15. 3a 0 3a o 3a 0 3a
16. a 0 a (] a 0 a
17. b 0 b 4] b 0 b
18.  2atb 0 2atb 0 2atb [ 2a+b
-19. 3a 0 3a 0 3a 0 3a
20. a 0 a [ a 0 a
21, 2atb 0 2atb 0 2a+bd 0 2atb
22. b 0 b 0 b Q b
23. a 0 a 0 a 0 a
24, 3a 0 3a [ 3a 0 3a
25. 2a 0 2a 0 2a 0 2a
26, 2a 0 2a 0 2a 0 2a
27. 0 0 0 0 0 0 0
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order of Me is 8, the order of E(Q) is 256. That is, every
element of E(Q) is of the form {(x, 0, x, x, 0, x, 0=z ¢ Q}
+ ((0, 2a, 2a, 0, 0, 2a, 2a)) + ((2a, 0, 2a, 0, 0, 0, 0))
+1{(y, 0, ¥, 0, ¥, 0, Y|y eah

Table V gives a complete listing of the idempotent elements
of E(Q). These idempotents can be used to induce other decom-

positions of E(Q).



10.
11.
12.
13.
14,
15.
16.
17.
18.
19,
20.
21.
22.
23.
24,
25.
26.
27,

P M OCOOOO OO0 QOO P

2a+b
3atb

P PO OCO O

TABLE V

IDEMPOTENTS OF E(Q)

Jatb

b

2a+b
3atb

3ath

2atb
atb
atb

3ath

2a+b

atb
2atb
3atb

11

3atb

atb
2atb
3atb

3atb
2atb

3atb
3a+b

3ath



28.
29.
30.
31.
32.
33.
34,
35.
36.
37.
38.
39.
40,
41,
42,
43,
44,
45,
46,
47.
48.
49.
50.
51.
52,
53,
54,

2atb

3a
3a
3atb
atb
3a
3a
2atb

3a

2atb
2atb

2atb
2a+b

atb
3atb

w
TP e 00 0o

2a
2a
2a

3a

o

atb
3a+b
atb
3atb
atb
3atb

2ath
atb
atb

atb
atb

» O 0O O

atb
atb
2a
2a
2a
2a
atb

2atb
2atb

2atb
2a+b
2a+h
2a+bh
3atb

2atb
2atb
2ath

ath
3atb
atb
3atb
atb
3atb
2ath

3atb
3ath
3a

3ath
3ath

oo O o

3atb

12
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CHAPTER IIL

CERTAIN SUBRINGS OF E(Q)

Definition 3.1. A subset K of a near ring R is a
subnear ring of R if (K, +, +) is also a near ring with
respect to the operations + and - of R.

Definition 3.2. A group G is metabelian if G', the
commutator subgroup, is abelian.

Definition 3.3. A group is n-metabelian if every
n-generator subgroup is metabelian.

Definition 3.4. [8]. With each element x € G associate
a mapping P, i8> =g -x+g+xof Ginto G. Let R(G) denote
the smallest near ring containing all sums and products of p's.

Theorem 3.5. [8]. R(G) is a ring if and only if G is
3—metabglian.

Theorem 3.6. R(G) < I(G), the near ring generated by the
inner automorphisms of G for any group G.

Proof: Let wx be the inner automorphism of G induced by x,
i.e. w ig > = X+ g+ xand w8 > 8- Note that

g~ uso) = - (gmo) = - g. Certainly - 6y € I(G) and

P = W+ W Thus each Py € I{G) and consequently all

o

. , ; =

finite sums of p's ¢ I(G). Since Oty Py +to Yo, oy
- - + = .

(see (8) of {8]), [ Pyt oy Py Thus products
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of p's are contained in I{G). Consequently R(G) & I(G).

Definition 3.7. A group is nilpotent of class 2 if

G/Z(G) 1is abelian.

Theorem 3.8. ng: + - g=-x+ g+ x 1s an endomorphism

if and only if G is nilpotent of at most class 2.

Proof: Suppose G is nilpotent of at most class 2. This

implies the commutator of

Z(G). Thus (g, + gy)p, =

every pair of elements of G is in

-8y~ 8 ~xtg te, tx
-gz-gl—x+g1+x-x+gz+x,

-8yt gy, %) -x+g +x,

= lgys x] ~ gy ~x+3gy +x,

= lgys x] + gy, xI,

+ .
819, T BaPy

Now suppose Py is an endomorphism for every g9s 8y

x € G. Then gl ox + gsz

—gl—x+gl+x-g2
-gl-x+gl+x—gz

—gl-x+gl+x—-g2

(g, x) - 8, = -8, + [5,

=<31+g2)px,
+g2+x=—g2-gl—x+gl+g2h(,

=-gy -8 "Xt g

~ gy - 8 Xt g tx

x].



Since every x € G determines a [ and 8 and g, are
arbitrary, G' € 2(G). Thus G is nilpotent of at most class 2.

Since Q is obviously 3-metabelian, R(Q) is a subring of
E(Q) and since Q is nilpotent of class 2 each Py is in fact an
endomorphism. R(Q) = {0, 25, 26, 27} of Table II.
®R@Q, ) =2 (©,, +) 8 (C,, +) where C, represents a cyclic
group of order 2; the product of two elements of R(Q) is the
zero map.

Definition 3.9. A grou‘p is an L-group if [[x,yl,y] = 0
for all x, y e G. [x,y] = ~x~-y+x+y.

Chandy [4] has shown that the near ring I(G) is a ring
if and only if G is an L-group and that any group nilpotent
of class at most 2 is an L-group. Consequently, I(Q) is a
subring of E(Q) and 1(Q) = ({1, 2, 5, 6}) where 1, etc. are
from Table II. (T(Q), +) = (G, +) @ (Cpy 1) & (Cyy ).

The elements of I(Q) are displayed in Table VI.

Theorem 3.10. G is nilpotent‘ of class 2 if and only if
pxny = 0, the map which takes every element of G to the
identity of G.

Proof: Since g(pxpy) = (spx)ﬂy
=g-xtg+uog
=-x-g+x+g-y-g-x*+tgtxty

[x, gl -y + [g, xl +vy



1.

&,
5.
6.
7.

2.
10.
11.
12.
13.
14.
15.
16.

=3

2a
2a

TABLE VL

THE ELEMENTS OF I(Q)

3a
0

0

2a+b

b

2atb

2a

2a

2atb

2atb

b

2a

2a

atb
0
atb
3atb
3atb

3atb
atb
atb

Jatd

2a
2a

2at+b

2ath

2a+b

2a

2a

2atb

2atb
2a

3atb

3atb
ath
atb
3atb



= -y+x, gl +ig, x]1+y

0.

The converse follows in a similar manner.
Corollary 3.11. If G is nilpotent of class 2,

[ Py = Priy

Theorem 3.12. If G is nilpotent of class 2,
R(G) ¢ Z(E(G), +).
Proof: Let e represent any element of E(G). Since G is

nilpotent of class 2 any element of R(G) is a Py for some

x e G. Let ge = g'. Then g(px+ e) = [g, x] +g'

g' + (g, x]
= gle + px)‘

Thus R(G) < Z(E(G), +).

17
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CHAPTER IV

THE RADICAL OF E(Q)

Since the radical of E(Q) depends on cerfain right
ideals more definitions and. theorems are necessary.

Definition 4.1, A subset K of a near ring R is a left
ideal provided

a) (K, +) is a normal subgroup of R,

b) vk € K for each r ¢ R and k ¢ K.
K is a right ideal provided

a) (X, +) is a normal subgroup of R,

b) (rl + k)r2 =TTy € K for each Tys Ty € R and
k e K.

K is an ideal if it is a left ideal and a right ideal.

It is noted in [6] that in a d.g. near ring
(rl + k)r2 - TT, € K is equivalent to kr ¢ K. Since E(Q)
is d.g., kr € K will be sufficient as a condition for a normal
subgroup K to be a right ideal.

Theorem 4.2. [11]. Let T be a non-empty subset of a
group G. Let Ip = {r ¢ E(G)|Tr = 0}, then 1, is a right
ideal in E(G). -

Definition 4.3. A subgroup K of the near ring R is an
R-subgroup if KR S K.

Definition 4.4. If K is an R-subgroup such that K" =0
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for some positive integer n, K is said to be a nilpotent

R-subgroup.
Definition 4.5. The radical, J(R), of a d.g. near ring

is the intersection of the right ideals of R which are
maximal R-subgroups. If no such right ideals exist J(R) is
defined to be R.

Recall that C, = ((0, 2a, 2a, 0, 0, 2a, 2a)),
¢, = ((2a, 0, 23, 0, 0, 0, 0)), B =1{(x, 0, x, %, 0, x, 0}
x € Q}, and Me = {{(y, 0, ¥y, 0, ¥, 0, Vly e @}, Let
Bl = ((2a, 0, 2a, 2a, 0, 2a, 0}) and Ml = ((2a, 0, 2a, 0, 2a,
0, 2a)). Some of the right ideals of E(Q) along with their

respective subsets T (in the sense of Theorem 4,2) are given

below:
T i
{a, b, a + b} cy
{2a, b, a + b} C2
{2a} B+C,+M
2 e
{b} Cy +Cy+ M,
{a + b} B+C +C,

Also it is easily seen that Bl and Ml are vight ideals.

Since, in a d.g. near ring, the sum of right ideals is a right
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ideal, it follows that 31'+ €L+ Cy+M, and B+ Cy+Cy+ M

2 2 1

are right ideals.
Since B + C2 + Me is obviously a maximal right ideal, it
follows that B + C2 + Me is a maximal E(Q)-subgroup. Now

Bl + C1 + CZ + Me and B + C1 + 02 + Ml have been shown to be

right ideals. If they are also maximal E(Q)-subgroups, it

will follow that J(E(Q)) < (B + C, + M) n (B) +C) +Cy + 1)

2 1 2

1 2 + Ml). If B + Cl + 02 + Ml is not maximal,

there exists a proper E(Q)-subgroup, R', such that

nNE@E+c, +¢

C R C
B+C1+C2+M1 R E@Q). If]3+01+C2

is at least one r ¢ E(Q) such that r ¢ R" and r # B + Cl +C

+ Ml < R', there

2
+ Ml. Consequently the Me-term of r must be in

M, - {(2a, 0, 2a, 0, 2a, 0, 2a),(6, 0, 0, 0, 0, 0, 00}, and,
in fact, this Me—tem is in R'. But, an E(Q)-subgroup com—
taining an element of the form (x, 0, x, 0, x, 0, x),

X # 0, 2a, must contain Me since there exist functions in
E(Q) which map such an x to any given element in Q. Hence

R' = E(Q) and B + Cl +C,+ Ml is a maximal E(Q)-subgroup.
Similarly, it can be shown Bl + Cl + CZ + Me is a maximal

£(Q)- subgroup. Thus

JE@)) < (B + ,CZ + Me) n (Bl + Cl + C2 + Me) n{ + Cl + C2 + Ml.)

=Bl+C1+Ml.

Theorem 4:6. [9]. The radical of a d.g. near ring R
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contains all the nilpotent R-subgroups of R.

Since Bl’ CZ’ and Ml are each nilpotent E(Q‘)Asubgroups
it follows that B, + C, + My < J(E@).

Thus it has been shown that J(E(Q)) = Bl + 02 + Ml.

Because the radical is an ideal [1], we may consider
E(Q)/J(E(Q)). Since E(Q) has a multiplicative identity, 1
of Table TI, E(Q)/J(E(Q)) has the multiplicative identity I,
the coset containing 1. From 1+ 1 = (2a, 0, 2a, 2a, 2a, 2a)
g J(E(Q)) it follows that T has additive order 2 in
E(Q)/J(E(Q)). Thus this quotient near ring has characteristic
2. But this implies that the additive group of E(Q)/J(EWQ))
is abelian. Since it was shown in [6] that a d.g. near ring

whose additive group 1s abelian is a ring, E(Q)/J(E(Q)) is

a ring of order 32.
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