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ABSTRACT 

The Endomorphism Rear Ring on Dg. (August 1969) 

Edgar R. Guthrie, B. S. , Sam Houston State; 

Directed by: Dr. J. J. Malone, Jr. 

The study of near rings is motivated by consideration of the 

system generated by the endomorphisms of a group. In this thesis, 

the near zing generated by the endomorphisms on the dihedral 

group of order eight is offered. 

In addition, certain right ideals and the radical of the 

near ring are displayed. 
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CHAPTER I 

INTRODUCTION 

While the subject of endomorphism near rings has been explored 

[6] there is still a lack of specific examples of endomorphism near 

rings. It is the purpose of this thesis to display the near ring 

generated by the endomorphisms on the dihedral group of order 

eight, Dg. It i. s hoped that this example will contribute to the 

study of near rings. 

Definition 1. 1. A near ~rin is a triple (R, +, . ) such that 

1) (R, +) is a group, 

2) (R, . ) is a semigroup, 

3) rl(r2 + r3) = rlr2 + r r for each r , r , r c R. 

hf''tt 1. 2. A'gt ~dt th'1A tdtf 
there exists Sc:R such that 

1) (S, . ) is a subsemigroup of (R, . ), 
2) each element of S is right distributive, 

3) S is an additive generating set for (R, +) . 
The near ring generated additively by the endomorphisms of a 

group (G, +) is distributively generated, S being the set of 

The citations on the following pages follow the style of the P~dt f h A 
' gth tt l~gtt. 



endomorphisms. Such a near ring is called an endomorphism near 

ring and is denoted by E(G) . 

Definition 1. 3. A subset K of a near ring R is a left ideal 

1) (K, +) is a normal subgroup of R, 

2) rk c K for all r s R and k s K. 

K is a ~ri ht ideal if 

k s K. 

1) (K, +) is a normal subgroup of R, 

2) (r +k)r -rr sKfozallr, r cRand forall 1' 2 

K is an ideal if it is a left ideal and a right ideal. 

It is noted in [4] that in a distributively generated near 

ring the statement (r + k)r — r r s K '. s equivalent to kr s K. 1 2 1 2 

Since E(G) is a distributively generated near ring, kr E K will 

suffice as a condition for a normal subgroup K to be a right ideal. 

Definition 1. 4. A su'ngroup H of the near zing R is an 

~R 
— sub r~ou if HRwH. 

Definition 1. 5. If H is an R-subgroup such that H = 0 for 

some positive integer n, H is said to be a nil potent R-sub~rou 

Definition 1. 6. The radical, J(R), of the distributively 

generated near ring R is the intersection of the right ideals of R 

which are maximal R-subgroups. If no such right ideals exist, 

J(R) is defined t. o be R. 



CHAPTER II 
THE FORMJLATION OF E(DS 

The group Dg is displayed in Table 1. It should be pointed 

out that the center of Dg consists of the elements 0 and 2a. Also, 

the commutator of every pair of elements in Dg lies in the center 

of Dg. It follows then, that for every x and y belonging o DF, 

either x + y — x = y or x + y — x = 2a + y. 
The endomorphisms of Dg, from which the endomorphism near 

ring E(Dg) will be formed, are displayed in Table 2. This table 

is taken from [3]. 
For purposes of computation, it will be desirable to represent 

each element of E(DE) as a seven-tuple, A seven-tuple is suf- 

ficient since each endomorphism and each sum of endomorphisms maps 

0 to 0. In each seven-tuple: The first coordinate is the image of 

a, the accord coordinate is the image of 2a, and so on. For 

examp) e, the identity mapping li is represented as (a, 2a, 3a, b, 

a+b, 2a+b, 3a+b) . 
Addition of elements in E(Dg) is done by adoition of coordi- 

nates and multipJ ication is composition of functions. The follow- 

ing theorems will be of some value in determining E(Dg). 

Theorem 2. 1. [2] Let e be an idempotent element in the near 

ring R, Then each r t R has two unique decompositions r = (r — er) 

+ er = er+ (-er+r). Thus R =A +II =N +A where e e e e 



TABLE I 

THE DIHEDRAL GROUP DB 

+ 0 a 2a 3a b a+b 2a+b 3a+b 

2a 

3a 

a+b 

2a 

a+b 

a 2a 3a 

2a 3a 0 

3a 0 a 

0 a 2a 

3a+b 2a+b a+b 

b 3a+b 2a+b 

2a+b 3a+b 

3a+b 

b a+b 

a+b 2a+b 

3a 2a 

2a 

b a+b 2a+b 3a+b 

a+b 2a+b 3a+b b 

2a+b 

3a+b 

2a+b 

3a+b 

a+b 

2a+b 

b 3a+b 

a+b b 

2a 

3a 2a 

3a 



TABLE 2 

THE ENDOMORPHISPS OF D8 

M 

M2 

M 

M 

M 

M7 

MS 

M 

10 

12 

13 

14 

15 

16 

17 

0 a 2a 

0 a 2a 

0 a 2a 

0 a 2a 

0 a 2a 

0 3a 2a 

0 3a 2a 

0 3a 2a 

0 3a 2a 

0 0 0 

0 0 

0 0 p 

0 0 0 

0 0 p 

0 2a 0 

0 b 0 

0 a+b p 

0 2a+b 0 

3a 

3a 

b a+b 2a+b 3a+b 

b a+b 2a+b 3a+b 

3a a+b 2a+b 3a+b 

3a 2a+b 3a+b 

3a 3a+b b 

b a+b 

a+b 2a+b 

a b 3a+b 2a+b 

a a+b b 3a+b 

a+b 

2a+b 

a 2a+b a+b 

a 3a+b 2a+b 

0 2a 2a 

0 b b 

0 a+b a+b 

a+b 

3a+b 

2a 

a+b 

2a+b 

3a+b 

2a 

a+b 

2a 0 

b 0 

a+b 

2a 

a+b 

2a+b 2 a+b 0 2a-I-b 

0 2a+b 2a+b 2ayb 

0 3a+b 3a+b 3a+b 

18 0 3a+b 0 3a+b 3a+b 0 3a+b 

20 

21 

0 2a 0 

0 b 0 

0 a+b 0 

2a 

a+b 

0 2a 

p b 

0 a+b 

2a 

a+b 



22 

"23 

24 

25 

26 

27 

28 

29 

30 

31 

N32 

"33 

34 

35 

36 

0 2a+b 

0 3a+b 

0 2a 

0 2a 

0 2a 

0 2a 

0 a+b 

0 a+b 

0 3a+b 

0 3a+b 

0 b 

0 b 

0 2a+b 

0 2a+b 

0 0 

0 2a+b 

0 3a+b 

0 2a 

0 2a 

0 2a+b 

0 3a+b 

b 2a+b 

a+b 3a+b 

0 2a 2a+b b 

0 2a+b 

0 3a+b 

b 2a+b 

a+b 3a+b 

2a+b b 

0 a+b 2a 3a+b 2a 3a+b 

0 a+b 3a+b 2a 3a+b 

0 3a+b 

0 3a+b 

0 b 

2a a+b 

a+b 2a 

2a 2a+b 

2a a+b 

a+b 2a 

2a 2a+b 

0 b 2a+b 2a 2a+b 2a 

0 2a+b 

0 2a+b 

0 0 

2a 

2a 

2a 

2a 

0 2a 3a+b a+b 3a+b a+b 



A = (r — er : r t R) = (t t R : et = 0), M = (er : r t R), 

and A /1 M = 0. e e 

Theorem 2. 2. [6] Let R be a near ring such that (R, +) is 

generated by (r: z e Z, Z an index set). z 

Then A is the normal subgroup generated by (r — er: z E Z) and e z z 

M is the subgroup generated by (er : z t Z). e z 

~C1123. LtA'I hbgpg*sedby(-). z z 

Then A consists of the elements of A' and any conjugate of an e 

element of A' by an element of M e' 

In the discussion of E(DS) which follows the endomorphism M 13 
will serve as the idempotent e. The sets (M. — M . M } and i 13' i 
(M . M. ) are displayed, respectively, in Table 3 and in Table 4. 13' i 
The group additively generated by (M. — M, M ) is A' and the i 13'i 
group additively generated by (M . M ) is M . Note that A' is 13 i e 

((x, 0, x, x, 0, x, 0), (x, 2a, 2a+x, x, 2a, 2a+x, 0): x c Dg) and 

that M is ((0, 0, 0, y. y, y& y): y c Dg) ~ e 

Theorem 2. 4. The order of E(DH) is 256. 

Proof. Let H = ((x, 0, x, x, 0, x, 0): x E Dg) and let 

KZ = ((0, 2a, 2a, 0, 2a, 2a, 0)). ThenA' =H+KZ. Let m tM, e' 
h c H, and k2 = (0, 2a, 2a, 0, 2a, 2a, 0) E K ~ Now m + h — m 

(0, 0, 0, y, y, y, y) + (x, 0, x, x, 0, x, 0) — (0, 0, 0, y, y, y, y) 

(x, 0, x, y+x-y, 0, y+x-y, 0). Since y + x — y = x or 

y+x-y= 2a+x, m+h-mwillbe (x, 0, x, x, 0, x, 0) or 



TABLE 3 

(M~ — M 3. M~) 

ML (a, 2a, 3a, a, 2a, 3a, 0) 

(a, 2a, 3a, a, 2a, 3a, 0) 

M (a, 2a, 3a, a, 2a, 3a, 0) 

M& (a, 2a, 3a, a, 2a, 3a, 0) 

M (3a, 2a, a, 3a, 2a, a, 0) 

(3a, 2a, a, 3a, 2a, a, 0) 

M (3a, 2a, a, 3a, 2a, a, 0) 

M (3a, 2a& a, 3a, 2a, a, 0) 

M (0, 0, 0, 0, 0, 0, 0) 

M (0, 0, 0, 0, 0, 0, 0) 

(0, 0, 0, 0, 0, 0, 0) 

M (0, 0, 0, 0, 0, 0, 0) 

ML3(0~0&0~0 ~ 0~0~0) 

M&& (2a, 0, 2a, 2a, 0, 2a, 0) 

M (b, 0, b, b, 0, b, 0) 

M 
6 (a+b, 0, a+b, a+b, 0, a+b, 0) 

(2a+b, 0, 2a+b, 2a+b, 0, 2a+b, 0) 

(3a!b, 0, 3a+b, 3a+b, 0, 3a+b, 0) 

M (2a, 0, 2a, 2a, 0, 2a, 0) 

M20 (b 0 b b 0 j b j 0) 

M2L (a+b, 0, a+b, a+b, 0, a+b, 0) 

(2a+b, 0, 2a+b, 2a+b, 0, 2a+b, 0) 



"23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

"33 

34 

35 

36 

(3a+b, 0, 3a+b, 3a+b, 0, 3a+b, 0) 

(2a, 0, 2a, 2a, 0, 2a, 0) 

(2a, 0, 2a, 2a, 0, 2a, 0) 

(2a, 0, 2a, 2a, 0, 2a, 0) 

(2a, 0, 2a, 2a, 0, 2a, 0) 

(a+b, 0, a+b, a+b, 0, a+b, 0) 

(a+b, 0, a+b, a+b, 0, a+b, 0) 

(3a+b, 0, 3a+b, 3a+b, 0, 3a+b, 0) 

(3a+b, 0, 3a+b, 3a+b, 0, 3a+b, 0) 

(b, 0, b, b, o, b, 0) 

(b, 0, b, b, o, b, 0) 

(2a+b, 0, 2a+b, 2a+b, 0, 2a+b, 0) 

(2a+b, 0, 2a+b, 2a+b, 0, 2a+b, 0) 

(0, 0, 0, 0, 0, 0, 0) 



io 

TABLE 4 

(M . M ) 

(0, 0, 0, 3a+b, 3a+b, 3a+b, 3a+b) 

M2 (0, 0, 0, b& b, b, b) 

M3 (0, 0, 0, a+b, a+b, a+b, a+b) 

(0, 0, 0, 2a+b, 2a+b, 2a+b, 2a+b) 

M (0, 0, 0, a+b, a+b, a+b, a+b) 

M& (0, 0, 0, 2a+b, 2a+b, 2a+b, 2a+b) 

(0& 0 
& 

0 3a+b 
& 

3a+b 3a+b 
& 3a+b) 

M(o, o, o, b, b, b, b) 

M (0, 0, 0, 2a, 2a, 2a, 2a) 

]0 (0& 0» 0& ~ b» ) 

(0, 0, 0, a+b, a+b, a+b, a+b) 

(0, 0, 0, 2a+b, 2a+b, 2a+b, 2a+b) 

(0, 0, 0, 3a+b, 3a+b, 3a+b, 3a+b) 

MLA (0 0 0 0 0 ~ 0 0) 

(0& 0 0 0 0 ~ 0 0) 

M(0, 0, 0, 0, 0, 0, 0) 

(0 0 0 0 0 ~ 0 0) 

"is (o o o o o o ) 

M]9 (0, 0, 0, 2a, 2a, 2a, 2a) 

M (0, 0, 0, b, b, b, b) 

(0 0 0 a+b a+b a+b a+b ) 

(0, 0, 0, 2a+b, 2a+b, 2a+b, 2a+b) 



"23 

24 

25 

26 

"27 

28 

29 

30 

31 

"32 

"33 

34 

35 

36 

(0, 

(0, 

(0, 

(0, 

(0, 

(0, 

(0, 

(0, 

(0, 

(0, 

(0, 

(0, 

(0, 

(0, 

0, 0, 

0, 0, 

0, 0, 

0, 0, 

0, 0, 

0, 0, 

0, 0, 

0, 0, 

0, 0, 

0, 0, 

0, 0, 

0, 0, 

0, 0, 

0, 0, 

3a+b, 3a+b, 3a+b, 3a+b) 

2a+b, 2a+b, 2a+b, 2a+b) 

3a+b, 3a+b, 3a+b, 3a+b) 

b, b, b, b) 

a+b, a+b, a+b, a+b) 

3a+b, 3a+b, 3a+b, 3a+b) 

2a, 2a, 2a, 2a) 

a+b, a+b, a+b, a+b) 

2a, 2a, 2a, 2a) 

2a+b, 2a+b, 2a+b, 2a+b) 

2a, 2a, 2a, 2a) 

b, b, b, b) 

2a, 2a, 2a, 2a) 

0, 0, 0, 0) 
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(x, 0, x, 2a + x, 0, 2a + x, 0) . Hence m + h — m c H + K where 

K = ((0, 0, 0, 2a, 0, 2a, 0)) and m + h + k - m = m + h - m + k 

c H + K + K2. It follows that A = H + Kl + K and the order of e 

A is 32. Since the order of M is 8, the order of E(DH) is 256. e e 
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C H A P T E R III 

THE RADICAL OF E(DS) 

Since the radical of E(DS), J(E(DS)), depends on the right 

ideals of E(Dg) which are maximal E(DS)-subgroups, an investigation 

of some of the right ideals is essential. 

Theorem 3. 1. [6] Let T be a non-empty subset of a group G. 

Let I (r t E(G) : Tr = 0). If I is non-empty, then I is a 

right ideal in E(G). 

Recall that K = ((0, 0, 0, 2a, 0, 2a, 0)) and K ((0, 2a, 

2a, 0, 2a, 2a, 0)). Let N ((0, 0, 0, 2a, 2a, 2a, 2a))c:M and e 

Hl = ((2a, 0, 2a, 2a, 0, 2a, 0)) C:H where M and H are defined as e 
before. Some of the right ideals of E(DS) along with their 

respective subset T are 

(0, a, 2a, 3a, a+b, 3a+b) 

(0, a, b, 3a+b) 

(0, 2a, a+b, 3a+b) 

(0, a, 2a, 3a) 

(0, 2a) 

N and Hl are also right ideals. 

K 

K2 

H+ K 

Kl + M e 

H+K +M e' 

To show this, let n c N and 

r c E(Dg). Since 0 and 2a belong to the center of Dg, it follows 

that r + n = n + r and N is a normal subgroup of E(Dg) . Now (x)n ~ 

0 or (x)n = 2a for all x t Dg. Also (0)r = 0 and either (2a)r = 2a 
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or (2a)r 0 for all r c E(DS). Hence, (x)nr = 0 or (x)nr = 2a and 

nr t N making N a right ideal. 

Similarly, it can be shown that H is a right ideal. 

Since the sum of right ideals is a right ideal, it follows 

that H + Kl + K + N and H + Kl + K2 + M are also right ideals. e 

Theorem 3. 2. H + Kl + K2 + N, H + Kl + K + M , and H + K + e' 
M are right ideals which are maximal E(DS)-subgroups. e 

Proof. Since right ideals are R-subgroups it remains only to 

show that H + Kl + M, H + Kl + K2 + N, and Hl + Kl + K2 + M are e' 1 2 ' 1 1 2 e 
maximal E(D )- subgroups. 8 

To prove that H + Kl + K2 + N is a maximal E(DS) -subgroup, we 

will suppose that it is not maximal and show that our supposition 

leads to a contradiction. 

If H + K + K + N is not maximal then there exists a proper 

E(DS)-subgroup, call it R', such that H + K + K + Nc:R' e E(DS). 

If H + Kl + K2 + Nc R there is at least one r t E(DS) such that 

r c R' and r g H + Kl + K + N. Hence, the M -term of r must be e 
one of the following: 

Z 
2 

r 3 

r 
4 

r 
5 

r 
6 

(0, 0, 0, a, a, a, a), 

(0, 0, 0, 3a, 3a, 3a, 3a), 

(0, 0, 0, b, b, b, b), 

(0, 0, 0, a+b, a+b, a+b, a+b), 

(0, 0, 0, 2a+b, 2a+b, 2a+b, 2a+b), or 

(0, 0, 0, 3a+b, 3a+b, 3a+b, 3a+b). 
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Then, in fact, at least one ri is in R'. 

Since R' is an E(Dg)-subgroup, then R' . E(DS) & R'. The 

following equations based on R'. E(DS) c R' demonstrate that if 

any r. is in R', then N ~ R' and R' coincides with E(DS) . This i 
contradicts the hypothesis that R' is a proper E(Dg)-subgroup of 

E(DS). Consider 

z (3a, Q, 3a, 3a, 0, 3a, Q) = z 

r2(b, 0, b, b, 0, b, 0) = r3 

r3(a, 0 ~ a, a, 0 ~ a, 0)=rl 

3 4 4 

3 5 5 

r3r6 r6 

r4r3 r3 

r4r5 = r5 

4 6 6 5 r6r3 13 

r5r3 = r3 

r5r4 = r4 r6r5 r5 

Hence, H + Kl + K2 + N is a maximal E(DS)-subgroup. 

Similarly, it can be shown that H + K + K + H is a maximal e 

E(Dg)-subgroup. Since H + Kl + H contains 128 elements, it is 

immediate that it is a maximal E(DS)-subgroup. The intersection 

of these three ideals is H + Kl + N. 

According to Definition 1. 6, J(E(DS) }CHI + Kl + N For if 
there exists another right ideal which is a maximal E(DS)-subgroup, 

call it L, it will either contain H + Kl + N or it will not. If 

L does contain Hl + Kl + N, then the intersection is still Hl + Kl + 

N. If L does not contain Hl + Kl + N, then the intersection is 

contained in H + K + N. Hence, the radical of E(D ) cannot be 

any larger than Hl + K + N and J(E(DS))C'H + Kl + N. 
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The definition of the radical of a distributively generated 

near ring given by Laxton [5] does not appear to be the same as 

the definition we have given. In fact, the only difference is in 

the terminology employed. The following theorem is a restatement 

in our terminology of Theorem 1, 5 of [5]. 

Theorem 3. 3. The radical of a distributively generated near 

ring R contains all the nilpotent R-subgroups of R. 

Since H , K and N are each nilpotent E(DS)-subgroups it 
follows that H + Kl + NCJ(E(DS)). Thus we have shown 

Theorem 3. 4. J[E(DS) ) = Hl + Kl + N. 

Since the radical is an ideal [1], we may consider the 

quotient near ring E(DS)/J[E(DS)) ~ 

Theorem 3. 5. E(Dg) / J[E(DS)) has order 32 and is a ring of 

characteristic 2. 

Since E(DS) has a multiplicative identity, the M in Table 2, 

then E(DS)/J(E(DS)} has the multiplicative identity M , the coset 

containing Ml From Ml + Ml (2a, 0, 2a, 0, 0, 0, 0) c J(E(DS)), 

it follows that Ml has (additive) order 2 in E(DS)/J[E(DS)). Thus, 

this quotient near ring has characteristic 2. But this implies 

that the additive group of E(DS)/J(E(DS) ) is abelian. Since it 
was shown in [4] that a distributively generated near ring whose 

additive group is abelian is a ring, the theorem follows. 
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