THE ENDOMORPRISM NEAR RING ON D_{8}

A Thesis
by
Edgar Raymond Guthrie

Submitted to the Graduate College of Texas AdM University in

August $\quad 1969$
(Month) (Year)

Major Subject: Mathematics

THE ENDOMORPHISM NEAR RING ON D_{8}

A Thesis
 by

Edgar Raymond Guthrie

Approved as to style and content by:

(Member)

He d Supt
ABSTRACT
The Endomorphism Near Ring on D8. (August 1969)
Edgar R. Guthrie, B.S., Sam houston State;
Directed by: Dr. J. J. Malone, Jr.
The study of near rings is motivated by consideration of thesystem generated by the endomorphisms of a group. In this thesis,the near ring generated by the endomorphisms on the dihedralgroup of order eight is offered.
In addition, certain right ideals and the radical of the
near ring are displayed.

ACKNOWLEDGEMENT

I would like to express my appreciation to Professor J. J.
Malone for his guidance in the preparation of this thesis.

TABLE OF CONTENTS

CHAPTER Page
I. INTRODUCTION 1
II. THE FORMULATION OF E(D8) 3
III. THE RADICAL OF E(D8) 13
REFERENCES 17
VITA 18

LIST OF TASLES

TABLE Page

1. THE DIHFDRAL GROUP D_{8} 4
2. THE ENDOMORPHISMS OF D_{8} 5
3. $\left\{M_{i}-M_{13} \cdot M_{i}\right\}$ 8
4. $\left\{M_{13} \cdot M_{i}\right\}$ 10

CHAPTER I

INTRODUCTION

While the subject of endomorphism near rings has been explored [6] there is still a lack of specific examples of endomorphism near rings. It is the purpose of this thesis to display the near ring generated by the endomorphisms on the dihedral group of order elght, D_{8}. It is hoped that this example will contribute to the study of near rings.

Definition 1.1. A near ring is a triple ($R,+$, .) such that

1) ($\mathrm{R},+$) is a group,
2) ($R,$.$) is a semigroup,$
3) $r_{1}\left(r_{2}+r_{3}\right)=r_{1} r_{2}+r_{1} r_{3}$ for each $r_{1}, r_{2}, r_{3} \in R$.

Definition 1.2. A near ring is distributively generated if there exists $S C R$ such that

1) ($\mathrm{S},$.) is a subsemigroup of ($\mathrm{R},$. .),
2) each element of S is right distributive,
3) S is an additive generating set for ($R,+$).

The near ring generated additively by the endomorphisms of a group $(G,+)$ is distributively generated, S being the set of

The citations on the following pages follow the style of the Proceedings of the American Mathematical Society.
endomorphisms. Such a near ring is called an endomorphism near ring and is denoted by $E(G)$.

Definition 1.3. A subset K of near ring R is a Ieft ideal if

1) ($K,+$) is a normal subgroup of R,
2) $r k \in K$ for all $r \in R$ and $k \in K$.
K is a right ideal if
3) ($\mathrm{K},+$) is a normal subgroup of R ,
4) $\left(r_{1}+k\right) r_{2}-r_{1} r_{2} \in K$ for all $r_{1}, r_{2} \in R$ and for all $k \in K$.

K is an ideal if it is a left ideal and a right ideal.
It is noted in [4] that in a distributively generated near ring the statement $\left(r_{1}+k\right) r_{2}-r_{1} r_{2} \varepsilon K$ is equivalent to $k r \varepsilon K$. Since $\mathrm{E}(\mathrm{G})$ is a disiributively generated near ring, $k r \in \mathbb{K}$ will suffice as a condition for a normal subgroup K to be a right ideal.

Definition 1.4. A sungroup H of the near ring R is an R-subgroup if $H R \subset R$.

Definition 1.5. If H is an R-subgroup such that $H^{n}=0$ for some positive integer n, H is said to be a nipotent R-subgroup.

Definition 1.6. The radical, $J(R)$, of the distributively generated near ring R is the intersection of the right ideals of R which are maximal R-subgroups. If no such riglet ideals exist, $J(R)$ is defined to be R.

C I A PTER II

THE FORMDLATION OF $E\left(D_{8}\right)$

The group D_{8} is displayed in Table 1 . It should be pointed out that the center of D_{8} consists of the elements 0 and 2 a . Also, the comoutator of every pair of elements in D_{8} lies in the center of D_{8}. It follows then, that for every x and y belonging to D_{8}, either $x+y-x=y$ or $x+y-x=2 a+y$.

The endomorphisms of D_{8}, from which the endomorphism near ring $E\left(D_{8}\right)$ will be formed, are displayed in Table 2. This table is taken from [3].

For purposes of computation, it will be desirable to cepresent each element of $E\left(D_{8}\right)$ as a seven-tuple. A seven-tuple is sufficient since each endomorphism and each sum of endomorphisms maps 0 to 0 . In each seven-tuple: The first coordinate is the image of a, the second coordinate is the image of $2 a$, and so on. For example, the identity mapping M_{1} is represented as ($\mathrm{a}, 2 \mathrm{a}, 3 \mathrm{a}, \mathrm{b}$, $a+b, 2 a+b, 3 a+b)$.

Addition of elenents in $E\left(D_{8}\right)$ is done by addition of coordinates and multipjication is composition of functions. The following theorems will be of some value in deteraining $E\left(D_{8}\right)$.

Theorem 2.1. [2] Let e be an idempotent element in the near ring R, Then each $r \in R$ has two unique decompositions $r=(r-e r)$ $+e r=e r+(-e r+r)$. Thus $R=A_{e}+M_{e}=M_{e}+A_{e}$ where

TABLE 1
THE DIHEDRAL GROUP D_{8}

+	0	a	$2 a$	$3 a$	b	$a+b$	$2 a+b$	$3 a+b$
0	0	a	$2 a$	$3 a$	b	$a+b$	$2 a+b$	$3 a+b$
a	a	$2 a$	$3 a$	0	$a+b$	$2 a+b$	$3 a+b$	b
$2 a$	$2 a$	$3 a$	0	a	$2 a+b$	$3 a+b$	b	$a+b$
$3 a$	$3 a$	0	a	$2 a$	$3 a+b$	b	$a+b$	$2 a+b$
b	b	$3 a+b$	$2 a+b$	$a+b$	0	$3 a$	$2 a$	a
$a+b$	$a+b$	b	$3 a+b$	$2 a+b$	a	0	$3 a$	$2 a$
$2 a+b$	$2 a+b$	$a+b$	b	$3 a+b$	$2 a$	a	0	$3 a$
$3 a+b$	$3 a+b$	$2 a+b$	$a+b$	b	$3 a$	$2 a$	a	0
-								

TABLE 2
THE ENDOMORPHISNS OF D8

	0	a	2a	3 a	b	$a+b$	$2 \mathrm{a}+\mathrm{b}$	$3 \mathrm{a}+\mathrm{b}$
${ }^{M} 1$	c	a	2a	3a	b	$a+b$	$2 \mathrm{a}+\mathrm{b}$	$3 \mathrm{a}+\mathrm{b}$
M_{2}	0	a	2a	3 a	$a+b$	$2 \mathrm{a}+\mathrm{b}$	$3 \mathrm{a}+\mathrm{b}$	b
M_{3}	0	a	2a	3 a	$2 \mathrm{a}+\mathrm{b}$	$3 \mathrm{a}+\mathrm{b}$	b	$a+b$
M_{4}	0	a	2a	3a	$3 \mathrm{a}+\mathrm{b}$	b	$a+b$	$2 \mathrm{a}+\mathrm{b}$
M_{5}	0	3 a	2a	a	b	$3 \mathrm{a}+\mathrm{b}$	$2 a+b$	$a+b$
M_{6}	0	3 a	2a	a	$a+b$	b	$3 \mathrm{a}+\mathrm{b}$	$2 \mathrm{a}+\mathrm{b}$
M_{7}	0	3 a	2a	a	$2 \mathrm{a}+\mathrm{b}$	$a+b$	b	$3 \mathrm{a}+\mathrm{b}$
M_{8}	0	3 a	2a	a	$3 \mathrm{a}+\mathrm{b}$	$2 \mathrm{a}+\mathrm{b}$	$a+b$	b
M_{9}	0	0	0	0	2 a	2a	2a	2a
M_{10}	0	0	0	0	b	b	b	b
M_{11}	0	0	0	0	$a+b$	$a+b$	$a+b$	$a+b$
M_{12}	0	0	0	0	$2 \mathrm{a}+\mathrm{b}$	$2 \mathrm{a}+\mathrm{b}$	$2 a+b$	$2 a+b$
M_{13}	0	0	0	0	$3 \mathrm{a}+\mathrm{b}$	$3 \mathrm{a}+\mathrm{b}$	$3 \mathrm{a}+\mathrm{b}$	$3 \mathrm{a}+\mathrm{b}$
M_{14}	0	2a	0	2a	2 a	0	2a	0
${ }^{M} 15$	0	b	0	b	b	0	b	0
${ }^{M} 16$	0	$a+b$	0	a+b	a+b	0	$a+b$	0
M_{17}	0	$2 a+b$	0	$2 \mathrm{a}+\mathrm{b}$	$2 \mathrm{a}+\mathrm{b}$	0	$2 \mathrm{a}+\mathrm{b}$	0
M_{18}	0	$3 a+b$	0	$3 \mathrm{a}+\mathrm{b}$	$3 \mathrm{a}+\mathrm{b}$	0	$3 \mathrm{a}+\mathrm{b}$	0
${ }^{\mathrm{M}} 19$	0	2a	0	2 a	0	2 a	0	2a
M_{20}	0	b	0	b	0	b	0	b
M_{21}	0	a+b	0	$a+b$	0	$a+b$	0	a+b

M_{22}	0	$2 a+b$						
M_{23}	0	$3 a+b$						
M_{24}	0	$2 a$	0	$2 a$	b	$2 a+b$	b	$2 a+b$
M_{25}	0	$2 a$	0	$2 a$	$a+b$	$3 a+b$	$a+b$	$3 a+b$
M_{26}	0	$2 a$	0	$2 a$	$2 a+b$	b	$2 a+b$	b
M_{27}	0	$2 a$	0	$2 a$	$3 a+b$	$a+b$	$3 a+b$	$a+b$
M_{28}	0	$a+b$	0	$a+b$	$2 a$	$3 a+b$	$2 a$	$3 a+b$
M_{29}	0	$a+b$	0	$a+b$	$3 a+b$	$2 a$	$3 a+b$	$2 a$
M_{30}	0	$3 a+b$	0	$3 a+b$	$2 a$	$a+b$	$2 a$	$a+b$
M_{31}	0	$3 a+b$	0	$3 a+b$	$a+b$	$2 a$	$a+b$	$2 a$
M_{32}	0	b	0	b	$2 a$	$2 a+b$	$2 a$	$2 a+b$
M_{33}	0	b	0	b	$2 a+b$	$2 a$	$2 a+b$	$2 a$
M_{34}	0	$2 a+b$	0	$2 a+b$	$2 a$	b	$2 a$	b
M_{35}	0	$2 a+b$	0	$2 a+b$	b	$2 a$	b	$2 a$
M_{36}	0	0	0	0	0	0	0	0

$A_{e}=\{r-e r: r \varepsilon R\}=\{t \varepsilon R: e t=0\}, M_{e}=\{e r: r \in R\}$, and $A_{e} \cap M_{e}=0$.

Theorem 2.2. [6] Let R be a near ring such that ($R,+$) is generated by $\left\{r_{z}: z \in Z, Z\right.$ an index set $\}$.
Then A_{e} is the normal subgroup generated by $\left\{r_{z}-\mathrm{er}_{z}: z \varepsilon Z\right\}$ and M_{e} is the subgroup generated by $\left\{\mathrm{er}_{\mathrm{z}}: \mathrm{z} \in \mathrm{Z}\right\}$.

Corollary 2.3. Let A^{\prime} be the subgroup generated by $\left\{r_{z}-e r_{z}\right\}$. Then A_{e} consists of the elements of A^{\prime} and any conjugate of an element of A^{\prime} by an element of M_{e}.

In the discussion of $E\left(D_{8}\right)$ which follows the endomorphism M_{13} will serve as the idempotent e. The sets $\left\{M_{i}-M_{13} \cdot M_{i}\right\}$ and $\left.{ }^{\left\{M_{13}\right.} . M_{i}\right\}$ are displayed, respectively, in Table 3 and in Table 4. The group additively generated by $\left\{M_{i}-M_{13} \cdot M_{i}\right\}$ is A^{\prime} and the group additively generated by $\left\{M_{13} \cdot M_{i}\right\}$ is M_{e}. Note that A ' is $\left\{(x, 0, x, x, 0, x, 0),(x, 2 a, 2 a+x, x, 2 a, 2 a+x, 0): x \varepsilon D_{8}\right\}$ and that M_{e} is $\left\{(0,0,0, y, y, y, y): y \varepsilon D_{8}\right\}$.

Theorem 2.4. The order of $E\left(D_{8}\right)$ is 256.
Proof. Let $H=\left\{(x, 0, x, x, 0, x, 0): x \varepsilon D_{8}\right\}$ and let $K_{2}=((0,2 a, 2 a, 0,2 a, 2 a, 0))$. Then $A^{\prime}=H+K_{2}$. Let $m \varepsilon M_{e}$, $h \in H$, and $k_{2}=(0,2 a, 2 a, 0,2 a, 2 a, 0) \varepsilon K_{2}$. Now $m+h-m=$ $(0,0,0, y, y, y, y)+(x, 0, x, x, 0, x, 0)-(0,0,0, y, y, y, y)$ $=(x, 0, x, y+x-y, 0, y+x-y, 0)$. Since $y+x-y=x$ or $y+x-y=2 a+x, m+h-m$ will be $(x, 0, x, x, 0, x, 0)$ or

TABLE 3

$$
\left\{M_{i}-M_{13} \cdot M_{i}\right\}
$$

M_{1}
(a, 2a, 3a, a, 2a, 3a, 0)
$M_{2} \quad(a, 2 a, 3 a, a, 2 a, 3 a, 0)$
$M_{3} \quad(a, 2 a, 3 a, a, 2 a, 3 a, 0)$
$M_{4} \quad(a, 2 a, 3 a, a, 2 a, 3 a, 0)$
$M_{5} \quad(3 a, 2 a, a, 3 a, 2 a, a, 0)$
$M_{6} \quad(3 a, 2 a, a, 3 a, 2 a, a, 0)$
$M_{7} \quad(3 a, 2 a, a, 3 a, 2 a, a, 0)$
$M_{8} \quad(3 a, 2 a, a, 3 a, 2 a, a, 0)$
$M_{9} \quad(0,0,0,0,0,0,0)$
$\mathrm{M}_{10} \quad(0,0,0,0,0,0,0)$
$M_{11} \quad(0,0,0,0,0,0,0)$
$M_{12} \quad(0,0,0,0,0,0,0)$
$M_{13} \quad(0,0,0,0,0,0,0)$
$M_{14} \quad(2 a, 0,2 a, 2 a, 0,2 a, 0)$
$M_{15} \quad(b, 0, b, b, 0, b, 0)$
$M_{16} \quad(a+b, 0, a+b, a+b, 0, a+b, 0)$
$M_{17} \quad(2 a+b, 0,2 a+b, 2 a+b, 0,2 a+b, 0)$
$M_{18} \quad(3 a+b, 0,3 a+b, 3 a+b, 0,3 a+b, 0)$
${ }^{M}{ }_{19} \quad(2 a, 0,2 a, 2 a, 0,2 a, 0)$
$M_{20} \quad(b, 0, b, b, 0, b, 0)$
$M_{21} \quad(a+b, 0, a+b, a+b, 0, a+b, 0)$
$M_{22} \quad(2 a+b, 0,2 a+b, 2 a+b, 0,2 a+b, 0)$

M_{23}	$(3 a+b, 0,3 a+b, 3 a+b, 0,3 a+b, 0)$
M_{24}	$(2 a, 0,2 a, 2 a, 0,2 a, 0)$
M_{25}	$(2 a, 0,2 a, 2 a, 0,2 a, 0)$
M_{26}	$(2 a, 0,2 a, 2 a, 0,2 a, 0)$
M_{27}	$(2 a, 0,2 a, 2 a, 0,2 a, 0)$
M_{28}	$(a+b, 0, a+b, a+b, 0, a+b, 0)$
M_{29}	$(a+b, 0, a+b, a+b, 0, a+b, 0)$
M_{30}	$(3 a+b, 0,3 a+b, 3 a+b, 0,3 a+b, 0)$
M_{31}	$(3 a+b, 0,3 a+b, 3 a+b, 0,3 a+b, 0)$
M_{32}	$(b, 0, b, b, 0, b, 0)$
M_{33}	$(b, 0, b, b, 0, b, 0)$
M_{34}	$(2 a+b, 0,2 a+b, 2 a+b, 0,2 a+b, 0)$
M_{35}	$(2 a+b, 0,2 a+b, 2 a+b, 0,2 a+b, 0)$
M_{36}	$(0,0,0,0,0,0,0)$

TABLE 4

$$
\left\{M_{13} \cdot M_{i}\right\}
$$

$M_{1} \quad(0,0,0,3 a+b, 3 a+b, 3 a+b, 3 a+b)$
$M_{2} \quad(0,0,0, b, b, b, b)$
$M_{3} \quad(0,0,0, a+b, a+b, a+b, a+b)$
$M_{4} \quad(0,0,0,2 a+b, 2 a+b, 2 a+b, 2 a+b)$
$M_{5} \quad(0,0,0, a+b, a+b, a+b, a+b)$
$M_{6} \quad(0,0,0,2 a+b, 2 a+b, 2 a+b, 2 a+b)$
$M_{7} \quad(0,0,0,3 a+b, 3 a+b, 3 a+b, 3 a+b)$
$M_{8} \quad(0,0,0, b, b, b, b)$
$M_{9} \quad(0,0,0,2 a, 2 a, 2 a, 2 a)$
$\mathrm{M}_{10} \quad(0,0,0, b, b, b, b)$
$M_{11} \quad(0,0,0, a+b, a+b, a+b, a+b)$
$M_{12} \quad(0,0,0,2 a+b, 2 a+b, 2 a+b, 2 a+b)$
$M_{13} \quad(0,0,0,3 a+b, 3 a+b, 3 a+b, 3 a+b)$
$M_{14} \quad(0,0,0,0,0,0,0)$
$M_{15} \quad(0,0,0,0,0,0,0)$
$M_{16} \quad(0,0,0,0,0,0,0)$
$M_{17} \quad(0,0,0,0,0,0,0)$
$M_{18} \quad(0,0,0,0,0,0,0)$
$M_{19} \quad(0,0,0,2 a, 2 a, 2 a, 2 a)$
$\mathrm{M}_{20} \quad(0,0,0, b, b, b, b)$
$M_{21} \quad(0,0,0, a+b, a+b, a+b, a+b)$
$M_{22} \quad(0,0,0,2 a+b, 2 a+b, 2 a+b, 2 a+b)$

M_{23}	$(0,0,0,3 a+b, 3 a+b, 3 a+b, 3 a+b)$
M_{24}	$(0,0,0,2 a+b, 2 a+b, 2 a+b, 2 a+b)$
M_{25}	$(0,0,0,3 a+b, 3 a+b, 3 a+b, 3 a+b)$
M_{26}	$(0,0,0, b, b, b, b)$
M_{27}	$(0,0,0, a+b, a+b, a+b, a+b)$
M_{28}	$(0,0,0,3 a+b, 3 a+b, 3 a+b, 3 a+b)$
M_{29}	$(0,0,0,2 a, 2 a, 2 a, 2 a)$
M_{30}	$(0,0,0, a+b, a+b, a+b, a+b)$
M_{31}	$(0,0,0,2 a, 2 a, 2 a, 2 a)$
M_{32}	$(0,0,0,2 a+b, 2 a+b, 2 a+b, 2 a+b)$
M_{33}	$(0,0,0,2 a, 2 a, 2 a, 2 a)$
M_{34}	$(0,0,0, b, b, b, b)$
M_{35}	$(0,0,0,2 a, 2 a, 2 a, 2 a)$
M_{36}	$(0,0,0,0,0,0,0)$

$(x, 0, x, 2 a+x, 0,2 a+x, 0)$. Hence $m+h-m \varepsilon H+K_{1}$ where
$K_{1}=((0,0,0,2 a, 0,2 a, 0))$ and $m+h+k_{2}-m=m+h-m+k_{2}$
$E H+K_{1}+K_{2}$. It follows that $A_{e}=H+K_{1}+K_{2}$ and the order of A_{e} is 32. Since the order of M_{e} is 8 , the order of $E\left(D_{8}\right)$ is 256.

CHAPTER III

THE RADICAL OF $E\left(D_{8}\right)$

Since the radical of $E\left(D_{8}\right), J\left\{E\left(D_{8}\right)\right\}$, depends on the right ideals of $\mathrm{E}\left(\mathrm{D}_{8}\right)$ which are maximal $\mathrm{E}\left(\mathrm{D}_{8}\right)$-subgroups, an investigation of some of the right ideals is essential.

Theoren 3.1. [6] Let T be a non-empty subset of a group G. Let $I_{T}=\{r \varepsilon E(G): T r=0\}$. If I_{T} is non-empty, then I_{T} is a right ideal in $E(G)$.

Recall that $K_{1}=((0,0,0,2 a, 0,2 a, 0))$ and $K_{2}=((0,2 a$, $2 a, 0,2 a, 2 a, 0))$. Let $N=((0,0,0,2 a, 2 a, 2 a, 2 a)) \subset M_{e}$ and $H_{1}=((2 a, 0,2 a, 2 a, 0,2 a, 0)) \subset H$ where M_{e} and H are defined as before. Some of the right ideals of $E\left(D_{8}\right)$ along with their respective subset T are

T
$\{0, a, 2 a, 3 a, a+b, 3 a+b\}$

$$
\{0, a, b, 3 a+b\}
$$

$$
\{0,2 a, a+b, 3 a+b\}
$$

$$
\{0, a, 2 a, 3 a\}
$$

$$
\{0,2 a\}
$$

$$
\begin{gathered}
I_{T} \\
K_{1} \\
K_{2} \\
H+K_{1} \\
K_{1}+M_{e} \\
H+K_{1}+M_{e}
\end{gathered}
$$

N and H_{1} are also right ideals. To show this, let $n \varepsilon N$ and $r \in E\left(D_{8}\right)$. Since 0 and $2 a$ belong to the center of D_{8}, it follows that $r+n=n+r$ and N is a normal subgroup of $E\left(D_{8}\right)$. Now (x) $n=$ 0 or $(x) n=2 a$ for all $x \& D_{8}$. Also (0 $r=0$ and efther (2a) $x=2 a$
or (2a)r $=0$ for all $r \& E\left(D_{8}\right)$. Hence, $(x) n r=0$ or $(x) n r=2 a$ and nr $\varepsilon \mathrm{N}$ making N a right ideal.

Similarly, it can be shown that H_{1} is a right ideal.
Since the sum of right ideals is a right ideal, it follows that $\mathrm{H}+\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{N}$ and $\mathrm{K}_{1}+\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{M}_{\mathrm{e}}$ are also right ideals.

Theorem 3.2. $\mathrm{H}+\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{N}, \mathrm{H}_{1}+\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{M}_{\mathrm{e}}$, and $\mathrm{H}+\mathrm{K}_{1}+$ M_{e} are right ideals which are maximal $E\left(D_{8}\right)$-subgroups.

Proof. Since right ideals are R-subgroups it remains only to show that $H+K_{I}+M_{e}, H+K_{I}+K_{2}+N$, and $H_{1}+K_{1}+K_{2}+M_{e}$ are maximal $E\left(D_{8}\right)$ - subgroups.

To prove that $H+K_{1}+K_{2}+N$ is a maximal $E\left(D_{8}\right)$-subgroup, we will suppose that it is not maxinal and show that our supposition leads to a contradiction.

If $\mathrm{H}+\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{N}$ is not maximal then there exists a proper $E\left(D_{8}\right)$-subgroup, call it R^{\prime}, such that $H+K_{1}+K_{2}+N \subset R^{\prime} \subset E\left(D_{8}\right)$. If $H+K_{1}+K_{2}+N \subset R^{\prime}$ there is at least one $r \varepsilon E\left(D_{8}\right)$ such that $r \in R^{\prime}$ and $r \notin H+K_{1}+K_{2}+N$. Hence, the M_{e}-term of r must be one of the following:
$r_{1}=(0,0,0, a, a, a, a)$,
$r_{2}=(0,0,0,3 a, 3 a, 3 a, 3 a)$,
$r_{3}=(0,0,0, b, b, b, b)$,
$r_{4}=(0,0,0, a+b, a+b, a+b, a+b)$,
$r_{5}=(0,0,0,2 a+b, 2 a+b, 2 a+b, 2 a+b)$, or
$r_{6}=(0,0,0,3 a+b, 3 a+b, 3 a+b, 3 a+b)$.

Then, in fact, at least one r_{i} is in R^{\prime}.
Since R^{\prime} is an $E\left(D_{8}\right)$-subgroup, then $R^{\prime} . E\left(D_{8}\right) \subset R^{\prime}$. The following equations based on $R^{\prime} . E\left(D_{8}\right) \subset R^{\prime}$ demonstrate that if any r_{i} is in R^{\prime}, then $M_{e} \subset R^{\prime}$ and R^{\prime} coincides with $E\left(D_{8}\right)$. This contradicts the hypothesis that R^{\prime} is a proper $E\left(D_{8}\right)$-subgroup of $E\left(D_{8}\right)$. Consider
$r_{1}(3 \mathrm{a}, 0,3 \mathrm{a}, 3 \mathrm{a}, 0,3 \mathrm{a}, 0)=\mathrm{r}_{2}$
$r_{2}(b, 0, b, b, 0, b, 0)=r_{3}$
$r_{3}(a, 0, a, a, 0, a, 0)=r_{1}$
$r_{3} r_{4}=r_{4} \quad r_{4} r_{3}=r_{3} \quad r_{5} r_{3}=r_{3} \quad r_{6} r_{4}=r_{4}$
$r_{3} r_{5}=r_{5} \quad r_{4} r_{5}=r_{5} \quad r_{5} r_{4}=r_{4} \quad r_{6} r_{5}=r_{5}$
$r_{3} r_{6}=r_{6} \quad r_{4} r_{6}=r_{6} \quad r_{5} r_{6}=r_{6} \quad r_{6} r_{3}=r_{3}$.
Hence, $H+K_{1}+K_{2}+N$ is a maximal $E\left(D_{8}\right)$-subgroup.
Similarly, it can be shown that $H_{1}+K_{1}+K_{2}+M_{e}$ is a maximal
$E\left(D_{8}\right)$-subgroup. Since $H+K_{1}+M_{e}$ contains 128 elements, it is immediate that it is a maximal $E\left(D_{8}\right)$-subgroup. The intersection of these three ideals is $\mathrm{H}_{1}+\mathrm{K}_{1}+\mathrm{N}$.

According to Definition 1.6, $J\left\{E\left(D_{8}\right)\right\} \subset H_{1}+K_{1}+N$. For if there exists another right ideal which is a maximal $E\left(D_{8}\right)$-subgroup, call it L, it will either contain $H_{1}+K_{1}+N$ or it will not. If L does contain $\mathrm{H}_{1}+\mathrm{K}_{1}+\mathrm{N}$, then the intersection is still $\mathrm{H}_{1}+\mathrm{K}_{1}+$ N. If L does not contain $H_{1}+K_{1}+N$, then the intersection is contained in $\mathrm{H}_{1}+\mathrm{K}_{1}+\mathrm{N}$. Hence, the radical of $\mathrm{E}(\mathrm{D})$ cannot be any Larger than $H_{1}+\mathrm{K}_{1}+\mathrm{N}$ and $\mathrm{J}\left\{E\left(\mathrm{D}_{8}\right)\right\} \subset \mathrm{H}_{1}+\mathrm{K}_{1}+\mathrm{N}$.

The definition of the radical of a distributively generated near ring given by Laxton [5] does not appear to be the same as the definition we have given. In fact, the only difference is in the terminology employed. The following theorem is a restatement in our terminology of Theorem 1.5 of [5].

Theorem 3.3. The radical of a distributively generated near ring R contains all the nilpotent R-subgroups of R.

Since H_{1}, K_{1} and N are each nilpotent $E\left(D_{8}\right)$-subgroups it follows that $H_{1}+K_{1}+\operatorname{NCJ}\left\{E\left(D_{8}\right)\right\}$. Thus we have shown

Theorem 3.4. $J\left\{E\left(D_{8}\right)\right\}=H_{1}+K_{1}+N$.
Since the radical is an ideal [1], we may consider the quotient near ring $E\left(D_{8}\right) / J\left\{E\left(D_{8}\right)\right\}$.

Theorem 3.5. $E\left(D_{8}\right) / J\left\{E\left(D_{8}\right)\right\}$ has order 32 and is a ring of characteristic 2.

Since $E\left(D_{8}\right)$ has a multiplicative identity, the M_{1} in Table 2, then $E\left(\mathrm{D}_{8}\right) / J\left\{E\left(\mathrm{D}_{8}\right)\right\}$ has the multiplicative identity $\overline{\mathrm{M}}_{1}$, the coset containing M_{1}. From $M_{1}+M_{1}=(2 a, 0,2 a, 0,0,0,0) \varepsilon J\left\{E\left(D_{8}\right)\right\}$, it follows that \bar{M}_{1} has (additive) order 2 in $E\left(D_{8}\right) / J\left\{E\left(D_{8}\right)\right\}$. Thus, this quotient near ring has characteristic 2. But this implies that the additive group of $E\left(D_{8}\right) / J\left\{E\left(D_{8}\right)\right\}$ is abelian. Since it was shown in [4] that a distributively generated near ring whose additive group is abelian is a ring, the theorem follows.

REFERENCES

1. J. C. Beidleman, On near rings and near ring modules, Doctoral Dissertation, Penn. State University, 1964.
2. G. Berman and R. J. Silverman, Near rings, Amer. Math. Monthly 66 (1959), 23-34.
3. J. R. Clay, Computing near rings on the non-abelian groups of order 8 , unpublished.
4. A. Frohlich, Discributively generated near rings, Proc. London Math. Soc. (3) $\overline{8}(1958), 76-108$.
5. R. R. Laxton, A redical and its theory for distributively generated near rings, J. Tondon Math. Soc. 38(1963), 40-49.
6. J. J. Malone and C. G. Lyons, Endomorphism near rings, unpublished.
Edgar Raymond Guthrie was born on March 6, 1934 in Salina, Oklahoma. His parents are William Spurgeon and Lucille Guthrie. A graduate of Sam Houston State Teachers College in 1958, he taught Mathematics and Physics for three years at A. and M. Consolidated High School. He has also taught Mathematics as a graduate assistant at Texas A. and M. University. His permanent address is 1604 Armistead, College Station,

Texas.

Texas A\&M Unversity

