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CHAPTER I 

INTRODU CTION 

Let V be the set of sequences of real (or complex) numbers. 

Define addition and scalar multiplication in the usual manner; that 

is, if { a } and [ b } are sequences and o is a real (or complex) 
n n 

number, then define {a } q [b } = {a + b } and n{a } = {o'a } 
n n n n n n 

Then V is a linear space ivith scalar field the real (or complex) 

numbers. 

Let f be a function from a res) (or complex) linear space B 

to its scalar field F, such that if a, b are in B and o' is in F 

then f(a+ b) = f(a) +f'(b) and f (n a) = 0 f (a) . f is said to be a 

linear functional of B . 

A summability method is a linear functional of any subspace 

of V; that is, a summability method is a function that maps each 

element of a subspace U of V to a real (or complex) number in 

such a manner that for every [ a } and { b } in U and 0 real 
n n 

(or complex), 

f({ a }+ { b }) = f([ a }) t f({ b }) and 

f(n[a }) = of({a }) 

If { s } is in the domain U of the functional f, then f is 
n 



said to sum { s } to f({ s }) . We say I' sums a series I; a 
n n n=0 n 

if f sums the sequence of partial sums { s } and we write 
n 

Z a =s(f) n=0 n 
when f ({ s }) = s . As a matter of convenience we 

n 

write Z a for I: a and the linaits are 0 to ~ unless otherwise 
n n=0 n 

indicated. 

A summability method f is said to satisfy (C) if for every 

Z a that f sums, I sums g a to a + s where f sums 
n n=0 n 0 

a to s. A surnmability method f is said to be regular if it 
n=0 n+1 

sums every convergent series to its ordinary sum; in other words, 

if Z a converges then f sums Z a and i'({ s }) = I; a 
n n n n 

Our interest lies in summability methods generated by a m x+ 

matrix T = (c ); given a sequence { s }, we define t = p c s . 
nan n m mn n 

lim If t exists for each m and t = p, then we say T sums 
m m ~ m 

{s } to p . Unlike the abstract definition of a summability method, 
n 

a matrix method has a natural domain, viz. , the set of sequences 

{s } for which lim t exists. It is in this context that we consider 
n m 

a matrix as a summability method. We will also be interested in 

the algebra of the linear sequence to sequence transformation defined 

by a matrix T, as T { s } = {t } . We see that, except for ques- 
n m 

tions of convergence, this transformation is the same as in matrix 

multiplication: 



0 00 01 OZ 

10 11 12 

20 21 22 
and s 

0 
s 

1 

'2 

then t = Ts or 
00 01 02 

10 11 12 

20 21 22 

r 
0 

We call the numbers { t j the T means of the sequence { s j . m n 

In this thesis a particular type of matrix method, the general 

Hausdorf method, is studied. 

Let 6 be the exw 'matrix 6 = (6, , ) where 6. = (-1) ( ) 
j i 

1J rJ J 

i = 0, 1, 2, . . . and j = 0, 1, 2, . . . As a summability method, the 

6 means t are given by m 

m m n m 
s =g (1) ( )'s 

m 0 n=0 n n 

It is clear that 6 is its own reciprocal: that is, if t = 6 s then 

s = 6 t or 6 6 = I where I is the identity transiormation {4, p. 247] 

A Hausdorf transformation is any transformation of the form 

t = (6 0 6 ) s, where p = (p ) is any diagonal transformation. The 
n 

matrix of the transformation is caiied a Hausdorf matrix. Ordinary 



convergence and (C, 1) summability are Hausdorf transforrnations 

1 
where p = 1 and 0 = —, respectively. It is interesting to 

n n n+1 

note that any two Hausdorf transformations commute. For if 

H =606 andH =6p'6 then 
1 2 

= (6$, 6) (6$. '6) = 6pp'6 =6U, p6 =(6p 6) (6p, 6) =H 
1 2 2 1 

since any two diagonal matrices commute and 6 6 = I I 4, p. 249) ~ 

The class of Hausdorf transformations is the class of trans- 

formations that commute with the (C, 1) transformation [4, p. 249j, 

For suppose B = 6u, 6 is a Hausdori transformation; that 
n m 

for m g n; and that X is a transformation that commutes with B 

Now if A = 6&6 then we have X = 6A6 and since B = 6p 6 vve have 

p = 6 B 6 . Therefore 

AP =(6X6)(6B6) =(6XB6)=6BX6=(6B6) (6) 6) =&A 

If A has means t where t = B c s then the calculations m m mn n 

above show Zc p s =u hc s =Zc g s for all s mn n n m rnn n mn m n n 

Since p, gp for m gn, then c = 0 for m gn and A must 
n m mn 

be a diagonal transformation. In particular we can consider B as 

1 1 
the (C, 1) transformation since — j — for n f. m 

n+1 m+1 

We now state an important theorem concerning the means t 
m 

for any Hausdorf transformation. 



(1. 1) THEOREM. [4, p. 250]. 

The general Hausdorf transformation is 

na 

m =0 

Therei'ore the general Hausdorf matrix is H = (c ) where 
mn 

for n=m and c = 0 for m&n 
mn 

We will denote the Hausdorf transformation (6 p, 6 ) by (H, p ) 

A sequence { a ) is said to be totally monotone if 0 a = 0 P 
n n 

for n = 0, 1, 2, . . . and p = 0, 1, 2, . . . , The conditions of regularity 

for a Hausdorf transformation (H, p, ) become ( l. 2) THEOREM 

{4, p. 256]. In order that the tran. ", formation (H, p ) should be 

regular, it is necessary and sufficient that { p, ] should be the 
n 

rn difference of two totally monotone sequences, that 6 p 0 as 
0 

m» ~, and tha. t p, = 1 
0 

If {a & is a sequence such that B a converges, it is a well n] n 

known 1'act that there exists a sequence { )' ) such that X ~ and 
n n 

Za & converges. The analogous theorem for (C, 1) summability 
n n 

holds as was suggested by Salem { G] and investigated in detail by 

Bryant [2, lemnsa 2. 1]. We consider the problem for any Hausdorf 

transformation (H, p ): if I; a is summable (H, u ), does there 
n 

exist a sequence { 1 ] n 
such that X ~ and I; a l is surnrnable 

n n n 



(H, p ) ? A simple exanaple will be presented to show the answer 

is no. The same example will also show that other "nice" properties 

of ordinary convergence do not hold for the general Hausdorf method. 



CHAPTER II 

RESULTS 

Let (H, ix) be the Hausdorf transformation such that p, = n 
n 

Since 

0 
p, 

n 
= n 

n 

1 -v 
n n n+1 

and I p, =0 for p=2 
n 

the xneans for (H, p, ) are 

m m m n t = Z ( )fx s = Z 
m n=0 n 4'n n n m-1 

m m-n 
( )i~ 

n n n 

m m 0 =( )x)p s q( )6 p s =-ms +ms m1m1m I m m m m 1 m 

n 
= m(s — s ) = xna where s =, Z a, m m-1 m n i=0 i 

Now consider the sequence { a } where a = 1 and m 

a 
m m 

m = 1 . (H, ix ) transforms the series Z a into 
n 

1 
t =ma =xn( — ) =1, and t I as m m m m m 

Let [ & } be any sequence such that I ~ . (H, p ) trans- 
n n 

forxns the series Z a X into 
n n 

1 t =m(k a )=m( — )K m m m m m nx 



Therefore no sequence j l } where l ~ ~ can exist such 
n n 

that Z a ) is summable (H, p ) n n 

Now (H, p ) is not regular, for notice that it is necessary that 

1 for (H, p, ) to be regular. We could also shorv that (H, p ) is 

not regular by considering the following sequence [a ): if a = 2 and 
n 

' 
0 

(- 1) a = — then Za converges since la I is strictly decreasing to 0. 
n n n n 

(H, P ) does not sum Z a since 
n 

t =ma =m (- 1) 
m m m 

-1 if m is odd 

1 if m is even 

and lim t does not exist. 
m 

This same Hausdorf transformation shows that other theorems 

from ordinary convergence do not hold. For example, it is a fact 

that if Za is absolutely convergent that it is also convergent. For 
n 

(H, P ) the theorem would be as follows: if ZIa I is sumrnable 
n 

(H, p ) then Za is summable (H, Ij ). n 

As a counter example, consider the series Z a where m 
1)m 1)mI a = — m=1, a =0. Thenfor Zal, t =m( m m ' 0 n m I m 

=1 and (H, p, ) sums ~la 
~ 

to 1 . But for Z a we have means 
n n 

(- 1) 
m m 

-1 if zn is odd 

1 if m isevenor 0 

and (H, g) does not sum Z a 
n 



Another theorem from ordinary convergence which does not 

hold for the general Hausdori method is as follows: if Za con- 
n 

verges and a = 0 then any rearrangernent of {a } will also 
n n 

converge to the same number. 

For Hausdori' summability this becomes: suppose Z a is 
n 

summable (H, p ) and a a 0, then any rearrangement of { a } 
n n 

is also summable (H, W ) to the same number. As a counter 

1 
example consider the sequence { a } where a = 0 and a 

n 0 n n 

for n = 1 . (H, @ ) sums Z a to 1 . Now if j is any odd integer, 
n 

interchange a, and a . . The rearranged sequence is 
2J 

0 2 1 6 4 10 3 14 8 18 5 22 1Z 

Note that the only terms affected are those of the form a and 
Zkq 1 a, where k is an integer; also note this interchange is a 4k+2 ' 

rearrangement. 

terms is: if j 
1 t . = Zj ( — , ) = 2. 

2J J 

The (H, u) zneans t for the series of rearranged m 
1 1 is an odd integer then t = j ( —. ) = — and 

1 2J 2 

Therefore lirn t does not exist and (H, g ) does m 

not sum the rearranged series. 

Perhaps even more importantly, this example demonstrates 

that the general Hausdorf method does not satisfy (C) . For if 

1 { a } is the sequence such that a = 1, a = —, n a 1 then (H, a ) n 0 ' 
n n ' 

sums Za to 1 . Let b =a, n = 0, 1, 2, . . . ;thatis, b 
1 

n n n+1 n n+1 



10 

for all positive integers n . Then (H, o ) sums 

m 
Zb to 1 since t = mb = — 1 as m~~ 

n m m m+1 

If (H, p ) sums a series Zx to x, denote x by (H, p ) [Zx. ] 
n 1 

Then we have, for this example, (H, P ) [ Z a. ] 8 a + (H, 0 ) n=0 i 0 

[ Z a, ] and (H, p ) does not satisfy (C) 
n=l 



B IB LI 0 GR A PH Y 

[1] Bryant, Jack, Convergence and divergence of Fourier series, 
Master's Thesis, Texas A%M Univ. , 1962. 

[2] Bryant, Jack, On convolution and Fourier series, Duke Math 
J. 34 (1967): 117-122. 

[3] Fulks, Watson. Advanced Calculus, New York, 1961. 

[4] Hardy, G. H. , Diver ent Series, Oxford, 1949. 

[5] Kleincr, A. F. , Fourier series and convolutions, Master' s 
Thesis, Texas ARM Univ. , 1966. 

[6] Salem, R. , Sur les transformations des series de Fourier, 
Fund. Math. 33 (1939): 108-114. 

11 


