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CHAPTER I

INTRODUCTION

Let V be the set of sequences of real (or complex) numbers.
Define addition and s‘calar multiplication in the usual manner; that
is, if fan} and {bn] are sequences and @ is a real (or complex)
number,. then define { an] + [bn) = {an + bn} and af an} = [aan).
Then V is a linear spacé with scalar field the real (or complex)
numbers.

Let f be a function from a real (or complex) linear space B
to its scalar field F , such thatif a, b arein Band @ isin F,
then f(a+b) = f(a)+f(b) and f(xa) =&ffa) . f is saidtobea
linear functional of B .

A summability method is a linear functional of any subspace
of V ; thatis, a summabi‘lity method is a function that maps each
element of a subspace U of V toa real (or complex) number in
such a2 manner that for every {an] and {bHJ in U and ¢ real

(or complex),
f(la J+(b D=t(la_hs+i({b_ ) and

f(a{an}) = Off([an})

If fsn} is in the domain U of the functional f, then f is
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said to sum [sn] to f([ sn }) . We say { sums a series n§0 an

if f sums the sequence of partial sums { sn} and we write

n'ifo a =8 (f) when f£({ sy }) = s . As a matter of convenience we

éx,
write ga for nz a_ and the limits are 0 to® unless otherwise
= n

0
indicated. '

A summability method f is said to satisfy (C) if for every

©

2 a that f sums, { sums & a_ to a_+s where f sums
n n=0 n 0

@

nZ—O ankl to s. A summability method f is said to be regular if it

sums every convergent series to its ordinary sum; in other words,
if Za converges then f sums Za and £({ sn}) =Za .

Our interest lies in summability methods generated by a w xw

ix T= ; gl i = .
matrix (cmn) given a sequence { sn} , we define tm z Cn’ln sn
: lim
If t exists for each m and t =p, then we say T sums
m m=® m

{sn] to p . Unlike the abstract definition of a summability method,
a matrix method has a natural domain, viz., the set of sequences
{sn} for which lim tm exists. It is in this context that we consider
a matrix as a summability method. We will also be interested in
the algebra of the linear sequence to sequence transformation defined

by a matrix T, as. T{ sn] ={t }. We see that, except for ques-

m

tions of convergence, this transformation is the same as in matrix

multiplication:
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t= tz N s = 52 >
then t=Ts or r‘so"
- %10 %11 12 e 51
21 7 20212 ] - 52
. . V.. .

We call the numbers { tm} the T means of the sequence { sn} .
In this thesis a particular type of matrix method, the general
Hausdorf method, is studied.
Let 6 be the wx® matrix § = (éij) where 5ij = (- l)j (;) »
i=0,1,2,... and j=0,1,2,... As a summability method, the

& t are givenb
means t g y

tn'1= AmsO : EO (,1)“ (":) : sn ‘

It is clear that & is its own reciprocal: thatis, if t=¢&s then
s =6t or 66 = Iwhere I isthe identity transformation [4, p. 247].
A Hausdorf trans.formation is any transformation of the form
t=(8pnd)s, where u = (un) is any diagonal transformation. The

matrix of the transformation is calied 2 Hausdorf matrix. Ordinary



convergence and (C, 1) summability are Hausdorf transformations
1 . . .
where B E 1 and un il respectively. It is interesting to

note that any two Hausdor{ transformations commute. For if

Hl =8u8 and H2 =6u’6 then

Hl H2 ={(dud)(6u'6)=06pu’b =6u'us =(ou’ &) (6w o) :HZHI
since any two diagonal matrices commute and 66 =1 [4, p. 249].
The class of Hausdorf transformations is the class of trans-
formations that commute with the (C, 1) transformation [4, p. 249].
For suppose B =6pd is a'Hau;dorf transformation; that L # M
for m #Zn ; and thal; A is a transformation that commutes with B .

Now if A =6A6 then we have A =8 A6 and since B =6p6 we have

p=6BE ., Therefore
An = (6X6) (6 B8) = (5AB8)=6BA6 =(6B6) (§A6) =p A

If A has means t where t =Tc¢ s then the calculations
m m mn n

above show Tc_ p s =W wpc s =%c¢_wu_ s forall s .
mn n n m mn n mn m n n

Since B #i__ for m #n, then ¢ =0 for m#n and A must
n m mn

be a diagonal transformation. In particular we can consider B as

the (C, 1) transformation since L L
n+l m+1l

for nfm.

We now state an important theorem concerning the means tm

for any Hausdor{ transformation.

,.



(1.1) THEOREM. [4, p. 250].

The general Hausdorf transformation is

Therefore the general Hausdorf matrix is H = (cmn) where

m m-n
c =( )b u for nE=m and c =0 for m<n
mn n n mn

We will denot; the Hausdorf transformation (6ud) by (H, )

A sequence { a, } is said to be totally monotone if aP ané 0
for n=0,1,2,... and p=0,1,2,.... The conditions of regularity
for a Hausdorf éransformation {(H, u) become (1.2) THECREM

" [4, p. 256). In order that the transformation (H,p) should be
regular, it is necessary and sufficient that {un} should be the
difference of two totally monotone sequences, that Ampo ~ 0 as
m =~ ® , and that u.0= 1.

It {a.n} is a sequence such that Zan com‘/crges, it is a well
known fact that tlinere exists a sequence { )‘n] such that ?\n =« and
Zan)xn converges. The analogous theorem for (C, 1) summability
holds as was suggested by Salem [ 6] and investigated in detail by
Bryant [é, lemma_bz. 1]. We consider the problem for any Hausdorf
transformation (H, p): if Zan is summable (H,p ), does there

exist a sequence A } suchthat A == and £a A is summable
n n n o



(H,1) ? A simple example will be presented to show the answer
is no. The same example will also show that other ''nice" properties

of ordinary convergence do not hold for the general Hausdor{ method.



CHAPTER 1I
RESULTS

Let (I, p) be the Hausdorf transformation such that un =n

Since

n n
e - =-1 and &Py =0 for pz2
un —P'n ntl H P )
the means for (H,p) are
M m_  m-n m m_ m-n
= 4o = X [ s
tm ngo(n) ,unsn n=m-1 (n) n<n
—(m)A s (m)l\0 s =-ms +ms
) et T e ¥m Sm ” “m-1 m
n
= m(sm -85 1) =ma_ where S.7 %0 3 ¢
Now consider the sequence [ax'n] where a_ =1 and

1
a =—, mZ1. (H,p) transforms the series Za_ into
m m n

=1, and t_ =1 as m-
m

Let {)\n} be any sequence such that )‘n ~®. (H,p) trans-

forms the series Zan Ar into

¢ =m(_a JemEgr =k ~e
m m m m m n1



Therefore no sequence { )\n} where }‘n —~ ® can exist such
that Zan)\n is sunmable (H,p) .
Now (H, i) is not regular, for notice that it is necessat“y that

By = 1 for (H,up) tobe regular. We could also show that (H,p) is

not regular by considering the following sequence {an}: if a, = 2 and

n

SR
n

n then £a ~converges since Ianl is strictly decreasing to 0.

- (H, 1) does not sum £a  since
m -1if m is odd
m m m s .
1 if m is even
and lim t does not exist.
m

This same Hausdorf transformation shows that other theorems
from ordinary convergence do not hold. For example, it is a fact
that if Zan is absolutely convergent that it is also convergent, For
{H, 1) the theorem would be as follows: if Zlarll is summable
(H,u) then Zan is summable (H,u).

As a counter example, consider the series Eam where

o Lym

(-1
m2Zl, a,=0. Thenfor Dal , t :ml ’
n m

m [ m

=1 and (H,u) sums “la | tol. Butfor $a we have means
n n

. - (_l)m -1if m is odd
m " m
1if m is evenor 0

and (H, ) does not sum Ta .
n



Another theorem from ordinary con;rergence which does not
hold for the general Hausdor{ rr;ethod is as follows: )_f Ean con-
verges and a Z 0 then any rearrangement of [an} will also
converge to the same number.

For Hausdorf summability this becomes: suppose Zan is
summable (H, p) and an 20, then any rearrangement of [an }
is also summable (H, k) to the same number. As a counter
example consider the sequence [an) where ag = 0 and a, :Tlx

forn=1. (H,p) sums Ean to 1. Now if j is any odd integer,

interchange aj and azj . The rearranged sequence is
agr By 2y 2y 2y 21 By 2y agr Agr Bgr Bypr Aypiie
Note that the only terms affected are those of the form a and

2k+1

a4k+2 » where k is an integer; also note this interchange is a

rearrangement. The (H,#) means tm for the series of rearranged

terms is: if j is an odd integer then tJ, =j (ﬁ =% and

1
t,.=2j(7) =2. Therefore lim t_ does not exist and (H,u) does
2j J m

not sum the rearranged series,
Perhaps even more importantly, this example demonstrates

.that the general Hausdorf method does not satisfy (C) . For if

{an} is the sequence such that ag = 1, an=?11’ nZ1l then (H,u)

sums Za_ to 1. Let b =a »n=0,1,2,...; that is, b L
n n ntl n  ntl



for all positive integers n ., Then (H,u) sums

Zb_ to 1 since £ =mb =—= -1 as m-® .
n m m m+l

If (H,u) sumsa series Zx to x, demote x by (H,u)[Exi] .

«
Then we have, for this example, (H,#) [ngo ai] # ag+ {EH, )

®
L Zl ai] and (H, ) does not satisfy (C) .
n=
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