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ABSTRACT 

When fluid is injected into an aquifer, the asymmetric pressure 

and velocity distributions, as well as the injection rate and cumula- 

tive influx, are very useful parameters in planning production 

operations and related problems. 

This thesis develops analytical expressions showing the cumu- 

lative influx, velocity and pressure distributions for several linear 

and radial injection systems with different boundary conditions. 

Since interference between injection wells with each other and 

with the aquifer is readily solved by superimposition, it is only 

necessary to consider a single injection well of constant strength. 

The porous medium is assumed to be homogeneous isotropic and 

of constant thickness. 

Several figures showing the velocity, rate and cumulative influx 

are presented for the linear closed aquifer, together with an ex- 

ample of pressure distribution inside the aquifer. Influx rate and 

cumulative influx are presented for a radial aquifer. The figures 

are presented in dimensionless parameters and may be used 

generally for aquifers of the same geometry and boundary conditions. 

Two computer programs applying to linear and radial cases 

are attached. 



INTRODUCTION 

It is fairly common practice to reinject water into the aquifer 

near the oil-water interface in water-driven reservoirs. Many 

studies describing aquifer behavior without reinjection have been 

1, 2, 3, 4, 5 made ' ' ' ' but apparently no analytical studies have been 

made to indicate the aquifer performance when injection wells are 

present in the aquifer. 

The diffusivity equation may be used to describe the pressure 

behavior in an aquifer. When sources are present it can be 

written as: 

A general solution of Equation (1) may be obtained as the sum 

of two solutions. One is, a general solution of the homogeneous 

equation, obtained by dropping the source term in Equation (1) and 

still satisfying the required boundary conditions. Another is a 

general solution of Equation (1) satisfying homogeneous boundary 

10 
conditions . The first solution which corresponds to the aquifer 

without reinj ection has been thoroughly reported in the litera- 

1, 2, 3, 45 ture ' ' ' . The latter will be treated here. 

Solutions with variable in'ection rates are obtained by 

References shown at end of thesis. 



superimposing solutions with constant rates, so only the latter is 

considered here. 

Six cases have been treated here. They are: 

f) A linear aquifer of finite width and extent. Water is 

injected into the aquifer at point x, y at constant rate. The pres- 
0 0 

sure along the line x = o is maintained at zero pressure. See 

Figure f. Equations showing the potential distribution, rates, 

velocity and cumulative influx have been developed. Certain 

numerical results are shown. 

2) A linear aquifer of finite width and extent. Water is 

injected into the aquifer at x, y at constant rate. The rate of 
0 0 

production along the oil-water water contact is maintained constant. 

Equations showing the potential distribution inside the aquifer are 

pr e s ented. 

3) A linear aquifer of finite width and extent. Constant 

pressures are maintained at opposite ends of the aquifer. Water is 

injected at constant rates at x, y . Equations showing the potential 
0 0 

distribution are shown. 

4) A linear aquifer of finite width and infinite extent. The 

pressure is maintained constant at the oil-water contact. Water is 

injected at a constant rate at x y 0 0 



5) A linear aquifer of finite width, and finite extent. The 

pressure at the oil-water is maintained constant. Water is injected 

at constant rate per unit length along a line x 
0 

6) A radial aquifer of finite extent. The pressures are 

maintained constant at the external and internal boundary. Water 

is injected at a constant rate at point r, 8 . Equations showing 
0 0 

the potential distribution, velocity, rate of flux and cumulative flux 

along the oil-water contact are presented. Numerical solutions 

are presented in terms of dimensionless parameters. 



THE LINEAR AQUIFER 

The linear closed aquifer, performing at constant terminal 

pressure was selected as the first case to be analysed. The geo- 

metric parameters and the boundary values are depicted in 

Figure 1 below: 

p =0 

~ Source 
I 

I 

x 0 

LINEAR AQUIFER - GEOMETRIC PARAMETERS 

FIGURE 1 

The pressure as derived in Appendix A for a unit thickness 

medium can be expressed by a double Fourier series as: 

4, ~w 
p(x, y, t, x, y ) = — i o' o ab w k 
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The velocity at the oil-water contact is given by: 
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The cumulative influx by: 
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As seen in Equations (4) and (5), the influx rate and cumulative influx 

are independent of the source's ordinate. 

Equations (4) and (5) expressed in dimensionless variables 

were evaluated on the computer and the results are presented in 

Figures 3 and 4, respectively. The curves can be used for any linear 

aquifer satisfying the hypothesis for which the figures were con- 

structed. As depicted in these figures, unless the source is located 

at a great distance from oil-water contact, the amount of injected 

water that does not reach the oil zone is very small even for small 

times, i. e. , the transient period is of small duration. 

Equations (2) and (3) converge slowly in our case, since 

normally b((a. For this reason, superposition of point sources 

was used to calculate the pressure inside the aquifer and velocity 

at the oil-water contact. The equations utilized, referring to one 

well, are: (See Figure 2). 

P=P e 

2 2 i p. I (y -y) +(x -x) 
Ei 

4sk 4 qt 
(6) 

v x gxk qt w 

4 qt 
2 2 

(y -y) +(x -«) 0 0 (n+ i)! 

6 

[ 
(y, -y) i(x -«) 2 2 

4 qt 



~ PRODUCTION WELL 

0 INJECTION WELL 

FIGURE 2. LAY-OUT OF PRODUCTION AND INJECTION 
WELLS FOR THE LINEAR CLOSED AQUIFER 



Equations (6) and (7) were expressed in dirnensionless quantities 

and then evaluated on the computer for various values of the para- 

meters. Some of the results are shown in Figures 5a, 5b and 6. 

Comparison of superposition and the analytical solution for this 

problem can be seen in Figures 3 and 5b. The knowledge of this 

asymmetric velocity distribution can be very useful in planning pro- 

duction operations; the pressure distributions inside the aquifer can 

be very useful if it is desired to study interference between injection 

w 

elle�. 

Since many parameters are involved and, consequently, many 

tables are necessary to cover all variations, only some values are 

presented. The computer program in Aggie language for calculation 

of Equation (6) is presented in Appendix C. With minor modifications 

this can be utilized for different boundary conditions and Equation (7). 

Figure 6 shows that when the source is close to the water-oil 

contact, the asymmetric velocity distribution manifests almost im- 

mediately implying that the significant part of the transient time is 

of small duration. When the source is removed away from the line 

of contact and in case that the width of the aquifer is smaller than 

the source's ordinate, the velocity distribution is almost . sym- 

metric, as indicated by physical considerations, 
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The equations for the linear system for Cases Z, 3, 4 and S 

are in Appendix A. 



THE RADIAL AQUIFER 

A radial system with constant pressures at the external and 

internal boundaries has also been studied. A source of constant 

strength is located at r, 9 . Geometrical parameters are presented 0 0 

in Figure 7. The pressure at r is maintained at zero. 
w 

r 
e 

urce 

p =0 
e 

0 

0 

p = 0 

RADIAL AQUIFER - GEOMETRIC PARAMETERS 

FIGURE 7 

The pressure, for a medium of unit thickness, with a source 

of unit strength per radian, can be expressed as:+ 

+See a similar expression, but neglecting the presence of r, in 
w Reference 5, page 661. 
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f7 

where: 

Z (mr) = J (mr )Y (mr)- Y (mr )J (mr), p, n p w n p w n 

J and Y are Bessel's functions of first and second n n 

kind and order n, 

m is chosen such that Z (mr ) = 0, n, n e 

primes indicate derivatives with respect to r. 
It is readily seen that the Green's function (8) is symmetric in 

r, r and Q, Q, i. e. , the response in r and 8 due to a source in r 0 0 0 
and Q is the same as the response in r and Q due to a source in 0 0 0 
r and Q. 

The rate of influx at r can be written as: w 

e = 2s w 

e ln— 
I 

0 
r 

e ln- 
r 
w 

OO 2 Z (mr )r Z ' (mr ) -qm t o, o 0 w 0 &0 'w 

r Z ' (mr ) - r Z ' (mr 

The cumulative influx is expressed by: 

1 
e ln— 

1 
0 

W e2v t e r 
e ln- 

r 

Z (mr)r Z' (mr ) 
+2 

2 I' i 2 mt r Z ' (mr) -r Z ' (mr e o, o e [ w o o wJ 

gm t 



Equations (9) and (10) were calculated and some of the results 

obtained are shown in Figures ga to e and 9a to e, respectively. 

Similar to the linear case, the figures are presented in dimension- 

less parameters and consequently, can be used for any radial system 

satisfying the hypothesis in which they are based. 

The first five zeros of Z (mr )=0, which refers to o, o e 

Equations (9) and (10) where obtained from Reference 12, and the 

12 following ones by McMahon asymptotic expansion. The Bessel's 

12 function was calculated using polynomial approximations. 

In evaluating equations (9) and (10) the values of e and W 
w e' 

for small values of t showed small errors due to numerical approxi- D 

mations. In Figure Sa some points do show these oscillations. 

In this case, it can be very inefficient to reinject at a con- 

siderable distance from the oil-water contact in the case of small 

r, since this, being a line of constant pressure, the water will go in e' 

this direction. 

For small values of r, as practiced in actual operations, the 0 

transient period is of insignificant duration and all injected water 

readily reaches the oil field. 

The computer program used in calculating Equation (9) is 

attached, and with minor modifications can be used to calculate 

Equation (10). 
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CONCLUSIONS 

For an injection well located close to the oil-water contact, 

the transient period is of relatively small duration, i. e. , in 

a short period of time all the parameters attain approximately 

a steady state value. 

2. For closed systems, the water lost to the aquifer is relatively 

small, increasing with increasing distance between injection 

well and oil-water contact. 

3. In aquifers with constant pressure at the external boundary 

the water lost can be very important when placing the in- 

jection well far from the water-oil contact for small values 

of r e' 

At the internal boundary the velocity rapidly approaches a 

steady asymmetric distribution when the source is close to 

the contact. When the source is far removed from the 

contact, the velocity is fairly uniform through all the con- 

tact, this being anticipated from physical considerations. 
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NOMENCLATURE 

a = length of linear aquifer 

b = width of linear aquifer 

c = water compressibility 
w 

e = water influx rate 
w 

h = net pay thickness 

i = water injection rate 
w 

k = effective permeability to water 
w 

p = pressure 

p = dimensionless pressure 

p = external boundary pressure 
e 

p = pressure at oil-water contact 
w 

r = radial distance 

r = dimensionless radial distance 
d 

r = external boundary radius 
e 

r = internal radius of aquifer 
w 

t = time 

t = dimensionless time 

= velocity 

W = cumulative water influx 
e 

W. = cumulative water injected 
1 



x = distance 

y = dtstance 

= hydraulic diffusivity (k /bp c ) w w w 

p, = water viscosity 
w 

= porosity 

= Dirac delta function 
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APPENDIX A 

Linear Closed, Constant Terminal Pressure, One Point Source 

A oui f e r, 

The pressure in this system can be obtained by solving the 

following boundary value problem: 

6(xx)6(yy) a a 1 a, ~w 

8 
2 

a 
2 ~ at wl, 0 0 

8 y 

~8 ~8 ~8 (iz) 

Multiplication and integration& transforms (11) into: 

a b a b a, z nxv C I an . 2m i 
+ j ~ sin s cos ~ dxdy+ j j ~sin — sx 

z z j j a 2 2a 
0 0 ax b 0 0 

a 
usv 8 n 2m-1 usv cos dxdy ~ sin 
b at 2a sx cos dxdy 

b 
0 0 

a b 
W 2m-1 usv 

i — U(x-x ) U(y-y ) sin sxcos dxdy (13) 
w k o o 2a b 

0 0 w 

eSee Reference 11, page 236, for a similar steady state problem. 
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Integration by parts and using the boundary conditions it is readily 

obtained: 

2 2 a 
d f' P' . Zm 1 nv 'I 

I Zm 1 
dt ) ) 2a p sin «os — ydxdy+ 

( 

— 
~ 

+ 
~ 

b 
. i] 0 0 

a b 

0 0 s 
2m-1 n~s w 

p sin s x cos dxdy= z 
2a b w r 

w 

a b 
(' ( 6(x - x )6(y-y ) 

od o J 
Zm-1 nx v sin — sxcos ~ dxdy 2a b (14) 

Using the property of Dirac delta function, namely 

f(x) $(x ) = f(x ) 
— OO 

And recalling that the double integral can be interpreted as a 

11, 13 successive Fourier finite, cosine, sine ' transform 

a b 
2m- 'I tv 

p = p san — z x cos ~ cLxdy sc Za b 0 0 

The Equation (14) transforms into Equation (15): 

2 2 

sc ns Zm-1 

w 2m-1 I11T 

q i — sin — v x cos — y w k 2a o b o 
w 

(13) 
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The general solution for the ordinary differential Equation (15) 

is: 

"w 
p ~1 

sc wk 
w 

2m-1 ex cos — y 

ns 2m-1 

+ x t 

The inversion is readily written as: 

4 
p(x, y, t, x, y )=— "w OO 

i 
w k 2 

w m=1 

2m-1 
sin 

2a 

[z 1 

j 

xx 0 

n= 1 m=1 

sin — xx cos — y 

[ 
- 

( 
— ";) I', . ' -) 1-e sin — s x cos — y (17) 2a b 
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Derivation with respect to x, readily gives formula (3) on page 5. 

Integration with respect to y, and noting that all terms with n 4 0, 

drops, gives: 

e 
w 

b 

0 

2 
2m-1 2m-1 

6111 sx 2a o ( 2a 
2m 1 

dy 

(18) 

Carrying out the integration and recalling that: 

OO 

E 
m=1 2m-1 

We obtain: 

4 
e 
w w s m=1 

2 
2m-1 (2m-1 

sin — sx 
) 

- 5 — s 
~] 

2a ol ( 2a 
e 2m-1 

Considering that 

W e dt 

0 

And recalling that: 

m=1 
sin 2m-1 x s x(s-x) 

3 8 (2m-1) 

We can write 
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ax X 00 
0 o 4 

W =W i — — (i- — )+ — P e i t 2 

Zm-i 
sin 1T X 0 

2 
t(Zm- 4) 

2. Linear, Closed, Constant Terminal Rate, One Point Source 

~A' f 

Similar to Case 1, we can write: 

p. 00 
p(», y, t, x, y )=c — i 

w n=o m=o 

mff x nff y 0 0 
cos a cos b 

(Zi) 

where 

i for n and m 8 0 
c i/2 for n or m = o 
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3. Linear, Constant External Pressure, Constant Terminal 

Pressure, One Point Source A uifer. 

p oo Qo 

p(x, y, t, x, y ) =c — i 
m=o n=o 

msx nsy 0 0 
sin cos- 

a b 

2 2 

. [~ 
b ~, re x ~ns 

a b (22) 

where 
1 for n g 0 

c 1/2 for n=o 

4. Linear, Infinite, Constant Terminal Pressure, One Point 

Source A uifer. 

oo 4, pw 
p(x, y, t, x, y ) = c. — i 

w n=o 
l 

nsy o cos — sin (px ) b 0 

- e cos ~ sin (px) dp b (23) 
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where 

1 for ng 0 
c 1/Zforn=o 

5. Linear, Closed, Constant Terminal Pressure, Line Source 

~A''f 

OO 

2 . "w 
p(x, t, x ) = — i o a w k 

w n=i 

2 
Zn- 1 2n- 1 sin — sx -q 

I 
— s t 

2 o I 2 
2 

2n- 1 
Y1 s 2a 

2n- 1 sin sx 2a (24) 

Systems of different boundary conditions as well as three dimensional 

problems based on similar hypothesis can be treated by this method. 

+See Reference 10, page 300, for another approach for deriving the 
solution of a similar problem giving the same results. 
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APPENDIX B 

The pressure distribution in a radial system with homogeneous 

Dirichlet boundary conditions at external and internal boundaries, 

with a point source, of unit strength per radian, is obtained by solv- 

ing the following boundary value problem (See Figure 7): 

8 
2 2 ~ i — ~+ — ~ = — ~~ (t)(. -. )(t)(9-9 ) 

8 8 i 8 "w 8r8rr 89@ 8t k 
0 0 

w 

(25) 

p (r , 9, t) = p(r , 8, t) = 0 (26) 

p(r, 9, 0) = 0 (27) 

The source can be represented by 

k 
w r' 

p =ln- 
s 

"w e 

2 

, ['. 
2 

2r r r 

2 
cos(Q -9)+ — (28) 

0 2 
1 r 

e e 

An expression containing FQquation (28) and which is a solution of 

E quati on (2 5) i s: 

k 
w 

"w 
Pa= 2 

2 2 
r Zr r r 

0 0 
ln — - — cos (9 -9) + 

2 2 0 2 
r r r 

e e e 
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2 2 2r 1 r r 0 0 +ln 1 - — cos(Q -8) + 
2 0 4 

e e 

Observing that Equation (28) can be expanded in Fouriel' series as 

follows: 

n n 
eo 1 1' r 

0 ln — + L + — cos n(Q - Q) for nc r r n 0 0 
o 1 I r e 0 

k 
W 

p 

n n 
r 1' 1' 

0 ln — + L cos n(8 -8)for r&r r n [ 2 I 0 0 i r e 

Then it is easily found that a particular solution of Equation (25), con- 

taining Equation (28) and satisfying Equation (26) is: 

k k oo 
W w n -n 

p = — p+b+a lnr+L(b r +c r ) cosnQ 
p. p p. a o o n n 

W W 
(3O) 

where 

a 0 

r 
e ln— 

1 
0 

r 
e ln— 

1 
W 
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b =-a lnr 
o o e 

+ — r -Zr 

b 
n n 

2n Zn r r 
w e 

c = — 2 — — b r r 

The general solution, consequently, will be: 

k 
w 

P 
k 

w 

~w 

oo 2 
m t 

p +~ ~ A Z (mr) cos n(Q -Q) e 
p n o i mn nn 0 

Where we define: 

Z (mr) = J (mr ) Y (mr)- Y (mr )J (mr ) p, n p w n p w n w 

And m will be determined such that: 

Z (mr )=0 
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According to the theory of courier-Bessel series the Equation (27) 

is satisfied by: 

IO 20 30 
mo D m, n 

0 

I WI WI in 2n 3n 
D 

n 

zzrhere 

0 e I = 
~ 

rln — Z (mr) dr io- r o, o r 0 
W 

zzo 
= 

5' 

0 

r 
ln — r Z (mr) dr 

1 0, 0 

r 
e 

W 

(b + a ln r) rZ (mr) dr 
0 0 oz 0 

r 
W 

r e 

rZ (mr) dr 2 

0 0 

I = — — + — rZ (mr) dr 

W 

n n 

I = — — t — rZ (mr)dr 

0 e 
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I =- ( (b r+c r )rz (mr)dr 
3n n n n, n 

D = rZ (mr) dr 2 
n, n 

Using the recurrence relations for Bessel's functions, and the 

boundary conditions, it is readily verified that: 

Z (mr ) 
A = 2 

r Z' (mr ) - r Z' (mr ) 

Z (mr ) 
A = 4 

r Z' (mr ) 
— r Z' (mr ) 

(33) 

Consequently, the pressure is given by Equation (3i), m determined 

by Equation (32) and A by Equation (33), which, after some mani- 
mn 

pulation is identified with Equation (8). 

The rate of influx is obtained by recalling that 
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and that all terms containing cos (Q - Q) gives a null integral. 
0 

It remains only: 

k 
w e 

W 
w 

21r oo 

s 
0 E -qm t 2 

(b +a lnr+ A Z (mr)e ) 8 r o o 1 o, o o, o 
0 

r dQ r=r 
w w 

From this Equation (9) is readily obtained. 

The cumulative influx 

W = ( e dt 
e 

g 
w 0 

Which gives Equation (40). 



APPENDIX C C 

C 

$EXECUTE 
C 

C 
C 
C 

C 

AGGIE 

++vvvv+++ f UCL I Of S JQSf BQNFT +ss+vv++s+vv 
RATIO INFLUX RATE INJECTED RATER IN RADIAL AQUIFER ARITH 

CONSTANT PRESSURE IN RE AND RN 

10 
15 

1b 

25 
30 
35 

DIMENSIDN EIV(10v20) v TI(20) vRE(10) vRO(10) 
THE EIGENVALUES ARE TAKEN FROM PG 415 HANDBOOK OF MATH FUNCTIONS 
READ (5v2) (TI(J)v J=lv20) 
READ (5v3) (RO(K) vK=lv10) 
READ (5v4) ((EIV(NvI) ~ I=1v5) vRE(N) vN=lv5) 
EXTERNAL BZJL3 
EXTERNAL BZJG3 
EXTERNAL BQJL3 
EXTERNAL BQJG3 
EXTERNAl BZYL3 
EXTERNAL BZYG3 
EXTERNAL BQYL3 
EXTERNAL BOYG3 
EXTERNAL E I GEN 
DO 115 K = 1 v10 
DO 115 N = 1 v5 
OQ 115 J = 1v20 
I = 1 
NLQST = ALOG(RE(N)ZRO(K))/ALOG'(RE(N)) 
IF (I — 5) 25v25v15 
fM 
EIG = EIGEN(EMvRE(N)) 
CONTINUE 
GO TO 30 
EIG = EIV(Nv() 
IF (EIG — 3. ) 35v35v4Q 
BZX = BZJ). 3(EIG) 



36 

32 

37 

38 

40 
41 

42 

44 
45 

50 
51 

55 
56 
60 

65 
66 

70 
71 
75 

80 

CONTINUE 
YZX = BZYL3('EIGl 
CONTINUE 
BQX = BQJL3(EIG) 
CONTINUE 
YQX = BOYL3(E(G( 
CONTINUE 
GO TO 45 
BZX = BZJG3(EIG) 
CONTINUE 
BOX = BOJG3(EIG) 
CONTINUE 
YOX = BOYG3(EIGli 
CONTINUE 
YZX = BZYG3(EIG) 
CONTINUE 
AF = EIG~RQ(K) 
IF (AF-3. I 50o50~55 
BZXRO = BZJL3(AF) 
CONTINUE 
GO TO 60 
BZXRO = BZJG3(AF) 
CONTINUE 
AF = EIG+RE(N) 
IF (AF-3o) 65s65e70 
BOXRE = BQJL3(AF) 
CONTINUE 
GQ TO 75 
BQXRE = BOJG3(AF) 
CONTINUE 
AS = EIG~RO(K) 
IF (AS — 3 ) 80g80y85 
YZXRO = BZVL3(AS) 
CONTINUE 
GO TQ 90 



85 
86 
90 

95 
96 

100 
101 
IQ5 

YZXRO = BZYG3(AS) 
CONTINUE 
AS = EIG«RE(N) 
IF (AS — 3 ) 95»95»100 
YOXRE = BOYL3(AS) 
CONTINUE 
GO TO 105 
YOXRE = BQYG3(AS) 
CONTINUE 
ANUH=(BZX«YZXRQ-YZX«BZXRQ)«(BZX«YOX-YZX«BOX)«F/(EIG«TI(3)) 
ADEN=(EIG«RE(N)«(BZX«YOXRE — YZX«BOXRE))««2 — (EIG«(BZX«YQX 

1YZX«BQX))»«2 

110 

108 
115 

2 
3 
4 
9 

PLOST = 2*«ANUH/ADEN 
)(LOST = )(LOST + PLOST 
If t ABS(PLQST) — 1 E-4) 108~ I IQ p I IQ 
I = I + 1 
GQ TO 10 
HRITE (6y9) RO(K) »RE(N) »TI (J) p)(LOST 
CONT INUE 
FORHAT (1F10. 0) 
FQRHAT ( IF10o0) 
FORHAT (6F10 0) 
FORHAT (3F12 4plE20 6) 
ENO 

FUNCTION EIGEN(EH»RE) 
AL = EH«3. 141593/tRE-1. ) 
PE = -1 /(8 «RE) 
QE = 4o«t — 1. )«(-25 )«(RE««3-1 )/(3o«(8. «RE)««3«(RC-I. )) 
RA = (32 «(-Io)«(+1073 )«(RE««5-1 ))/(5 «(8 «RE)««5«(RE-I )) 
DA = PE/AL 
DB = (QE-PE««2)/(AL««3) 
DC = (RA-4 »PE»DE+2 «PE««3)/(AL««5) 
EIGEN = AL + DA + DB + DC 

RETURN 



END 

FUNCTION BZJ1. 3(X) 
POLYNOMIAL APPROXINATIDN ACCORDING FOR)(ULA 9. 4. 1 P. 369 HANBOOK 

BZJL3 = 1. -2 25000«(X/3 )»»2+ I 26562»(X/3. )»»4 — 0. 31639»tX/3 )»» 
16 + Q. 04445»(X/3. )»»8 — 0 ' 00394»tX/3 )»»10 + 0 00021»(X/3. )»»12 

RETURN 
END 

FUNCTION BZJG3(U) 
FORNULA 9 4 3 HANDBOOK 
THETO U 0 78540 0 Q4166» I 3e /U) 0 ~ 00004» (3 /U)»»2 + 0a00263 

1»(3. /U)»»3 — 0 00054»(3 /U)»»4 — 0 00029»(3. /Ul»»5 + 0 00014» 
2t3. /U)»»6 

FO = Qo79788 - 0+00553»(3 /U)»»2- 0 ' 00010»(3 ' /Ul»»3 + 0 F 00)37» 
1(3o/U)»»4 — 0 D0072»(3 /U)»»5 + 0 00014»(3 /U)»»6 

BZJG3 = FO COS(THETO)/SORT(U) 
RETURN 
END 

FUNCTION BZYG3(U) 
THETO = U — 0. 78540 — 0. 04166 ' (3. /U) — Q. DQD04»(3. /U)»»2 + 0. 00263 

1»t3. /U)»»3 — 0 00054»(3. /U)»»4 — 0. 00029»(3. /U)»»5 + 0. 00014» 
?(3 /U)»»6 

FO = 0 ' 79788 — 0 ' 00553»(3 /U)»»2- Qe00010»(3 ' /U)»»3 + 0 ' 0'0137» 
1(3 /U)»»4 0 00072»(3 /U)»»5 + 0 ' 00014»(3 /U)»»6 

BZYG3 = FD»SIN(THETO)/S()RT(U) 
RETURN 
END 

C 

201 

FUNCTION BZYL3(V) 
EXTERNAL BZJL3 
AUXZ3 = BZJL3tV) 
CONTINUE 
BZY( 3 = (2. /3o) 41593)»ALOG(V/2. )»AUXZ3 + 0. 36747 + 0. 60559» 



1(V/3. ) »»2 — 0. 74350»(V/3o )»»4 + G 25300»(V/3. )»»6- 0-04261»( V/3 ~ ) 

2»»8 + 0. 00427»(V/3 )*»10 — 0. 00025»(V/3 ' )»»12 
RETURN 
END 

FUNCTION BOJL3(D) 
BOJL3 =D»tl. /2. — 0 56250»(D/3 )»»2 + 0. 21094»(D/3. )aa4 — 0. 03954 

1(D/3 )»»6 + 0 00443»(O/3. )a»8 — 0 00032»(D/3 )»»10) 
RETURN 
END 

FUNCTION BOYL3(8) 
EXTERNAL BOJ(. 3 
AUXQ3 = BOJL3(B) 

20Z CONTINUE 
BOYL3 = tt2 /3. 141593)»8»ALOG(B/2 ' )»AUXO3 — 0. 6366Z + 0 ?2121» 

1(B/3. )»»2 + 2. 16827»(8/3. )»»4 — 1. 31648«(8/3. )a»6 + 0. 31240» 
2(B/3 )»»8 — 0. 04010»(8/3o)a»10 + Oi00279»(8/3 )»»12)/8 

RETURN 
END 

FUNCTION BOJG3(C) 
THETl = C — 2. 35619 + 0 12500»(3 /C) + 0 00006»(3. /C)a»3 + 

10~00074»(3 /C)»»4 + G 00080»(3 ' /C)»»5 — 0 00029»t3 /C)»a6 
Fl = 0 79788 + 0. 01659»(3 /C)a»2 + 0 G0017»(3 /C)»»3 — 0 ~ 00250» 

l(3 ' /C)»»4 + 0 00113»(3 /C)»»5 — 0 00020»(3 /C)»»6 
BOJG3 = FI»COS(THETI)/SORT(C) 
RETURN 
END 

FUNCTION BDYG3(C) 
THETl = C — 2. 35619 + 0 12500»(3 ' /C) + 0 OGOG6»(3 /C)a»3 + 

10. 00074»(3 /C)»»4 + 0 GGOBG»(3. /C)»»5 — 0. 00029»(3 /C)»»6 
Fl "- 0, 79788 + 0 01659 (3. /C) 2 + 0 ' 00017 ( 3 /C) 3 — 0«00250» 

lt3 /C)»»4 + 0 00113»(3 /C)a»5 — 0 00020»(3 /C)»»6 



SOYG3 = F 1»S IN 1 THE T1 ) /SQRT ( C ) 

RETURN 
END 



C 
C 

10 

18 

30 

15 

25 

PRESSURE CALCULATION IN LINEAR CLOSED AQUIFER CONSTANT TERMINAL 

PRESSURE BY SUPERPOSITION OF CONTINUOUS POINT SOURCE 

DIMENSION X(20) eTI(10) eY(10) eXOA(5&eYOA(5& 
READ (5e4) ( Y( I ) e(~le7) 
READ (5e5) (YOA(L)eL=le2) 
READ (5e6) (X(J) e J=l ~ 19) 
READ (5e7) (TI(K&eK~I ~ 5) 
BA = Do 02 
XOA(L& = 0. 05 
DO 100 HH = 1, 2 
DO 100 K = 1e3 
DO 100 J = lel9 
DO 100 I = 1 ~ 7 
XA = XOA(L) 
PD = Oo0 
N = 1 
DD = ( (-I. } ~ ~ ( M+I & e XA — X ( J & ) ~~2 
H = 2 
HN = 2 
EL = Oo 
DS = ((2 +EL+BA) (-I ) ~ MN+(-1 ) (H) YOA(HM)-Yi I) } 2 
DDS = DD + DS 
AR = DDS/(4. ~TI(K)) 
IF (AR-5 ) 30e30e50 
C = 1 
B = -1 ~ 

DEN = 1 ~ 

FEI = ALOG(AR) + 0 5772 
PEI = B+(ARooC)/DEN 
FE I = FEI + PE I 
IF (ABS(PEI) — 1 E 4) 35e35e25 
C = C + 1 ~ 

DEN = C+C+DEN/(C-Io) 
B = -B 
GO TQ 15 



35 
19 

31 

16 

26 

36 
40 

50 
60 

70 
80 
81 

82 

85 
86 

PD = PD — ( (-1 ) ~+(M+I) l ~FEI/(4o ~ 3. 141593) 
EL = EL + I 
DO 40 M = 1~2 
DS = ((Z. ~EL+BA)~(-Io)++MN+(-1o)++(M)+YOA(MM)-Y 
DDS = DD + DS 
AR = ODS/(4. ~71({()) 
IF (AR-5. ) 31@31&50 
C = Io 
8 = -1 
DEN 
FEI = ALDG(AR) + 0. 5772 
PEI = 8+(AR++C)/DEN 
FEI = FET + PEI 
IF (ABS(PEI )-1 E-4) 36 36 26 
C=C+ I ~ 

DEN = C»CAMDEN/(C-I ) 
8 =-8 
GO TO 16 
PD = PD — ( (-Io )++ { M+I) ) sFEI/{4 +3 141593) 
CONTINUE 
GO TO 19 
IF (MN-1) 70 ~ 70g60 
MN = 1 
M = 1 
GO TO 18 
IF {N-2)80t80v85 
IF (XA-XDA(L ) ) 81 FBI F82 
XA = 2 -2. +XOA(L) 
GO TO 10 
N 

XA = XOA(L ) 

GO TO 10 
IF (XA XDA(L))90y86 ~ 86 
XA = -2 -2 +XOA(L) 
GO TO 10 

(I))~+2 



90 HRITE (6, 9) PD, XOA(L) YOA(MM) SA TI (K), X( J), Y() ) 
100 CONTINUE 

4 FORMAT (IF10 0) 
5 FORMAT (IF10 0) 
6 FORMAT ( IFIO 0) 
7 FORMAT ( IF 10 0) 
9 FORMAT ( IE20 6y6FIDa5) 

END 


