AQUIFER BEHAVIOR WITH REINJECTION

A Thesis

By
EUCLIDES JOSE BONET

Submitted to the Graduate College of the Texas A\&M University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May, 1967

Major Subject Petroleum Engineering

AQUIFER BEHAVIOR WITH REINJECTION

A Thesis

By
EUCLIDES JOSE BENET

Approved as to style and content by:

May, 1967

ACKNOW LEDGMENT

Thanks are due to Petroleo Brasilerio S/A "Petrobras", for providing the financial support for this work.

Thanks to Dr. Paul B. Crawford, Chairman of the Committee, for his advice and guidance which were most valuable in carrying out the research project and in this thesis.

Thanks to Dr. Harvey T. Kennedy, Distinguished Professor, Mr. Bill C. Moore, Members of the Committee, and Mr. Robert L. Whiting, Head of the Petroleum Engineering Department for his comments, suggestions and encouragement in writing this paper.

TABLE OF CONTENTS

Page
ABSTRACT vii
INTRODUCTION 1
THE LINEAR AQUIFER 4
THE RADIAL AQUIFER 15
CONCLUSIONS 29
NOMENCLATURE 30
REFERENCES 32
APPENDIX A 35
APPENDIX B 42
APPENDIX C 48

LIST OF FIGURES

Figure 1. Linear Aquifer - Geometric Parameters
Page 4
Figure 2. Lay-out of Production and Injection Wells for the Linear Closed Aquifer 7
Figure 3. Rate of Flow from a Linear Closed Aquifer 9
Figure 4. Cumulative Flow from Linear Closed Aquifer 10
Figure 5. Velocity in Linear Closed Aquifer
a. For $b_{D}=\frac{b}{a}=0.02 ; y_{O D}=\frac{y_{o}}{a}=0.002$;
$x_{O D}=\frac{x_{o}}{a}=0.01$ 11
b. For $b_{D}=0.02 ; y_{\mathrm{OD}}=0.002 ; \mathrm{x}_{\mathrm{OD}}=0.1$ 12
Figure 6. Pressure in Linear Closed Aquifer for $t_{D}=0.1$ 13
Figure 7. Radial Aquifer - Geometric Parameters 15
Figure 8. Rate of Flow from a Radial Aquifer with Constant External Pressure
a. Source at a Dimensionless Radius $r_{O D}=1.5$ 19
b. Source at a Dimensionless Radius $r_{O D}=1.3$ 20
c. Source at a Dimensionless Radius $r_{O D}=1.1$ 21
d. Source at a Dimensionless Radius $r_{O D}=1.05$ 22
e. Source at a Dimensionless Radius $r_{O D}=1.01$ 23

Page

Figure 9. Cumulative Flow from a Radial Aquifer with Constant External Pressure
a. Source at a Dimensionless Radius $r_{O D}=1.5$ 24
b. Source at a Dimensionless Radius $r_{O D}=1.3$ 25
c. Source at a Dimensionless Radius $r_{O D}=1.1$ 26
d. Source at a Dimensionless Radius $r_{O D}=1.2$ 27
e. Source at a Dimensionless Radius $r_{O D}=1.4$ 28
Page
Figure 9. Cumulative Flow from a Radial Aquifer with Constant External Pressure
a. Source at a Dimensionless Radius $r_{O D}=1.5$ 24
b. Source at a Dimensionless Radius $r_{O D}=1.3$ 25
c. Source at a Dimensionless Radius $r_{O D}=1.1$ 26
d. Source at a Dimensionless Radius $r_{O D}=1.2$ 27
e. Source at a Dimensionless Radius $\mathrm{r}_{\mathrm{OD}}=1.4$ 28

Abstract

When fluid is injected into an aquifer, the asymmetric pressure and velocity distributions, as well as the injection rate and cumulative influx, are very useful parameters in planning production operations and related problems.

This thesis develops analytical expressions showing the cumulative influx, velocity and pressure distributions for several linear and radial injection systems with different boundary conditions.

Since interference between injection wells with each other and with the aquifer is readily solved by superimposition, it is only necessary to consider a single injection well of constant strength. The porous medium is assumed to be homogeneous isotropic and of constant thickness.

Several figures showing the velocity, rate and cumulative influx are presented for the linear closed aquifer, together with an example of pressure distribution inside the aquifer. Influx rate and cumulative influx are presented for a radial aquifer. The figures are presented in dimensionless parameters and may be used generally for aquifers of the same geometry and boundary conditions.

Two computer programs applying to linear and radial cases are attached.

INTRODUCTION

It is fairly common practice to reinject water into the aquifer near the oil-water interface in water-driven reservoirs, Many studies describing aquifer behavior without reinjection have been made ${ }^{1,2,3,4,5}$ but apparently no analytical studies have been made to indicate the aquifer performance when injection wells are present in the aquifer.

The diffusivity equation may be used to describe the pressure behavior in an aquifer. When sources are present it can be written as:

$$
\begin{equation*}
\nabla^{2} p=\frac{1}{\eta} \quad \frac{\partial p}{\partial t}-\frac{\mu_{w}}{k_{w}} i_{w} \delta\left(\vec{r}-\vec{r}_{o}\right) \tag{1}
\end{equation*}
$$

A general solution of Equation (1) may be obtained as the sum of two solutions. One is, a general solution of the homogeneous equation, obtained by dropping the source term in Equation (1) and still satisfying the required boundary conditions. Another is al general solution of Equation (1) satisfying homogeneous boundary conditions ${ }^{10}$. The first solution which corresponds to the aquifer without reinjection has been thoroughly reported in the literatur ${ }^{1,2,3,4,5}$. The latter will be treated here.

Solutions with variable injection rates are obtained by
1 References shown at end of the sis.
superimposing solutions with constant rates, so only the latter is considered here.

Six cases have been treated here. They are:

1) A linear aquifer of finite width and extent. Water is injected into the aquifer at point x_{0}, y_{o} at constant rate. The pressure along the line $x=0$ is maintained at zero pressure. See Figure 1. Equations showing the potential distribution, rates, velocity and cumulative influx have been developed. Certain numerical results are shown.
2) A linear aquifer of finite width and extent. Water is injected into the aquifer at x_{0}, y_{0} at constant rate. The rate of production along the oil-water water contact is maintained constant. Equations showing the potential distribution inside the aquifer are presented.
3) A linear aquifer of finite width and extent. Constant pressures are maintained at opposite ends of the aquifer. Water is injected at constant rates at x_{0}, y_{0}. Equations showing the potential distribution are shown.
4) A linear aquifer of finite width and infinite extent. The pressure is maintained constant at the oil-water contact. Water is injected at a constant rate at $x_{0} y_{0}$.
5) A linear aquifer of finite width, and finite extent. The pressure at the oil-water is maintained constant. Water is injected at constant rate per unit length along a line x_{o}.
6) A radial aquifer of finite extent. The pressures are maintained constant at the external and internal boundary. Water is injected at a constant rate at point r_{0}, θ_{0}. Equations showing the potential distribution, velocity, rate of flux and cumulative flux. along the oil-water contact are presented. Numerical solutions are presented in terms of dimensionless parameters.

THE LINEAR AQUIFER

The linear closed aquifer, performing at constant terminal pressure was selected as the first case to be analysed. The geometric parameters and the boundary values are depicted in

Figure 1 below:

FIGURE 1

The pressure as derived in Appendix A for a unit thickness
medium can be expressed by a double Fourier series as:
$p\left(x, y, t, x_{0}, y_{0}\right)=\frac{4}{a b} i_{w} \frac{\mu_{w}}{k_{w}}\left\{\frac{1}{2} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m-1}{2 a} \pi x_{o}\right)}{\left(\frac{2 m-1}{2 a} \pi\right)^{2}}\right.$

$$
\begin{align*}
& {[1-\mathrm{e}} \\
& {\left[\begin{array}{l}
-\eta\left(\frac{2 m-1}{2 a} \pi\right)^{2} t
\end{array}\right] \sin \frac{2 m-1}{2 a} \pi x+\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m-1}{2 a} \pi x_{0}\right) \cos \left(\frac{n \pi}{b} y_{o}\right)}{\left[\left(\frac{n \pi}{b}\right)^{2}+\left(\frac{2 m-1}{2 a} \pi\right)^{2}\right]}} \tag{2}\\
& \left.\left[1-e e^{-\eta\left[\left(\frac{n \pi}{b}\right)^{2}+\left(\frac{2 m-1}{2 a} \pi\right)^{2}\right] t}\right] \sin \frac{2 m-1}{2 a} \pi x \cos \frac{n \pi}{b} y\right\}
\end{align*}
$$

$$
\begin{align*}
& \left(v_{x}\right)_{x=0}=\frac{4 i w^{\pi}}{a b}\left\{\frac{1}{2} \sum_{m=1}^{\infty} \frac{2 m-1}{2 a} \cdot \frac{\sin \left(\frac{2 m-1}{2 a} \pi x_{o}\right)}{\left(\frac{2 m-1}{2 a} \pi\right)^{2}}\right. \\
& {\left[1-e^{-\eta\left(\frac{2 m-1}{2 a} \pi\right)^{2} t}\right]+\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{2 m-1}{2 a} \frac{\sin \left(\frac{2 m-1}{2 a} \pi x_{0}\right) \cos \left(\frac{n \pi}{b} y_{0}\right)}{\left[\left(\frac{n \pi}{b}\right)^{2}+\left(\frac{2 m-1}{2 a} \pi\right)^{2}\right]}} \\
& {\left[1-e^{-\eta\left[\left(\frac{n \pi}{b}\right)^{2}+\left(\frac{2 m-1}{2 a} \pi\right)^{2}\right] t} \cos \frac{n \pi}{b} y\right\}} \tag{3}\\
& \text { The influx rate is given by: }
\end{align*}
$$

$$
\begin{equation*}
e_{w}=i_{w}\left[1-\frac{4}{\pi} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m-1}{2 a} \pi x_{o}\right)}{2 m-1} e^{-\eta\left(\frac{2 m-1}{2 a} \pi\right)^{2} t}\right] \tag{4}
\end{equation*}
$$

The cumulative influx by:

$$
\begin{array}{r}
W_{e}=W_{i}\left[1-\frac{a x_{o}}{\eta t}\left(1-\frac{x_{o}}{2 a}\right)+\frac{4}{\pi} m_{m=1} \frac{\sin \left(\frac{2 m-1}{2 a} \pi x_{o}\right)}{\eta\left(\frac{2 m-1}{2 a} \pi\right)^{2} t(2 m-1)}\right. \\
\left.e^{-\eta\left(\frac{2 m-1}{2 a} \pi\right)^{2}} t\right] \tag{5}
\end{array}
$$

As seen in Equations (4) and (5), the influx rate and cumulative influx are independent of the source's ordinate.

Equations (4) and (5) expressed in dimensionless variables were evaluated on the computer and the results are presented in Figures 3 and 4, respectively, The curves can be used for any linear aquifer satisfying the hypothesis for which the figures were constructed, As depicted in these figures, unless the source is located at a great distance from oil-water contact, the amount of injected water that does not reach the oil zone is very small even for small times, i.e., the transient period is of small duration.

Equations (2) and (3) converge slowly in our case, since normally $b \ll a$. For this reason, superposition of point sources was used to calculate the pressure inside the aquifer and velocity at the oil-water contact. The equations utilized, referring to one well, are: (See Figure 2).

$$
\begin{gather*}
p=p_{e}-\frac{i_{w} \mu_{w}}{4 \pi k_{w}} E_{i}\left[-\frac{\left(y_{0}-y\right)^{2}+\left(x_{0}-x\right)^{2}}{4 \eta t}\right] \tag{6}\\
v_{x}=\frac{i w_{w} \mu_{0}\left(x_{0}-x\right)}{8 \pi k_{w} \eta t}\left\{\frac{4 \eta t}{\left(y_{0}-y\right)^{2}+\left(x_{0}-x\right)^{2}}+\frac{\sum_{n=0}^{\infty}}{\infty} \frac{(-1)^{n+1}}{(n+1)!}\right. \\
\left.\left[\frac{\left(y_{0}-y\right)^{2}+\left(x_{0}-x\right)^{2}}{4 \eta t}\right]\right\} \tag{7}
\end{gather*}
$$

FIGURE 2. LAY-OUT OF PRODUCTION AND INJECTION WELLS FOR THE LINEAR CLOSED AQUIFER

Equations (6) and (7) were expressed in dimensionless quantities and then evaluated on the computer for various values of the parameters. Some of the results are shown in Figures 5a, 5b and 6. Comparison of superposition and the analytical solution for this problem can be seen in Figures 3 and 5b. The knowledge of this asymmetric velocity distribution can be very useful in planning production operations; the pressure distributions inside the aquifer can be very useful if it is desired to study interference between injection wells.

Since many parameters are involved and, consequently, many tables are necessary to cover all variations, only some values are presented. The computer program in Aggie language for calculation of Equation (6) is presented in Appendix C. With minor modifications this can be utilized for different boundary conditions and Equation (7).

Figure 6 shows that when the source is close to the water-oil contact, the asymmetric velocity distribution manifests almost immediately implying that the significant part of the transient time is of small duration. When the source is removed away from the line of contact and in case that the width of the aquifer is smaller than the source's ordinate, the velocity distribution is almost : symmetric, as indicated by physical considerations,

FIGURE 3. RATE OF FLOW FROM A LINEAR CLOSED AQUIFER

FIGURE 4. CUMULATIVE FLOW FROM LINEAR CLOSED AQUIFER

FIGURE 5a. VELOCITY IN LINEAR CLOSED AQUIFER FOR $b_{0}=\frac{b}{a}=0.02 ; y_{00}{ }^{\circ} \frac{x_{0}}{d}=0.002 ; x_{00} \frac{x_{0}}{a_{0}} 0.01$

FIGURE 5b. VELOCITY IN LINEAR CLOSED AQUIFER FOR $b_{D}=0.02 ; y_{O D}=0.002 ; x_{O D}=0.1$

The equations for the linear system for Cases 2, 3, 4 and 5 are in Appendix A.

THE RADLAL AQUIFER

A radial system with constant pressures at the external and internal boundaries has also been studied. A source of constant strength is located at r_{0}, θ_{0}. Geometrical parameters are presented in Figure 7. The pressure at r_{w} is maintained at zero.

RADIAL AQUIFER - GEOMETRIC PARAMETERS
FIGURE 7

The pressure, for a medium of unit thickness, with a source of unit strength per radian, can be expressed as:*

[^0]$$
+\sum_{1}^{\infty} 2 \frac{z_{o, 0}\left(m r_{o}\right) z_{o, 0}(m r)}{\left[r_{e} z_{o}{ }^{\prime},_{o}\left(m r_{e}\right)\right]^{2}\left[r_{w} z_{o, o}{ }^{\prime}\left(m r_{w}\right)\right]^{2}} \quad e^{-\eta m^{2} t}
$$
\[

$$
\begin{equation*}
\left.+\sum_{1}^{\infty} \sum_{1}^{\infty} \frac{z_{n, n}\left(m r_{o}\right) z_{n, n}(m r)}{\left.\left[r^{\infty} z_{n}^{\prime}, n^{\prime}\left(m r_{e^{\prime}}\right)\right]^{2}-\left[r_{w} z_{n}^{\prime}, n^{\left(m r_{w}\right.}\right)\right]^{2} \cos m\left(\theta_{0}-\theta\right) e^{-\eta m^{2} t}}\right\} \tag{8}
\end{equation*}
$$

\]

$$
\begin{aligned}
& p\left(r, \theta, t, r_{o}, \theta_{o}\right)=-\frac{\mu_{w}}{k_{w}}\left\{\frac{1}{2} \ln \left[\left(\frac{r_{0}}{r_{e}}\right)^{2}-2 \frac{r_{o} r^{2}}{r_{e}} \cos \left(\theta_{0}-\theta\right)+\frac{r^{2}}{r_{e}^{2}}\right]\right. \\
& +\frac{1}{2} \ln \left[1-2 \frac{r_{0}{ }^{r}}{r_{e}^{2}} \cos \left(\theta_{o}-\theta\right)+\frac{r_{o}{ }^{2} r^{2}}{r_{e}^{4}}\right]+\frac{\ln \frac{r_{e}}{r_{o}} \ln \frac{r_{e}}{r_{r}}}{\ln \frac{r_{e}}{r_{w}}} \\
& +\sum_{1}^{\infty} \frac{1}{n} \frac{\left[\left(\frac{r_{0}^{r}}{r_{e}^{2}}\right)^{n}-2\left(\frac{r_{0}^{r}}{r_{w}^{2}}\right)^{n}-\left(\frac{r_{e}^{2}}{r r_{0}}\right)^{n}+\left(\frac{r}{r_{0}}\right)^{n}+\left(\frac{r_{0}}{r}\right)^{n}\right] \operatorname{cosn}\left(\theta_{0}-\theta\right)}{(r n} \\
& 1-\left(\frac{\mathrm{r}}{r_{w}}\right)^{2}
\end{aligned}
$$

where:

$$
Z_{P, n}(m r)=J_{p}\left(m r_{w}\right) Y_{n}(m r)-Y_{p}\left(m r_{w}\right) J_{n}(m r)
$$

J_{n} and Y_{n} are Bessel's functions of first and second kind and order n,
m is chosen such that $Z_{n, n}\left(m r_{e}\right)=0$,
primes indicate derivatives with respect to r.
It is readily seen that the Green's function (8) is symmetric in r, r_{0} and θ, θ_{0}, i. e_{0}, the response in r and θ due to a source in r_{0} and θ_{0} is the same as the response in r_{0} and θ_{0} due to a source in \mathbf{r} and θ.

$$
\begin{aligned}
& \text { The rate of influx at } r_{w} \text { can be written as: }
\end{aligned}
$$

The cumulative influx is expressed by:

$$
W_{e}=2 \pi\left\{t \frac{\ln \frac{r_{e}}{r_{o}}}{\ln \frac{r_{e}}{r_{w}}}+2 \sum_{1}^{\infty} \frac{z_{o, o}\left(m r_{o}\right) r_{w} z_{o}^{\prime}, o\left(m r_{w}\right)}{m^{2} t\left\{\left[r_{e} z_{o}^{\prime}, o_{0}^{\left(m r_{e}\right)}\right]^{2}-\left[r_{w} z_{o}^{\prime}{ }_{o}\left(m r_{w}\right)^{2}\right\}\right.}\right.
$$

Equations (9) and (10) were calculated and some of the results obtained are shown in Figures $8 a$ to e and $9 a$ to e, respectively. Similar to the linear case, the figures are presented in dimensionless parameters and consequently, can be used for any radial system satisfying the hypothesis in which they are based.

The first five zeros of $Z_{o, o}(m r e)=0$, which refers to Equations (9) and (10) where obtained from Reference 12, and the following ones by McMahon asymptotic expansion. ${ }^{12}$ The Bessel's function was calculated using polynomial approximations. ${ }^{12}$

In evaluating equations (9) and (10) the values of e_{w} and w_{e}, for small values of t_{D} showed small errors due to numerical approximations: In Figure 8a some points do show these oscillations.

In this case, it can be very inefficient to reinject at a considerable distance from the oil-water contact in the case of small r_{e} since this, being a line of constant pressure, the water will go in this direction.

For small values of $\mathbf{r}_{\mathbf{o}}$, as practiced in actual operations, the transient period is of insignificant duration and all injected water readily reaches the oil field.

The computer program used in calculating Equation (9) is attached, and with minor modifications can be used to calculate Equation (10).

FIGURE 8a. RATE OF FLOW FROM A RADIAL AQUIFER WITH CONSTANT EXTERNAL PRESSURE; SOURCE AT A DIMENSIONLESS RADIUS $r_{O D}=1.5$

FIGURE 8b. RATE OF FLOW FROM A RADIAL AQUIFER WITH CONSTANT EXTERNAL PRESSURE; SOURCE AT A DIMENSIONLESS RADIUS $r_{O D}=1.3$

FIGURE 8c. RATE OF FLOW FROM A RADIAL AQUIFER WITH CONSTANT EXTERNAL PRESSURE; SOURCE AT A DIMENSIONLESS RADIUS $r_{00}=1.1$

FIGURE 8 d. RATE OF FLOW FROM A RADIAL AQUIFER WITH CONSTANT EXTERNAL PRESSURE; SOURCE AT A DIMENSIONLESS RADIUS $r_{O D}=1.05$

FIGURE 8e. RATE OF FLOW FROM A RADIAL AQUIFER WITH CONSTANT EXTERNAL PRESSURE; SOURCE AT A DIMENSIONLESS RADIUS $r_{O D}=1.01$

FIGURE 9a. CUMULATIVE FLOW FROM A RADIAL AQUIFER WITH CONSTANT EXTERNAL PRESSURE; SOURCE AT A DIMENSIONLESS RADIUS $r_{O D}=1.5$

FIGURE 9b. CUMULATIVE FLOW FROM A RADIAL AQUIFER WITH CONSTANT EXTERNAL PRESSURE; SOURCE AT A DIMENSIONLESS RADIUS $r_{O D}=1.3$

FIGURE 9c. CUMULATIVE FLOW FROM A RADIAL AQUIFER WITH CONSTANT EXTERNAL PRESSURE; SOURCE AT A DIMENSIONLESS RADIUS $r_{O D}=1.1$

FIGURE 9d. CUMULATIVE FLOW FROM A RADIAL AQUIFER WITH CONSTANT EXTERNAL PRESSURE; SOURCE AT A DIMENSIONLESS RADIUS $r_{00}=1.2$

FIGURE 9e. CUMULATIVE FLOW FROM A RADIAL AQUIFER WITH CONSTANT EXTERNAL PRESSURE; SOURCE AT A DIMENSIONLESS RADIUS $r_{O D}=1.4$

CONCLUSIONS

1. For an injection well located close to the oil-water contact, the transient period is of relatively small duration, i. e., in a short period of time all the parameters attain approximately a steady state value.
2. For closed systems, the water lost to the aquifer is relatively small, increasing with increasing distance between injection well and oil-water contact.
3. In aquifers with constant pressure at the external boundary the water lost can be very important when placing the injection well far from the water-oil contact for small values of $r e$.
4. At the internal boundary the velocity rapidly approaches a steady asymmetric distribution when the source is close to the contact. When the source is far removed from the contact, the velocity is fairly uniform through all the contact, this being anticipated from physical considerations.

NOMENCLATURE

```
a = length of linear aquifer
b = width of linear aquifer
cw = water compressibility
ew = water influx rate
h = net pay thickness
iw = water injection rate
k
p = pressure
\mp@subsup{P}{d}{}}=\mathrm{ = dimensionless pressure
Pe = external boundary pressure
pw
r = radial distance
r}\mp@subsup{r}{\textrm{d}}{}=\mathrm{ dimensionless radial distance
re}=\mathrm{ external boundary radius
rw}=\mathrm{ internal radius of aquifer
t = time
t
v = velocity
We
W
```

```
x \(\quad=\) distance
y \(=\) distance
\(\eta \quad=\) hydraulic diffusivity ( \(\mathrm{k}_{\mathrm{w}} / \phi \mu_{\mathrm{w}} \mathrm{c}_{\mathrm{w}}\) )
\(\mu_{\mathrm{w}} \quad=\) water viscosity
\(\phi \quad=\) porosity
\(\delta\) = Dirac delta function
```


REFERENCES

1. Muskat, M.: Physical Principles of Oil Production, J. W. Edwards, Inc., 1st ed. (1949).
2. van Everdingen, A. F., and Hurst, W.: "The Application of the Laplace Transformation to Flow Problems in Reservoirs", AIME Trans. (1949) 186, 305.
3. Miller, Frank G.: "Theory of Unsteady-State Influx of Water in Linear Reservoirs", Jour. of Pet. Institute (Nov., 1962) 48.
4. Mueller, T. D.: "Transient Response of Nonhomogeneous Aquifers' ${ }^{\prime \prime}$ Soc, of Pet. Engrs. Jour. (March, 1962) 2, 33 .
5. Muskat, M.: Flow of Homogeneous Fluids, J. W. Edwards, Inc., 1st ed. (1946).
6. Nisle, Robert G., 'How to Use the Exponential Integral'", The Petroleum Engr. (August, 1956) B-171.
7. Collins, R. E. Flow of Fluids Through Porous Materials, Reinhold Pub. Corp. (1961).
8. Goldfracht, T., Bonet, E., and Monforte, G.: "Fundamentos do Hidrointegrador'", Boletim Tecnico da Petrobras, (Oct/Dez., 1964) 457.
9. Stewart, F. M., Galloway, F. H., and Gladfelter, R. E.: "Comparison of Methods for Analyzing a Water Drive Field, Torchlight Tensleep Reservoir'', AIME Trans. (1954) 201, 197.
10. Sneddon, Ian N. : Elements of Partial Differential Equations, McGraw-Hill Book Co., Inc. (1957).
11. Irving, J. and Mullineux, N.: Mathematics in Physics and Engineering, Academic Press Inc. (1959).
12. U. S. Department of Commerce, National Bureau of Standards, Applied Mathematics Series, 55 Handbook of Mathematical Functions (June, 1964).
13. Tolstov, G. P.: Fourier Series, Prentice-Hall, Inc.(1962).

APPENDIX A

1. Linear Closed, Constant Terminal Pressure, One Point Source

Aquifer.
The pressure in this system can be obtained by solving the following boundary value problem:
$\frac{\partial^{2} p}{\partial x^{2}}+\frac{\partial^{2} p}{\partial y^{2}}=\frac{1}{\eta} \frac{\partial p}{\partial t}-i_{w} \frac{\mu_{w}}{k_{w}} \delta\left(x-x_{0}\right) \delta\left(y-y_{0}\right)$
$\left(\frac{\partial p}{\partial y}\right)_{y=0}=\left(\frac{\partial p}{\partial y}\right)_{y=b}=\left(\frac{\partial p}{\partial x}\right)_{x=a}=(p)_{x=0}=(p)_{t=0}=0$

Multiplication and integration* transforms (11) into:

$$
+\int_{0}^{a} \int_{0}^{b} \frac{\partial^{2} p}{\partial x^{2}} \sin \frac{2 m-1}{2 a} \pi \cos \frac{n \pi y}{b} d x d y+\int_{0}^{a} \int_{0}^{b} \frac{\partial^{2} p}{\partial y^{2}} \sin \frac{2 m-1}{2 a} \pi x
$$

$$
\cos \frac{n \pi y}{b} d x d y=\frac{1}{\eta_{0}} \int_{0}^{a} \int_{0}^{b} \frac{\partial p}{\partial t} \sin \frac{2 m-1}{2 a} \pi x \cos \frac{n \pi y}{b} d x d y
$$

$$
\begin{equation*}
-\int_{0}^{a} \int_{0}^{b} i_{w} \frac{\mu_{w}}{k_{w}^{\prime}} \delta\left(x-x_{0}\right) \delta\left(y-y_{0}\right) \sin \frac{2 m-1}{2 a} \pi x \cos \frac{n \pi y}{b} d x d y \tag{13}
\end{equation*}
$$

*See Reference 11, page 236, for a similar steady state problem.

Integration by parts and using the boundary conditions it is readily obtained:
$\frac{1}{\eta} \frac{d}{d t} \quad \int_{0}^{a} \int_{0}^{b} p \sin \frac{2 m-1}{2 a} \pi \cos \frac{n \pi}{b} y d x d y+\left[\left(\frac{n \pi}{b}\right)^{2}+\left(\frac{2 m-1}{2 a} \pi\right)^{2}\right]$
$\int_{0}^{a} \int_{0}^{b} p \sin \frac{2 m-1}{2 a} \pi x \cos \frac{n \pi y}{b} d x d y=i \frac{\mu_{w}}{r_{w}}$
$\int_{0}^{a} \int_{0}^{b} \delta\left(x-x_{0}\right) \delta\left(y-y_{0}\right) \sin \frac{2 m-1}{2 a} \pi x \cos \frac{n \pi y}{b} d x d y$

Using the property of Dirac delta function, namely

$$
\int_{-\infty}^{\infty} f(x) \delta\left(x_{0}\right)=f\left(x_{0}\right)
$$

And recalling that the double integral can be interpreted as a successive Fourier finite, cosine, sine ${ }^{11,13}$ transform

$$
\overline{\bar{p}}_{s C}=\int_{0}^{a} \int_{0}^{b} p \sin \frac{2 m-1}{2 a} \pi x \cos \frac{n \pi y}{b} d x d y
$$

The Equation (14) transforms into Equation (15):

$$
\begin{align*}
& \left.\frac{d \stackrel{\bar{p}}{s c}^{d t}}{d t} \eta\left(\left\lvert\, \frac{n \pi}{b}\right.\right)^{2}+\left(\frac{2 m-1}{2 a} \pi\right)^{2}\right]=\overline{\bar{p}}_{s c} \\
& =\eta i_{w} \frac{\mu_{w}}{k_{w}} \sin \frac{2 m-1}{2 a} \pi x_{o} \cos \frac{n \pi}{b} y_{o} \tag{15}
\end{align*}
$$

The general solution for the ordinary differential Equation (15)
is:

$$
\begin{align*}
& \overline{\mathrm{P}}_{s c}=i \frac{\mu_{w}}{k_{w}} \frac{\sin \left(\frac{2 m-1}{2 a} \pi x_{o}\right) \cos \left(\frac{n \pi}{b} y_{o}\right)}{\left[\left(\frac{n \pi}{b}\right)^{2}+\left(\frac{2 m-1}{2 a} \pi\right)^{2}\right]} \\
& {\left.\left[1-e^{-\eta\left(\frac{n \pi}{b}\right)^{2}+\left(\frac{2 m-1}{2 a}\right.} \pi\right)^{2}\right] } \tag{16}\\
&t]
\end{align*}
$$

The inversion is readily written as:

$$
\begin{align*}
& p\left(x, y, t, x_{o}, y_{o}\right)=\frac{4}{a b} \quad i_{w} \frac{\mu_{w}}{k_{w}}\left\{\frac{1}{2} \sum_{m=1}^{\infty} \frac{\sin \frac{2 m-1}{2 a} \pi x_{0}}{\left(\frac{2 m-1}{2 a} \pi\right)^{2}}\right. \\
& \left.\left[1-e^{-\eta\left(\frac{2 m-1}{2 a}\right.} \pi\right)^{2} t\right] \sin \frac{2 m-1}{2 a} \pi x \\
& \left.\left.+\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m-1}{2 a} \pi x_{0}\right) \cos \left(\frac{n \pi}{b} y_{o}\right)}{\left[\left(\frac{n \pi}{b}\right)^{2}+\left(\frac{2 m-1}{2 a}\right.\right.} \pi\right)^{2}\right] \\
& {\left[1-e^{\left.\left.-\eta\left[\left(\frac{n \pi}{b}\right)^{2}+\left(\frac{2 m-1}{2 a} \pi\right)^{2}\right] t\right] \sin \frac{2 m-1}{2 a} \pi x \cos \frac{n \pi}{b} y\right\}, ~(1) ~}\right.} \tag{17}
\end{align*}
$$

Derivation with respect to x, readily gives formula (3) on page 5 . Integration with respect to y , and noting that all terms with $\mathrm{n} \neq 0$, drops, gives:

$$
\begin{equation*}
e_{w}=\int_{0}^{b} \frac{4 i_{w}}{\pi b}{ }_{m=1} \frac{\sin \frac{2 m-1}{2 a} \pi x_{0}}{2 m-1}\left[1-e^{-\eta\left(\frac{2 m-1}{2 a} \pi\right)^{2}}\right]_{t}^{t} \tag{dy}
\end{equation*}
$$

Carrying out the integration and recalling that:

$$
\sum_{m=1}^{\infty} \frac{\sin (2 m-1) x}{2 m-1}=\frac{\pi}{4}
$$

We obtain:

$$
\begin{equation*}
e_{w}=i_{w}\left[1-\frac{4}{\pi} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m-1}{2 a} \pi x_{0}\right)}{2 m-1} e^{-\eta\left(\frac{2 m-1}{2 a} \pi\right)}\right. \tag{19}
\end{equation*}
$$

$$
2
$$

Considering that

$$
W_{e} \int_{w^{t}}^{e_{e}} d t
$$

And recalling that:

$$
\sum_{m=1}^{\infty} \frac{\sin (2 m-1) x}{(2 m-1)^{3}}=\frac{\pi}{8} \quad x(\pi-x)
$$

$W_{e}=W_{i}\left[1-\frac{a x_{o}}{\eta t}\left(1-\frac{x_{o}}{2 a}\right)+\frac{4}{\pi} \sum_{m=1}^{\infty} \frac{\sin \frac{2 m-1}{2 a} \pi x_{o}}{\eta\left(\frac{2 m-1}{2 a} \pi\right)^{2} t(2 m-1)}\right.$

$$
\begin{equation*}
\left.\left.e^{-\eta\left(\frac{2 m-1}{2 a}\right.} \pi\right)^{2} \quad t\right] \tag{20}
\end{equation*}
$$

2. Linear, Closed, Constant Terminal Rate, One Point Source

Aquifer.

Similar to Case 1, we can write:
$p\left(x, y, t, x_{0}, y_{0}\right)=c \frac{4}{a b} i_{w} \frac{\mu_{w}}{k_{w}} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{\cos \frac{m \pi x_{o}}{a} \cos \frac{n \pi y_{o}}{b}}{\left[\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}\right]}$
$x\left[1-e^{\left.-\left[\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)\right]^{2}\right]} \cos \frac{m \pi x}{a} \cos \frac{n \pi y}{b}\right.$
where

$$
c=\left\{\begin{array}{l}
1 \text { for } n \text { and } m \neq 0 \\
1 / 2 \text { for } n \text { or } m=0
\end{array}\right.
$$

3. Linear, Constant External Pressure, Constant Terminal

Pressure, One Point Source Aquifer.

$$
\begin{align*}
& p\left(x, y, t, x_{0}, y_{0}\right)=c \frac{4}{a b} i_{w} \frac{k_{w}}{k_{w}} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{\sin \frac{m \pi x_{0}}{a} \cos \frac{n \pi y_{o}}{b}}{\left[\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}\right]} \\
& x\left[1-e^{-\eta}\left[\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}\right]^{t}\right] \sin \frac{m \pi x}{a} \cos \frac{n \pi y}{b} \tag{22}\\
& \text { where } \quad c=\left\{\begin{array}{l}
1 \text { for } n \neq 0 \\
1 / 2 \text { for } n=0
\end{array}\right.
\end{align*}
$$

4. Linear, Infinite, Constant Terminal Pressure, One Point

Source Aquifer.

$$
\begin{align*}
& p\left(x, y, t_{0} x_{0}, y_{o}\right)=c \frac{4}{b \pi} i_{w} \frac{\mu_{w}}{k_{w}} \sum_{n=0}^{\infty} \int_{0}^{\infty} \frac{\cos \frac{n \pi y_{o}}{b} \sin \left(p x_{0}\right)}{\eta\left[\left(\left.\frac{n \pi}{b}\right|^{2}+p^{2}\right]\right.} \\
& {\left[1-e^{-\eta\left[\left|\frac{n \pi}{b}\right|^{2}+p^{2}\right] t}\right] \cos \frac{n \pi y}{b} \sin (p x) d p} \tag{23}
\end{align*}
$$

where

5. Linear, Closed, Constant Terminal Pressure, Line Source

Aquifer. *

$P\left(x, t, x_{o}\right)=\frac{2}{a} i_{w} \frac{\mu_{w}}{k_{w}^{\prime}} \sum_{n=1}^{\infty} \frac{\sin \frac{2 n-1}{2 a} \pi x_{o}}{\eta \frac{2 n-1}{2 a} \pi}\left[1-e^{-\eta\left(\frac{2 n-1}{2 a} \pi\right)^{2}} t\right]$

$$
\begin{equation*}
\sin \frac{2 n-1}{2 a} \pi x \tag{24}
\end{equation*}
$$

Systems of different boundary conditions as well as three dimensional problems based on similar hypothesis can be treated by this method.
*See Reference 10, page 300, for another approach for deriving the solution of a similar problem giving the same results.

APPENDIX B

The pressure distribution in a radial system with homogeneous Dirichlet boundary conditions at external and internal boundaries, with a point source, of unit strength per radian, is obtained by solving the following boundary value problem (See Figure 7):
$\frac{\partial^{2} p}{\partial r^{2}}+\frac{1}{r} \frac{\partial p}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} p}{\partial \theta^{2}}=\frac{1}{\eta} \frac{\partial p_{p}}{\partial t} \frac{\mu_{w}}{w_{w}} \delta\left(r-r_{0}\right) \delta\left(\theta-\theta_{0}\right)$
$p\left(r_{e}, \theta, t\right)=p\left(r_{w}, \theta, t\right)=0$
$p(r, \theta, 0)=0$

The source can be represented by:
$-\frac{k_{w}}{\mu_{w}} \quad p_{s}=\ln \frac{r^{\prime}}{r_{e}}=-\frac{1}{2} \ln \left[\frac{r_{0}^{2}}{r_{e}^{2}}-\frac{2 r_{o} r^{2}}{r_{e}^{2}} \cos \left(\theta_{0}-\theta\right)+\frac{r^{2}}{r_{e}^{2}}\right]$

An expression containing 直quation (28) and which is a solution of
Equation (25) is:

$$
-\frac{k_{w}}{\mu_{w}} p_{a}=\frac{1}{2}\left\{\ln \left[\frac{r_{o}^{2}}{r_{e}^{2}}-\frac{2 r_{o}^{r}}{r_{e}^{2}} \cos \left(\theta_{o}-\theta\right)+\frac{r^{2}}{r_{e}^{2}}\right]\right.
$$

$$
\begin{equation*}
\left.+\ln \left[1-\frac{2 r_{o}^{x}}{r_{e}^{2}} \cos \left(\theta_{0}-\theta\right)+\frac{r_{o}^{2} r^{2}}{r_{e}^{4}}\right]\right\} \tag{29}
\end{equation*}
$$

Observing that Equation (28) can be expanded in Fourier series as follows:

Then it is easily found that a particular solution of Equation (25), containing Equation (28) and satisfying Equation (26) is:
$-\frac{k_{w}}{\mu_{w}} p_{p}=\frac{k_{w}}{\mu_{w}} p_{a}+b_{0}+a_{0} \ln r+\sum_{1}^{\infty}\left(b_{n} r^{n}+c_{n} r^{-n}\right) \cos n \theta$
where

$$
a_{o}=-\frac{\ln \frac{r_{e}}{r_{o}}}{\ln \frac{r_{e}}{r_{w}}}
$$

$$
\begin{aligned}
& b_{o}=-a_{o} \ln r_{e} \\
& b_{n}=\frac{1}{n} \frac{\left.\left[\left(\frac{r_{0}}{r_{w}}\right)^{n}\right)^{n}+\left(\frac{r_{w}}{r_{0}}\right)^{n}\right] r_{w}^{n}-2 r_{o}^{n}}{r_{w}^{n}-r_{e}^{2 n}} \\
& c_{n}=\left[\frac{1}{n} \quad 2\left(\frac{r_{o}}{r_{e}}\right)^{n}-b_{n} r^{n}\right] r^{n} e^{n}
\end{aligned}
$$

The general solution, consequently, will be:

$$
\begin{equation*}
-\frac{k_{w}}{\mu_{w}} p=\frac{k_{w}}{\mu_{w}} p_{p}+\sum_{n=0}^{\infty} \sum_{1}^{\infty} A_{m n} Z_{n n}(m r) \cos n\left(\theta_{0}-\theta\right) e^{-} m^{2} t \tag{31}
\end{equation*}
$$

Where we define:

$$
Z_{p, n}(m r)=J_{p}\left(m r_{w}\right) Y_{n}(m r)-Y_{p}\left(m r_{w}\right) J_{n}\left(m r_{w}\right)
$$

And m will be determined such that:

$$
\begin{equation*}
Z_{n, n}\left(m r_{e}\right)=0 \tag{32}
\end{equation*}
$$

According to the theory of Fourier-Bessel series the Equation (27) is satisfied by:

$$
A_{m o}=\frac{I_{10}+I_{20}+I_{30}}{D_{0}} ; A_{m, n}=\frac{I_{1 n}+I_{2 n}+I_{3 n}}{D_{n}}
$$

where

$$
\begin{aligned}
& D_{0}=\int_{r_{w}}^{r_{e}} r Z_{0}^{2}(m r) d r \\
& I_{1 n}=\int_{r_{w}}^{r} \frac{1}{n}\left[\left(\frac{r_{0}}{r_{e}^{2}}\right)^{n}+\left(\frac{r}{r_{0}}\right)^{n}\right] r Z_{n, n}(m r) d r \\
& I_{2 n}=\int_{r_{0}}^{r e} \frac{1}{n}\left[\left(\frac{r_{0} r}{r_{e}^{2}}\right)^{n}+\left(\frac{r}{r}\right)^{n}\right] r Z_{n, n}(m r) d r
\end{aligned}
$$

$$
\begin{aligned}
& I_{10}=\int_{r_{w}}^{r_{o}} r \ln \frac{r_{e}}{r_{o}} Z_{o, 0}(m r) d r \\
& I_{20}=\int_{r_{0}}^{r_{e}} \ln \frac{r_{e}}{r} r Z_{o, 0}(m r) d r \\
& I_{30}=-\int_{r_{w}}^{r e}\left(b_{o}+a_{o} \ln r\right) r Z_{o, 0}(m r) d r
\end{aligned}
$$

$$
\begin{aligned}
& \left.I_{3 n}=-\int_{r_{W}}^{r} e b_{n} r^{n}+c_{n^{1}} r^{-n}\right) r Z_{n}(m r) d r \\
& D_{n}=\int_{w}^{r} e Z^{2} n, n^{(m r) d r}
\end{aligned}
$$

Using the recurrence relations for Bessel's functions, and the boundary conditions, it is readily verified that:

$$
\begin{align*}
& A_{m o}=2 \frac{Z_{o_{, 0}\left(m r_{o}\right)}}{\left[r_{e} Z_{o, o}^{\prime}\left(m r_{e}\right)\right]^{2}-\left[r_{w} Z_{o, o}^{\prime}\left(m r_{w}\right)\right]^{2}} \\
& A_{m n}=4 \frac{Z_{n, n}\left(m r_{o}\right)}{\left[r^{e^{\prime}}{ }_{n_{s}, n}\left(m r_{e}\right)\right]^{2}-\left[r_{w} Z_{n, n}^{\prime}\left(m r_{w}\right)\right]^{2}} \tag{33}
\end{align*}
$$

Consequently, the pressure is given by Equation (31), m determined by Equation (32) and $A_{m n}$ by Equation (33), which, after some manipulation is identified with Equation (8).

The rate of influx is obtained by recalling that

$$
\int_{0}^{2 \pi}\left(\frac{\partial p_{a}}{\partial r}\right)_{r=r} d \theta=0
$$

and that all terms containing $\cos \left(\theta_{0}-\theta\right)$ gives a null integral.
It remains only:

$$
\begin{array}{r}
e_{w}=\frac{k_{w}}{\mu_{w}} \int_{0}^{2 \pi} \frac{\partial}{\partial r}\left(b_{o}+a_{o} \ln r+\sum_{1}^{\infty} A_{o, o} z_{o, o}(m r) e^{-\eta m^{2} t}\right) \\
r_{w} d \theta r=r_{w}
\end{array}
$$

From this Equation (9) is readily obtained.
The cumulative influx

$$
w_{e}=\int_{o}^{t} e_{w} d t
$$

Which gives Equation (10).

```
C APPENDIX C
C
$EXECUTE AGGIE
C
C ******* EUCLIDES JOSE BONET ***********
` RATIO INFLUX RATE INJECTED WATER IN RADIAL AQUIFER WITH
C CONSTANT PRESSURE IN RE AND RW
    DIMENSION EIV(10,20):TI(20),RE(10),RO(10)
C THE EIGENVALUES ARE TAKEN FROM PG.415 HANOBOOK OF MATH.FUNCTIDNS
    READ (5,2) (TI(J), j=1,20)
    READ (5,3) (RO(K),K=1:10)
    READ (5,4) ((EIV(N,I),I=1,5),RE(N),N=1,5)
    EXTERNAL BZJL3
    EXTERNAL BZJG3
    EXTERNAL BOJLL
    ExTERNAL BOJG3
    EXTERNAL BZYL3
    EXTERNAL BZYG3
    EXTERNAL BOYL3
    EXTERNAL BOYG3
    ExTERNAL EIGEN
    DO 115 K = 1,10
    DO 115 N = 1,5
    00 115 J = 1,20
    I = 1
    WLOST = ALOG(RE(N)/RO(K))/ALOG(RE(N))
10 IF (I - 5) 25,25,15
15 EM = I
    EIG = EIGENIEM*RE(NI)
16 CDNTINUE
    G0 t0 30
25 EIG = EIV(N;I)
30 IF (EIG - 3.) 35,35,40
35 BZX = BZJL3(EIG)
```

36 CONTINUE YZX = BZYL3 (EIG)
32 CONTINUE BOX = BOJL3 (EIG)
37 CONTINUE
YOX = BOYL3\{EIG.
38 CONTINUE GO 1045
$40 \mathrm{BZX}=$ BZJG3(EIG)
41 continue
BOX = BOJG3(EIG)
42 CONTINUE
YOX = BOYG3(EIG)
43 CONTINUE
YZX = BZYG3(EIG)
44 CONTINUE
$45 \mathrm{AF}=\mathrm{EIG}$ ROQK)
1F (AF-3.) $50,50: 55$
$50 \mathrm{BZXRO}=\mathrm{BZJL} 3(A F)$
51 CONTINUE
GO TO 60
$55 \mathrm{BZXRO}=B Z J G 3(A F)$
56 CONTINUE
$60 \mathrm{AF}=\mathrm{EIG} *$ REIN $)$
IF $\{A F-3\} 65,65,$.
65 BDXRE $=$ BDJL $3(A F)$
66 CONTINUE
GD TO 75
70 BOXRE $=$ BOJG3(AF)
71 continue
75 AS = EIG*RO(K)
IF (AS - 3.) $80,80,85$
$80 \mathrm{YZXRO}=\mathrm{BZYL} 3(A S)$
31 CONTINUE
GO TO 90

```
    85 YZXRO = BZYG3(AS)
    8 6 ~ C O N T I N U E ~
    90 AS = EIG*REIN:
    IF IAS - 30: 95:950100
    95 YOXRE = BOYL3(AS)
    9 6 ~ C O N T I N U E
    GO TO 105
    100 YOXRE = BOYG3{AS)
    101 CONTINUE
    105 ANUM={BZX*YZXRO-YZX*BZXRD{*(BZX*YOX-YZX*BOX)*F/{EIG=TI{J)}
        ADEN=(EIG*RE(N)*(BZX*YOXRE - YZX*BOXRE))**2 - {EIG*(BZX*YOX -
        |YZX*BOX):**2
        PLDST = 2.*ANUM/ADEN
        WLOST = WLOST + PLOST
        IF (ABSTPLOST) - 1nE-4) 108,110,110
    110 I = I + 1
    GO TO 10
    108 WRITE (6,9) RO(K),RE(N).TI(J):WLOST
    115 CONTINUE
        2 FORMAT {1F10.0)
        3 FORMAT {1F10.0)
    4 \text { FORMAT (6F10.0)}
    9 FORMAT (3F12.4p1E20.6)
        END
C
        FUNCTION EIGEN(EM.RE)
        AL = EM#3.141593/(RE-1.)
        PE = -1./(8.*RE)
        QE = 40*(-1*)*(-25.)*(RE**3-1*)/(3**(80*RE)**3*(RE-1.)
        RA = {32.*{-1.)*(+1073.)*(RE**5-1.)
        DA = PE/AL
        DB = {QE-PE**2)/[AL**3)
        DC = (RA-4**PE*QE+2.*PE**3)/(AL**5)
        EIGEN = AL + DA + DB + DC
        RETURN
```

FUNCTION BZJG3(U)
FORMULA 9.4.3 HANDBDOK
THETO $=U-0.78540-0.04166 *(3.1 U)=0.00004 *(3 . / U) * * 2+0.00263$ $1 *(3 . / U) * * 3-0.00054 *(3 . / U) * * 4-0.00029 *(3 . / U) * * 5+0.00014 *$ $2(3 . / U)=6$
$F O=0.79788-0.00553 *(3 . / U) * 2-0.00010 *(3 . J U) * * 3+0.00137 *$
1(3./U)**4-0.00072*(3./U)**5 + 0.00014*(3.JU)**6
$B Z J G 3=F D * C O S(T H E T O I / S Q R T(U)$
RETURN
END
FUNCTION BZYGZ(U)
THETO $=U-0.78540-0.04166 *(3 . / U)-0.00004 *(3 . / U) * 2+0.00263$
1*(3./U)**3-0.00054*(3./U)**4-0.00029*(3.1U)**5 + 0.00014*
2(3./U)**6
FO $=0.79789-0.00553 *(3.1 U) * 2-0.00010 *(3 . / U) * * 3+0.00137 *$
$1(3 . / U) * * 4-0.00072 *(3 . / U) * * 5+0.00014 *(3.1 U) * * 6$
BZYG3 $=$ FB*SIN(THETO)/SQRT(U)
RETURN
END
C
FUNCTION BZYL3(V)
EXTERNAL BZJL3
AUXZ3 = BZdL3(V)
201 CONTINUE
BZYL. $=(2.13 .141593) * A L O G(V / 2) * A U X Z 3+0.36747+.0.60559 *$

```
1(v/3.)**2-0.74350*(V/3.)**4*0.25300*(V/3.)**6-0.04261*(V/3.)
```

$2 * * 8+0.00427 *(\mathrm{~V} / 3) *+10-.0.00025 *(\mathrm{~V} / 3) * *$.
RETURN
END
c
FUNCIION BOJL3(D)
BO.313 $=\mathrm{D} *(1.12$ 。 $-0.56250 *(\mathrm{D} / 3) * 2+.0.21094 *(\mathrm{D} / 3) * * 4-.0.03954 \%$
$\left.1\left(\mathrm{D} / 3_{\mathrm{H}}\right) * * 6+0.00443 *(0 / 30) * * 8-0.00032 *(0 / 3) * * 10.\right)$
RETURN
END
C
FUNCTION BOYL3(B)
EXTERNAL BOJL 3
$A \cup X 03=B O J L 3(B)$
202 CONTINUE
BOYL3 $=\{(2.13 .141593) * B * A L O G(B / 2) * A U X O 3-0.63662+.0.22121 *$ $1\left(8 / 3_{0}\right) * * 2+2.16827 *(8 / 3) * * 4-.1.31648 *(B / 3) * * 6+.0.31240 *$ $2(\mathrm{~B} / 3) * * 8-.0.04010 *(\mathrm{~B} / 3) * * 10+.0.00279 *(\mathrm{~B} / 3 \mathrm{O}) * * 121 / \mathrm{B}$

RETURN
END
C
FUNCTION BOJG3(C)
THET1 $=C-2.35619+0.12500 *(3 . / C)+0.00006 *(3 . / C) * * 3+$ $10.00074 *(3 . / C) * * 4+0.00080 *(3 . / C) * * 5-0.00029 *(3 . / C) * * 6$ $F 1=0.79788+0.01659 *\{3 . / C\} * 2+0.00017 *(3 . / C) * * 3-0.00250 *$
$1(3 . / C) * * 4+0.00113 * 13 . / C) * * 5-0.00020 *(3 . / C) * * 6$
BOJG3 $=\mathrm{FI} * \mathrm{COS}(T H E T 1) / S Q R T(C)$
RETURN
END
C
FUNCTION BOYG3(C)
THET1 $=C-2.35619+0.12500 *(3.1 C)+0.00006 *(3 . / C) * * 3+$ $10.00074 *(3 . / C) * * 4+0.00080 *(3 . / C) * * 5-0.00029 *(3 . / C) * * 6$ $F 1=0.79788+0.01659 *(3 . / C) * 2+0.00017 *(3 . / C) * * 3-0.00250 *$ $1(3 . / C) * * 4+0.00113 *(3 . / C) * * 5-0.00020 *(3 . / C) * * 6$

BOYG3 $=$ FI*SIN(THETI)/SQRT(C)
RETURN
END

```
C PRESSURE CALCULATION IN LINEAR CLOSED AQUIFER CONSTANT TERMINAL
C PRESSURE BY SUPERPOSITIDN OF CONIINUOUS POINT SOURCE
    DIMENSION X(20),TI(10),Y(10),XOA(5),YOA(5)
    READ (5,4) (Y(1),I=1.7)
    READ (5,5) (YOA(L), L=1,2)
    READ (5;6) (X(J),J=1,19)
    READ (5,7) (TI&K),K=1,5)
    BA = 0.02
    XOA(L) = 0.05
    DD 100 MM = 1,2
    DO 100 K = 1.3
    DO 100 J = 1,19
    DO 100 I = 1,7
    XA = XOA(L)
    PD = 0.0
    N = 1
10DD = ((-1.)**(N+1)*XA - X(J))**2
    M = 2
    MN =2
18 EL = 0.
    DS = ({2**EL*BA)*(-1.)**MN+(-1.)**(M)*YOA(MM)-Y(I))**2
    DDS = DD + DS
    AR = DDS/(4.*TI(K))
    IF {AR-5.} 30,30.50
30
    B = -1.
    DEN = 1.
    FEI = ALOG(AR) + 0.5772
15 PEI = B*(AR**C)/DEN
    FEI = FEI + PEI
    IF (ABS(PEI)-1.E-4) 35,35,25
25C=C + 1.
    DEN = C*C*DEN/(C-1.)
    B}=-
    GO TO 15
```

```
35 PD = PD - ((-1.)**(N+1))*FEI/(4.*3.141593)
19 EL = EL + 1.
    DO 40 M = 1,2
    DS = ({2.*EL*BA)*{-1.)**MN+(-1.}**(M)*YOA(MM)-Y(I))**2
    DDS = DD + DS
    AR = ODS/(4.*T1(K))
    IF (AR-5.) 31,31,50
31C=10
    B = -1.
    DEN = 1.
    FEI = ALDG(AR) + 0.5772
16 PEI = B*{AR**C)/DEN
    FEI = FEI + PEI
    IF (ABS(PEI)-1,E-4) 36,36,26
26 C = C + 1.
    DEN = C*C*DEN/(C-1.)
    B = -B
    GO TO 16
36 PD = PD - ((-1.)**(N+1))*FEI/(4.*3.141593)
40 CONTINUE
    GO TO 19
50 IF (MN-1)70,70,60
60 MN = 1
    M=1
    GO TO 18
70 IF (N-2)80,80,85
80 IF (XA-XOA(L)) 81,81,82
81 XA = 2.-2.#XOA(L)
    G0 TO 10
82 N = 4
    XA = XOA{L;
    GO TO 10
85 IF {XA-XDA(L))90,86,86
86 XA = -2.-2.*XOA(L)
    GO TO 10
```

90 WRITE $\{6,9)$ PD, XOA $(L), Y O A(M M), B A, T I(K), X(J), Y(I)$ 100 CONTINUE

4 FQRMAT (1FIO.0)
5 FDRMAT (IF10.0)
6 FORMAT (IF10.0)
7 FORMAT (IF10.0)
9 FORMAT (1E20.6,6F10.5) END

[^0]: *See a similar expression, but neglecting the presence of r_{w}, in Reference 5, page 661.

