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ABSTRACT

When fluid is injected into an aquifer, the asymmetric pressure
and velocity distributions, as well as the injection rate and cumula-
tive influx, are very useful parameters in planning production
operations and related problems.

This thesis develops analytical expressions showing the cumu-
lative influx, velocity and pressure distributions for several linear
and radial injection systems with different boundary conditions.

Since interference between injection wells with each other and
with the aquifer is readily solved by superimposition, it is only
necessary to consider a single injection well of constant strength.
The porous medium is assumed to be homogeneous isotropic and
of constant thickness.

Several figures showing the velocity, rate and cumulative influx
are presented for the linear closed aquifer, together with an ex-
ample of pressure distribution inside the aquifer. Influx rate and
cumulative influx are presented for a radial aquifer. The figures
are presented in dimensionless parameters and may be used
generally for aquifers of the same geometry and boundary conditions.

Two computer programs applying to linear and radial cases

are attached.



INTRODUCTION

It is fairly common practice to reinject water into the aquifer
near the oil-water interface in water-driven reservoirs. Many
studies describing aquifer behavior without reinjection have been

1,2.3.4,5 but apparently no analytical studies have been

made
made to indicate the aquifer performance when injection wells are
present in the aquifer.

The diffusivity equation may be used to describe the pressure

behavior in an aquifer. When sources are present it can be

written as:

2 1 a :
V== a—f;- k: 1W6(?-'r’°) (1)

A general solution of Equation (1) may be obtained as the sum
of two solutions. One is, a general solution of the homogeneous
equation, obtained by dropping the source term in Equation (1) and
still satisfying the required boundary conditions. Another is a”
general solution of Equation (1) satisfying homogeneous boundary
conditionsio. The first solution which corresponds to the aquifer
without reinjection has been thoroughly reported in the litera-

1,2,3,45

ture The latter will be treated here.

Solutions with variable injection rates are obtained by

1 References shown at end of thesis.



superimposing solutions with constant rates, so only the latter is
considered here.
Six cases have been treated here. They are:

1) A linear aquifer of finite width and extent. Water is
injected into the aquifer at point x5 Y, at constant rate. The pres-
sure along the line x = 0 is maintained at zero pressure. See
Figure 1. Equations showing the potential distribution, rates,
velocity and cumulative influx have been developed. Certain
numerical results are shown.

2) A linear aquifer of finite width and extent. Water is
injected into the aquifer at XYy at constant rate. The rate of
production along the oil-water water contact is maintained constant.
Equations showing the potential distribution inside the aquifer are
presented.

3) A linear aquifer of finite width and extent. Constant
pressures are maintained at opposite ends of the aquifer. Water is

injected at constant rates at X Equations showing the potential

distribution are shown.
4) A linear aquifer of finite width and infinite extent. The
pressure is maintained constant at the oil-water contact. Water is

injected at a constant rate at x Yo



5) A linear aquifer of finite width, and finite extent. The
pressure at the oil-water is maintained constant. Water is injected
at constant rate per unit length along a line X,

6) A radial aquifer of finite extent. The pressures are
maintained constant at the external and internal boundary. Water
is injected at a constant rate at point T GQ. Equations showing
the potential distribution, velocity, rate of flux and cumulative flux.
along the oil-water contact are presented. Numerical solutions

are presented in terms of dimensionless parameters.



THE LINEAR AQUIFER

The linear closed aquifer, performing at constant terminal
pressure was selected as the first case to be analysed. The geo-

metric parameters and the boundary values are depicted in

Figure 1 below:

y
S
Vg
b /. LLLILL 1Y,
T Source
a
P =0 t ( P =0
x=0 ! * x=a
1
xo lyo
L e *
ap) |
] Y iy=o
LINEAR AQUIFER - GEOMETRIC PARAMETERS
FIGURE 1

The pressure as derived in Appendix A for a unit thickness

medium can be expressed by a double Fourier series as:
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As seen in Equations (4) and (5), the influx rate and cumulative influx
are independent of the source's ordinate.

Equations (4) and (5) expressed in dimensionless variables
were evaluated on the computer and the results are presented in
Figures 3 and 4, respectively, The curves can be used for any linear
aquifer satisfying the hypothesis for which the figures were con-
structed, As depicted in these figures, unless the source is located
at a great distance from oil-water contact, the amount of injected
water that does not reach the oil zone is very small even for small
times, i.e., the transient period is of small duration.

Equations (2) and (3) converge slowly in our case, since
normally b<<a. For this reason, superposition of point sources
was used to calculate the pressure inside the aquifer and velocity

at the oil-water contact. The equations utilized, referring to one

well, are: (See Figure 2).
) 2 2
b, (y4-¥) +(x -x)
p=p - ——— Eil- 2 = (6)
4uk 4 nt
w

3
ip (x -~x) 40t n+i
W w o +Z (-1)

O B I L S C

(y0~v)2+(x -2
4Nt
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FIGURE 2. LAY-OUT OF PRODUCTION AND INJECTION
WELLS FOR THE LINEAR CLOSED AQUIFER




Equations (6) and (7) were expressed in dimensionless quantities
and then evaluated on the computer for various values of the para-
meters. Some of the results are shown in Figures 5a, 5b and 6.
Comparison of superposition and the analytical solution for this
problem can be seen in Figures 3 and 5b. The knowledge of this
asymmetric velocity distribution can be very useful in planning pro-
duction operations; the pressure distributions inside the aquifer can
be very useful if it is desired to study interference between injection
wells.

Since many parameters are involved and, consequently, many
tables are necessary to cover all variations, only some values are
presented. The computer program in Aggie language for calculation
of Equation (6) is presented in Appendix C. With minor modifications
this can be utilized for different boundary conditions and Equation (7)

Figure 6 shows that when the source is close to the water-oil
contact, the asymmetric velocity distribution manifests almost im-
mediately implying that the significant part of the transient time is
of small duration. When the source is removed away from the line
of contact and in case that the width of the aquifer is smaller than
the source's ordinate, the velocity distribution is almost : .sym-

metric, as indicated by physical considerations.



DIMENSIONLESS RATE OF FLOW e, ze, /i,

0.0 L L
000! 0.0l 0.1 10

DIMENSIONLESS TIME, 'D

FIGURE 3. RATE OF FLOW FROM A LINEAR CLOSED AQUIFER



DIMENSIONLESS CUMULATIVE FLOW Wog=We/ W,

00 L
0.001 0.0l Q.1 1.0

DIMENSIONLESS TIME, 'D

FIGURE 4. CUMULATIVE FLOW FROM LINEAR CLOSED AQUIFER

o1



SOURCE

08 |-

DIMENSIONLESS VELOCITY Vep= Vyb/i

04 | L L !
0.000 0.004 0.008 0.012 0.016 0.020

DIMENSIONLESS ORDINATE, Yo
FIGURE 5a. VELOCITY IN LINEAR CLOSED AQUIFER FOR bf%=0.02;y°°=%°=0.002;XO:%“-‘O.OI

124



ok —_
ty=10
=
3 ——— [eX] _——
¢ o8-
n
[
>
= oep
(6]
g
u _ 0.0 R
12
n 04
w
=
= |y
2 S
o ozt 2
a
00 lemmm———— 0.00! e
. +
0.000 0.004 0.008 0.02 0016 0.020

DIMENSIONLESS ORDINATE, Yo
FIGURE 5b. VELOCITY IN LINEAR CLOSED AQUIFER FOR bD=0.02;you=0.002;xon=0.l

(4



9028 . . 50'ze . . s0ze 4 M
orze . *® 0r'ze . . orze - %
o
@
si'ze . . size . . srze -9
o
~
61'Ze . e sIze L[] . 61ze —HQ
]
122e . . iZze * e zze
©
£Zze v2'28 H220 H2T2e HZZe bITe £zze —~H QO
czze GZZe Ze 9ZZe SzTTe SZZW f2'2e ©
f22e 9228 i2%e BIZ® 1ZZe 9I2e €zze
£c2e iZT2e OEZe 1E28 Of2e Ll2I2e €220
122e {228 PEZ® GLZe bEZe L228 12'ze 0
304N0S @ 48
<rze erze
s02e soze
c61e ss1e
oele os|® <
(30 e {8
651 €S1e 0%le 091e OYle 65'1e eg1e
0
scie £10 508 U518 ugie e ®re B W
o
1€0e 60e 1608 1608 60 1608 Is'0® ~ w
spoe Sh0® GO GrO® §p0e SrOe woe B m
1 L | I °
N o N
Q = = m W
° ° ° o 5

o/k + % A1UNIQYO SSATINOISNIWIA

= x/a

D

DIMENSIONLESS ABCISSA x

FIGURE 6. PRESURE IN LINEAR CLOSED AQUIFER FOR t

13



The equations for the linear system for Cases 2, 3, 4 and 5

are in Appendix A.
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THE RADIAL AQUIFER

A radial system with constant pressures at the external and
internal boundaries has also been studied. A source of constant
strength is located at T 90. Geometrical parameters are presented

in Figure 7. The pressure at T is maintained at zero.

RADIAL AQUIFER - GEOMETRIC PARAMETERS
FIGURE 7
The pressure, for a medium of unit thickness, with a source

of unit strength per radian, can be expressed as:*

*See a similar expression, but neglecting the presence of T,
Reference 5, page 661.

, in
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where:
ZP- n(1'nr) = J‘p(mrw)Yn(mr)-Yp(mrw)Jn(mr),

Jn and Yn are Bessel's functions of first and second
kind and order n,
m is chosen such that Z_ (mr ) = 0,
n, n e
primes indicate derivatives with respect to r.
It is readily seen that the Green's function (8) is symmetric in
r, r and®é, 90, i.e,, the response in r and 8 due to a source in ro

and Oc is the same as the response in * and GO due to a source in
r and 6.

The rate of influx at r,, can be written as:

Z  (mr )

r Z '
0,00 o'w

2
° ’D(mrw) e- nm"t,
' (mr )] 2~[r z ! (mr‘qz
0,0 e w70, 0

The cumulative influx is expressed by:

(9

[
[} Z Zo o(mro)rwzoI o(mrw)
W =2m(t +2 1

T, mzt [rezo',o(mre)] : -[ wZo' o(mrwiizk

2
1—e-nmt

(10)
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Equations (9) and (10) were calculated and some of the results
obtained are shown in Figures 8a to e and 9a to e, respectively.
Similar to the linear case, the figures are presented in dimension-
less parameters and consequently, can be used for any radial system
satisfying the hypothesis in which they are based.

The first five zeros of Zo, o(mre)=0, which refers to
Equations (9) and (10) where obtained from Reference 12, and the
following ones by McMahon asymptotic expansion. 12 The Bessel's
function was calculated using polynomial approximations.

In evaluating equations (9) and (10) the values of ey and W,
for small values of tD showed small errors due to numerical approxi-
mations. In Figure 8a some points do show these oscillations.

In this case, it can be very inefficient to reinject at a con-
siderable distance from the oil-water contact in the case of small
T since this, being a line of constant pressure, the water will go in
this direction.

For small values of ro, as practiced in actual operations, the
transient period is of insignificant duration and all injected water
readily reaches the oil field.

The computer program used in calculating Equation (9) is
attached, and with minor modifications can be used to calculate

Equation (10).
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CONCLUSIONS

For an injection well located close to the oil-water contact,
the transient period is of relatively small duration, i.e., in

a short period of time all the parameters attain approximately
a steady state value.

For closed systems, the water lost to the aquifer is relatively
small, increasing with increasing distance between injection
well and oil-water contact.

In aquifers with constant pressure at the external boundary
the water lost can be very important when placing the in-
jection well far from the water-oil contact for small values

of o

At the internal boundary the velocity rapidly approaches a
steady asymmetric distribution when the source is close to
the contact. When the source is far removed from the
contact, the velocity is fairly uniform through all the con-

tact, this being anticipated from physical considerations.
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NOMENCLATURE

length of linear aquifer

width of linear aquifer

water compressibility

water influx rate

net pay thickness

water injection rate

effective permeability to water
pressure

dimensionless pressure
external boundary pressure
pressure at oil-water contact
radial distance

dimensionless radial distance
external boundary radius
internal radius of aquifer
time

dimensionless time

velocity

cumulative water influx

cumulative water injected

30



= distance

= distance

= hydraulic diffusivity (kw/épwcw)
= water viscosity

= porosity

= Dirac delta function
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APPENDIX A

1. Linear Closed, Constant Terminal Pressure, One Point Source

Aquifer.

The pressure in this system can be obtained by solving the

following boundary value problem:

0% 8% 1 ap - . Mw
e A T 6 x-x) Oy-y,) (11)
9 x dy k
w
- - de]  dp| =0 (12)
( oy )y=0 ( 8 fyeb O [ ea xs0 \ Jt=o

Multiplication and integration* transforms (11) into:

a b a b
82 2m-1 om 32 2m-1
+S' S sin m cos =L dxdy+ S S 2 Bgino—— wx
2 2a b IO ) yZ 2a

a
cos L dxdy =1— 2p sin Zm-1 mx cos S dxdy
b ‘70 ° 9t 2a b

a b
[ A
) . 2m-1 y
‘of § WI‘Z‘ Otxox) Oly-y,) sin =Zr— mxcostil= axdy  (13)

o

*See Reference 11, page 236, for a similar steady state problem.
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Integration by parts and using the boundary conditions it is readily

obtained:

1 4 28 2ma or o e [ 2met
@ . SOS p sin—5-— mcos T ydxdy+ | [5— e

a b B

. 2m-1 oy . W

DSOS‘ p sin—— T X cOs b dxdy = i, -

a P 2m-1 nw

S S(S(x - xo)é (y-yo) sin —>-— mxcos —b-L dxdy (14)
oJo

Using the property of Dirac delta function, namely

2
f £(x) Oix) = f(x )
- 00
And recalling that the double integral can be interpreted as a

: . i . ;o 11,13
successive Fourier finite, cosine, sine

a b
= _ . 2m-1
Pse © psin oy
o%o0

The Equation (14) transforms into Equation (15):

transform

T X cOos L;TL dxdy

_ 2 2
o=
Psc + o nw 2m-1 =
dt b 2a " Pse
.,
: w . 2m-1 nmw
=i ¥ sin 22 T X, €08 T Yo (15)
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The general solution for the ordinary differential Equation (15)

is:
sin Zm-1 % Jcos | BE ’

= L Y 2a R b Yo
Psc™lw kw 2

o 2m-1 o

b 2a

- | nw 2 2m-1 2 ¢
{-e | b 2a N

The inversion is readily written as:

" oo
4 : W 1
Py bx,y )= —- L ¢ 5 g}

€

n=1 =1 2
(ﬂ 2m-1
b 2a T
nm 2m-1
1-e "I[( ] 2a l ]t . 2m- o 2T an
sin 2a m X COSs - _b Yy
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Derivation with respect to x, readily gives formula (3) on page 5.
Integration with respect to y, and noting that all terms with n # 0,

drops, gives:

. w a o e
°w = - wh m=1 2m-1 Y

Carrying out the integration and recalling that:

oo
z sin (2m-1) x _m
m=1

2m-1 4
We obtain:
2
[ sl'ntzm-1 ™ n Zm-1 Ly t
<3 1- 4 T 2a 2a

w = w L - 2m-1

m=1

(19)
Considering that
t
w e dt

And recalling that:

oo
z sin(2m-1)x m

= —  x(w-x)
m=

1 2m-1)° 8

We can write
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a. oo sin m-! TX
X x
2
Wwoew [1-—2 (4o 2§ a °
e i t 2a ™ 2
m=1 Zm-1 ™ t(2m-1)
2a
-n( 2m-1 w) z
e za (20)
2. Linear, Closed, Constant Terminal Rate, One Point Source
Agquifer.
Similar to Case 1, we can write:
mwx oy
c® 0o cos 2 cos bo
4 . M a
oy, txy)se = i p- L L z )
w n=o0 m=0
ms| [
( a ) b
2 2
_[{m ) . (m, ) ]t
ofi-e U P cos 2 cou (21)

where

1 for nand m# 0

©*\1/2fornorm=o0



3.

plx v,

where

4.

Linear, Constant External Pressure, Constant Terminal

Pressure, One Point Source Aquifer.

mux nry

4 Mo sin cos

40

o

(o] o0 b
& Xo’yo) T ok Z X 2
m=0 n=

T

cos L‘:X_

4 for n £ 0

€ *M/2 for n=o0

Linear, Infinite, Constant Terminal Pressure, One Point

Source Agquifer.

p(x, v,

co oo DMy
. ) = 4 . P Z f cos — 2 sin (pxo)
P Xy Vo) T w Xk

i ]

w n=o o

2
i 2
NEIRAI
® cos —,sl‘[- sin (px) dp

(22)

(23)



where

1 forn# 0

¢ "VW/2forn=o

5,
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Linear, Closed, Constant Terminal Pressure, Line Source

Aquifer. *

W

2 w

Pl tx ) =—— i — b}
w n=1

Systems of different boundary conditions as well as three dimensional

2
sin 2n-4 ™= -n Zn-iw} t
2a ° 1y 2a

2
2n-1
n 2a
sin 2n-1

Tx
2a

(29

problems based on similar hypothesis can be treated by this method.

*See Reference 10, page 300, for another approach for deriving the
solution of a similar problem giving the same results,
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APPENDIX B

The pressure distribution in a radial system with homogeneous
Dirichlet boundary conditions at external and internal boundaries,
with a point source, of unit strength per radian, is obtained by solv-

ing the following boundary value problem (See Figure 7):

2 2 N
) 19 1 3 1 9 w
Pbte, Lle it e Ger)60-0)
8 r 9 r r~ 98 n 8t k
w
(25)
plr,,0,t) = p(r_.0,1) = 0 (26)
p(r, 0,0) =0 (27)
The source can be represented by:
kw 2! 1 ro Zror rz
- —_— Ps=1n_ = = 1n 7 - 5 005(90-0)+ 3 (28)
s r r T T
w e e e e

An expression containing ¥iquation (28) and which is a solution of

Egquation (25) is:
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(29

Observing that Equation (28) can be expanded in Fouriey series as

follows:
n n
T, oo 1 T r r
1w~ +y - (_2_ + cosn(Qo-Q)fDr rer
o 1 r T
e o
k
25 =
P«w a
n n
r o© 1
[ T e 5 cos n(e_-6)for r>r
T P ° °

Then it is easily found that a particular solution of Egquation (25), con-

taining Equation (28) and satisfying Equation (26) is:

ky, Yy < n
- — p_=— p_+b +a 1nr+z(br+cr ") cosne (30)
= P R a o o n n
w w 1
where T
in =%
r
o
a_ = -
o T
n—2



b =-a Inr
o o
n n
rr T
Al + | 2 r Pozr B
TZ r w
b=1 e o
n n
2n 2n
r -r
w e
n
1 To n n
c_ =— 2 -b r T
n n T, e e

¥
i Angrm(rnr) cos n (90—9) é
Where we define:

Zp. n(rmr) = Jp(mrw) Yn(mr)-Yp(er)J'n(mrw)
And m will be determined such that:

Zn, l_l(mre) =0

m

t
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(31)

(32)



According to the theory of Fourier-Bessel series the Equation (27)

is satisfied by:

A - Lot Y030 C Mathathy
mo D > Pm,n D
o n
where
I'o re
07 S rln_— ZO’ Q(mr) dr
T o
w
T
e Z‘e
Lo*® S’ In—r Zo,o(mr) dr
r
o
r
e
o=~ 15 (bo +ta ln ) rZo' o(mr) dr
w
T
e
D = S rZ ° (mr) dr
o oo
r
w
r n n
o 1 ror T
L S T\i( > ) +{ ) an'n(mr) dr
r r
r e o]
w
n n
r
e n l'or To
IZﬂ = Sl - 2 i an, n(mr)d.r
r T T
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r
e n =1,
L= S (b r+e v )an, Llmr)dr
T
w

re 2
D = S rz° {mr) dr
n v n, n

w
Using the recurrence relations for Bessel's functions, and the

boundary conditions, it is readily verified that:

ZD, o(m:ro)

A o= 2 >
m [t Z' (mr )] - [r Z' (mr, )]
e” 0,0 e w” 0,0 w

an n(mro)

A =4 (33)
- [reZ“nn n(mre)lz -[rw Zln n(er)} 2

Consequently, the pressure is given by Equation (31), m determined
by Equation (32) and Amn by Equation (33), which, after some mani-
pulation is identified with Equation (8).

The rate of influx is obtained by recalling that

S‘ 2m apa
K3 @ =0

T=r

]
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and that all terms containing cos (0o - 9) gives a null integral.

It remains only:

2 oo
k

2
e =—— S 2 (b +a_Inr + z:A z (mr)e_nm t)
Wy ar o o

1 0,0 0,0

r do r=r
w w

From this Equation (9) is readily obtained.

The cumulative influx

Which gives Equation (10).



[ APPENDIX C
c
$EXECUTE AGGIE
C
c ARFEERE EUCLIDES JOSE BONET EEERRFREER
c RATIO INFLUX RATE INJECTED WATER IN RADIAL AQUIFER WITH
c CONSTANT PRESSURE IN RE AND RW
4
DIMENSION EIV(104201,T1120),RE(10},RO(10}
Cc THE EIGENVALUES ARE TAKEN FROM PG.415 HANDBOOK DF MATH.FUNCTIONS

10
15

16
25

35

READ (5:2) (TI(J),y J=1,20}

READ {5,3) {RO(KJ,K=1,10)

READ (554) {{EIVINsI)sI=1,5)RE{N)sN=1,5)
EXTERNAL BZJL3

EXTERNAL BZJG3

EXTERNAL BOJL3

EXTERNAL BOJG3

EXTERNAL BZYL3

EXTERNAL BZYG3

EXTERNAL -BOYL3

EXTERNAL BOYG3

EXTERNAL EIGEN

DD 115 K = 1,10

DD 115 N = 1,5

DO 115 4 =
I =1
WLOST = ALOGIRE{N}/RO{K)}/ALOGIREIN)}
IF (I = 5) 25325415

EM =1

EIG = EIGEN{EM,REINI)

CONTINUE

6D 1O 30

EIG = EIVIN,I)

IF (EIG - 3.) 35435,40

BZX = BZJL3(EIG)

8y



3

o

32
37
3

@

40
41

4

~N

4

w

44
45

50
51

55
56
60

65
66

T0
71
75

80
31

CONTINUE

YIX = BZYL3{EIG!
CONTINUE

BOX = BOJL3{EIG}
CONTINUE

YOX = BOYL3(EIG)
CONTINUE

GO TO0 45

BZX = BZJG3(EIG}
CONTINUE

BOX = BOJG3(EIG!
CONTINUE

YOX = BOYG3(EIG)
CONTINUE

YZX = BIYG3{EIG}
CONTINUE

AF = EIG*RO{K}

1F (AF=3.} 50,50:55
BZXRD = BZJL3IAF)
CONTINUE

GO TD 60

BZXR0C = BZJG3[AF)
CONTINUE

AF = EIG#RE(N}

IF [AF-3.) 65,65,7T0
BOXRE = BOJL3(AF}
CONTINUE

GO 70 75

BOXRE = BOJG3(AF}
CONTINUE

AS = EIG*ROIK}

IF fAS - 3.} B0s80,85
YZXRG = BZYL3({AS)
CONTINUE

G0 7O 90

6%



85
86
90

35
96

100

101
105

110

108
115

0P WN

YZXRO = BZYG31AS}

CONTINUE

AS = EIG#REINI

IF {AS = 3.} 959955100

YOXRE = BOYL3(AS}

CONTINUE

GO TO 105

YOXRE = BOYG3({AS)

CONTENUE

ANUM={BZX*YZXRO-YZX#BZXRO) #{BZX#YOX-YZX*BOX}*F/(EIG*TI(J))
ADEN={EIG#RE (NI » (BZX#YOXRE - YIX#BOXRE})##2 ~ (EIG*{BIX=YOX -

1YZX*BOX) ) x%2

PLOST = 2.#ANUM/ADEN

WLOST = WLOST + PLOST

IF {ABS{PLOST]! -~ 1.E-4} 108,110,110
I=1+1

60 TG 10

WRITE (6,91 RO(K)RE(N) (TI(J)-WLOST
CONTINUE

FORMAT (1F10.0)

FORMAT {1F10.0)

FORMAT {6F10.0)

FORMAT {3F12.4,1E20.6)

END

FUNCTION EIGEN{EM.RE)

AL = EM=23,.141593/(RE-1.)

PE = -1./18.%RE)}

QE = 4on(=1,)%(-25.)%{RE#%3~1.)/(3.#(8.*RE}*#3#(RE-1.))

RA = {32,#%{~1.)#(+1073.i#(RE#*#5-1.})/(5. (8. %RE}=252{RE-1.)1}
DA = PE/AL

DB = (QE~-PEx=Z}/(AL#%3}

DC = (RA-4.#PE®QE+2,*PE##3)/(AL2»5])

EIGEN = AL + DA + DB + DC
RETURN

09



201

END

FUNCTION BZJL3{X)

PDLYNGMIAL APPROXIMATION ACCORDING FORMULA 9.4.1 P.369 HANBOOK
BZJL3 = 1.-2.25000#(X/3.)%%#24 1.26562%{X/3. 1554 ~ 0.31639#{X/3. )=
16 + 0.04445#(X/3.)1%%8 - 0.00394*{X/3.)%%10 + 0.00021%(X/3.}xx]12
RETURN

END

FUNCTION BZJG3{U)

FORMULA 9.4.3 HANDBOOK

THETO = U - 0.78540 - 0.04166#{3.,/U) - 0.00004#(3./U}»x2 + 0.00263
1#(3./U}#%x3 - 0,00054#(3,/U)%%4 = 0.00029%(3./U)«x5 + 0.00014*
2(3./U)m=p

FO = 0.79788 ~ 0.005532(3./y)®e2~ 0.00010e(3./UI*=3 + 0.00137+
103, /U)%%4 — 0.00072%{3./U)#%5 + 0,00014a(3./U)uns

B2JG3 = FO*COS{THETD}/SQRT{U)

RETURN

END

FUNCTION BZYG3{U)

THETD = U - 0.78540 — 0.04166*i3,/U} - 0.00004#(3./U)=22 + 0.,00263
1%(3,/U)%%3 - 0.00054*(3./U)x24 - 0,000294{3./U)ex5 + 0.00014»
2{3./U)e»p

FO = 0.79788 - 0,00553={3./U)%=22~ 0,00010#(3./U)e%3 + 0.00137=
1(3./U)=#4 — 0.00072#(3./U)%%5 + 0.00014#{3./L}enp

BZ2YG3 = FO«SIN(THETO)/SQRTIU}

RETURN

END

FUNCTION BZYL3(V)

EXTERNAL BZJL3

AUXZ3 = BZJL3(V)

CONTINUE

BZYL3 = {2./3.141593)#ALOG(V/2.)=AUXZ3 + 0.36747 + 0.60559+

12°]



1IV/3.)e%2 — 0.T4350%(V/3. )24 + 0.25300%(V/3.1#26- 0.04261#{V/3.)
2#%8 + 0.00427#(V/3.1%%10 - 0.00025%(V/3.)%%12

RETURN
END

c
FUNCTION BOJL3(D)
BOJL3 =D®{1./2, - 0.56250#(D/3.)¥22 + 0,21094#(D/3.)s%4 — 0.03954=
1{D/3.1%%6 + 0.00443#(D/3.]#28 ~ 0.00032={D/3.)#+10)
RETURN
END

C
FUNCTION BOYL3(B)
EXTERNAL BOJL3
AUXO3 = BOJL3{B}

202 CONTINUE

BOYL3 = ({2./3.141593)+B=AL0G(B/2.)*AUX]3 - 0.63662 + 0,22121*
1(B/3,.)%%2 + 2.16827#{B/3.)ex4 - 1.316482(8/3.)%%6 + 0.31240%
2{B/3.)%2*8 - 0,04010#(B/3.)=%10 + 0.00279={8/3.1%=12]/B
RETURN
END

C

FUNCTION BOJG3(C)

THETL = € - 2.35619 + 0.12500#{3./C) + 0.00006#(3./C)#x3 +
10.00074*{3./C) =24 + 0.00080%(3./C)*=25 — 0.00029=(3./C)*#6

Fl = 0.79788 + 0.01659*{3./Cl=x2 + 0.00017#{3./C)»»3 - 0.00250%
1{3./C)#%4 + 0,00113%13./C)%%5 - 0.00020*{3./C)**6

80JG3 = F1#COS{THET1)/SQRT(C)

RETURN

END

FUNCTION BOYG3{C)

THETL = C - 2.35619 + 0.12500#{3.7C) + 0.00006*(3./C)#s3 +
10.00074#{3./C)*x4 + 0.00080#{3,/C)I*¥x5 ~ 0.00029%(3./C)*sg

Fl = 0.79788 + 0.01659#(3./C)**2 + 0.00017%(3./C)*#3 -~ 0.00250#
1{3./C)**4 + 0,00113#(3./C)»e5 - 0.00020=2(3./L)*=6

(4]



BOYE3
RETURN
END

F1*SIN(THETL}/SQRT{C)

€S
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10

18

30

15

25

PRESSURE CALCULATION IN LINEAR CLOSED AQUIFER CONSTANT TERMINAL

PRESSURE BY SUPERPDSITION OF CONYINUOUS POINTY SOURCE
DIMENSION X(20),TI€10),Y(10),X0A(5),Y0A(5]

READ (5345 (Y(1)p1=1,7)

READ {5.5) {YOA{L):1L=1,2)

READ [5.6) {X1J)sJ4=1+19)

READ (5571 {TI{K)sK=1,5)

BA = 0,02

XDA(L) = 0.05

DD 100 MM = 1,2

DO 100 K = 1,3

DO 100 J = 1,19

DO 100 1 = 1,7

XA = XOA{L)

PD = 0.0

N 1

DD {{=1.)es{N+1}2XA ~ X{J))==2
M =2

MN = 2

EL = 0.

DS = ({2.#EL*BA}=(=1.)#2MN+(-1.)#=(M)=YOAIMM)-Y{1])ns2

DDS = DD + DS
AR = DDS/t4.=TI(K))
If {AR-5.1 30,30,50

cC=1.

B = -l.

DEN = l.

FEI = ALDG{AR) + 0.5772
PEI = B#(AR=#C)/DEN

FEI = FEI + PEI

IF (ABS(PEIJ}-1.E~4) 35,35,25
C=C+ 1.

DEN = C#C#DEN/{C-1.)}

B =-B

GO To 15

ta



35
19

31

16

26

36
40

50
60
70
81
82

85
1)

PD = PD - {(-1.)=2(N+1))=FEI1/(4.#3.141593)
EL = EL + 1.
DO 40 M = 1,2

DS = ({2, #EL#BAY={~1.)2sMN+ (-1, Jmn(M)sYDA(MM)-Y(I)}=a2
DDS = DD + DS

AR = DDS/{4.=T1{K))

1IF (AR-5.) 31,+31,50

[

= lo
B = -1,
DEN = 1.
FEI ALDG{AR) + 0.5772

PEI = Bx{AR~#C}/DEN

FE] = FET + PEI

IF {ABS{PEI}-1.E-4) 36,36,26
C=0C+ 1.

DEN = C#C*DEN/(C-1.}

B

GO 7O 16

PD = PD ~ {{-lo)ea(N+1})aFEI/{4.23.141593)
CONTINUE

G0 70 1%

IF {MN-1)70570,60

MN = 1

=1

G0 TO 18

IF (N-2)80,80,85

IF (XA-XDA(L)) 81,81,82
XA = 2.-2.#X0AlL}

GO TO 10

N = 4

XA = XDAIL)

GO TO 10

IF {XA-X0A(L1})90,86,86
XA = -2.-2.%X0AlL)

G0 70 10

SS



90
100

VNN

WRITE (6+9) PO XOA{L) s YDAUMM) sBALTI{K) o X{J), Y1}
CONTINUE

FORMAT {1F10.0C)

FORMAT (1F10.0)

FORMAT (1F10.01

FORMAT (1F10.0)

FORMAT (1E20.6,6F10.5)

END

9g



