THE CORROSION OF ALUMINUM IN

BORIC ACID SOLUTIONS

A Thesis By HENRY KINSOLVING BASS, JR.

MASTER OF SCIENCE

January 1956

Major Subject Chemical Engineering

LIARARY

A\&M COLLEGE OF TEXAS

THE CORROSION OF ALUMINUM IN
BORIC ACID SOLUTIONS

A Thesis
By
HENRY KINSOLVING BASS, JR.

Approved as to style and content by:

ACKNOWLPDTGMENTS

This project was initiated by Dr. R. V. Andrews and all experimental work was performed under his supervision. The author is indebted to Dr. Andrews for his assistance.

Grateful acknowledgment is made to Dr. J. D. Lindsay for his many helpful suggestions in connection with both the experimental investigations and the preparation of the thesis.

The writer wishes to thank the Aluminum Company of America for furnishing the sheet aluminum used in this research.

Thanks are due Mr. W. W. Smith for his assistance in the preparation of the photomicrographs.

Thanks are also due Mr. O. M. Taylor for his aid in the construction of the experimental apparatus.

Finally, the author wishes to express his thanks to the Chemistry Department and the Chemical Engineering Department of the A \& M College of Texas for teaching assistantships in these departments which provided the financial support for the author's post-graduate studies.
PAGE
I Introduction 1
II Survey of the Literature 4
III Theoretical Considerations 10
IV Description of Apparatus 15
V Experimental Procedure 26
VI Discussion of Results. 32
VII Conclusions. 64
VIII Bibliography 65
IX Appendix 67

LIST OF TABLES

PAGE
I Porosity of Metallic Oxide Films 11
II Corrosion Pates of Aluminum and Alloys in Boric Acid Solutions. 47
FIGURE PAGE

1. Stirring Mechanism and Suspension System 18
2. Temperature Measuring and Control Equipment 19
3. Top View of Belt and Pulley System 22
4. Wiring Diagram of Temperature Control System 24
5. Corrosion Rate vs. Time of 2 S Alumimum in Boric Acid Solutions at $40^{\circ} \mathrm{C}$ 33
6. Corrosion Rate vs. Time of 35 Aluminum in Boric Acid Solutions at $40^{\circ} \mathrm{C}$ 34
7. Corrosion Rate vs. Time of 24 S Aluminum in Boric Acid Solutions at $40^{\circ} \mathrm{C}$ 35
8. Corrosion Rate vs. Time of 2 S Aluminum in Boric Acid Solutions at $50^{\circ} \mathrm{C}$ 36
9. Corrosion Rate vs. Time of 3 S Aluminum in Boric Acid Solutions at $50^{\circ} \mathrm{C}$ 37
10. Corrosion Rate vs. Time of 24 S Aluminum in Boric Acid Solutions at $50^{\circ} \mathrm{C}$ 38
11. Corrosion Rate vs. Time of $2 S$ Aluminum in Boric Acid Solutions at $70^{\circ} \mathrm{C}$ 39
12. Corrosion Rate vs. Time of 3 S Aluminum in Boric Acid Solutions at $70^{\circ} \mathrm{C}$ 40
13. Corrosion Rate vs. Time of 24 S Aluminum in Boric Acid Solutions at $70^{\circ} \mathrm{C}$ 41
14. Corrosion Rste vs. Time of $2 S$ Alumimum in Boric Acid Solutions at $90^{\circ} \mathrm{C}$ 42
15. Corrosion Rate ve. Time of 35 Aluminum in Boric Acid Solutions at $90^{\circ} \mathrm{C}$ 43
16. Corrosion Rate vs. Time of 24 S Aluminum in Boric Acid Solutions at $90^{\circ} \mathrm{C}$ 44

LIST OF FIGUPES (continued)

FIGJRE PAGE
17. Corrosion Rate vs. Concentration for 2S Aluminum 48
18. Corrosion Rate vs. Concentration for 3S Aluminum 49
19. Corrosion Rate vs. Concentration for 24 S Aluminum 50

LIST OF PHOTOGRAPHS

PHOTOGRAPH PAGE

1. Testing Apparatus 16
2. Relay Cabinet, Temperature Recorder and Panel Board 17
3. Photomicrographs of Uncorroded Specimens 52
4. Photomicrographs of Corroded Specimens Exposed for 47 Days at $70^{\circ} \mathrm{C}$ and $6.20 \mathrm{gms} / 100 \mathrm{cc}$. 53
5. Photomicrographs of Corroded Specimens Exposed for 7 Days at $90^{\circ} \mathrm{C}$ and $20.4 \mathrm{gms} / 100 \mathrm{cc}$ 54
6. Photomicrographs of Corroded Specimens Exposed for 50 Days at $70^{\circ} \mathrm{C}$ and $12.4 \mathrm{gms} / 100 \mathrm{cc}$ 55
7. Photomicrographs of Corroded Specimens Exposed for 50 Days at $70^{\circ} \mathrm{C}$ and $6.20 \mathrm{gms} / 100 \mathrm{cc}$. 56
8. Photomacrographs of Corroded Specimens. 57
9. Photomacrographs of Corroded Specimens. 58
10. Photomacrographs of Corroded Specimens. 59
11. Photomacrographs of Corroded Specimens. 60
12. Photomicrographs of Corroded Specimens 62

An investigation of the corrosion of aluminum in boric acid solutions was made. The total immersion, contimuous agitation method of testing was used.

Commercially pure aluminum and two aluminum alloys were exposed to various concentrations of boric acid solutions at various temperatures. Metal samples were removed at selected time intervals and the corrosion rate was measured by a change in weight.

The corrosion rates obtained were compared for the various alloys, boric acid concentrations and temperatures.

Several photomicrographs and photomacrographs of the aluminum specimens were prepared as an aid in determining the type of corrosion encountered.

SECTION I - INRODDCTION

Corrosion, the destruction of a metal by chemical or electrochemical reaction with ite environment, is the direct cause of immense equipment replacement costa every year. The ifdirect cost of corrosion, such as that resulting from plant shut-downs for repair of corroded equipment increases the cost still further.

In many cases the service life of metallic equipment in contact with a corroaive environment could be materially increased through the fudicious use of a different alloy. Also, a slight variation in. operating conditions such as temperature or concentration is often justified because of a resultant increase in corrosion resistance of the process equipment.

The induatrial plant with no corrosion problems is indeed a rarity. Even a non-chemical plant using relatively inert chemicals is frequently plagued by corrosion of equipment. Such is the case with many melear reactor installations.

Because of the high neutron absorbtivity of boron, boron and its compounds are used in the control of nuclear reactors. Boric acid in solution is a convenient means of supplying boron for this purpose.

Alumirum, however, exhibits low neutron absorbtivity. Therefore, repairs may be made on aluminum equipment used in a muclear reactor installation without fear of lingering radiation.

Hence, aluminum tubing is often used to convey the boric acid solutions into the muclear reactor. The damage to the nuclear reactor resulting from a fallure in the aluminum tubing within the reactor would,
of course, be very great. Were the tubing to fail outside the reactor efforts to control the reactor by means of the boric acid solution would be seriously impaired if not futile。

It is of importance, therefore, to have a knowledge of the corrosion realstance of alumimm and its alloys to boric acid solutions of various concentrations and temperatures.

The purpose of this research was to investigate the corrosion of commercially pure aluminum and two alumimum alloys in boric acid solutions.

The metals used were Alcoa 2S-H14, Alcoa Alclad 3S-0 and Alcoa 24S-T3. The first two characters in the metal designation refer to the alloy. $2 S$ is commercially pure aluminum, Alclad 3 is a surface layer of a copper, menganese, zinc and aluminum alloy on a different aluminum alloy of copper, silicon, iron and manganese. The letters and numbers after the dash in the code designation refer to the temper of the metal. $\mathrm{H} / 4$ refers to a cold-worked temper, 0 an annealed teuper, and T3 a temper produced by an inftial solution heat treatment followed by cold-working. For a more complete discussion of these designations, reference is made to "Alcoa Aluminum and Its Alloys", a publication of the Aluminum Company of America (I)

Throughout the remainder of this thesis the alloys used will be designated by $2 \mathrm{~S}, 3 \mathrm{~S}$ and $24 \mathrm{~S}_{\mathrm{w}}$

In order to duplicate closely actual plant conditions, the total imersion, contimuas agitation method of testing was used.

Several baths, each at a conatant temperature, but covering a range of temperatures from room temperature to $90^{\circ} \mathrm{C}$ were employed. In addition, boric acid solutions in concentrations to saturation were
prepared for use at each temperature chosen.
A number of metal samples were prepared for each bath. Samplea were removed from the baths at selected time intervals and examined for corrosion by measuring the change of welght.

The corrosion rates obtained were comparad for the various alloys, boric acid concentrations and temperatures.

At the outset of this work it was hoped that an examination of the experimental data would help to throw light on the present theories of alumimm corrosion. It is believed that the work contained in this thesis is a significant contribution to the theory of aluminum corrosion.

SECTION II - SUPVEY OF THE LITERATURE

Early Studies in Corrosion

Corrosion phenomena have been a problem to man aince pre-historical times. Man's discovery of metals (the first metal used was probably copper) could only barely precede the recognition of corrosion.

For many centuries, however, there seems to have been little curiosity regarding the causes of corrosion. The first aignificant contribution to the theory of corrosion was made in 1819 by an anonymous French scientist, thought to be Thensrd (28). He studied the corrosion of zinc by acid and attributed the fact that impure zinc is more rapidly attacked than the relatively pure varieties to an electrical effect set up between the zinc and the inpurities present.

In 1824 Sir Fumphry Davy (12) in a study of corrosion prevention of copper ship bottoms suggested connecting the copper with iron or zinc. This is an early application of the principle we know today as cathodic protection.

Faradey and Schönbein (13) in 1836 studied the effect of the protective oxide film on 1 ron immersed in dilute and concentrated nitric acid. They found that a strip of iron was rendered passive to attack by dilute nitric acid when it was first immersed in concentrated nitric acid to allow a protective film to form.

Corrosion of Aluminum

Probably the Pirgt investigator to study the corrosion of aluminum was Watson Smith (26) who, in 1904, examined the action on
aluminum by various inorganic acids and salts. He noticed that aluminum dust was vigorously attacked by nitric acid at room temperature, but that both dilute and concentrated nitric acid had little effect on aluminum sheet below $50^{\circ} \mathrm{C}$. He attributed this phenomenon to the formation of a protective film on the alumimum sheet, and on this basis recommended aluminum as being suitable for cooking utensils.

From extensive studies, Bailey (8) concluded that the corrosion of aluminum by water was increased by the presence of inpurities in the metal or by a rise in temperature of the water. He further stated that except at a relatively high or low pH of the corrodent, the carrosion products were exclusively $\mathrm{Al}_{2} \mathrm{O}_{3}$ or $\mathrm{Al}(\mathrm{OH})_{30}$. In a discussion of Bailey's work Rosenhain (25) added that corrosion of aluminum is increased at the point of suspension of the samples, whether glass or metal hooks were used.

Wache' (32) found that the corrosion rate of aluminum varies considerably with the content of impurities in the metal and especially with their distribution the lowest rate being when the impurities were best distributed.

Miller and Lö̈ (20) in their studies of alumirum corrosion by hydrochloric acid found that the purest aluminum available (99.999%) was extremely resistant to corrosion, being noticeably attacked only at an acid concentration of $4 \mathbb{8}$ or higher.

Vogel (31) conducted immersion teats of alumimum in various acid, alkali and salt solutions at several temperatures. He reported that the rate almost always increased with the temperature and that pure aluminum Was most resistant among the alloys tested.

Hackerman (16) reported that aluminum corrosion rates in water increase with temperature, but usually go through a maximum which is often reached at about $80^{\circ} \mathrm{C}$ a

Chamion (10) shows that for the case of aluminum in a normal potagsium chloride solution, the corroaion rate in the early stages increases linearly with the amount of metal corroded and decreases Iinearly with the corrosion after a certain loss of metal has occurred. He stated that the corrosion-time curves are more reproducible on the basis of the amount of metal corroded than on a time basis.

McKee and Brown (19) atudied the resistance of alumimum to corrosion in solutions containing various anions and cations. They concluded that the corrosion reststance of alumimum appears to be influenced to an appreciable extent by the stability of the oxide film and by the solubility of the corrosion products.

Protective Film on Aluminum

Bryan (9) concluded that the film of oxide or hydroxide was rem sponsible for the corrosion resistance of slumimum Since Al (OH) is relatively insoluble over a wide pH range, he surmised that the film plays an important part in reducing corrosion not only in neutral solutions, but also in weakly acidic and basic solutions.

Jenny and Lewis (17) state that the adherence of the film to aluminum is so good that it is scarcely possible to remove the film by mechanical means.

Pitting of Aluminum

Aziz (7) has contributed greatily to the knowledge of pitting in aluminum corrosion, He used radioactive cobalt and lead ions in solution to study the distribution of local cathodes on aluminum alloy specimens which were actively pitting, and to study the processes of film breakdown and repair on aluminum alloy apecimans after intraiucing them into a corrosive environment. In the study of pitting, radioactive ions were introduced into the solution after pitting of the sample had procesded for a predetermined length of time. The tracer was then permitted to plate out onto local cathodes, and, after washing and drying, autoradiographs of the surface were propared. Results indicate that after a pit is a few hours old it is surrounded by a ring of cathodic surface and outside this is an anmilar ring of pasaive aurface which prevents lateral expansion of the corrosive attack, the remeinder of the surface boing cathodic. His results further indicate that, on contact with the solution, the surface oxide film breaks down and is then repaired by reaction with the solution.

Corrosion of Aluminum by Boric Acid Solutions

Various references are available on the corrosion of aluminum by boric acid solutions. In many cases, however, contradictory or confusing statements are givena

Rabald (22) states that 99.5% aluminum is "practically resistant" to boric acid solution at $20^{\circ} \mathrm{C}$ and "fairly resistant" at the boiling point. No mention is made of concentration.

According to Uhlig (29), "Boric acid solutions in all concentrations up to saturation have negligible action on aluminum alloys". It is noticed in this reference no mention is made of the effect of temperature.

In one of its publications the Aluminum Company of America (2) states that boric acid has little effect on aluminum and that aluminum is used as a material of construction in boric acid plants. However, the concentration of the boric acid is not given, and it is possible that dry boric acid is the substance in question since no mention of a solution is made.

Ritter (23) atates that very pure alumimu (99.5\%) in concentrated boric aeid solutions is not attacked at $20^{\circ} \mathrm{C}$ and only slightly attacked at $100^{\circ} \mathrm{C}$. He gives a quantitative rate of 0,03 grams per aquare meter per day for comercisily pure alumfum in a 4% boric acid solution at $20^{\circ} \mathrm{C}$.

Andrews (5) indicated that some attack is encountered in using boric acid solutions in aluminum tubing at nuclear reactor installations and that the rate of attack varied considerably with different alloys.

Special Effects in Aluminum Corrosion

Several investigators who have studied the corrosion of aluminum as a function of time have reported significant breaks in the corrosiontime curves.

Andrews (6) in studying the film formation of alumimu immersed in water noticed peaks in the curve at about two week intervals.

Vernon (30) in investigating the effect of the film build-up by different alloys in water reported breaks in the curves at the end of 40 and 60 days.

Strom, et al. (27) studied the reproducibility of data of aqueous corrosion of sluminum. He concluded that the data were reproducible except at 12 and 25 days.

Thus it is seen that while many aspects of corrosion have been studied, much needed research remains to be performed in this fielda

General

The tendency for metals to corrode may be explained thermodynamicsily. Whem rost metals form conpounds there is an ensuant decrease in free energy. In other words there is evary reason to anticipate that most metals should seek a more stable form, $i_{0} \theta_{0}$ to corrode. Therefore, the question is not, "Why do metals corrode?", but rather, "Why are common metals relatively inert and non-reactive?".

While all corrosion is essentially electrochemical in nature, a distinction will be made in this theais between chemical attack and electrochemical attack. An attack which involves only the metal and corrodent will hereafter be referred to $8 s$ chemical. An attack involving the metal, oxide film and corrodent will be referred to as electrochemical.

Protect:1ve Films

Most metals have the characteriatic of forming adhering and mechanically strong surface films of oxide or occasionally hydroxide. In the case of aluminum the protective film thickness is of the order of $1 \times 10^{-6} \mathrm{~cm}$. (17).

The rate of reaction of metals depends, therefore, on the permeability of the coating to the reactants, presupposing a film which is insoluble and non-reactive with its environment. A porous film is certainly less protective than a non-porous one. Piling and Bedworth (21) showed that for oxidation if the ratio $\mathrm{Md} / \mathrm{mD}$ (where M is the molecular veight of the oxide and D its density, m is the atomic weight of the metal multiplied
by the number of metal atoms in the oxide formula, and d is the metal density) is greaty than unity, the oxide coating is protective; when less than unity it is non-protective $i_{i} \theta_{0}$, a value of the ratio greater than unity indicates a non-porous oxide film.

Several values of the ratio $M d / m D$ were calculated and are given in Table I for comparison.

TABLE I
POROSITY OF METALTIC OXIDE FILMS

Metal	Oxide	$\frac{M A^{*}}{\mathrm{mD}}$
Calcium	CaO	0.64
Alumimum	$\mathrm{Al}_{2} \mathrm{O}_{3}$	$\mathrm{I}_{\alpha} 24$
Chromium	$\mathrm{Cr}_{2} \mathrm{O}_{3}$	2.03

* Refer to page 10 for a description of this ratio

Although a coating may be protective when first formed, a limiting thickness is often reached at which the coating cracks. In some instances fragmenting of the coating occurs because the lateral stresses in the oxide eventually exceed the binding force of the coating. This is true In the case of aluminum. Since aluminum axide, if unconstrained, would occupy a mich larger volume than the aluminum destroyed in producing it, the film may remain in a stressed state, liable to fracture.

From these considerations it may be deduced that the corrosion of aluminum (and other metals whose oxdde films exhibit similar properties) is brought about by a repeated breaking down of the protective oxide film. This exposes the bare metal to the oxidant and the process recommences.

If the oxidant is aqueous an equilibrium moisture concentration would be expected in the protective film. Jenny and Lewis (17) show that for the case of aluminum the water content of the film produced in aqueous solutions of weak acids is about fifteen per cent.

It is reasonable to suppose that as the lateral atresses mentioned above increase an occasional water molecule will be driven out. If enough water molecules are driven from a particular locality in the film there will result a fissure at that locality. This, too, would expose the bare metal to the corrosive agent.

Therefore for aluminum in contact with aqueous oxidizing agents, there are two contributing causes of chemical corrosion, vize
(1) The mechanical break-down of the oxide film due to lateral atreases in the f1lm
(2) Expulaion of water molecules in the protective film, creating a fissure in the film

Electrochemical Attack

In the previous discussion it was assumed that a break in the film permitted corrosion of the exposed metal by chemical attack. In an aqueous solution this is not completely true. Actually an electric current will flow between the oxide scale as cathode and the bare metal as anode. The current will remain strong only if oxygen has access to the cathodic surface, where it will react in the following manner:

$$
\frac{1}{2} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e} \longrightarrow 2(\mathrm{OH})^{-}
$$

At the anodic area the metal (using aluminum as an example) will pass Into solution according to the equation
$\mathrm{Al} \longrightarrow \mathrm{Al}^{+++}+3 \mathrm{e}$
Finally, when the ions meet, the aluminum ions combine with the hydroxide ions to form the insoluble aluminum hydroxide.

It is interesting to note that while this electrochemical corrosion ultimately will bring about a combination of alumimum with oxygen, it differs from direct oxidation. The alumimm goes into solution at one place, the oxygen is taken up at a second place and the oxide or hydroxdde is formed at a third place. Thus the solid corrosion producta do not form a protective film. Consequently the electrochemfeal corrosion begun at a break in the film tends to proceed unchecked until finally it is brought under control as a result of direct protective oxidation. As a general rule electrochemical corrosion and chemical corrosion occur concurrently at a break in the filmo

Electric currents are also genersted at the junction of two different metals in corrosive media. In general the less noble motal acts as the anode or corroded metal while the more noble metal is the cathode or protected metala

The contact of two dissimilar metals producing a galvanic action may be due to a coating of ons metal on another as in the cases of galranized iron and clad aluminam, or to nonhomogeneity in the metal itself, frequently observed in alloys.

Alumimum is anodie to many of the other common metals. This means that galvanic attack is likely to occur on aluminum when it is in contact with dissimilar metals, whether the metal contact is a result of alloying or clading.

Consideration should also be given to incomplete physical homogeneity, for parts under atress show a different electrochemical potential from those free from stresses. This explains the accelerated corrosive action often observed at cold-worked areas of metals.

Electrochemical action on the metal, regardless of the cause, has the effect of localized attack. When these areas of localized attack are small as compared with the whole matal surface, they are referred to as pits. This localized corrosion will proceed unchecked until the cause of the galvanic action has been eliminated.

Thus a galvanic action resulting from a coating of one metal on another will contimue until the coating has been removed.

Similarly electrochemical attack on a localized area of metal inhomogenaity will contimue until the area is homogenears.

The Effect of Joint Action

Corrosion is understood to be the destruction of metal by chemical or electrochemical actions. Erosion, on the other hand, refers to destruction by mechanical agents. In practice both forms of attack are frequently associated, the result being that the wear is accelerated. As an example, lead at $25^{\circ} \mathrm{C}$ in stagnant 10% hydrochloric acid is reduced at a rate of 63 mils per year. When the acid is stirred at a linear tip speed of the blade of only 6.5 feat per mimite the loss increased to 260 mils per year, other conditions remaining the same。

Throughout the remainder of this thesis the term corrosion will be used to mean the joint action of corrosion and erosion.

SECTION IV - DESCRIPTION OF APPARATUS

General

The basic design of the testing apparatus followed that suggested by the American Society for Testing Materials (3). The teating apparatus is shown in Photograph 1. Photograph 2 shows the panel board, temperature recorder, and relay cabinet. With the exception of the temperature recorder and relay cabinet, the entire apparatus was assembled on a wooden table 108 inches long by 33 inches wide and 30 inches high.

Testing Baths

Twelve earthenware crocks were used as testing baths. The ten gallon size crock was found to be an ideal aize, but six and eight gallon crocks were also used. The test samples, stirring system, and temperature controlling and measuring devices were positioned in the baths as shown in Figures 1 and 2o. To lessen evaporation losses the baths were fitted with removable pressed wood covers. These covers are not shown in the Figures.

Sugpension of Samplos

The suspension system ariginally employed consisted of four pressed wood discs mounted on a wooden shaft. The diameter of the discs was approximately ten inchesa Projecting radially from the periphery of the discs were a number of one-aixteenth inch tapered wooden dowels. The discs were so positioned vertically than the distance between the two top discs and between the two bottom dises was the same as the

PHOTOGRAPH 2
RELAY CABINET, TEMPERATURE RECORDER AND PANEL BOARD

FIGURE 1
STIRRING MECHANISM AND SUSPENSION SYSTEM

FIGURE 2
TEMPERATURE MEASURING AND CONIROL EQUIPMENT
distance between the two mounting holes in the specimens. The coupons were held in place on the tapered dowels by a rubber band stretched over the two dowels. To further aid in holding the specimens in place a length of cotton string was used to encircle each tier of specimens. The rack was rotated through the test solutions.

To make the suspension system impervious to water all wooden parta were painted with three coats of Tygon paint.

This system was found to have faults in both the design and the materials of construction used. In the event of a power failure to the heating element of one of the hot concentrated acid baths, the boric acid would begin to crystallize a the cooling process continued the crystals would build up to such a degree as to hinder the movement of the samples through the baths. Finally the samples would be swept off the pressed wood discs. Such a series of events actually occured in two of the baths. Since the samples in the baths were identified by position only, this necessitated the preparation, weighing and measuring of new samples for the two baths. Also, the Tygon coated pressed wood was unable to withstand the combination of heat and moisture encountered in the teating baths.

Therefore, after fourteen days of operation the testing was interrupted to permit the rebuilding of the suspension syatem. The system finally employed is shown in Figure 2.

The samples were threaded on cotton string with a one-fourth inch by one-fourth inch length of fire-polished glass tubing as a spacer between successive coupons. A length of glass tubing approximately twelve inches long was threaded on the string as an aid in keeping
the samples separated. The samples were suspended well below the liquid surface in the crocks, and the string was passed under the pressed wood cover and fastened to the table. The samples were easily removed by untying the string. This system was very satisfactory in all respects.

Stirring Mechanism

Figure 1 shows the shaft, pulley, and bearing portion of the stirring systemo Originally the pressed wood discs described earlier were fastened on the lower portion of the shaft. After the final suspension system was installed this same shaft was fitted with a propeller as shown in Figure 2. This propeller was made from a $l^{\prime \prime} \times 8^{\prime \prime} \times \frac{1}{32}{ }^{\prime \prime}$ atrip of stainless steel.

An angle iron and wooden support was constructed to support the stirring system. This support, which is shown in Photograph 1, was fastened to the table with Cuclamps. The wood member of the support was about thirty-six inches above the table top, Ball bearings were mounted in pipe fittings which were screwed into the floor flange on the wooden support. A three and one-half inch Micarta aircraft type pulley was fastened to the wooden shaft above the top ball bearing.

The twelve atirring pulleys were connected by means of a onefourth inch round contimous leather belt. This belt passed around various guide and idler pulleys to the motor pulley. The belt and pulley system is shown in Figure 3 and Photograph 1。

The motor used was a one-third horsepower gear motor with a shaft speed of 7.5 revolutions per minute. A smalier motor would undoubtediy have been adequate, but no other motor of the proper size and speed was

FIGURE 3
TOP VIEW OF BELT AND PULLEY SYSTEM
available. This motor provided a stirring shaft speed of about twentytwo revolutions per minute。

Temperature Controlling and Measuring System

Figure 2 shows the placement in the baths of the controlling and measuring system. A wiring diagram of the control system is shown in Figure 40

The heater vas made of a thirty-one foot length of $24 \mathrm{~B} \& \mathrm{~S}$ Nichrome wire. This wire was wound into a coil and placed in a four foot length of Pyrex glass tubing. The tubing with the coil of wire inside was heated and bent to a convenient shape to fit into the teating bath. This heater provided a power output of about 250 watts at 117 volts. Two of the heaters connected in parallel were placed in the $90^{\circ} \mathrm{C}$ baths.

The thermoregulator used was a Fonwal cartridge type, adjustable, normally closed Thermoswitch, catalogue no. 17000. This regulator is manufactured by Femwal, Inco, Ashland, Masaachusetts.

The regulators were originally enclosed in a rubber tubing sleeve as shown in Figure 2. This sleeve was used to prevent the acid solution from entering the cartridge. It was later found desirable to use a 100 mi. glass (Nessler) tube as a well. Transformer oil was used in the well as a heat tranafer nedium This arrangement afforded a temperature control of $\pm 2^{\circ} \mathrm{C}$ 。

To provide flexibility in the selection of a thermoregulator in future operation of the equipment a double-pole, double-throw relay was used between the heater and the Thermoswitch. The relay also served to limit the current to the Thermoswitch. The relays were placed in a

FIGURE 4
WIRIMG DIAGRAM OF TEMPERATURE CONIROL SISTEM

cabinet atop the temperature recorder as shown in Photograph 2.
 The temperature of each bath was contimuously recorded by a twelve point Brown "Electronik" Recorder. The iron-constantan thermocouples connected to this recorder were placed in the baths as shown in Figure 2 。 Mercury-in-glass thermometers were placed in each bath as an additional temperature measuring device.

Panel Board

The panel board is shown in Photograph 2a This board contained the pilot lights and switches for each heater as well as a motor switch, a master switch for the heater circuit, a master switch for the control circuit, and an ammeter for measuring the current to the heater and control circuits.

SECTION V - EXPERIMENT AL PROCEDUPE

Preparation of Samples

The test samples were cut from 3S-0 Alclad, $24 \mathrm{~S}-\mathrm{T} 3$, and $2 \mathrm{~S}-\mathrm{H1} 4$ sheet aluminum. The nominal composition and density of each of these metals is given in Appendix I. The alumiram was cut into strips with a treadle operated sheet metal shear. The approximate size of the samples was three inches by three-fourths inch. Those samples uhich deviated from this size by more than $\mathrm{O}_{\mathrm{a}} 05$ inch in either length or width were discarded. Approximately one-fourth inch from each $\frac{3}{4}$ " side and midway between the $3^{\prime \prime}$ sides a 3_{2}^{5} " mounting hole was punched using a sheet metal punch. A minimum of three hundred coupons of each of the three alloys were prepared.

Cleaning, Weighing and Mossuring of Samples Prior to Exposure

As recommended by Uhlig (29), the eoupons were degreased by immersion in acetone followed by a ten mimute dip in a phosphoric-chromic acid bath. Finally the coupons were washed with distilled water and dried with acetone.

Since it was desired to duplicate closely actual plant operating conditions, the specimens were given no mechanical treatment which might alter the original surface of the metal.

The coupons were weighed on a magnetically damped analytical balance which had a sensitivity of 0.1 ag.

The length and width of each sample was measured to 0.01 inch using an engineers' scale. The thickness of each alloy was measured at several
points with an indicating thickness gage which measured thickness to 0.001 inch and the average of these measurements was taken as the thickness of the alloy.

Identification of Samples

After being weighed and measured each sample was placed in a numbered envelope. As each sample was rewoved from its envelope and placed on the suspension system its position was noted. Other than the mumber appearing on the envelope the position of the coupon was the only means of identification employed.

Sixty coupons (twenty of each of the three alloys) were placed in each bath.

Recording of Data

Appendix II contains copies of the original data sheets.* The copies are presented in the same form as that used in the original data sheets.

The first colum is the sample number. This mumber correaponds to the one on the envelope mentioned above. The data are arranged in. mumerical sequence. The absence of a number indicates that the sample in question was swept off the suspension system . The identification of $^{\text {s }}$ the samples placed in each of the baths is shown in Appendix II.

The second colum identifies the sample as to alloy.
The third, fourth and fifth columns contain, respectively, the length, width and thickness in inches of each sample。

The sixth and seventh colume contain the weight in grams before

* A microfilir of the original data is on file in the Cushing Memorial Library, A \& M College of Texas, College Station, Texas,
and after exposure, respectively. The eighth column is the weight loas in grams.

The ninth and tenth columns contain, respectively, the date on which the gample was introduced into the acid solution and the date of removal. The eleventh colum shows the time of axposure in days. In all cases samples were introduced to and removed from the acid solutions at eight o'clock $p . m_{0}$ so that only whole (24 hour) days were involved.

In computing the exposure time allowance was mede for the period of suspended operation necessitated by the replacement of the original suspension system. All samples were originally exposed to the solutions on July 1, 1955. On July 15, 1955 all samples were removed except those which had previously been removed for examination and those which were swept from the two baths as mentioned in Section IV - Description of Apparatus.

The remalning original anmples wers again placed in the acid solutions on September 1, 1955. New samples for the two baths mentioned above were introduced to the acid solutions on September 4, 1955.

The twelfth column is the surface area of each eample in square inches. The area of the edges of the specimen was included and the area lost due to the mounting holes was excluded from the aurface area measurement。

The last colum gives the corroaion rate in mils per yeare The rate was determined with the aid of the nomograph in Appendix III.

Corrosive Solutions

The solutions were prepared using USP XIV grade crystalline boric acid produced by the Pacific Coast Borax Company. The analysia of this
boric acid is given in Appendix $I V_{6}$
The necessary amount of acid for each bath was weighed to 0.01 pound and placed in the crocks. Five gallons of distilled water was then poured into each crock.

In order that a constant amount of water in the baths could be maintained, a depth gauge was made for each bath. The liquid level was checked at frequent intervals and distilled water was added as needed.

The temperatures chosen for the baths were $40^{\circ} \mathrm{C}, 50^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}$ and $90^{\circ} \mathrm{C}$. Three baths were kept at each of these temperatures.

The concentration of the solutions used in the various baths were fixed by taking a fraction of the concentration at saturation at the temperature of the series. The amount of boric acid dissolved at saturated conditions was determined from the Solubility Tables of Lange's "Handbook of Chemistry" (17). The fractions used throughout were uniformily $\frac{1}{3}$ and $\frac{2}{3}$ of saturation as well as saturation at each temperature.

A tabulation of all bath temperatures and concentrations is given in Appendix II.

Cleaning and Weighing of Samples After Exposure

In order to remove corrosion products from the corroded specimens, the cleaning procedure recommended by Champion (11) and Robertson (24) for alumimu and alumimm alloys was used. The coupons were first immersed in concentrated nitric acid at room temperature for ten minutes. Next they were imaersed in a phosphoric-chromic acid solution at room temperature for ten minutes. Finally the coupons were washed with
diatilled water and dried with acetone.
Each sample was then weighed to 0.1 mg. The weight was recorded and the sample was returned to its numbered envelope for possible future reference.

Preparation of Photomicrographs and Photomacrographs

Photomicrographs and photomacrographs were made of several specimens according to the procedure outlined by the American Society for Testing Materials (4). These photographs are contained in the Discussion of Results.

The photomicrographa were taken using a Bausch and Lomb laboratory microscope equipped with a vertical illuminator. A Leitz Micro-Ibso attachment and a Leica III F camera completed the photomicrograph equipment. A photograph of this assembled apparatus is shown in Appendix V. Magnification was determined by photographing through the microscope the opening of a micrometer caliper and measuring this opening on the final print.

The photomacrographs were taken with a Leica III F camera fitted with a Leitz "BOOWU" elosemp attachment. Oblique lighting was provided with photoflood lamps in reflectors.

Operating Difficulties Encountered

As mentioned under Section IV - Description of Apparatus the original suspension syatem had to be replaced. This was the major difficulty encountered.

As previously mentioned round leather belting wes used to transmit power from the motor to the stirring shaft. The onds of the belting were originally joined together with a staple-type belt hook. The belt hook was inserted in two amall holes punched near the ends of the belt. These holes so weakened the belt that the tension on the belt caused the hook to tear loose occasionally. When this happened the atirring system remained inoperative until a repair could be made. For this reason another type of belt fastener was needed. After experimentation with several types of fasteners it was found that Moran's steel belt couplings were ideally suited. No further difficulties with the belt system were encountered after installation of the Moran's couplings.

In one bath (the bath operated at $50^{\circ} \mathrm{C}$ and an acid concentration of 0.32 pounds per gallon) the glass tube uged as a well for the Thermoswitch broke near the bottom of the tube. Therefore, the tranaformer oil used as a heat transfer medium entered the bath. This fact was not noticed until after the conclusion of the testing.

In the bath operated at $90^{\circ} \mathrm{C}$ with a saturated boric acid solution, the corrosive conditions caused excesaive damage to the miscellanecus apparatus in the bath. The wood shaft of the stirring mechanism disintegrated and the pressed wood covers warped badly. Also, the insula tion on the electrical wires leading to the heating elements was destroyed. Testing was therefore discontimed in this bath after seven days of operation.

The effect of the above operating difficulties on the experimental results will be discussed under Discussion of Results.

SECTION NI - DISCUSSION OF PESULTS

General

The purpose of this project was to determine the variation of the corrosion rate of aluainum in boric acid solution with four independent variables. The four variables were time, temperature, boric acid concentration and aluminum alloy.

Variation of Corrosion Rate With Time

The variation of corrosion rate with time is presented graphically in Figures 5 through 16. Each Figure represents one alloy at one temperatrare with acid concentration as the parameter.

The corrosion rate was obtained from the expreasion

$$
\mathrm{M}_{0} P \cdot \mathrm{Y}_{*}=\frac{22_{2} 289 . \mathrm{H}}{\mathrm{DAT}}
$$

where the corrosion rate, $\mathrm{M}_{0} \mathrm{P}_{4} \Psi_{\mathrm{A}}$, is in mils loss of metal per year over the entire exposed surfaces the weight less, W, in grams; the density of the metal, D, in grams per cubie centimeters the aurface area of the coupons, A, in square inchesy and the time of attack, T, in days. A nomograph relating these variables is given in Appendix III.

The corrosion rate as expressed above is an average rate over the period of attack up to the time of removing the mpecimen. This method of expressing the rate of corrosion is recomonded by Fontana (14) and is becoming more universally adopted as a method of expressing resulta. Although the instantaneous rate could be determined from the data obtained, the average rate is exployed in this thesis as more convenient and according to the trend in technical journals. It will hereafter be referred to as rate。

FICUPTE 13

$$
\begin{array}{ll}
0-6.2 & \mathrm{gms} / 109 \mathrm{cc} \\
\square--12.4 & \mathrm{gms} / 100 \mathrm{cc} \\
\Delta-18.6 & \mathrm{gms} / 10 \mathrm{cc}
\end{array}
$$

In most cases in Figures 5 through 16, the rate showed a gradual increase with time up to about twenty days. After this initial build-up period the rate levelled off to a fairly constant value. This conatant .value of rate, represented by the straight line portion of the curves was calculated by the method of least squares.

In all cases the curvea were oxtrapolated to the origin, which assumes a corrosion rate of zero at zero time.

It should be pointed out that if the individual points were connected, an almost cyclic curve would result. This cyclic curve would oscillate around the atraight line curve which is shown. This cyclic variation seems to be characteristic of alumimin corrosion and will be discussed in further detail in a later paragraph of this section.

As mentioned in Section IV - Description of Apparatus, the suspension system was replaced after fourteen days. Since no sharp breaks in the rate-time curves could be discerned at fourteen days, it is concluded that the interruption of testing necessitated by the replacement of the suspension system had very little, if any, effect on the corrosion rate.

Similarly, no breaks in the curves corresponding to the periods of inoperation of the stirring mechanism are evident. It is concluded, therefore, that this operating difficulty also had a negligible effect on the corrosion rate.

In several cases (Figures $11,13,14,15$ and 16) there was a high initial attack followed by a decrase in rate and a final levelling-off. This phenomenon seems to be present only at the higher bath temperatures and acid concentrations. It is possible that this high initial rate is a result of an oxide film which initially is not impervious to the higher
acid concentrations and temperatures. As the attack of the metal continues, however, the film will thicken and become relatively impervious.

In the case of 25 alumimum at $50^{\circ} \mathrm{C}$ in a saturated boric acid solution (Figure 8), the rate-time curve decreased with a reasonably uniform slope throughout the attack period. A possible explanation for this phenomenon will be presented in a later paragraph of this section.

The constant rate values obtained from each alloy at each concentration and temperature are presented in tabular form in Table II. For the 25 aluminum at $50^{\circ} \mathrm{G}$ in a saturated boric acid solution (Figure 8) the constant rate value was taken as the initial value of the rate. Constant rate values for the three alloys at $90^{\circ} \mathrm{C}$ and saturated conditions are not given. As explained in Section V - Experimental Procedure, testing in the bath at the above conditions was discontinued after seven days of operation due to the partial destruction of the testing apparatus by the severe corrosive conditions. Therefore, there was insufficient data from which to obtain a constant rate value from this bath.

Variation of Corrosion Rate With Temperature and Acid Concentration

The constant rate values for each alloy are plotted as a function of concentration with temperature as the parameter in Figures 17 through 19.

It is noticed that the rate generally increases with temperature up to $70^{\circ} \mathrm{C}$. In all cases there is a marked decrease in rate at $90^{\circ} \mathrm{C}$. This is in line with the observation made by Hackerman as mentioned in Section II Survey of the Literature.

For the case of 2 S and 3 S aluminum at $70^{\circ} \mathrm{C}$, there is a sharp decrease in rate at saturation concentrations. This is probably due to a precipitation

TABLE II
CORROSION RATES OF ALUMINUM AND ALLOYS IN BORIC ACID SOLUTIONS

Alloy	Temperature ${ }^{\circ} \mathrm{C}$	Acid Concentration $\mathrm{gms} / 100 \mathrm{cc}$	$\begin{aligned} & \text { Rate * } \\ & \text { mils/yr. } \end{aligned}$
2 S	40	2.18	1.22
2S	40	4.37	.60
2 S	40	6.61 (sat.)	1.21
2 S	50	3.84	. 18
2 S	50	7.68	. 34
2 S	50	11.5 (sat.)	2.85
25	70	6.20	5.50
2 S	70	12.4	9.58
2 S	70	18.6 (sata)	5.44
2 S	90	10.1	. 87
2 S	90	20.2	4.94
35	40	2.18	3.16
3 S	40	4.37	1.41
3S	40	6.61 (sat.)	2.70
3 S	50	3.84	1.27
3 S	50	7.68	1.60
38	50	11.5 (sat.)	6.71
3 S	70	6.20	9.75
3 S	70	12.4	14.83
35	70	18.6 (sat.)	6.49
3S	90	10.1	4.50
3S	90	20.2	5.79
24.5	40	2.18	1.17
245	40	4.37	1.05
24.5	40	6.61 (sat.)	1.50
24.5	50	3.84	. 15
24.5	50	7.68	.74
24.5	50	11.5 (sat.)	5.16
245	70	6.20	5.32
245	70	12.4	5.22
24.5	70	18.6 (sat.)	9.50
24.5	90	10.1	. 80
24.5	90	20.2	5.09

*For a discussion of how this value was obtained, reference is made to page 45.

of boric acid on these metals as a result of minor temperature fluctuations. As the bath temperature decreased slightly, a precipitation of boric acid would occur on any rough surface. The corroded coupons presented a rough surface for this precipitation. The boric acid which was precipitated on the metal would tend to protect the surface from further attack. As the surface continued to be further roughened in the corrosion process, more boric acid would precipitate onto the roughened portions. It is believed that this effect is responsible for the negative rate-time slope of 2 S aluminum at $50^{\circ} \mathrm{C}$ and a saturation concentration (Figure 8).

The rate-concentration curve for 245 aluminum at $70^{\circ} \mathrm{C}$ does not show this decrease with concentration. A possible explanation for this will be given later in this section.

It is noticed that the rate for all alloys at $50^{\circ} \mathrm{C}$ and $\frac{1}{3}$ saturation is lower than would be expected. As mentioned in Section V - Experimental Procedure, the glass thermoregulator well which was filled with ofl broke In one of the baths, permitting ofl to enter the solution. Obviously this oll afforded a degree of protection to the aluminum in this one bath.

Discussion of Photomicrographs and Photomacrographs

Various photomacrographs and photomicrographs of the aluminum specimens are presented in Photographs 3 through 11. These photographs are not intended to represent average or typical apecimens, but rather to indicate the type and the severity of attack encountered. In all photographs of the specimens all three alloys are shown. In all cases the three alloys shown in each photograph were exposed to the same conditions for the same period of time.

2S

$3 S$

PHOTOCRAPH 3

$2 S$
 35

PHOTOCRAPA 4
 ExROSED FOR 47 DAYS AT $70^{\circ} \mathrm{C}$ AXD 6.20 Ems/100ce (an50)

EHOROCRM 5

BHOLOMIGROCRME:AS OF COBRODED SESOTMTMS ExCOSBD FOR 7 DAYS AT $90^{\circ} \mathrm{C}$ AID 20.4 Ems/100ce (xa50)

$2 s$

35

245

PHOTOGRAPH 6

PHOTONICROGRAPHS OF CORRODED SPECINENS

PHOTOGRAPH 7

PHOTOLICROGRAPHE OF CORRODED SPECMMWS

PHOTOGRAPH 8
PHOTOMAGROGRAPHS OF GORRODED SPMCTMENS (actual size)

2S
EXPOSED FOR 47 DAYS

25

PHOTOGRAPH 9
PHOTONAGROGRAPHS OF CORRODED SPBGINENS (actunl size)

PHOTOGRAPH 10
PHOTOMACROGRAPHS OF CORRODED SPECIMENS (actual size)

28

38

848
2vo

Fiogociania 11

Particular notice is directed to the photomicrographs of 245 aluminum in Photographs 4, 6, and 7. It sppears that the grain of the metal is discernible in these photographs. This grain is not apparent in the photomicrographs of the other two alloys studied.

As a means of comparison, reference is made to Photograph 12. The upper photograph is a reproduction of a photomicrograph showing intercrystalline corrosion in sheet aluminum as given by Fuss and Anderson (15). The lower photograph of Photograph 12 is a photomicrograph of the 245 sample of Photograph 11. Several points of similarity between the two photographs of Photograph 12 are visible. From an examination of Photograph 12 It appears that the corrosion of 245 alumimum is intercrystalline in nature.

There may be less of a tendency for boric acid in saturated solutions to crystallize out on the smoother surface of 245 aluminum where there appears to be intercrystalline attack than on the $2 S$ and $3 S$ aluminum where there is pitting attack. If this were the case there would not be the protection offered by the boric acid crystals to the aluminum surface as in the case of $2 S$ and 3 aluminum. This possibly explains the absence of the drop in the rate-concentration curve of 24 S aluminum (Figure 17) as mentioned above.

Special Considerations

As previously mentioned the individual points of the rate-time curves are of a cyclic nature. It is believed that this cyclic effect is due to local areas of film break-down. As discussed in Section III - Theoretical Considerations, fracturing of the protective film is likely to occur when

ALURIIIJM INMERCRYSTALLINE CORROSION
PHOTOKICROGRAPH OF FUSS AND ANDERSON

PHOTONICROGRAPH OF 24S ALUNINUM EXPOSED TOR 50 DAYS IN BORIC ACID SOLUTION AT $70^{\circ} \mathrm{C}$ AND $6.20 \mathrm{gms} / 100 \mathrm{cc}$

PHOTOGRAPH 12
the lateral stresses of the film force out water at local reas. It is reasonable to assume that these local areas of exposed metal are responsible for the cyclic variation of the rate-time curves. As the protective film is fractured, a local area of metal becomes unprotected and undergoes rather severe attack until the break in the film can be repaired.

Also noticed on examination of the rate-time curves of Pigures 5 through 16 are several pronounced peaks. In most cases these peaks occur after about 29,41 and $55-60$ days of exposure. As mentioned in Section II Survey of the Literature, other investigators have observed similar peaks after approximately the same exposure time, even though different conditions and corrodents were used. It is believed these peaks are due to accelerated attack brought about by a rather extensive film break-down. It would seem that the time of this break-down is not influenced by temperature, alloy or the chemical characteristics of the corrodent.

SECTION VII - CONCLUSIONS

As a result of the experimental investigation of the subject of Corrosion of Aluminum in Boric Acid Solution, the following conclusions were reached:
I. The corrosion rate generally increases with temperature up to about twenty days and then levels off to a constant rate.
2. The rate increases with temperature up to $70^{\circ} \mathrm{C}$ and decreases to $90^{\circ} \mathrm{C}$.
3. The rate increases with concentration. However, the rate in a saturated solution is often less than would be expected, which is probably due to a precipitation of the acid crystals brought about by minor temperature fluctuations.
4. The $3 S$ and 24 S alloys are attacked more than the 2S aluminum at all concentrations and temperatures investigated.
5. While the $2 S$ and $3 S$ aluminum suffer chiefly pitting corrosion, it appears that the 24 S aluminum undergoes intercrystalline attack.
6. The testing apparatus used in this investigation provided a convenient means of corrosion testing by the total immersion test.

BIBLIOGRAPHY

1. Alumimum Company of America, "Alcoa Aluminum and Its Alloys", Pittsburgh, 1950.
2. Aluminum Company of America, "Process Industries Applications of Alcos Aluminum", Pittsburgh, 1955.
3. American Society for Teating Materials, A. S.T.M. Designation: Bl85-43T, "Total Immersion Corrosion Test of Non-Ferrous Metals", Philadelphia, 1943.
4. American Society for Testing Materials, A.S.T.M. Designation: E 2-49T, "Preparation of Micrographs of Metals and Alloys", Philadelphia, 1949.
5. Andrews, R. V., Personal Commanication.
6. Andrews, R. V., "The Formation of Chemical Film Deposits on Aluminum Surfaces", Umpublished Doctor's dissertation, The Agricultural and Mechanical College of Texas, College Station, 1952.
7. Aziz, P. M., J. Electrochem. Soc., 101, 120-127 (1954).
8. Bailey, G. H. , Engineering, 25, 374, (1913).
9. Bryan, J. M., Chemistry and Industry, Feb. 28, 1948, 135-6.
10. Champion, F. A., Trans. Faraday Soc., 41, 593-610 (1945).
11. Champion, F. A., "Corrosion Testing Procedures", New York, John Wiley \& Sons Inc., lst ed., 1952.
12. Davy, Sir Humphery, Phil. Trans., 114, 151-158, 242-246, 328-346 (1824).
13. Faraday, M. and Schönbein, C. T., Phil. Mag., Series 3, 2, 53-64, (1836).
14. Fontana, Mo G., Ind. Eng. Chem. , 46, No. 9, 85A (1954).
15. Fuss, V. and Anderson, F. J., "Metallography of Aluminum and Its Alloys", Cleveland, The Sherwood Press, lst ed., 1936.
16. Hackerman, N., Ind. Eng. Chem. , 44, 1752-5 (1952).
17. Jenny, A. and Lewis, W., "The Anodic Oxidation of Aluminum and Its Alloys", Brooklyn, Chemical Publishing Co., Inc., lst ed., 1940.
18. Lange, N. A. (ed.), "Handbook of Chemistry", Sandusky, Ohio, Handbook Publishers, Inc., 8th ed., 1952.
19. McKee, A. B. and Brown, R. H. , Corrosion, 3 No. 12, 5-22 (1947).
20. Müller, W. J. and Löw, E., Aluminium, 18, 478-486, 541-544 (1936).
21. Piling, No B. and Bedworth, R. E., J. Inst. Met. , 29, 535 (1923).
22. Rabald, E. , "Corrosion Guide", New York, Elsevier Publishing Co., Inc., list ed. (1951).
23. Ritter, F., "Korrosionstabellen", Vienna, Vorlag von Julius Springer, 1st ed., 1937.
24. Robertson, W. D., Canad. J. Besearch, 23, 263 (1945).
25. Rosenhain, W. , Engineering, 25, 379 (1913).
26. Smith, W., J. Soc. Chem. Ind., 23, 475-7 (1904).
27. Strom, P. O., et al, "Reproducibility of $480^{\circ} \mathrm{F}$ Static Aqueous Corrosion of Pure Alumimum", Livermore, California; Livermore Research Laboratory, lst ed. , 1954.
28. Thénard, quoted by Evans, U. R., "An Introduction to Metallic Corrosion", London, Edward Arnold \& Co., 1st ed., 1948.
29. Uhlig, H. H. (ed.), "The Corrosion Handbook", New York, John Wiley \& Sons, Inc., lst ed., 1948.
30. Vernon, W. H. J., Trans. Faraday Soc., 27, 255 (1931).
31. Vogel, H. U. von, Korros. u. Metallschutz, 16, 259-278 (1940).
32. Waché, Xo, Rev. Metal, 25, 331-46 (1928).
APPENDIX
APPENDIX PAGE
I Nominal Compoaition and Denaity of Aluminum Alloys 68
II Experimental Data 70
III Nomograph for Obtaining Corrosion Rate 93
IV Analysis of Boric Acid 95
V Photomicrograph Equipment 97

APPENDIX I

NOMINAL COMPOSITION AND DENSITY OF ALTMINUM ALLOYS

The nominal compositions for each alloy used in the investigations are given in per cent. Unless a percentage range is shown, the figure is the maximam per cent of the alloying element.

These figures were obtained from the Aluminum Company of America (1).

APPENDIX I

NOMINAL COMPOSITION OF ALUMINUM ALLOYS

Alloy	Aluminum	Copper	Iron	Silicon	Magnesium	Manganese	Zinc	Chrominm	Other Each	Elements Total
2 S	99.0\% min.	0.20 \cdot.	. \cdot.	0.05	0.10	- \cdot.	0.05	0.15
Alclad. 3 S				0.60		1.0-1.5	0.10	. 6	0.05	0.15
Core ${ }_{\text {Cladding }}$	Remainder	0.21 0.10	0.10	0.75-1.25	*	0.05	0.15
Cladalng										
245	Remairder	3.8-4.9	0.50	0.50	1.2-1.8	0.3-0.9	0.10	0.10	0.05	0.15

DENSITY

Alloy	$\mathrm{gms} / \mathrm{cm}^{3}$
2S	2.71
Alclad 3S	2.74
24 S	2.76

APPENDIX II

EXPERIMENTAL DATA

The copies of the original data sheets are presented in the same form as that used in the originals.

The first column is the sample number. This number corresponds to the one on the individually numbered sample envelopes mentioned in Section V - Experimental Procedure. The data are arranged in numerical sequence. The absence of a number indicates that the sample in question was swept off the suspension system. The sample numbers exposed to each set of conditions are as follows:

Numbers (incl)	Temperature ${ }^{\circ} \mathrm{C}$	Acid Concentration gms $/ 100 \mathrm{cc}$
$1-30,361-390$	40	2.18
$31-60,391-420$	40	4.37
$61-90,421-450$	40	6.61
$91-120,451-480$	50	3.84
$121150,481-510$	50	7.68
$151-180,511-540$	70	6.20
$181-210,541-570$	70	12.4
$211-240,571-600,721-780$	90	10.1
$241-270,601-630,781-840$	90	20.2
$271-300,631-660$	90	30.4
$301-330,661-690$	70	18.6
$331-360,691-720$	50	11.5

The second column of the experimental data identifies the sample as to alloy.

The third, fourth and fifth columns contain, respectively, the length, width and thickness in inches.

The sixth and seventh columns contain the weight in grams before and after exposure, respectively. The eighth column is the weight loss in grams.

The ninth and tenth columns contain, respectively, the date on which the sample was introduced into the acid solution and the date of removal. The eleventh column shows the time of exposure in days. In all cases samples were introduced to and removed from the acid solutions at eight o^{\prime} clock pom. so that only whole (24 hour) days were involved.

In computing the exposure time allowance was made for the period of suspended operations necessitated by the replacement of the original suspension system. All samples were originally exposed to the solutions on July 1, 1955. On July 15, 1955 all samples were removed except those which were swept from the baths as mentioned in Section IV - Description of Apparatus.

The remaining original samples were again placed in the acid solutions on September 1, 1955. New samples for the two baths mentioned above were introduced to the acid solutions on September 4, 1955.

The twelfth column is the surface area of each sample in square inches.

The last column gives the corrosion rate in mils per year. The rate was determined with the aid of the nomograph in Appendix III.

APPENDIX II
EXPERTMENTAL DATA

	Alloy	Length	Width	Thick.	Wt. 1	Wt, 2	Loss	In	Out	Time	Ares	Rate
1	2 S	3.02	. 76	. 034	3.2710	3.2638	. 0072	7/1/55	7/4/55	3	4.804	4.06
2	35	3.34	. 74	. 074	6.2237	6.2164	.0073	7/1/55	7/8/55	7	5.146	1.65
3	245	3.02	. 76	. 035	3.4168	3.4140	. 0028	7/1/55	7/8/55	7	4.813	. 676
4	2 S	3.04	. 77	. 034	3.3085	3.3046	. 0039	7/1/55	7/1/55	10	4.897	.650
5	35	3.03	. 77	. 074	6.2916	2.3794	. 0122	7/1/55	7/1/55	10	5.225	1.90
6	245	3.03	.73	. 035	3.3079	3.3035	. 0044	7/1/55	7/11/55	10	40645	. 771
7	2 S	3.03	. 77	. 034	3.2669	3.2561	. 0108	7/1/55	9/4/55	17	4.881	1.06
8	35	3.04	. 76	. 074	6.2783	6.2430	. 0353	7/1/55	9/4/55	17	5.180	3.26
9	245	3.31	. 78	. 035	3.5544	3.5458	. 0086	7/1/55	9/4/55	17	4.919	. 837
10	2 S	3.02	. 75	. 034	3.2677	3.2527	. 0150	7/1/55	9/7/55	20	4.743	1.29
11	35	3.04	. 76	. 074	6.2127	6.1629	. 0498	7/1/55	9/7/55	20	5.180	3.91
12	245	3.00	.77	. 035	3.4951	3.4828	. 0123	7/1/55	9/7/55	20	4.842	1.04
13	2 S	3.03	. 76	. 034	3.2512	3.2394	. 0118	7/1/55	9/10/55	23	4.820	. 867
14	35	3.04	.77	. 074	6.3615	6.3122	. 0493	7/1/55	9/10/55	23	5.241	3.32
15	245	3.00	.77	. 035	3.524I	3.5123	. 0178	7/1/55	9/10/55	23	4.842	. 863
16	2 S	3.04	.74	. 034	3.2321	3.2134	. 0187	7/1/55	9/13/55	26	4.713	1.24
17	35	3.04	. 78	. 074	6.4466	5.3910	. 0556	7/1/55	9/13/55	26	5.304	3.28
18	245	3.01	. 79	. 035	3.5283	3.5148	. 0135	7/1/55	9/13/55	26	4.979	. 847
19	28	3.02	.72	.034	3.1544	3.1507	. 0037	7/1/55	7/14/55	13	4.560	. 508
20	38	3.03	. 78	. 074	6.4551	6.4371	. 0180	7/1/55	7/14/55	13	5.287	2.03
21	245	3.01	. 75	. 035	3.4327	3.4273	.0054	7/1/55	7/14/55	13	4.736	.714
22	23	3.02	.78	. 034	3.2944	3.2709	. 0235	7/1/55	9/16/55	29	4.926	1.34
23	33	3.04	. 76	. 074	6.2855	6. 2206	. 0649	7/1/55	9/16/55	29	5. 180	3.51
24	245	3.00	. 76	. 035	3.5113	3.4860	. 0253	7/1/55	9/16/55	29	4.781	1.48
26	33	3,03	.78	. 074	6.3626	6.3109	. 0517	7/1/55	9/16/55	32	5.287	2.49
27	24.5	3.01	. 78	. 035	3.5655	3.5494	. 0161	7/1/55	9/19/55	32	4.919	. 832
28	29	3.01	. 75	. 034	3.2399	3.2202	. 0197	7/1/55	9/22/55	35	4.727	. 980
29	38	3.04	.78.	. 074	6.4654	6.4072	. 0582	7/1/55	9/22/55	35	5.304	2.60
30	24 S	3.01	.77	. 035	3.5532	3.5376	. 0156	7/1/55	9/22/55	35	4.868	. 754
31	2 S	3.03	.77	. 034	3.3593	3.3587	. 0005	7/1/55	7/8/55	7	4.881	. 143
32	35	3.04	.78	. 074	6.3713	6.3687	. 0026	7/1/55	7/8/55	7	5.304	. 571
33	24 S	3.02	. 77	. 035	3.5592	3.5569	. 0023	7/1/55	7/8/55	10	4.874	. 549
34	2 S	3.02	. 77	. 034	3.2545	3.2539	. 0016	7/1/55	7/11/55	10	4.865	. 384

					EN	II	timu					
	Alloy	Length	Width	Thick	Wto 1	Wt. 2	Loss	In	Out	Time	Area	Rate
35	35	3.03	.78	. 074	6.4039	6.4010	. 0029	7/1/55	7/11/55	10	5.287	. 646
36	245	3.00	. 78	. 035	3.4709	3.4679	. 0034	7/1/55	7/11/55	10	4.092	. 564
37	2 S	3.03	. 73	. 034	3.1386	3.1334	. 0052	7/1/55	9/4/55	17	40636	- 537
38	35	3.04	. 76	. 074	6.2453	6.2337	. 0116	7/1/55	9/4/55	17	5.180	1.07
39	245	3.00	. 76	. 035	3.4536	3.4446	. 0090	7/1/55	$9 / 4 / 55$	17	4.781	900
40	2 S	3.02	.77	. 034	3.3045	3.3016	. 0022	7/1/55	9/7/55	20	4.865	- 244
41	3 S	3.04	.78	. 074	6.3007	6.3897	. 0110	7/1/55	9/7/55	20	5.304	. 852
42	245	3.01	. 78	. 035	3.5441	3.5342	. 0099	$7 / 1 / 55$	9/10/55	20	4.919	.827
43	2 S	3.04	. 72	. 034	3.0976	3.0911	. 0065	$7 / 1 / 55$	9/10/55	23	4.560	0
44	35	3.04	.75	. 074	6.0737	6.0565	. 0172	7/1/55	9/10/55	23	5.117	1.20
45	245	3.00	. 78	. 035	3.5093	3.4903	. 0190	7/1/55	9/10/55	23	4.902	1.39
46	2 S	3.02	.77	. 034	3.2594	3.2511	. 0083	7/1/55	9/13/55	26	4.865	. 538
47	35	3.04	.78	. 074	6.4451	6.4205	. 0246	7/1/55	9/13/55	26	5.304	1.46
48	245	3.00	. 71	. 035	3.2351	3.2178	. 0173	7/1/55	9/13/55	26	4.477	1.22
49	25	3.02	.74	. 034	3.2172	3.2171	. 0011	7/1/55	7/14/55	13	4.682	147
50	35	3.04	. 79	. 074	6.4749	6.4704	. 0045	7/1/55	7/14/55	13	5.366	. 525
51	245	3.01	.75	. 035	3.4516	3.5544	. 0061	7/1/55	7/15/55	13	4.736	. 807
52	2 s	3.03	. 75	. 034	3.2474	3.2268	. 0204	7/1/55	9/16/55	29	4.759	1.22
53	3S	3.03	. 79	. 074	6.4748	6.4407	. 0341	7/1/55	9/16/55	29	5.349	1.80
54	24 S	3.03	.77	. 035	3.5309	3.4976	. 0333	7/1/55	9/16/55	29	4.890	1.93
55	2 S	3.02	.77	. 034	3.3019	3.2885	. 0134	7/1/55	9/19/55	32	4.865	.707
56	35	3.04	.78	. 074	6.4540	6.4219	. 0321	7/1/55	9/19/55	32	5.304	1.55
57	24.5	3.02	. 77	. 035	3.5008	3.4777	. 0231	7/1/55	9/19/55	32	4.874	1.22
58	2 S	3.03	.77	. 034	3.2538	3.2350	. 0188	7/1/55	9/22/55	35	4.881	. 904
59	35	3.04	.78	. 074	6.4433	6.4083	. 0350	7/1/55	$9 / 22 / 55$	35	5.304	1.54
60	245	3.00	. 76	. 035	3.4588	3.4346	. 0342	7/1/55	9/22/55	35	4.781	1.19
61	2 S	3.04	.78	. 034	3.3251	3.3249	. 0002	7/1/55	7/5/55	4	4.959	. 0828
62	3 S	3.04	. 79	. 077	6.4527	6.4500	. 0026	7/1/55	7/5/55	4	5.366	1.03
63	24 S	3.01	. 77	. 035	3.5191	3.5165	. 0026	7/1/55	7/5/55	7	4.868	110
64	2 S	3.03	.77	. 034	3.2504	3.2496	. 0008	7/1/55	7/8/55	7	4.881	. 1920
65	35	3.04	.78	. 074	6.4722	6.4665	. 0041	7/1/55	7/8/55	7	5.225	. 920
66	245	3.02	.77	. 035	3.5400	3.5336	. 0048	$7 / 1 / 55$	7/8/55	7	4.874	1.16
67	2 S	3.03	.76	. 034	3.2325	3.2305	. 0014	7/1/55	7/8/55	10	4.820 5.304	1.228
68	35	3.04	.78	${ }_{\text {a }} 074$	6.4439	6.4366	. 0066	7/1/55	7/11/55	10	5.304	1.02

APPENDIX II (contimed)

	Alloy	Length	Hidth	Thick.	Wht. 1	Wt. 2	Loss	In	Out	Time	Area	Rate
69	24.5	3.02	.77	. 035	3.4915	3.4832	. 0083	7/1/55	7/11/55	10	4.874	1.40
70	2 S	3.03	.75	. 034	3.2585	3.2503	. 0082	7/1/55	9/41/55	17	4.759	. 831
71	3S	3.03	.78	. 074	6.2882	6.2696	. 0186	$7 / 1 / 55$	r7/4/55	17	5.287	1.70 1.67
72	245	3.01	. 77	. 035	3.5070	3.4943		7/1/55	7/14/55	13	4.868	1.67
73	2 S	3.03	.75	. 034	3.0877	3.0802	. 0075	7/1/55	9/7/55	20	4.759	. 645
74	3 S	3.04	.79	. 074	6.4467	6.4241	. 0226	7/1/55	9/7/55	20	5.366	1.73
75	245	3.02	.78	. 035	3.5676	3.5483	. 0183	7/1/55	9/7/55	20	4.935	1.61
76	2 S	3.02	.76	. 034	3.2992	3.2860	. 0132	7/1/55	9/10/55	23	4.804	. 983
77	35	3.04	. 79	. 074	6.4445	6.4122	. 0323	7/1/55	9/10/55	23	5.366	2.05
78	24.5	3.02	. 78	. 035	3.5397	3.5173	. 0224	7/1/55	9/10/55	23	4.935	1.62
79	2 S	3.04	.73	. 034	3.1770	3.1744	. 0026	7/1/55	$7 / 14 / 55$	13	4.636	. 355
80	35	3.04	. 79	. 074	6.4655	6.4230	. 0425	7/1/55	9/13/55	26	5.366	2.50
81	24 S	3.02	. 78	. 035	3.5442	3.5187	. 0255	7/1/55	9/13/55	26	4.935	1.64
82	2 S	3.0 ?	. 74	. 034	6.4467	6.3937	. 0244	7/1/55	9/16/55	29	4.682	1.48
83	35	3.03	.78	. 074	6.4567	6.4837	. 0530	7/1/55	9/16/55	29	5.287	2.84
84	245	3.00	. 77	. 035	3.5031	3.4659	. 0372	7/1/55	9/16/55	29	4.842	2.12
85	25	3.02	.76	. 034	3.2637	3.2434	. 0203	7/1/55	9/19/55	32	4.804	1.09
86	35	3.04	. 77	. 074	3.3358	6.2864	. 0494	$7 / 1 / 55$	9/19/55	32	5.241	2.42
87	245	3.03	. 75	. 035	3.4407	3.4170	. 0237	7/1/55	9/19/55	32	4.767	1.29
88	2 S	3.02	. 78	. 034	3.3358	3.3158	. 0200	7/1/55	9/22/55	35	4.926	. 954
89	35	3.04	. 79	. 074	6.4454	6.4396	. 0088	7/1/55	7/14/55	13	4.366	1.04
90	24.5	3.00	. 78	. 035	3.5420	3.5022	. 0398	7/1/55	9/22/55	35	4.902	1.91
91	25	3.03	. 72	. 034	3.1590	3.1586	. 0004	$7 / 1 / 55$	7/8/55	7	4.575 5.331	. 103
92	3 S	3.02	.79	. 074	6.4223	6.4213	. 0010	7/1/55	7/8/55	7	5.331	. 221
93	245	3.01	. 74	. 035	3.4390	3.4358	. 0032	7/1/55	7/8/55	10	4.675	. 804
94	2 S	3.03	. 73	. 034	3.1389	3.1378	. 0011	7/1/55	7/11/55	10		. 302
95	3 S	3.04	. 79	. 074	6.4421	6.4394		$7 / 1 / 55$ $7 / 1 / 55$	7/11/55	10	5.366 4.706	. 515
96	24 S	3.03	. 74	. 035	3.3766 3.3073	3.3733 3.3067	. 00036	$7 / 1 / 55$	$\begin{aligned} & 9 / 4 / 55 \\ & 9 / 4 / 55 \end{aligned}$	17	4.926	. 589
97	${ }_{3}{ }^{\text {S }}$	3.0	. 78	. 074	5.7866	5.7766	. 0038	$7 / 1 / 55$	9/4/55	17	4.805	. 382
99	24 S	3.00	.77	.035	3.4823	3.4790	. 0033	7/1/55	9/4/55	17	4.842	. 330
100	2 S	3.02	.77	. 034	3.2915	3.2910	. 0055	7/1/55	9/7/55	20	4.865	. 0422
103	2 S	3.03	. 77	. 034	3.2758	3.2651	. 0008	7/1/55	9/10/55	23	4.881	. 5084
104	35	3.04	.75	. 074	6.1707	6.1565	. 0142	7/1/55	9/10/55	23	5.117	. 990

					AP	II	inu					
	- Alloy	Length	Width	Thick.	$W t_{\text {, }} 1$	Wt. 2	Loss	In	Ont	Time	Area	Rate
105	245	3.03	.77	. 035	3.4540	3.4516	. 0024	7/1/55	9/10/55	23	4.890	.175
106	2 S	3.02	. 77	. 034	3.2269	3.2243	. 0026	$7 / 1 / 55$	9/13/55	26	4.865	. 169
107	35	3.00	.74	. 074	6.0340	6.0191	.0149	7/1/55	9/13/55	26	4.989	. 944
108	24.5	3.00	. 78	. 035	3.5287	3.5254	. 0033	7/1/55	9/13/55	26	4.902	. 212
109	2 S	3.03	. 76	. 034	3.2971	3.2960	. 0011	7/1/55	7/14/55	13	2	4
110	3 S	3.03	.76	. 074	6.2749	6.2722	.0027	7/1/55	7/14/55	13	5.162	0
111	245	3.02	.76	. 035	3.4427	3.4405	. 0022	7/1/55	7/14/55	13	4.813	. 289
112	25	3.02	. 76	. 034	3.2580	3.2527	. 0053	7/1/55	9/16/55	29	4.804	. 312
113	35	3.03	. 76	. 074	6.1323	6.1089	. 0234	7/1/55	9/16/55	29	5.162	1.28
114	245	3.00	. 78	. 035	3.4640	3.4560	. 0080	7/1/55	9/16/55	29	4.902	-462
11.5	23	3.03	. 77	. 034	3.3137	3.3130	. 0007	7/1/55	9/19/55	32	4.881	. 0368
116	35	3.04	.76	. 074	6.1619	6.1411	. 0208	7/1/55	9/19/55	32	5.180	1.03
117	245	3.01	. 77	. 035	3.4981	3.4968	. 0013	7/1/55	9/19/55	32	4.868	687
118	2 S	3.02	.71	. 034	3.0177	3.0165	. 0012	$7 / 1 / 55$	9/22/55	35	4.499	626
119	3 S	302	. 75	. 074	6.0117	5.9941	. 0176	$7 / 1 / 55$	9/22/55	35	5.100	. 810
120	245	3.03	. 78	. 035	3.5676	3.5655	. 0021	7/1/55	9/22/55	35	4.951	. 0996
121	2 S	3.03	.77	. 034	3.3009	3.3000	. 0014	$7 / 1 / 55$	7/8/55	7	4.881	. 337
122	35	3.04	. 76	. 074	6.3824	6.3777	. 0047	7/1/55	7/8/55	7	5.180	1.09
123	24 S	3.03	. 73	. 035	3.3196	3.31 .59	. 0037	7/1/55	7/8/55	7	40645	. 937
124	2 S	3.02	.74	. 034	3.1949	3.1930	. 0019	7/1/55	7/11/55	10	4.682	. 333
125	35	3.04	.76	. 074	6. 4256	6.4188	. 0068	7/1/55	7/11/55	10	5.180	1.08
126	24.5	3,01	. 77	. 035	3.5236	3.5171	. 0065	7/1/55	7/11/55	10	4.868	1.10
127	2 S	3.04	.74	.034	3.2216	3.2174	. 0042	7/1/55	9/4/55	17	4.713	431
128	35	3.03	. 78	. 074	6.4044	6.3867	. 0177	7/1/55	9/4/55	17	5.287	1.62
129	245	3.03	.78	. 035	3.5438	3.5326	. 0112	7/1/55	9/4/55	17	4.951	1.09
130	25	3.03	. 77	. 034	3. 2682	3.2640	. 0042	$7 / 1 / 55$	9/7/55	20	4.881	. 354
131	3 S	3.04	. 78	. 074	6.4459	6.4283	. 0176	$7 / 1 / 55$	9/7/55	20	5.304	1.36
132	24.5	3 a 02	. 78	. 035	3.5037	3.4931	. 0106	7/1/55	9/7/55	20	4.935	883
133	25	3 a 02	. 77	. 034	3.2519	3.2472	. 0047	$7 / 1 / 55$	9/10/55	23	4.865	. 345
134	35	3.04	. 80	. 074	6.4868	6.4701	. 0167	$7 / 1 / 55$	9/10/55	23	5.428	1.10
135	245	3.02	. 79	${ }^{\circ} 035$	3.5593	3.5492	. 0101	7/1/55	9/10/55	23	40996	-722
136	2 S	3.02	.77	. 034	3.2200	3.2153	. 0047	7/1/55	9/13/55	26	4.865	. 305
137	3 S	3.04	-74	. 074	6.2535	6.2316	. 0219	7/1/55	9/13/55	26	5.055	1.37
138	245	3.00	.74	. 035	3.3544	3.3405	. 0139	7/1/55	9/13/55	26	4.659	. 943

APPENDIX II (continued)

	Allog	Length	Whoth	Thioke	WW	Wte_2	Logs	$\underline{I n}$	Out	Time	Area	Rate
139	2 S	3.03	.76	. 034	3.2698	3.2674	. 0024	7/1/55	7/14/55	13	4.820	. 315
140	35	3.04	. 80	. 074	6.4772	6.4689	. 0083	7/1/55	$7 / 14 / 55$	13	5.428	-967
141	245	3.02	. 78	. 035	3.5046	3.4953	. 0093	7/1/55	$7 / 14 / 55$	13	40935	1.19
142	2 S	3.04	. 76	. 034	3.2873	3.2747	. 0126	7/1/55	9/16/55	29	4.836	. 739
143	35	3.04	.78	. 074	6.3897	6.3611	. 0286	7/1/55	9/16/55	29	5.304	1.53
144	24.5	3.02	. 79	. 035	3.6072	3.5853	. 0219	7/1/55	9/16/55	29	4.996	4
145	2 S	3.02	.76	. 034	3.2571	3.2471	. 0100	7/1/55	9/19/55	32	4.804	5
146	35	3.04	. 78	. 074	6.4500	6. 3987	. 0513	7/1/55	9/19/55	32	5.304	2.48
147	24 S	3.01	. 78	. 035	3.5556	3.5413	. 0143	7/1/55	9/19/55	32	4.919	48
148	2 S	3.02	.72	. 034	3.0049	3.0000	. 0049	7/1/55	9/22/55	35	4.560	52
149	35	3.03	. 79	. 074	6.2643	6. 2376	. 0267	$7 / 1 / 55$	9/22/55	35	5.349	1.17
150	24 S	3.02	.76	. 035	3.4562	3.4419	. 0143	$7 / 1 / 55$	9/22/55	35	4.813	.697
151	25	3.03	.74	. 034	3.2353	3.2220	. 0035	7/1/55	7/8/55	7	4.697	. 875
152	3 S	3.04	.78	. 074	6.2530	6.2250	. 0280	7/1/55	7/11/55	10	5.304	4.34
153	245	3.01	. 78	. 035	3,5761	3.5671	. 0090	7/1/55	7/8/55	7	4.919	2.15
154	2 S	3.03	. 78	. 034	3.3562	3.3498	. 0064	$7 / 1 / 55$	7/11/55	10	40943	1.07
155	3 S	3.03	. 76	. 074	6.1673	6.1560	. 0113	7/1/55	7/8/55	7	5.162	2.56
156	245	3.01	. 79	. 035	3.5637	3.5533	. 0104	7/1/55	7/11/55	10	4.979	1.72
158	3 S	3.04	. 80	. 074	6.4594	6.3428	. 1166	7/1/55	9/4/55	17	5.428	10.4
159	24.5	3.00	.77	. 035	3.5136	3.4922	. 0214	7/1/55	7/14/55	13	4.842	2.80
160	2 S	3,04	- 77	. 034	3.2774	3.1670	. 1104	7/1/55	9/7/55	20	4.897	9.28
161	3 S	3.04	. 72	. 074	5.6973	5.5873	. 1100	7/1/55	9/7/55	20	4.930	9.19
162	245	3.00	. 77	. 035	3.4763	3.4124	. 0639	7/1/55	9/7/55	20	4.842	5.42
163	2 S	3.03	. 77	. 034	3. 2887	3.2165	. 0722	7/1/55	9/10/55	23	4.881	5.29
164	35	3.02	. 80	. 074	6.4417	6.2803	${ }^{.1614}$	$7 / 1 / 55$	9/10/55	23	5.393	10.7
165	245	3.03	.77	. 035	3.5513	3.4776	. 0737	7/1/55	9/10/55	23	4.890	5.38
166	2 S	3.03	.77	. 034	3.2599	3.1603	. 0996	$7 / 1 / 55$	9/13/55	26	4.881	6.45
167	35	3.00	.74	${ }^{0} 074$	6,0671	5.8768	. 1903	$7 / 1 / 55$	9/13/55	26	4.989	12.1
168	24.5	3.01	. 78	. 035	3.5247	3.4254	. 0993	7/1/55	9/13/55	26	40919	6.48
169	25	3.04	. 77	. 034	3.3195	3.3122	. 0073	7/1/55	7/14/55	13	4.897	. 942
170	3S	3.03	.76	. 074	6.2671	6.0482	. 2189	7/1/55	9/16/55	29	5.162	12.0
171	245	3.01	. 75	. 035	3.4078	3.2838	. 1240	$7 / 1 / 55$	9/16/55	29	4.736	7.42
172	25	3.03	. 76	. 034	3.1808	3.0678	. 1130	7/1/55	9/16/55	29	40820	6.64
173	35	3.04	. 79	. 074	6.4048	6,1813	. 2235	7/1/55	9/16/55	29	5.366	11.8
174	245	3.02	.76	. 035	3,4942	3.3632	.1310	7/1/55	9/16/55	29	4.813	7.72

APPENDIX II (continued)

	A110y	Length	Width	Thicko	$\underline{W} t_{0} 1$	\underline{W}.	Loss	In	Out	Thime	Area	Rate
175	2 S	3.03	. 78	. 034	3.3122	3.2120	. 1002	7/1/55	9/19/55	32	4.943	5.22
176	35	3.00	.73	. 074	6.0620	5.8745	. 1875	7/1/55	9/19/55	32	40928	9.77
177	245	3.03	. 76	. 035	3.4602	3.3504	. 1098	7/1/55	9/19/55	32	4.829	5.83
178	2 S	3.03	. 78	. 034	3.3131	3.2319	. 0812	7/1/55	9/22/55	35	40943	3.86
179	3 S	3.02	.75	. 874	6.1126	6.0740	. 0386	7/1/55	9/22/55	13	5.084	4.81
180	245	3.03	. 75	. 035	3.4573	3.3821	. 0752	7/1/55	9/22/55	35	4×767	1
181	2 S	3.04	. 78	. 034	3.3387	3.3292	. 0105	7/1/55	7/8/55	7	4.959	49
182	35	3.04	.75	. 074	6.1300	6.1069	. 0231	7/1/55	7/8/55	7	5.117	5.32
183	245	3.03	. 78	. 035	3.5092	3.4987	. 0105	7/1/55	7/11/55	7	4.951	2.49
184	2 S	3.02	. 77	. 034	3.2549	3.2310	. 0239	7/1/55	7/11/55	10	40865	4.03
185	3 S	3.04	.75	. 074	6.2830	6.2455	. 0375	7/1/55	7/11/55	10	5.117	6.14
186	245	3.01	. 77	. 035	3.4726	3.4536	. 0190	$7 / 1 / 55$	7/11/55	10	4.868	3.21
187	2 S	3.03	. 78	. 034	3.3266	3.2680	. 0586	7/1/55	9/4/55	17	4.943	5.73
188	35	3.03	. 78	. 074	6.4279	5.31 .44	. 1135	7/1/55	9/4/55	17	5.287	10.4
189	24.5	3.01	. 76	. 035	3.4955	3.4381	. 0574	7/1/55	$9 / 4 / 55$	17	4.797	5.79
190	2 S	3.03	. 77	. 034	3.2555	3.1802	.0753	7/1/55	9/7/55	20	4.881	6.33
191	35	3.04	. 75	. 074	6.1690	6.0301	. 1389	7/1/55	9/7/55	20	5.117	11.2
192	24.5	3.02	.76	. 035	3.4478	3.3722	. 0756	7/1/55	9/7/55	20	4.813	6.46
193	2 S	3.03	. 77	. 034	3.2811	3.1893	. 0918	7/1/55	9/10/55	23	4.881	6.70
194	35	3.00	.74	. 074	6. 1093	5.9457	. 1636	7/1/55	9/10/55	23	4.989	11.7
195	24.5	3.02	. 77	. 034	3.4674	3.3906	- 0768	7/1/55	9/10/55	23	4.874	63
196	2 S	3.04	. 73	. 034	3.1187	2.9949	. 1238	7/1/55	9/13/55	26	40651	8.42
197	35	3.04	- 73	-074	6.1012	5.8758	. 2254	7/1/55	9/13/55	26	4.992	4.3
198	24 S	3.00	- 18	. 035	3.5373	3.4361	. 1012	$7 / 1 / 55$	9/13/55	26	40902	6.53
199	2 S	3.02	. 77	. 034	3. 2183	3.1961	. 0222	7/1/55	$7 / 14 / 55$	13	4.865	2.88
200	35	3.04	.78	. 074	6.2956	6.2469	. 0487	$7 / 1 / 55$	7/14/55	13	5.304	5.82
201	245	3,00	0.76	. 035	3.4825	3.4573	. 0252	7/1/55	7/14/55	13	4.781	3.33
202	2 S	3.04	- 3	. 034	3.1691	2.9795	. 1896	7/1/55	9/16/55	29	4.651	11.5
203	35	3.02	.76	. 074	6.1708	5.8882	. 2826	7/1/55	9/16/55	29	5.146	15.6
204	245	3.00	. 75	. 035	3.4333	3.2925	-1.408	7/1/55	9/16/55	29	40920	8.11
205	2 S	3.04	. 73	. 034	3.1825	3.0475	. 1350	7/1/55	9/16/55	32	4.651	7.47
206	35	3.04	-79	. 074	6.4123	6,1455	- 2668	7/1/55	9/19/55	32	5.366	12.8
207	24.5	3.02	.74	. 035	3.3437	3.2454	. 0983	$7 / 1 / 55$	9/19/55	32	4.690	5.38
208	25	3.04	.75	. 034	3.2469	3.1045	c1424	7/1/55	9/22/55	35	40774	7.01

	Alloy	Length	Wisth	Thick	Wt. 1	Wt. 2	Loss	In	Out	Time	Ares	Rate
209	35	3.04	.76	. 074	6.1686	5.9124	. 2562	7/1/55	9/22/55	35	5.180	11.6
210	24.5	3.02	.77	. 035	3.5160	3.4190	. 0970	7/1/55	9/22/55	35	4.874	4067
211	2 S	3.03	.72	. 034	3.1166	3.1112	. 0054	7/1/55	7/9/55	7	40575	1.39
212	35	3.04	.79	. 074	6.4704	6.4622	. 0082	7/1/55	7/8/55	7	5.366	1.79
213	24 S	3.02	. 76	. 035	3.4182	3.4122	. 0060	7/1/55	7/11/55	7	4.813	1.47
214	2 S	3.04	. 70	. 034	3.0581	3.0524	. 0057	7/1/55	7/11/55	10	40467	1.06
215	35	3.04	.70	. 074	6.3796	6.3684	. 0112	7/1/55	7/11/55	10	5.304	1.74
216	24 S	3.01	. 74	. 035	3.3777	3.3688	. 0089	7/1/55	7/11/55	10	4.675	1.57
217	2 S	3.04	. 78	. 034	3.2980	3.2800	. 0180	7/1/55	9/4/55	17	4.959	1.76
218	35	3.04	. 78	. 074	6.4713	6.3907	. 0806	7/1/55	9/4/55	17	5.304	7.35
219	24.5	3.00	.72	. 035	3.3473	3.3257	. 0216	7/1/55	9/4/55	17	4.538	2.30
220	2 S	3.02	- 77	. 034	3.1994	3.1832	. 0162	7/1/55	9/7/55	20	4.865	1.37
221	3 S	3.03	.79	. 074	6.4420	6.3575	. 0845	7/1/55	9/7/55	20	5.349	6.50
222	245	3.00	.77	. 035	3.5542	3.5349	. 0193	7/1/55	9/7/55	20	4.842	1.64
223	2 S	3.03	.76	. 034	3.2743	3.2591	. 0152	7/1/55	9/10/55	23	4.820	1.13
224	35	3.03	.74	. 074	5.9700	5.8735	. 0965	7/1/55	9/10/55	23	5.038	6.85
225	24.5	3.00	.76	. 035	3.4906	3.4658	. 0248	7/1/55	9/13/55	26	4.781	1.64
226	2 S	3.03	. 76	. 034	3.2790	3.2584	. 0206	7/1/55	9/13/55	26	4.820	1.35
227	35	3.02	- 72	. 077	5.9410	5.8164	. 1246	7/1/55	9/13/55	26	4.898	8.04
228	245	3.00	. 76	. 035	3.4939	3.4691	. 0248	7/1/55	9/13/55	26	4.781	1.64
229	25	3.02	. 77	. 034	3.2617	3.2525	. 0092	$7 / 1 / 55$	7/14/55	13	4.865	1. 19
230	3S	3.03	. 76	. 074	6.2837	6.2484	. 0353	7/1/55	7/14/55	13	5.162	4.32
231	24.5	3.02	. 78	. 035	3.5483	3.5357	. 0126	7/1/55	7/14/55	13	4.935	1.62
232	2 S	3,03	. 73	. 034	3.1017	3.0696	. 0321	$7 / 1 / 55$	9/16/55	29	4.636	1.97
233	35	3.02	. 78	.0774	6.3599	6. 1994	. 1605	7/1/55	9/16/55	29	5.270	8.63
234	245	2.99	- 77	. 035	3.5425	3.4951	. 0474	7/1/55	9/16/55	29	4.825	2.79
237	245	3.00	. 75	. 035	3.3789	3.3397	. 0392	$7 / 1 / 55$	9/19/55	32	4.720	2.14
238	2 S	3.03	. 73	. 034	3.1633	3.1334	- 0299	$7 / 1 / 55$	9/19/55	32	4.636	1.66
239	35	3.03	.76	. 074	6.2016	6.0341	. 1675	$7 / 1 / 55$	9/19/55	32	5.162	8.34
240	24 S	3.01.	. 76	. 035	3.4230	3.3897	. 0333	7/1/55	9/19/55	32	4.797	2.78
241	2 S	3.04	. 78	. 034	3.3148	3.2656	= 0492	$7 / 1 / 55$	7/8/55	7	4.959	11.6
242	35	3.02	.80	. 074	6.4486	6,3800	. 0686	7/1/55	7/8/55	7	5.393	15.0

APPERDIX II (contimued)

	A110y	Length	Width	Thick	$\underline{W} t^{1}$	Wt. 2	Loss	In	Out	Time	Area	Rate
243	24.5	3.01	.78	. 035	3.5768	3.5029	. 0739	7/1/55	7/8/55	7	4.919	17.7
244	2 S	3.03	.77	. 034	3.2799	3.2167	. 0632	7/1/55	7/11/55	10	4.881	10.7
245	35	3.02	.76	. 074	6.0922	6.0064	. 0858	7/1/55	7/11/55	10	5.146	13.7
246	24 S	3.00	.72	. 035	3.3007	3.2086	. 0921	7/1/55	-7/11/55	10	4.538	16.7
271	2 S	3.02	. 76	. 034	3. 2295	. 3.1836	. 0459	7/1/55	7/4/55	3	4.804	26.2
272	35	3.04	. 78	. 074	6.4635	6.4049	. 0586	7/1/55	7/5/55	4	5.304	22.7
273	24 S	2.98	. 78	. 035	3.4617	3.3294	. 1323	7/1/55	7/5/55	7	4.870	55.8
274	2 S	3.03	.78	. 034	3.3445	3.2693	. 0752	7/1/55	7/8/55	7	40943	17.9
275	35	3.02	. 79	. 074	6.3878	6.2923	. 0955	7/1/55	7/8/55	7	5.331	21.1
276	245	2.99	. 77	. 035	3.5556	3.3582	. 1974	7/1/55	7/8/55	7	4.825	48.0
301	25	3.03	.76	. 034	3.2731	3.2539	. 0192	7/1/55	7/5/55	4	40820	8.19
302	35	3.03	. 77	-074	6.2951	6.2749	. 0202	7/1/55	7/5/55	4	5.225	7.95
303	24.5	3.00	.77	.035	3.4877	3.4578	. 0299	7/1/55	7/5/55	4	4.842	12.7
304	2 S	3.04	. 78	. 034	3.2874	3.2559	. 0315	7/1/55	7/8/55	7	4.959	7.47
305	35	3.04	.76	. 074	6.3174	6.2834	. 0340	$7 / 1 / 55$	7/8/55	7	5.180	7.72
306	245	3.00	. 77	. 035	3.5174	3.4687	. 0487	7/1/55	7/8/55	7	4.842	11.8
307	2 S	3.03	. 78	. 034	3.2845	3.2384	. 0461	7/1/55	7/11/55	10	4.943	7.66
308	35	3.03	.79	. 074	6.3341	6.2899	. 0442	7/1/55	7/11/55	10	5.349	6.80
309	245	2.97	. 77	. 035	3.4796	3.4188	. 0608	$7 / 1 / 55$	7/11/55	10	4.793	10.4
312	24 S	2.97	.78	. 035	3.4880	3.3864	. 1016	7/1/55	$9 / 4 / 55$	17	4.853	10.1
313	2 S	3.02	.77	. 034	3.2856	3.2017	. 0839	7/1/55	9/7/55	20	4.865	7.06
314	35	3,03	.78	. 074	6.3981	6.2874	.1107	7/1/55	9/7/55	20	5.287	8.62
315	245	3,00	. 78	. 035	3.5434	3.4260	. 1174	7/1/55	9/7/55	20	40902	9.85
316	2 S	3.04	. 76	. 034	3.2440	3.1487	. 0953	7/1/55	9/10/55	23	4.836	7.05
317	35	3.04	. 77	. 074	6.2409	6.1203	. 1206	7/1/55	9/10/55	23	5.241	8.22
318	245	3.02	.72	. 034	3.3310	3.1977	. 1333	7/1/55	9/10/55	23	4.568	10.4
320°	3 S	3.03	.78	. 074	6.3031	6.2470	. 0561	7/1/55	$7 / 14 / 55$	13	5.287	6.72
321	24.5	3.00	. 74	. 035	3.3888	3.3124	. 0764	$7 / 1 / 55$	7/14/55	13	4.659	10.4
322	2 S	3.03	. 78	. 034	3.2769	3.2200	. 0569	7/1/55	7/14/55	13	4.943	7.28
323	3 S	3.02	. 79	. 074	6.4031	6.2668	. 1363	7/1/55	9/13/55	26	5.331	8.10
324	245	3.01	-72	. 035	3.4898	3.3455	. 1443	7/1/55	9/13/55	26	4.91 .9	9.30
325	2 S	3.04	. 78	. 034	3.2394	3. 1323	-1071	7/1/55	9/13/55	26	4.959	6.8
327	245	3.02	.78	. 035	3.5204	3.3535	. 1669	7/1/55	9/16/55	29	40935	9.58
329	2 S	3.02	.76	. 074	6.1888	6.032^{\prime}	. 1561	7/1/55	9/16/55	29.	5.146	8.61

APPENDIX II (continued)

	Aluy	Length	Wdath	Thiteko	Wt. 1	Wt. 2	Loss	In	Out	T1me	Area	Rate
330	24.5	3.00	. 75	. 035	3.5477	3.3776	. 1701	7/1/55	9/16/55	29	4.902	9.84
331	25	3.04	. 78	${ }_{\square} 034$	3.2881	3.2799	. 00082	$7 / 1 / 55$	7/5/55	4	40836	3.49
332	3 S	3.04	. 78	. 074	6.42817	6.4200	.0087	$7 / 1 / 55$	7/5/55	4	5.304	3.37
333	24.5	3.00	. 78	. 035	3.5609	3.5463	.0146	7/1/55	7/5/55	4	4.902	6.17
334	25	3.03	.75	. 034	3.2420	3.2290	. 0133	7/1/55	7/8/55	7	4.759	3.29
335	35	3.03	. 75	. 074	6. 2809	6.2656	. 0153	$7 / 1 / 55$	7/8/55	7	5.100	3.53
336	24.5	3.02	. 76	. 035	3.5478	3.5302	. 0176	7/1/55	7/11/55	1	4.935	4.20
337	2 S	3.04	. 76	. 034	3.2616	3. 2483	. 0133	7/1/55	7/11/55	10	4.836	2.26
338	3 S	3.03	.76	. 074	6. 2825	6.2641	. 0184	7/1/55	7/11/55	10	4.162	3.93
339	245	3.02	. 78	. 035	3.5633	3.5395	. 0238	7/1/55	7/11/55	10	4.935	3.97
340	2 S	3.02	-75	. 034	3.2242	3.1984	. 0258	7/1/55	9/4/55	17	4.743	2.63
342	24 S	3,00	-78	. 035	3.4892	3.4518	. 0374	7/1/55	9/4/55	17	4.902	3.69
343	2 S	3.04	-7	. 034	3.2423	3.2161	. 0262	7/1/55	9/7/55	20	4.774	2.25
344	35	3.04	. 76	. 074	6.3727	6.3037	. 0690	7/1/55	9/7/55	20	5.304	5.35
345	245	2.99	. 76	. 035	3.3954	3.3506	. 0448	7/1/55	9/7/55	20	4.765	3.87
346	25	3.04	.76	. 034	3.2782	3.2527	. 0255	7/1/55	9/10/55	23	4.836	1.88
348	24.5	3.02	.76	. 035	3.4261	3,3679	. 0582	7/1/55	9/10/55	23	40813	4.32
349	2 S	3.02	. 76	. 034	3.2702	3.2508	. 0194	7/1/55	7/14/55	13	4.804	2.55
350	38	3.03	. 74	.074	6.4294	6.4045	. 0249	7/1/55	$7 / 14 / 55$	13	5. 287	2.96
351	245	3.512	. 78	. 035	3.5441	3.5154	. 0287	7/1/55	$7 / 14 / 55$	13	4.935	3.68
352	2 S	3.04	. 77	. 034	3.3067	3.2705	. 0362	$7 / 1 / 55$	9/13/55	26	40897	2.34
354	24 S	3.02	-78	. 035	3.5403	3.4854	. 0549	7/1/55	9/13/55	26	4.935	3.52
355	2 S	3.04	, 73	. 034	3.1579	3,1294	. 0285	7/1/55	9/13/55	26	4.651	1.93
358	25	3.04	.74	. 034	3.2244	3,1950	. 0294	7/1/55	9/16/55	29	4.713	1.77
359	35	3.03	.77	. 074	6.2212	6,1223	. 0989	7/1/55	9/16/55	29	5. 225	5.36
360	24.5	2.99	.77	. 035	3.5118	3.4355	. 0763	7/1/55	9/16/55	29	4.825	4048
361	2 S	3.01	. 75	. 034	3.2399	3.2202	. 0187	7/1/55	9/22/55	35	4.717	- 980
362	35	3.02	- 72	. 034	3.1933	3.1743	. 0190	7/1/55	9/22/55	38	4.697	. 868
363	24.5	2.99	. 79	. 035	3.5250	3.5030	. 0220	7/1/55	9/25/55	38	4.825	-978
364	2 S	3.03	-78	. 034	3.2906	3.2655	. 0262	7/1/55	9/25/55	41	4.943	1.05
365	3 S	3.03	. 77	. 074	6.3499	6.2848	. 0651	7/1/55	9/25/55	41	5.225	2.48
366	24 S	3.01	. 713	. 035	3.5517	3.5255	. 0262	7/1/55	9/28/55	41	4.919	1.06
367	2 S	3.04	.77	. 034	3.3045	3.2783	. 0262	$7 / 1 / 55$	10/1/55	44	4.897	-990
368	35	3.03	.793	,074	6.3447	6.2586	. 0861	$7 / 1 / 55$	10/1/55	4	5.287	3.01

APPENDIX II (continued)

	A7toy	Length	Width	Thick	Wt. 1	Wt. 2	Loss	In	Out	TYme	Area	Rate
369	245	3.00	.76	. 035	3.5195	3.4889	. 0306	7/1/55	10/1/55	44	4.781	1.18
370	2 S	3.03	. 78	. 034	3.2824	3.2473	. 0351	7/1/55	10/4/55	47	4.943	1.23
371	3 S	3.02	.79	. 074	6.3660	6.2677	. 0983	7/1/55	10/4/55	47	5.331	3.20
372	245	2.98	. 78	. 034	3.4649	3.4313	. 0336	7/1/55	10/4/55	47	40870	1.20
373	25	3.03	. 73	. 034	3.1370	3.1016	. 0344	7/1/55	10/7/55	50	4.636	1.21
374	35	3.04	.75	. 074	6.2584	6.1578	. 1006	7/1/55	10/7/55	50	5.117	3.20
375	24 S	3.00	.76	. 035	3.3978	3.3564	.0414	7/1/55	10/7/55	50	4.781	1.41
376	2 S	3,04	. 73	. 034	3.1635	3.1220	. 0415	7/1/55	10/10/55	53	4.651	1.37
377	35	3.04	. 74	. 074	6.1722	6.0633	. 1089	7/1/55	10/10/55	53	5,055	3.31
378	24.5	2.99	. 77	. 035	3.4662	3.4152	. 0510	$7 / 1 / 55$	10/10/55	53	4.825	1.62
379	2 S	3.02	.77	. 034	3.1653	3.1127	${ }^{\circ} 0526$	7/1/55	10/13/55	56	40865	1. 57
380	35	3.02	.75	. 074	6.2262	6.1149	. 1113	$7 / 1 / 55$	10/13/55	56	5.084	3.18
381	245	3.03	.76	. 035	3.4317	3.3858	. 0459	7/1/55	10/13/55	56	4.829	1.38
382	2 S	3.03	. 78	. 034	3.2671	3.2225	. 0446	7/1/55	10/16/55	59	40943	1.24
383	35	3.03	. 78	.074	6,4088	6.2904	. 1185	7/1/55	10/16/55	59	5.287	3.10
384	245	3.02	.76	. 035	3.4387	3.3890	. 0497	7/1/55	10/16/55	59	. 4.813	1.42
385	2 S	3.02	. 78	. 034	3.2371	3.1953	. 0418	$7 / 1 / 55$	10/19/55	62	4.926	1.11
386	35	3.03	.80	. 074	6.4607	6.3180	. 1427	7/1/55	10/19/55	62	5.411	3.46
387	24 S	3.02	.75	. 035	3.4687	3.4190	. 0497	7/1/55	10/19/55	62	4.752	1.37
388	25	3.03	.777	. 034	3.3196	3.2455	.0741	7/1/55	10/22/55	65	4.881	1.90
389	35	3.03	. 79	. 074	6.4362	6.2863	. 1499	7/1/55	10/22/55	65	5.349	3.51
390	245	2.99	. 78	. 035	3.4783	3.4290	. 0493	7/1/55	10/22/55	65	40886	1.26
391.	2 S	3.03	.76	. 034	3.2616	3.2497	. 0119	7/1/55	9/25/55	38	4.820	- 534
392	35	3.04	. 76	. 074	6.1975	6.1582	.0393	$7 / 1 / 55$	9/25/55	38	5.180	1.64
393	24S	2.99	. 77	.035	3.5221	3.4932	. 0289	7/1/55	9/25/55	38	4.825	1.30
394	2 S	3.04	.76	. 074	6.4160	6.3806	. 0354	7/1/55	9/28/55	41	4.836	. 436
395	35	3.04	$\bigcirc \cdot 77$. 074	6.4160	6.3806	. 0354	7/1/55	9/25/55	41	5.241	1.35
396	245	3.00	.777	. 035	3.5014	3.4819	. 0195	7/1/55	9/25/55	41	4.842	807
397	2 S	3.03	.77	. 034	3.2580	3.2416	. 0164	7/1/55	10/1/55	4.4	4.881	. 627
398	35	3.04	.79	. 074	6.4241	6.3852	. 0389	7/1/55	10/1/55	44	5.366	1.36
399	24 S	3.00	.76	. 035	3.3996	3.3797	. 0199	$7 / 1 / 55$	10/1/55	44	4.781	. 776
400	2 S	3.04	. 78	. 034	3.3032	3.2920	. 0112	$7 / 1 / 55$	10/1/55	47	4.959	. 395
401	35	3.04	. 78	. 074	6.3908	6,3505	. 0403	7/1/55	10/1/55	47	5.304	1.33
402	245	3,00	.78	. 035	3.5627	3.5408	. 0219	7/1/55	10/4/55	47	40902	-782

APPENDIX II (contimued)

	A110y	Length	Kdth	Thick	Wt. 1	Wt. 2	Loss	In	Out	Time	Area	Rate
403	2 S	3.03	.76	. 034	3.2605	3.2478	. 0127	7/1/55	10/7/55	50	4.820	0.434
404	3 S	3.04	.75	.074	6.3560	6.3163	. 0397	7/1/55	10/7/55	50	5.117	1.28
405	24.5	2.97	.77	. 035	3.4624	3.4382	. 0242			53	4.881	. 693
406	2 S	3.03	.77	. 034	3.2455	3.2237	. 0218		10/10/55	53	5.162	1.65
407	35	3.03	- 76	. 074	6.3514	6. 2964	. 0350	7	10/10/55	53	4.752	1.24
408	245	3.02	. 76	. 035	3.4345	3.3965	. 0196	$7 / 1 / 55$	10/10/55	56	4.697	. 612
409	2 S	3.03	. 74	. 034	3.0960	3.0764 6.3883	.01966	$7 / 1 / 55$	10/13/55	56	5.349	1.34
410	35	3.03	-79	. 074	6.4369	6.3883	-01886	7/1/55	10/13/55	56	4.736	. 803
411	24 S	3.01	. 75	. 035	3,4881	3.4622	. 025	1/55	10/16/55	59	4.959	. 588
412	2 S	3.04	.78	. 034	3.3637	88	0209	55	10/16/55	59	5.180	1.61
413	35	3.04	.76	. 074	6.3479	6. 28880	. 029	7/1/55	10/16/55	59	4.902	. 826
414	245	3.00	-78	. 035	3.5634	3.5343	.0202	7/1/55	10/19/55	62	4.836	. 554
415	2 S	3.04	. 76	+034	3,2476 6.4465	3.2274 6.3910	.0202	7/1/55	10/19/55	62	5.393	1.36
416	3S	3,02	. 80	. 074	6.4465 3.4439	3.4067	. 0372	$7 / 1 / 55$	10/19/55	62	4.752	1.04
417	24 S	3.02	. 75	.035	3. 3.2108	3.1886	.0222	7/1/55	10/22/55	65	4.713	+595
418	2 S	3.04	.74	.034	3.2108 6.5017	3.1886 6.3492	. 0525	$7 / 1 / 55$	10/22/55	65	5.349	1.24
419	3 S	3.03	-79	. 074	6.5017 3.5046	6.3492 3.4814	. 0232	7/1/55	10/22/55	65	4.842	. 606
420	245	3.00	. 77	035	3.5046 3.2162	3.1892	. 0270	7/1/55	9/25/55	38	4.865	1.20
421	2 S	3.02	.77	. 034	3.2162 6.2659	3.1892 6.2091	. 0568	7/1/55	9/25/55	38	5.225	2.35
422	35	3.03	.77	. 074	6. 3.5510		. 0281	7/1/55	9/25/55	38	4.902	1.24
423	245	3.00	.78	. 035	3.5510 3.1538	3.5229 3.0937	. 0501	7/1/55	9/25/55	41	4.605	2.18
424	2 S	3.05	.72	. 034	3.1538 6.2894	3.0937 6.1982	.0912	$7 / 1 / 55$	9/25/55	41	5.270	3.45
425	35	3.02	. 78	.074	6.2894 3.4406	6.1982 3.4012	${ }_{.} .0394$	$7 / 1 / 55$	9/25/55	41	4.675	1.69
426	245	3.01	. 74	. 035	3.4406 3.2735		. 0430	$7 / 1 / 55$	10/1/55	4	4.897	1.64
427	25	3.04	-77	. 0374	3.2735 6.3900	3.2305 6.3127	. 0773	7/1/55	10/1/55	4.	5.331	2.71
428	35	3.02	. 79	. 034	6.3900 3.4586	3.4143	.0443	7/1/55	10/1/55	44	4.720	1.75
429	24 S	3.00	.75	. 035	3.4586 3.2851	3.2531	. 0320	$7 / 1 / 55$	10/4/55	47	40943	1.13
430	2S	3.03	. 78	. 0374	6.3275	6.2633	.0642	7/1/55	10/4/55	47	5.180	2.17
431	35	3.04	-76	- 074 .035	6.3275 3.5815	6.2633 3.5522	.0293	7/1/55	10/4/55	47	4.813	1.06
432	245	3.02	. 76	. 035	3.5815 3.2862	3.5522	.0295	$7 / 1 / 55$	10/7/55	50	4.943	. 983
433	2 S	3.03	78	. 034	6.3313	6.2518	. 0795	7/1/55	10/7/55	50	5.241	2.49
434	35	3.04	. 77	.074	3.4499	3.4131	. 0368	7/1/55	10/7/55	50	4.797	1.19
435	245	3.01	76	. 035	3.4499 3.3053	3.2687	. 0366	7/1/55	10/10/55	53	4.897	1.16
436	2 S	3.04	-77	.034	3.3053	3.2687	, 036					

APPENDIX II (contimued)

	Alloy	Length	Width	Thicko	Wt. 1	Wt. 2	Loss	In	Out	Time	Area	Rate
437	35	3.04	.76	. 074	6. 2835	6.1674	. 1161	7/1/55	10/10/55	53	5.180	3.48
438	245	3.01	. .78	. 035	3.5426	3.5057	. 0369	$7 / 1 / 55$	10/10/55	53	4.919	1.17
439	2 S	3.04	. 77	. 034	3.3028	3.2637	. 0391	7/1/55	10/13/55	56	4.897	1.17
440	35	3.03	.76	. 074	6. 2992	6.1845	. 1137	7/1/55	10/13/55	56	5.162	3.23
441	24 S	3.00	.78	. 035	3.5633	3.5132	. 0501	7/1/55	10	56	4.902	. 50
442	2 S	3.03	.78	. 034	3.2922	3.2454	. 0468	7/1/55	10/16/55	59	4.943	32
443	35	3.03	.78	. 074	6.3389	6.2152	. 1237	7/1/55	10/16/55	59	5.28	26
444	24.5	2.99	. 77	. 035	3.5560	3.4999	. 0561	7/1/55	10/16/55	59	4.825	2
445	2 S	3.02	.72	. 034	3.0627	3.0199	. 0428	$7 / 1 / 55$	10/19/55	62	40560	1. 25
446	35	3.04	.77	. 074	6.3285	6.2013	. 1272	$7 / 1 / 55$	10/19/55	62	4.241	3.22
447	245	2.99	. 78	. 035	3.4652	3.4141	. 0511	$7 / 1 / 55$	10/19/55	62	4.853	1.40
448	25	3.03	.77	. 034	3.2802	3.2416	. 0386	7/1/55	10/22/55	65	4.881	. 998
449	35	3.04	. 78	. 074	6.2980	6.1915	. 1065	$7 / 1 / 55$	10/22/55	65	5.304	2.54
450	245	3.00	. 77	. 035	3.4902	3.4458	. 0444	7/1/55	10/22/55	65	4.842	1.16
451	2 S	3.03	. 77	-034	3.2552	3.2518	. 0034	7/1/55	9/25/55	38	4.881 5.038	-151
452	35	3.03	.74	. 074	6.2484	6.2484	. 0000	7/1/55	9/25/55	38	5.038	. 154
453	245	3.01	.76	. 035	3.4989	3.4955	. 0034	7/1/55	9/25/55	41	4.959	. 121
454	2 S	3.04	. 78	. 034	3.3209	3.3179	. 0036	7/1/55	9/25/55 $9 / 28 / 55$	41	5.084	1.06
455	35	3.02	.75	. 074	6.1058	6.0790 3.5628	.0268	$7 / 1 / 55$ $7 / 1 / 55$	$9 / 28 / 55$ $9 / 28 / 55$	41	50.919	. 151
456	24.5	3.01	-78	. 035	3.5665 3.1762	3.5628 3.1727	.0037	7/1/55	10/1/55	44	4.697	.139
457	25	3.03	-74	. 034	3.1762 6.1367	3.1727 6.1103	. 0264	7/1/55	10/1/55	44	5.084	. 971
458	35	3.02	.75	. 074	6.1367 3.5185	6.1103	-0238	$7 / 1 / 55$	10/1/55	4	4.765	. 149
459	24 S	2.99	- 76	. 035	3.5185 3.1965	3.5147 3.1921		$7 / 1 / 55$	10/4/55	47	4.713	. 163
460	2 S	3.04 3.04	.74 .74 .74	.034 .074	3.1965 6.1655	6.1921	. 0334	$7 / 1 / 55$	10/4/55	47	5.055	1.15
461	35 245	3.04 3.01	.74 .75 .75	. .035	3.4710	3.4689	. 0021	7/1/55	10/4/55	47	4.736	.0777
463	2 S	3.04	. 78	. 034	3.3152	3.3116	. 0036	7/1/55	10/7/55	50	4.959	. 119
464	35	3.02	.72	. 074	5,9031	5.8716	. 0315	7/1/55	10/7/55	50	4.898	
465	245	3.01	. 78	. 035	3.5679	3.5664	. 00015	7/1/55	10/7/55	50 53	40919 4.959	. 184
466	2 S	3.04	.78	. 034	3.3771	3.3712	. 0059	7/1/55	10/10/55	53	5.304	1.60
467	3 S	3.04	.78	. 074	6.3912	6.3365	. 0547	7/1/55	10/10/55			

APPENDIX II (continued)

	Al10\%	Length	Width	Thick.	Wt. 1	Wt. 2	Lose	In	Out	Time	Area	Rate
468	245	3.02	.78	. 035	3.4565	3.4525	. 0040	7/1/55	10/10/55	53	4.935	. 126
469	2 S	3.04	. 77	. 034	3.3676	3.3620	. 0056	7/1/55	10/13/55	56	4.897	168
470	35	3.03	. 79	. 074	6.4319	6.3755	. 0564	7/1/55	10/13/55	56	5.349	1.55
471	248	3.00	.76	. 035	3.5164	3.5128	. 0036	7/1/55	10/13/55	56	4.781	. 111
472	2 S	3.04	. 76	. 034	3.2315	3.2248	. 0067	7/1/55	10/16/55	59	4.836	. 193
473	35	3.00	. 74	. 074	6.0566	5.9693	. 0873	7/1/55	10/16/55	59	4.989	2.44
474	24.5	3.02	. 78	. 035	3.5491	3.5397	. 0094	7/1/55	10/16/55	59	4.935	- 265
475	2 S	3.04	.77	. 034	3.2683	3.2390	. 0293	7/1/55	10/19/55	62	4.897	. 794
476	35	3.02	.76	. 074	6.1416	6.0588	. 0828	7/1/55	10/19/55	62	4.156	2.13
477	245	3.02	.77	. 035	3.4516	3.4497	. 0019	7/1/55	10/19/55	62	4.874	. 0517
478	2 S	3.03	. 78	. 034	3.2811	3.2775	. 0036	7/1/55	10/22/55	65	4.943	. 0922
479	35	3.00	.75	. 074	6.0768	6.0145	. 0623	7/1/55	10/22/55	65	5.051	1.56
480	245	3.00	. 78	. 035	3.5557	3.5544	. 0013	7/1/55	10/22/55	65	4.902	. 0335
481	2 S	3.04	. 78	. 034	3.3166	3.3094	. 0072	7/1/55	9/25/55	38	4.959	. 312
482	35	3.04	. 78	. 074	6.2125	6.1658	. 0467	7/1/55	9/25/55	38	5.304	1.90
483	245	3.00	.78	. 035	3.5542	3.5306	. 0236	7/1/55	9/25/55	38	4.902	1.04
484	2 S	3,04	.77	. 034	3.3315	3.3233	. 0082	7/1/55	9/2/55	41	4.897	. 335
485	3 S	3.02	.76	. 074	6.1626	6.1238	. 0388	7/1/55	9/28/55	41	5.146	1.51
486	245	3.03	. 78	. 035	3.5534	3.5372	. 0162	7/1/55	9/28/55	41	4.951	. 656
487	2 S	3.03	. 77	. 034	3.2646	3.2570	. 0076	7/1/55	10/1/55	44	4.881	. 290
488	35	3.04	. 79	. 074	6.4418	6.3954	. 0464	7/1/55	10/1/55	44	5.366	1.61
489	245	3.02	. 78	. 035	3.4539	3.4324	. 0215	$7 / 1 / 55$	10/1/55	44	4.935	. 815
490	2 S	3.04	. 78	. 034	3.2957	3.2894	. 0063	7/1/55	10/4/55	47	4.959	. 222
491	35	3.04	-78	. 074	6.4515	6. 4056	. 0459	7/1/55	10/4/55	47	5.304	1.51
492	24.5	3.01	-7	. 035	3.5537	3.5323	.0214	7/1/55	10/4/55	47	40868	.769
493	2 S	3.03	. $7 t$. 034	3.2795	3.2728	. 0067	7/1/55	10/7/55	50	4.820	. 228
494	35	3.03	.76	. 074	6.3032	6.2607	. 0425	7/1/55	10/7/55	50	5.162	1.35
495	245	3.00	. 79	. 035	3.5501	3. 5364	. 0137	7/1/55	10/7/55	50	4.963	. 454
496	2 S	3.02	. 77	. 034	3.2160	3.2070	. 0090	7/1/55	10/10/55	53	4886	2.87
497	35	3.03	. 80	. 074	6.4435	6.3807	. 0628	7/1/55	10/10/55	53	5.411	1.80
498	24.5	3.00	. 78	. 035	3.5793	3.5569	.0224	7/1/55	10/10/55	53	4.902	. 708
499	2 S	3.03	.7i	. 034	3.2237	3.2099	. 0138	7/1/55	10/13/55	56	4.881	-114
500	3 S	3.01	.76	.074	6.0935	6.0373	. 0562	7/1/55	10/13/55	56	5.129	1.61
501	24.5	3.00	. 78	. 035	3.4973	3.4830	. 0143	7/1/55	10/13/55	56	4.902	.427

APPENDIX II (continued)

	Alloy	Length	1dth	Thick ${ }_{\text {o }}$	Wt. 1	Wt. 2	Loss	In	Out	Time	Area	Rate
502	2 S	3.03	.78	. 034	3.2725	3.2603	. 0122	7/1/55	10/16/55	59	4.943	. 344
503	3 S	3.03	. 79	. 075	6.4580	6.3844	. 0736	7/1/55	10/16/55	59	5.349	1.92
504	245	3.03	.76	. 035	3.4536	3.4304	. 0232	7/1/55	10/16/55	59	4.829	670
505	2 S	3.03	. 78	. 034	3.2758	3. 2668	. 0090	$7 / 1 / 55$	10/19/55	62	4.943	. 24.8
506	3 S	3.03	. 77	. 074	5.2592	6.1846	. 0215	7/1/55	10/19/55	62	5.225	1.89
507	245	3.00	. 74	.035	3.3965	3.3750	. 0215	$7 / 1 / 55$	10/19/55	62	4.659	612
508	2 S	3.04	0.78	. 034	3.1404	3.1304	. 0100	$7 /$	10/22/55	65	4.713	. 269
509	35	3.03	.76	. 074	6.1613	6.1023	. 0590	$7 / 1 / 55$	10/22/55	65	5.162	1.44
510	245	2.99	. 78	. 035	3.4729	3.4554	. 0175	$7 / 1 / 55$	10/22/55	35	4.886	-452
511	2 S	3.03	. 75	. 034	3.2364	3.0563	. 1801	7/1/55	9/25/55	38	40.146	8.50 9.26
512	3 S	3.02	.76	. 074	6.0974	5.8775	. 2199	$7 / 1 / 55$	$9 / 25 / 55$ $9 / 25 / 55$	38	5.146 4.736	9.26 5.96
513	245	3,01	- 75	. 035	3.4243	3.2942	. 1301	7/1/55	9/25/55	38	4.736	5.96 4.18
514	2 S	3.04	072	. 034	3.0875	2.9941	-0934	7/1/55	9/28/55	41	40590	4.18 8.68
515	3 S	3.03	$0 \cdot 9$. 074	6.4406	6.2123	- 2283	7/1/55	9/28/55	41	5.287	8.68
516	245	3.00	. 76	. 035	3.5632	3.4535	. 1097	7/1/55		4	48902	3.48
5.7	2 S	3.04	. 76	. 034	3,1824	3.0905	. 0919	$7 / 1 / 55$	10/11/55	4	4.836 5.287	10.3
518	35	3.03	. 78	. 074	6.4492	6.1875	. 2617	$7 / 1 /$		44	4.935	10.68
519	245	3.02	$\bigcirc 78$. 035	3.5538	3.4304	-1234	$7 / 1$	10/4/55	47	4.865	5.00
520	2 S	3.02	-77	. 034	3.2190	2.0800	. 1390	7/1/5	10/4/55	47	5.270	8.32
521	35	3.02	.78	-074	6.4599	6.2096	2503	7	10/4/55	47	4.874	2.83
522	245	3.02	0.7	. 035	3.5549	3.4761	. 1378	7/1/55	10/7/55	50	4.820	4.70
523	2 S	3.03	-70	. 034	3.2877 6.2815	3.1498 6.0043	. 2777	$7 / 1 / 55$	10/7/55	50	5.146	8.86
524	35	3.02	-76	. 074	6.2815 3.5574	6.0043 3.4616	. 0958	$7 / 1 / 55$	10/7/55	50	4.935	3.19
525	24 S	3.02	.78 .76	. .034	3.5574 3.2747	3.46127	-1490	7/1/55	10/10/55	53	40836	4.78
526	2 S	3.04 3.04	.76 .76	.034 .074	3.2747 6.3010	5.9614	. 3396	7/1/55	10/10/55	53	5.180	10.1
527	35	3.04	.76 .78	. 0374	6.3010 3.5640	3.3715	. 1925	7/1/55	10/10/55	53	4.935	6.06
528	24.5	3.02 3.02	.78 .79	.034	3.2969	3.1219	- 1750	7/1/55	10/13/55	56	4.987	5.15
529	25	3.02 3.04	.78	. 074	6.4420	6,0631	. 3789	7/1/55	10/13/55	56	5.304	10.5
530	38 245	3.04 3.00	.78		3.5513	3.4367	. 1146	7/1/55	10/13/55	56	40902	3.43
531	245 25	3.00 3.04	. 78	. 034	3.2880	3.1392	.1488	7/1/55	10/16/55	59	40897	4.24
532	25 3 S	3.04 3.02	. 79	. 074	6.4258	6.1022	. 3236	7/1/55	10/16/55	59	5.331	8.45
533	24 S	3.02	.78	. 035	3.5505	3.4194	. 1311	7/1/55	10/16/55	59	4.935	3.71

APPENDIX II (continued)

	Alloy	Length	Whath	Th	Wt	WL. 2	Loss	In	Out	Time	Area	Rate
535	2 S	3.02	.76	. 034	3.2490	3.0426	. 2064	7/1/55	10/19/55	62	4.804	5.69
536	35	3.00	. 74	.074	6,0013	5.5722	. 4291	7/1/55	10/19/55	62	49989	11.4
537	24 S	3.00	. 78	. 035	3.5237	3.3571	. 1666	7/1/55	10/19/55	62	4.902	4.49
538	2 S	3.04	. 78	. 034	3.3508	3.1232	. 2276	7/1/55	10/22/55	65	4.959	9
539	38	3.04	.77	. 074	6.4313	6.0234	. 4079	7/1/55	10/22/55	65	5.241	7
540	245	3.01	. 78	${ }^{\circ} 035$	3.5664	3.3999	. 1665	7/1/55	10/22/55	65	4.919	28
541	2 S	3.61?	. 73	. 034	3.1816	2.9454	. 2362	7/1/55	9/25/55	38	4.621	11.0
542	35	3.04	.75	. 074	6.2015	5.8340	. 3675	7/1/55	9/25/55	38	4.117	15.5
543	245	3.02	.72	. 035	3.2788	3.1501	. 1287	7/1/55	9/25/55	38	4.568	6.10
544	25	3.03	. 74	. 034	3.2006	3.0026	. 1980	7/1/55	9/25/55	41	4.697	8.46
545	35	3.03	. 78	. 074	6.3605	6.0160	. 3445	7/1/55	9/28/55	41	4.287	13.1
546	$2 / 5$	3.03	. 75	. 035	3.4563	3.3505	. 1058	$7 / 1 / 55$	9/28/55	41	4.747	4
547	2 S	3.04	. 74	. 034	3.2000	2.9557	. 2443	7/1/55	10/1/55	4	4.713	9.70
548	35	3.02	. 80	. 074	6.4347	6.0372	- 3975	7/1/55	10/1/55	4	3	13.8
549	$2 / 4$	3.00	. 78	. 035	3.5243	3.3924	. 1319	$7 / 1 / 55$	10/1/55	44	4.902	5.03
550	2 S	3.04	. 73	. 034	3.1545	2.9146	. 2399	7/1/55	10/4/55	47	4.651	9.03
551	35	3.03	. 79	. 074	6.3244	5.9233	. 4011	7/1/55	10/4/55	47	5.349	13.1
552	245	3.01	. 78	. 035	3.5522	3.4638	. 0864	7/1/55	10/4/55	47	4.919	3.07
553	25	3.04	. 70	. 034	3.0066	2.7536	. 2530	7/1/55	10/7/55	50	40467	9.29
554	3 S	3.03	. 79	. 074	6.3512	5.9107	. 4405	7/1/55	10/7/55	50	5.349	13.6
555	24.5	3.00	. 78	. 035	3.5613	3.4507	. 1106	7/1/55	10/7/55	50		3.71
556	2 S	3.04	0.8	. 034	3.2989	2.9274	.3715	7/1/55	10/10/55	53	4.959	12.3 17.3
557	35	3.03	. 78	. 074	6.3587	5.7690	. 5897	7/1/55	10/10/55	53	5.287	17.3
558	245	3,00	.73	. 035	3.3337	3.1747	. 1590	7/1/55	10/10/55	53	4×599	4.36
559	2.3	3.04	. 77	. 034	3.2752	2.9268	. 3488	7/1/55	10/13/55	56	4.897	10.5
560	35	3,03	. 78	. 074	6.4501	5.8326	. 6175	7/1/55	10/13/55	56	5.287	17.2
561	24.5	3.01	. 78	. 035	3.5626	3.4189	-1437	7/1/55	10/13/55	56	4.919	$1{ }^{40} 29$
562	2 S	3.04	. 77	. 034	3.3355 6.2988	2.9760 5.6778	. 3595	$7 / 1 / 55$ $7 / 1 / 55$	10/16/55	59	${ }_{5 \times 162}$	16.8
563	35 245	3.03 3.01	. 76	. 074	6.2988 3.4482	5.6778 3.2946	. 1536	7/1/55	10/16/55	59	4.797	4.47
564	245 25	3.01 3.04	.76	.035 .034	3.4482 3.3129	3.2946 2.8704	. 0.4425	$7 / 1 / 55$	10/19/55	62	4.959	11.8
565 566	2 S 3 S	3.04 3.03	.78 .76	. 074	6.2124	5.4579	. 7545	7/1/55	10/19/55	62	5.162	19.4
567	245	3.01	.75	. 035	3.4251	3.2224	-2027	7/1/55	10/19/55	62	4.736	5.70

APPENDIX II (contimed)

	A170y	Length	Width	Thick.	Wt.	Wt	Los	In	Out	Time	Area	Rate
568	2 S	3.03	.77	. 034	3.2900	2.7673	. 5227	7/1/55	10/22/55	65	4.881	13.5
569	3 S	3.02	.76	. 074	6.2780	5.4538	. 8242	7/1/55	10/22/55	65	5.146	20.3
570	24 S	3.00	. 76	. 035	3.4505	3.2869	. 1737	7/1/55	10/22/55	65	4.781	4.59
661.	2 S	3.04	. 74	. 034	3.1767	3.0440	. 1327	7/1/55	9/19/55	32	4.713	7.23
662	35	3.02	. 76	. 074	6.2232	6.0554	. 1678	7/1/55	9/19/55	32	5.146	8.39
663	245	2.99	. 78	. 035	3.5318	3.3586	. 1732	7/1/55	9/19/55	32	4.886	9.12
664	2 S	3.02	. 74	. 034	3.1661	3.0273	. 1388	7/1/55	9/22/55	35	4.682	6.97
665	3 S	3.00	. 72	. 074	5.9194	5.7450	. 1744	7/1/55	9/22/55	35	4.867	8.32
666	245	3.00	.76	. 035	3.4684	3.2950	. 1734	7/1/55	9/22/55	35	4.781	8.53
667	2 S	3.03	. 75	. 034	3.2155	3.1113	. 1042	7/1/55	9/25/55	38	4.759	4.75
668	35	3.00	. 73	. 074	6,0524	5.8631	. 1893	7/1/55	9/25/55	38	4.928	8.32
669	245	3,02	. 75	. 035	3.4560	3.2458	. 2102	7/1/55	9/25/55	38	4.752	9.57
670	2 S	3.03	. 75	. 034	3.2647	3.1052	. 1695	7/1/55	9/28/55	41	4.759	7.15
671	3 S	3.03	. 80	. 074	6.4619	6.2413	. 2106	7/1/55	9/28/55	41	5.411	7.81
672	245	3.02	.76	${ }_{.} 035$	3.5443	3.3505	. 1940	7/1/55	9/28/55	41	4.813	8.08
673	2 S	3.03	. 74	. 034	3.1723	3.0087	. 1636	7/1/55	11/1/55	44	4.697	6.50
674	35	3.02	. 79	. 074	6.4384	6.2217	. 2167	7/1/55	10/1/55	44	5.331	7.62
675	245	3.01	. 76	. 035	3.5323	3.3170	. 2153	7/1/55	10/1/55	44	4.797	8.40
676	2 S	3.04	. 74	. 034	3.2282	3.0517	. 1765	7/1/55	10/4/55	47	4.713	6.55
677	35	3.03	. 76	. 074	6.2523	6.0264	. 2259	7/1/55	10/4/55	47	4.162	7.66
678	24 S	3.02	. 78	. 035	3.5492	3.3166	. 2326	7/1/55	10/4/55	47	4.935	8.25
67	2 S	3.04	. 78	. 034	3.3250	3.1252	. 1998	7/1/55	10/7/55	50	4.959	6.62
680	3 S	3.05	. 76	. 074	6.2181	5.9668	. 2513	$7 / 1 / 55$	10/7/55	50	5.162	8.00
681	245	3.02	. 77	. 035	3.5360	3.2818	. 2542	7/1/55	10/7/55	50	4.874	8.58
682	2 S	3.03	.76	. 034	3.2428	3.0126	. 2302	7/1/55	10/13/55	56	40820	7.03
683	35	3.04	. 78	. 074	6.2552	4.9666	- 2886	7/1/55	10/13/55	56	5.304	8.00
684	245	3.01	. 77	. 035	3.5670	3.2776	. 2894	7/1/55	10/13/55	56	4.868	8.74
685	2 S	3.04	.74	. 034	3.1762	2.8521	. 3241	7/1/55	10/19/55	62	4.713	9.14
686	35	3.02	. 79	. 074	6.4358	5.9595	. 4763	7/1/55	10/19/55	62	5.331	11.8
687	24 S	3.00	. 75	. 035	3.4077	3.0292	. 3785	$7 / 1 / 55$	10/19/55		4.720	10.6
688	2 S	3.04	. 74	. 034	3.1835	2.8337	. 3498	$7 / 1 / 55$	10/22/55		4.713	9.40
689	3 S	3.04	. 78	. 074	6.2885	5.7962	-4923	$7 / 1 / 55$	10/22/55			11.8
690	24 S	3.01	76	. 035	3.4652	3.0875	. 3777	7/1/55	10/22/55	65	4.797	97

APPENDIX II (continued)

	Alloy	Lonth	Width	Thick.	Wt.	Wt. 2	Loss	In	Out	Trime	Area	Rate
691	2 S	3.04	.73	. 034	3.1751	3.1387	. 0364	7/1/55	9/19/55	32	40651	2.01
692	35	3.03	. 77	. 074	6.4210	6.2730	. 1480	7/1/55	9/19/55	32	5.225	7.28
693	24 S	3.01	. 75	. 035	3.4243	3.3440	. 0803	7/1/55	9/19/55	32	4.736	4×37
694	2 S	3.04	. 74	. 034	3.1843	3.1500	. 0343	$7 / 1 / 55$	9/22/55	35	13	. 71
695	35	3.04	. 76	. 074	6.2687	6.1464	. 1223	$7 / 1$	9/22/55	35		55
696	24.5	3.02	. 75	. 035	3.4135	3.3364	. 0771	7/1/		35		1
697	2 S	3.03	. 74	. 034	3.1/16	3.0622	. 0794	7/1/55	9/	38		3.65
698	35	3.03	. 78	. 074	6.3990	6.2579	. 1411	7/1/55	9/25/55	38	5.287	5.78
699	24.5	3.00	. 73	. 035	3.3532	3. 2654	. 0878	7/1/55	9/25/55	38	4.599	4.13
700	2 S	3.04	.74	. 034	3.1923	3.1613	. 0310	7/1/55	9/28/55	41	4.713	1.32
701	35	3.03	.78	. 074	6.4199	6.2029	. 2170	7/1/55	9/28/55	41	5.287	8.22
702	245	3.01	71	. 035	3.2265	3.1426	. 0839	7/1/55	9/28/55	41	4.492	5
03	2 S	3.04	. 73	. 034	3.1590	3.1203	. 0387	7/1/55	10/1/55	44	4.651	1.55
704	3 S	3.00	-17	. 074	6.1919	5.9890	. 2029	7/1/55	10/1/55	44	5.174	7.38
705	245	E. 01	074	. 035	3.4070	3.3130	. 0940	7/1/55	10/1/55	$4 / 4$	4.675	3.76
706	2 S	3.03	. 76	. 034	3.1993	3.1582	. 0411	$7 / 1 / 55$	10/4/55	47	4.820	1.49
707	35	3.02	.75	. 074	6.1676	5.9819	. 1857	7/1/55	10/4/55	47	5.084	6.39
708	245	3.00	.77	. 035	3.5043	3.4204	. 0839	7/1/55	10/4/55	47		3.04
709	2 S	3.04	. 78	. 034	3.3126	3.2671	.0455	7/1/55	10/7/55	50	4.959 5.146	1.51 7.78
710	35	3.02	0.76	. 074	6.2803	6.0366	. 2437	7/1/55	$10 / 1 / 55$ $10 / 7 / 55$	50	5.146 4.752	3.83
711	24.5	3.02	.75	. 035	3.4140	3.3032	1108		10/13/55	56	4.943	1.68
712	25	3.03	- '\%	. 034	3.3472	3.2904 6.1102	. 0568	7/1/55	10/13/55	56	5.331	6.98
713	35	3.02	0.79	. 074	6.3641 3.3792	6.1102 3.2203	. 2539	$7 / 1 / 55$	10/13/55	56	4.675	4.98
714	245	3.01	. 74	. 035	3.3792 3.1156	3.2203 3.0806	. 15859	$7 / 1 / 55$	10/19/55	62	4.590	1.01
715	2S	3.04 3.02	.72 .77	. 034	3.1156 6.2826	3.0806 6.0250	- 2576	7/1/55	10/13/55	62	5.208	6.54
716	3S	3.02 3.01	.77 .76	. 035	3.4533	3. 2853	. 1680	7/1/55	10/19/55	62	4.797	4.64
718	2 S	3.04	.78	. 034	3.3617	3.3303	. 0314	7/1/55	10/22/55	65	4.959	-802
719	35	3.03	.777	. 074	6.2627	5.9910	${ }^{2} 2717$	$7 / 1 / 55$	10/22/55	65	5.225	6. 58
720	245	2.99	.76	. 035	3.5016	3.3295	1721	7/1/55	10/22/55	18	4.760	1.31
721	2 S	3.02	.72	. 034	3.1401	3.1270	. 0131			18	5.331	4.61
722	35	3.02	. 79	. 074	6.4440	6.3901	. 053976	$9 / 4 / 55$ $9 / 4 / 55$	9/22/55	18	4.935	. 705
723	24.	3.02	. 78	. 035	3.4920 3.1769	3.4844 3.1631	. 00138	$9 / 4 / 55$ $9 / 4 / 55$	9/25/55	18	4.621	1.17

APPENDIX II (continued)

	Al10y	Length	Width	Thick.	Wt. I	Wt. 2	Loss	In	Out	Time	Area	Rate
725	35	$E .03$.76	. 074	6.2585	6.1951	. 0634	9/4/55	9/25/55	21	5.162	4.80
726	24 S	3.00	. 78	. 035	3.5558	3.5463	. 0095	9/4/55	9/25/55	21	4.902	784
727	2 S	3.02	. 74	. 034	3.2511	3.2396	. 0115	9/4/55	9/28/55	24	4.682	1
728	35	2.98	.76	. 074	6.0438	5.9800	. 0638	9/4/55	9/28/55	24	5.079	30
729	245	2.98	.78	. 035	3.5416	3.5260	. 0156	9/4/55	9/28/55	24	4.870	1.10
730	2 S	3.02	.76	. 034	3.2939	3.2809	. 0130	9/4/55	10/1/55	27	4.804	. 823
731	3 S	3.00	.75	. 074	6.1376	6.0648	. 0728	9/4/55	10/1/55	27	5.051	4.38
732	24 S	2.96	. 79	. 035	3.5057	3.4911	.0146	9/4/55	10/1/55	27	4.897	. 910
733	2 S	3.03	.77	. 034	3.2404	3.2291	. 0113	9/4/55	10/4/55	30	4.881	. 633
734	35	3.02	.14	. 074	6.1257	6.0560	. 0697	9/4/55	10/4/55	30	$5.0{ }^{\wedge} 2$	3.81
735	24.5	2.97	. 79	${ }_{0} 035$	3.5163	3.5028	. 0135	9/4/55	10/4/55	30	4.913	. 753
736	2 S	3.03	0.76	. 034	3.3032	3.2915	. 0117	9/4/55	10/7/55	33	4.820	. 604
737	3 S	3.02	. 79	. 074	6.4099	6.3421	. 0678	9/4/55	10/7/55	33	5.331	3.
738	24 S	2.99	. 75	. 035	3.4939	3.4795	. 0144	9/4/55	10/7/55	33	4.704	763
739	2 S	3.02	.78	. 034	3.2461	3.2353	. 0108	9/4/55	10/7/55	33	4.926	. 546
740	35	2.99	-72	. 074	5.9758	5.9062	. 0696	9/4/55	10/7/55	33	4.851	3.58
741	24.5	3.01	.79	. 035	3.5566	3.5470	. 0096	9/4/55	10/7/55	33	4.979	. 480
742	2 S	3.03	. 77	. 034	3.3514	3.3316	. 0198	9/4/55	10/10/55	36	4.881	. 926
743	3 S	3.02	. 78	. 074	6.3775	6.2806	. 0968	9/4/55	10/10/55	36	5.270	4.19
744	24.5	3.00	.75	. 035	3.5124	3.4982	. 0142	9/4/55	10/10/55	36	4.720	. 687
745	2 S	3.03	-72	. 034	3.1939	3.1770	. 0169	9/4/55	10/10/55	36	4.575	45
746	35	3.03	. 76	. 074	6.2648	6.1722	. 0926	9/4/55	10/10/55	36	5.162	4.10
747	245	3.02	.74	. 035	3.3948	3.3781	. 0167	9/4/55	10/10/55	36	4.690	. 814
748	2 S	3.06	. 73	. 034	3.1472	3.1289	. 0183	9/4/55	10/13/55	39	4.683	. 324
749	38	3.03	. 77	. 074	6.2885	6.1795	. 1090	9/4/55	10/13/55	39	5.225	4.40
750	245	2.99	.76	. 035	3.4390	3.4221	. 0169	9/4/55	10/13/55	39	4.765	. 747
751	2 S	3.03	.77	. 034	3.3456	3.3280	. 0176	9/4/55	10/13/55	39	4.881	. 760
752	35	3.02	. 78	.074	6.4303	6.3357	. 0946	$9 / 4 / 55$	10/13/55	39	5.270	3.79
753	24.	3.02	.79	. 035	3.5228	3.5103	. 0125	9/4/55	10/13/55	39	4.996	. 527
754	2 S	3.03	.72	. 034	3.0908	3.0673	. 0235	9/4/55	10/16/55	42	4.575	. 01
		3.02	78	074	6.2727		. 127	9/4/55	10/16/55	42	5.270	4.72

APPENDIX II (contimed)

	Alloy	Length	Width	Thick.	Wt. 1	Wht. 2	Loss	In	Out	Time	Area	Rate
756	24 S	3.01	.77	. 035	3.4582	3.4400	. 0132	9/4/55	10/16/55	42	4.868	.531
757	2 S	3.04	.73	. 034	3.1669	3.1451	. 0218	9/4/55	10/16/55	42	4.651	-917
758	35	3.02	. 72	. 074	5.9018	5.7943	. 1075	9/4/55	10/16/55	42	4.898	4.30
759	24 S	3.02	.74	. 035	3.3913	3.3740	. 0173	9/4/55	10/16/55	42	4.690	. 722
760	2 S	3.03	. 78	. 034	3.3623	3.3415	. 0208	9/4/55	10/16/55	42	4.943	. 824
761	35	3.02	.76	.074	6.1512	6.0456	. 1056	9/4/55	10/16/55	42	5.146	4.02
762	24.5	3.02	. 75	.035	3.4114	3.3950	. 0164	9/4/55	10/16/55	42	4.752	675
763	2 S	3.03	. 79	. 034	3.3204	3.2964	. 0241	9/4/55	10/19/55	45	5.004	
764	35	3.03	- 77	.074	6.2703	6. 1353	. 1350	9/4/55	10/19/55	45	5.225	40
765	24.5	3.00	.77	. 035	3.4478	3.4273	. 0205	9/4/55	10/19/55	45	4.842	${ }^{-775}$
766	2 S	3.02	. 77	. 034	3.1832	3.1578	. 0254	9/4/55	10/19/55	45	4.865	-954
7	3 S	3.02	.73	. 074	6.0191	5.8780	. 14211	9/4/55	10/19/55	45	4.960	5.20
768	245	2.99	. 74	. 035	3.3024	3.2793	. 0231	9/4/55	10/19/55	45	40644	. 909
769	2 S	3.03	. 73	. 034	3.1417	3.1147	. 0270	9/4/55	10/19/55	45	4.636	1.06
770	35	3.03	. 80	. 074	6.2968	6.1583	. 1385	9/4/55	10/19/55	45	5.411	4.68
771	24.5	3.01	. 77	. 035	3.4893	3.4621	. 0272	9/4/55	10/19/55	45	4.868	1.02
772	2 S	3.04	. 74	. 034	3.1628	3.1395	. 0233	9/4/55	10/22/55	48	4.713	. 848
773	3 S	3.00	. 74	. 074	5.9707	5.8250	. 1457	9/4/55	10/22/55	48	4.989	5.00
774	24.5	2.98	. 78	. 035	3.4783	3.4581	. 0202	9/4/55	10/22/55	48	4.870	712
775	2 S	3.04	. 74	. 034	3.2202	3.1782	. 0240	9/4/55	10/22/55	48	4.713	873
776	3 S	3.03	. 78	. 074	6.4562	6.2796	. 1766	9/4/55	10/22/55	48	5.287	. 72
777	245	2.99	.78	. 035	3.5382	3.5100	. 0282	9/4/55	10/22/55	48	4.886	990
778	2 S	3.04	. 73	. 034	3.1545	3.1238	. 0307	9/4/55	10/22/55	48	4.651	1.13
779	3 S	3.03	. 79	. 074	6.4468	6.2391	. 2077	9/4/55	10/22/55	48	5.349	6.64
780	24.5	2.99	.78	. 035	3.5377	3.5000	. 0377	9/4/55	10/22/55	48	4.886	1.32
781	2 S	3.84	. 74	. 034	3.2063	3.0895	. 1168	9/4/55	10/10/55	36	4.713	5.65
782	35	3.02	. 78	. 074	6.3755	6.224/4	. 1511	9/4/55	10/10/55	36	5.270	6.54
783	245	3.02	. 78	. 035	3.5051	3.3453	. 1598	9/4/55	10/10/55	36	4.935	. 39
784	2 S	3.03	. 72	.034	3.0767	2.9846	. 0911	9/4/55	10/13/55	39	4.575	4021
785	35	3.02	.78	. 074	6.2564	6.0973	. 1591	9/4/55	10/13/55	39	5.270	6.38
786	245	3.01	. 79	. 035	3.5407	3.4777	. 0630	9/4/55	10/13/55	39	4.979	2.66
787	2 S	3.04	.73	. 034	3.1668	3.0541	. 1127	8/4/55	10/13/55	39	4.651	5.11
788	3 S	3.03	.78	. 074	6.3977	6.2432	- 1545	9/4/55	10/13/55	39	5.287	6.17
789	245	3.02	. 70	.035	3.5658	3.3915	. 1743	9/4/55	10/13/55	39	4.996	7.37

APPENDIX II (continued)

	Alloy	Length	Width	Thicko	Wt. 1	Wt 2	Logs	1 n	Out	Time	Area	Rate
790	2 S	3.03	. 78	. 034	3. 3303	3.2115	. 1188	9/4/55	10/16/55	42	4.943	4.71
791	35	3.03	.77	. 074	6.3091	6.1415	. 1671	9/4/55	10/16/55	42	5.225	6.27
792	24 S	3.02	.76	. 035	3.4400	3. 2663	.1797	9/4/55	10/16/55	42	4.913	7.30
793	2 S	3.03	. 79	. 034	3.2596	3.1369	. 1227	9/4/55	10/16/55	42	5.004	4.80
794	35	3.02	. 78	. 074	6.3841	6.2159	. 1682	9/4/55	10/16/55	42	5.287	6.24
795	245	3.02	. 76	. 035	3.4675	3.2871	. 1804	9/4/55	10/16/55	42	4.813	7.34
796	2 S	3.03	0.6	. 034	3.2716	3.1469	. 1247	9/4/55	10/16/55	42	4.820	5.07
797	3S	3,02	078	. 074	6.2604	6.1107	. 1497	9/4/55	10/16/55	42	5.270	5.56
798	245	3.00	. 79	. 035	3.5275	3.4010	.1275	9/4/55	10/16/55	42	4×963	4.99
799	2 S	3.03	. 72	. 034	3.1042	2.9906	.1136	9/4/55	10/19/55	45	40575	4.54
800	35	3.04	.'75	. 074	6.1705	6.0123	. 1582	9/4/55	10/19/55	45	5.117	5.65
801	24.5	3.00	. 79	. 035	3.5748	3.4597	.1151	9/4/55	10/19/55	45	4.963	4.23
802	2 S	3.05	. 73	. 034	3.1559	3.0387	. 1172	9/4/55	10/19/55	45	4.667	4.58
803	3 S	3.03	0.74	. 074	6.1268	5.9698	.1590	9/4/55	10/19/55	45	5.038	5.78
804	24 S	3.01	. 76	. 035	3.4240	3.3011	. 1229	9/4/55	10/19/55	45	4.797	4.68
805	2 S	3.03	. 77	. 034	3.3433	3.2007	. 1426	9/4/55	10/22/55	48	4.881	5.00
806	35	3.02	. 76	. 074	6.1373	5.9463	. 1910	9/4/55	10/22/55	48	5.146	6.36
807	24.5	3.01	. 78	. 035	3.5513	3.4443	. 1070	9/4/55	10/22/55	48	4.919	3,73
808	2 S	3.02	. 74	. 034	3,1755	3.0713	. 1042	9/4/55	10/22/55	48	4, 682	3.82
809	35	3.02	. 78	. 074	6.4527	6.2370	. 2157	$9 / 4 / 55$	10/22/55	48	5.270	7.00
810	245	3.01	0.8	. 035	3.5799	3.4641	. 1158	9/4/55	10/22/55	48	4.919	4.03
811	2 S	3.04	.73	. 634	3.1303	3.0984	. 0319	9/4/55	9/16/55	12	4.651	4.69
812	35	3.02	. 77	0.74	6.2033	6.1699	. 0334	9/4/55	9/16/55	12	5.208	4.39
813	245	3.03	. 78	. 035	3.5581	3.5264	. 0317	9/4/55	9/16/55	12	4.951	4.38
814	2 S	3.04	. 74	0.034	3.1794	3.1405	. 0389	9/4/55	9/19/55	15	40713	4052
815	3S	3.03	. 77	.074	6.3729	6.3284	. 0445	9/4/55	9/19/55	15	5.225	4.67
816	245	3.01	.78	. 035	3.5677	3.5326	. 0351	9/4/55	9/19/55	15	4.919	3.92
817	2 S	3.02	.96	. 034	3.2884	3.2434	. 0450	9/4/55	9/22/55	18	4,804	4.27
818	35	3.03	. 79	. 074	6.3301	6.2766	. 0535	9/4/55	9/22/55	18	5.349	4.56
819	24.5	3.03	. 78	.035	3.5264	3.4705	. 0559	9/4/55	9/22/55	18	4.890	5. 22
820	2 S	3.04	. 78	.034	3.3153	3,2415	. 0738	9/4/55	9/25/55	21	4.959	5.83
821	3 S	3.04	-78	. 050	6.3275	6.2524	. 0751	9/4/55	9/25/55	21	5.304	5.55
822	245	3.00	71	. 035	3.4821	3.4080	. 0741	9/4/55	9/25/55	21	4.842	6.00

APPENDIX II (contimued)

	A110y	Length	Width	Thick.	Wt. 1	Wt. 2	Loss	In	Qut	T1re	Area	Rate
823	2 S	3.03	. 76	. 034	3.2760	3.1979	. 0781	9/4/55	9/22/55	24	4.820	5.56
824	35	3.02	. 79	. 074	6.4108	6.3260	. 0848	9/4/55	9/28/55	24	5.331	5.45
825	245	3.00	.77	. 035	3.4932	3.4183	. 0749	9/4/55	9/28/55	24	4.842	5.29
826	2 S	3.03	.78	. 034	3.3359	3.2492	. 0867	9/4/55	10/1/55	27	4.943	33
827	35	3.02	.76	. 074	6.1548	6.0677	. 0871	9/4/55	10/1/55	27	46	6
828	24 S	3.00	. 77	. 035	3.5088	3.4354	. 0734	9/4/55	10/1/55	27	4.842	2
829	2 S	3.03	. 76	. 034	3.2737	3.1636	. 1001	9/4/55	10/4/55	30	40820	5.70
830	3 S	3.03	.77	. 074	6.2707	6.1667	. 1040	9/4/55	10/4/55	30	5.225	5.45
831	24.5	3.01	. 74	. 035	3.3850	3.2956	. 0804	9/4/55	10/4/55	30	4.675	5.23
832	2 S	3.04	.77	. 034	3.3292	3.2292	. 0950	9/4/55	10/7/55	33	4.897	4.84
833	3 S	3.03	.75	. 074	6.1110	5.9812	. 1298	9/4/55	10/7/55	33	5.100	6.34
834	24.5	3.02	. 75	. 035	3.4267	3.3261	. 1006	9/4/55	10/7/55	33	4.752	5.27
835	2 S	3.04	. 74	. 034	3.1672	3.0714	. 0958	9/4/55	10/7/55	33	4.713	5.07
836	35	3.03	. 78	. 074	6.4534	6.3293	. 1241	9/4/55	10/7/55	33	5.287	5.86
837	245	3.02	. 76	. 035	3.4468	3.3613	. 0855	9/4/55	10/7/55	33	4.813	4.42
838	2 S	3.03	.77	. 034	3.3065	3.1902	. 1163	9/4/55	10/10/55	36	4.881	5.43
839	3 S	3.03	. 78	. 074	6.3713	6.2234	. 1479	9/4/55	10/10/55	36	5.287	6.39
840	245	3.01	.78	. 035	3.5428	3.4619	. 0809	9/4/55	10/10/55	36	4.919	3.76

APPENDIX III

NOMOGRAPH FOR OBTAINING CORROSION RATE

The nomograph relates the variables in the equation

$$
\text { M.P.Y. }=\frac{22,289 \mathrm{~W}}{\text { DA T }}
$$

where M.P.Y. is the corrosion rate in mils per year. This rate is an expression of the volumetric quantity of metal removed. W is the weight loss in grams, D the density of the metal in grams per cubic centimeter, A the area of the specimen in square inches and T the time of exposure in days.

Since aluminum and its alloys were the only metals to be used in this nomograph, and since the densities of aluminum alloys $2 \mathrm{~S}, 35$ and 24 vary from each other by a maximum of 2%, the density was taken as constant for the three alloys and incorporated in the constant term of the equation above. This eleminated one scale of the nomograph, and it is believed the accuracy gained by this scale elimination more than compensates for the inaccuracy introduced by assuming a constant density for the three alloys.

By way of illustration, a sample problem is shown on the nomograph. A sample of aluminum with a surface area of 4.9 square inches is exposed to a corrodent for 25 days. The resultant weight loss is 0.026 grams. What is the corrosion rate in mils per year? The area exposed (4.9 square inches) is connected with the time of exposure (25 days). The point of intersection of this line with the reference line is connected to the weight loss (0.026 grams) and the corrosion rate is read as 1.71 mils per year.

MOMOERAPH FOR O TAIMMG COMROSION RATES

APPENDIX IV

ANALYSIS OF BORIC ACID

The boric acid analysis was obtained from the Pacific Coast Borax Company, producers of the boric acdd.

APPENDIX IV

ANALYSIS OF P.G.B.C. USP BORIC ACID

CONSTITUENT		PERCENT
Boric Acid ($\mathrm{H}_{3} \mathrm{BO}_{3}$)		99.94
Sulphur Trioxide (SO_{3})		0.009
Sodium Chloride (NaCl)		0.002
Calcium Carbonate (CaCO_{3})		0.000
Ferric Oxide ($\mathrm{Fe}_{2} \mathrm{O}_{3}$)		0.0003
Magnesium Oxide (MgO)		0.000
Lead Oxide (PbO)	Less than	0.0001
Copper Oxide (CuO)		0.0001
Arsenic Trioxide ($\mathrm{As}_{2} \mathrm{O}_{3}$)	" "	0.0001
Manganese Oxide (MnO)	" "	0.0001
Nickel Oxide (NiO)		0.0001
Cobalt Oxide (CoO)	" "	0.0001
Heavy Metals as Pb		0.0005

(Tested by U.S.P. Method)

APPENDIX V

PHOTOMICROGRAPH EQUIPMENT

The photomicrograph equipment consisted of a Bausch and Lomb laboratory microscope equipped with a vertical illuminator. A Leitz Micro-Ibso microscope attachment and a Leica IIIF camera were fitted onto the microscope.

APPENDIX V
PHOTOMICROGRAPH EQUIPMBAT

Texas A\&M University

A14810125053

THE CORROSION OF ALUMINUM IN

BORIC ACID SOLUTIONS

A Thesis
By
HENRY KINSOLVING BASS, JR.

Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in

Texas A\&M University
A14810703217

