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ABSTRACT 

 

Using Percolation Techniques 

to Estimate Interwell Connectivity Probability. (August 2007) 

Weiqiang Li, B.S., Shandong University of Technology, P. R. China 

Chair of Advisory Committee: Dr. Jerry L. Jensen 

 

Reservoir connectivity is often an important consideration for reservoir 

management.  For example, connectivity is an important control on waterflood sweep 

efficiency and requires evaluation to optimize injection well rates. The uncertainty of 

sandbody distributions, however, can make interwell connectivity prediction extremely 

difficult. Percolation models are a useful tool to simulate sandbody connectivity behavior 

and can be used to estimate interwell connectivity. This study discusses the universal 

characteristics of different sandbody percolation models and develops an efficient 

percolation method to estimate interwell connectivity. 

Using King and others results for fluid travel time between locations in a 

percolation model, we developed a method to estimate interwell connectivity. Three 

parameters are needed to use this approach: the sandbody occupied probability sandp , the 

dimensionless reservoir length, and the well spacing. To evaluate this new percolation 

method, the procedure was coded using Visual Basic and Mathematica and the results 

compared to those from two other methods, a simple geometrical model and Monte Carlo 

simulation.  
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All these methods were applied to estimate interwell connectivity for the D1, 

D2, and D3 intervals in the Monument Butte field. The results suggest that the new 

percolation method can give reasonable effective-square sandbody dimensions and can 

estimate the interwell connectivity accurately for thin intervals with sandp  in the 60% to 

80% range.     

The proposed method requires that the reservoir interval for evaluation be 

sufficiently thin so that 2D percolation results can be applied.  To extend the method to 3D 

cases, we propose an approach that can be used to estimate interwell connectivity for 

reservoirs having multiple, noncommunicating layers, and that considers the weight of 

each interval for multilayer estimation. This approach is applied to the three-layer case of 

Monument Butte field and the estimates showed the method gives useful results for well 

pattern design. For example, water saturation and interval thickness affect the weight of 

each interval to be included in the multilayer estimation.  

For thick intervals or heterogeneous sandbody distributions, the percolation 

method developed here is not suitable because it assumes thin layers. Future percolation 

research will be needed to adapt this new percolation method. 
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CHAPTER I 

 INTRODUCTION 

 

1.1 State of problem 

Sandstone reservoirs are the result of long and frequently complex histories of 

geological evolution. The combined processes of deposition, burial, compaction, 

diagenesis, and structural deformation make interwell connectivity difficult to predict. 

Uncertainty about the sandbody distribution affects prediction of hydrocarbon flow in 

reservoirs and, in particular, interwell connectivity. 

A conventional workflow based on reservoir simulation for interwell connectivity 

estimation (Figure 1.1) might include the following steps: 

• Build detailed geological models of the reservoir according to the available data.  

• Distribute flow properties often based on the geological model to get reservoir models 

showing the uncertainties. 

• Upscale each reservoir model and then simulate fluid flow. 

• Perform history matching to check reservoir model quality. 

• Decide whether the reservoir model is suitable or not based on history match. 

• Combine all results from each reservoir model to determine interwell connectivity 

based on fluid flow simulation analysis. 

 

                             z             
This thesis follows the style and format of Petrophysics. 
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FIG. 1.1  The conventional workflow for interwell connectivity estimation  
by reservoir simulation. 

              

The disadvantages of estimating interwell connectivity from reservoir simulation 

are clear. 

• It requires several months to build reservoir models and simulate performance.  

• It requires many kinds of field data, each with its associated uncertainties.  

• It combines deterministic results to show the uncertainty range of interwell 

connectivity. Since the result will depend on how many reservoir models have been 

used, the combination of limited deterministic results may not be the “true” 
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statistical result with an appropriate standard deviation. Statistical results may need 

hundreds simulations to eliminate extreme realizations effects. 

Using percolation phenomena, which are based on extensive statistical simulations, 

engineers can predict interwell connectivity very quickly.  Since the percolation model has 

interesting universal characteristics that have been studied for decades, percolation theory 

can be used to estimate interwell connectivity performance very quickly.  Compared to 

conventional interwell connectivity estimation methods, this technique will give a single, 

rapid, statistical estimate of connectivity with related standard deviation.  

  

1.2 What is percolation?   

Imagine we have a conductive lattice with two electrodes on opposite sides. If we 

connect the electrodes, a light is switched on. We will randomly assign numbers “1” and 

“0” to the sites of this lattice (Figure 1.2a).  The sites with number “1” are conductors and 

the sites with “0” are insulators. We define occupied probability p to be the ratio of the 

number of “1” sites to the total number of sites.  We will do this experiments many times. 

For every experiment, we will assign one more “1” than the last experiment, which also 

means we increase the occupied probability p value every time. Different colors are used to 

represent different connected conductor clusters.  Nothing happen when either 4.0=p  or 

5.0=p  (Figures 1.2b and c).  When p is increased to 0.6, the light is switched on (Figure 

1.2d). This happens when a percolation cluster of conductors spans across from the left 

side to the right side.  The value 6.0=p  appears to be a critical value for our experiment. 
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a. Sites with “1” represent conductors and 
sites with “0” represent insulators. 

 
b . When 4.0=p , light is off. 

 

 
c.  When 5.0=p , light is off. 

 
d. When 6.0=p  , light is on. 

 

FIG. 1.2  One example to show percolation phenomena. 
 

When a connected cluster touches both electrodes, the light is switched on. 

Otherwise, the light is off.  If we do this experiment enough times, the interesting thing is 

we will find the probability p to switch on the light to be almost a fixed value, which is 

termed as threshold value cp .  Simulations have shown that the cp  value depends on the 

dimension, type, shape, and kind of lattice. 
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This is a simple example to show the percolation phenomena. The model to 

simulate this kind of phenomenon can be called the percolation model.  The percolation 

model (King, 1990) is a simple probabilistic model that can be used to simulate 

connectivity and transport phenomena in geometrically complex systems and can provide 

insight into critical phenomena in statistical mechanics.  

Two different kind of percolation models (Stauffer and Aharony, 1985) are used to 

study percolation phenomena. The first model is a site percolation model, which is based 

on the sites connectivity study of the lattice (Figure 1.3a). The second is a bond percolation 

model, which is based on the edge connectivity study of the lattice (Figure 1.3b).  

 

 
a.  Site percolation model  

b.  Bond percolation model 

 FIG. 1.3   Basic percolation models. 

 
Bond percolation was studied historically first, but now most research is based on 

site percolation. The site percolation model can be an idealized model to represent the 

hydrocarbon distribution in porous media. If every void space of a porous medium has one 



 

.        
 

6

p probability to be occupied by oil, the connectivity performance of connected spaces will 

show percolation characterization (Figure 1.4).  The connectivity performance in such a 

discrete percolation model is very interesting to petrophisics study and can be used to 

study water displacement processes.  

 

 
a. Porous media with void pores 

 
b. Each site represents one void pore 
of porous media. 

FIG. 1.4  Site percolation model of porous media. 
 

Considering the overlapping structure of sandbody distribution, hydrocarbons can 

flow from one sandbody to another. Therefore, we can use a continuum percolation model 

to represent the sandbody connectivity. The continuum percolation model extends the 

discrete sites geometry model to an overlapped sites geometry model. Current research 

techniques for the study of continuum percolation attempt to approximate the continuum 

model with a discrete one. Many results of continuum model are analogues of discrete 

results only with some different parametric values (Grimmett, 1999).  
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In the continuum percolation model, the sandbodies are randomly distributed in the 

reservoir instead of discrete. The sandbodies are not limited to points on a fixed lattice and 

can be located anywhere in the studied space. The sandbodies can have any shape; they can 

be squares, rectangles, discs, or ellipses in 2D or cubes, spheres, rods, or ellipsoids in 3D 

(King, 1990). In this study, we will always use continuum percolation to model 

overlapping sandbodies. 

 

1.3 Literature review  

Since interwell connectivity is often highly important for industry and the reservoir 

simulation method is quite timing consuming, alternative methods have been developed for 

field application. Since production and injection data are usually measured every month in 

the field, current methods include those based on production and injection rate data to 

estimate interwell connectivity performance. To my knowledge, no interwell connectivity 

method based on percolation theory has been published, although this theory has been 

applied to other reservoir engineering problems. The following literature review includes 

the important results of previous interwell estimation studies and a historical review of 

percolation studies. 

 

1.3.1 Interwell connectivity study  

Yousef et al. (2006) briefly reviewed the history of interwell estimation study 

based on production and injection data analysis. Based on his work, I will discuss more 

detail about the important published results here. 
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Using Spearman rank correlations to study injector/producer well pairs, Heffer et 

al. (1995) showed that the collusion is the correlations between injector rates and producer 

rate can reflect reservoir communication. They suggested the rate correlation between 

wells could be explained partially by geomechanics.  

Jansen and Kelkar (1997) applied the wavelet transformation to decompose the 

production data into a combination of frequency and smoothed components. Production 

data are nonstationary in the presence of effect of well control operations, reservoir 

depletion, near-wellbore damage, and influence from nearby wells. Wavelet transformation 

can break the production data into its frequency components yet retain its related time 

information. Since wavelet transformation can treat nonstationary data, it can yield a more 

reliable correlation between injector/producer well pairs.  

Panda and Chopra (1998) used a different approach to determine injector/producer 

interaction. They trained an artificial neural network to estimate the interwell interaction 

between different well pairs and applied the approach to numerical simulation of one 

waterflood project. They showed that a lack of ability to represent physical processes 

limited neural network application.  

Soeriawinata and Kelkar (1999) described one statistical approach based on 

Spearman rank analysis. They introduced contradictive and destructive interference using a 

superposition concept. They stated that the superposition of injectors would affect the 

producer response significantly. This method can identify strong connectivity and potential 

barriers in the field.  
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Albertoni and Lake (2002) developed one technique to qualify communication 

between wells using multivariate linear regression (MLR) and balanced multivariate linear 

regression (BMLR). This technique is useful to determine permeability trends and the 

pressure of permeability barriers and it can be used to estimate the total production from 

given injection rate. The technique is limited to liquid (oil and water) data and does not 

include gas rate analysis. Applying this technique applied to one waterflood project in 

Argentina showed some agreement with known geological features.  

Yousef et al. (2005) modified Albertoni and Lake’s (2002) method to evaluate the 

communication between vertical wells from fluctuations in production and injection rates. 

They extended the application to a more complex model that includes capacitance 

(compressibility) and resistive (transmissibility) effects. For analysis, they determined two 

coefficients to better qualify the interwell connectivity. One parameter,λ , quantifies the 

connectivity and another parameter, τ , quantifies the fluid storage in the interwell region. 

The advantages of this method are the applicability to the fields where the wells are 

frequently shut in and the flow rates include primary production.  This method also can 

incorporate the BHP values if available. Yousef et al. (2006) described a diagnostic tool 

based on the capacitance model to enhance the detection of preferential transmissibility 

trends and the presence of flow barriers.  

 

1.3.2 Percolation study  

 In 1957, Broadbent and Hammersley (Grimmett, 1999) introduced the term 

percolation process to model the random flow of a fluid through a medium. Russo, 
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Seymour and Welsh conducted fundamental research about percolation study, but the 

problem for 2D was finally solved by Kerstin  

During the 1980s, Aizenman, Barsky and Menshikov extended Kestin's theorem to 

all dimensions for cpp <  (Grimmett, 1999). When cpp > , the key question about the 

relationship characteristics between p  and P was solved by Grimmett and Marstrand 

following the work of Barsky, Grimmett, and Newman (Grimmett, 1999).  The critical 

case, when p is near or equal to the critical probability cp , remains largely unresolved by 

mathematicians. Current research about this case is mainly based on physical simulation. 

Physical simulations showed the cp  value depends on the kind and dimension of 

the lattice. The percolation threshold cp  for the continuum model depends on the shape of 

objects. A similar universal curve applies to the continuum percolation model with similar 

exponents for power law β)( cppP −∝ (Stauffer and Aharony, 1985). 

During the 1990s, many papers described percolation applications for the reservoir 

engineering problems of fracture systems (Gale et al., 2005; Masihi et al., 2006a and 

2006b), waterflood models (Barrufet et al., 1994), permeability distribution estimation 

(King, 1990; Albert, 1992; Salomao, 1997), and sandbody connectivity estimation (King, 

1990; Nurafza et al., 2006a and 2006b).  

Andrade et al. (2000) reported on their results for the relationship between 

percolation parameters and connectivity performance of different sites, using random 

polymer media research.   King et al. (2002) extended Andrade et al.’s (2000) results to 

estimate the connectivity of sands as well as breakthrough times for a pattern of numerous 
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wells with dimensionless well spacing. Nurafza et al. (2006a and 2006b) showed further 

results for the effects of sandbody aspect ratio, orientation degree, and system size that 

have been used for fracture connectivity estimation.  

Until now, no research has specially investigated how to estimate interwell 

connectivity based on percolation theory. Perhaps the most closely related work was by 

King (1990) and King et al. (2002). King (1990) first discussed percolation applications in 

reservoir characterization, showing that percolation models could simulate the connectivity 

characteristic of sandbody distributions.  Since the sandbody connectivity characteristic 

will affect the interwell connectivity, percolation theory may be applied to estimate 

interwell connectivity. King et al. (2002) described how to use percolation theory to 

estimate breakthrough time distributions.  Using King et al.’s (2002) process and 

considering sandbody distributions with different geometries, as discussed in Nurafza et al. 

(2006a and 2006b), we developed a method to estimate interwell connectivity 

 

1.4 Research procedure 

 Monument Butte field, located in the Uinta Basin of northeast Utah, is a low-

permeability, high-heterogeneity reservoir containing significant volumes of oil. A DOE 

Class 1 waterflood demonstration project in Monument Butte Unit, started in 1992, shows 

this reservoir needs further unconventional methods to improve production (Deo et al., 

1994). Newfield Exploration Company is funding studies to compare different 

technologies for production improvement. My research is one of these studies, and it will 

focus on the use of percolation theory to estimate interwell connectivity. 
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            Percolation theory was chosen to evaluate sandbody connectivity because it has 

been found to reproduce reservoir behavior at model scales. In addition, this theory enables 

us to evaluate the uncertainty of our connectivity predictions.  

 Actual sandbodies have very complex distributions, with different aspect ratios and 

orientations.  We need to understand how aspect ratio and orientation degree will affect 

percolation-based connectivity estimates.  For percolation analysis, Masihi et al. (2006) 

showed actual sandbody geometries can be represented by sandbodies with different aspect 

ratios, orientation degrees and boundary effects. Nurafza et al. (2006a and 2006b) further 

proposed that these effects can be represented by effective-square-shape sandbody 

distribution using simple mathematical transformations. These results suggest that we can 

study effective-square sandbody models first and then incorporate boundary effects, aspect 

ratio effects, and orientation degree effects to refine the model to better reflect the actual 

sand geometries.  

 From the assumption that actual sandbody distributions can be modeled as square 

sandbodies, we developed an interwell connectivity estimation method based on 

percolation.   We evaluated the results by comparing them with those from Monte Carlo 

simulation and a simple geometric model, which was suggested by Jensen during personal 

communication in 2007.  

All dimensionless sandbody lengths are scaled with respect to the typical sandbody 

size in King et al.’s (2002) process. Since it is difficult to identify separate sandbody 

dimensions accurately, we used the universal property of percolation to estimate the mean 

and standard deviation of sandbody dimensions instead of finding the “typical” sandbody 
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dimension. Finally, we successfully removed the impractical aspects of King et al.’s 

(2002) process for field application. In addition, we proposed a practical way to apply our 

model for multilayered reservoirs.   

 

1.5 Objective of this study 

a. Identify and categorize important factors or issues of percolation,  including the 

following:  

a. sandbody occupied probability, sandp , which has same meaning with net-to-

gross ratio  

b. percolation cluster probability, P , which has same meaning with connected 

sand fraction of all sands in the study reservoir  

c. boundary effect  

d. aspect ratio  

e. orientation degree  

f. well spacing  

g. sandbody effective-dimension  

b. Develop a method to determine sandp  and P from Monument Butte maps using a 

universal curve of percolation theory instead of using separate sandbody 

parameters, as is done in King et al.’s (2002) process. 

c. Develop an interwell connectivity estimation process using our results of sandbody 

occupied probability sandp  and percolation cluster probability P. This work, based 
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on sensitivity analysis of the effective-square sandbody model, will include well 

spacing and critical percolation parameters. 

d. Use Monte Carlo simulation to evaluate whether the estimation results from our 

new model are reasonable or not. 

e. Introduce the following three considerations into the new effective-square 

sandbody model to simulate real, underground sandbody distribution:  

a. effects of sandbody aspect ratio  

b. orientation degree  

c.  multilayer reservoirs  

f. Implement the procedures in VBA and Mathematica programs so that field 

operators can input parameters from zone maps to make their own analyses.  

 

1.6 Outline of this thesis 

The thesis consists of five chapters. This chapter presents the motivation of this 

thesis, general introduction of percolation, and a literature review of interwell connectivity 

estimation and percolation studies. Chapter II is a detailed discussion of percolation theory 

background for interwell estimation.  Chapter III discusses the analysis procedures and 

proposed methods for thin intervals, which can be approximated by a 2D system. Chapter 

IV presents a multilayer estimation method for a 3D reservoir. Chapter V describes the 

application for Monument Butte field and the results that we obtained. Chapter VI presents 

a summary and conclusions, and Chapter VII proposes possibilities for future work. 
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CHAPTER II 

PERCOLATION MODEL ANALYSIS 

 

2.1 Relevance of percolation model to interwell connectivity 

Interwell connectivity in this study is defined as the chance that two wells will 

penetrate the same sand cluster at a given well spacing. The connectivity performance 

between well pairs is one critical parameter for well pattern design.  Uncertainty about the 

sandbody distribution affects prediction of hydrocarbon flow in the reservoir and, in 

particular, interwell connectivity.  

Sandbodies underground are mixed with good quality sandbodies and poor quality 

sandbodies.  Good quality sandbodies means sandbodies with high porosity and 

permeability.  Better quality sandbodies can store more hydrocarbons in void pores, and 

water can displace the hydrocarbons through the connected pores that sever as flow paths 

from injection wells to production wells. The ratio of good quality sandbodies to total 

sandbodies is one important concern for connectivity performance, which has the same 

meaning as occupied probability p in percolation theory.  

The conductivity of the sandbody cluster affects the interwell connectivity 

behavior. The conductivity can be represented by the ratio of connected good quality 

sandbodies to all the good quality sandbodies. Having more good quality sandbodies in the 

connected cluster means more effective sandbodies will contribute to the fluid flow. 

Therefore, this ratio is another important consideration for interwell connectivity 
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performance.  This ratio has same meaning as percolation cluster probability P of 

percolation theory.  

 

2.2 Infinite square sandbody model 

The basic model in this study is the infinite square sandbody model. Infinite means 

reservoir is large enough that the boundary effect can be ignored.  Square sands with length 

l are distributed randomly in one reservoir. The center points of sands are distributed 

independently and the sands are allowed to overlap each other. The overlapped area will 

not be counted twice (Figure 2.1). 

 

 

FIG. 2.1  Infinite square sandbody model.  
(Different colors represent different connected clusters). 

 
We will use one interesting example to describe how to use this kind of model to 

study the interwell connectivity. Suppose that we use one square area to represent a 
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reservoir (Figure 2.2a), with one injector well located along the left boundary and one 

producer located along the right boundary. Compared to the sandbody dimension, this 

reservoir is very big and so the left boundary is far away from right boundary,   which 

means the boundary effect can be ignored. This is one approximation of an infinite 

reservoir. Square sandbodies are randomly distributed in this reservoir area. We define 

sandp  as the sandbody occupied probability, which is the ratio of sand area to the entire 

reservoir area.   When a percolation cluster is present between these two wells, the two 

wells are connected. That means there is at least one path through the sand that connects 

the two wells. )( sandpP∞  is the percolation cluster probability of this infinite model, which 

represents the probability of one sandbody pixel belonging to the percolating sandbody 

cluster and will depend only on sandp .   

 No connectivity is present between the injector and the producer when 45.0sand =p  

or 65.0sand =p  (Figure 2.2b and c). However, if we throw one more sandbody into this 

reservoir, giving 69.0sand =p , both wells become connected (Figure 2.2d).  Not all clusters 

form a part of the connecting cluster (Figure 2.2e); we can see only the biggest percolation 

cluster connects the two opposite boundaries (Figure 2.2f ). This is the interesting property 

for the percolation phenomenon.  In this simulation, when 69.0sand <p , no percolation 

cluster exits; when 69.0sand =p , a percolation cluster is present. The value 69.0sand =p  

appears to be a critical value for our percolation model.  
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a.  Reservoir area (Arrow is used to show 
orientation.)  

  
 b. 45.0sand =p  (no connected path)       

 
c. 65.0sand =p  (no connected path)         

d. 69.0sand =p  (one connected path)       

 
e.  Different color (for 69.0sand =p case) 
clusters represent different connected 
clusters.  

 
 f. The percolation cluster (for 

69.0sand =p case) gives one flow path 
between two boundary wells.  

FIG. 2.2  Square sandbody distribution simulation 
with one injector located at left boundary and one producer located at right boundary. 

When 69.0sand <p , no connected cluster appears between two opposite boundary wells. 
When 69.0sand =p , one connected cluster appears between two opposite boundary wells. 
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If we do this simulation enough times for an infinite reservoir, the probability of 

getting a connected cluster across the system will increase very quickly when 6674.0sand ≥p .  

However, if 6674.0sand <p , the probability of getting a connected cluster is almost zero. 

We can define 6674.0sand =p as the percolation threshold cp  for this system.  cp  is one 

fixed value for the infinite square sandbody model. This also means that, when csand pp ≥ , 

the connectivity performance (represented by the percolation cluster probability P) 

between two boundary wells will increase very quickly by a power law β)()( sand csand pppP −∝∞ , 

where β is a critical universal exponent (Stauffer and Aharony, 1985). When csand pp < , 

however, the connectivity probability of these two boundary wells will almost be zero 

(Figure 2.3). 

 

sandp

)( sandpP∞

sandp

)( sandpP∞

 
FIG.  2.3  Universal curve for percolation phenomenon  

(Modified from Gimmett, 1999). 
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2.3 Boundary effect analysis  

Let us consider one reservoir having finite size, which means the boundary cannot 

be ignored. In this model, square sands with length  l are distributed randomly in one finite 

square reservoir with area A.  The reservoir (or system) dimensionless length is defined as 

)1( >>= L
l
AL  . sandp , with the same meaning as in the infinite system, is the sandbody 

occupancy probability, which is the ratio of sand area to the entire reservoir area. 

)( sandpP∞ is replaced by ),( sand LpP , the percolation cluster probability of the finite model, 

which represents the ratio of connected sand area to sand area. ),( sand LpP  depends on sandp  

and L values.   

 Now, we have three parameters to study, including reservoir dimensionless length 

L, sandbody occupied probability sandp , and percolation cluster probability ),( LpP sand .  

Different realizations with different L or different sandp  will give different percolation 

cluster probabilities ),( sand LpP  . If we plot ),( sand LpP  against  sandp  for one given L  

value, we can get a scatter of points. From this kind of plot, we can determine the mean 

value of ),( sand LpP  and its related error bars ),( sand LpΔ  (Figure 2.4) (Mashihi, 2006a). 
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sandp

)( ,LpP sand

sandp

)( ,LpP sand

1

1
0

0 sandp

)( ,LpP sand

sandp

)( ,LpP sand

1

1
0

0  

FIG. 2.4  Scatter points of ),( sand LpP  against sandp  for a given L 
 along with the average curve and error bars.(Modified from Mashihi, 2006a). 

 
 

For all L values, we can always get similar curves. From Stauffer and Aharony 

(1985), we know the finite universal scaling law for the connectivity in the overlapping 

sandbodies could be written as  

 

( ) ⎥⎦
⎤

⎢⎣
⎡ −ℑ=

− νν
β 1

sandsand ),( LppLLpP cL ………………………………………… (2.1) 

( ) ⎥⎦
⎤

⎢⎣
⎡ −ℜ=Δ

− νν
β 1

sandsand ),( LppLLp c ………………………………….... (2.2)                               

where  

][xℑ  is the universal mean connectivity function  
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][xℜ  is the universal standard deviation connectivity function  

β , v  are universal exponents  

sandp is sandbody occupied probability  

),( LpP sand is percolation cluster probability  

),( LpsandΔ is the relative uncertainty range 

 

“Universal” here means that the functions and the exponents are independent of the 

size of the system and only depend on the system dimension. The percolation threshold cp  

depends on the shape of the sandbody and system dimension.  

Nurafza et al. (2006a) showed current best estimates forβ , v , and cp  of a 2D finite 

square sandbody model (Table 2.1). 

 

TABLE 2.1  Universal exponentsβ , v  and threshold cp  values 
 for 2D square sandbody model. 

 

v  07.062.1 ±  

cp  1.06674.0 ±  

β  01.014.0 ±  
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Using these parameter values, Nurafza et al. (2006a) described two universal curves 

for a finite system. One curve is for the mean connectivity function ][xLℑ  of PL v
β

 against 

v
c Lpp

1
)( −  (Figure 2.5a), and the other curve is for the standard deviation connectivity 

function ][xLℜ   of ΔvL
β

 against v
c Lpp

1
)( −  in (Figure 2.5b). As expected from Stauffer 

and Aharony’s (1985) results, the curves for different L values lie almost on top of each 

other.  

 

a. Universal curve for the mean connectivity function ][xLℑ . 

 
 

b. Universal curve for the standard deviation connectivity function ][xLℜ . 
 

FIG. 2.5  Universal curves for finite square sandbody model (Nurafza et al,2006a). 
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The finite square sandbody model has two universal curves.  One universal curve is 

for the mean connectivity function ][xLℑ  and the other is for the standard deviation 

connectivity function ][xLℜ . Each universal curve has three variables; one is with sandp , 

),( sand LpP  and L, and the other is with sandp , ),( sand LpP  and Δ  . If we know separate 

sandbody dimension L and sandp , we can get the value of  ),( sand LpP  andΔ . Inversely, if 

we know ),( sand LpP  and sandp , we can get the value of L andΔ .  

Since L is included on both the X-axis and the Y-axis, we need use one regression 

function of Figure 2.5a to calculate L value from sandp  and ),( sand LpP . The regression 

function has the following form:  

( )
deay

cbx

+=
+

−
2

2

2
1
π

 ………………………………………………….. (2.3) 

where 

6674.0
62.1

\14.0

)(
1

=
=
=
=

−=

c

v

v
c

p
v

PLy

Lppx

β

β

 

cba ,, and d are the coefficient to be regressed.  

The best estimations for constants a, b, c, and d are: 

00640435304525173010
69113581923624720771
.d.-c
.b.a

==
==

 

 



 

.        
 

25

2.4 Rectangular effect analysis 

Real sandbodies will have more complex shapes than square.  Nurafza et al. 

(2006b) studied the finite rectangular sandbody distribution first. Their results showed the 

rectangular sandbody model has universal curves similar to the square sandbody model. 

Rectangular sandbodies with length xl and width yl  are distributed independently 

and uniformly in one rectangular reservoir with area yxA ×= (Figure 2.6). In this model, 

we have different dimensionless system lengths },{, yxiLi ∈ and aspect ratios 

},{, yxii ∈ω  .   
x

x l
xL = is the dimensionless system length of the horizontal direction 

and 
y

y l
yL =  is the dimensionless length of the vertical direction. The aspect ratio for the 

horizontal direction is defined as
y

x
x L

L=ω  and for the vertical direction is defined 

as
x

y
y L

L
=ω . 

As already defined for the finite square sandbody model, sandbody occupied 

probability sandp  is the ratio of sand area to the entire reservoir area. ),( sand LpP is replaced 

by ),,( sand iii LpP ω , the percolation cluster probability for i direction, which represents the 

probability of a sandbody belonging to the percolating sandbody cluster in this model. 

),,( sand iii LpP ω  depends on sandp ,  iL accounting for boundary effect and iω accounting for 

orientation effect.    ),,( sand iii LpP ω  is different for different directions when 1≠iω . 
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FIG. 2.6  Rectangular sandbody model. 
One horizontal percolation cluster across the reservoir,  

but no percolation cluster for the vertical direction. 
 

Two kinds of universal curves represent the mean connectivity function, one for the 

horizontal direction and the other for the vertical direction. We use xP  as the percolation 

cluster probability for the horizontal direction and yP  for the vertical direction.  

King (1990) suggests that the universal curves based on xP  and yP  have the same 

increasing trend as the universal curve of the infinite square sandbody model (Figure 2.5).  

When 1>ω , the universal curve for xP  is depressed and for yP , it is elevated (Figure 2.7a). 

When 1=ω , this is identical to the square sandbody model and the two universal curves 

are coincident (Figure 2.7b). When 1<ω , the universal curve for xP  is elevated and for yP  

is depressed (Figure 2.7c). 
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yP
xP

yP
xP

xx

x

yP
xP

yP
xP

xx

x
 

a. 1>ω   

x

x

x x

x

x

 

b. 1=ω  (Square sandbody model) 

yP
xP

yP
xP

xx

x

yP
xP

yP
xP

xx

x  

c. 1<ω   

FIG. 2.7  Aspect ratio affects the connectivity performances  
(Modified from Nurafza et al., 2006a). 
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The aspect ratio effects can be summarized in one table (Table 2.2): 

TABLE 2.2  Aspect ratio effect (after Nurafza et al., 2006a). 

  Connectivity Performance 
1=ω  yx LL =  

(square sandbody model) 
Same for x and y direction.  

1>ω  yx LL >  Easier for x direction.  
1<ω  yx LL <  Easier for y direction. 

Note: When ∞→∞→ yx LandL , then aspect ratio ω must be irrelevant 
because no boundary effect available (Stauffer and Aharony, 1985).  

 

Since 
x

y ω
ω 1

=  ,  the connectivity performance for the horizontal and vertical 

directions is the same for their respective ω. We only need to discuss the connectivity 

performance of one direction. The following discussion is based on the horizontal direction.  

Using a constant of proportionality, 

 ( )1
1
−=Λ v

xx cω ………………………………………………………..……… (2.4) 

where 41.0≈c  (Nurafza et al., 2006b). (We suggest 041.0≈c  instead of 41.0≈c ; we will 

discuss later.)  

 King (1990) described the universal functions considering the aspect ratio effect:  

])[(),,(
1

x
v

xc
v

xx LppLLpP Λ−−ℑ= −βω . …………………………………... (2.5)                       

])[(),,(
12/1

x
v

xc
v

xx LppLLp Λ−−ℜ=Δ −βωω . …………………………..….... (2.6) 
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When 1=ω and hence 0)1( ==Λ ωx , Eqs. 2.5 and 2.6 are the universal functions 

for the finite square sandbody model (Eqs. 2.1 and 2.2).  Illustrations of these two 

universal curves are showed in Figure 2.8.   
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( ) Λ−− v
xc Lpp /1
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/β

( ) Λ−− v
xc Lpp /1

 
a.  Universal curve for the mean 
connectivity function ][xℑ  
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b. Universal curve for the standard 
deviation connectivity function ][xℜ  

 
FIG. 2.8   Illustration of universal curves 

 for finite rectangular sandbody model (Nurafza et al., 2006b). 
 

For different iω  values, iΛ is different. The universal curves will move a distance 

iΛ  along the X-axis from the original universal curves of  1=ω  (Figure 2.9). 
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FIG. 2.9  The universal curves with different ω  will have different locations on the X axis. 
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The regression function Eq. 2.3 will change to Eq. 2.4 with parameter values 

unchanged: 

( )
deay

cbx

+=
+

−
2

2

2
1
π

.  ………………………………………………… (2.4) 

Where 

⎟
⎠
⎞⎜

⎝
⎛ −=Λ

=

Λ−−=

1

)(

1

1

v

v

v
c

c

PLy

Lppx

ω

β
 

 

The reason for our suggestion to use 041.0≈c instead 41.0≈c  can be shown by 

one example. For one finite rectangular sandbody model, suppose that we 

know 75.0sand =p , 10=xL  and 2=yL . Thus, 5==
y

x
x L

Lω . Based on the regressed 

function Eq. 2.4, we can get the following results: 

Case 1: When 41.0≈c , ( ) 35.0/1 −=Λ−− v
xc Lpp . The P value is almost zero from 

Eq. 2.4. 75.0sand =p  is a high value for an actual reservoir, which means many sands are 

distributed in this reservoir. It is unreasonable that P is almost zero, which means nearly no 

sand connected.  

Case 2: When 041.0≈c , ( ) 094.0/1 =Λ−− v
xc Lpp . The estimated P value is 0.65, 

which means 65% of total sands will be connected from one boundary to its opposite 

boundary. This is more reasonable than Case 1. In addition, the area sA  of the effective-

square sandbody and the area rA of  the rectangular sandbody should be the same (Nurafza 
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et al., 2006b). The L of the effective-square sandbody model from Eq. 2.4 is 4.38. 

Therefore, 2.1938.4 22 === LAs and 20=×= yxr LLA , which means rs AA ≈ .  

Therefore, the rectangular sandbody model with 75.0sand =p , 10=xL  and 5=ω , 

and one square sandbody model with 75.0sand =p  and 24.4≈L  has same connectivity 

performance 33.0=P . This square sandbody model is the effective-square sandbody 

model for the original rectangular sandbody model. 

From the discussion above, we know the rectangular and square sandbody models 

have similar universal curves.  For the same sandp , and iP  values, we can get one iL  of 

i direction in the finite rectangular sandbody model (for a given iω value) and one L for the 

finite square sandbody model (where 1=iω ). This also means using sandp , iL  and  iω  in 

the finite rectangular sandbody model or using  sandp  and L  in the square sandbody model 

will have the same P value for the i direction. These two models show the same 

connectivity performance for the i  direction. Therefore, the original rectangular sandbody 

model can be replaced by its effective-square sandbody model with connectivity 

performance unchanged ( ),(),,( sandsand LpPLpP iii =ω ).    

 

2.5 Orientation degree effect analysis 

In reality, the sandbodies cannot be aligned in one direction. The depositional 

system and its sedimentation environment will affect the orientation of the sands.  The 

orientation will affect the connectivity performance also.  
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For example, rectangular sandbodies are distributed randomly in one finite 

reservoir (Figure 2.8a). The sandbody occupied probability sandp  still is the ratio of sand 

area to the entire reservoir area. ),( sand LpP  is replaced by ),,( sand θLpP , the percolation 

cluster probability, which represents the ratio of connected area to sand area. L is the 

reservoir dimensionless length of the effective-square sandbody model. The orientation 

angle θ is the degree between the longer size direction of the sandbody and the study 

direction. ),,( sand θLpP  depends on sandp , L, and θ .   

For example, we randomly distribute rectangular sandbodies ab ×  with fixed 

orientation degree θ  (Figure 2.10a) in one reservoir.  The study direction is horizontal. 

When o0=θ , there is one percolation cluster for the horizontal direction, which includes 

seven sands (Figure 2.10b). When o30=θ , there is one percolation cluster for the 

horizontal direction, which includes five sands (Figure 2.10c). When o45=θ , there is no 

percolation cluster for either direction (Figure 2.10d). When o60=θ , there is one 

percolation clusters for the vertical direction, including four sands (Figure 2.10e). No 

percolation cluster is available for the horizontal direction.  When o90=θ , there are two 

percolation clusters for the vertical direction including nine sands (Figure 2.10f). The 

percolation cluster probability xP  for the horizontal direction decreases and the percolation 

cluster probability yP  for the vertical direction increases when orientation degree θ  

increases from 0o to 90o. When the rectangular sandbody is longer and thinner, the value of 

orientation degree will affect the connectivity performances much more.     
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a. Rectangular sandbody sample 

 

 
 

b. o0=θ There is 1 percolation cluster in 
the horizontal direction including 7 sands. 

 
 

c. o30=θ There is 1 percolation cluster in 
the horizontal direction including 5 sands. 

 

 
d. o45=θ There is no percolation cluster in 
either direction. 

 
e. o60=θ There is 1 percolation cluster in 

the vertical direction including 4 sands. 

 
f. o90=θ There are 2 percolation clusters 
in the vertical direction including 9 sands. 

 

FIG. 2.10  Orientation degree of sandbodies will affect connectivity performance. 
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We consider two possible oriented sandbody cases separately.  In the first case, all 

sands have a fixed orientation degree θ (Figure 2.11a). In the other case, the orientation 

degree θ distribution of sands is a uniform distribution ( maxmin θθθ ≤≤ ) (Figure 2.11b). 

 

θ

 
a.  Fixed orientation degree θ  model 

maxθ

minθ

 
b.  Uniform orientation distribution 

case ( maxmin θθθ ≤≤ ) 
FIG. 2.11   Graphical description of two typical orientated sandbody cases. 

 

Fixed orientation degree θ  case:  

The connectivity performance for this case can be replaced by one effective-

rectangular sandbody model (Nurafza et al., 2006b) (Figure 2.12). For X direction, the 

effective length of the effective-rectangular sandbody is θθ sincos balx += . For the Y 

direction, the effective length is θθ cossin baly += . Then, the original oriented 

sandbodies are transformed to effective-rectangular sandbodies aligned to the study 

direction. The connectivity performance remains same before and after the transformation. 
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b

a

θ

b

a

θ

 
 

a.  Sandbody with fixed orientation 
degreeθ  

b

a

θ

yl

xl

Original sandbody 

Pseudo sandbody 

b

a

θ

yl

xl

Original sandbody 

Pseudo sandbody 
b. Effective-rectangular sandbody aligned 
along with study direction 

 
FIG. 2.12  Graphical description of  effective-rectangular sandbody transformation 

(Modified from Nurafza et al., 2006b). 
 

Uniform orientation distribution maxmin θθθ ≤≤  model: 

For the case of degree of orientation, we use variables in the  maxmin θθθ ≤≤  range 

(Figure 2.9b); the orientation distribution is assumed uniform, i.e. ],[ maxmin θθU . The 

dimension of effective-rectangular sandbodies is the arithmetic average of effective size of 

the study direction for all sandbodies (Nurafza et al., 2006b). The effective length of 

effective-rectangular sandbody is calculated as:  

n

ba
l i

x

∑
=

+
=

max

min

sincos
θ

θθ

θθ
   . ……………...…………………………………….. (2.7) 

n

ba
l i

y

∑
=

+
=

max

min

cossin
θ

θθ

θθ        . …………………………………………………… (2.8) 
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Using simple mathematics calculations, oriented sandbodies can be replaced by 

effective-rectangular sandbodies with effective length il  for the i direction. The effective-

rectangular sandbody model has the same connectivity behavior as the original model. 

Therefore, we can transform the orientation effect to an aspect ratio effect based on the 

results of Nurafza et al. (2006b). 

 

2.6 Discussion 

Based on the results of Nurafza et al. (2006), we can conclude that oriented 

sandbodies can be replaced by the effective-rectangular sandbody (discussed in Section 2.5) 

and rectangular sandbody model can be studied in terms of the effective-square sandbody 

(discussed in Section 2.4) using simple mathematic calculations.  

Therefore, the effective-square sandbody model is the basic and most important 

model. By using the effective-square sandbody model, we can estimate the connectivity 

behavior of the original model with different aspect ratios and orientations. As discussed in 

Section 2.3, we can use two general processes to estimate unknown parameter values from 

other known parameter values for the transformed effective-square sandbody model.  

If we know sandbody occupied probability sandp  and reservoir dimensionless size L, 

we can estimate percolation cluster probability P using Eq. 2.3. This process is 

straightforward and can be called a “forward mode” method. 

Another way is to use sandp  and P to calculate reservoir dimensionless length L 

using Eq. 2.3 first. After we get L , we can input it to the universal curve of the standard 

deviation connectivity function ][xLℜ (Figure 2.4b) to get the standard deviationΔ . Then 
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backward inputting )1( Δ+P  and )1( Δ−P into Eq. 2.3, we can get minL  and maxL . Then, we 

get the L uncertainty range, which is maxmin LLL << . This process can be called a “backward 

mode” method.  

We implemented this process in a spreadsheet by VBA to estimate the uncertainty 

range of L. Engineers and managers can input parameters to make their own analyses 

(Figure 2.12 and Code attached in Appendix A).  

The interface of VBA program for “backward mode” method is showed in Figure 

2.13, which includes figures of universal curves called Fig.1 and Fig. 2. The detail 

workflow to use this program is described as following: 

(1) Input sandp , P and the reservoir dimension into the program to get the X-axis 

value of universal curves. 

(2) Follow the message given by the program to find the Y-axis from Fig. 2 to 

estimate the standard deviationΔ . 

(3) Check the immediate results in the interface with the universal curves. If the 

immediate values of the X-axis and Y-axis can match the universal curves in Fig. 1 and Fig. 

2, the L estimation in the OUTPUT section is meanL , go to Step 4 directly. Otherwise, go 

back to Step 2 again to input  a new Y-axis value from Fig. 2 with more figures, such as 

0.401 instead 0.40. The reason for this step is to eliminate the solution fluctuation problem, 

which may lead to unreasonable results. 

(4) Input )1( Δ+P  and )1( Δ−P  respectively to estimate maxL  and minL . The 

sandbody dimension can be estimated form the L value by definition. 
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sandp  and L are the input parameters for the interwell estimation method, which 

we will discuss in detail  in Chapter III. For Monument field, it is difficult to estimate the 

individual sandbody dimension from geology analysis and so it is difficult to estimate L 

from the “forward mode” method. We will discuss in more detail how to apply the 

“backward mode” method in Chapter V.  
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INPUT:
Reservior length(in one direction), l= 8210 ft
Net gross ratio p= 0.62085 fraction
Connected net sand fraction, P= 0.30000 fraction

INTERMEDIATE RESULT
Figure 1:
x axis value -0.096
y axis value 0.332

Regression function for Fig. 1 Figure 2:
y=a*Nor(bx+c)+d x axis value -0.096
a 1.362472077 y axis value 0.403
b 2.691135819 OBJ 0.000
c -0.452517301
d 0.006404353 OUTPUT

Standard deviation △= 36.43 %
Dimensionless reservior length L= 3.213 +/- 1.170
Range of effective sandbody size, l= 1873 ~ 4020 ft
Mean value of effective sandbody size, l= 2555 ft 

2D interwell connectivity probability forecast  using percolation
theory (with square sandbody assumption)

RUN

 

FIG. 2.13  VBA program of “backward” mode for effective-square sandbody dimension estimation 
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CHAPTER III 

INTERWELL CONNECTIVITY ESTIMATION ANALYSIS 

 

           This chapter presents the development of an interwell connectivity estimation 

method based on King et al.’s (2002) work.  King et al. (2002) proposed a method for 

predicting the distribution of breakthrough arrival times in a network.  By integrating 

possible breakthrough times, we can estimate the connectivity.  

In this chapter, we also develop a practical process to calculate the parameters 

L and sandp  from net sand map.  Finally, we describe a two non-percolation methods for 

estimating interwell connectivity for comparison with the percolation-based approach.  

One method is a simple geometrical method that is only applicable in the case of very 

small well spacings. The other method uses Monte Carlo simulation to simulate the 

sandbody and well pair distributions in the reservoir. The results of comparisons of 

these methods will be covered in Chapter V. 

  

3.1 King et al.’s (2002) process for breakthrough time estimation 

Andrade et al. (2000) studied the flow of fluid in porous media of 2D and 3D 

systems. Their research is based on a bond percolation model of one lattice. They 

modeled the flow front with tracer particles driven by a pressure difference between two 

fixed sites spaced by distance r.  Considering the dimensionless system size L and the 

occupied probability p, they investigated the distribution function of minimum travel time 

between these two sites.  Based on published results and previous research, they proposed 

the following relationship: 
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φ−−= yaeyf )(1 . ……………………………………………………………….. (3.2) 

ψ−−= ybeyf )(2  . ……………………………………………………………… (3.3) 

yceyf −=)(3     . ……………………………………………………………… (3.4) 

where   

L  dimensionless system size 
r  geometric distance between sites 

v
cpp −−~ξ  correlated length between sites 

p  occupied probability 
cp  percolation threshold value 

mint  minimum traveling time 
g exponent for geometric spacing effect 
d  fractal dimension 

ψφ,,v  exponents 
cba ,,  constants 

                

Andrade et al. (2000) suggested that the scaling forms for 2D and 3D are the same 

except for their different critical exponents. Based on extensive simulation, they 

summarized their best estimates for the parameters in Eqs. 3.1 to 3.4 in Table 3.1.  

TABLE 3.1  Summary of exponents and constants (Andrade et al., 2000) 
[The notation N/A means not applicable since no theoretical value exists, while the 

notation (+/ -) indicates above or below cp . 
For 2D system, 6674.0≈cp ; for 3D system, 2788.0≈cp .] 

 2D 3D 
Simulation Theory Simulation Theory 

d 05.033.1 ±  N/A 1.045.1 ±  N/A 
g 1.00.2 ±  N/A 1.01.2 ±  N/A 
a  1.1 N/A 2.5 N/A 
φ  3.0 3.0 1.6 2.0 
b 5.0 N/A 2.3 N/A 
ψ  3.0 N/A 2.0 N/A 
c 1.6(-),2.6(+) N/A 2.9(-) N/A 
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We should note that the c parameter for 3D has no value when 2788.0=> cpp , 

and so Andrade et al.’s (2000) results are only suitable for 2788.0<p  in 3D system and 

for all p in 2D system. Since the range 2788.0<p  in 3D system is too small for practical 

application, this research only concentrates the 2D application of Andrade et al.’s (2000) 

results.   

King et al. (2002) extended Andrade et al.’s (2000) results to estimate 

breakthrough time for a pattern of numerous wells with dimensionless well spacing r 

(Figure 3.1). 

 

 

FIG. 3.1  Breakthrough time between Well A and Well B depends on sandbody 
connectivity and well spacing r of the whole well pattern. 
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King et al. (2002) modified Andrade et al’s. (2000) equation with reservoir terms: 
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where  

L  dimensionless reservoir size 
r  well spacing  

v
cpp −−= sandξ  correlated length between two wells 

sandp  sandbody occupied probability 

cp  percolation threshold value 
6674.0≈cp for 2D continuum sandbody model 

brt  breakthrough time 
g exponent for well spacing effect  
d  2D fractal dimension 

ψφ,,v  exponents 
cba ,,  constants  

 

King et al. (2002) also explained the significance of functions 1f , 2f  and 3f . The 

first expression, 1f , is a function for the shortest path length between two wells in a 

percolating cluster. The second expression, 2f , is used to show the boundary effect of a 

real field system. In a finite system, there is a maximum streamline length that is limited 

by the reservoir boundary. The third expression, 3f , is used to show the percolation 

threshold effect. When the sandbody occupied probability sandp value is far from cp , the 

system has fewer sandbody clusters to be included in the main flow path, which is the 

main contributor to the fluid flow. This also means that, of the sand available, a greater 

proportion will be included in the branches of the main flow path, where they make only 

a small contribution to fluid flow. All these will affect the fluid flow path from injector to 

producer.  
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The breakthrough time distribution conditionally depends on reservoir size L, 

sandbody occupied probability sandp  and well spacing r. We should note all these 

parameters are dimensionless values, which means all L and r values are scaled to the 

typical sandbody dimension and breakthrough times are scaled by the traveling time of 

fluid flow through the typical sandbody.   

King et al. (2002) applied this process to an ideal reservoir and compared the 

results to those from reservoir simulation (Figure 3.2).  

 

FIG. 3.2  Comparison of breakthrough time estimation from different methods.  
Histogram is the reservoir simulation result and smooth curve is the percolation 

estimation result. (King et al., 2002)    
 
 

King et al. (2002) suggested the agreement is good enough for engineering 

applications. The most important point is that this breakthrough time estimate took only a 

few seconds of CPU time. Compared to the low efficiency of conventional reservoir 

simulation methods, this is a very useful tool to make engineering and management 

decisions. 



 

 

45

3.2 Interwell estimation method based on King et al.’s (2002) process 

3.2.1 Derivation of interwell connectivity estimation method 

            In this study, interwell connectivity depends only on reservoir static properties. 

Since breakthrough time distributions are affected by interwell connectivity, one way to 

estimate the interwell connectivity probability would be to apply King et al.’s (2002) 

process. However, breakthrough time distributions are also affected by characteristics 

other than interwell connectivity. Thus, for example, a connectivity assessment from 

King et al.’s (2002) process would change according to the mobility ratio.   For a given 

sandp  and L value, we can calculate the breakthrough time distribution for different 

dimensionless r values from King et al.’s (2002) equation (Figure 3.3) . 
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FIG. 3.3  Illustration of breakthrough time distribution for different interwell distances (r 
values) calculated from King et al.’s (2002) equation.   
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The breakthrough time brt  is a dimensionless parameter, which is the ratio of the 

actual breakthrough time to the traveling time for fluid flow through a typical sand.  For 0 

< brt <∞ , the integration of brt  has same meaning as the probability of two wells being 

connected:  
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where Cwp  is an indicator variable to determine whether the well pair is connected.  

When Cwp=1, the well pair is connected; when Cwp=0, the well pair is disconnected.  

For engineering application, it is more reasonable to only consider brt  from 0 to 

maxt , which means that two wells are considered to be disconnected when the 

breakthrough time is too long. In this study, we choose 100max =t . When two wells are 

separated by more than 100 typical sandbodies and so the dimensionless breakthrough 

time 100>brt , they are disconnected.  Therefore, Eq. 3.6 becomes: 

),,1( sandpLrCwpP =  

brd
br

d
br

d
br

g

d
br

d tdtf
L
tf

r
tf

r
t

r∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

−100

0
321

1
ξ

 . ………………………………… (3.7) 

Inputting the functions 1f , 1f  and 3f into Eq. 3.7, we obtain:  
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All parameters have the same meaning as in Eq. 3.5. In Eq. 3.8, the only unknown 

variable is the interwell distance r to estimate the well pair connectivity. By numerical 

integration, we see the relationship between r and interwell connectivity probability p 

(Figure 3.4).  The error bars in Figure 3.4 account for the uncertainty of estimated 

reservoir dimensionless size maxmin LLL ≤≤ . 
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FIG. 3.4  Illustration of interwell estimation result. 

 

We implemented our method for estimating interwell connectivity in a 

Mathematica program. Engineers and managers can input sandp  and L parameters to make 

their own analyses (Appendix. B). When r is smaller than 0.01, Mathematica fails. 

However, further analysis can give us the probability of interwell connection.  King 
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(1990) described the relationship between connected sand fraction and well spacing for 

different sandp values (Figure 3.5).  

 

 

FIG. 3.5  Illustration for connected sand fraction 
 as a function of well spacing (King, 1990) 

 
 

King (1990) suggested that the connected sand fraction could represent the 

connectivity between well pairs. Thus, the connectivity probability for well pairs with 

very small well spacing will always approach unity since the connected sand fraction is 

one when well spacing is equal to zero (Figure 3.5). From probability analysis, however, 

this analysis overlooks the effect of the net-to-gross ratio sandp .  When the well spacing of 

a well pair approaches zero, these two wells are at almost the same location and so the 

interwell connectivity probability for these two wells must approach the sand occupied 

probability sandp . 
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In Section 3.3, we use a simple geometric model to show the interwell 

connectivity probability is sandp  when r approaches zero. Since parameter g in Eq. 3.8 is 

the exponent for the well spacing effect, we can change its value every time to make the 

connectivity probability p  equal to sandp  when the well spacing r approaches zero.  

Therefore, the user can input the sandp  and L parameters into the Mathematica 

program first. Then Mathematica program will output one relationship curve. The user 

should change parameter g values several times to make the connectivity probability of 

zero well spacing to be sandp .  

So far, we have derived a method to estimate interwell connectivity based on 

King et al.’s (2002) process. Below, we propose a geometrical model (Section 3.3) and 

a Monte Carlo simulation process (Section 3.4) to evaluate the estimates from this 

percolation method.. 

 

3.2.2 Generation of input parameters L and sandp  

To estimate the dimensionless reservoir size L  value, King et al. (2002) suggested 

using },,min{min zyx LLLL = . This suggestion is based on simulation results rather than 

theory.  King et al.’s (2002) process used 6674.0=cp , which is the 2D continuum 

percolation threshold. Therefore, while L is estimated from 3D considerations, the cp  

value is from 2D. In addition, Andrade et al.’s (2000) results are only suitable for 2D 

application, as we have discussed in Section 3.2.1.  Thus, it appears that L needs to be 

estimated from the 2D characteristics of the reservoir.  
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For very thin intervals, we can assume that all sands have the same thickness as 

the interval thickness.   Based on this approximation, the 3D interval problem can be 

treated as a 2D problem. As King et al. (2002) suggested, now we can 

estimate },min{min yx LLL = , if we can get a separate sandbody dimension using the 

“forward mode” method.  Another way is to use the “backward mode” method to 

estimate the effective-square sandbody L directly. The practical way is to use a net sand 

map, which shows all net sands areas in one plan-view map. Based on our previous 

discussion, this interwell estimation method is suitable to thin intervals and we do not 

need to worry about the different dimension problem any further.  

To estimate the dimensionless reservoir size sandp  value, Nurafza et al. (2006a) 

suggested using very detailed permeability cross-section maps. Assuming the mode 

permeability value to be the cutoff, the sandbodies with permeability lower than the 

cutoff are set to be “bad” sandbodies and the sandbodies with permeability above than 

that are set to be “good” sandbodies. The “good” designation means this sandbody is 

permeable, while the “bad” designation implies a nonpermeable one, and the sandbody 

occupied probability sandp  is the ratio of the total “good” sand area to the whole sand area. 

This workflow is initially used to estimate sandbody connectivity, so percolation cluster 

probability P is estimated in their workflow also. P is estimated by the ratio of connected 

“good” sandbodies to all “good” sandbodies.  

The detailed workflow is shown below (Figure 3.6). 
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FIG. 3.6  The procedure to estimate sandp and P (Nurafza et al., 2006a) 
 

In this study, we do not have enough permeability data to produce a detailed 

permeability map. We used porosity data, which maybe more abundant in most fields, to 

define “good” sand or “bad” sand. The porosity cutoff used to identify “good” sand or 

“bad” sand can be chosen according to field experience. All sands having ability to store 

hydrocarbons and be fluid flow paths should be defined as “good” sands. 

Using the chosen porosity cutoff, we can get the net sand map.  From the net sand 

map, we need to find one square study region that has a percolation cluster in the studied 

direction and separate sandbodies.  We can call this region the “best representative area,” 
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which includes enough information to represent the connectivity performance of the 

entire reservoir. King (1990) suggested the length of the representative area should be 

greater than five times the typical sandbody size.   

This best representative area may contain several separate sandbody clusters and 

one sandbody percolation cluster in the study direction. The ratio of the sandbodies’ area 

to the area of the entire square reservoir region is the sandbody occupied probability sandp .  

The ratio of the area of sandbody percolation cluster to the total sandbodies area is 

percolation cluster probability P.  

For example, Figure 3.7 shows one percolation cluster with area A and three 

separate sandbodies with areas B1, B2 and B3 in the study reservoir with area T. we 

calculate sandp as 
T

BBBA
A
Ap

r

s
sand

321 +++
==  and P  as 

321 BBBA
A

A
A

P
s

pl

+++
== . 
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B1
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FIG. 3.7  The net sand area map to estimate sandp and P. 
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For multilayer reservoir applications, we can estimate the interwell connectivity 

for individual intervals first. Then, using the multilayer application method (discussed in 

Section 3.5), we can estimate the connectivity probability for this multilayer reservoir.  

 

3.3 Simple geometric model analysis 

We describe here a method to estimate the connectivity probability when well 

spacing r approaches zero, which was proposed by Jensen during personal 

communication in 2007.  

Let us consider only one small area around one sand in a square sandbody model 

(Figure 3.8). The square sand dimension is W . Points A and B represent two nearby 

wells and are spaced by 0w , which represents the well spacing. Thus, the dimensionless 

well spacing r is 
W
w0 . The problem we try to solve is the connectivity probability of well 

pair A and B when r is small.  

 

A

 

a.  Square sandbody model 

A

W

A B
0w

 

b. Small domain around one sand 

FIG. 3.8  Graphical description of small domain around one sand. 
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To calculate the connected probability, we separate the sand by two regions 

(Figure 3.9). One is the interior (blue) region at the center of the sand with dimension 

02wW − , and the grey region is edge region. From Figure 3.9, we know Ww 5.00 0 ≤≤ .  

 

Edge region

Interior region 

0w

W

Edge region

Interior region 

0w

W  

FIG. 3.9  Scheme of different regions. 

 

If the reservoir size is very big, the probability for point A to be in this sand can 

be approximated by the net-to-gross ratio N. With Well A in sand, Well B can be at 

several locations inside the sand or outside the sand. Changing the location of B changes 

the  probability for A and B being connected. Using a probability tree, we can investigate 

all the possible connected cases to estimate the connected probability of A and B (Figure 

3.10).  

The probability of A and B being connected can be calculated as follows: 
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For Branch A: 

The probability is calculated as: 

sand)P(B is in on)erior regiP(A is in ∩int  

)intint onerior regiA is in andB is  in sP(on)erior regiP(A is in ×=  . ……… (3.10) 
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== . …... (3.11) 

Because space between A and B is 0w  and the space between the interior region 

boundary and the entire region boundary is 0w , point B must be in the sand. 

1int =on)erior regiA is in ndB is in saP(   . ………………………………….. (3.12) 

Inputting Eq. 3.11 and 3.12 into Eq. 3.10, we get: 
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FIG. 3.10  Probability tree for the connectivity probability estimation of A and B. 
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For Branch B: 

The probability is calculated as: 

sand)P(B is in n)edge regioP(A is in ∩   

)ge regionA is in edsandP(B is in n)edge regioP(A is in ×=  . ……………… (3.14) 

Since, 

2
004

W
)w(WNw

sandentirofArea
regionedgeofAreaNn)edge regioP(A is in −

≈=  . ………….. (3.15) 

For )ge regionA is in eddP(B is san , it is identical to solve the question:  

If A is in the edge region, what is the probability of case B is also in sand? 

B can be anywhere on a circle of radius 0w  with center at A (Figure 3.10).  

If B is at the position 'b , it is out of the sand.  

If B is at the position ''b , it is in the sand.  

If B is at the position '''b , it is in the sand.  

AA

 

FIG.  3.11  Possible locations of B when A is in the edge region. 
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From Figure 3.11, we know the probability that B is in the sand when A is s 

distance from the edge/interior boundary is given by: 

π
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Inputting Eq. 3.16 and 3.18 into Eq. 3.15, we can get: 

( )⎥⎦
⎤

⎢⎣
⎡ −⎟
⎠
⎞

⎜
⎝
⎛ −= 02

0411 wW
W
wN

π
B)P(Branch . ………………………………… (3.18) 

 

For Branch C: 

The probability is calculated as: 
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al sand)  to centrconnected   sand is P(AdjacentI ………..………….......   (3.19) 
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Since well spacing 0w  is very small compared to sand dimension W , the efficient 

factor E of adjacent sand being connected to the center sand can be approximated by net-

to-gross ratio N. Therefore,  

Nal sand)  to centrconnected   sand is P(Adjacent ≈  . ……………………. (3.23) 

Inputting Eqs. 3.21, 3.22, 3.23, and 3.24 into Eq. 3.20, we can get: 

( )02
0

34C)P(Branch wW
W
wN

−≈
π

. ………………………………………… (3.24) 

 

Therefore, the connected probability of A and B is: 
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From Eq. 3.25, we know the probability for A and B being connected is net-to-

gross ratio N when r approaches to zero. Since Ww 5.00 0 ≤≤ , this method will be 

suitable for interwell connectivity probability estimation of r in the range of  5.00 ≤≤ r . 

Field application for data as discussed in Chapter V showed this method could get good 

results for 3.00 ≤≤ r . 

 

3.4 Monte Carlo simulation  

Monte Carlo simulation is especially useful in studying systems with a large 

number of modeling phenomena with significant uncertainty in inputs, such as 

percolation phenomenon (Stauffer and Aharony, 1985). We applied the Monte Carlo 

simulation method to evaluate our interwell connectivity methods.  

In Monte Carlo simulation, we randomly distribute square sandbodies with 

sandbody occupied probability sandp  as well as line segments with length r in one 

reservoir with dimensionless length L. When one line segment is in the same connected 

sandbody cluster, the two wells represented by the line end points are connected (Figure 

3.12). We can do this simulation many times to get the interwell connectivity behavior 
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for well pairs with different well spacing r and then compare with the estimation results 

from our new method.  

 

 

FIG. 3.12  Illustration of Monte Carlo simulation. 

  

The comparison of estimates from the new percolation method, the simple 

geometrical method, and Monte Carlo simulation can be used to evaluate our method. 

Comparison of the results shows that our approach is sufficiently accurate and 

reasonable. Figure 3.13 is one typical comparison for the D1 interval in Monument Butte 

field. The error bar of estimates from the percolation method symbolizes the related 

uncertainty of sandbody dimension. The simple geometrical model only estimates the 

connectivity probability for a range 3.00 ≤≤ r . Using Monte Carlo simulation, we 

simulated the random distribution of sandbody and well pairs many times, collected the 

connectivity probability data for different well spacing r and then joined all the data 
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points to show the relationship between dimensionless well spacing r and connectivity 

probability p.  Drawing all these estimates in one figure as Figure 3.13 shows the 

differences among these approaches and the estimation quality of our new method.  A 

detailed discussion appears in Chapter V.  
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FIG. 3.13  Comparison examples of different estimations from different methods. 
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CHAPTER IV  

MULTILAYER ESTIMATION METHOD 

 

            Most reservoirs are multilayer, so we propose one method to extend the new 

percolation method to estimate the connectivity performance of multilayer reservoirs.  

Let us consider Well A and Well B, which are spaced by dimensionless well 

spacing r (Figure 4.1). Based our method, we can calculate the interwell connectivity 

probability ip  for the thi  individual interval and combine the pi s to give a probability 

that the two wells are connected by one or more intervals. However, many cases entail an 

added complication.  Each interval can also have a “value”, D, which can affect whether 

or not it is important for this interval to be included in the connectivity assessment. D  

may represent different properties for different fields, such as OOIP, initial water 

saturation wiS , interval thickness h , etc. The problem is how to estimate the interwell 

connectivity for a final decision if Wells A and B perforate several intervals at the same 

time (Figure 3.13).  

WELL A WELL B

r

1,1 Dp

3,3 Dp
2,2 Dp

1,1 −− nn Dp

nn Dp ,

WELL A WELL B

r

1,1 Dp

3,3 Dp
2,2 Dp

1,1 −− nn Dp

nn Dp ,

 
 

FIG. 4.1  Graphic description of Well A and Well B. 
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If the decision values D  for different intervals are same, the interwell 

connectivity is straightforward from reliability theory. 

pp −= 1  

∏
=

−=
n

i
ip

1

1  

( )∏
=

−−=
n

i
ip

1

11    . ……………………………………………......... (4.1) 

This can be called a “uniform” weight model. 

If different intervals have different D  values, then the importance of different 

intervals for the final decision is different. Such a model is called a different-weight 

model. We need to incorporate both D  and p  to get one weighted connectivity 

probability for our final decision. 

For example, Well A and Well B with spacing r perforate three intervals at the 

same time. The probability for A and B being connected at the thi interval is ip  

[ }3,2,1{∈i ]. Assume for an example that the interval thickness is the associated 

decision value ii hD = [ }3,2,1{∈i , lhlh 2, 21 ==  and lh 33 = ]. The interval with higher 

ih  will have higher weight for the final decision. By separating the interval with 2h to 

two intervals and the interval with 3h to three intervals, we successfully transform the 

original reservoir to one uniform weight interval reservoir (Figure 4.2).  
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p1 h1=l 

p2 h2=2l 

p3 h3=3l 

p1 h1=l

p2 h2(1)=l 

p3 h3(1)=l 

p3 h3(2)=l 

p3 h3(3)=l

p2 h2(2)=l

p1 h1=l 
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p3 h3=3l 
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p3 h3(2)=l 

p3 h3(3)=l

p2 h2(2)=l

 

FIG. 4.2  Graphic description for the procedure to  
transform the deferent weight interval model to a uniform weight interval model. 

 
 

Then, we can estimate the interwell connectivity probability based on the uniform 

weight model as follows: 

( )( )( )( )( )( )333221 1111111][ pppppphp −−−−−−−=   

( )( ) ( )33
2

21 1111 ppp −−−−= . ……………………..……….….  (4.2) 

Generally, the weighted connectivity probability ][hp  depends on the h  value of 

different intervals and can be calculated as:  

( ) min

1

11][
h
h

n

i
i

i

php ∏
=

−−= .  ……………………………………………… (4.3) 

This kind of method can be called a “positive” weight estimation method. In this 

method, an interval with higher decision factor D value has a higher weight for the final 

decision.  

 Now consider another case where the initial water saturation is the associated 

decision parameter, i.e. wSD = . The intervals with higher wS  will have lower weight 
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for the final decision. The interval with maximum value wS has lowest weight for the 

final decision. Similarly, the connected probability for this case can be calculated as: 

( ) max

1

11][ w

wi

S
S

n

i
iw pSp ∏

=

−−= . ……………………………………………… (4.4) 

This kind of method can be called a “negative” weight estimation method. In this 

method, the interval with the higher decision factor D value has a lower weight for the 

final result. 

When h  and wS are two decision parameters for one multilayer reservoir, then the 

connected probability for the final decision is one uncertainty range: 

][],[][ hpShpSp ww ≤≤ . ……………………………………………………... (4.5) 

Generally, engineers and mangers can consider several decision parameters. First, 

they need to choose a “positive” weight or a “negative” weight method for each decision 

parameter and then calculate the weighted connected probability results for each 

decision parameter. The connectivity probability estimated for the different-weight 

model is one range between maximum weight result and minimum weight result. If the 

value of decision parameters is same for all intervals, the result from different-weight 

model is same as the result from a “uniform” weight model. 
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CHAPTER V 

APPLICATION AND RESULTS 

 

            In this chapter, we applied our new interwell connectivity estimation method to 

Monument Butte field. Then we compared the estimations from our new method, Monte 

Carlo simulation, and the simple geometrical model. The comparison showed our method 

could get plausible results very quickly for %80%25 sand ≤≤ p . We also successfully 

applied the multilayer estimation method for this field.   

 

5.1 Description of field data 

The study area lies within the Wells Draw - Travis Units of Monument Butte field 

(Figure 5.1). The selected study area is 1,362 acres and encompasses 35 wells (17 water 

injectors and 18 oil producers) having an average well spacing of 1,320 ft (Figure 5.2). 

For this area, we studied the Douglas Creek D1, D2, and D3 intervals to gain a better 

understanding of the sandstone connectivity. Following the approach described in the 

previous chapter, we obtained the connectivity estimates for the three intervals in this 

study area. Assuming these estimates are representative of the entire field, we can predict 

the interwell connectivity performance throughout the reservoir. 



 

 

68

 

 
FIG. 5.1  Location of the study area in Monument Butte field. 
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FIG. 5.2  Base-map of study area. 
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           In a separate study, gamma ray logs were used for lithology identification and 

correlation, and porosity logs were used to identify the reservoir quality sandstones 

within these intervals. Following initial data quality checks, a porosity cutoff of 10% was 

used to identify reservoir sandstones.  

Evaluations of the D1, D2, and D3 intervals yielded net sand overlay sand count 

maps (Figures 5.3, 5.4, and 5.5) and reservoir properties summary tables  (Tables C.1, 

C.2 and C.3). The areas of individual sandbody clusters are shown in the zone maps, 

which can be used to calculate sandbody occupied probability sandp  and percolation 

cluster probability P .  

Sandbody distribution interpretation also has uncertainty arising from the 

sandbody distribution uncertainty and different interpretation methods. The connected 

sandbody cluster interpreted in the net sand map should include many separate sand areas 

that have not been identified. The branch of the connected cluster has a high possibility to 

be separated sands.  Inversely, the backbone of the connected cluster has a high 

likelihood to be the percolation sandbody cluster. Similarly, the sands with higher 

thickness values are more likely to be included in the backbone. Therefore, the net sand 

thickness information can be used to identify the sandbody percolation cluster. One 

cutoff value can be chosen from geology analysis and the thickness distribution 

information, such as the mode value of net sand thickness distribution. We assume the 

sand with thickness bigger than this cutoff is included in the percolation cluster. 

Otherwise, this sand belongs to separate sandbodies.  
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T = 6.26465E+6 m2

Bi = 52150.4 m2

A = 3.83726E+6 m2

 

FIG. 5.3  Net sand overlay sand count map of D1 interval.  
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A1 = 4.90532E+6 m^2 

A2 = 92475 m^2 

 

FIG. 5.4  Net sand overlay sand count map of D2 interval. 
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FIG. 5.5  Net sand overlay sand count map of D3 interval. 
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5.2  Analysis and results 

5.2.1 D1 interval 

          In the D1 zone map (Figure 5.3), we can find one sandbody percolation cluster and 

one separate sandbody cluster. The net sand thickness in this interval ranges from 4.5 to 

30 ft (Table C.1). The mode value of thickness distribution is about 12 ft. According to 

the discussion in Section 5.1, this value also is the cutoff to separate the sandbody 

percolation cluster from the biggest connected sandbody cluster. We can use the 

“backward” mode to estimate effective-square sandbody dimension (Figure 5.6). 

 

INPUT:
Reservior length(in one direction), l= 8210 ft
Net gross ratio p= 0.62085 fraction
Connected net sand fraction, P= 0.30000 fraction

INTERMEDIATE RESULT
Figure 1:
x axis value -0.096
y axis value 0.332
Figure 2:
x axis value -0.096
y axis value 0.403
OBJ 0.000

OUTPUT
Standard deviation △= 36.43 %
Dimensionless reservior length L= 3.213 +/- 1.170
Range of effective sandbody size, l= 1873 ~ 4020 ft
Mean value of effective sandbody size, l= 2555 ft 

2D interwell connectivity probability forecast  using percolation
theory (with square sandbody assumption)

RUN
 

FIG. 5.6  Estimation of effective-square sandbody dimension of the D1 interval.  

The average well spacing is 1,320 ft. The mean value of effective-square 

sandbody dimensions is 2,555 ft and the range is 1,873 to 4,020 ft. Therefore, the 
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estimated effective-square sandbody dimension is about 1.4 to 3.0 times the average well 

spacing. This is a reasonable value. The standard deviation Δ is 36.43%. The reason for 

this value is big may due to the study area is not big enough. As we have discussed in 

Section 3.2.2, the best representative area should be big enough to include enough 

information to represent the connectivity performance of entire reservoir. The least value 

of L suggested by King (1990) is 5=L . The L of the D1 interval is 3.213, which is less 

than the suggested value.  

Inputting 2.3mean =L , 35.4max =L , 05.2min =L  and 62.0=sandp  into our Mathematica 

program which is based on Eq. 3.8 (Appendix B), we can get the estimated probability of 

connection for the D1 interval (Figure 5.7). The data points on the center dashed line 

(Figure 5.7) are the numerical interpretation results for meanL .  The data points along the 

upper dashed line and the lower dashed line are for maxL  and minL , respectively.  

Therefore, the space between the upper dashed line and the lower dashed line can be 

interpreted as the error bar of the connectivity probability estimation, which indicates the 

uncertainty of estimated reservoir dimensionless size maxmin LLL ≤≤ .  
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FIG. 5.7  Interwell connectivity probability estimation of D1 interval.  
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We compared the estimates from our percolation method, Monte Carlo simulation 

and the simple geometrical model for the D1, assuming that the backward mode gave an 

appropriate range of sandbody sizes.  The estimates from different methods overlap each 

other and so the agreement among these methods is good (Figures 5.8 and 5.9). 
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FIG. 5.8  Comparison of different estimates for D1 interval in dimensionless scale. 
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5.2.2 D2 interval 

The D2 is rather different from the D1.  In the D2 zone map (Figure 5.4), we can 

find one percolation cluster but cannot find any separate sandbodies. The net sand 

thickness ranges from 0.98 to18.5 ft (Table C.2). We chose the mode value of thickness 

distribution, 2 ft, as the cut off to separate the sandbody percolation cluster from the 

biggest connected sandbody cluster. Then, we used the “backward” mode to estimate the 

effective-square sandbody dimension (Figure 5.10). 

 

INPUT:
Reservior length(in one direction), l= 8210 ft
Net gross ratio p= 0.77000 fraction
Connected net sand fraction, P= 0.65000 fraction

INTERMEDIATE RESULT
Figure 1:
x axis value 0.178
y axis value 0.702
Figure 2:
x axis value 0.178
y axis value 0.490
OBJ 0.000

OUTPUT
Standard deviation △= 45.36 %
Dimensionless reservior length L= 2.443 +/- 1.108
Range of effective sandbody size, l= 2312 ~ 6150 ft
Mean value of effective sandbody size, l= 3360 ft 

2D interwell connectivity probability forecast  using percolation
theory (with square sandbody assumption)

RUN
 

FIG. 5.10  Estimation of effective-square sandbody dimension of D2 interval. 

 

The average well spacing is 1,320 ft. The mean value of the effective-square 

sandbody dimension is 3,360 ft and the range is 2312 to 6150 ft. Therefore, the estimated 

effective-square sandbody dimension is about 1.8 to 5.1 times the average well spacing. 
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This appears reasonable. In addition, the standard deviation Δ for D2 is bigger than the 

value for D1, which mean there is more uncertainty for the D2 interval. The mean value 

of L for D2 interval is 2.443, which is less than the value 3.213 for D1.   As we have 

discussed for the D1 interval, the smaller study area may have led to bigger uncertainty.    

In further study, we can choose a larger study area to refine our interwell connectivity 

estimation. For this study, we still assume this area can represent the entire reservoir, 

although with a big uncertainty range.  

Similar to the procedure for the D1 interval, we input the estimated values for 

44.2mean =L ， 48.3max =L  , 32.1min =L and 77.0=sandp into our Mathematica program 

to get the estimated probability of connection for the D2 interval (Figure 5.11).  
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FIG. 5.11  Interwell connectivity probability estimation of D2 interval.   
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We compared interwell connectivity estimates from our new method, Monte 

Carlo simulation, and the simple geometrical model (Figures 5.12 and 5.13). Monte 

Carlo simulation and percolation estimation do not match very well. The mean curve of 

the Monte Carlo estimates is above the mean curve of percolation estimation and is 

almost same as the upper dashed curve of percolation estimation.  But all data points of 

Monte Carlo simulation are still within the error bars of the percolation estimate, we 

suggest this agreement still is good enough for engineering applications. 
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FIG. 5.12  Comparison of different estimates of D2 interval in dimensionless scale. 
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FIG. 5.13  Comparison of different estimates of D2 interval in actual scale. 

 

5.2.3 D3 interval 

The D3 interval is available only in seven wells. In the D3 zone map (Figure 5.5), 

we only can find three isolate sandbodies and no percolation cluster area in this interval.  

The “backward” mode needs P  to estimate the effective-square sandbody dimension.  To 

calculate P , we need know the area of percolation cluster. Therefore, we cannot apply the 

“backward” mode for the D3 interval. Assuming these three areas are separate sands, we 

can approximate the reservoir dimensionless length by following method. 

Assuming the sand has a square shape, the effective length of every sand object is 

calculated as: 

ii Al =  …………………………………………………………………… (5.1) 

Where iA  is the area of thi sand and }3,2,1{∈i . 
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Then the reservoir dimensionless length is the ratio of the reservoir size to every 

sand size:  

i

r
i l

A
L =  . …………………………………………………………………... (5.2) 

Where rA is the reservoir area.  

The average L value is calculated as: 

n

L
L

n

i
i

average

∑
== 1 . ……………………………………………………………… (5.3) 

Where n=3 for the D3 interval.  

The sandbody occupied probability sandp is calculated by definition: 

r

n

i
i

sand A

A
p

∑
== 1  . ……………………………………………………………….  (5.4) 

The results are summarized as in Table 5.1: 

TABLE 5.1  Percolation parameter estimations of D3 interval. 

Sand A i,m
2 le, ft Li Laverage Psand

1 305664 1813 4.527
2 361613 1972 4.162
3 164810 1332 6.166

4.952 0.133
 

The mean value of the effective-square sandbody dimension is 

ftl 705,1
3

332,1972,1813,1
=

++
= , which is about 1.3 times the average well spacing of 

1,320 ft. Therefore, this approximation value of the effective-square sandbody is 

reasonable.  
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Inputting estimated effective-square sandbody dimensions ,95.4mean =L  

16.4min =L , 17.6max =L , and 133.0sand =p  into our Mathematica program, the best 

interwell estimation we got for D3 is Figure 5.14. 
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FIG. 5.14  Interwell connectivity probability estimation of D3 interval.  

 

From the simple geometrical model discussion, we know the connectivity 

probability is sandp when well spacing r approaches zero. For the D3 interval, we cannot 

make the connectivity probability be 133.0sand =p  for zero well spacing r in our 

Mathematica program. The lowest connectivity probability we can get is 25%. Therefore, 

above estimation result is not right.   

The reason may be that the exponent values of Eq. 3.8 cannot be applied for the 

systems far away from cp  . As we have discussed in Section 1.4.2, current research on 

percolation theory is mainly from Monte Carlo simulation, which may not cover the 

entire range of possible occupation probability values. We do not have enough theoretical 
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background to understand the way to improve the estimation value of these parameters in 

the current study.  

We need to use other two methods to estimate the interwell connectivity 

performance of the D3 interval. We compared the estimates from Monte Carlo simulation 

and the simple geometrical model (Figures  5.15 and 5.16). The agreement between these 

two methods is good for the range 4.01.0 ≤≤ r . From our Chapter III discussion, we 

know that the simple geometrical model application range is 5.00 ≤≤ r . In Monte Carlo 

simulation, it is difficult to simulate interwell connectivity for well pair with very small r. 

We suggest using the simple geometrical model when 3.00 ≤≤ r  and using the mean 

curve of Monte Carlo estimations when 3.0>r  to estimate the interwell connectivity 

performance of the D3 interval.  
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FIG. 5.15  Comparison of different estimates of D3 interval in dimensionless scale. 
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FIG. 5.16  Comparison of different estimates of D3 interval in actual scale. 

 

5.2.4 Multilayer estimation 

The Monument Butte field actually consists of many producing horizons.  

Therefore, we need to be able to predict interwell connectivity for all horizons together as 

well as individually.  Here, we look at the combination of horizons D1, D2, and D3 as an 

example. 

As discussed in Chapter III, we can choose any interesting property as the 

decision factor D to weight the connectivity of every interval. First, we choose the net 

sand thickness as the decision factor.   The net sand average thicknesses of the D1, D2, 

and D3 intervals are summarized in Table 5.2. 
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TABLE 5.2  Net sand average thickness of D1, D2, and D3 intervals. 

Interval Average thickness, ft 

D1 14 
D2 7 
D3 5 

 

The interval with the higher thickness value is more important for the connectivity 

probability estimate. Therefore, we need to use the “positive” method to estimate the 

interwell connectivity.  

Since many wells are perforated at the D1 interval, then let us consider another 

case when D1 is almost watered out but D2 and D3 remain highly oil saturated. We can 

assume that D1, D2 and D3 have different water saturation values after a long production 

period (Table 5.3). 

 

TABLE 5.3  Water saturation of D1, D2, and D3 intervals 

(hypothetical data). 

Interval Water saturation % 

D1 85 
D2 15 
D3 12 

 

The interval with the lower water saturation value is more important for 

estimating the connectivity probability. Therefore, we need to use the “negative” method 

to estimate the interwell connectivity. 
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We compared estimates from the “uniform” weight estimation; the “positive” 

weight estimation method, which is weighted by thickness; and the “negative” weight 

estimation method, which is weighted by water saturation (Figure 5.17).  

 

FIG. 5.17  Comparison of estimations from different method for a multilayer reservoir. 

 

If we choose water saturation and interval thickness at the same time to be the 

decision factors, then the estimated connectivity is the spacing range between the 

“positive” method and “negative” method as we have discussed in Section 3.5.   

We also should note water saturation will change for different production periods 

and so the weighted connectivity will change for different production time. This is very 

meaningful for field applications.  If some interval breaks through very quickly, its 

related connectivity probability should also have quickly less weight in the multilayer 

connectivity. Once the interval is watered out, the interval has no value and the weight 
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factor of its connectivity probability changes to zero, which means this interval has no 

contribution for total production.  

 

5.3 Summary and discussion 

This chapter described the application of our new percolation method to D1, D2, 

and D3 intervals in a small study area of the Monument Butte field. We compared 

estimates from the new method, a simple geometrical model, and Monte Carlo simulation.  

The comparison for the D1 interval with 62.0sand =p  shows the agreement is very 

good. The comparison based on D2 with 77.0sand =p  shows only small differences, 

which is acceptable for field application. For the D3 interval with 133.0sand =p , the 

percolation-based method cannot get reasonable results but we still can apply the other 

two methods to estimate the interwell connectivity.  

As we have discussed, this method will be less accurate when the sandbody 

occupied probability is far below the threshold value of 6674.0≈cp . Our suggestion is to 

use the new percolation method only when we find numerous and possibly touching 

sands in the study region. From the detailed application discussions of the D1 and D2, we 

know this percolation method can get reasonable estimates for sandp  in range of 60% to 

80%.  For D3 interval, our method fails when 13.0sand =p . All this means our method 

limited to the application range of sandp around 6674.0=cp . For different L and P values, 

this application range may be different.  

When sandp is far from 6674.0=cp , we suggest using the simple geometrical 

model when 3.00 ≤≤ r  and using the mean curve of Monte Carlo estimations when 
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3.0>r  to estimate the interwell connectivity performance as we discussed in Section 

5.2.3.  

For multilayer application, our method is straightforward to apply. From the 

chosen decision factors, engineers can do the estimates just by very simple mathematical 

calculations. The field operators can do their own analyses by choosing different 

parameters as the decision factors to weight the connectivity of every interval and then 

get the final estimate for the multilayer reservoir.  
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CHAPTER VI 

CONCLUSIONS 

 

           This study showed that percolation theory is a very powerful tool that can be used 

to simulate the connectivity behavior between well pairs and can be used to estimate the 

interwell connectivity probability. Using the universal behavior of percolation 

phenomena, we proposed a new percolation method to estimate the interwell connectivity 

using simple mathematic calculation without having to perform a large number of 

numerical realizations for each new reservoir.  

The comparison of estimations from our new method, Monte Carlo simulation 

and the simple geometrical model suggests that the percolation method can get 

reasonable results for Monument Butte field when sandp  in range of 60% to 80%.  When 

the sandbody occupied probability sandp  is far from 6674.0=cp , the estimation result 

may be wrong. We still can use Monte Carlo simulation and the simple geometrical 

model, however, to estimate the interwell connectivity probability.  

Considering different intervals may have different weights, we propose a 

statistical method to incorporate the interval value D as a decision factor to get a 

multilayer estimation, which is more meaningful for well pattern design.   

All these methods assume sandbodies distributed randomly and independently. If 

the actual sandbody distribution is very heterogeneous at field scale, the estimates from 

these methods are less representative or maybe wrong. 

The estimation depends on the parameters from the study area we choose. This 

also means we need choose one “best representative area” to calculate the inputting 
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parameters sandp  and P. The best representative area should big enough — i.e. L is big 

enough— to include enough information to represent the connectivity performance of 

entire reservoir. The smallest value of L suggested by King (1990) is 5=L .    

In a pilot study of a field, we can use our percolation method to estimate interwell 

connectivity from a detailed study of one small area. Then, we can extrapolate the 

estimation results to the entire reservoir. When more data are available, other methods 

may need months of time to do the estimation again, but the percolation method can get 

one new estimate in several hours. 
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CHAPTER VII 

RECOMMENDATIONS FOR FURTHER WORK 

 

      While the comparisons among our new percolation method, the simple 

geometrical model, and Monte Carlo simulation are encouraging, our method still 

exhibits a few limitations.  

Sensitivity analysis of different L and P values will be helpful to determine the 

application range of sandp . For example, more Monte Carlo tests based on the D3 interval 

might show the method still gives useful results for cases between %25=sandp  and 40%. 

Based on this idea, we can find the minimum sandp  where the percolation-based method 

works and propose the application range of sandp   between the minimum sandp  and 80% 

for Monument Butte field. 

In addition, further study should be made to compare our method with results 

from other methods, such as estimates from reservoir simulation and production/injection 

fluctuation rate analysis. These efforts may lead us to find more ways we can refine our 

method.  

Our method is more suitable for reservoirs with thin intervals. Although we have 

proposed a multilayer estimation method for 3D application, the result from this method 

is an approximation, assuming no crossflow between different intervals. Extending our 

method to a 3D system will be more realistic than idealistic, but this will require more 

fundamental percolation research.  

The assumption for this study is that the sandbodies are distributed randomly and 

independently in the reservoir. It will be more realistic to distribute the sands 
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conditionally, considering the spatial correlation of the sandbodies. A new study topic is 

correlated percolation study. Once the study of topic has promising results, we can 

consider how to incorporate the new research results into our interwell estimation 

method.  
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NOMENCLATURE 

 

a constants 

Apl area of percolation cluster 

Ar  area of the region 

As area of sands 

b constants 

B area of separate sands 

c constants 

d fractal dimension 

D decision factor; value of interval 

E efficient factor 

g exponents for geometric spacing effect 

h interval thickness 

i index 

j index 

l sandbody dimension 

lx sandbody dimension in X direction 

Ly sandbody dimension in Y direction 

L dimensionless reservoir length 

Lmax maximum value of dimensionless reservoir length 

Lmean mean value of dimensionless reservoir length 

Lmin minimum value of dimensionless reservoir length 

N net-to-gross ratio 

p occupied probability 

pc percolation threshold 
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psand sandbody occupied probability 

P percolation cluster probability 

P∞ percolation cluster probability of infinite system 

P(x) probability of x 

P(…│…) conditional probability 

r dimensionless well spacing 

Sw water saturation 

tmin minimum traveling time 

tbr breakthrough time 

w0 well spacing with field scale in small domain 

W dimension of sand with field scale in small domain 

x reservoir length in X direction; direction index 

y reservoir length in Y direction; direction index 

β exponents 

θ orientation degree 

v exponents 

ω aspect ratio 

φ exponents 

ψ exponents 

ξ correlate length 

Λ  constant of proportionality 

ℑ  universal mean connectivity function 

ℜ  universal standard deviation connectivity function 

Δ  standard deviation 
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APPENDIX A 

VBA CODE FOR INPUTTING PARAMETER ESTIMATION 

 

Code:  

Sub Macro1() 
 
ThisWorkbook.Sheets("program").Range("J22:L24").ClearContents 
 
    Range("J23") = "5" 
    SolverOk SetCell:="$J$19", MaxMinVal:=3, ValueOf:="0", ByChange:="$J$23" 
    SolverSolve UserFinisH:=True 
    SolverFinish KeepFinal:=1 
     
ThisWorkbook.Sheets("plot").Select 
mesy = "According to x value, please find and input y value for further calculation! For example:
for x=-0.0957,y=0.403.Choose y value for your x value now, y=" 
y = InputBox(mesy) 
 
ThisWorkbook.Sheets("program").Select 
Cells(18, 10) = y 
Cells(22, 10) = y / Cells(23, 10) ^ (0.14 / 1.62) * 100 
Cells(23, 12) = Cells(23, 10) * Cells(22, 10) / 100 
Cells(23, 11) = "+/-" 
Cells(24, 10) = Cells(8, 10) / (Cells(23, 10) * (1 + Cells(22, 10) / 100)) 
Cells(24, 12) = Cells(8, 10) / (Cells(23, 10) * (1 - Cells(22, 10) / 100)) 
Cells(24, 11) = "~" 
Cells(25, 11) = Cells(8, 10) / Cells(23, 10) 
Range("J24:L24").Select 
MsgBox "Calculation finished!" 
End Sub  
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APPENDIX B 

MATHEMATICA CODE FOR INTERWELL ESTIMATION  

 

Code: 
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APPENDIX C  

RESERVOIR PROPERTIES SUMMARY OF D1, D2 AND D3  

 

TABLE C.1   Reservoir Properties Summary of D1 Interval. 

Well Sand per
well sand 1 sand 2 sand 3 sand 4 sand 5 Net Sand

4301332219 0 0 0 0 0 0 0
4301331819 0 0 0 0 0 0 0
4301331435 0 0 0 0 0 0 0
4301331716 0 0 0 0 0 0 0
4301330747 0 0 0 0 0 0 0
4301332103 0 0 0 0 0 0 0
4301331268 0 0 0 0 0 0 0
4301331503 0 0 0 0 0 0 0
4301331971 0 0 0 0 0 0 0
4301331499 0 0 0 0 0 0 0
4301332096 0 0 0 0 0 0 0
4301332102 1 4.49 0 0 0 0 4.49
4301331228 1 7.53 0 0 0 0 7.53
4301332098 1 8.48 0 0 0 0 8.48
4301331972 1 11.49 0 0 0 0 11.49
4301331251 1 18.48 0 0 0 0 18.48
4301331250 1 22.04 0 0 0 0 22.04
4301331214 1 29 0 0 0 0 29
4301331270 2 2.53 3.49 0 0 0 6.02
4301331973 2 3.04 4.51 0 0 0 7.55
4301332105 2 3.49 4 0 0 0 7.49
4301331271 2 3.99 15.52 0 0 0 19.51
4301330638 2 4.49 10.5 0 0 0 14.99
4301332104 2 5 1.53 0 0 0 6.53
4301330858 2 6.52 0.51 0 0 0 7.03
4301331225 2 7.99 5 0 0 0 12.99
4301331240 2 9.45 8.99 0 0 0 18.44
4301331277 2 10.52 4.49 0 0 0 15.01
4301331272 2 25.6 1.96 0 0 0 27.56
4301330699 3 1.49 2.99 1 0 0 5.48
4301331205 3 4.48 3.49 6.97 0 0 14.94
4301332132 3 25.4 1.01 3.48 0 0 29.89
4301331229 4 1.5 1.39 2.03 6.52 0 11.44
4301331269 4 3.43 2.98 2.02 3.49 0 11.92
4301331817 5 3.03 4 4.94 0.51 2.48 14.96

D1 Sand  Thickness (ft)
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TABLE C.2  Reservoir Properties Summary of D2 Interval. 

Well Sand per
well sand 1 sand 2 sand 3 sand 4 sand 5 Net Sand

4301330699 0 0 0 0 0 0 0
4301330858 0 0 0 0 0 0 0
4301331205 0 0 0 0 0 0 0
4301331228 0 0 0 0 0 0 0
4301331240 0 0 0 0 0 0 0
4301331251 0 0 0 0 0 0 0
4301331268 0 0 0 0 0 0 0
4301331716 0 0 0 0 0 0 0
4301331817 0 0 0 0 0 0 0
4301331973 0 0 0 0 0 0 0
4301332096 0 0 0 0 0 0 0
4301332098 0 0 0 0 0 0 0
4301332102 0 0 0 0 0 0 0
4301332103 0 0 0 0 0 0 0
4301332105 0 0 0 0 0 0 0
4301332219 0 0 0 0 0 0 0
4301332132 1 0.98 0 0 0 0 0.98
4301331819 1 1.46 0 0 0 0 1.46
4301331270 1 1.95 0 0 0 0 1.95
4301331229 1 2 0 0 0 0 2
4301330638 1 2.01 0 0 0 0 2.01
4301331503 1 2.01 0 0 0 0 2.01
4301331499 1 3 0 0 0 0 3
4301331272 1 3.51 0 0 0 0 3.51
4301331250 1 4.5 0 0 0 0 4.5
4301331225 1 7.5 0 0 0 0 7.5
4301332104 1 7.51 0 0 0 0 7.51
4301330747 1 8.5 0 0 0 0 8.5
4301331214 1 10.98 0 0 0 0 10.98
4301331971 1 11.49 0 0 0 0 11.49
4301331435 2 0.5 4.51 0 0 0 5.01
4301331972 2 6.5 1.55 0 0 0 8.05
4301331269 2 9.04 2.03 0 0 0 11.1
4301331277 2 10.02 8.51 0 0 0 18.5
4301331271 2 10.9 2.5 0 0 0 13.4

D2 Sand  Thickness (ft)
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TABLE C.3  Reservoir Properties Summary of D3 Interval. 
 

Well Sand per
well sand 1 sand 2 sand 3 sand 4 sand 5 Net Sand

4301330638 0 0 0 0 0 0 0
4301330699 0 0 0 0 0 0 0
4301330747 0 0 0 0 0 0 0
4301330858 0 0 0 0 0 0 0
4301331205 0 0 0 0 0 0 0
4301331214 0 0 0 0 0 0 0
4301331225 0 0 0 0 0 0 0
4301331228 0 0 0 0 0 0 0
4301331250 0 0 0 0 0 0 0
4301331251 0 0 0 0 0 0 0
4301331270 0 0 0 0 0 0 0
4301331271 0 0 0 0 0 0 0
4301331272 0 0 0 0 0 0 0
4301331277 0 0 0 0 0 0 0
4301331435 0 0 0 0 0 0 0
4301331499 0 0 0 0 0 0 0
4301331503 0 0 0 0 0 0 0
4301331716 0 0 0 0 0 0 0
4301331817 0 0 0 0 0 0 0
4301331819 0 0 0 0 0 0 0
4301331971 0 0 0 0 0 0 0
4301331972 0 0 0 0 0 0 0
4301331973 0 0 0 0 0 0 0
4301332096 0 0 0 0 0 0 0
4301332104 0 0 0 0 0 0 0
4301332105 0 0 0 0 0 0 0
4301332132 0 0 0 0 0 0 0
4301332219 0 0 0 0 0 0 0
4301331240 1 2 0 0 0 0 2
4301331268 1 2 0 0 0 0 2
4301332098 1 2 0 0 0 0 2
4301332103 1 3 0 0 0 0 3
4301331269 1 4 0 0 0 0 4
4301332102 1 12.49 0 0 0 0 12.49
4301331229 2 2.5 7.02 0 0 0 9.52

D3 Sand  Thickness (ft)
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