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ABSTRACT 

 

Heat Transfer Characteristics of a Two-pass Trapezoidal Channel 

and a Novel Heat Pipe. (August 2007) 

Sang Won Lee, B.En., Inha University, Korea; M.S., Texas A&M University 

Co-Chairs of Advisory Committee: Dr. S. C. Lau 
                              Dr. Ed Marotta 

 
 
 
The heat transfer characteristics of airflows in serpentine cooling channels in 

stator vanes of gas turbines and the novel QuTech® Heat Pipe (QTHP) for electronic 

cooling applications were studied. The cooling channels are modeled as smooth and 

roughened two-pass trapezoidal channels with a 180° turn over a range of Reynolds 

numbers between about 10,000 and 60,000. The naphthalene sublimation technique and 

the heat and mass transfer analogy were applied. The results showed that there was a 

very large variation of the local heat (mass) transfer distribution in the turn and 

downstream of the turn. The local heat (mass) transfer was high near the end wall and 

the downstream outer wall in the turn and was relatively low in two regions near the 

upstream outer wall and the downstream edge at the tip of the divider wall in the turn. 

The variation of the local heat (mass) transfer was larger with ribs on two opposite walls 

than with smooth walls. The regional average heat (mass) transfer was lower in the turn 

and higher in the entire channel with the flow entering the channel through the larger 

straight section than when the flow was reversed. The pressure drop across the turn was 
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higher with the flow entering the channel through the larger channel than when the flow 

was reversed.  

Thermal performance of the QuTech® Heat Pipe was identified over a range of 

inclination angles between 90˚ and -90˚ and thermal mechanism of the QTHP was 

studied with GC-MS, ICP-OES, XRD, XPS, and DSC. This study resulted in the 

following findings: the performance of the QTHP was severely dependent on gravity; the 

QTHP utilizes water as working fluid; there were inorganic components such as Na, K, P, 

S, and Cr, etc.; and the vaporization temperature of the working fluid (mostly water) was 

lower than the boiling temperature of pure water. This was due to the presence of 

inorganic salt hydrates in the QTHP. It may be concluded that thermal performance of 

heat pipes increases with additional latent heat of fusion energy and energy required to 

release water molecules from salt hydrates. 
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CHAPTER I 

 
INTRODUCTION 

 

As technologies advance, researches on heat transfer are getting more important 

to achieve higher performance of devices. In particular, performance of gas turbine 

engines and CPUs has increased and their physical sizes have decreased. These smaller 

and more-efficient devices require their thermal energy to be dissipated faster and more 

efficiently. In order to dissipate thermal energy from the devices efficiently, knowledge 

on heat transfer related to the devices should be well defined. In cooling of airfoils of gas 

turbine engines, understanding of internal cooling schemes is required to achieve higher 

performance and thermal safety on their operation. Information on heat transfer 

distributions in the channels that model internal cooling geometries of gas turbine 

airfoils is essential to enhance the performance of internal cooling schemes. Similarly, in 

order to achieve higher performance and safe operation of CPUs, thermal energy 

dissipation devices such as heat pipes should be well understood and improved. With 

restrictions on space and heat sink materials of modern computers, passive and reliable 

devices that can dissipate thermal energy efficiently are essential. The purpose of this 

study is to obtain the detail thermal behavior of internal cooling channels that model gas 

turbine airfoils and a novel heat pipe that can be used in electronic applications.  

______________                                                                                                                    

The model journal is the ASME Journal of Heat Transfer. 
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1.1 HEAT (MASS) TRANSFER DISTRIBUTIONS IN A TWO-PASS TRAPEZOIDAL 

CHANNEL WITH A 180-DEGREE TURN 

 

Gas turbine engines are the most efficient among thermal engines. To increase 

the efficiency even further, it is critical to increase the inlet gas temperature thereby 

providing maximum useful thermal energy. Although state-of-the-art materials and 

thermal barrier coating technology have improved the performance of gas turbine blades, 

inlet gas temperatures are still limited. The combination of external and internal cooling 

of gas turbine airfoils has further increased the ability of the blade and vane to withstand 

high temperatures. By maximizing gas turbine blade cooling and minimizing the amount 

of fresh air drawn from the compressor, the gas turbine efficiency can be increased. In 

order to achieve higher efficiencies, knowledge of the cooling phenomena that occurs in 

gas turbine airfoils must be well defined. 

Gas turbine airfoil cooling is categorized as either external or internal cooling. 

Film cooling and transpiration cooling technologies are used for external turbine blade 

surfaces, while impingement and forced convective cooling are widely used in internal 

cooling of turbine airfoils. Internal cooling can be sub-categorized into three different 

cooling regions, as shown in Fig. 1; a leading edge region with bleed holes that typically 

relies on impingement and forced convective cooling, a serpentine region that relies on 

forced convective cooling with sharp-turn induced flow reattachment, impingement and 

secondary flow, and a trailing edge region with bleed holes, that relies on forced 

convective cooling which incorporates short pin fin induced flow. Among the three  
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Fig. 1  Schematic of internal cooling regimes of a gas turbine airfoil 
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regions of internal cooling, serpentine region cooling relies on, as aforementioned, the 

enhanced convective heat transfer in the 180o sharp turn channel(s), where flow 

impingement, recirculation, and reattachment as well as additional secondary flow 

induced by the imbalance between centrifugal force and pressure force in turn region(s) 

on the flow region are taking place. 

A literature survey shows that there have been a large number of studies on the 

heat transfer in stationary and rotating, straight and multi-pass channels, square and 

rectangular cross sections, and with rib-roughened walls. These studies have examined 

the effects of the aspect ratio of the channel, the geometry of the turn, the configuration 

of the ribs, and rotation, on the heat transfer distribution along the channel. The effects 

of rib configurations have been studied with transverse, angled (45˚, 60˚, 90˚, etc.), and 

discrete ribs and different angles of attack, height-to-hydraulic diameter ratios, pitch-to-

height ratios, and pitch-to-hydraulic diameter ratios in square and rectangular cross 

sectional channels. The effects of coriolis and buoyancy due to rotation and the effects of 

channel orientation also have been studied in channels with square and rectangular cross 

sections. The results of these studies are useful in the design of serpentine cooling 

passages with turbulators in gas turbines. Many of these studies were discussed in two 

separate chapters in Han et al. [1]. In the case of turbulator-enhanced heat transfer for 

square and rectangular channels with no rotation, earlier studies include those by 

Burggraf [2], Han et al. [3], and Boyle [4]. Examples of more recent studies are Han et 

al. [5], Lau et al. [6], Acharya et al. [7], Ekkad and Han [8], and Rhee et al. [9]. In the 

case of heat transfer in rotating channels with sharp turns and turbulators, there are 
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earlier studies such as Johnson et al. [10 and 11] and more recent studies such as Park et 

al. [12 and 13], Lee et al. [14], Cho et al. [15], Liu et al. [16], Zhou and Acharya [17], 

and Ekkad et al. [18]. Burggraf [2] conducted heat transfer experiments in a square 

channel with smooth walls and two opposite rib-roughened walls. The channel was 

connected with three different kinds of entrance configurations: smooth long inlet, a 

short inlet with a screen that generated a uniform turbulence, and a 180º bend inlet 

channel. He concluded that heat transfer performance increases not only on the two rib-

roughened walls but also on the two adjacent smooth walls, since neighboring turbulence 

promoters increase heat transfer. Han et al. [3] investigated the effects of rib height-to-

pitch ratio, rib angle-of-attack, and rib height-to-hydraulic diameter on heat transfer 

enhancement and friction loss in a square channel. Boyle [4] studied the effect of three 

different 180˚ bend geometries, of a rectangular, semi-circular, and rounded corner bend. 

He also investigated the effect of rib height on local heat transfer in a relatively short 

length-to-hydraulic diameter square channel with thermocouples and foil heaters. The rib 

height-to-hydraulic-diameter ratio he considered were 0.6, 5, 10, and 15% at Reynolds 

numbers of 20,000~100,000 based on the hydraulic diameter of channels.  He concluded 

that the three different 180˚ bend geometries had the same effect on heat transfer 

enhancement and the 5% rib height-to-hydraulic diameter ratio achieves highest heat 

transfer enhancement. Han et al. [5] studied local heat transfer distribution around a 180º 

turn in a two-pass square channel with smooth walls, and two opposing rib-roughened 

walls, by the naphthalene sublimation technique. They concluded that the flow 

separation and the secondary flow, that a 180º sharp turn induces, because heat transfer 
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enhancement after turn and the effect of ribs on two opposite walls along with those 

effects induced by 180º sharp turn further enhances heat transfer performance, compared 

to heat transfer enhancement on smooth walls. Lau et al. [6] studied the effects of V-

shaped ribs on two opposite walls on heat transfer enhancement in a square channel, 

compared to the effects of transverse or full angled ribs on two opposite walls. They 

concluded that V-shaped ribs, of 45º or 60º angle, on two opposite walls show better heat 

transfer enhancement than transverse or full angled ribs, of 45º or 60º angle, on two 

opposite walls which have higher pressure drops. Ekkad and Han [8] conducted 

experiments to obtain the effects of the configurations of transverse, 60º full angled, 60º 

V-shaped, and 60º broken (discrete) V-shaped ribs on the local heat transfer distributions 

around a 180˚ sharp turn in a square channel at Reynolds numbers of 6,000~60,000 

based on the hydraulic diameter of the channel with the transient liquid crystal  

 

 

 

Fig. 2  Cutaway view of serpentine region cooling channels of turbine airfoils  
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technique. The results showed that 60º full angled, 60º V-shaped, and 60º broken V-

shaped ribs have higher heat transfer enhancement than transverse ribs. Ekkad et al. [18] 

obtained the local heat transfer distributions at a sharp 180° turn in a two-pass square 

channel with smooth walls, rib turbulators on two opposite walls, and with bleed holes 

on two opposite walls. 

Research attention has been focused on heat transfer enhancement in smooth and 

rib-roughened walls, square and rectangular cross-sections, single and multi-pass 

channels with and without rotation. Experimental and numerical studies have modeled 

the serpentine region of the gas turbine airfoil mostly with square or rectangular cross-

sectioned channels, with and without multi-pass with 180° sharp turn(s).  However, these 

shaped cooling passages often have irregular cross sections. Internal cooling passages of 

the serpentine region of turbine airfoils are rather trapezoidal-shaped channels as shown 

in Fig. 2. A few studies, such as Taslim et al. [19 and 20], Li et al. [21], and Moon et al. 

[22], have been conducted to investigate the effects of irregular geometries on heat 

transfer performance with and without turbulators in single and multi-pass internal 

cooling passages. Taslim et al. [19] modeled cooling passages near the trailing edge of 

gas turbine airfoils and studied the effects of tapered ribs in trapezoidal channels on the 

heat transfer and pressure drop with and without bleed holes. They found that there was 

a large spanwise variation of heat transfer coefficients due to the non-uniform spanwise 

geometrical shape of the ribs and channels. Taslim et al. [20] presented heat transfer 

results for twelve straight channels with square and trapezoidal cross sections, with full 

ribs on two opposite walls, and with and without half-length ribs on the other two walls. 
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They found that the half-length ribs significantly enhanced the heat transfer on the two 

walls with full ribs. Li et al. [21] reported local heat transfer distributions for flows 

through wide trapezoidal channels with holes along a straight and zigzag divider wall, 

and with ejection slots along one outer wall. Moon et al. [22] conducted transient heat 

transfer experiments using encapsulated thermochromic liquid crystals to obtain the 

local distributions of the heat transfer coefficient on all of the walls at the turn of a 

smooth two-pass channel with a trapezoidal cross section. They considered various rates 

of air flow through the channel. They found that the heat transfer was much higher on 

the walls in the turn region and downstream of the turn than on the walls upstream of the 

turn. The turn caused high heat transfer in several distinct regions on the end wall, the 

outlet outer wall, and on the two opposite primary walls in the turn and downstream of 

the turn. The flow separated at the tip of the divider wall and reattached on the outlet 

inner wall in a location only a short distance from the turn. The heat transfer was the 

lowest on the inlet outer wall. Heat transfer enhancement due to the turn was the highest 

in the lowest Reynolds number case. The trends of the local heat transfer distributions on 

the various walls at the turn were relatively insensitive to varying the flow rate. 

Although Taslim et al. [19 and 20] and Li et al. [21] investigated the effects of irregular 

geometries, i.e. trapezoidal cross sectional channels, on heat transfer performance with 

and without turbulators, the effects of irregular geometries on heat transfer performance 

with and without turbulators have not been studied in multi-pass channels. 

In this study, cooling channels in turbine airfoils were modeled as a channel with 

two straight trapezoidal sections connected with a sharp 180° turn.  The effect of the turn 
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on the distribution of the local heat transfer was studied for the cases of a channel with 

smooth walls, a channel with transverse ribs on one wall, and a channel with transverse 

ribs on two opposite walls. Naphthalene sublimation experiments were conducted to 

obtain the mass transfer distributions, and the heat and mass transfer analogy was used to 

convert the mass transfer distributions to heat transfer distributions. The results of this 

study should help gas turbine designers determine local temperature distributions in 

cooling passages in turbine airfoils and to identify regions with large temperature 

variations and high thermal stresses. The results will also enable engineers to develop 

numerical models to optimize these internal cooling passages to improve the thermal 

performance of gas turbines. 
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1.2 THERMAL CHARACTERISTICS AND MECHANISMS OF A NOVEL HEAT 

PIPE 

 

Since the initial conceptual introduction of heat pipes and closed two-phase 

thermosyphons (gravity assisted wickless heat pipes) by Perkins and Buck [23], Gay 

[24], Gaugler [25] and Grover et al. [26], as mentioned in Peterson [27], numerous 

investigations have been conducted to understand the characteristics and limitations of 

these devices. Research efforts have helped to maximize performance of heat pipes and 

thermosyphons in various applicable fields such as airspace and aircraft cooling, heat 

exchangers, electronic cooling, and solar energy conversion. In the 1980s and early 

1990s, special focus was placed on the research and development of heat pipes and 

closed two-phase thermosyphons in airspace and aircraft industries [28 and 29]. The 

reason heat pipes and closed two-phase thermosyphons have been widely used is that 

there are three representative advantages of heat pipes and closed two-phase 

thermosyphons when compared to heat transfer devices that utilize single-phase or 

conductive heat transport mechanism. These advantages are cited by Peterson [27] and 

Eastman [30].  First, heat pipes and closed two-phase thermosyphons have several orders 

of magnitude higher heat capacity than even the best solid conductors, depending on 

their size.  This is because of the two-phase heat transport between a liquid and its vapor 

through latent of heat of vaporization. The two-phase heat transport mechanism provides 

higher heat transfer by several orders of magnitude when compared to other devices 

utilizing single-phase or conductive heat transport mechanism. Second, heat pipes and 
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closed two-phase thermosyphons can be used as isothermal devices with a very low 

penalty of temperature drop through the heat transport medium. A large amount of heat 

can be transported through very low temperature difference of less than several degrees. 

Third, the thermal response time of heat pipes and closed two-phase thermosyphons is 

much shorter than other heat transfer devices and is not dependent on their length. 

Research and development on heat pipes and closed two-phase thermosyphons has been 

actively implemented, because of the above mentioned superior advantages to 

conventional heat transfer devices. 

Dobran [28] reviewed research and development on heat pipes that had been 

conducted in 1980s. Most research conducted in that decade was related to space 

applications where gravity can not play a dominant role on returning the working fluid to 

an evaporator. He selectively reviewed the developments in heat pipe internal geometry 

which helped to maximize the capillary force on the working fluid. The internal 

geometry helps to return the working fluid to the evaporator by maximizing the capillary 

force and minimizing contact of liquid flow with counter-current vapor flow. The 

geometries which have been developed are monogroove, tapered artery, trapezoidal 

axially grooved, dual slot, double wall, and dual pair artery wick. As mentioned earlier, 

those geometries focused on separation of liquid flow with counter-current vapor flow to 

minimize flooding or entrainment limit which is the usual limiting factor against 

operation of heat pipes that are used in space and aircraft applications where high 

operating temperatures and high heat transfer capacities are demanded. 
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Due to electronic technology advancement in the early 1990s, dissipation of 

generated heat has become very challenging. Dissipation of the generated heat is 

required to ensure reliable operation of the more advanced microelectronic devices. In 

order to meet these thermal dissipation requirements, interest in heat pipes and closed 

two-phase thermosyphons has increased. Palm and Tengblad [31] reviewed studies on 

heat pipes and closed two-phase thermosyphons (thermosyphon pipe, thermosyphon 

loop, and advanced thermosyphon loop with extended condenser and evaporator 

surfaces) applicable to cooling of electronics. They concluded that when possible in 

design respects, closed two-phase thermosyphon pipes or loops that utilize gravity to 

return working fluid to an evaporator need to be considered first. This is because of the 

higher thermal efficiency and capacity of the thermosyphon when compared to heat 

pipes. Nevertheless, heat pipes that use capillary force to return liquid should be 

considered where horizontal thermal transport is indispensable.  

The thermal characteristics of heat pipes and closed two-phase thermosyphons 

are dependent on inclination angles, filling charge ratios (FR), geometries, and power 

densities (heat transport capacities). Hahne and Gross [32] showed that a closed two-

phase thermosyphon has its maximum performance at 40˚ angle from its vertical 

position (evaporator at bottom and condenser at top). The performance is strongly 

dependent on whether the generated condensed liquid film inside wall in the condenser 

region is turbulent or laminar. They mentioned that laminar film inside wall should be 

avoided to achieve higher performance. Gurses et al [33] and Bilegan and Fetcu [34] 

also showed that the effect of inclination angle on performance of heat pipes is critical 
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with worst performance at the horizontal location. Park et al. [35] investigated the effect 

of the filling charge ratio (FR) of the working fluid on thermal performance in a closed 

two-phase thermosyphon. They found that an increase of the FR does not enhance the 

heat transfer in the evaporator. However, it enhances the heat transfer in the condenser, 

because heat transfer occurs from higher temperature working fluid to the lower part of 

condenser directly without vaporization when the FR is large. They also mentioned that 

the maximum heat transfer limit varies with different the FRs. When the FR is small, 

dry-out of two-phase closed thermosyphon occurs from the bottom of the evaporator. 

When it is large, dry-out occurs from the top of the evaporator by flooding limit. Noie 

[36] studied the thermal characteristics of a two-phase closed thermosyphon with the 

working fluid filling charge ratio ranging from 30 to 90% and a variation in length of the 

evaporator. He found that the length of the evaporator and the filling ratios are 

intrinsically related to each other. El-Genk and Saber [37] developed a 1-D steady state 

model that provides the operating range and limit of closed two-phase thermosyphon 

with specified working fluids, initial filling charge ratio, evaporator length, power input, 

vapor temperature, and tube diameter. They concluded that tube diameter, evaporator 

length, and vapor temperature are dominant factors on thermal performance of closed 

two-phase thermosyphon, rather than condenser or adiabatic section length. 

Although heat pipes and closed two-phase thermosyphons, which utilize two-

phase latent heat of vaporization, are superior to other types of heat transfer devices and 

improved during the past few decades, improvements with even more advanced 

technology will help to meet the higher thermal dissipation requirements. One possible 
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alternative to improve current heat pipes or closed two-phase thermosyphons is the 

QuTech®’ Heat Pipe (QTHP). 

The QTHP claims to be different from conventional heat pipes and closed two-

phase thermosyphons with respect to thermal transport mechanism. Conventional heat 

pipes and closed two-phase thermosyphons utilize latent heat of vaporization of the 

working fluid to remove supplied thermal energy. The QTHP has three coated layers 

inside the tube, as mentioned in US Patent 6,132,823 [38]; the first layer is the ‘anti-

corrosion layer’ that prevents etching or oxidizing of the inner surface of the tube. It 

consists of sodium, beryllium, manganese, aluminum, calcium, boron, and dichromate 

radical and has a thickness of 8~12 μm. The second layer is the ‘active heat transfer 

layer’ that prevents generation of hydrogen and oxygen and serves as the heat transfer 

medium by conduction. It consists of cobalt, manganese, beryllium, strontium, copper, 

titanium, potassium, aluminum, dichromate radical and has a thickness of 8~12 μm. The 

third layer is the ‘black powder layer’ that transfers heat or energy through oscillation 

and consists of potassium dichromate, sodium dichromate, silver dichromate, 

monocrystalline silicon, beryllium oxide, strontium dichromate, boron oxide, aluminum 

dichromate, and manganese dichromate, as shown in Fig. 3.  

The focus of this study is to determine/quantify the thermal characteristics of the 

QTHP and identify the possible thermal transport mechanism of the QTHP by means of 

chemical and thermal analysis. Thermal performance of the QTHP was characterized at 

various inclination angles and power throughput to an evaporator of the QTHP. Its 

performance was compared against the performance of a conventional closed two-phase 
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copper-water thermosyphon. Chemical and thermal analyses were conducted to obtain 

chemical compositions and thermal characteristics by means of Gas Chromatograhy-

Mass Spectrometry (GC-MS), Inductively Coupled Plasma-Optical Emission 

Spectrometer (ICP-OES), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction 

(XRD), and Differential Scanning Calorimetry (DSC).  

 

 

 

 

Fig. 3  Schematic of solid compounds that is claimed to have three solid layers inside 

surface of QuTech®’s Heat Pipe, as mentioned in US Patent 6,132,823 [38] 
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CHAPTER II 

 

HEAT (MASS) TRANSFER DISTRIBUTIONS IN A TWO-PASS 

TRAPEZOIDAL CHANNEL WITH A 180-DEGREE TURN 

 

 

2.1 EXPERIMENTAL APPARATUS 

 

A schematic of the test apparatus used in this study is shown in Fig. 4. The test 

section (trapezoidal channel with 180° sharp turn) was connected to a 6.35-cm inner 

diameter PVC pipe open flow loop. The flow loop consisted of a settling plenum 

chamber, an orifice flow meter with a 3.81-cm hole-diameter orifice plate, an air-flow 

control valve, and two centrifugal blowers connected in series. The test section was a 

two-pass channel with two straight sections of different trapezoidal cross sections, 

connected with a sharp 180° turn. The channel was constructed of 1.91-cm thick pine 

wood. As shown in Fig. 5, the length of each straight section, or the distance between the 

channel inlet, or exit, and the end wall at the turn, was 61.0 cm [see Fig. 5(a)], while the 

width of each section was 3.81 cm and the thickness of the inner/divider wall between 

the two sections is 1.91 cm [see Fig. 5(c)]. The width of the clearance at the turn, i.e. the 

distance between the tip of the divider wall and the end wall, was also 3.81 cm. The top 

and bottom walls of the test channel were both flat and were at an angle of 21.8° with  
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respect to each other, such that the heights of the outer and inner vertical walls of one 

straight section were 3.81 cm and 5.33 cm, and the heights of the inner and outer vertical 

walls for the other straight section were 6.10 cm and 7.62 cm, respectively, as shown in 

Fig. 5(d). All of these dimensions are for the inside surfaces of the channel walls. 

As shown in Fig. 5(a), a 30.9-cm long U-shaped section on the inside surface of 

the bottom wall was hollowed out to a 0.97-cm depth to facilitate the installation of 

sixteen aluminum cassettes for the determination of the streamwise variation of the 

regional average mass transfer coefficient along the channel. Each of the sixteen 

cassettes was 0.97 cm thick and had a 0.38 cm deep cavity, as shown in Fig. 6. Fourteen 

square cassettes with sides of 3.81 cm, including two 0.76-mm thick rims that were not 

mass transfer active surfaces, were used in the straight portions of the two channels [see 

Fig 6(a)]. Whereas, two other cassettes at the turn region had a height of 4.76 cm, 

including a 0.76-mm thick rim, due to the 1.91-cm thick divider wall [see Fig. 5(c)] and a 

width of 3.81 cm [see Fig. 6(b) and 6(c)]. During the casting process, the cavity was 

filled with naphthalene, exposing a smooth, flat surface that was mass transfer active. 

The width of the naphthalene surfaces on the fourteen cassettes was 3.81 cm, which was 

the same as the width of each straight section of the test channel. The two other cassettes 

that made up the portion of the bottom wall at the turn with naphthalene surfaces 

measured 3.73 cm x 4.69 cm, excluding each 0.76-mm thick rim from width and height 

of cassettes. Once these sixteen cassettes were installed, the 30.5-cm long inner surface 

of the bottom wall was mass transfer active, except for the top of two 0.76-mm wide 

rims of each cassette, as mentioned earlier. The other two wider rims of each cassette,  
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(a) Aluminum cassette along two straight channel of test section 

 

 

 

(b) Aluminum cassette at upper turn region of Fig. 5(a) 

 

Fig. 6  Schematics of aluminum cassettes to contain mass transfer active surfaces along 

test channel 
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(c) Aluminum cassette at lower turn region of Fig 5(a) 

 

 

(d) Aluminum cassette at turn region for local mass transfer experiment of Fig 5(e) 

 

Fig. 6  (continued) 
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with a thickness of 3.81 mm, were hidden underneath the divider wall, one of the two 

outer walls, or the end wall. The bottom wall, therefore, consisted of a 30.5-cm long 

mass transfer inactive entrance to ensure hydro-dynamically fully developed flow before 

the flow was exposed to mass transfer active surfaces. The entrance and outlet regions 

were connected with 30.5-cm long mass transfer active surfaces around the 180º sharp 

turn region. 

To enable the measurement of the distribution of the local mass transfer at the 

turn, the eight cassettes closest to the turn were replaced with a U-shaped cassette [see 

Fig. 5(e)]. The U-shaped cassette had a width of 3.81 cm and a height of 15.24 cm, 

including a 0.76-mm thick rim at entrance and outlet, as shown in Fig. 6(d). Once this U-

shaped cassette was installed on the bottom wall, the surface of the entire turn region of 

the bottom wall was mass transfer active for local mass transfer distribution experiments. 

For confidence of local mass transfer experiments, weighing of the U-shaped cassette 

was required for comparison with averaged mass transfer of all of measuring points of 

the U-shaped cassette. In order to weigh the U-shaped cassette, an electronic balance that 

had range up to 160.0 g was used. The U-shaped cassettes were machined to have a 

0.48-cm thickness and 0.23-cm deep cavity [see Fig. 6(d)]. A 0.49-cm thickness U-

shaped plate was placed underneath the U-shaped cassette so that it would fit into the 

0.97-cm deep hollowed-out space of the bottom wall of the test channel.  

Regionally averaged mass transfer coefficients were obtained with turbulence 

promoters (ribs). Two different cases were considered. The first case used ribs on the 

bottom wall only. The second case used ribs on both the top and bottom walls. Local  
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Fig. 7  Schematic of trapezoidal channel with 3.2 mm by 3.2 mm square transverse ribs 

and two pressure taps installed on both top and bottom walls and on top and side walls of 

each passage, respectively 

 

mass transfer coefficients were obtained for only one case; ribs on the bottom and top 

wall. For all cases studied, the rib spacing was 3.81 cm as shown in Fig. 7. 

These ribs were 3.2 mm x 3.2 mm square stripes of balsa wood. Thus, the 

distance between two consecutive ribs was equal to 12 times the height of the ribs. On 

each naphthalene cassette, the balsa wood strip was installed on top of the 0.76-mm thin 

rim along the downstream edge of the cassette to maximize mass transfer active surface 

area of each cassette. 

To measure pressure drops and obtain friction factors through the turn of the 

channel, two pressure taps were installed at a distance of 17.15 cm from the end wall of 

each straight channel [see Fig. 7]. To insure proper measurements of gauge pressure 
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across the turn of the channel, each passage of the test channel had the two pressure taps, 

because of the trapezoidal shaped cross-section of the channel. 

 

 

2.2 EXPERIMENTAL PROCEDURE 

 

As was shown in Fig. 5(d), the test section has two trapezoidal straight sections 

with a divider wall in-between the two sections. The experiments first used the smaller 

trapezoidal section as the inlet with the larger section as the outlet. Afterwards, the larger 

trapezoidal duct was used as the inlet and the smaller duct served as the outlet. For each 

test configuration mentioned, four Reynolds numbers were considered. Regional average 

and local mass transfer coefficients are obtained for air flows through the test channel 

with smooth walls, and with transverse ribs on one wall and on two opposite walls.  The 

analogy of heat and mass transfer is applied to convert the mass transfer coefficients to 

heat transfer coefficients.  

The two-pass trapezoidal test channel was connected to a settling chamber 

(plenum) and then to an open air flow loop [see Fig. 4]. During an experiment, fresh air 

was drawn, by two centrifugal blowers connected in series, through the flow loop from 

the air-conditioned laboratory and the exhaust air that contained naphthalene vapor was 

ducted to the outside of the laboratory through a fume hood.  The air mass flow rate was 

controlled with a valve and was calculated from measured pressure drop through an 

ASME sharp edge 3.81-cm hole-diameter orifice plate and absolute pressure upstream of 
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the orifice plate. The pressure drop was measured with an inclined manometer and the 

upstream pressure was measured with a calibrated Cole Parmer pressure transducer with 

a digital TRMS multi-meter. The temperature of the air at the entrance of the test section 

was measured with two 30 gage T-type thermocouples, which were carefully calibrated 

with a NIST calibrated thermometer and a constant temperature bath, and was monitored 

continuously with a data acquisition system over the duration of the experiment. The 

data acquisition system consisted of a National Instrument’s PCI-6024E board, a SCXI-

1102 conditioner, a TC-2095 terminal block, and a computer on which Labview 7.0 was 

installed. 

To ensure that the naphthalene in all of the cassettes was in thermal equilibrium 

with the air in the air-conditioned laboratory, the cassettes were stored in sealed plastic 

bags in the laboratory for at least 12 hours before an experiment. After each experiment, 

the remaining naphthalene in all of the cassettes were melted and thrown away. All of 

the cassettes were cast with new melted naphthalene to ensure best results of regional 

average and local mass transfer experiments.  

To obtain the pressure drop across the turn, two pressure taps were installed on 

the top wall and the outer side wall, respectively, in each of the two straight sections of 

the trapezoidal test channel, as mentioned earlier [see Fig. 7]. These pressure taps were 

located on the centerlines of the walls at a distance of 17.15 cm and 43.80 cm from the 

channel end wall and the channel inlet and exit, respectively.  The difference in the static 

pressures at these two pairs of taps was measured with a Dwyer 1430 microtector 

electronic point gage that could measure up to a 5.08-cm water column with a resolution 
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of ± 6.35 × 10-3 mm or a calibrated Cole Parmer pressure transducer with a digital TRMS 

multi-meter that could measure up to a 25.40-cm water column with a resolution of ± 

2.54 × 10-2 cm, depending on the range of the measured pressure drops through the turn 

of the trapezoidal channel. 

To validate the experimental method, additional local and average mass transfer 

experiments were conducted for flow through a two-pass square channel. For these 

experiments, the test channel had the same bottom wall with the naphthalene cassettes as 

the trapezoidal channel, and the side walls, the divider wall, and end wall had a height of 

3.81 cm, the same as the width of each straight section of the channel. Experiments were 

conducted to obtain the local mass transfer distributions on the bottom wall at the turn, 

and the streamwise variations of regional average mass transfer, for four different air 

flow rates. The local mass transfer distributions at the turn and the variations of regional 

average mass transfer obtained were compared with those reported by other researchers 

in the open literature. 

 

 

 

2.2.1 Regional Average Heat (Mass) Transfer 

 

Before each regional average mass transfer experiment was conducted, pre-

determined air flow rate, which gave turn-clearance based Reynolds number of 9,400 ~ 

57,200, was carefully adjusted with a valve to minimize preparation time of each 
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experiment and thus un-wanted mass transfer loss. To determine the variation of the 

sixteen regional average mass transfer coefficients along the two-pass test channel, the 

sixteen naphthalene cassettes were weighed and recorded five times for a statistical 

purpose, one at a time, with a Sartorious electronic balance that had a range up to 160.0 

g with a resolution of 0.1 mg before and after the experiment. Each experiment was run 

for 15, 25, 35, and 60 minutes with corresponding turn clearance based Reynolds 

number of 57,200, 31,800, 16,800 and 9,400, respectively. Duration of each experiment 

was carefully chosen such that amounts of the sublimated naphthalene for each cassette 

were comparable to each other for four different Reynolds numbers to minimize 

uncertainties of the experiments. Installation and un-installation of the sixteen cassettes 

in the test section were executed carefully and promptly to minimize un-wanted mass 

transfer loss to ambient. Every step in each experiment including weighing of the sixteen 

cassettes before and after the experiment, installation and un-installation of the sixteen 

cassettes in the test section, assembly and disassembly of the test channel, and turning on 

and off blowers was timed to account for an amount of the un-wanted mass transfer 

during the experiment. The difference between the weights of each of sixteen cassettes 

gave an amount of the mass transfer from the naphthalene surface of a cassette to airflow 

during the experiment, which was reduced to regional average mass transfer distribution 

along the test channel. Auxiliary experiments were conducted, after each experiment was 

performed, to account for mass transfer loss that was sublimed during the start and end 

of the suction pump(s) operation and the preparation of the experiment.  
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Fig. 8  Schematic of height measurement system: a Starrette LVDT Lever Type Gauge, 

an amplifier, a X-Y coordinate table with two stepping motors, a Velmex stepping motor 

controller, and a data acquisition system for local mass transfer experiments 

 

 

2.2.2 Local Heat (Mass) Transfer 

 

In order to measure height differences that were reduced to local mass transfer 

coefficient distributions on the U-shaped cassette, a Starrette electronic depth gauge was 

positioned and measured heights of pre-determined points on the U-shaped cassette by 

moving a X-Y coordinate table that the U-shaped cassette was placed on, as shown in 

Fig. 8. The electronic depth gauge had a lever type LVDT head with a range of ±0.2 mm 

and a resolution of 0.002 mm, and the X-Y coordinate table was controlled by two 
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Fig. 9 Schematic of pre-determined 3,776 measuring points on U-shaped aluminum 

cassette for local mass transfer experiments 

 

  

stepping motors and a Velmax NF90 stepping motor controller. The stepping motor 

moved 5.08 × 10-3 mm per step. The motor controller was controlled by a computer that 

Labview was installed on. The computer recorded height data from the electronic depth 

gauge. The U-shaped cassette was placed on the X-Y coordinate table, elevations on 

3,776 points of region 1, 2, and 3 on the U-shaped cassette, including elevations on the 

top surface of the rim of the U-shaped cassette, were measured [see Fig. 9]. The 
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elevations on the top surface of the rim were measured to determine the location of the 

reference plane of the naphthalene surface in the calculations of the elevation changes at 

the grid points on the naphthalene surface. The changes of the elevations at the grid 

points were used to calculate the local mass transfer coefficients. In order to keep the 

same experimental conditions with the regional average mass transfer experiments, four 

cassettes upstream of the U-shaped cassette and four cassettes downstream of the U-

shaped cassette were also prepared to be mass transfer active surface. Each experiment 

was run for 40, 60, 90, and 140 minutes, with corresponding Reynolds number of 

57,200, 31,800, 16,800 and 9,400, respectively. Duration of each experiment was 

carefully adjusted so that an amount of mass transfer for each experiment was 

comparable to each other experiments at different Reynolds numbers. 

As the regional average mass transfer experiments, auxiliary experiments were 

conducted, after each experiment was performed, to account for the un-wanted mass 

transfer amount that was included in the obtained local mass transfer results during 

startup and shutdown of blowers, weighing the cassette, and measuring elevations on the 

surfaces of the cassettes, etc. 
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2.3 DATA REDUCTION 

 

Based on pre-determined channel turn-clearance based Reynolds numbers to be 

used for experiments, pressure drop through orifice and absolute upstream pressure of 

orifice were estimated. When experiments were conducted, measured pressure drop and 

absolute upstream pressure of orifice, with an inclined manometer and a Cole Parmer 

calibrated pressure transducer, respectively, were used to obtain air mass flow rate 

through orifice with the following equation 
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where op  was the absolute upstream pressure of the orifice, opΔ  was the pressure drop 

through orifice, orT  was the temperature at the orifice, od  was the diameter of the orifice 

and was equal to 3.81 cm, η  was the orifice-diameter-to-pipe-diameter ratio and was 

equal to 0.6, and R was the universal gas constant for air of 287 [ ]KkgJ ⋅ . Discharge 

coefficient, C, was obtained from 
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where pipe Reynolds number, dpRe , was given by 
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where pd  was the diameter of the pipe at the orifice and was equal to 6.35 cm. 

Expansion coefficient, Y, was obtained with 
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Once air mass flow rate was determined for each experiment, Reynolds number 

for flow through the test channel was obtained by 
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where hD  and Pw were the hydraulic diameter and the perimeter of the rectangular flow 

cross section between the tip of the divider wall and the end wall. For the same air mass 

flow rate, the two Reynolds numbers based on the hydraulic diameters of the trapezoidal 

cross sections of the two straight sections of the test channel were 10.5% smaller and 

13.5% larger than this Reynolds number based on the hydraulic diameter of the cross 

section at the turn clearance. 

The segmental (or regional average) mass transfer coefficient was defined as 
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where nMΔ  was the total mass transfer from the naphthalene surface of a cassette to the 

air, tΔ  was the duration of the experiment, over which air flowed steadily through the 

test channel. The vapor density of naphthalene at the wall, wv,ρ , was evaluated using the 

ideal gas equation of state that was defined as 
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where the vapor pressure-temperature correlation for naphthalene, by Ambrose et al. 

[39], was obtained using  
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The average bulk vapor density of naphthalene, ,v bρ , was the average of the 

vapor densities at the upstream and downstream edges of the naphthalene surface being 

considered, and was calculated as 
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where nM&  was the rate of total mass transfer from the upstream naphthalene surfaces, 

and V&  was the air volumetric flow rate. 

The local mass transfer coefficient was defined as 
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where nM ′′&  was the local naphthalene mass flux, sρ  was the density of solid naphthalene, 

and zΔ  was the local change of elevation on the naphthalene surface.  The local bulk 

vapor density, bv,ρ , in Eq. (10) was the rate of total mass transfer from naphthalene 

surfaces upstream of the grid point divided by the air volumetric flow rate. 

The segmental and local Sherwood numbers were defined, respectively, as 

m hh DSh
σ

=  and m hh DSh
σ

=          (11) 

where σ was the mass diffusion coefficient for naphthalene vapor in the air, which was 

determined with a correlation given in Goldstein and Cho [40]. 
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According to the analogy between heat transfer and mass transfer described in 

Eckert [41], regional average and local heat and mass transfer analogy were defined, 

respectively, as 

0 0

Nu Sh
Nu Sh

=  and 
0 0

Nu Sh
Nu Sh

=          (13) 

where the reference Nusselt number and Sherwood number were based on the Dittus-

Boelter correlations [42] for a fully developed turbulent flow at the same Reynolds 

number through a smooth channel. 

4.08.0
0 PrRe023.0 DhNu =                                                                           (14) 

4.08.0
0 Re023.0 ScSh Dh=                                                                            (15) 

where Schmidt number, Sc, was obtained by 
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A friction factor based on pressure drop across turn was obtained using 
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where pΔ  was the pressure drop across the sharp turn, L was the streamwise distance 

between the locations of the pressure taps along the centerline of the test channel, and Ac 

was the channel flow cross-sectional area at the turn clearance. The experimental friction 

factor was normalized by the friction factor for fully developed turbulent flow at the 

same Reynolds number in a smooth channel, 0f , which was given in [42]. 

( )[ ] 2
0 64.1Reln79.0 −−= Dhf                                                                   (18) 

The estimation of uncertainty values was based on a confidence level of 95% (or 

20:1 odds) and the relative uncertainty analysis method of Coleman and Steele [43].  

Also, in all uncertainty calculations, uncertainty values of 1.0% for all properties of air 

and 0.25 mm for all physical dimensions were used.  

The uncertainty of the air mass flow rate was calculated from the uncertainties of  

the measured pressures at the orifice flow meter, and was found to be 2.9%.  The 

maximum uncertainty of the calculated Reynolds number was 3.1%. 

Using uncertainty values of 1.0% for the density of solid naphthalene and the 

uncertainty of the measured values of zΔ , the uncertainty of the local mass transfer 

coefficient was estimated to be 10.9%.  Similarly, using the uncertainty of the measured 

values of nMΔ , the uncertainty of the average mass transfer coefficient was estimated to 
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be 7.7%.  According to Goldstein and Cho [40], the diffusion coefficient of naphthalene 

vapor in air had an uncertainty of about 2.0%.  With this value, the calculated values of 

the relative uncertainties for the local and average Sherwood numbers were 11.1% and 

8.0%, respectively.  

Using the maximum uncertainty values of 4.0% for the measured pressure drops 

and 2.9% for the air mass flow rate, the maximum value of the relative uncertainty of the 

friction factor was calculated to be 7.8%. 

 

 

 

2.4 PRESENTATION AND DISCUSSION OF RESULTS 

 

In this section, the distributions of the local and regional average mass transfer 

coefficient at the 180° turn and along the test channel are presented. The detailed 

distributions are based on the measurements of the local elevations at a grid of 3,776 

points on the naphthalene surface (and on the top surface of the rim) of the U-shaped 

cassette on the bottom wall at the turn [see Fig. 5(e)]. The results are presented as 

contours of constant Sh/Sh0 values, for air entering the test channel through the smaller 

trapezoidal straight section and through the larger trapezoidal straight section, for the test 

channel with all smooth walls and with transverse ribs on two opposite walls, and for 

four Reynolds numbers.  The variations of the regional average mass transfer coefficient 

along the test channel are based on the weighing of the sixteen naphthalene cassettes 
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[see Fig. 5(c)]. The regional average results are presented as variations of 0/Sh Sh  along 

sixteen segments of the bottom wall of the test channel, for air entering the test channel 

through the smaller straight section and through the larger straight section, for the test 

channel with all smooth walls, and with transverse ribs on the bottom wall only and on 

both the top and bottom walls, and for four Reynolds numbers. According to the heat 

and mass transfer analogy [Eq. (13)], the local and regional average distributions give 

the distributions of the respective Nusselt numbers for airflows through the two-pass 

trapezoidal channel relative to those for fully developed turbulent flows of air through a 

smooth straight channel at the same Reynolds numbers. 

The results of this study are reported in this section for four nominal Reynolds 

numbers. The actual values of the Reynolds numbers deviate from the respectively 

nominal values by a maximum of ±2.9%. 

The results of Sh/Sh0 were validated with both the obtained 0/Sh Sh  of the U-

shaped naphthalene cassette by weighing the U-shaped cassette and the results of 

streamwise variations of 0/Sh Sh  obtained with the sixteen naphthalene cassettes. The 

results of regional average and local mass transfer distributions were again validated 

with the well-known results of the turn in a square channel.  
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2.4.1 Validation of Results of Local Mass Transfer Distributions 

 

To validate the results of local mass transfer distributions, 0/Sh Sh  that were 

obtained by averaging Sh/Sh0 of the total measured elevations on the mass transfer active 

surface of the U-shaped cassette were compared with 0/Sh Sh  that were obtained from 

weighing the U-shaped cassette before and after the experiments. The estimated area-

weighted 0/Sh Sh  from Sh/Sh0 were in very good agreement with 0/Sh Sh  obtained from  

 

 

(a) Square channel with smooth walls 

 

Fig. 10  Comparisons of the area-weighted regional averages of the local mass transfer 

coefficients with the results of the regional average mass transfer coefficients 
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(b) Trapezoidal channel with smooth walls, air entering smaller straight section 

 

 

(c) Trapezoidal channel with ribs on two walls, air entering smaller straight section 

 

Fig. 10  (continued) 
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(d) Trapezoidal channel with smooth walls, air entering larger straight section 

 

 

(e) Trapezoidal channel with ribs on two walls, air entering larger straight section 

 

Fig. 10  (continued) 
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Table 1  Maximum and average errors of the sixteen area-weighted regional average 

mass transfer coefficients obtained from the results of the local mass transfer 

experiments compared with the sixteen regional average mass transfer results 

 

Trapezoidal channel 
Case Square 

channel Air through smaller section Air through larger section 

Wall 
roughness Smooth Smooth Ribs on 

two walls Smooth Ribs on 
two walls 

Max. Error 13.0 % 13.7 % 11.0 % 9.3 % 17.5 % 

Ave. Error 3.7 % 3.7 % 3.9 % 3.9 % 5.0 % 
 

 

 

the weight measurement of the U-shaped cassette with a maximum error of 8.0%. With 

the confidence of the results of the local mass transfer experiments, point-by-point local 

mass transfer coefficients of one mass transfer active surface of the U-shaped cassette 

were averaged to have the eight streamwise regional average mass transfer coefficients 

that were consistent with the results of the regional average mass transfer experiments in 

size and locations, to be compared with the regional average mass transfer experiment 

results, as shown in Fig. 10. The area-weighted eight regional average mass transfer 

coefficients were also in good agreement with the results of the regional average mass 

transfer experiments. Table 1 shows maximum and average errors of the area-weighted 

eight regional average mass transfer coefficients obtained from the local mass transfer 
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experiments based on the regional average mass transfer experiment results. Although 

maximum errors were 17.5%, average errors of the eight averaged mass transfer 

coefficients of the local mass transfer experiments were in very good agreement with the 

results of the regional average mass transfer experiments with maximum error of 5.0%. 

The reason of the highest discrepancy with the results of the regional average mass 

transfer experiments may be discrepancy of the flow condition on the entrance of 

cassettes at the bottom wall of the test channel; discrepancy of very thin rim of the 

entrance region between the cassette for regional average mass transfer experiments and 

the U-shaped cassette for the local mass transfer experiments. Except the entrance 

region, the local mass transfer experiment results were in very good agreement with the 

regional average mass transfer results, as shown in Fig. 10.  

Although experimental method of the local mass transfer results were validated 

with regional average mass transfer results, regional average and local mass transfer 

results should be also validated with the well-known results of square channels. 
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Air in 

Air out 

 

(a) Re ≅ 10,000 

 

Air in 

Air out 

 

(b) Re ≅ 18,500 

 

Fig. 11  Local mass transfer distributions at sharp turn in square channel with smooth 

walls 

Sh/Sh0 
(Nu/Nu0) 
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1.0 2.0 3.0 4.0 5.0  

 

Air in 

Air out 

 

(c) Re ≅ 34,500 

 

Air in 

Air out 

 

(d) Re ≅ 65,000 

 

Fig. 11  (continued) 

 

Sh/Sh0 
(Nu/Nu0) 



 47

2.4.2 Mass Transfer Distributions for Square Channel with Smooth Walls 

 

As mentioned earlier, local and regional average mass transfer results were 

obtained for air flow through a two-pass 3.81-cm square channel to validate the 

experimental method. Fig. 11 gives the local mass transfer distributions at the turn on the 

bottom wall of the 3.81-cm square channel for four different Reynolds numbers between 

10,000 and 65,000. As expected, the highest and lowest Sh/Sh0 are obtained at lowest 

Reynolds number of 10,000 and 65,000, respectively. Because the Sh/Sh0 distributions 

are quite similar to one another, the shape of the local mass transfer distribution at the 

turn is not significantly affected by varying the air mass flow rate. The Sherwood 

number ratio is low and is almost constant, with a value of about 1.0, near the end of the 

straight section upstream of the turn, and increases along the main flow direction in the 

turn, with higher values near the outer walls and lower values near the tip of the divider 

wall in the turn. The ratio remains quite high downstream of the turn, and then it 

decreases further downstream along the second straight section as the flow redevelops.  

The mass transfer is high at the base of the upstream half of the end wall as the flow is 

deflected from the end wall onto the bottom wall. When the flow is pushed by 

centrifugal forces at the turn toward the downstream outer wall and is then deflected 

onto the bottom wall, the mass transfer on the bottom wall is very high along the 

downstream outer wall. A low mass transfer region near the upstream outer wall in the 

turn is the result of flow recirculation, as the flow is deflected from the end wall and 

turns downstream around the tip of the divider wall. 
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The vigorous mixing at the turn increases the turbulence in the flow and causes 

the mass transfer to be high over a large portion of the bottom wall in the turn and 

downstream of the turn. A distinctive relatively low mass transfer region between the 

downstream inner and outer edges of the turn may be caused by the interaction between 

the separated flow from the upstream edge of the divider wall and the deflected flow 

from the end wall toward the bottom wall. A third region of relatively high mass transfer 

is observed near a rather small region of slightly lower mass transfer just downstream of 

the tip of the divider wall. This mass transfer distribution along the downstream side of  

 

 

 

Fig. 12  Segmental mass transfer distributions along square channel with smooth walls 
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the divider wall may be the result of the separation of the flow at the downstream edge 

of the tip of the divider wall and the reattachment of the flow onto the downstream side 

of the divider wall and the bottom wall. Downstream of the turn, the Sh/Sh0 value is 

higher near the inner and outer walls and is lower in the middle of the bottom wall. The 

Sh/Sh0 distribution may suggest that there is a pair of counter-rotating vortices (of two 

different sizes that may change along the downstream straight section) over the bottom 

wall as the flow enters the downstream straight section of the channel. 

The development of the flow in the upstream straight (inlet) section, the increase 

of the mass transfer in the turn, and the redevelopment of the flow in the downstream 

straight (exit) section are evident in the streamwise distributions of the segmental of 

regional average Sherwood number ratio given in Fig. 12.  In the turn, the 0/Sh Sh  values 

are larger on wall segment no. 9 than on wall segment no. 8, and the 0/Sh Sh  values on 

both wall segments are larger when the Reynolds number is smaller.  The Sh/Sh0 and 

0/Sh Sh  distributions in Figs. 11 and 12 compare very well with and have all of the 

features of those at the 180° turns of square channels with smooth walls presented in [5] 

and [8]. 
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2.4.3 Mass Transfer Distributions for Trapezoidal Channel with Smooth Walls 

 

In Figs. 13 and 14, the local mass transfer distributions at the turn on the smooth 

bottom wall of the trapezoidal channel are presented, for air flow entering the smaller 

straight section and for air flow entering the larger straight section, respectively.  In each 

figure, the four local mass transfer distributions are for Re ≈  9,400, 16,800, 31,800, and 

57,200.  For either flow direction, the shape of the Sh/Sh0 distribution at the turn is again 

not significantly affected by varying the air mass flow rate. Also, as in the square 

channel case, the Sh/Sh0 value is low in the inlet section, is high near the end wall and 

the downstream outer wall in the turn, and is low in two regions near the upstream outer 

wall and the downstream edge of the divider wall in the turn.  

Comparing Figs. 13 and 14, it is evident that the Sh/Sh0 value upstream of the 

turn is higher for air flow entering the smaller trapezoidal straight section than for air 

flow entering the larger trapezoidal straight section.  This is due to the higher velocities 

of the flow in the inlet section with the smaller flow cross sectional area. Note that the 

Reynolds number is based on the hydraulic diameter at the turn clearance.  The higher 

velocities of the flow that enters the turn from the smaller inlet section cause the mass 

transfer on the bottom wall to be higher along the base of almost the entire end wall, as 

the flow with a larger momentum impinges onto the end wall. A close examination of 

corresponding Sh/Sh0 distributions for the same Reynolds numbers shows that the mass 

transfer is higher everywhere on the upstream half of the bottom wall in the turn in the 

case of air flow entering the smaller inlet section. Even as the flow cross section 
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(a) Re ≅ 9,400 

Air out 

Air in 

 

(b) Re ≅ 16,800 

 

Fig. 13  Local mass transfer distributions at sharp turn in trapezoidal channel with 

smooth walls and air entering smaller straight section 

Sh/Sh0 
(Nu/Nu0) 
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1.0 2.0 3.0 4.0 5.0  
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(a) Re ≅ 31,800 
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(c) Re ≅ 57,200 

 

Fig. 13  (continued) 
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1.0 2.0 3.0 4.0 5.0  

Air in 
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(a) Re ≅ 9,400 

Air in 

Air out 

 

(d) Re ≅ 16,800 

 

Fig. 14  Local mass transfer distributions at sharp turn in trapezoidal channel with 

smooth walls and air entering larger straight section 

Sh/Sh0 
(Nu/Nu0) 
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1.0 2.0 3.0 4.0 5.0  
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(a) Re ≅ 31,800 
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(e) Re ≅ 57,200 

 

Fig. 14  (continued) 

Sh/Sh0 
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increases in the turn, the larger momentum of the flow from the smaller inlet section and 

the increase of the turbulence in the turn still cause the mass transfer to be higher on the 

downstream half of the bottom wall in the turn than for the accelerating flow entering the 

turn from the larger inlet section. The differences in the Sh/Sh0 values, however, are 

smaller on the downstream half of the bottom wall than on the upstream half. 

Figure 13 shows that, downstream of the turn in the larger exit section, the mass 

transfer remains quite high on the bottom wall, with the mass transfer decreasing along 

the outer wall and the lowest Sh/Sh0 values along the downstream side of the divider 

wall. After a length of about three times the channel width downstream of the turn, the 

Sh/Sh0 value decreases to about 2.0. 

In the case of the flow entering the larger inlet section, the mass transfer is higher 

near the downstream outer wall in the turn than near the end wall.  As shown in Fig. 14, 

the difference between the Sh/Sh0 values in these two high mass transfer regions is larger 

when the Reynolds number is smaller.  The flow enters the turn from the larger inlet 

section with relatively low velocities, and accelerates around the turn as the flow cross 

section is reduced in the turn. Downstream of the turn in the smaller exit section, the 

mass transfer is lower in the middle of the bottom wall than along the outer wall and 

along the downstream side of the divider wall. The Sh/Sh0 distributions downstream of 

the turn are similar to those for the square channel, except that the accelerating flow in 

the turn appears to strengthen a pair of counter-rotating vortices over the bottom wall, 

causing the high Sh/Sh0 values along the two side walls and very low values (as low as 

about 1.4 for Re ≅ 9,400) in the middle of the bottom wall. 
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Fig. 15  Segmental mass transfer distributions along trapezoidal channel: 

(a) with smooth walls, (b) with ribs on one wall, and (c) with ribs on two opposite walls 
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Fig. 15  (continued) 

 

 

Figure 15 compares the streamwise distributions of the regional average 

Sherwood number ratio along the trapezoidal channel for air flow entering the smaller 

straight section (round symbols in the figure) and those for air flow entering the larger 

straight section (diamond symbols). For the trapezoidal channel with smooth walls [Fig. 

15(a)], the 0/Sh Sh  distributions are higher in the smaller inlet section, but are lower far 

downstream of the turn in the larger exit section.  In the turn, the 0/Sh Sh  value is higher 

on wall segment no. 9 than on wall segment no. 8, higher in the smaller inlet section case 
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than in the larger inlet case, and is higher when the Reynolds number is smaller (lighter 

symbols for smaller Reynolds numbers and darker symbols for larger Reynolds 

numbers). Downstream of the turn, 0/Sh Sh  decreases along the streamwise direction, 

with slightly higher values on wall segments 10 and 11 for air flow entering the smaller 

straight section, but 0/Sh Sh  decreases with a steeper slope because the velocities of the 

flow are smaller in the larger downstream straight section.  The regional average mass 

transfer is the highest on the downstream wall segment (segment no. 9) in the turn, 

except when Re ≅ 57,200, in which case 0/Sh Sh  is the highest on segment no.10, as Fig. 

15(a) shows that the peaks of the 0/Sh Sh  distributions occur at segment no. 9 or no. 10. 

 

 

 

2.4.4 Mass Transfer Distributions for Trapezoidal Channel with Ribs on One Wall or on 

Two Opposite Walls 

 

For two sets of experiments, regional average mass transfer was determined on 

sixteen segments of the bottom wall with transverse ribs on the bottom, and with or 

without aligned transverse ribs on the top wall, as shown in Fig. 7. As described earlier, 

these ribs were 3.2 mm by 3.2 mm square balsa wood stripes, they were installed along 

the downstream edges of the sixteen naphthalene cassettes, and their surfaces exposed to 

the air flow were mass transfer inactive. Figs. 15(b) and 15(c) compare the 0/Sh Sh  
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distributions for air flow entering the smaller straight section (round symbols) and those 

for air flow entering the larger straight section (diamond symbols), with ribs on the 

bottom wall only and with ribs on both the top and bottom walls, respectively.  With the 

ribs periodically interrupting the boundary layers on the bottom wall, the 0/Sh Sh  value is 

larger than 1.0 everywhere along the two straight sections of the trapezoidal channel. 

In the channel with ribs on the bottom wall only, Fig. 15(b) shows that the 

0/Sh Sh  value is about 2.4 in the smaller inlet section, and about 1.7 in the larger inlet 

section immediately upstream of the turn. As in the channel with smooth walls, the mass 

transfer in the turn is higher in the smaller inlet case than in the larger inlet case. For 

both flow directions, the 0/Sh Sh  values in the turn are again higher on the downstream 

wall segment (segment no. 9) than on the upstream wall segment (segment no. 8).  

Downstream of the turn in the larger exit section, as the flow redevelops, 0/Sh Sh  

decreases with an increasing (less negative) slope until it reaches a value of about 1.7, 

which is about the same as the 0/Sh Sh value in the larger inlet section immediately 

upstream of the turn. Downstream of the turn in the smaller exit section, 0/Sh Sh  

increases to values between 3.5 and 4.4, much higher than those in the turn, on wall 

segment nos. 10 and 11, before it decreases to values between 2.5 and 2.9 at the channel 

exit. 
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Fig. 16  Local mass transfer distributions at sharp turn in trapezoidal channel with ribs 

on two walls and air entering smaller straight section 

Sh/Sh0 
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Fig. 16  (continued) 
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Fig. 17  Local mass transfer distributions at sharp turn in trapezoidal channel with ribs 

on two walls and air entering larger straight section 
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Fig. 17  (continued) 
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The 0/Sh Sh  distributions along the channel with ribs on both the top and bottom 

walls are similar to, but are higher than, those along the channel with ribs on the bottom 

wall only. Fig. 15(c) shows that the 0/Sh Sh  value is about 2.7 in the smaller inlet section, 

and about 2.0 in the larger inlet section immediately upstream of the turn of the channel 

with ribs on both the top and bottom walls.  Again, the mass transfer in the turn is higher 

in the case of the smaller inlet section than in the case of the larger inlet section, with 

higher mass transfer in the downstream half of the turn than in the upstream half of the 

turn in both cases. Downstream of the turn in the larger exit section, 0/Sh Sh  decreases 

abruptly to values between 1.8 and 2.0, while downstream of the turn in the smaller exit 

section, 0/Sh Sh  increases to values as high as almost 4.7 before it decreases to values 

between 3.0 and 3.4 at the channel exit. 

In Figs. 16 and 17, the local mass transfer distributions at the turn on the bottom 

wall of the trapezoidal channel with ribs on both the top and bottom walls are presented, 

for air flow entering the smaller straight section and for air flow entering the larger 

straight section, respectively. These distributions are based on the local elevation 

measurements on the U-shaped naphthalene cassette [see Fig. 5(e) and 9] with balsa 

wood stripes attached to the naphthalene surface at the same locations where balsa wood 

stripes were attached to the eight individual cassettes near the turn for regional mass 

transfer measurements. In each of the two figures, the four Sh/Sh0 distributions for Re ≈  

9,400, 16,800, 31,800, and 57,200 are similar, with lower values when the Reynolds 

number is higher.  Also, the ribs cause large variations of the local mass transfer, as they 
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periodically interrupt the boundary layers on the bottom wall. Note that the Sh/Sh0 

distributions on the ribbed wall are presented in Figs. 16 and 17 with a scale that is 

different from that for the distributions on the smooth bottom wall in Figs. 13 and 14. 

For flows in both directions, the streamwise Sh/Sh0 variations between 

consecutive ribs in the inlet section are larger than the spanwise variations. Upstream of 

the turn, as the flow reattaches onto the bottom wall downstream of the ribs, the Sh/Sh0 

value is higher than 3.1 to 3.4 over the reattachment regions in the smaller inlet section, 

and is higher than 2.2 to 2.5 in the larger inlet section, depending on the Reynolds 

number. In the turn, there are very large mass transfer variations, with the largest Sh/Sh0 

values near the end wall just downstream of the rib in the turn and small Sh/Sh0 values 

upstream of the rib in the turn and upstream of the first rib in the exit section. The local 

Sherwood number ratio is also large along the upstream half of the end wall and near the 

downstream outer wall, and is small along the upstream outer wall, as in the smooth wall 

cases. The interactions of secondary flows in the turn with ribs on two opposite walls 

cause very large variations of the local mass transfer and the various individual regions 

of high and low mass transfer in the turn. 

Comparing Figs. 16 and 17, it can be seen that the Sh/Sh0 value upstream of the 

turn is higher in the smaller inlet section than in the larger inlet section, because of the 

higher velocities of the flow in the inlet section with the smaller flow cross sectional 

area.  Unlike in the smooth wall case, the Sh/Sh0 values are much lower in the larger exit 

section than in the turn (Fig. 16), as the air flows over the bottom wall with ribs at lower 

velocities in the larger exit section. In the smooth wall case, the increase of the 
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turbulence in the flow keeps the Sh/Sh0 values relatively high in the larger exit section 

[see Fig. 13].  Figure 15 shows that the regional average mass transfer downstream of 

the turn is higher in the larger exit section with smooth walls than in the larger exit 

section with ribs on the top and bottom walls.  The 0/Sh Sh  values are between 2.1 and 

3.2 in the smooth wall case and between 1.8 and 2.5 in the ribbed wall case.  However, 

Fig. 15 also shows that 0/Sh Sh  is about 2.0 further downstream in the larger ribbed exit 

section, while 0/Sh Sh  continues to decrease along the larger smooth exit section and 

reaches a value of just over 1.0 at the channel exit.  

For air flow entering the larger upstream straight section (Fig. 17), the mass 

transfer is clearly the highest downstream of the turn, as the flow that leaves the turn 

with very high turbulence enters the smaller exit section.  Individual regions of very high 

Sh/Sh0 values are evident along the outer wall and along the downstream side of the 

divider wall. The Sh/Sh0 distributions between consecutive ribs in the smaller exit 

section are very different from the almost two-dimensional distributions resulting from 

the periodic separated and reattached flow over the ribs on the bottom wall in the inlet 

section. The local distributions in the smaller exit section with ribs given in Fig. 17 are 

consistent with the corresponding regional average distributions presented in Fig. 15(c), 

which shows that 0/Sh Sh  is much larger on wall segment nos. 10, 11, and 12 

downstream of the turn than on wall segment nos. 8 and 9 in the turn. 

  

 



 67

2.4.5 Average Mass Transfer Results in Trapezoidal Channel with Smooth, Ribs on One 

Wall, and Ribs on Two Walls 

 

In the trapezoidal channel, with smooth, ribs on one wall, and ribs on two walls, 

and with air entering smaller and larger straight section of the channel, average 

Sherwood number ratios of the entire mass transfer active surfaces of the sixteen 

cassettes and of the turn-region mass transfer active surfaces of the eight cassettes near 

the end wall were compared in Fig. 18. 0/Sh Sh  of the sixteen entire-region and the eight 

turn-region mass transfer active surfaces decrease, as Reynolds number increases from 

9,400 to 57,200, whether the trapezoidal channel has smooth walls, ribs on one wall, or 

ribs on two walls and with air entering smaller and larger straight section of the channel. 

Tables 2 and 3 tabulate average Sherwood number ratios of the sixteen segments and the 

eight turn-region segments in the trapezoidal channel with smooth walls, ribs on one 

wall, and ribs on two walls and with air entering smaller and larger straight section of the 

channel, respectively. In the trapezoidal channel with smooth walls, 0/Sh Sh  with air 

entering smaller straight section of the channel has higher values of 1.75 ~ 1.99 and 2.06 

~ 2.42 than 0/Sh Sh  values, with air entering larger straight section of the channel, of 

1.68 ~ 1.87 and 1.80 ~ 2.20 for the sixteen and the eight turn-region cassettes, 

respectively. In the trapezoidal channel with ribs on one wall, 0/Sh Sh  values, with air 

entering larger straight section of the channel, are 1.40 ~ 1.58 and 1.36 ~ 1.48 times 

higher than 0/Sh Sh  values with smooth walls. The 0/Sh Sh  values, with air entering the  
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(a) Smooth walls 

 

(b) Ribs on one wall 

Fig. 18  Averages of regional average mass transfer coefficient ratios of the sixteen and 

eight mass transfer active surfaces in the trapezoidal channel with (a) smooth walls, (b) 

ribs on one wall, and (c) ribs on two walls 
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(c) ribs on two walls 

 

Fig. 18  (continued) 

 

 

smaller straight section of the channel,  are 1.23 ~ 1.31 and 1.12 ~ 1.20 times higher than 

0/Sh Sh  values with smooth walls for the sixteen cassettes and the eight turn region 

cassettes, respectively, at Reynolds numbers of 9,400 ~ 57,200. In the trapezoidal 

channel with ribs on two walls, 0/Sh Sh  values, with air entering the larger straight 

section of the channel, are 1.49 ~ 1.67 and 1.44 ~ 1.54 times higher than 0/Sh Sh  values 
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Table 2  Average mass transfer coefficient ratios of the sixteen and the eight turn-region 

mass transfer active surfaces in the trapezoidal channel with smooth walls, ribs on one 

wall, and ribs on two walls and with air entering smaller straight section of the channel 

Smooth walls Ribs on one wall Ribs on two walls 

0/Sh Sh  0/Sh Sh  0/Sh Sh  
ReDh 

Sixteen 
segments 

Eight 
segments 
near the 

turn 

Sixteen 
segments 

Eight 
segments 
near the 

turn 

Sixteen 
segments 

Eight 
segments 
near the 

turn 

9,400 1.99 2.42 2.49 2.75 2.66 2.86 

16,800 1.96 2.35 2.42 2.64 2.65 2.83 

31,800 1.82 2.16 2.39 2.59 2.53 2.70 

57,200 1.75 2.06 2.25 2.44 2.52 2.66 
 

Table 3  Average mass transfer coefficient ratios of the sixteen and the eight turn-region 

mass transfer active surfaces in the trapezoidal channel with smooth walls, ribs on one 

wall, and ribs on two walls and with air entering larger straight section of the channel 

Smooth walls Ribs on one wall Ribs on two walls 

0/Sh Sh  0/Sh Sh  0/Sh Sh  
ReDh 

Sixteen 
segments 

Eight 
segments 
near the 

turn 

Sixteen 
segments 

Eight 
segments 
near the 

turn 

Sixteen 
segments 

Eight 
segments 
near the 

turn 

9,400 1.87 2.20 2.76 2.99 3.06 3.26 

16,800 1.70 1.95 2.69 2.88 2.84 2.99 

31,800 1.69 1.86 2.45 2.59 2.64 2.77 

57,200 1.68 1.80 2.34 2.47 2.50 2.59 
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with smooth walls. The 0/Sh Sh  values, with air entering smaller straight section of the 

channel,  are 1.34 ~ 1.44 and 1.18 ~ 1.29 times higher than 0/Sh Sh  values with smooth 

walls for the sixteen cassettes and the eight turn region cassettes, respectively, at 

Reynolds numbers of 9,400 ~ 57,200. The effect of ribs on 0/Sh Sh  is higher when air 

enters the larger straight section of the trapezoidal channel than when air enters smaller 

straight section of the channel. Acceleration of flow, due to decrease of cross section of 

the channel at the turn, might help more vigorous mixing and breaking of the  boundary 

layer of the flow with existence of ribs on one wall or two walls, compared with 

deceleration of flow at turn in the trapezoidal channel with ribs on one wall or two walls. 

Whether ribs are installed on one wall or two walls and with air entering larger or 

smaller straight section of the channel, the enhancement of 0/Sh Sh  at the turn region is 

lower than the enhancement of 0/Sh Sh  at the straight section of the channel. Existence of 

vigorous mixing at the turn region might not be much affected by the additional 

turbulence promoters (ribs) on one wall and two walls in the trapezoidal channel, 

compared with the effect of ribs on the enhancement in the straight section of the 

channel. 
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2.4.6 Pressure Drop across the Turn in Trapezoidal Channel 

 

The pressure drop across the turn was defined as the difference between the static 

pressures at two streamwise stations near the turn in the two straight sections of the 

trapezoidal test channel [see Fig. 7]. These stations were at a distance of 43.8 cm from 

the inlet and exit, respectively. The distance between the two stations [L in Eq. (17)], 

measured along the centerline of the test channel around the turn, was 36.2 cm. The 

pressure drop results are presented in this section in terms of a friction factor ratio, f/f0, 

which gives the average pressure gradient around the turn relative to that for fully 

developed turbulent flow at the same Reynolds number in a smooth straight channel with 

a hydraulic diameter equal to that of the cross section at the turn clearance. A minor loss 

coefficient for the turn may be calculated from the friction factor as f⋅(L/Dh).  

In Fig. 19, the pressure drops across the turn are presented for flows at four 

different flow rates through a square channel with smooth walls, and trapezoidal 

channels with smooth walls, ribs on one wall, and ribs on two opposite walls, and with 

flows in opposite directions --- flow entering the channel through the smaller straight 

section or through the larger straight section.  The results show that the friction factor 

ratio increases with increasing Reynolds number in all of the cases studied.  The turn in 

the trapezoidal channel with smooth walls, with air flow in either direction, causes a 

higher pressure drop than the turn in the square channel with smooth walls. The f/f0 

value ranges from 9.4 to 15.4 for the trapezoidal channel with a larger inlet section, and 

from 6.5 to 10.2 for the trapezoidal channel with a smaller inlet section, as Reynolds  
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Fig. 19  Overall pressure drops across sharp turns in square and trapezoidal channels 

 

 

number is increased from about 10,000 to 60,000.  Thus, the acceleration of the flow 

around the turn as the flow cross section decreases appears to cause about 50% higher 

pressure drop than when the flow direction is reversed. As expected, ribs on one wall 

cause an additional pressure drop across the turn, and ribs on two walls increases the 

pressures drop across the turn more than ribs on one wall only. In the case of a 

trapezoidal channel with the air flow entering the larger straight section of the channel 

and ribs on two opposite walls, the pressure drop across the turn is the highest, with f/f0 

values ranging from 17.1 to 29.7, which are 50 to 60% higher than the corresponding 

values in the case with the flow direction reversed. 



 74

CHAPTER III 

 

THERMAL CHARACTERISTICS AND MECHANISMS 

OF A NOVEL HEAT PIPE 

 

 

3.1 THERMAL CHARACTERISTICS OF A NOVEL HEAT PIPE 

3.1.1 Experimental Apparatus 

 

A schematic of the test apparatus to characterize thermal performance of the 

QuTech® Heat Pipe (QTHP) is shown in Fig. 20. The test apparatus consisted of a test 

section, a Cole Parmer constant temperature bath, and a data acquisition system. The test 

section consisted of a copper rod, four heaters, a cooling jacket, and the QTHP. The 

QTHP was made of a copper tube with an inside diameter of 0.54 cm, a wall thickness of 

0.30 mm, and a length of 30.48 cm. The evaporator section consisted of an oxygen-free 

copper cylinder with an outside diameter of 3.81-cm and length of 5.72-cm. Four 

OMEGA CIR cartridge heaters, with a 0.64-cm diameter and 3.81-cm length, were 

embedded into the copper rod and were controlled with a single Variac transformer. The 

QTHP was embedded at the center of the copper rod at a depth of 5.08-cm. In the 

condenser section, a 6.35-cm inner diameter Teflon PTFE water cooling jacket was 

connected to the Cole Parmer constant temperature bath through an OMEGA rotameter 

that measured volumetric flow rates of cooling fluid. The cooling fluid used during the 
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experiments was distilled water. The water cooling jacket contained nine 6.35-cm 

diameter copper baffles that were threaded onto a 2.54-cm diameter and 11.43-cm length 

copper rod. Similar to the evaporator region, the QTHP was embedded into the cooling 

jacket, as shown in Fig. 21 and 22. The nine threaded copper baffles and threaded copper  

 

 

Fig. 20  Schematic of test apparatus: a test section, a constant temperature bath, and a 

data acquisition system 
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Fig. 21  Schematic of nine threaded copper baffles that were fit into threaded copper rod 

inside the cooling jacket 

 

rod efficiently transferred heat from the QTHP to the cooling water by increasing contact 

surface areas of the QTHP on the coolant and circulating the coolant for a longer time, as 

shown in Fig. 21. 

Fifteen 30 gauge T-type thermocouples were used to obtain temperature 

distributions along the QTHP. These were installed on the surface of the QTHP with 

high temperature resistant Kepton adhesive tape in order to prevent detachment of the 

thermocouples from the hot surface of the QTHP during thermal performance tests. Fig. 

22 shows the location of the fifteen thermocouples along the QTHP; First four (1T ~ 

4T), next seven (5T ~ 11T) in middle, and last four thermocouples (12T ~ 15T).  
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These measured the surface temperatures of the evaporator, transport zone (adiabatic 

zone), and condenser of the QTHP, respectively. Each four thermocouples in the 

evaporator and condenser of the QTHP were installed on the surface of the QTHP 

through each four holes in the copper rod of the evaporator and threaded copper rod of 

the condenser [see Fig. 20]. Seven thermocouples in the adiabatic zone were installed on 

the surface of the QTHP with high temperature resistant Kepton adhesive tape, as 

mentioned earlier. Temperatures were recorded on the data acquisition system that 

consisted of a National Instrument’s PCI-6024E board, a SCXI-1102 conditioner, a TC-

2095 terminal block, and a computer on which Labview 7.0 was installed. Every 30 

gauge T-type thermocouple used in the tests was carefully calibrated with a NIST 

calibrated thermometer, the data acquisition system, and the Cole Parmer constant 

temperature bath. 

The evaporator and transporting zones were insulated with high temperature 

fiberglass insulation. The first layer had an inner diameter of 1.59-cm and a thickness of 

1.27-cm. The second layer of insulation had an inner diameter of 4.76-cm and a 

thickness of 2.54-cm.  A Teflon PTFE enclosure that had a 9.86-cm inner diameter and a 

wall thickness of 0.79-cm covered the evaporator and condenser regions to prevent 

possible bending and/or shift of the QTHP. Finally, a 5.08-cm thick fiberglass blanket 

covered the evaporator and adiabatic regions of the test section to further ensure minimal 

heat loss. 

Twelve 30 gauge T-type thermocouples were located on the fiberglass insulation 

of the evaporator and adiabatic regions to estimate heat loss to ambient [see Fig. 22]. 
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The temperature of the cooling water entering the cooling jacket was measured with a 

thermocouple that was installed in the inlet hose. A second thermocouple was installed 

in the exit hose in order to determine the temperature increase of the cooling water. The 

volumetric flow rate of the cooling water was measured at the inlet with a rotameter. 

With these measurements, the net rate of heat transfer from the QTHP to the cooling 

water was verified. [see Fig. 20].    

 

 

Fig. 23  Schematic of test apparatus and test bed to set an inclination angle of  QuTech® 

Heat Pipe 
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Since the cooling jacket was maintained at 20˚C, heat loss/gain through the 

cooling jacket was assumed to be negligible to the air-conditioned laboratory that was 

maintained at 21 ~ 22˚C. To prevent even a small amount of heat loss or gain through 

the cooling jacket, pipe insulation tape was applied on the cooling jacket. 

A test bed held the test apparatus at various inclination angles from a positive 

(lower position of the evaporator of the QTHP) vertical angle of 90° to a negative 

(higher position of the evaporator of the QTHP) angle of -90°, as shown in Fig. 23. 

Inclination angles were measured with an installed protractor and a string with a weight 

that represented an angle of 90° by gravitational force on the weight. 

 

 

 

3.1.2 Experimental Procedure 

 

Prior to turning the heaters on, the Cole Parmer constant temperature bath was 

commenced to prevent possible damage on the QTHP due to a sudden heat. To ensure 

that a steady state condition of the QTHP was reached power was applied to the four 

heaters with the variac transformer for appropriately two and one-half hours prior to 

recording any temperatures. Voltage and current to the heaters were measured with a 

digital TRMS multi-meter and clamp amp-meter. Once temperatures, voltage, current, 

and coolant volumetric flow rate were recorded, the input power to the QTHP was 

increased to reach the next test condition. As the temperatures on the surface of the 
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QTHP reached higher values, the power was increased at smaller increments. When a 

sudden increase in temperatures on the surface of the evaporator of the QTHP was 

noticed, the QTHP was considered to have reached its dry-out condition. The dry-out 

condition is the failure of heat transport from the evaporator to the condenser. Input 

power to the heaters was the shut down to prevent surface temperatures of the QTHP 

from climbing even further. 

The rate of heat removal from the condenser of the QTHP to the coolant water 

was obtained from the net rate of heat transfer to the evaporator of the QTHP (input 

power to the heaters minus the estimated heat loss to ambient through the insulations). 

This was compared to an energy balance performed with knowledge of the coolant water 

volumetric flow rate, inlet temperature and outlet temperature as previously described. 

The estimated heat losses were less than 2%, however as the QTHP reached the near 

dry-out condition, the heat losses increased. [see section 3.1.3]. Once the heat removal 

rate from the condenser was verified, a volumetric flow rate of 4.1 × 10-5 m3/s was set to 

ensure full heat removal from the condenser over the range of applicable input powers.  

To quantify the gravitational effect on the performance of the QTHP, the test 

apparatus was inclined at five different inclination angles of 90˚, 45˚, 0˚, -45˚, and -90˚ 

[see Fig. 23]. The maximum performance of the QTHP was measured at each different 

inclination angle. 
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3.1.3 Data Reduction 

 

Power supplied to the four cartridge heaters was determined as 

][WIVPinput ×=                                  (19) 

where V is the voltage, and I is the current. These values were measured with a digital 

TRMS multi-meter and a clam amp-meter, respectively.  

Net rate of heat transfer to the evaporator of the QTHP was obtained by 

][WQPQ LossHeatinputnet
&& −=                                 (20) 

 

 

 

 

Fig. 24  Schematic of segments to estimate heat losses and locations of twelve 30 gauge 

T-type thermocouples [see Eq. (21)] 
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where the heat loss to the surroundings through the insulation, LossHeatQ& , was estimated 

from the twelve 30 gauge T-type thermocouples that were installed on the high-

temperature fiberglass insulation, as shown in Fig. 24. The temperatures used to 

calculate the heat loss in the radial direction were recorded at segments one through four. 

Segments five and six provided the temperatures for determining the heat loss in the 

axial direction.  The total heat loss was quantified as the combination of the axial and 

radial direction heat loss as the following equation shows. 

][
6

5

4

1
WQQQ

j
j

i
iLossHeat ∑∑

==

+= &&&                                                      (21) 

The heat loss through the fiberglass insulation in radial direction was obtained by  
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where iinsl , , and rin and rout indicated the width of each segment, and inner and outer 

diameter of the fiberglass insulation, respectively. Heat losses through the fiberglass 

insulation in the axial direction were obtained by 

( )
6,5),(,][ ,,,,, ==
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−
= jTkkW
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TT

AkQ javjinsjins
j

joutin
jinsjinsj

&               (23) 

where Ains,j and jzΔ  indicated the cross sectional area of each segment and the distance 

of the fiberglass insulation in-between each of the two thermocouples, respectively. 

Thermal conductivities of the fiberglass insulation, kins, were obtained by averaging the 

temperatures from the two thermocouples in each segment.  
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To verify the rate of heat removal from the condenser, the rate of heat transfer to 

the cooling jacket from the QTHP (see Fig. 20) was obtained by 

][)( WTTCVQ iopwwc −= && ρ                                            (24) 

where 0T  and iT  were the outlet and inlet temperatures of the cooling jacket, 

respectively. wρ  was the density of the water at the average temperatures of 0T  and iT . 

wV&  was the volumetric flow rate that was measured with the Omega rotameter. The rate 

of heat removal from the condenser was used to check the net rate of heat transfer to the 

evaporator as follows: 

][WQQ cnet
&& ≅                                             (25) 

The effective thermal conductivity of the QTHP was evaluated from Fourier’s 

Law as 

( ) ]/[
,,

mKW
TTA

L
Qk

caveavHP

eff
neteff −

= &         (26) 

where the effective length was computed as 

][
22

m
L

L
L

L c
a

e
eff ++=                                 (27) 

where Le, La, and Lc were the lengths of the evaporator, adiabatic section, and condenser, 

respectively, as shown in Fig. 22. eavT ,  and cavT ,  are the average temperatures of each of 

the four measured temperatures of the evaporator and condenser, respectively. AHP is the 

cross-sectional area based on the inner diameter of the QTHP. 

Heat loss estimations were verified with a known thermal conductivity material 

of oxygen-free solid copper rod with a 6.35-mm diameter and 30.48-cm length. The 
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documented thermal conductivity is 391W/mK.  The rate of axial heat transfer through 

the solid copper rod was obtained as follows: 

( )
( ) ][

511

115 W
zz

TT
kAQ CuCopperRod −

−
=&                     (28) 

where, T5 and T11 , and z11 and z5 were measured temperatures from the thermocouples 

that were noted as 5T and 11T, and axial distance of the thermocouples from the bottom 

of the evaporator of the QTHP, respectively [see Fig. 22]. Thus, the estimated total heat 

transfer rate to the heaters was obtained by 

][WQQQ LossHeatRodCopperTotal
&&& +=                                (29) 

The measured power supplied to the four heaters was used as a true value to check the 

estimated heat losses, as follows 

][WQP Totalinput
&≅                                                                                  (30) 

Relative errors on the estimated total rate of heat transfer from the four heaters, TotalQ& , 

based on RodCopperQ&  and LossHeatQ&  to the surroundings were obtained by 

input

Totalinput
total P

QP
QRE

&
& −

=)(                                                                       (31) 

Fig. 25 shows that temperature distributions along the sold copper rod with two 

input powers of 10.39 and 20.91W. Temperature distributions were linear except for the 

evaporator and condenser regions, as expected. Table 4 details heat loss estimations with 

an error of less than 1.54 % based on two input powers of 10.39 and 20.91 W. The 

copper rod has relatively low thermal transport capacity, compared to heat pipes and 

thermosyphons.   
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The estimation of uncertainty values was based on a confidence level of 95% (or 

20:1 odds) and the relative uncertainty analysis method of Coleman and Steele [43].  

Also, in all uncertainty calculations, uncertainty values of 1.0% for thermal 

conductivities of the fiberglass insulation materials and 0.25 mm for all physical 

dimensions were used. 

 

 

 

 

Fig. 25  Temperature distributions along 6.35-mm diameter solid copper rod in the test 

apparatus to verify heat loss estimations 
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Table 4  Heat loss verification with 6.35-mm diameter solid copper rod in the test 

apparatus 

Pinput QHeat Loss Qcopper rod QTotal )( netQRE &  

10.39 W 2.96 W 7.27 W 10.23 W 1.54 % 

20.91 W 6.95 W 13.86 W 20.81 W 0.48 % 
 

 

The uncertainties of the measured voltage and current were 1.0 and 2.5%, 

respectively. The uncertainty of the input power was 2.7%. The uncertainty of the net 

rate of heat transfer to the evaporator was also 2.7%. Using the maximum uncertainty 

values of 2.7% for the net rate of heat transfer to the evaporator and 5.6% for the 

measured temperatures, the maximum value of the relative uncertainty of the effective 

thermal conductivity was calculated to be 8.1%. 

 

 

3.1.4 Presentation and Discussion of Results 

 

The Noren® closed two-phase copper-water thermosyphon (CWT), which is a 

conventional thermosyphon, was thermally characterized and was compared to the 

performance of the QTHP.  The comparisons were conducted at various input powers 

(temperature differences between the evaporator and condenser) and inclination angles. 

The CWT had a water filling charge ratio (FR) of 0.82. The dimensions of the CWT 

were similar to those of the QTHP expect that the outside diameter was 9.4% larger.  
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(a) An inclination angle of 90˚ 

 

(b) An inclination angle of 45˚ 

Fig. 26  Temperature distributions along Noren® closed two-phase copper-water 

thermosyphon at various net rates of heat transfer to the evaporator and inclination 

angles of 90˚, 45˚, and 0˚ 
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(c) An inclination angle of 0˚ 

 

Fig. 26  (continued) 

 

 

Fig. 26 shows the temperature distributions along the CWT at various net rates of 

heat transfer to the evaporator at inclination angles of 90˚, 45˚, and 0˚. Unlike the 

temperature distributions along the solid copper rod (Fig. 25), the temperature 

distributions along the adiabatic section of the CWT (Li/LTotal = 0.19 ~ 0.6) are uniform 

which indicates that heat transport is occurring through phase change of the working 

fluid, rather than by conduction through the copper tube. When the CWT reaches its  
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(a) An inclination angle of 90˚ 

 

(b) An inclination angle of 45˚ 

 

Fig. 27  Temperature distributions along QuTech® Heat Pipe at various net rates of heat 

transfer to the evaporator and inclination angles of 90˚, 45˚, and 0˚, -45˚, and -90˚ 
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(c) An inclination angle of 0˚ 

 

(d) An inclination angle of -45˚ 

 

Fig. 27  (continued) 
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(e) An inclination angle of -90˚ 

 

Fig. 27  (continued) 

 

 

maximum performance (before dry-out of the CWT), the temperatures in the evaporator 

increase exponentially, as the net rate of heat transfer to the evaporator increases 

linearly, as shown in Fig. 26(a) and 26(b). The CWT relies upon gravity to return the 

condensed water from the condenser to the evaporator. Therefore, the performance 

decreases dramatically as the gravitational force is less favorable at the inclination 

angles of 45˚ and 0˚ [see Fig. 26(b) and 26(c)] [32, 33, and 34]. 

Fig. 27 shows the temperature distributions along the QTHP at various net rates 

of heat transfer to the evaporator and at inclination angles of 90˚, 45˚, and 0˚, -45˚, and -
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90˚. Temperature distributions are quite similar with those of the CWT that operates by 

phase change and utilizes the latent heat of vaporization of water. Temperature 

distributions of the QTHP also show the stiff increase of the evaporator temperatures, as 

it is close to failure at every tested inclination angle. The QTHP is considered to have 

failed even at very low net powers of 13.1W and 8.4W at inclination angles of -45˚ and -

90˚, respectively [see Fig. 27(d) and 27(e)]. The results obviously show that gravity is 

one of the most important factors to determine the thermal performance of the QTHP. 

The fifth temperatures (Li/LTotal = 0.19), that were next to the four evaporator 

temperatures, with net powers of 13.1 and 8.4W on Fig. 27(d) and 27(e), respectively, 

indicate that heat is conducted through the copper tube of the QTHP rather than by the 

thermal mechanism through the working medium inside of the tube. This is unlike the 

other temperature distributions of Fig. 27(a), 27(b), and 27(c). It seems that mass in the 

QTHP may be transporting thermal energy from the evaporator to the condenser in a 

similar fashion as working fluids in conventional heat pipes/thermosyphons. The QTHP 

should be positioned with the evaporator below the condenser. In other words, the QTHP 

requires gravity to function properly as does the CWT.  

Figure 28 shows the average temperature differences between the evaporator and 

condenser of the CWT and the QTHP at various net powers and at an inclination of 90˚. 

As the net powers increase, the temperature differences increase. Fig. 28(a) shows a 

large scatter of the average temperature difference between the evaporator and condenser  
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Fig. 28  Average temperature differences between the evaporator and condenser of (a) 

Noren® closed two-phase copper-water thermosyphon and (b) the QuTech® Heat Pipe at 

the various net rate of heat transfer to the evaporator and an inclination angle of 90˚ 
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of the CWT at the supplied net powers of 60 ~ 100W. This instability is well known as 

the hysteresis or geyser effect of conventional heat pipes/thermosyphons which results 

from the “onset of nucleate boiling”. As the net powers increase and thus the 

temperatures of the evaporator increase, nucleate boiling of the working fluid may start 

on the surface of the pipe where heat is applied. Since the onset of nucleate boiling is 

said to be a random phenomenon, especially for water as a working fluid, this results in 

the relative randomness of the average temperature differences between the evaporator 

and condenser and the thermal performance of the CWT, as shown in Fig. 28(a) [44 and 

45]. A similar trend is not seen in the average temperature differences of the QTHP, as 

the net powers increase in Fig. 28(b). Unlike the CWT, the randomness of the average 

temperatures between the evaporator and the condenser of the QTHP occurs just prior to 

failure. 

Rapid rises of the average temperature differences of the CWT and the QTHP at 

around 160W and around 100W, respectively, are observed at an inclination angle of 

90˚. This is due to the dry-out conditions in the evaporators. Comparing the QTHP with 

the CWT, the QTHP has a more narrow range of operable net power levels up to 100W 

while the CWT has a wider range of operable net power levels up to 160W.  

Fig. 29 shows the average results of the average temperature differences of 

operable net powers of the two QTHP and CWT. Prior to the QTHP reaching its 

maximum operable power level, it exhibits less temperature difference between the 

evaporator and the condenser when compared to the CWT. The temperature difference 

between the QTHP and the CWT is up to 15˚C at corresponding power levels and at the  
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Fig. 29  Average results of the average temperature differences between the evaporator 

and condenser of the QTHP and CWT at the various net powers and inclination angles of 

(a) 90˚, (b) 45˚, and (c) 0˚. 
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Fig. 29  (continued). 

 

 

 

inclination angle of 90˚, as shown in Fig. 29(a). Unlike the results of the inclination 

angle of 90˚, the results of the QTHP at the inclination angles of 45˚ and 0˚ show the 

similar and slightly higher temperature differences for power levels up to 80W and 30W, 

respectively, as shown in Fig. 29(b) and 29(c). Even at the operating range of net rate of 

heat transfer of the evaporator, the thermal performance of the QTHP seems to be 

slightly more affected by the gravity than the CWT. Once the QTHP and the CWT start 
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to fail, the temperatures at the evaporator increase very rapidly, as the corresponding net 

powers increase moderately. 

Figure 30 shows the average temperature differences between the evaporator and 

the condenser of the QTHP at the various net powers and inclination angles of 90˚, 45˚, 

0˚, -45˚, and -90˚. As the QTHP is tilted, the operable average temperature difference 

between the evaporator and condenser decreases rapidly. The excess supplied heat to the  

 

 

 

Fig. 30  Average temperature differences between the evaporator and the condenser of 

the the QuTech® Heat Pipe at the various net rate of heat transfer to the evaporator and 

inclination angles of 90˚, 45˚, 0˚, -45˚, and -90˚. 
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evaporator that is not transferred to the condenser, increases the temperatures of the 

evaporator in the QTHP. Eventually, the dry-out of the evaporator is shown as a rapid 

temperature increase in the evaporator. 

Figure 31 shows the effective thermal conductivity ratios of the QTHP at various 

inclination angles of 90˚, 45˚, 0˚, -45˚, and -90˚. The maximum Keff/Kcopper of the QTHP 

is 70.4 times higher than the thermal conductivity of pure copper (391 W/mK) at the net 

rate of 75.8W and angle of 90˚. Keff/Kcopper and operable power ranges of the QTHP at 

the angles of 90˚ and 45˚ are similar. As the QTHP is tilted below an angle of 45˚, its 

thermal performance decreases rapidly. A maximum Keff/Kcopper of 34.9 at the angle of 0˚  

 

 

Fig. 31  Effective thermal conductivity ratios of the the QuTech® Heat Pipe at the 

various net rate of heat transfer to the evaporator and inclination angles of 90˚, 45˚, 0˚, -

45˚, and -90˚. 
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Fig. 32  Effective thermal conductivity ratios of the QuTech® Heat Pipe and the Noren® 

closed two-phase copper-water thermosyphon at various net powers and inclination 

angles of (a) 90˚, (b) 45˚, and 0˚. 
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Fig. 32  (continued). 

 

 

is two times lower than that of 70.4 at 90˚, at the corresponding net powers of 20.2W 

and 75.8W, respectively. At the angle of -90˚, the maximum operable power is only 

roughly 5W, achieving Keff/Kcopper of 8.3. However, unless the QTHP reaches its 

maximum thermal performance limit at a given angle, the QTHP seems to maintain its 

performance whether it is tilted or not, although its maximum limits of thermal 

performance and operable power range decrease dramatically as it is inclined against the 

gravity. 

Figure 32 shows the comparison of Keff/Kcopper of the QTHP with Keff/Kcopper  of 

the CWT at inclination angles of 90˚, 45˚, and 0˚. At the angle of 90˚, the QTHP has 
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maxima of 67% higher Keff/Kcopper than the CWT within the operating power range of up 

to 93.8W. Beyond 95W, Keff/Kcopper of the QTHP decreases rapidly while Keff/Kcopper of 

the CWT still increases up to the value of 61.2 at 121.8W. Notice that the peak 

performance of the QTHP is attained at 75.8W while that of the CWT at 128.1W, and 

the highest performance of the QTHP is 20% higher than that of the CWT. At the angle 

of 45˚, the QTHP achieves very marginal performance over the CWT by up to 15% 

within the net powers of around 30 to 80W. At the angle of 0˚, the CWT is superior to 

the QTHP regardless of the net powers. The comparison shows that the effect of the 

gravity on the QTHP is more severe than that on the CWT.    

As mentioned earlier, “onset of nucleate boiling” in the CWT may occur in the 

net powers of 80W ~ 120W [see Fig. 29(a)]. Even when the operating power increases 

by 50%, the average temperature difference between the evaporator and the condenser of 

the CWT remains quite uniform. The results in Fig. 32(a) show a 41% enhancement of 

Keff/Kcopper of the CWT in the power range of 80 to 120W. In the case of the QTHP, on 

the contrary, the aforementioned randomness of the average temperature difference 

between the evaporator and the condenser does not seem to affect the thermal 

performance enhancement of the QTHP in the net powers of 80 to 100W. These random 

results of the average temperature difference might be instability of the QTHP before it 

fails unlike the instability of “onset of nucleate boiling” in the CWT.  
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3.2 THERMAL MECHANISMS OF A NOVEL HEAT PIPE 

3.2.1 Presentation of Chemical Analysis Results 

 

As mentioned earlier, the inside surface of the QuTech® Heat Pipe was claimed 

to be coated with three different layers with various combinations of inorganic materials 

[see Fig. 3]. Fig. 33 shows the actual solid compound that is coated on the entire inner 

surface of the QTHP and its Scanning Electron Microscopy (SEM) image that shows 

very high porosity. It is believed that the solid coatings inside the QTHP are not 

chemically adhered, but are physically adhered instead. Therefore, the adhesion among  

 

 

____ 20㎛
(a) Macro view of Solid compound 

 

 (b) Scanning electron microscopy 

(SEM) image of solid compound 

(courtesy of the Center for Space 

Power) 

Fig. 33  Solid compounds on the inner surface of the QuTech® Heat Pipe 
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f 
chemical components in the coating would lead to weak bonding strengths among 

elements, which possibly leads to the high porosity condition.  

When each QTHP was opened, a yellowish fluid (e.g., liquid) was observed. 

With the use of pH indicator test strips, the effluent in the QTHP was found to be a very 

strong base liquid of pH equal to 12 to 13. Upon further analysis on the yellow liquid 

with a Perkins Elmer Gas Chromatograph-Mass Spectrometry (GC-MS) instrument, by 

dissolving the effluent in methanol, CH4O and injected into a GC-MS, the effluent was 

 

Fig. 34  Gas Chromatograph-Mass Spectrometry (GC-MS) results of the effluent in the 

QuTech® Heat Pipe 
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found to be mostly water, H2O. In addition, several unidentified components that were 

not analyzable in GC-MS, as shown in Fig. 34, were observed. 

In order to determine the unidentified components of the effluent from the GC-

MS analysis, Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES) 

was utilized. Table 5 shows the identified elements of the effluent with ICP-OES. All 

identified elements were inorganic elements that were not analyzable in the GC-MS. 

Most of the effluent was found to be water, H2O which constituted 99.3 % of the 

sample’s weight. Among other identified elements, potassium, K, phosphate, P, and 

 

 

Table 5  Identified elements of the effluent in the QuTech® Heat Pipe with Inductively 

Coupled Plasma-Optical Emission Spectrometer (ICP-OES) 

Element K P Na Cr Cu Si 

M [g/mol] 39.098 30.974 22.990 51.996 63.546 28.086 

[ppm] 2510.0 2530.0 1620.0 79.0 64.1 44.3 

[weight %] 0.2510 0.2530 0.1620 0.0079 0.0064 0.0044 

[mol %] 0.1160 0.1476 0.1273 0.0027 0.0018 0.0028 

       

Element Al B Ca S Zn  

M [g/mol] 26.982 10.810 40.080 32.060 65.380  

[ppm] 30.4 21.0 13.7 5.5 4.3  

[weight %] 0.0030 0.0021 0.0014 0.0006 0.0004  

[mol %] 0.0020 0.0035 0.0006 0.0003 0.0001  

* ppm; micro-gram of elements per a gram of sample
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sodium, Na, were the most abundant elements with the amount of 2510.0, 2530.0, and 

1620.0 ppm (μg of element per g of sample), respectively. Also, other elements that were 

identified, but all were relatively small as compared to the amounts of the above 

mentioned three inorganic elements. 

Based on the results obtained with GC-MS and ICP-OES, the effluent is believed 

to be an aqueous solution that contains dissolved inorganic ions, constituting 0.7 % by 

weight (0.4 % number of moles) of the sample. These inorganic ions were causing the 

pH value of 12 and 13 measured previously.  

 

 

Table 6  Identified elements of the solid compounds in the QuTech® Heat Pipe with 

Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES) 

Element Cu Na K S P Fe Ca 

M [g/mol] 63.546 22.990 39.098 32.060 30.974 55.847 40.080 

[ppm] 899000 98100 4900 4900 2450 2000 1160 

[weight %] 88.3364 9.6394 0.4815 0.4815 0.2407 0.1965 0.1140 

[mol %] 74.4461 22.4546 0.6595 0.8043 0.4162 0.1885 0.1523 
        

Element As B Pb Cr Mo Al Mg 

M [g/mol] 74.922 10.810 207.200 51.996 95.940 26.982 24.305 

[ppm] 981 981 981 777 490 490 490 

[weight %] 0.0964 0.0964 0.0964 0.0763 0.0481 0.0481 0.0481 

[mol %] 0.0689 0.4775 0.0249 0.0786 0.0269 0.0956 0.1061 
* ppm; micro-gram of elements per a gram of sample
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The QTHP’s solid interior coating was also analyzed with ICP-OES. As shown 

in Table 6, the solid compound consisted mostly of copper, Cu, with the mole percentage 

of 74.45% of the total number of moles in the sample. Sodium, Na, constituted 22.45% 

of total number of moles in the sample. Other elements, as shown in Table 6, constituted 

a very small fraction of the sample. In summary, the results indicate that the solid 

compound of the inner wall of the QTHP consists mainly of copper, Cu, and sodium, Na. 

In analyzing the solid compound with ICP-OES, the compound first needed to be 

decomposed into ions so that they could be detected and identified. In other words, the 

analysis of possible elements that might exist only on the surface could not be conducted 

with ICP-OES. The process of decomposition of the sample prevented it. To identify 

elements on the surface of the coating in contact with the QTHP’s effluent, the Kratos 

 

Fig. 35  Spectra of the elements on the surface of the solid compounds in the QuTech® 

Heat Pipe with X-Ray Photoelectron Spectroscopy (XPS) 
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(a) Spectra of copper, Cu, on the surface 

 

(b) Spectra of chromium, Cr, on the surface 

Fig. 36  Spectra of the specific elements on the surface of the solid compounds in the 

QuTech® Heat Pipe with X-Ray Photoelectron Spectroscopy (XPS) 
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(c) Spectra of potassium, K, on the surface 

 

(d) Spectra of oxygen, O, on the surface 

 

Fig. 36  (continued) 
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(e) Spectra of carbon, C, on the surface 

 

(f) Spectra of silicon, Si, on the surface 

 

Fig. 36  (continued) 
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Axis Ultra X-Ray Photoelectron Spectroscopy (XPS) with magnesium, Mg, as an anode 

was used. Figures 35 and 36 show the overall and specific spectra of the identified 

elements on the surface of the solid compound in the QTHP respectively. The spectra are 

based on the strengths of intensities of the X-ray and are related to the binding energies 

of electrons of each element. 

Table 7 shows the estimated atomic concentration of each element based on the 

spectra [Fig. 35 and 36]. The most abundant element is oxygen, O, with the amount of 

54.56%, followed by carbon, C, potassium, K, chromium, Cr, and copper, Cu, in the 

amounts of 13.89, 10.30, 10.27, and 5.58%, respectively. Even though carbon, C, 

occupies 13.89% of the surface elements of the sample, it could be easily varied. This is 

because carbon can be easily attached onto the sample from the atmosphere during a 

preparation of the sample. 

X-ray powder Diffraction (XRD) was utilized to obtain the structural information 

of the crystalline solid compounds of the QTHP. Fig. 37 shows the X-ray pattern of the 

solid compound powder. This is clearly a pattern of copper oxide, Cu2O. From the 

analysis, the major component of the solid compound is Cu2O, containing other 

inorganic elements such as Na, P, K, etc. [see Table 6] 
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Table 7  Concentration of the identified elements on the surface of the solid compounds 

in the QuTech® Heat Pipe with X-Ray Photoelectron Spectroscopy (XPS) 

Peak Position BE 
[eV] 

Atomic Mass 
[g/mol] 

Atomic 
Concentration 

[%] 

Mass 
Concentration 

[%] 

Cu 2p 932.233 63.549 5.58 14.33 

Cr 2p 576.317 51.996 10.27 21.51 

O 1s 530.400 15.999 54.56 35.32 

K 2p 295.233 39.102 10.30 16.34 

Na 1s 1069.567 22.990 1.88 1.76 

C 1s 284.733 12.011 13.89 6.75 

Si 2p 101.650 28.086 3.53 4.00 

Total 100.00 100.00 

   

 

Fig. 37  X-ray powder diffraction (XRD) pattern of the solid compound powder in the 

QuTech® Heat Pipe with X-ray diffractometry 
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3.2.2 Presentation of Thermal Analysis Results 

 

To investigate the thermal characteristics of the QTHP’s solid coating and its 

aqueous effluent, which were analyzed for their elemental composition, a Differential 

Scanning Calorimetry (DSC) was employed in an attempt to gain insight into possible 

thermal transport mechanisms. Fig. 38 shows the results of the thermal analysis 

conducted on the QTHP’s coating samples from 25˚C to 500˚C in steps of 5 and 

10˚C/min for the heating and cooling stage, respectively. Hydrated samples (coating 

samples that were in contact with the tube’s effluent) were prepared to minimize 

evaporation losses in the air. The hydrated samples were either tested immediately or 

placed in glass containers to minimize exposure to air. The solid samples taken from the 

QTHP were hydrated in the yellowish aqueous solution, which is mostly water as seen in 

Fig. 34 and Table 5. The result of the hydrated sample with an initial weight of 48.90 mg 

is shown in Fig. 38(a). The results from DSC indicates that an endothermic reaction or 

phase change phenomena occurred at a peak temperature of about 92˚C, when the 

sample was heated from room temperature (25˚C) to 500˚C in steps of 5˚C/min. Once 

the maximum temperature of 500˚C was achieved, the sample was allowed to cool from 

500˚C to room temperature in steps of 10˚C/min. During the cool down phase, no 

chemical reaction or phase change phenomena was observed. After the test, the sample 

lost 6.40 mg, or 13% of its initial weight. A second sample with an initial weight of 

71.90 mg was prepared. The sample was initially exposed to air for five hours. 

Afterwards, the sample was tested in the DSC with the same testing temperature  
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(a) Sample of solid coating wet with the effuent 

 

(b) Sample of solid coating exposed in air 

Fig. 38  Thermal analysis on solid compounds and the effluent of the QuTech® Heat 

Pipe with Differential Scanning Calorimetry (DSC) 
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between 25 and 500˚C, as shown in Fig. 38(b). When the sample was heated in steps of 

5˚C/min, there was no endothermic reaction or phase change that was observed in the 

first sample (the hydrated solid compounds with the effluent). However, an exothermic 

reaction at around 340˚C was observed, indicating that chemical compositions of the 

solid compounds were permanently altered. When the sample was cooled down to 25˚C 

from 500˚C in steps of 10˚C/min, there was no reaction or phase change observed. After 

the test, no weight loss was observed for the second sample (the solid compounds 

exposed in air for five hours).  

From the observed results as seen in Fig. 38, for the QTHP to work properly, an 

aqueous solution must be present. An interaction may exist between the solid coating 

compound and the aqueous solution. 

With the thermal analysis data presented in Fig. 38(a), an attempt was made to 

determine the magnitude of the rate of heat transfer had been generated during the 

chemical reaction or phase change portion of the curve between 25˚C and 100˚C, with 

MATLAB. The calculated result gives a rough estimation of the required enthalpy 

related to the reaction or phase change since the results didn’t fully cover the entire 

reaction or phase change from the beginning at 25˚C. The enthalpy change associated 

with the chemical reaction or phase change phenomena was calculated to be 14.4 J. This 

is very similar to the enthalpy change required for pure water, i.e., 14.0 J, assuming that 

pure water was fully responsible for the 6.40 mg weight loss. This gives further evidence 

that a phase change phenomena that involves an aqueous solution is the heat transfer 

mechanism for this device.  
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To further investigate thermal characteristics of the solid compounds and the 

effluent, four different samples (Cases S1~S4), of solid compounds of the QTHP, were 

prepared and tested with a DSC, as shown in Table 8. Case S1 was prepared with the 

solid compounds containing the effluent and was tested immediately after cutting of the 

QTHP. Case S2 allowed the sample to be exposed in air for two hours. Cases S3 and S4 

were prepared such that after being exposed in air for several hours, the samples were 

soaked in the effluent and distilled water, respectively. 

 

 

Table 8  Results of changes of weight and phase change temperatures of four different 

samples, Case S1~S4, tested in DSC 

 

Case S1 S2 S3 S4 

Sample 
 

preparation 

Hydrated in 
 

the effluent 
Dehydrated 

Re-hydrated in 
 

the effluent 

Re-hydrated 
 

in pure water

Initial weight [mg] 17.16 16.29 13.73 15.75 

Final weight [mg] 15.30 16.27 11.72 10.46 

Weight loss [mg] 1.86 0.02 2.01 5.29 

Weight Loss [%] 10.84 0.12 14.64 33.59 

Onset -1.0 -0.6 0.2 Melting 
 

[˚C] Peak 2.2 2.5 5.7 

Onset 44.9 49.2 58.8 Evaporation 
 

[˚C] Peak 68.0 

 

73.0 89.7 
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Fig. 39 shows the results of each case listed in Table 8 with a temperature range 

between -40˚C to 200˚C in steps of 5˚C/min for heating. Although thermal analysis upon 

cooling was conducted in steps of 5˚C/min, there were no observed chemical reactions 

or phase changes, which were observed in the previous thermal analysis [see Fig. 38]. 

On the basis of prior DSC test runs, the starting temperature was chosen so that the full 

chemical reaction or phase change portion could be captured. In Cases S1 and S3, the 

onset and peak temperatures of evaporation were similar. The onset temperature for 

evaporation for Cases S1 and S3 with the QTHP effluent began at 44.9˚C and 49.2˚C,  

 

 

 

Fig. 39  Thermal analysis on the solid compounds and the effluent of the QuTech® Heat 

Pipe with Differential Scanning Calorimetry (DSC), as tabulated in Table 8 
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respectively, as shown in Table 8. On the contrary, Case S4, which was prepared with 

re-hydrated QTHP coating sample by being soaked in distilled water, showed an onset 

temperature of evaporation of 58.8˚C. By replacing the QTHP effluent with distilled 

water, the onset of evaporation occurred at a higher temperature.  

One possible thermal mechanism to shift the onset and peak temperature of 

evaporation might be the interaction between the solid compounds and the effluent of the 

QTHP. The re-hydrated sample of the solid compounds with distilled water (Case S4) 

showed the delay of the onset and peak temperatures of the evaporation of distilled water 

of 58.8 and 89.7˚C, respectively. The onset and peak temperatures of the hydrated (Case 

S1) and re-hydrated sample (Case S3) with the effluent were 44.9 and 68.0˚C and 49.2 

and 73.0˚C, respectively. On the other hand, considering the weight loss of each case, 

which water in the effluent (Case S1 and S3) and distilled water (Case S4) were 

responsible for, it was possible to have a ‘smearing effect’ (thermal response lag 

between heating rates and temperatures of samples) [46] during DSC tests due to the 

different amount of water in the samples; Case S1 that was originally wet with the 

effluent in the QTHP had the lowest onset and peak temperatures, while the sample had 

smallest amount of water of 10.84% of the initial weight. Case S2 that was soaked in the 

effluent had a slight higher onset and peak temperatures than those of Case S1, with the 

initial water amount of 14.64% of the initial weight. Case S4 that was soaked in distilled 

water had the highest onset and peak temperatures than any other cases with the initial 

water amount of 33.59% of the initial weight. Case S3, however, was prepared with the 

same procedure as Case S4, which was fully soaked in the effluent for several hours. 
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Although the solid compounds should absorb approximately the same amount of water 

compared with the sample soaked in distilled water (Case S4), weight losses of Case S3 

and S4 were 14.64 and 33.59%, respectively. This is 2.3 times higher water absorption 

of the sample than the effluent absorption of the sample. From the observation, the 

interaction between the elements of the effluent and the solid compounds (see Tables 5 

and 7) might prevent absorption of water into the solid compounds. In other words, 

when dissipated heat is applied into the solid compounds through the outer surface of 

QTHP, vaporization of water, due to the absorbed thermal energy, might occur easily. 

This is because less water molecules are packed into the solid compounds. 

 

 

3.2.3  Discussion on Results of Chemical/Thermal Analysis 

 

For the QTHP to run properly, it has to contain effluent which was mostly water, 

H2O. In order to transport the thermal energy, which was applied to the evaporator, to 

the condenser of the QTHP, vapor flow is first generated from the vaporization of liquid. 

It is driven by a pressure difference between the evaporator and the condenser. This is 

similar to the transport mechanism for conventional heat pipes or closed two-phase 

thermosyphons. As tabulated in Tables 5, 6, and 7, and shown in Fig. 35 and 36, 

however, the QTHP contains various elements other than copper, Cu, and water, H2O. 

These are not used in conventional heat pipes and closed two-phase thermosyphons. 

Although the elemental information obtained with GC-MS, ICP-OES, and XPS is not 
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enough to determine the exact chemical compositions, but all identified elements are 

mostly inorganic (metallic) elements that can be ionized in aqueous solution, especially 

water, H2O. All these elements in the effluent of the QTHP act as salts (mostly inorganic 

salts) in the aqueous solution. When salts are dissolved in water, non-volatile salts cause 

the vapor pressure of the solution to be lower than that of pure water. This lowered vapor 

pressure of the solution delays vaporization (boiling) of water until the vapor pressure of 

the solution reaches the ambient pressure.  This causes the solution to vaporize (boil) at a 

higher temperature than the boiling temperature of pure water upon heating. The results 

of the solid compounds and the effluent in the QTHP with DSC, however, show that the 

vaporization of water molecules on the solid compounds along with the elements other 

than water in the effluent of the QTHP may occur at lower temperature than vaporization 

of pure water molecules [see Table 8 and Fig. 39].  The paradox between the inorganic 

salts in the effluent and the results of DSC may lead to a conclusion that inorganic salt 

hydrates were placed in the QTHP device. 

Inorganic salt hydrates have been widely used as latent heat storage materials. 

They have been used as phase change materials (PCM) that utilize phase change 

between solid and liquid state to absorb thermal energy and release their stored energy. 

A few applications are solar energy, industrial waste heat, etc. Advantage of phase 

change materials to store thermal energy is that they require relatively small volume, 

compared to non-phase-change materials, at specific temperature regions. Sharma and 

Sagara [47] reviewed possible materials of PCMs as latent heat storage materials and 

systems that use latent heat storage materials at relatively low temperatures between 0˚C 
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and 200˚C, especially up to 100˚C such as paraffins (CnH2n+2), fatty acids 

(CH3(CH2)2nCOOH), salt hydrates, and eutectics. In those selected PCMs, salt hydrates 

are inorganic compounds that are loosely bonded to a specific amount of water, 

depending on kinds of inorganic salt. Advantage of salt hydrates is that they have a 

relatively sharp melting point and high thermal conductivity, compared with other 

PCMs. This allows for the storage volume to be minimized to store thermal energy. 

Disadvantage of salt hydrates is that most of salt hydrates melt and solidify 

incongruently, which means that dehydrated salt can be segregated by density difference 

between hydrated salt and dehydrated salt, preventing dehydrated salt from being 

hydrated salt [47]. Abhat [48] tested thermal characteristics and cycles of PCMs with 

Thermal Analysis (TA) and Differential Scanning Calorimetry (DSC). He tested 

inorganic salt hydrates such as Na2HPO4 · 12H2O, Na2S2O3 · 5H2O, and CaCl2 · 6H2O. 

He reported all tested inorganic salt hydrates suffered from supercooling (freezing at 

several degrees below thermodynamic freezing point) and degradation of capability as a 

latent heat storage material upon several thermal cycles due to segregation of salts by 

density difference, as mentioned earlier. Mu and Perimutter [49] analyzed thermal 

decomposition of inorganic sulfates hydrates, Mx(SO4)y · nH2O (M and n denotes 

inorganic elements and number of water molecules per 1 molecule of inorganic salt, 

respectively), with a thermogravimetric analyzer (TGA), a differential scanning 

calorimetry (DSC), and a differential thermal analyzer (DTA). They tabulated initial and 

final decomposition temperatures of each tested inorganic salt hydrates. For example, 

Al2(SO4)3 · 16H2O started to decompose at 25°C and ended at 70°C. 
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Table 9  Thermal and physical properties of inorganic salt hydrates [52] 

 

Formula Mol. weight M. P. [°C] Density [g/cm3] 

Na2SO4 · 10H2O 322.196 32.0 1.46 

Na2CO3 · 10H2O 286.142 34.0 1.46 

Na2HPO4 · 12H2O 358.143 35.0 1.50 

FeCl3 · 6H2O 270.295 37.0 1.82 

CaS2O3 · 6H2O 260.298 45.0 1.87 

Na2S · 9H2O 240.183 50.0 1.43 

Na3(PO3)3 · 6H2O 413.976 53.0 1.79 

NaAl(SO4)2 · 12H2O 458.281 60.0 1.61 

NaH2PO4 · 2H2O 156.008 60.0 1.91 

Cr(NO3)3 · 9H2O 400.148 66.3 1.80 

Al(NO3)3 · 9H2O 375.134 73.0 1.72 

Na3PO4 · 12H2O 380.124 75.0 1.62 

Al(ClO4)3 · 9H2O 487.471 82.0 2.00 

Na2Cr2O7 · 2H2O 297.999 85.0 2.35 

Al2(SO4)3 · 18H2O 666.426 86.0 1.69 

CrK(SO4)2 · 12H2O 499.403 89.0 1.83 

AlBr3 · 6H2O 374.785 93.0 2.54 

KAl(SO4)2 · 12H2O 474.389 100.0 1.72 

(NH4)2Fe(SO4)2 · 6H2O 392.139 100.0 1.86 

AlCl3 · 6H2O 241.432 100.0 2.40 

NH4MgCl3 · 6H2O 256.794 100.0 1.46 
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Table 10  Estimated amount of inorganic salt hydrates to release 1ml H2O as working 

fluid based on densities that tabulated in Table 9 

 

Formula M. P. 
[°C] 

Mol. 
Hydrate/    
Mol. H2O 

[g] 
per 

Mol. H2O 

[g]        
per 

1 ml H2O 

[ml]       
per 

1 ml H2O 

Na2SO4 · 10H2O 32.0 0.10 32.22 1.78 1.22 

Na2CO3 · 10H2O 34.0 0.10 28.61 1.58 1.08 

Na2HPO4 · 12H2O 35.0 0.08 29.85 1.65 1.10 

FeCl3 · 6H2O 37.0 0.17 45.05 2.49 1.37 

CaS2O3 · 6H2O 45.0 0.17 43.38 2.40 1.28 

Na2S · 9H2O 50.0 0.11 26.69 1.48 1.03 

Na3(PO3)3 · 6H2O 53.0 0.17 69.00 3.81 2.14 

NaAl(SO4)2 · 12H2O 60.0 0.08 38.19 2.11 1.31 

NaH2PO4 · 2H2O 60.0 0.50 78.00 4.31 2.26 

Cr(NO3)3 · 9H2O 66.3 0.11 44.46 2.46 1.37 

Al(NO3)3 · 9H2O 73.0 0.11 41.68 2.30 1.34 

Na3PO4 · 12H2O 75.0 0.08 31.68 1.75 1.08 

Al(ClO4)3 · 9H2O 82.0 0.11 54.16 2.99 1.50 

Na2Cr2O7 · 2H2O 85.0 0.50 149.00 8.24 3.51 

Al2(SO4)3 · 18H2O 86.0 0.06 37.02 2.05 1.21 

CrK(SO4)2 · 12H2O 89.0 0.08 41.62 2.30 1.26 

AlBr3 · 6H2O 93.0 0.17 62.46 3.45 1.36 

KAl(SO4)2 · 12H2O 100.0 0.08 39.53 2.19 1.27 

AlCl3 · 6H2O 100.0 0.17 40.24 2.22 0.93 

(NH4)2Fe(SO4)2 · 6H2O 100.0 0.17 65.36 3.61 1.94 

NH4MgCl3 · 6H2O 100.0 0.17 42.80 2.37 1.62 
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Ghule et al. [50 and 51] studied dehydration of Na3PO4 · 12H2O and Na2HPO4 · 12H2O, 

respectively. They observed that the two inorganic salt hydrates were gone through 

decomposition by releasing fraction of total water molecules that the salts were bonded 

to at the specific several different temperature ranges upon heating, before the salt were 

totally anhydrous. Sharma et al. [53 and 54] also reported thermal decompositions of 

various sodium salt hydrates. 

With the thermal analysis of the solid compounds and the effluent of the QTHP, 

as tabulated in Table 8 and shown in Fig. 38 and 39, and the identified inorganic salt on 

the solid compounds and in the effluent of the QTHP, as tabulated in Tables 5, 6, and 7 

and shown in Fig. 35 and 36, it might be possibly drawn that inorganic salt hydrates 

were involved in thermal transport mechanism as well as water itself, as mentioned 

earlier. All identified elements were mostly inorganic salt that were easily dissolved in 

water. Moreover, vaporization of water might have occurred below thermodynamic 

boiling temperature of water when possibly involved inorganic salts were anhydrous at 

the melting temperature. 

When inorganic salt hydrates are involved in heat pipes/thermosyphons, thermal 

performance of heat pipes/thermosyphons might increase with additional latent heat of 

fusion energy of salt hydrates and energy required to release water molecules from salt 

hydrates by the presence of inorganic salt hydrates in heat pipes. Upon the examination 

of the QTHP, more conclusions could not be easily drawn since it was impossible to 

know the exact manufacturing process and elements that were placed in the QTHP. 
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Selected inorganic salt hydrates are tabulated in Table 9 with their melting 

temperatures and densities based on their melting temperatures. Inorganic salt hydrates 

with low melting temperatures within 0°C and 100°C are suitable for applications of 

electronics cooling. The amount of inorganic salt hydrates required to release 1 ml of 

water as working fluid is calculated and tabulated in Table 10, when these inorganic salt 

hydrates are used for working medium to generate water to transport thermal energy 

from an evaporator to a condenser of heat pipes and thermosyphons. 
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CHAPTER IV 

 

SUMMARY AND CONCLUSIONS 

 

 

In order to meet ever-increasing thermal dissipation requirements of gas turbine 

airfoils and CPUs, an internal cooling channel for gas turbine airfoils and a novel heat 

pipe for electronic cooling application were studied. First, heat (mass) transfer 

distributions in a two-pass trapezoidal channel with a 180-degree turn were obtained. 

The two-pass trapezoidal channels modeled internal cooling channels of gas turbine 

airfoils. Second, a novel heat pipe was studied as an alternative to current heat 

pipes/thermosyphons, in order to dissipate thermal energy from smaller and higher-

powered CPUs. 

 

 

4.1 HEAT (MASS) TRANSFER DISTRIBUTIONS IN A TWO-PASS  

TRAPEZOIDAL CHANNEL WITH A 180-DEGREE TURN 

 

Naphthalene sublimation experiments were conducted and the heat and mass 

transfer analogy was used to study the local heat transfer distributions on one of the two 

primary walls of a trapezoidal channel with a 180°　turn. Results were obtained for 

turbulent air flow through the channel with smooth walls, and with ribs on one wall and 
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on two opposite walls, over a range of Reynolds numbers between about 10,000 and 

60,000. Based on the geometries of the test channel and the conditions of the 

experiments, the results may be summarized as follows: 

1. The effect of ribs on the average heat (mass) transfer is higher when air 

enters larger straight section of the trapezoidal channel than when air 

enters smaller straight section of the channel. Whether ribs are installed 

on one wall or two walls and with air entering larger or smaller straight 

section of the channel, the enhancement of the average heat (mass) 

transfer at the turn region is lower than the enhancement of the average 

heat (mass) transfer at the straight section of the channel. 

2. There was a very large variation of the local heat (mass) transfer 

distribution in the turn and downstream of the turn. In all cases studied, 

the average heat (mass) transfer was higher on the downstream half of the 

turn than on the upstream half of the turn. 

3. In the smooth wall case, the heat (mass) transfer was high near the end 

wall and the downstream outer wall in the turn, and was relatively low in 

two regions near the upstream outer wall and the downstream edge of the 

divider wall in the turn. 

4. With ribs on two opposite walls, the variation of the local heat (mass) 

transfer was larger than in the smooth wall case, especially in the turn and 

downstream of the turn. The regional average heat (mass) transfer was 

higher in the turn of the trapezoidal channel with a smaller inlet section 
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than in the turn of the channel with a larger inlet section. Immediately 

downstream of the turn, the regional average heat (mass) transfer in the 

larger exit section decreased abruptly, while the regional average heat 

(mass) transfer in the smaller exit section continued to increase and 

reached a maximum value before it decreased as the flow redeveloped.  

Immediately downstream of the turn, the regional average heat (mass) 

transfer was lower in the larger exit section of the channel with ribs than 

in the exit section of the channel with smooth walls for air flow in either 

direction. 

5. The shape of the local heat (mass) transfer distribution at the turn was not 

significantly affected by varying the air mass flow rate. The average heat 

(mass) transfer enhancement in the turn was always higher when the 

Reynolds number was smaller. 

6. The pressure drop across the turn was higher in the case of the flow 

entering the channel through the larger straight section than when the 

flow was reversed. As expected, the ribs increased the pressure drop 

across the turn.   

 

The results of this study show that there is a large variation of the local heat 

(mass) transfer in the turn and immediately downstream of the turn for air flow through a 

two-pass trapezoidal channel with smooth walls or with ribs on the walls.  The large 

variation is caused by a very complex flow field with secondary flows, separated and 
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reattached flows, and flow recirculation in the turn and near the ribs on the walls.  To 

fully understand the effects of the geometries of the channel, the turn, and the ribs, or 

turbulence promoters, on the flow distribution in the channel, and the effect of the flow 

field on the local heat (mass) transfer distributions on the channel walls, parametric 

experimental and numerical studies must be continued to accurately measure or predict 

the flow fields near the turns in multi-pass channels of various geometries and the heat 

(mass) transfer distributions on the channel walls.  These results are needed in the design 

of serpentine cooling passages in gas turbine airfoils. 

 

 

4.2 THERMAL CHARACTERISTICS AND MECHANISMS OF A NOVEL HEAT 

PIPE 

 

The thermal performance and mechanisms of a novel heat pipe, the QuTech® 

Heat Pipe, were characterized with an experimental apparatus and with chemical and 

thermal analysis instruments such as GC-MS, ICP-OES, XPS, XRD, and DSC, 

respectively. Results of the thermal performance were obtained at inclination angles of 

90˚, 45˚, 0˚, -45˚, and -90˚, and compared with results of a conventional heat pipe, 

Noren®, which is a closed two-phase copper-water thermosyphon. The results of the 

thermal performance and chemical/thermal analyses of the QuTech® Heat Pipe may be 

summarized as follows: 
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1. Maximum and minimum effective thermal conductivities were 70.4 and 

8.3 times higher than the thermal conductivity of pure copper (391 

W/mK) at 75.8W and 5W and at an angle between 90˚ and -90˚, 

respectively. The results show that gravity was one of the most important 

factors in determining the thermal performance of the QuTech® Heat 

Pipe. 

2. Temperature distributions along the QuTech® Heat Pipe were quite 

similar with those of the conventional heat pipe that operates by phase 

change and utilizes latent heat of vaporization of water. 

3. A similar phenomenon, with respect to the hysteresis or geyser effect of 

conventional heat pipes/thermosyphons that results from the “onset of 

nucleate boiling” was seen from the results of the QuTech® Heat Pipe. 

The heat pipe exhibited large variations in the average temperature 

differences, between the evaporator and the condenser seemed to occur, 

prior to experiencing failure. This variation was shifted to higher heat 

rates for the conventional heat pipe, Noren® (e.g., this was shown by Fig. 

28). 

4. Results of chemical analyses showed that QuTech® Heat Pipe contained 

water as working fluid and inorganic and organic components like 

sodium, potassium, phosphate, sulfur, and chromium, etc were present. 

5. Results of thermal analyses showed that the interaction between the 

elements of the effluent and the solid compound might prevent absorption 
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of water into the solid compound. When thermal energy is applied to the 

solid compound through the outer surface of QTHP, vaporization of water 

due to the absorbed energy may occur more easily, since fewer water 

molecules are packed into the solid compound. 

 

The results of this study show that the QuTech® Heat Pipe is operated by the 

same thermal mechanism as conventional heat pipes/thermosyphons. That is, phase 

change (vaporization of working fluid) and pressure difference between an evaporator 

and a condenser. Based on the results of chemical and thermal analyses, nevertheless, 

thermal performance of heat pipes/thermosyphons might increase with additional latent 

heat of fusion energy of salt hydrates and energy required to release water molecules 

from salt hydrates by the presence of inorganic salt hydrates in heat 

pipes/thermosyphons. 
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APPENDIX A 
 
 
 
 
 
 
 
 

MATLAB Codes to Reduce Raw Data for Local Mass Transfer Experiments 
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MATLAB Code 1 - Raw Data Converter 

clear; 
clc; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Raw Data Aquisition from text files generated by LABVIEW 
%%% 1st text file aquisition-Before a Run for a Main Experiment 
[FileNameA,PathNameA]=uigetfile('*.txt','Enter filename of 1st-
MEASUREMENT to read'); 
[FileIdA]=fopen(FileNameA,'rt'); 
[RDataA EA]=fscanf(FileIdA,'%e %e %e',[3,inf]); 
TRDataA=RDataA'; 
IdA=input('Name of 1st output sheet: ','s'); 
%%% 2nd text file aquisition-After a Run for a Main Experiment 
[FileNameB,PathNameB]=uigetfile('*.txt','Enter filename of 2nd-
MEASUREMENT to read'); 
[FileIdB]=fopen(FileNameB,'rt'); 
[RDataB EB]=fscanf(FileIdB,'%e %e %e',[3,inf]); 
TRDataB=RDataB'; 
IdB=input('Name of 2nd output sheet: ','s'); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Converting of Raw Data File into Formatted EXCEL File 
N=[82 22; 21 8; 82 22]; % N # and Dimension of Part 1, 2, and 3 
SN=sum(N); 
dx=0.0746; 
dy=0.075; 
for i=2:N(1,1)+1; % x location from #0 to #81 of DAQ 
    DataA(1,i)=(i-5/2)*dx; % x= -0.0373" ~ 6.0053" 
    DataB(1,i)=(i-5/2)*dx; 
end; 
m=0; 
n=0; 
y=-0.1115; 
for i=1:3; 
    if i~=1; n=N(i-1,1)*N(i-1,2)+n; end; 
    for j=2:N(i,2)+1; 
        y=y+dy;  
        DataA(j+m,1)=y; 
        DataB(j+m,1)=y; 
        tMxA=transpose(TRDataA(1+(j-2)*N(i,1)+n:(j-1)*N(i,1)+n,3)); 
        tMxB=transpose(TRDataB(1+(j-2)*N(i,1)+n:(j-1)*N(i,1)+n,3)); 
        if mod(j,2)~=0; 
           DataA(j+m,2:N(i,1)+1)=fliplr(tMxA); 
           DataB(j+m,2:N(i,1)+1)=fliplr(tMxB); 
        else 
           DataA(j+m,2:N(i,1)+1)=tMxA; 
           DataB(j+m,2:N(i,1)+1)=tMxB; 
        end 
    end; 
    m=N(i,2)+m; 
end; 
tA=DataA(2:SN(2)+1,1); 
DataA(2:SN(2)+1,1)=flipud(tA); 
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tB=DataB(2:SN(2)+1,1); 
DataB(2:SN(2)+1,1)=flipud(tB); 
xlswrite('D:\----\Raw Data 1', DataA, IdA); 
xlswrite('D:\----\Raw Data 1', DataB, IdB); 
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MATLAB Code 2 – Height Correctioner 
  
clear; 
clc; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Raw Data Aquisition from text files generated by LABVIEW 
[type, sheets] = xlsfinfo('Correction of Data 2') 
A=input('1st sheet to read: ','s'); 
DA=xlsread('Correction of Data 2',A); 
B=input('2nd sheet to read: ','s'); 
DB=xlsread('Correction of Data 2',B); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Correction of Measured Heights with Heights of Rims using Least 
% Square Curve Fitting 
N=[82 22; 21 8; 82 22]; % Node # and Dimension of Part 1, 2, and 3 
SN=sum(N); 
pA1=polyfit(DA(1,2:N(1,1)),DA(2,2:N(1,1)),1); % Curve fitting of 1st 
rim of DataA except the last point of #81 of DAQ 
pA2=polyfit(DA(1,23:N(1,1)),DA(23,23:N(1,1)),1); % Curve fitting of 2nd 
rim of DataA except the last point of #81 of DAQ 
pA3=polyfit(DA(1,23:N(1,1)),DA(32,23:N(1,1)),1); % Curve fitting of 3rd 
rim of DataA except the last point of #81 of DAQ 
pA4=polyfit(DA(1,2:N(1,1)),DA(SN(2)+1,2:N(1,1)),1); % Curve fitting of 
4th rim of DataA 
pB1=polyfit(DB(1,2:N(1,1)),DB(2,2:N(1,1)),1); 
pB2=polyfit(DB(1,23:N(1,1)),DB(23,23:N(1,1)),1); 
pB3=polyfit(DB(1,23:N(1,1)),DB(32,23:N(1,1)),1); 
pB4=polyfit(DB(1,2:N(1,1)),DB(SN(2)+1,2:N(1,1)),1); 
pvA1=polyval(pA1,DA(1,3:N(1,1))); % Curve Fitted Values obtained on 
Nodes of 1st Rim of DataA 
pvA2=polyval(pA2,DA(1,3:N(1,1))); % Curve Fitted Values obtained on 
Nodes of 2nd Rim of DataA 
pvA3=polyval(pA3,DA(1,3:N(1,1))); % Curve Fitted Values obtained on 
Nodes of 3rd Rim of DataA 
pvA4=polyval(pA4,DA(1,3:N(1,1))); % Curve Fitted Values obtained on 
Nodes of 4th Rim of DataA 
pvB1=polyval(pB1,DB(1,3:N(1,1))); 
pvB2=polyval(pB2,DB(1,3:N(1,1))); 
pvB3=polyval(pB3,DB(1,3:N(1,1))); 
pvB4=polyval(pB4,DB(1,3:N(1,1))); 
pvBA1=pvB1-pvA1; % Difference of Curve Fitted Values of 1st Rims 
between DataA and DataB 
pvBA2=pvB2-pvA2; 
pvBA3=pvB3-pvA3; 
pvBA4=pvB4-pvA4; 
pvBA14=pvBA1-pvBA4; % Difference of Curve Fitted Values between 
Difference of Values of 1st Rims between DataA and DataB and Difference 
of Values of 4th Rims between DataA and DataB 
pvBA12=pvBA1-pvBA2; 
pvBA34=pvBA3-pvBA4; 
IpvBA(1:SN(2)+1,1:N(1,1)+1)=0; 
for i=3:22; 
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    IpvBA(3:SN(2),i)=pvBA4(i-2)+pvBA14(i-2)*(DA(3:SN(2),1)-
DA(SN(2)+1,1))/(DA(2,1)-DA(SN(2)+1,1)); % Interpolation for Data with 
the obtained Difference of Values of Rims between DataA and DataB 
end; 
for i=23:82; 
    IpvBA(3:22,i)=pvBA2(i-2)+pvBA12(i-2)*(DA(3:22,1)-
DA(23,1))/(DA(2,1)-DA(23,1)); 
    IpvBA(33:52,i)=pvBA4(i-2)+pvBA34(i-2)*(DA(33:52,1)-
DA(53,1))/(DA(32,1)-DA(53,1)); 
end; 
DAB=(DA-(DB-IpvBA)); 
FDAB(2:SN(2)-1,1)=DA(3:SN(2),1); 
FDAB(1,2:N(1,1)-1)=DA(1,3:N(1,1)); 
FDAB(2:SN(2)-1,2:N(1,1)-1)=DAB(3:SN(2),3:N(1,1)); 
FDAB(22:31,22:N(1,1)-1)=0; 
xlswrite('D:\----\Height Data 3', FDAB, A); 
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MATLAB Code 3 - Data Reducer 
 
clear; 
clc; 
% Data Reduction to Heat Transfer Coefficient  
% Corrected Data Aquisition from EXCEL files generated by LABVIEW 
[type, sheets] = xlsfinfo('Corrected Height Data 4') 
D=input('1st sheet to read: ','s'); 
DD=xlsread('Corrected Height Data 4',D); 
Height=DD*0.0254; 
[type, sheets] = xlsfinfo('Local Measurement of U-turn Channel, Spring 
2005') 
fId=input('Flow Info to read: ','s'); 
fd=xlsread('Local Measurement of U-turn Channel, Spring 
2005',fId,'B24:K25'); 
tC=fd(1,1); % running time with Correction 
tnC=fd(2,1); % running time without Correction 
ImassC=fd(1,2); % Upstream Mass Transfer Amount of #5 by Correction 
ImassnC=fd(2,2); % Upstream Mass Transfer Amount of #5 by Calculation 
W1=fd(1,3); 
W2=fd(1,4); 
W3C=fd(1,5); % Measured Mass after Correction Test 
W3nC=fd(2,5); % Calculated Mass without Correction Test 
Wd=fd(1,6); % wall density of naphthalene 
Q=fd(1,7); % flow rate 
Sigma=fd(1,8); 
Sh0=fd(1,9); 
Dh=fd(1,10); 
Sd=1175; % solid density of naphthalene [kg/m3] 
N=[82 22; 21 8; 82 22]; % N # and Dimension of Part 1, 2, and 3 
dx=0.0746; 
dy=0.0750; 
SN=sum(N); 
s=input('Enter 1 for LT or SQ case without ribs, 2 for ST case without 
ribs, 3 for ST case with ribs, and 4 for LT case with ribs: '); 
 
% Calculation of Area of Mesh  
% Area without Ribs  
Area(2:51,2:81)=dx*dy*0.0254^2; 
Area(22:30,21)=(dx/2+0.0153)*dy*0.0254^2; 
Area(31,21)=(dx/2+0.0153)*(dy/2+0.0385)*0.0254^2; 
Area(31,2:20)=dx*(dy/2+0.0385)*0.0254^2; 
Area(32,2:81)=dx*(dy/2+0.0365)*0.0254^2; 
Area(51,2:81)=dx*(dy/2+0.0385)*0.0254^2; 
Area(22:31,22:81)=0;  
 
% Area with Virtual Segment Line  
Area(2:21,62)=Area(2:21,62)-0.0120*dy*0.0254^2; 
Area(2:21,61)=Area(2:21,61)+0.0120*dy*0.0254^2; 
Area(32,61)=Area(32,61)+0.0120*(dy/2+0.0365)*0.0254^2; 
Area(32,62)=Area(32,62)-0.0120*(dy/2+0.0365)*0.0254^2; 
Area(33:50,61)=Area(33:50,61)+0.0120*dy*0.0254^2; 
Area(33:50,62)=Area(33:50,62)-0.0120*dy*0.0254^2; 
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Area(51,61)=Area(51,61)+0.0120*(dy/2+0.0385)*0.0254^2; 
Area(51,62)=Area(51,62)-0.0120*(dy/2+0.0385)*0.0254^2; 
  
Area(2:21,41)=Area(2:21,41)-0.0050*dy*0.0254^2; 
Area(2:21,42)=Area(2:21,42)+0.0050*dy*0.0254^2; 
Area(32,41)=Area(32,41)-0.0050*(dy/2+0.0365)*0.0254^2; 
Area(32,42)=Area(32,42)+0.0050*(dy/2+0.0365)*0.0254^2; 
Area(33:50,41)=Area(33:50,41)-0.0050*dy*0.0254^2; 
Area(33:50,42)=Area(33:50,42)+0.0050*dy*0.0254^2; 
Area(51,41)=Area(51,41)-0.0050*(dy/2+0.0385)*0.0254^2; 
Area(51,42)=Area(51,42)+0.0050*(dy/2+0.0385)*0.0254^2; 
  
Area(2:21,21)=Area(2:21,21)-0.0220*dy*0.0254^2; 
Area(2:21,22)=Area(2:21,22)+0.0220*dy*0.0254^2; 
Area(32,21)=Area(32,21)-0.0220*(dy/2+0.0365)*0.0254^2; 
Area(32,22)=Area(32,22)+0.0220*(dy/2+0.0365)*0.0254^2; 
Area(33:50,21)=Area(33:50,21)-0.0220*dy*0.0254^2; 
Area(33:50,22)=Area(33:50,22)+0.0220*dy*0.0254^2; 
Area(51,21)=Area(51,21)-0.0220*(dy/2+0.0385)*0.0254^2; 
Area(51,22)=Area(51,22)+0.0220*(dy/2+0.0385)*0.0254^2;  
 
% Area with Ribs  
if s==3; 
    % 1st Rib 
    Area(2:21,80:81)=0;             
    Area(2:21,79)=Area(2:21,79)+0.0242*dy*0.0254^2; 
    % 2nd Rib 
    Area(2:21,60:61)=0; 
    Area(2:21,59)=Area(2:21,59)+0.0362*dy*0.0254^2; 
    % 3rd Rib 
    Area(2:21,40:41)=0; 
    Area(2:21,39)=Area(2:21,39)+0.0192*dy*0.0254^2; 
    % 4th Rib 
    Area(2:21,20:21)=0; 
    % 5th Rib 
    Area(27:28,2:21)=0; 
    Area(29,2:20)=Area(29,2:20)+dx*0.0250*0.0254^2; 
    Area(29,21)=Area(29,21)+(dx/2+0.0153)*0.0250*0.0254^2; 
    % 6th Rib 
    Area(32:51,22:23)=0; 
    Area(33:50,24)=Area(33:50,24)+dx/2*dy*0.0254^2; 
    Area(32,24)=Area(32,24)+dx/2*(dy/2+0.0365)*0.0254^2; 
    Area(51,24)=Area(51,24)+dx/2*(dy/2+0.0385)*0.0254^2; 
    % 7th Rib 
    Area(32:51,42:43)=0; 
    Area(33:50,44)=Area(33:50,44)+0.0292*dy*0.0254^2; 
    Area(32,44)=Area(32,44)+0.0292*(dy/2+0.0365)*0.0254^2; 
    Area(51,44)=Area(51,44)+0.0292*(dy/2+0.0385)*0.0254^2; 
    % 8th Rib 
    Area(32:51,62:63)=0; 
    Area(33:50,64)=Area(33:50,64)+0.0122*dy*0.0254^2; 
    Area(32,64)=Area(32,64)+0.0122*(dy/2+0.0365)*0.0254^2; 
    Area(51,64)=Area(51,64)+0.0122*(dy/2+0.0385)*0.0254^2;  
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elseif s==4; 
    % 1st Rib 
    Area(32:51,80:81)=0; 
    Area(33:50,79)=Area(33:50,79)+0.0242*dy*0.0254^2; 
    Area(32,79)=Area(32,79)+0.0242*(dy/2+0.0365)*0.0254^2; 
    Area(51,79)=Area(51,79)+0.0242*(dy/2+0.0385)*0.0254^2; 
    % 2nd Rib 
    Area(32:51,60:61)=0; 
    Area(33:50,59)=Area(33:50,59)+0.0362*dy*0.0254^2; 
    Area(32,59)=Area(32,59)+0.0362*(dy/2+0.0365)*0.0254^2; 
    Area(51,59)=Area(51,59)+0.0362*(dy/2+0.0385)*0.0254^2; 
    % 3rd Rib 
    Area(32:51,40:41)=0; 
    Area(33:50,39)=Area(33:50,39)+0.0192*dy*0.0254^2; 
    Area(32,39)=Area(32,39)+0.0192*(dy/2+0.0365)*0.0254^2; 
    Area(51,39)=Area(51,39)+0.0192*(dy/2+0.0385)*0.0254^2; 
    % 4th Rib 
    Area(32:51,20:21)=0; 
    % 5th Rib 
    Area(25:26,2:21)=0; 
    Area(24,2:20)=Area(24,2:20)+dx*0.0250*0.0254^2; 
    Area(24,21)=Area(24,21)+(dx/2+0.0153)*0.0250*0.0254^2; 
    % 6th Rib 
    Area(2:21,22:23)=0; 
    Area(2:21,24)=Area(2:21,24)+dx/2*dy*0.0254^2; 
    % 7th Rib 
    Area(2:21,42:43)=0; 
    Area(2:21,44)=Area(2:21,44)+0.0292*dy*0.0254^2; 
    % 8th Rib 
    Area(2:21,62:63)=0; 
    Area(2:21,64)=Area(2:21,64)+0.0122*dy*0.0254^2;  
end;  
 
% Checking and Correction of Height  
dM1=Sd*sum(sum(Height.*Area)); 
dW1=W1-W2; 
Error=abs(dM1-dW1)/dW1*100; 
if tC==tnC; % without Correction Test 
    t=tnC; 
    Imass=ImassnC; 
    W3=W3nC; 
else; % with Correction Test 
    t=tC; 
    Imass=ImassC; 
    W3=W3C; 
end; 
dW2=W2-W3; 
cHeight=Height-dW2/sum(sum(Area))/Sd;  
switch s; 
    case {1,4};  
        % Calculation of Bulk Density of Naphthalene 
        Bd(1:51,1:81)=0; 
        for i=2:21; 
            Bd(i,81)=(Imass/20+Sd*cHeight(i,81)*Area(i,81)/t/2)/Q; 
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        end; 
        for i=80:-1:22; 
            for j=2:21; 
                
Bd(j,i)=Bd(j,i+1)+Sd*(cHeight(j,i+1)*Area(j,i+1)+cHeight(j,i)*Area(j,i)
)/t/Q/2; 
            end; 
        end; 
        M=Sd*cHeight.*Area./t/Q/2; 
        Bd(2:26,2:21)=mean(Bd(2:21,22))+mean2(M(2:26,2:21)); 
        Bd(27:51,2:21)=mean2(Bd(2:26,2:21))+mean2(M(27:51,2:21)); 
        for i=22:81; 
            for j=32:51; 
                Bd(j,i)=Bd(j,i-1)+Sd*cHeight(j,i)*Area(j,i)/t/Q/2; 
            end; 
        end; 
    case {2,3};  
        % Calculation of Bulk Density of Naphthalene 
        Bd(1:51,1:81)=0; 
        for i=32:51; 
            Bd(i,81)=(Imass/20+Sd*cHeight(i,81)*Area(i,81)/t/2)/Q; 
        end; 
        for i=80:-1:22; 
            for j=32:51; 
                
Bd(j,i)=Bd(j,i+1)+Sd*(cHeight(j,i+1)*Area(j,i+1)+cHeight(j,i)*Area(j,i)
)/t/Q/2; 
            end; 
        end; 
        M=Sd*cHeight.*Area./t/Q/2; 
        Bd(27:51,2:21)=mean(Bd(32:51,22))+mean2(M(27:51,2:21)); 
        Bd(2:26,2:21)=mean2(Bd(27:51,2:21))+mean2(M(2:26,2:21)); 
        for i=22:81; 
            for j=2:21; 
                Bd(j,i)=Bd(j,i-1)+Sd*cHeight(j,i)*Area(j,i)/t/Q/2; 
            end; 
        end;  
end;  
% Calculation of Local Heat Transfer Coefficients  
Pck0=cHeight.*Area; 
for j=2:81; 
    for i=2:51; 
        if Pck0(i,j)==0; 
            cHeight(i,j)=Pck0(i,j); 
        end; 
    end; 
end; 
loh=Sd*cHeight./(Wd-Bd)./t; 
loh(1,:)=Height(1,:);  
loh(:,1)=Height(:,1); 
loSh=loh.*Dh/Sigma; 
loSh(1,:)=Height(1,:);  
loSh(:,1)=Height(:,1); 
loP=loSh./Sh0; 
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loP(1,:)=Height(1,:);  
loP(:,1)=Height(:,1); 
loPm(1:21,:)=loP(1:21,:); % Converting Single-Zone Data Format into 
Multi-Zone Data Format 
loPm(23,1:21)=loP(1,1:21); 
loPm(24:35,1:21)=loP(21:32,1:21); 
loPm(37,:)=loP(1,:); 
loPm(38:57,:)=loP(32:51,:);  
% Calculation of Total Averaged Heat Transfer Coefficients  
aveh(1)=sum(sum(loh(2:51,2:81).*Area(2:51,2:81)))/sum(sum(Area(2:51,2:8
1))); 
% Calculation of Regional Averaged Heat Transfer Coefficients  
aveh(2)=sum(sum(loh(2:21,62:81).*Area(2:21,62:81)))/sum(sum(Area(2:21,6
2:81))); 
aveh(3)=sum(sum(loh(2:21,42:61).*Area(2:21,42:61)))/sum(sum(Area(2:21,4
2:61))); 
aveh(4)=sum(sum(loh(2:21,22:41).*Area(2:21,22:41)))/sum(sum(Area(2:21,2
2:41))); 
aveh(5)=sum(sum(loh(2:26,2:21).*Area(2:26,2:21)))/sum(sum(Area(2:26,2:2
1))); 
aveh(6)=sum(sum(loh(27:51,2:21).*Area(27:51,2:21)))/sum(sum(Area(27:51,
2:21))); 
aveh(7)=sum(sum(loh(32:51,22:41).*Area(32:51,22:41)))/sum(sum(Area(32:5
1,22:41))); 
aveh(8)=sum(sum(loh(32:51,42:61).*Area(32:51,42:61)))/sum(sum(Area(32:5
1,42:61))); 
aveh(9)=sum(sum(loh(32:51,62:81).*Area(32:51,62:81)))/sum(sum(Area(32:5
1,62:81))); 
aveP=aveh.*Dh/Sigma/Sh0; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
value={'Total' '5' '6' '7' '8' '9' '10' '11' '12' 'Error' 'Measured' 
'Weighed' 'Time' 'Dh'; aveP(1) aveP(2) aveP(3) aveP(4) aveP(5) aveP(6) 
aveP(7) aveP(8) aveP(9) Error dM1 dW1 t Dh}; 
xlswrite('D:\----\LocalValues', loPm, D); 
xlswrite('D:\----\AverageValues', value', D); 
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