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ABSTRACT

Advanced Channel Coding Techniques

Using Bit-level Soft Information. (August 2007)

Jing Jiang, B.S., Shanghai Jiao Tong University

Chair of Advisory Committee: Dr. Krishna R. Narayanan

In this dissertation, advanced channel decoding techniques based on bit-level soft

information are studied. Two main approaches are proposed: bit-level probabilistic

iterative decoding and bit-level algebraic soft-decision (list) decoding (ASD).

In the first part of the dissertation, we first study iterative decoding for high

density parity check (HDPC) codes. An iterative decoding algorithm, which uses

the sum product algorithm (SPA) in conjunction with a binary parity check matrix

adapted in each decoding iteration according to the bit-level reliabilities is proposed.

In contrast to the common belief that iterative decoding is not suitable for HDPC

codes, this bit-level reliability based adaptation procedure is critical to the conver-

gence behavior of iterative decoding for HDPC codes and it significantly improves

the iterative decoding performance of Reed-Solomon (RS) codes, whose parity check

matrices are in general not sparse. We also present another iterative decoding scheme

for cyclic codes by randomly shifting the bit-level reliability values in each iteration.

The random shift based adaptation can also prevent iterative decoding from getting

stuck with a significant complexity reduction compared with the reliability based

parity check matrix adaptation and still provides reasonable good performance for

short-length cyclic codes.

In the second part of the dissertation, we investigate ASD for RS codes using

bit-level soft information. In particular, we show that by carefully incorporating bit-
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level soft information in the multiplicity assignment and the interpolation step, ASD

can significantly outperform conventional hard decision decoding (HDD) for RS codes

with a very small amount of complexity, even though the kernel of ASD is operating

at the symbol-level. More importantly, the performance of the proposed bit-level ASD

can be tightly upper bounded for practical high rate RS codes, which is in general

not possible for other popular ASD schemes.

Bit-level soft-decision decoding (SDD) serves as an efficient way to exploit the

potential gain of many classical codes, and also facilitates the corresponding per-

formance analysis. The proposed bit-level SDD schemes are potential and feasible

alternatives to conventional symbol-level HDD schemes in many communication sys-

tems.
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CHAPTER I

INTRODUCTION

Reed-Solomon (RS) codes are one of the most popular error correction codes in many

state-of-the-art communication and data storage systems. In most applications, RS

codes are decoded via algebraic hard decision decoding (HDD), which does not fully

exploit the error correcting capability of RS codes. When soft information about

the channel output is available (for example, in an additive white Gaussian noise

(AWGN) channel), HDD can incur a significant performance loss compared with

optimal soft decision decoding (SDD). For the AWGN channel, the loss is about 2-

4 dB for practical high rate RS codes at the target error rate where they are usually

operating. More importantly, in many practical systems, RS codewords are mapped

into their binary image expansions and then transmitted through channels using

binary modulation formats. Therefore, it is of both theoretical and practical value to

study decoding schemes for RS codes using bit-level soft information.

In this dissertation, we propose two advanced channel decoding techniques,

namely, probabilistic iterative decoding [1][2] and algebraic soft-decision (list) de-

coding (ASD) [3] [4] for RS codes, using bit-level soft information. We have shown

that, in spite of the fact that RS codes are non-binary codes, efficiently exploiting bit-

level soft information plays a crucial role in achieving the potential gain of the codes

with a moderate complexity and facilitates the corresponding performance analysis

as well.

The rest of this dissertation is organized as follows: we first review some back-

ground on RS codes, which will be used throughout this dissertation in Chapter II.

The journal model is IEEE Transactions on Automatic Control.
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We study iterative decoding schemes in Chapter III and Chapter IV. In Chapter III,

we propose an iterative sum product algorithm (SPA) based decoding by adapting

the parity check matrix in each iteration according to the bit reliabilities. In Chap-

ter IV, another iterative decoding method based on stochastic shifting the bit-level

reliability values of the coded bits in each iteration is presented. In Chapter V, we

study the performance of ASD for RS codes using bit-level soft information. Finally,

we summarize the main contributions of this dissertation and discuss potential future

works of the bit-level advanced channel coding techniques in Chapter VI.
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CHAPTER II

BACKGROUND ON REED-SOLOMON CODE

In this chapter, we briefly review background materials on RS codes. We first give a

historic survey of RS codes and the symbol-level code structure in Section A. Com-

monly used algebraic HDD algorithms for RS codes are introduced in Section B. The

binary image expansion of RS codes over GF(2m) is presented in Section C. Two ad-

vanced channel coding techniques, i.e. iterative decoding and algebraic list decoding

are discussed in Section D and Section E respectively. Other popular SDD algorithms

of RS codes are introduced in Section F. Finally, the ensemble average performance

of the binary image expansion of RS codes over GF(2m) under maximum likelihood

decoding (MLD) is analyzed in Section G.

A. Symbol-level Structure of Reed-Solomon Codes

In this section, we give a brief review of the symbol-level code structure of RS codes.

1. Evaluation Form of Reed-Solomon Codes

RS codes were invented in 1960 by Reed and Solomon [5] as the name stands for. The

code was initially defined as a set of message polynomials evaluated at N distinct

points, which is usually referred to as the evaluation form of RS codes.

Consider the evaluation form of an (N,K) RS code over GF (q). Define the

message vector f as:

f = (f0, f1, · · · fK−1) , fi ∈ GF (q). (2.1)

The polynomial form of the message is:

f(x) = f0 + f1x + · · ·+ fK−1x
K−1 (2.2)
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Let D = {x1, x2, · · · , xN} be a set of distinct elements in GF (q). An RS code is

defined by evaluating the message polynomial at N points:

C(N, K) = {(f(x1), · · · , f(xN))} (2.3)

for all message polynomials f(x). If the evaluation points take the form xi = βi(i =

0, · · · , N − 1), where β is a primitive element in GF(q), the RS code is evaluated

using a set of fixed order points.

Reed and Solomon showed many nice properties of RS codes. For instance, RS

codes are shown to be maximum distance separable (MDS) codes at the symbol-level.

That is, for an (N, K) RS code, its minimum distance dmin = N −K + 1, which is

the maximum possible at the symbol-level. The initial paper also proposed encoding

and decoding schemes for RS codes, however, they are not very efficient for practical

implementations.

2. Non-binary BCH Code Form of Reed-Solomon Codes

RS codes are closely related to another class of popular error correcting codes, Bose

Chaudhuri and Hocquenghem (BCH) codes [6]. Gorenstein and Zierler showed that

RS codes are equivalent to q-ary BCH codes over GF(q) [7].

Consider a BCH code over GF (q). The generator polynomial of the code is:

g(x) = (x− βb)(x− βb+1) · · · (x− βb+N−K−1) (2.4)

where β is a primitive element in GF (q) and b is an integer number. When b = 1,

the code becomes a narrow sense BCH code.

Since the generator polynomial has N −K consecutive roots, the corresponding

parity check matrix can be represented as follows [8]:
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Hs =




1 βb · · · β(N−1)b

1 βb+1 · · · β(N−1)(b+1)

· · ·
1 β(b+δ−2) · · · β(N−1)(b+δ−2)




(2.5)

where δ = dmin = N −K + 1. In addition, due to the cyclic property of BCH codes,

it can be shown that the dual code of an RS code is also an RS code. Therefore

the generator matrix of an RS code can also be represented in the form of (2.5).

Comparing (2.5) when b = 0 with (2.2) evaluated by a set of fixed order points

xi = βi (i = 0, · · · , N − 1), we can see that RS codes and q-ary BCH codes over

GF(q) are equivalent.

B. Hard Decision Decoding of Reed-Solomon Codes

Many efficient HDD schemes have been proposed to decode RS codes up to t =

bdmin−1

2
c symbol-level errors. Due to the equivalence of RS codes and non-binary BCH

codes, the bounded distance HDD for non-binary BCH codes proposed by Peterson

[9] can be applied to RS codes. However, the computational complexity of Peterson’s

algorithm is still quite large for long codes, mainly at the error location step. It was

not until Berlekamp’s seminal work [10], HDD of RS codes became truly efficient.

Several years later, Massey showed that Berlekamp’s decoding scheme is equivalent

to the problem of synthesizing the shortest linear feedback shift register (LFSR) to

generate a given sequence and HDD of RS can be realized efficiently using a set of

shift registers in hardware [11]. The algorithm is therefore called Berlekamp and

Massey (BM) decoding. Besides BM decoding, Sugiyama et al. showed that Euclid’s

algorithm can also be used for error location in RS HDD [12]. Frequency domain

encoding and decoding methods of RS codes have been studied in depth in [13]. In
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1986, Berlekamp and Welch proposed an interpolation based decoding algorithm for

RS codes [14], which paved way for the later algebraic list decoding algorithms [3].

When error locations are known to the decoder, the error magnitudes can be

obtained by solving a set of linear equations. Forney proposed a fast algorithm to

calculate the error magnitudes [15], which is referred to as Forney’s algorithm. BM

algorithm can also be easily modified to accommodate erasures. Since the error

location of erased symbols are known, BM algorithm can decode more erasures than

errors. In general, HDD of RS codes will succeed if the number of errors e and the

number of erasures g satisfies 2e + g < dmin. In other words, if twice the number of

erroneous symbols plus the number of erased symbols does not exceed the designed

minimum distance of the code, we are guaranteed to be able to recover the original

codeword. Besides, erasure decoding can also be used as a systematic way to encode

RS codes. For more decoding techniques of RS codes, we refer interested readers to

[8, 13,16].

C. Binary Image Expansions of Reed-Solomon Codes

In this section, we consider RS codes over GF (2m), which are most commonly used.

It is known that all the 2m elements in GF (2m), 0, 1, β, β2, · · · , β2m−2, can be

represented by an m-dimensional binary vector over GF (2) using a basis which spans

GF (2m). Addition operation in GF (2m) is nothing but component wise addition of

the vector over GF (2). Similarly, multiplication can be carried out by multiplying a

binary vector with a binary multiplication matrix. Therefore, each entry in the parity

check matrix Hs can be replaced by an m × m matrix over GF(2) for the purpose

of multiplication. For instance, consider RS codes over GF(4) and let β be a root of

the primitive polynomial p(x) = x2 + x + 1. β has the binary vector representation
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[0, 1] and the multiplication operation ×β corresponds the binary multiplication of

the vector expansion with a multiplication matrix:




0 1

1 1


 .

Hence, Hs has an equivalent binary image expansion Hb and the RS code has

a binary linear block code representation. Let n = N × m and k = K × m be the

length of the codeword and the message at the bit level, respectively. Hence, Hb is an

(n− k)× n binary parity check matrix. In other words, an RS code over GF(2m)can

also be viewed as a binary linear block code.

D. Iterative Decoding

As discussed in Section C, RS codes can be represented using their binary image ex-

pansions. Therefore, RS decoding problem is turned into a general decoding problem

for binary linear block codes.

Ever since the invention of turbo codes [1] and the rediscovery of low-density-

parity-check (LDPC) codes [2], belief propagation (BP) based iterative decoding has

been a panacea for many coding and communication problems. Iterative decoding

of linear block codes and the sum product algorithm (SPA) was studied in [17] [18]

[19]. However, BP algorithm is usually not considered to be suitable for high den-

sity parity check (HDPC) codes [18], since iterative decoding can easily get stuck

at pseudo-equilibrium points due to the large number of short cycles in the corre-

sponding bipartite graph of the code. Some research works have been focused on

the construction of proper parity check sets for iterative decoding [18] [19], since the

performance of iterative decoding will be different with the choice of parity check

matrix even if the code is the same. Lucas et al. [18] suggested using minimum

weight parity check sets for iterative decoding. Some algorithms for the small weight

parity check sets search are also discussed. However, in general, finding a minimum
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parity check vector is NP-complete. Moreover, for MDS codes, such as RS codes, we

cannot expect to get a very small weight parity check vector. Since the parity check

matrix is nothing but the generator matrix of the dual code, which is also an MDS

code, the minimum weight of every parity check must be at least (K + 1) (typically

much larger). For high rate RS codes, where K is large, the parity check matrix is

necessarily non-sparse, which is unsuitable for iterative decoding.

Yedidia et al. [20] established the inherent connection between BP and statistical

physics. In [19], Yedidia et al. proposed the “generalized belief propagation (GBP)”

algorithm, which introduces hidden states in the bipartite graph of the code to help to

improve the performance of iterative decoding. However, GBP still has problems in

decoding HDPC codes over AWGN channels. Nevertheless, GBP inspired our study

of BP algorithms for HDPC codes such as RS codes.

Recently, iterative decoding of RS codes have been studied by several research

groups. Ungerboeck proposed a sub-trellis based iterative decoding scheme [21].

Yedidia proposed a factor graph based iterative decoding of RS codes using Galois-

field fast Fourier transform (GFFT) as an instance of GBP [22]. Unfortunately, the

proposed iterative decoding schemes only work well for short length RS codes. It

is suggested that directly applying iterative decoding to HDPC codes does not give

good results since the parity check matrix of an RS code is not sparse so that iterative

decoding can quickly get stuck.

E. Algebraic Soft-decision List Decoding

In Section B, we have discussed many HDD schemes for RS codes. However, all

the HDD algorithms can only decode up to t = bN−K
2
c. In 1995, based on the

previous work by Berlekamp [23] and Berlekamp and Welch [14], Sudan [3] built
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the first algebraic HDD algorithm which can correct beyond half dmin errors for

low rate RS codes with polynomial time complexity. Two years later, Guruswami

and Sudan [24] improved Sudan’s decoder [3] and enlarged the decoding radius up to

tGS = bN−
√

N(K − 1)c for all rates with polynomial time complexity. Koetter and

Vardy [4] generalized Guruswami and Sudan (GS) decoding algorithm and presented

a multiplicity assignment strategy (MAS) for the GS list decoder, which can take

into account the soft information available at the decoder input. Algebraic soft-

decision decoding (ASD) algorithms have since then gained great research interest.

In contrast to the iterative decoding algorithms in Section D, ASD is algebraic in

nature. However, soft information can still be incorporated in the algebraic decoding

procedure by appropriate multiplicity assignment.

From a theoretical perspective, optimal MAS for ASD and corresponding perfor-

mance analysis still remains an open problem. In [4], Koetter and Vardy presented an

asymptotically optimal MAS that maximizes the transmission rate for a given channel

such that the probability of error can be made arbitrarily small as the code length

goes to infinity. Multiplicity assignment optimization for finite length RS codes has

been considered in [25–27] using numerical algorithms. In [28], a general framework

has been studied for channels with additive cost [28]. In [27], MAS for general discrete

memoryless channels (DMC) has been investigated and an upper bound based on a

Chernoff bounding technique has been derived. However, the Chernoff-type bound

[27] largely relies on numerical computations and gives little insight into the decoding

region of ASD under a certain MAS. Besides, the bound becomes loose for practical

high rate RS codes. More recently, the decoding region and typical error patterns of

ASD with infinite cost over some basic DMC’s have been studied independently in
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[29]1 and [30]. Based on the analysis in [29], the performance of practical high rate

RS codes can be tightly bounded over erasure channels. However, as suggested in

[30], even with infinite cost, ASD has a significant gain over BM only for RS codes of

low rates or when the number of candidate symbols at the decoder input is small.

From a practical perspective on the other hand, many techniques have been pro-

posed for ASD, for example, [31–38] and references therein. We also refer interested

readers to [39] for a comprehensive tutorial of the generic GS algorithm. Most of ASD

schemes, such as the KV algorithm, can significantly outperform HDD for low rate

RS codes. However, to achieve large coding gain for high rate practical RS codes, the

complexity can be prohibitively large [34]. Large computational complexity and the

limited performance gain for high rate RS codes of ASD becomes the main obstacle

to steer ASD decoding towards an implementable alternative to conventional HDD.

F. Other Soft Decision Decoding Schemes for Reed-Solomon Codes

In this section, we review some other existing SDD techniques for RS codes.

1. Enhanced Algebraic Hard Decision Decoding

The idea to take advantage of the soft information of the received bits to improve

the decoding performance of RS codes can be dated back to Forney’s 1966 work [40].

In the original paper, Forney suggested successively erasing some of the unreliable

symbols in the received signals and use algebraic HDD to decode. Thus, if twice the

number of erroneous symbols plus the number of erased symbols does not exceed the

designed minimum distance of the code, i.e., 2e+g < dmin, we can recover the original

codeword. Forney proved that GMD guarantees to return an estimated codeword.

1[29] is a conference paper which contains parts of this dissertation.
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Since GMD has to run the generic HDD each time after erasing some symbols, the

complexity of the GMD is about dmin/2 times as large as that of the generic HDD.

Since GMD is based on the algebraic HDD and also takes advantage of the reliability

information, it is called enhanced algebraic HDD.

Another enhanced algebraic HDD is Chase decoding [41]. The most popular

version of Chase decoding, Chase type-II decoding (which is also usually abbreviated

as Chase decoding) is also a reliability-assisted decoder, i.e., the decoder exhaustively

flips up to d least reliable symbols and incorporates an algebraic HDD in each step.

If the number of errors in the rest of the symbols is within the HDD error correction

radius, the codeword can be recovered. Since Chase decoding involves exhaustively

flipping symbols, its complexity is exponential in d. A hybrid of Chase type-II and

GMD (Chase-GMD) has been proposed in [42]. Enhanced HDD usually gives a mod-

erate performance improvement over HDD with reasonable complexity for practical

applications.

2. Reliability Based Decoding

As shown in Section C, RS codes can be represented using their binary expansions.

Efficient decoding methods for the general binary linear block codes such as the reli-

ability based ordered statistics decoding (OSD) [43][44] can be applied to RS codes

as well. The main idea of OSD is to propose reprocessing based on the most reliable

basis (MRB) of the received signal. Since the reprocessing involves exhaustively flip-

ping p bits in the MRB, the complexity increases exponentially with p. Nevertheless,

with some small p, the OSD decoder provides good performance for short to medium

length block codes. Recently, a variation of box and match (BMA) decoding [45] has

been proposed by Fossorier and Valembois to trade-off memory for time complexity.

Another variation of OSD which does not need large memory and turns out to be effi-
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cient has been proposed by Wu et al. [46] [47]. More recent works on BMA decoding

for linear block codes can be found in [48] and [49].

3. Trellis Based Coset Decoding

All the soft decision decoding methods discussed above are list decoding based soft

input hard output (SIHO) algorithms. In some situations, it is desirable to obtain

soft output from the decoder. A typical example is when turbo equalization (TE) [50]

is employed at the receiver and soft outputs from the decoder have to be fedback to

the equalizer. Consequently, soft-input-soft-output (SISO) decoding algorithms for

RS codes are of research interest. Though averaging over all returned codewords in

the list can generate the soft output [51], a natural SISO decoder is still favorable in

some applications.

In the early 90s, Vardy and Be’ery suggested a binary decomposition scheme of

RS codes into BCH subfield subcodes and glue vectors [52], which essentially reduces

the overall trellis complexity of MLD of RS codes. Some recent works [53] further

reduce the complexity and modify the algorithm to be able to generate soft outputs

efficiently. Nevertheless, this trellis based scheme still has an exponentially increasing

complexity and works only for short RS codes or RS codes with small dmin.

G. Performance of Reed Solomon Codes under Maximum Likelihood Decoding

Maximum likelihood decoding (MLD) of RS codes is a non-trivial task, especially for

long codes. It has recently been shown that MLD of RS codes is NP-complete [54].

Consequently, analytical bounds on the performance of RS codes under MLD are of

interest as benchmarks for suboptimal decoders. However, the performance of the RS

code under MLD using a particular binary image expansion is still difficult to analyze,



13

since the weight enumerator of an RS code using a specific binary image expansion

is in general unknown. In this section, we study the ensemble average performance

of RS codes under MLD [55][56] using Divsalar bound [57], which is tighter than the

union bound in the low signal to noise ratio (SNR) region. The ensemble average

of the RS code is taken by averaging over all binary representations of the RS code

expanded using all possible binary bases for each symbol.

Due to the maximum distance separable (MDS) property of RS codes, the

symbol-level weight enumerator is well known [8] and given by:

Rw =

(
N

w

)
(q − 1)

w−dmin∑
i=0

(−1)i

(
w − 1

i

)
qw−dmin−i (2.6)

where w is the symbol-level weight of a valid codeword and Rw is the corresponding

weight enumerator at the symbol-level.

Whereas, the bit-level weight enumerator of an RS code is not unique, i.e., each

symbol of the RS codeword can be expanded into different binary vectors using dif-

ferent bases. The binary image expansion of an RS code depends on the specific basis

chosen to expand the m-dimensional binary vectors for each symbol. Though the

weight enumerator given the specific basis is difficult to obtain, Retter [55] computed

the averaged weight enumerator over the ensemble of all possible binary expansions

for all symbols, i.e, of the generalized RS ensemble (GRSE). Recently, El-Khamy

and McEliece [56] got exactly the same bit-level weight enumerator expression by

assuming that each the bit-level Hamming weight of each symbol in the RS codeword

is binomially distributed. The overall weight enumerator polynomial can then be
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expressed as:

G(x) =
Nm∑
i=0

Gix
i =

N∑
w=0

Rw

[
m∑

j=1

(
m
j

)
xj

2m − 1

]w

=
N∑

w=0

Rw

Nw
((x + 1)m − 1)w (2.7)

Expanding G(x), we can get:

Gi =
N∑

w=0

Rw

Nw

w∑
j=0

(−1)w−j

(
w

j

)(
jm

i

)

=

min(N,i)∑

w=dmin

Rw

Nw

w∑
j=0

(−1)w−j

(
w

j

)(
jm

i

)
(2.8)

The second equation holds by the observation that there is no non-zero codeword

of symbol-level weight w ≤ dmin and there are no codewords of symbol-level weight

w > i contributing to the enumerator of bit weight i. Each code in the GRSE inherits

all the properties of RS codes, e.g., designed minimum distance, symbol-level MDS

property, etc.. Therefore, it is reasonable to evaluate the performance of the GRSE,

which gives some idea about the performance of a specific RS code under MLD.

Here, we use standard bounding techniques to study the performance of the

GRSE under MLD. Define the normalized weight δ = i/n, the normalized weight

enumerator r(δ) , (ln Gi)/n and the normalized SNR per coded bit as ρ = R Eb

N0
. We

have the union-type bound on the frame error rate (FER) as

FER ≤
n∑

i=dmin

e−nE(ρ,δ) (2.9)

where the exponent term E(ρ, δ) depends on the specific bound chosen. For the

standard union Chernoff bound, we have the exponent:

E(ρ, δ) = −r(δ) + δρ (2.10)
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Fig. 1. Upper and Lower Bound on the Performance of an RS(31, 25) Code under

MLD

In this dissertation, we choose a modified union-type bound derived by Divsalar

[57], which is tight in the low SNR region, where standard union bound is loose. For

this bound, the exponent is:

E(ρ, δ) = −γ(δ) +
1

2
ln[β + (1− β)e2γ(δ)] +

δβ

1− δ(1− β)
ρ (2.11)

where β is:

β =

√
ρ
1− δ

δ

2

1− e−2γ(δ)
+ (

1− δ

δ
)2[(1 + ρ)2 − 1]− 1− δ

δ
(1 + ρ) (2.12)

Since the above upper bound is an average over the ensemble of binary expan-

sions, it is not clear a priori, how tight it is in predicting the performance of a specific

RS code. Therefore, we also compute a simulation based lower bound for medium
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length codes. The lower bound is obtained using the following procedure: First, we

run a soft decision decoder (e.g. some of the proposed decoding algorithms discussed

in the following chapters). When the received vector is closer to the estimated code-

word than to the transmitted codeword, an error is counted for the ML decoder.

Otherwise, we assume that the ML decoder does not make an error. This provides a

lower bound always, the tightness of which depends on how good the decoder is. The

upper and lower bounds of an RS(31,25) code under MLD along with the performance

of HDD are shown in Figure 1. It can be seen that the ML upper bound of the GRSE

is tight in the high SNR region, which is 0.5dB away from the simulation-based ML

lower bound of a specific RS code (expanded using a fixed basis) at an FER = 10−4.

Besides, the HDD performance is 2-3dB away from the optimal performance under

ML decoding, which is consistent with the commonly believed potential performance

gain using SDD over HDD. Hence, we will use the GRSE upper bound under the

MLD as a performance benchmark for long RS codes where simulation based lower

bounds are difficult to obtain.

We first investigate the performance of a widely used high rate code, i.e., RS

(255,239). In Figure 2, we plot the performance of the upper bound over GRSE

under MLD, HDD with error correction radius t = (dmin − 1)/2 and a hypothetical

“genie decoder”, which can correct up to t = (dmin − 1) symbol errors. We can

see that, the HDD is asymptotically 3dB worse than the performance under MLD

(the largest gap is about 4dB, which appears at around an FER = 10−20). The

“genie decoder” is optimal for asymptotically large SNRs. However, this happens

only at very low FERs (say, at an FER = 10−200), which is impractical for most of

the applications. For practical SNRs, it has approximately 2dB loss compared with

the performance under ML decoding.

We further investigate a medium rate code RS(255,127) R = 0.498 ≈ 0.5 in
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Fig. 2. Performance Comparison of an RS(255,239) Code under Different Decoders

Figure 3. We can see that the performance of the RS ensemble under MLD reaches

an FER = 10−4 at an Eb/N0 = 1.2dB and outperforms the hypothetical decoder and

HDD by 2.5dB and 5dB respectively. The performance of RS ensemble under MLD

is only about 0.6 dB away from the sphere packing bound [58] (as can be seen from

Figure 4), making it comparable to the best known turbo and LDPC codes. Note that

for this code, all known decoders up to now are still away from the performance under

MLD, making it difficult to obtain good simulation based lower bounds to estimate

the MLD performance of the RS code.

The above examples reveal two important facts. First, the RS code itself is a

good code, which can perform close to capacity under MLD as the codeword length

goes long. Second, symbol-level bounded distance decoding does not fully exploit



18

0 2 4 6 8 10 12 14 16
10

−300

10
−250

10
−200

10
−150

10
−100

10
−50

10
0

comparison of performance bounds of RS(255,127)

E
b
/N

0

F
E

R

HDD t=(d
min

−1)/2

HDD t=(d
min

−1)

rand ensemble ml
RS ensemble ml

Fig. 3. Performance Comparison of an RS(255,127) Code under Different Decoders

the error correction capability of the code. Recently, there has been very significant

developments in bounded distance decoding beyond half the minimum distance (see

the seminal work [24][59]). However, the above example shows that even the “genie

decoder”, which decodes up to t = dmin − 1, performs far away from ML decoding.

It suggests that the efficient RS decoder should be able to decode far beyond the

minimum distance to take full advantage of the error correction capability of the

code, since the number of low weight codewords can be very small. This motivates

alternative design philosophies for RS soft-decision decoders, that is, decoding RS

codes by taking advantage of bit-level soft information.
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CHAPTER III

ITERATIVE SOFT-INPUT-SOFT-OUTPUT (SISO) DECODING OF HIGH

DENSITY PARITY CHECK CODES BY ADAPTING THE PARITY CHECK

MATRIX

It is commonly believed that BP decoding is not suitable for high density parity check

(HDPC) codes [18], since iterative decoding can easily get stuck at pseudo-equilibrium

points due to the large number of short cycles in the factor graph.

In this chapter, we present an SPA based SISO iterative decoding algorithm for

HDPC codes. The main novelty in the proposed scheme is to adapt the parity check

matrix at each iteration according to the bit reliabilities such that the unreliable bits

correspond to a sparse submatrix and SPA is then applied to the adapted parity

check matrix. The proposed algorithm can be geometrically interpreted as a two-

stage gradient descent with an adaptive potential function. This adaptive procedure is

crucial to the convergence behavior of the gradient descent algorithm since it prevents

the gradient descent procedure from getting stuck at pseudo-equilibrium points and,

hence, significantly improves the convergence behavior of the iterative decoder

In principle, the proposed algorithm can be applied to any linear block code;

however, we restrict our attention to RS codes in this dissertation because of the

practical interest in SDD of RS codes and the fact that the gain from this adaptive

procedure is likely to be significant for codes with dense parity check matrices such

as RS codes. Simulation results show that the proposed iterative decoding scheme

performs well for RS codes with reasonable decoding complexity, even though their

original parity check matrices are not sparse.

The rest of the chapter is organized as follows: The generic iterative decoding

algorithm is presented in Section A. A geometric interpretation of the proposed
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Fig. 5. Form of the Parity Check Matrix Suitable for Iterative Decoding Obtained

through Row Operations

algorithm is given in Section B. Several variations of the generic algorithm are inves-

tigated in Section C. In Section D, simulation results of the proposed algorithm are

presented and compared with popular RS soft decoding algorithms. Discussions and

conclusions are presented in Section E.

A. Iterative Decoding Algorithm by Adapting the Parity Check Matrix

We will use underlined letters to denote vectors and bold face letters to denote ma-

trices. Let c = [c1, c2, . . . , cn] be the binary representation of an RS codeword. In

the description of the generic algorithm, we first assume that the bits are modulated
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using BPSK (with 0 mapped to +1 and 1 mapped to −1) and transmitted over an

AWGN channel (extension to other channels is straightforward). The received vector

is given by

y = (−2c + 1) + n, (3.1)

Thus, the initial reliability of each bit in the received vector can be expressed in terms

of the log-likelihood ratios (LLR) as observed from the channel:

L(0)(ci) = log
P (ci = 0|yi)

P (ci = 1|yi)
, (3.2)

The proposed algorithm is composed of two stages: the matrix updating stage

and the bit-reliability updating stage. In the matrix updating stage, the magnitude

of the received LLRs |L(ci)| are first sorted and let i1, i2, . . . , iN−K , . . . , in denote the

position of the bits in terms of ascending order of |L(ci)|, i.e., the bit ci1 is the least

reliable and cin is the most reliable. We begin with the original parity check matrix

Hb and first reduce the ith1 column of Hb to a form [1 0 . . . 0]T . Then, we try to

reduce the ith2 column of Hb to a form [0 1 0 . . . 0]T and so on. We can be guaranteed

to proceed until the ith(N−K) column, since there are at least (N − K) independent

columns in Hb. Then we try to reduce the ithN−K+1 to [0 . . . 0︸ ︷︷ ︸
(N−K)

1, 0, . . . , 0]T . However,

there is no guarantee we can do this. If we are unable to do so, we will leave that

particular column and try to reduce ith(N−K+2) column to the above form and so on.

Finally, we can reduce (n−k) columns among the n columns of Hb to be the identity

matrix, since the matrix is (n− k) × n and is full rank. The matrix is thus reduced

to a form as shown in Fig. 5. We denote the set of unreliable bits corresponding to

the sparse submatrix as BL.

The proposed algorithm is iterative and during the jth iteration, we have a vector
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of LLRs as:

L(j) = [L(j)(c1), L
(j)(c2), · · · , L(j)(cn)] (3.3)

where initially L(0) is determined from the channel output. Then, the parity check

matrix is reduced to a desired form based on L(j):

H
(j)
b = φ(Hb, |L(j)|). (3.4)

Henceforth, in the bit-reliability updating stage, the extrinsic LLR vector L
(j)
ext is first

generated according to L(j) using SPA [17] based on the adapted parity check matrix

H
(j)
b :

L
(j)
ext = ψ(H

(j)
b ,L(j)) (3.5)

That is for each bit, the extrinsic LLR is updated according to:

L
(j)
ext(ci) =

n−k∑

l=1
Hli=1

2 tanh−1




n∏
p=1

p6=i,Hlp=1

tanh

(
L(j)(cp)

2

)

 (3.6)

The bit-reliability is then updated as:

L(j+1) = L(j) + αL
(j)
ext (3.7)

where 0 < α ≤ 1 is a damping coefficient. This is continued until a predetermined

number of times jmax = N1 or until all the parity checks are satisfied. A detailed

description of the algorithm is given in Algorithm 1.

The proposed adaptive algorithm is inspired by the OSD [43]. However, instead

of reprocessing the most reliable basis (MRB), we adapt the parity check matrix

according to the bit reliability. It can also be viewed as a generalization of the iterative
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Algorithm 1 Iterative Decoding Algorithm by Adapting the Parity Check Matrix

Step1. Initialization: set α, jmax = N1, j = 0 and the coded bits LLR from the

channel: L(0) = 2
σ2 y

Step2. Reliability based parity check matrix adaptation: H
(j)
b = φ(Hb, |L(j)|).

a) Order the coded bits according to the absolute value of the LLRs |L(j)| and

record the ordering indices.

b) Implement Gaussian elimination to systematize the (n− k) unreliable posi-

tions which are independent in the parity check matrix. (The submatrix can

also be made to be degree-2 connected, see Section C-1).

Step3. Generating extrinsic information: Apply SPA to generate the extrinsic LLR

for each bit using the adapted parity check matrix H
(j)
b :

L
(j)
ext = ψ(H

(j)
b ,L(j)) (according to (3.6)).

Step4. Bit-level reliabilities Update:

L(j+1) = L(j) + αL
(j)
ext, where 0 < α ≤ 1.

Step5. Hard decision: ĉi =





0, L(j+1)(ci) > 0;

1, L(j+1)(ci) < 0.

Step6. Termination criterion: If all the checks are satisfied, output the estimated

bits; else if j = jmax, declare a decoding failure; otherwise set j ← j + 1 and go

to Step2 for another iteration.
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a posterior probability (APP) decoding algorithm based on a set of minimum weight

parity check vectors by Lucas et al. [18]. In [18], the iterative algorithm is interpreted

as a gradient descent. The adaptive algorithm generalizes the idea of gradient descent

and extends it to be a two-stage gradient descent algorithm with an adaptive potential

function. The damping coefficient α serves as the step size in the gradient descent

process to control the dynamics of convergence. In the following section, we look into

the geometric interpretation of this algorithm.

B. Geometric Interpretation of the Proposed Algorithm

In this section, a geometric interpretation of the proposed algorithm as a two-stage

optimization procedure is presented. The idea of using optimization methods, such as

gradient descent, to solve decoding problems can be dated back to Farrell et al. [60].

The belief propagation (BP) based algorithms by Gallager [2] and Pearl [61] were

also shown to be special cases of the gradient descent algorithm. More similar to

the bit reliability updating algorithm in this dissertation, Lucas et al. [18] proposed

the APP decoding algorithm using the minimum weight parity check sets. They also

interpreted the proposed APP algorithm as a gradient descent. Here, we generalize

Lucas’ idea and interpret the proposed adaptive algorithm as a two-stage gradient

descent algorithm with an adaptive potential function.

Define the operator ν : [−∞, +∞] → [−1, 1] as a mapping from LLR domain to

tanh domain:

ν(L) = tanh

(
L

2

)
=

eL − 1

eL + 1
(3.8)

where the mapping is one-to-one and onto.

It is immediate that the inverse operator ν−1 : [−1, +1] → [−∞, +∞] can be
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expressed as:

ν−1(t) = ln

(
1 + t

1− t

)
, t ∈ [−1, +1] (3.9)

We apply the one-to-one tanh transform on the LLRs and get the reliability

measure of the received signal in the tanh domain as:

T = [T1, T2, · · · , Tn] = [ν(L(c1)), · · · , ν(L(cn))] (3.10)

As in [17], we can measure the reliability of a parity check node in tanh domain as:

ν(L(s)) = ν(L(c1 ⊕ c2 ⊕ · · · ⊕ cl)) =
l∏

p=1

ν(L(cp)). (3.11)

Following the concept of generalized weighted syndrome proposed by Lucas et

al. ((20) in [18]), we define a cost function J , which characterizes the reliability of

the received vector T with a particular parity check matrix Hb.

Definition 1 Define the potential function J as:

J(Hb, T) = −
(n−k)∑
i=1

ν(L(si)) = −
(n−k)∑
i=1

n∏
j=1,Hij=1

Tj (3.12)

where J is a function of both the parity check matrix Hb and the received soft

information T.

The operator ν maps the original n-dimensional unbounded real space into an

n-dimensional cube (since the output of the tanh function is confined to [-1, 1]). The

potential function J is minimized iff a valid codeword is reached, that is all the checks

are satisfied and |Tj| = 1 for j = 1, · · · , n, where Jmin = −(n − k). Besides, points

with all |Tj| = 1 correspond to vertex of the n-dimensional cube. Therefore, valid

codewords lie on the minimum potential vertices of the n-dimensional cube. The

decoding problem can be interpreted as searching for the most probable minimum

potential vertex given the initial point observed from the channel.
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Note that the potential function J is minimized iff a valid codeword is reached.

It is quite natural to apply the gradient descent algorithm to search for the minimum

potential vertex, with the initial value T observed from the channel. Consider the

gradient of J with respect to the received vector T. From (3.12), it can be seen that:

∇J(Hb,T) =

(
∂J(Hb,T)

∂T1

,
∂J(Hb,T)

∂T2

, · · · ,
∂J(Hb,T)

∂Tn

)
(3.13)

where the component wise partial derivative with respect to Ti is given by:

∂J(Hb,T)

∂Ti

= −
(n−k)∑

l=1
Hli=1

n∏
p=1

p6=i,Hlp=1

Tp (3.14)

Thus, the gradient descent updating rule can be written as:

T(j+1) ← T(j) − α∇J(Hb,T
(j)) (3.15)

where α is a damping coefficient as in standard gradient descent algorithms to control

the step width.

Note that the reliabilities in tanh domain are confined to Ti ∈ [−1, 1]. However,

the updating rule (3.15) does not guarantee this. Therefore, we use the following

modified updating rule to guarantee the validity of the updated values:

T
(j+1)
i ← ν


ν−1

(
T

(j)
i

)
− α


−

∑
Hli=1

ν−1


 ∏

p6=i,Hlp=1

T (j)
p








 (3.16)

where ν−1(x) = 2 tanh−1(x). Recall that the above non-linear updating rule is exactly

the same as the Step 3-Step 4 in Algorithm 1.

When iterative decoding is applied to an HDPC code, with very high probability,

the iterative algorithm will reach some local minimum points where ∇J(Hb,T) is

zero or is close to zero (since a few unreliable symbols will render the components

of ∇J(Hb,T) to be small or close to zero). We refer to these as pseudo-equilibrium
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points. Since gradient descent gets stuck at these points, while these points do not

correspond to valid codewords.

From (3.12), we observe that since J is also a function of Hb, different choices of

the parity check matrices Hb (though span the same dual space), results in different

potential functions J . More importantly, each Hb results in a different gradient

∇J(Hb,T). The proposed algorithm exploits this fact and when a pseudo equilibrium

point is reached, by adapting the parity check matrix based on the bit reliabilities,

we switch to another Hb such that it allows the update in (3.16) to proceed rather

than getting stuck at the pseudo-equilibrium point. However, note that the potential

function that we want to minimize does not involve the Euclidean distance between

the received codeword and current estimate at all. That is, the adaptive algorithm

attempts merely to find a codeword that satisfies all the parity checks, without really

enforcing that it be the one at minimum distance from the received word. Since small

steps are taken in the gradient descent, very often we converge to the codeword at

small distance from the received vector as well. However, there is no guarantee of

convergence.

We use the following examples to show the operation of the adaptive algorithm

and its difference from directly applying iterative decoding to an HDPC code.

Example 1: Consider codewords transmitted through a binary erasure channel

(BEC). We first apply the gradient descent algorithm directly to HDPC codes (assume

that each entry in the parity check matrix is i.i.d. with 0 or 1 equal probable) without

reliability based adaptation. Assume that the erasure fraction is ε, therefore the

number of erased bits is nε. Consider a particular parity check vector, any code

bit will participate in that check with probability 1/2 (according to the i.i.d. equal

probable assumption). A check is not erased iff all the participated bits are not erased.

Therefore, the probability that a check is erased is
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Prob{L(s) = 0} .
= 1− (

1

2
)nε, n →∞ (3.17)

Assume that we have r parity check vectors that the ith bit participates in. The

gradient with respect to the ith coordinate becomes zero (i.e., ∂J(Hb,T)
∂Ti

= 0) iff the

extrinsic LLRs from all the checks it participates are erased. The probability of zero

gradient in the ith bit is:

Prob{∂J(Hb,T)

∂Ti

= 0} .
= [1− 2−(nε−1)]r

.
= 1− r2−(nε−1) + o(2−(nε−1))

.
= 1− r2−(nε−1) → 1, n →∞ (3.18)

which suggests that unless the number of parity checks grows exponentially with nε,

iterative decoding quickly gets stuck at a pseudo-equilibrium point.

On the other hand, for BEC, it is known that by adapting the parity check matrix

corresponding to less reliable bits (i.e. the erased bits), ML decoding performance can

be achieved [62] in one iteration. Notice that Gaussian elimination cannot proceed

iff some of the columns corresponding to the erased bits are dependent. In this case,

there is ambiguity between two or more valid codewords. In such a case, the ML

decoder also fails.

In conclusion, for BEC, gradient descent without adaptation tends to get stuck at

a pseudo-equilibrium point, while the reliability based adaptation will help gradient

descent to converge to the ML solution in one iteration.

Example 2: The idea of reliability based parity check matrix adaptation can nat-

urally be extended to AWGN channels and the insight remains the same. Though

adapting the parity check matrix based on the channel output does not guarantee to

converge to the ML decision for AWGN channels, it does avoid iterative decoding get-
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Fig. 6. Convergence Behavior of Iterative Decoding with and without Adaptation of

an RS(31, 25) Code

ting stuck at pseudo-equilibrium points and thus improves the convergence behavior.

We give a numerical example of the convergence behavior of iterative decoding of an

RS(31,25) code in Figure 6. A typical realization of iterative decoding is simulated.

The potential function J is plotted against the number of iterations. Since there are 30

parity checks for RS(31, 25), the minimum value of the potential function is J = −30

(corresponding to valid codewords). We can see that due to the high density of the

parity check matrix of the RS code, iterative decoding without matrix adaptation

(Algorithm 1 without Step 2) will easily get stuck at some pseudo-equilibrium. On

the other hand, when the iterative algorithm is applied in conjunction with reliability

based parity check matrix adaptation (Algorithm 1), the value of J quickly goes to
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the global minimum as the number of iteration increases. Consequently, reliability

based parity check matrix adaptation improves the convergence behavior of iterative

decoding significantly. We will show in Section D that the adaptive algorithm also

largely improves the error performance.

C. Variations to the Generic Algorithms and Complexity Analysis

In this section, several variations of the proposed algorithm are discussed either to

improve the performance or to reduce the decoding complexity.

1. Degree-2 Random Connection

One problem with the proposed approach is that each bit in the unreliable part BL

participates in only one check, it receives extrinsic information from one check only.

If there is a bit error in the dense part participating in that check, the bit in BL

tends to be flipped and the decoder tends to converge to a wrong codeword. To

overcome this drawback, we can reduce the matrix Hb to a form where the submatrix

corresponding to the less reliable bits is sparse (say column weight 2 rather than

1). This can improve the performance since each less reliable bit now receives more

extrinsic information while the submatrix corresponding to the unreliable bits still

does not form any loops (i.e., unreliable bits themselves do not participate in any loops

with each other). We can obtain this via a degree-2 random connection algorithm.

The details are presented in Algorithm 2.

After the Deg-2 random connection, all the (n-k-1) positions in the parity check

matrix are of degree-2 except the pth
1 column. The last column p1 can be connected to

some row or just left to be degree-1, which will not significantly affect the performance.

This appears to improve the performance of the proposed algorithm especially in the
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Algorithm 2 Deg-2 Random Connection Algorithm

Step1. Apply Gaussian elimination to the parity check matrix and obtain an identity

matrix in the unreliable part.

Step2. Generate a random permutation of numbers from 1 to n-k.

Record all the indices, i.e., p1, p2, p3, · · · , pn−k.

Step3. Adapt the parity check matrix according to the follow rule:

Add pth
i+1 row to pth

i row, for i = 1 to n-k-1.

high SNRs.

2. Various Groupings of Unreliable Bits

Another variation that can help to further improve the performance is to run the

proposed algorithm several times each time with the same initial LLRs from the

channel but a different grouping of the less reliable bits. It is possible that some bits

with |L(cj)| close to those in the unreliable set BL are also of the wrong sign and

vice-versa. Hence, we can run the proposed algorithm several times each time with

a different grouping of the less reliable bits. That is, we can swap some bits in the

reliable part with those in the unreliable part near the boundary and run the matrix

adaptation all over again, which gives a new Hb. We then run the proposed algorithm

on that new matrix Hb. Each time the proposed algorithm is run, a different estimate

of codeword may be obtained due to the difference in the parity check matrix Hb. All

the returned codewords are kept in a list and finally the one that minimizes Euclidean

distance from the received vector is chosen. We will see from simulation results that

this method can significantly improve the asymptotic performance, but also increases
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the worst case complexity. Similar techniques have been used in conjunction with

OSD by Fossorier [63] and Wu [47]. The way of grouping reliable bits used here is

similar to the grouping scheme by Wu [47]. We refer interested readers to [47] for a

detailed description and asymptotic performance analysis.

3. Incorporated Hard Decision Decoding

A hard decision decoder can be used during each iteration in the proposed algorithm to

improve the performance and accelerate decoding as well. Since the HDD may return

a codeword which is different from the ML codeword, we do not stop the decoder once

a codeword is returned by the HDD. Rather, we still iterate up to a maximum number

of iterations to obtain all the codewords returned by HDD during each iteration and

finally pick up the most likely codeword. This guarantees to perform no worse than

the proposed algorithm or HDD. In practice, error detection schemes such as CRC or

other test techniques as discussed in [64] can serve as a practical stopping criterion to

reduce the average decoding complexity. Combining the adaptive scheme with other

SIHO algorithms such as the KV algorithm have recently been investigated by [65].

4. Partial Reliable Bits Updating

The complexity in the iterative decoding part can be further reduced via “partial

reliable bits updating” scheme.

The main floating-point operation complexity comes from the computation of the

extrinsic information in the reliable part (where the submatrix is dense). However,

in the adaptation of the parity check matrix, only some bits in the boundary will be

switched from the reliable part to the unreliable part. Therefore, in the bit reliability

updating stage, we only update the bits in the unreliable set BL and some reliable bits

with |L(cj)| close to those in the unreliable set BL. For example, at each iteration,
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we may update the ith1 , · · · , ithn−k+M LLRs rather than all of them (where i1 through

in are sorted in ascending reliability). The number of bits in the reliable part M can

be adjusted to control the complexity.

On the other hand, in the computation of the tanh of each check, we can also

make approximations to reduce the complexity. For instance, min-sum can be used

instead of SPA in Step 3 Algorithm 1 [66]. Furthermore, since the bit reliabilities

are first ordered, the minimum of the absolute value of the LLRs in the dense part

of the parity check matrix is known. Thus, we can approximate the tanh of all the

bits in the reliable part using the tanh of the minimum value. This modification can

significantly reduce the floating point operation complexity while retaining most of

the performance gain.

More sophisticated updating schemes can also reduce the complexity of matrix

adaptation. El-Khamy and McEliece proposed a scheme that adapts the parity check

matrix from previous ones, which reduces the overall complexity by 75% [67].

5. Symbol-level Adaptation

Gaussian elimination requires serial update of the rows and is difficult to parallelize.

Here we propose an alternative algorithm that is parallelizable. The idea is to take

advantage of the structure of RS codes and adapt the parity check matrix at the

symbol level. Let SL = {i1, i2, . . . , i(N−K)} be a set of (N −K) least reliable symbols

(symbol-level reliability can be computed by taking the tanh product of bit-level

reliabilities or taking the minimum of the bit-level reliabilities). In order to update

the parity check matrix at the symbol level, we need to find a valid parity check

matrix for which the submatrix corresponding to the symbols in SL is an identity

matrix. The detailed procedure is as follows: first, the submatrix corresponding to

the symbols in SL is filled with an (N −K)× (N −K) identity matrix and the rest
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of the matrix with unknowns (erasure). The key idea is that computing the unknown

symbols in the parity check matrix is equivalent to finding (N −K) valid codewords

of the dual code which will be the rows of the parity check matrix for the original

code. For the jth row, the ithj entry is 1 and the ith1 , ith2 , . . . , ithj−1, i
th
j+1, . . . , i

th
N−K entries

are 0s and all other entries are erasures E (i.e., all the positions corresponding to

the reliable symbols are erased). Since the dual code is an (N, N − K) RS code

with dmin = K + 1 and there are exactly K erasures in each row, Forney’s algorithm

[15][8] can be used to compute the values in the erased positions. Each decoded

codeword corresponds to one row in the original parity check matrix. By repeating

this procedure for all (N −K) rows, we can get a systematic parity check matrix over

GF (2m), where the submatrix corresponding to unreliable symbols is the identity

matrix. Using the binary expansion, we can then get the binary parity check matrix

and thereafter apply the SPA using it. Unlike Gaussian elimination, each entry of the

parity check matrix can be computed independently and, hence, the whole procedure

can be parallelized. This provides a computationally efficient way to obtain a parity

check matrix in the desired form for hardware implementation. Related concepts

such as re-encoding have also been used to reduce the complexity of KV decoding

(see [33]).

6. SISO Decoding for Turbo Equalization Systems

With slight modification, the generic iterative decoding algorithm can be embedded

in a turbo equalization (TE) system. In a TE system, the inputs to the decoder are

obtained from the frontend SISO equalizer rather than directly observing from the

channel. After several decoding iterations, the decoder outputs the soft information

and feeds it back to the equalizer. The proposed TE algorithm based on this SISO

algorithm is given in Algorithm 3.
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Algorithm 3 Turbo Equalization Based on the ADP-SISO Algorithm

Step1. Initialization: set maximum turbo rounds M2, M = 0 and the received value

as observed from the channel.

Step2. Apply the BCJR algorithm (or other equalization algorithms) to the received

values and the a priori LLRs to the equalizer (the initial a priori LLRs are set

to be 0) to generate the overall LLR for each coded bit.

Step3. Subtract the a priori LLRs from the overall LLRs to get extrinsic LLRs.

Step4. Interleave the extrinsic LLRs and feed them as a priori LLRs to the SISO de-

coder. Run the proposed ADP-SISO decoder for a predetermined M1 iterations

and generate extrinsic LLRs from the decoder.

Step5. De-interleave the extrinsic LLRs from the decoder, feed them as a priori

LLRs back to the equalizer, set M ← M + 1 and go to Step2 for another TE

round until M = M2.

Step6. Make a hard decision based on the overall LLR for each bit. Output the

estimated bits;

7. Computational Complexity

The proposed algorithm has a reasonable computational complexity. The reliability

ordering and indexing process can be realized using standard quick sort algorithm,

such as “mergesort”, with a complexity of o(n log2 n). The Gaussian elimination

of the parity check matrix is achieved in o(n(n− k)2) binary operations for bit-level

adaptation. Degree-2 random connection scheme may further increase the complexity

with the order about o(n(n− k)), which is negligible compared with the complexity
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of Gaussian elimination. If the parity check matrix is adapted from the previous

ones, the complexity can further be reduced. For symbol-level adaptation, Gaussian

elimination can be replaced with Forney’s algorithm for computing the erased values,

the complexity is about o(K(N −K)), while it facilitates parallel implementation.

In the iterative decoding part, since the parity check matrix is of low den-

sity in the unreliable part, the complexity is mainly in the high dense part and is

about o(k(n − k)) real addition during each iteration (assuming that the function

log(tanh(L/2)) is tabulated). If partial updating scheme is adapted, the complexity

can be further reduced to be approximately o((n−k)), which is linear in the codeword

length n. In conclusion, the over-all computational complexity is in polynomial time

with respect to either n or dmin. Running many iteration rounds and outer rounds

expands the complexity (the complexity will be expanded N1 ×N2 times), however,

we have seen from the simulation results that even very few iterations produces sig-

nificant improvement over algebraic HDD.

D. Simulation Results

In this section, simulation results of the proposed iterative decoding algorithm and

its variations for RS codes over various channel models are presented.

The following notations will be used in the legends. ADP(N1,N2) refers to the

proposed adaptive decoding scheme. N1 refers to the maximum number of iterations

of iterative decoding. N2 refers to the number of decoding rounds with different

groupings of the unreliable bits (see Section C-2). ADP & HDD refers to the pro-

posed algorithm incorporated with an HDD (see Section C-3). SYM ADP refers to

the proposed algorithm with symbol-level adaptation (see Section C-5). RED(M)

ADP refers to the reduced complexity partial updating schedule with M bits in the
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reliable part to be updated (see Section C-4). Unless otherwise indicated, all the sim-

ulations adopt Deg-2 random connection (see Section C-1) to improve the asymptotic

performance. The damping coefficient α is also specified on the plots. TE(M1, M2)

refers to turbo equalization performance of the proposed adaptive scheme with M1

SISO decoding iteration and M2 TE iterations. For comparison, the simulation-based

ML lower bounds and analytical ML upper bounds are also plotted in some figures.

The details for obtaining the ML lower bound is described in Section G of Chapter II

and in [18] as well. The ML upper bound will be discussed in details in the following

subsection.

To speed up simulation, a genie aided stopping criterion scheme has been used,

i.e., the decoding procedure stops when ADP & HDD gives the correct codeword.

This is mildly optimistic as can be seen from the following argument. Assume that

there is no genie, then the actual decoder will run a fixed number of N1 iterations

and may return a list of codewords (since the HDD may generate different codewords

at different iterations). The actual decoder will pick the most likely codeword from

the list. Thus, if the transmitted codeword is the most likely one, the result of the

actual decoder will be the same as that of the genie aided decoder. Only when the

transmitted codeword is not the most likely codeword, i.e., when the ML decoder

would have made errors, the result of the actual decoder may be different from the

genie aided decoder and, hence, the genie aided decoder may be optimistic. To

understand this better consider the following relationship:
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Pr{actual error} = Pr{actual error,ML decision is correct}

+ Pr{actual error,ML decision is in error}

= Pr{genie error,ML decision is correct}

+ Pr{actual error,ML decision is in error}

≤ Pr{genie error}+ Pr{ML decision is in error} (3.19)

Therefore, we have:

Pr{genie error} ≤ Pr{actual error}

≤ Pr{genie error}+ Pr{ML decision is in error} (3.20)

Whenever Pr{ML decision is in error} is small compared to Pr{genie error},
Pr{genie error} gives a fairly accurate estimate of Pr{actual error}.

1. AWGN Channels

We first present results for the RS (31,25) code over the AWGN channel in Fig. 7.

For this code, standard belief propagation (BP) decoding (either with or without the

damping coefficient, not plotted in the figure) has little gain (within 0.5 dB from

algebraic HDD) due to the large number of short cycles. However, the proposed

ADP(20,1) & HDD provides a 2.3 dB gain over HDD and an 1.0 dB over Chase-

GMD(3) at an FER = 10−4. Using the grouping method, the proposed ADP(20,3)

& HDD can approach the ML lower bound within 0.25dB at an FER = 10−4. The

reduced complexity version RED(20) ADP(20,1) incurs 0.2dB performance loss com-

pared with the generic ADP and outperforms MS ADP by about 0.5dB at an FER =

3 × 10−5. The ML upper bound over RS averaged ensemble is also plotted for com-
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Fig. 7. Performance of an RS (31,25) Code over an AWGN Channel

parison. It can be seen that the ML upper bound is 0.5dB away from the ML lower

bound at an FER = 10−4 and these two bounds converge in the high SNR region.

Now we consider the (63,55) RS code. The performance is shown in Fig. 8. For

this code, standard BP performs even worse than HDD (not plotted in the figure).

However, the proposed algorithm ADP(5,1) & HDD provides 1.95 dB and 1.05 dB

gain over algebraic HDD and Chase-GMD(3) at an FER = 10−4. ADP(20,3) performs

about 0.7 dB within the ML lower bound at an FER = 10−4. It also provides another

0.3 dB gain over ADP(5,1). Similar to other gradient descent methods, the damping

coefficient of the adaptive algorithm must be carefully chosen to control the updating
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step width. The performance curve of ADP(100,1) without damping or Deg-2 con-

nection has a flat slope and the asymptotic gain diminishes, which is mainly due to

the overshooting of the update scheduling such that the decoder tends to converge to

a wrong codeword quickly. SYM ADP(20,1) & HDD also provides a non-trivial gain

of about 0.7dB over HDD at an FER = 10−4, which is comparable to Chase-GMD(3)

while the complexity is significantly smaller.

Simulation results for the RS (255, 239) code over the AWGN channel are shown

in Fig. 9. When large complexity is tolerable, ADP(80, 50) & HDD outperforms the

popular KV method proposed in [33] (with maximum multiplicity 100) by 1.0 dB
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and algebraic HDD by 1.65 dB respectively at an FER = 10−4. We also compare this

algorithm with BMA order-1 [45], ADP(80, 50) & HDD is also about 0.6 dB better

than BMA (1) at an FER = 10−4. Compared with the ML lower bound obtained by

using a near ML decoding algorithm recently proposed in [68], the adaptive algorithm

is still 0.6dB away from ML lower bound at an FER = 10−3. With reasonable com-

plexity, ADP(5,1) & HDD outperforms the KV(100) at an FER = 10−4. Using the

“min-sum” approximation, it will incur about 0.3dB loss at an FER = 10−4. At the

price of a slight increase in complexity, ADP(20,3) & HDD can provide comparable

performance with BMA(1) at FER = 10−4.
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2. Rayleigh Fading Channels

Now we study the performance of the proposed iterative decoding of RS codes over

Rayleigh fading channels. It is assumed that perfect channel state information is

available at the receiver (CSIR). We first assume BPSK modulation where the coded

bits are fully interleaved at the symbol-level, so that fading remains constant over

one symbol but changes from symbol to symbol. The performance of an RS(31,15)

code is shown in Fig. 10, the proposed algorithm ADP(40,1) & HDD outperforms

algebraic HDD and GMD decoding by 6.5 dB and 3.3 dB respectively at an FER

= 10−4. ADP(40,3) & HDD can further improve the asymptotic performance. The

performance of SYM ADP(40,1) & HDD is also plotted. We see that it also offers

about 5 dB gain over HDD and 1.8 dB gain over GMD decoding respectively at

an FER = 10−4. Similar results are observed for long codes with rate R = 0.5;

the performance of a shortened RS(128,64) over GF(256) is given in Fig. 11. The

proposed decoding scheme provides several dB gain over HDD. This is a nontrivial

gain considering the powerful burst error correction capability of HDD.

We also study the performance of RS coded modulation system over a symbol-

level fully interleaved channel. We show the performance of a shortened RS(204,188)

code with 256QAM modulation and gray mapping, which has similar settings as

many existing standards, in Fig. 12. We can see from the figure that the proposed

algorithm ADP(20,1) & HDD outperforms algebraic HDD by more than 7dB at an

FER = 10−3. Compared with KV decoder, there’s also a 3 to 4dB gain. Though KV

decoder takes the symbol-level soft information directly, its performance is mainly

limited by the algebraic bounded distance decoding kernel.
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3. Inter-Symbol Interference Channels

The TE performance of the proposed ADP-SISO algorithm over extended partial

response-4 (EPR4) channels is also studied. The overall block length is approxi-

mately 20,000 bits and all the bits are fully interleaved at random such that incoming

messages can be assumed to be independent for the outer RS code. More noticeable

performance gain is observed for EPR4 channels. The performance of the RS(31,25)

code under TE(5, 15) with α = 0.25 (α = 0.2 and M2 = 40 is used for the last

iteration) is shown in Figure 13. The performance curve shows a cliff region at

Eb/N0 = 4.0dB and the performance in the high SNR region is almost identical to
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the result of ADP(20,1) & HDD over the AWGN channel, which suggests that the

proposed TE scheme mitigates the effect of ISI. It provides about 3.5dB gain over

direct BCJR equalization followed by algebraic HDD and is within 0.5 dB away from

ML lower bound over the AWGN channel at an FER = 10−4. Similar results are also

observed for long codes, RS(63,55) and RS(255,239) as shown in Figure 14. RS(63,55)

under TE (5, 15) with α = 0.2 (M2 = 40 is used for the last iteration) also has a per-

formance almost identical to that over the AWGN channel asymptotically. However,

limited by the power of computer simulation, we are unable to simulate RS(255,239)

under TE (5, 15) with α = 0.05 (α = 0.2 and M2 = 40 is used for the last iteration)
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down to even lower FER to see whether it can converge to the performance curve

over AWGN channels in the high SNRs. Whereas, in the waterfall region, TE(5,15)

scheme already outperforms HDD about 1.7dB at an FER = 10−3.

Moreover, the proposed adaptive iterative decoding algorithm also outperforms

HDD for RS codes over practical perpendicular channels [69] even without interleaving

and TE. As shown in Figure 15, over a perpendicular channel of normalized density

Ds = 2.5 with or without jitter noise, however, the gain of ADP over HDD is less

than observed as in the AWGN channel case. This suggests that the proposed bit-

level iterative decoding algorithm is more effective for channels with memory when
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interleaving and iterative signal processing and decoding has been adopted.

E. Discussions and Conclusion

We first discuss some potential extensions of the adaptive algorithm. Firstly, the

fraction of detectable error decreases as SNR increases as can be seen from Figure 16,

i.e., the fraction of undetectable errors increases. The gain of the proposed scheme

may be diminishing in the high SNRs for long codes as well. One observation of the

failure mode of the proposed algorithm is that some errors considered to be “reliable”

tend to pass a lot of wrong messages to the bits considered to be “unreliable” even

though their actual LLR magnitudes are quite close, especially in the high SNR region.
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One direction to further improve the decoding performance is to try to reduce the

bit degree of “reliable” nodes in the boundary while slightly increase the density of

the “unreliable” nodes so as to balance the variable node degrees between bits on

the reliable/unreliable boundary. This will make part of the graph of the “reliable”

bits be partially sparse and also increase the robustness of “unreliable” bits near the

boundary.

Further improvement of the generic decoder without significantly increasing the

complexity remains an challenging problem. It is favorable that the structure of

the RS codes can be taken into account in conjunction with the adaptive algorithm.
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Therefore, Vardy and Be’ery’s coset decomposition [52] seems to be a promising way

to represent the Hb using a relatively sparse form. It is also natural to apply some

more sophisticated decoding techniques (e.g. constructing some sub-trellis with rea-

sonable complexity) and adopt the idea of the adaptive algorithm to improve the

decoding performance. Secondly, from our simulation experience, when the channel

has memory (say ISI channel or some FSK signaling), the performance gain of the

adaptive algorithm (without iterative demodulation) diminishes. How to extend the

adaptive scheme to detection and equalization such that they can generate good qual-

ity bit-level soft information is of interest. Thirdly, asymptotic performance analysis

of the adaptive algorithm is also of practical value. Ahmed et al. [66] showed that
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using a certain probabilistic model, the performance of the adaptive algorithm under

min-sum approximation (using min-sum rather than sum-product in Step 3 in Algo-

rithm 1) can be evaluated using the OSD bound. However, the performance bounds

for the exact scheme is still of interest.

In summary, we have presented a novel iterative SISO decoding algorithm for

HDPC codes by adapting the parity check matrix. The proposed algorithm can be

geometrically interpreted as a two-stage gradient descent algorithm with an adaptive

potential function. Simulation results show that the proposed algorithm provides fa-

vorable performance gain for RS codes compared with known RS soft decoding meth-

ods over various channels for a wide range of code rate and code length. Besides, the

proposed algorithm and its variations also provide flexible performance-complexity
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trade-off for different applications.
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CHAPTER IV

ITERATIVE SOFT-DECISION DECODING OF CYCLIC CODES BASED ON

STOCHASTIC SHIFT

In Chapter III, an iterative decoding scheme has been successfully applied to HDPC

codes by reliability based parity check matrix adaptation at each decoding iteration.

However, the parity check matrix adaptation procedure involves Gaussian elimination,

which is undesirable for low complexity parallel implementation.

This chapter presents another iterative decoding method for RS codes. The

proposed algorithm is a stochastic shifting based iterative decoding (SSID) algorithm

which takes advantage of the cyclic structure of RS codes to prevent iterative decoding

getting stuck. While the approach in Chapter III is a reliability based parity check

matrix adaptation procedure, the adaptation in this chapter is restricted to be within

the class of cyclic shifts of the parity check matrix. Consequently, a cyclic shift of

the bit-level reliability values can be used to realize the desired adaptation, which

is much less complex than the Gaussian elimination based adaptation as in Chapter

III. It is shown that the performances of SSID is superior to many other popular soft

decision methods for short RS codes. The generic SSID algorithm can naturally be

extended to other class of cyclic codes, such as BCH codes as well.

The rest of the chapter is organized as follows: The iterative decoding algorithm

is proposed in Section A. In Section B, simulation results of the proposed algorithm

are presented. Conclusions are presented in Section C.

A. Proposed Iterative Decoding By Stochastic Shift

Suppose the coded bits are transmitted with BPSK modulation format (with 0

mapped to +1 and 1 mapped to −1, i.e., x = −2c + 1) over an AWGN channel,
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y = x + n, (4.1)

Thus, the reliability of the received vector can be expressed in terms of their

log-likelihood ratio (LLR) L (here we use underlined letters to denote vectors). The

a posteriori LLR of each bit can be expressed as:

L(xi) = log
P (ci = 0|y)

P (ci = 1|y)
, (4.2)

Though the exact a posteriori LLR of each bit is difficult to obtain, for sparse

graph codes, a good approximation can be obtained using the BP algorithm. By

taking advantage of the cyclic property of RS codes, an SPA with a stochastic shifting

schedule is proposed to prevent iterative decoding getting stuck. Let L(j) denote the

overall LLRs until the jth iteration. During the jth iteration, the SPA is used on the

vector L(j) to produce extrinsic information L
(j)
ext. The LLR L(j+1) is then updated

according to:

L(j+1) = L(j) + αL
(j)
ext, (4.3)

where 0 < α ≤ 1 is a damping coefficient. The updated LLR L(j+1) is cyclically

shifted by θ symbols, where θ is a random integer uniformly distributed between

[0, N − 1]. Since RS codes are cyclic, the cyclically shifted version of x is a valid

codeword. Hence, a shifted version of L(j+1) can be thought of as the received signal

when a shifted version of another valid codeword was transmitted. Therefore, another

iteration of the SPA is performed with the shifted version of the LLR L(j+1). Since the

geometry of the factor graph with the shifted version is different from the previous

ones, pseudo-equilibrium points can be avoided. We continue this procedure for a

predetermined number of iterations or until all the parity checks are satisfied. When
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the maximum of jmax iterations is reached, another outer round, with a different

realization of the random shifts and an increased α, begins with the original LLR

from the channel.

Define ψ(L) as an one iteration of the SPA algorithm function with the input LLR

L. Define Lθ as a cyclic shift of the vector by θ symbols (Note that received symbols

should be shifted at the symbol level). A detailed description of the algorithm is then

given in Algorithm 4.

Kou et al. [70] also made use of the cyclic property of Geometry codes to con-

struct redundant parity check matrix by cyclicly shifting parity check vectors, which is

an exhaustive deterministic version of our method. Simulation results suggested that,

the SSID based random updating scheme (RUS) outperforms the exhaustive parallel

updating scheme (PUS). This is similar to the updating rules in a Hopfield network,

where asynchronous and stochastic updating scheme outperforms synchronous up-

dating scheme. The performance gain is believed to be mainly due to the stochastic

shifting and multiple outer iteration rounds.

B. Experimental Results and Discussions

In this section, simulation results for decoding of RS codes based on the SSID algo-

rithm are presented. The initial damping coefficient α0 is selected to be 0.08 based

on simulation.

Consider an RS(15,7) code and assume BPSK transmission over an AWGN chan-

nel. The performances of several updating schedules are shown in Fig. 17 along with

the performance of the KV algorithm with a maximum multiplicty 4 taken from

[33]. The updating schemes evaluated are: standard BP (300 iterations), RUS with

a gradually changing damping coefficient (i.e., SSID), RUS with constant damping
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Algorithm 4 SSID Algorithm for Cyclic Codes

Step1. Initialization: set q = 0, j = 0 and α0.

Step2. Set the coded bits LLR as observed from the channel: L(0)(xi) = 2
σ2 yi.

Step3. SPA: Feed the LLRs into the decoder and generate extrinsic LLRs for each

bit using SPA:

L
(j)
ext = ψ(L(j)).

Step4. Parameter Update: Update the LLR of each bit:

L(j+1) = L(j) + αL
(j)
ext.

where α is a gradually increasing damping coefficient to control the updating

step width.

Step5. Random Shifting: Cyclicly shift the LLRs by θ symbols and record the overall

shift Θ:

L(j+1) ← L
(j+1)
θ .

Step6. Hard Decision: ĉi =





0, L(j+1)(xi) > 0;

1, L(j+1)(xi) < 0.

Step7. Termination Criterion: If all the checks are satisfied, stop iteration and go to

Step9, else if j = jmax, go to Step8, otherwise set j ← j + 1 and go to Step3

for another SPA iteration.

Step8. Outer Round: If q = qmax, declare a decoding failure, otherwise set q ← q+1

and j = 0, update the damping coefficient α = α0 + (q/(qmax − 1))(1− α0) and

go to Step2 for another outer round.

Step9. Extract Information Bits: Shift the decoded bits back to their original posi-

tion and get the information bits from coded bits. ĉ = ĉ(−Θ)
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coefficient, serial updating scheme (SUS), PUS with redundant checks. Note that

all the above schedules set a maximum 30 SPA iterations and 20 outer rounds and

another RUS (with 30 SPA iterations and 300 outer rounds) is proposed of the same

complexity with the PUS scheme, which uses redundant checks.

We note that standard BP outperforms hard decision decoding by 1.4 dB at an

FER of 10−3. However, further improvement can be achieved by proper updating

and scheduling. RUS with gradually increasing damping coefficient outperforms that

with constant damping coefficient, since it keeps updating damping coefficient from

being either too conservative or too aggressive. RUS outperforms both PUS and SUS

with the same complexity by 0.5 and 0.3 dB respectively. This is due to the fact that

RUS can reduce deterministic error patterns and therefore prevent iterative decoding

from getting stuck. The best result can be achieved so far is RUS with 300 outer
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rounds, which outperforms hard decision decoding by 3.1dB and the KV algorithm

(mmax = 4) by about 2 dB at an FER of 10−5.

An additional simulation of RS (15,7) is presented over a fully interleaved Rayleigh

fading channel (the decoding scheme is proposed with 300 outer rounds and 30 SPA

iterations). Fig. 18 suggests that the gain is even larger for fading channel, about

8.8dB for bit interleaving and about 5dB for symbol interleaving at an FER of 10−5.

This is mainly due to the poor performance of hard decision decoding over a fading

channel.

We present results for the RS (31,25) code over an AWGN channel in Fig. 19.

Several soft decision decoding methods are compared. For this code, standard BP

algorithm has little gain due to the large number of short cycles. However, with

SSID scheduling (with 200 outer rounds and 50 SPA iterations), the new method
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outperforms Berlekamp & Massey (BM) decoding, Generalized Minimum Distance

(GMD) decoding and combined chase & GMD decoding, by 1.9dB, 1.3dB and 0.63dB,

respectively at an FER of 10−4. As mentioned previously, the performance gain is

due to the beyond bounded sphere decoding capability of the proposed algorithm.

Unfortunately, we notice that the soft decision gain of the new method still

diminishes as the codeword length becomes long (for a (63,55) code, which is not

shown here, the gain is only 0.6dB compared with hard decision at an FER of 10−3).

The reason for the performance degradation under the BP algorithm is mainly due

to the fact that the parity check matrix has high density and iterative decoding gets

stuck at equilibrium points regardless of the cyclic shift.
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C. Conclusion

In this chapter, a stochastic shift based iterative decoding (SSID) algorithm for cyclic

codes has been proposed. We have shown that a properly scheduled BP algorithm

outperforms algebraic hard decision decoding and standard BP decoding for short RS

codes. This iterative decoding method can be applied to other bit-level/symbol-level

cyclic codes, such as BCH and Geometry codes, as well.
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CHAPTER V

ALGEBRAIC SOFT-DECISION DECODING OF REED-SOLOMON CODES

USING BIT-LEVEL SOFT INFORMATION

In this chapter, we study another advanced channel coding technique for RS codes,

that is algebraic soft-decision (list) decoding (ASD). We propose a multiplicity assign-

ment strategy (MAS) for ASD that provides a significant performance improvement

over the BM algorithm even for high rate RS codes with a computational complexity

that is practically affordable. In contrast to the popular view point that ASD is a

symbol-level SDD scheme, we study the performance of ASD of RS codes using bit-

level soft information. We show that carefully incorporating bit-level soft information

in multiplicity assignment and interpolation is the key step to achieve most of the

coding gain offered by ASD but still maintain a moderate complexity. Based on the

analysis, a new SDD scheme is proposed for RS codes, which outperforms many exist-

ing ASD algorithms in the literature in terms of both performance and computational

complexity.

The rest of this chapter is organized as follows: After a brief review of the back-

ground materials of ASD in Section A, we investigate the optimal MAS for ASD over

erasure channels and binary symmetric channels (BSC) with infinite cost in Sections B

and C. The corresponding decoding region of ASD is characterized and performance

bounds are derived. It is shown that for practical high rate RS codes: over binary

erasure channels (BEC), ASD has a significant gain over conventional BM decoding

and most of the coding gain comes from appropriate multiplicity assignment to bit-

level erasures; over BSC’s, the gain of ASD over GS decoding is large only for short

length or low rate RS codes. In Section D, the analysis is generalized to a mixed

error and bit-level erasure channel and a simple MAS is proposed. In the infinite
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cost case, the decoding region of the proposed MAS is shown to approach the outer

bound of the optimal MAS for practical medium to high rate RS codes. In the fi-

nite cost case, the decoding region of the proposed MAS is also characterized for any

given multiplicity M. By treating erasures at the bit-level, the proposed MAS has a

significantly larger decoding region than that of conventional BM decoding and more

recent GS algorithm. Based on insights obtained from the performance analysis, in

Section E, we develop a sequential MAS called bit-level generalized minimum distance

(BGMD) decoding, which successively erases the least reliable bits (LRB). In spite

of its simplicity, BGMD algorithm provides a significant gain over conventional BM

decoding and compares favorably with many existing MASes of ASD and other RS

SDD schemes over various channels of practical interests. Moreover, due to its simple

structure, the decoding performance of BGMD for practical high rate RS codes can

be tightly bounded using a standard ordered statistics bounding technique. BGMD

upper bound suggests a significant gain over BM decoding in the high SNR region,

where the evaluation of the performance is beyond the capability of computer simu-

lation but of significant practical value. Simulation results are presented in Section F

and conclusion is drawn in Section G.

A. Algebraic Soft Decision Decoding of Reed-Solomon Codes

In this section, we review some background materials of ASD of RS codes that are

relevant to our proposed scheme. Underlined letters will be used to denote vectors

and bold face letters will be used to denote matrices throughout this chapter.
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1. Algebraic Soft-Decision Decoding

Let A(X,Y ) =
∑∞

i=0

∑∞
j=0 ai,jX

iY j be a bivariate polynomial over GF(q) and let wx,

wy be nonnegative real numbers. The (wx, wy)-weighted degree of A(X,Y ) (denoted

as degwx,wy
(A)) is defined as the maximum over all numbers iwx + jwy such that

ai,j 6= 0. The (1, 1) degree is usually referred to as the degree of the polynomial

A(X, Y ) (denoted as deg(A)). The bivariate polynomial A(X, Y ) is said to pass

through a point (α, β) with multiplicity m (or equivalently, the point (α, β) is said to

be a zero of multiplicity m of the polynomial A(X, Y )), if A(X + α, Y + β) contains

a monomial of degree m and does not contain any monomials of degree less than m.

Suppose an RS codeword X = (X1,X2, · · · ,XN) is modulated and transmitted

through a memoryless channel and the decoder observes Y = (Y1,Y2, · · · ,YN) as the

channel output. Following the setting in [4] and [27], we assume that Xi’s are inde-

pendent and uniformly distributed over GF (q). In ASD, the a posteriori probability

(APP) is computed as:

πi,j = Pr (Xj = αi|Yj) , 1 ≤ i ≤ q, 1 ≤ j ≤ N (5.1)

where {α1, α2, · · · , αq} are all possible elements in GF(q). Define the q×N reliability

matrix Π as a matrix with entries {πi,j} as computed in (5.1). Π serves as a soft

input to an ASD decoder. The generic algorithm of ASD as in [4] is described in the

following 4 steps:

Multiplicity Assignment: Compute the multiplicity matrix M with integer en-

tries {Mi,j} based on the reliability matrix Π according to a particular multiplicity

assignment strategy.

Interpolation: For a given multiplicity matrix M with entries {Mi,j}, construct

a bivariate polynomial A(X, Y) of minimal (1, K − 1)-weighted degree that passes
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through each point (xj, αi) with multiplicity at least mi,j, for i = 1, 2, · · · , q and

j = 1, 2, · · · , N .

Factorization: Find all polynomials f(X) such that (Y − f(X)) divides A(X, Y )

and deg(f(X)) < K. Form a candidate codeword list by re-encoding all such poly-

nomials f(X).

Codeword Selection: Select the most likely codeword from the candidate code-

word list as the decoder output. If there is no codeword in the list, a decoding failure

is declared.

Intuitively, the idea of ASD is to take advantage of soft information and assign

higher multiplicities to more probable symbols such that the decoder has a better

chance to find the correct codeword.

2. Performance of Algebraic Soft-decision Decoding

Define the inner product between two matrices of the same dimensionality as:

〈A,B〉 def= trace(ABT ) =

q∑
i=1

N∑
j=1

ai,jbi,j (5.2)

Let 1 be the all-one q×N matrix. Suppose the vector X represents an RS codeword,

let [X ] be the codeword matrix with entries [X ]i,j defined as: [X ]i,j = 1 if Xj = αi;

[X ]i,j = 0, otherwise. As in [4], the score and cost are defined as follows.

Definition 2 The sum of multiplicities in M that are assigned to the transmitted

symbols is defined as the score:

S = 〈M, [X ]〉 (5.3)

Definition 3 The number of linear constraints imposed in order to satisfy the mul-
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tiplicities as specified by M is defined as the cost:

C =
1

2

q∑
i=1

N∑
i=1

Mi,j(Mi,j + 1) = 〈M,M+1〉/2 (5.4)

Similar to other list decoding algorithms, the probability of error of ASD can be

upper bounded using the union bound:

PASD ≤ PList + PML (5.5)

where PList is the probability that the transmitted codeword is not in the list and

PML is the probability that the maximum likelihood decision is not the transmitted

codeword. Usually, PList À PML and, therefore, we will approximate PASD ≈ PList

throughout the rest of this chapter. In general, the decoding region of ASD is difficult

to characterize and analytical computation of PList is a tough problem. However, it

is shown in [4] that ASD is guaranteed to return the transmitted codeword when the

following sufficient condition is satisfied:

Lemma 1 [4] Finite cost: A sufficient condition for the transmitted codeword to be

in the list is:

S > min

{
δ ∈ Z :

⌈
δ + 1

k − 1

⌉(
δ + 1− (k − 1)

2

⌊
δ

k − 1

⌋)
> C

}
(5.6)

The proof of Lemma 1 is given in Theorem 3 in [4]. The above sufficient condition

can also be expressed as (see also [39]): the transmitted codeword will be in the list

if

T (S) > C (5.7)

where T (S) = (a + 1)
[
S − a

2
(K − 1)

]
, a(K − 1) < S ≤ (a + 1)(K − 1), a = 0, 1, · · ·

is a piecewise linear function.
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Generally speaking, larger cost leads to better decoding performance, while it

also increases complexity (though the performance of ASD does not monotonically

improve as the cost increases). As the cost goes to infinity, we can further simplify

the sufficient condition as:

Lemma 2 [4] Infinite cost: The sufficient condition for ASD to list the transmitted

codeword as C →∞ is:

S ≥
√

2(K − 1)C (5.8)

See Corollary 5 in [4] for the proof.

Usually, the sufficient conditions (5.6) and (5.8) become tight approximations

when N is large. With a little bit abuse of terminology, we define the decoding

failure of ASD as follows:

Definition 4 For ASD with finite cost, a received codeword is said to be decodable if

and only if the sufficient condition (5.6) is satisfied. When the received codeword is

not decodable, a decoding failure is declared.

Definition 5 For ASD with infinite cost, a received codeword is said to be decodable

if and only if the sufficient condition (5.8) is satisfied. When the received codeword

is not decodable, a decoding failure is declared.

For the rest of the chapter, we approximate the actual decoding error probability of

ASD by the probability of decoding failure defined in Definition 4 and Definition 5

for finite cost and infinite cost cases respectively. Practically speaking, though the

decoder may still be able to list the transmitted codeword even when the sufficient

condition is not satisfied, the probability is very small and the approximation is tight

for long codes, which are used in many existing standards.
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B. Performance Analysis of Algebraic Soft-decision Decoding over Erasure Channels

In this section, we consider MAS’s for erasure channels and their corresponding per-

formance analyses.

1. Algebraic Soft-decision Decoding over the Binary Erasure Channels (BEC)

We first consider the case when RS codewords are transmitted as bits through a BEC

with erasure probability ε. Similar to the argument in [4], [27], [26], we assume that

the symbols in a codeword are independent and identically distributed (i.i.d) with a

uniform distribution over GF(q) during the multiplicity assignment stage. For BEC’s,

a natural MAS is to assign equal multiplicities to the equiprobable candidate symbols

in the same coordinate. For further justification, please see Appendix A.

Consider the following definition: define each symbol with i-bit erasures as being

of type i. Consequently, for a code over GF (2m), there are (m + 1) types of symbols.

Let the number of symbols of type i in a received codeword be ai. As discussed above,

we will assign equal multiplicities to equiprobable candidates in the same coordinates.

Moreover, we assume that equal multiplicities are assigned to all candidate symbols

of the same type in a received codeword; whereas, the multiplicity assigned to type i

may vary according to the received codeword. This assumption will be justified later.

Let mi be the multiplicity assigned to each candidate symbol of type i. Thus,

the total multiplicity assigned to one symbol of type i is 2imi. The score and cost are
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S =
m∑

i=0

aimi (5.9)

C =
m∑

i=0

ai2
i

(
mi + 1

2

)
(5.10)

C =
1

2

m∑
i=0

ai2
im2

i (1 + o(1)),mi →∞ (5.11)

The approximation in (5.11) becomes tight when mi becomes large. We will

derive an upper bound and a lower bound on the probability of decoding failure of

ASD with infinite cost as defined in Definition 5. Furthermore, we consider ASD

with infinite cost such that we can relax the multiplicities from being integers to real

numbers. It is justified by the fact that rational numbers are dense on the real axis

and they can always be scaled up to be integers with infinite cost. Hence any real

numbers can be approximated arbitrarily close with rational numbers (see also [26]).

Following [4] [33], we define proportional multiplicity assignment strategy (PMAS)

as follows:

Proportional Multiplicity Assignment Strategy: For a given total multiplicity per

symbol M, PMAS assigns multiplicity proportional to the APP of that candidate

symbol. That is the multiplicity we assign to symbol αi in the jth coordinate of the

received vector is Mi,j = bπi,jMc, where M is a predetermined real number.

PMAS defined above is equivalent to the simplified KV defined in [33]. Note that

there is a quantization error, however, the multiplicity assignment is asymptotically

proportional to the APP as the cost approaches infinity. We will show in the following

that PMAS is optimal over the BEC with infinite cost:

Theorem 1 The proportional multiplicity assignment strategy (PMAS) is optimal

over the BEC regardless of the received signal. That is PMAS maximizes the score
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for a given cost over the BEC.

Proof 1 Assume that the received codeword has ai symbols of type i, the MAS can

be formulated as maximizing the score with a cost constraint. With infinite cost, the

problem is expressed as:

max
{mi}

S =
m∑

i=0

aimi (5.12)

subject to C ≈ 1

2

m∑
i=0

ai2
im2

i ≤ C0

This is a standard optimization problem with a linear cost function and a quadratic

constraint. Using a Lagrange multiplier, the new objective function becomes

L = −
m∑

i=0

aimi + λ

(
1

2

m∑
i=0

2iaim
2
i − C0

)
(5.13)

Take the partial derivative with respect to mi and set it to zero. We have:

∂L

∂mi

= −ai + λ2iaimi = 0 (5.14)

Therefore we have mi = 2−i

λ
, i.e., mi ∝ 2−i, which proves that PMAS is optimal.

Note that mi does not depend on ai. Even without the assumption that equal mul-

tiplicities are assigned to candidate symbols of the same type, we still get mi = 2−i

λ

for all type i candidates, i.e., PMAS is optimal over the BEC.

Since PMAS is optimal over the BEC, we will from now on assume that PMAS

is used. Under PMAS, we assume that the total multiplicity for each symbol is

M. Consequently, the score is S0 =
∑m

i=0 ai2
−iM = ηM and the cost is C0 =

1
2

∑m
i=0 ai2

−iM2(1 + o(1)) = 1
2
ηM2(1 + o(1)), where η =

∑m
i=0 ai2

−i is a positive
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number. The sufficient condition of (5.8) becomes:

S0 ≥
√

2(K − 1)C0 (5.15)

η > K − 1 (5.16)

When K = 1, under PMAS, η > 0, the transmitted codeword will always be on the

decoding list. From now on, we only consider the case K > 1.

We study the worst case bit-level decoding radius of ASD under PMAS with

infinite cost over the BEC. We need the following lemmas.

Lemma 3 Over the BEC, if a received word is decodable under PMAS with infinite

cost, it is always decodable if some of the erasures are recovered.

Proof 2 The proof is immediate by the fact that if some of the erasures are recovered,

η will increase and as can be seen from (5.16), the decoding performance monotonically

improves as η increases.

Lemma 4 Over the BEC, given f bit erasures, the worst case erasure pattern for

ASD under PMAS with infinite cost is that all bits are spread in different symbols as

evenly as possible. That is: (N − f + b f
N
cN) symbols contain b f

N
c bit erasures and

(f − b f
N
cN) contain d f

N
e bit erasures.

Proof 3 Take two arbitrary symbols of type i and j, if we average the bit erasures

between these two, we get two symbols of type b i+j
2
c and d i+j

2
e. The updated η′ can be

expressed as:

η′ = η + 2−b
i+j
2
c + 2−d

i+j
2
e − 2−i − 2−j ≤ η (5.17)

Since η ≥ η′ and again according to (5.16), the latter erasure pattern is worse. By

repeating the above procedure, we can finally get the worst case erasure pattern of
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ASD under PMAS, i.e., the bit erasures are spread as evenly as possible in different

symbols.

According to Lemma 3 and Lemma 4, the bit-level decoding radius of PMAS can

be characterized.

Theorem 2 Over the BEC, the bit-level decoding radius of ASD under PMAS with

infinite cost can be expressed as:

f < (i + 1)N − 2i(K − 1),

for 2−i +
1− 2−(i+1)

N
≤ R < 2−(i−1) +

1− 2−i

N
, i = 1, 2, · · · ,m

Especially, for high rate RS codes, we have

f < 2N − 2(K − 1), for R ≥ 1

2
+

3

4N
(5.18)

Proof 4 According to Lemma 4, the worst case erasure pattern is all erased bits are

spread evenly over different symbols. First consider the case f ≤ N , (5.16) becomes:

(N − f) +
1

2
f > K − 1 (5.19)

The corresponding rate region must satisfy the constraint that when f = N + 1, in

the worst case η ≤ K − 1. We get K ≥ 1
2
N + 3

4
in this case. Altogether, we get the

bit-level decoding radius for the high rate case:

f < 2N − 2(K − 1), when R ≥ 1

2
+

3

4N
(5.20)

Similarly, when the decoding radius (i − 1)N < f ≤ iN , we must have 2−iN + 1 −
2−(i+1) ≤ K < 2−(i−1)N + 1 − 2−i, where i = 1, 2, · · · ,m. We can obtain the exact
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decoding radius for all these cases:

f < (i + 1)N − 2i(K − 1), when 2−iN + 1− 2−(i+1) ≤ K < 2−(i−1)N + 1− 2−i

(5.21)

According to Theorem 2, any erasure pattern with f < 2(N −K + 1) is decodable.

We can get an upper bound on the frame error rate (FER) of ASD under PMAS with

infinite cost.

Corollary 1 For RS codes of rate for R ≥ 1
2
+ 3

4N
over the BEC, ASD under PMAS

with infinite cost fails when there are more than 2(N − K) + 1 symbols containing

erased bits.

Proof 5 The corollary follows from (5.18) and Lemma 3. If there are more than

2(N−K)+1 symbols having erased bits, the most optimistic case is that these symbols

are of type 1. Besides, due to (5.18), the sufficient condition is not satisfied and ASD

fails as defined in Definition 5.

Theorem 2 gives an upper bound on the FER performance over the BEC and

Corollary 1 provides a lower bound. These bounds are shown in Figure 20 in con-

junction with the union bound on the averaged FER of a maximum likelihood (ML)

decoder over the RS ensemble [55]. Note that ASD has a significant performance

gain over conventional BM erasure decoding. This is intuitive since we do not have

to erase the whole symbol if some bits in the symbol are erased, which can be taken

advantage of by ASD. It can be seen from the figure that for practical high rate long

codes, both the upper and lower bounds are tight and they together accurately in-

dicate the performance of ASD. Also note that the averaged performance of the ML

decoder over the RS ensemble is very close to the capacity of the BEC, which shows

that RS codes are good codes.
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The tightness of the upper bound and the lower bound of ASD motivates the

following proposed MAS:

Proposed Multiplicity Assignment Strategy: In each received coordinate, we as-

sign m0 = M if that symbol does not contain erased bits, assign m1 = M/2 if the

symbol contains 1 bit-level erasure and do not assign any multiplicity for symbols

containing more than 1 bit-level erasures, that is to set mj = 0, j = 2, · · · ,m.

Since erasing 2 bits in the same symbol leads to the same score but less cost

than 2 bits in two different symbols,the worst case erasure pattern of the proposed

MAS for RS codes with R ≥ 1
2

+ 3
4N

is that all bit-level erasures are spread in

different symbols. According to Theorem 2, the proposed MAS can recover any bit-

level erasures containing less than 2(N−K+1) bit erasures. Essentially, the proposed

MAS takes care of the worst case erasure pattern only and it is asymptotically optimal
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in terms of achieving the largest worst case decoding radius. Consequently, the FER

upper bound derived in Theorem 2 for R ≥ 1
2
+ 3

4N
is also a valid upper bound for the

proposed MAS. Though the proposed MAS is not optimal as PMAS, the loss is quite

small by comparing the upper bound of the proposed MAS and the lower bound of

PMAS for high rate RS codes. It can also be seen from Figure 20 that the simulation

results of the proposed MAS and the optimal PMAS are very close.

2. Extension to 2u-ary Erasure Channels

We extend the result in the previous subsection to 2u-ary erasure channels, i.e. u

coded bits are grouped together and transmitted using a 2u-ary symbol (it can be

QAM or PSK modulation format). The channel will erase the signal with erasure

probability ε at 2u-ary symbol-level. Practical channels of this model was discussed

in [71].

In the previous subsection, we showed that PMAS is optimal for erasure channels.

Clearly, all erasure patterns in this 2u-ary erasure channel model is a subset of erasure

patterns of BEC. Therefore, with infinite cost, PMAS is still optimal for this channel

model. Here, we only consider the case when u divides m, i.e., m = vu. Thus, for

each symbol, we have (v + 1) types.

Lemma 5 Over the 2u-ary erasure channel, the worst case erasure pattern for ASD

under PMAS with infinite cost is that all erasure events are spread in different symbols

as evenly as possible.

Proof 6 Assume two RS symbols are of type i and j, we can average the erasure

events between the two symbols, we have:

η′ = η + 2−b
i+j
2
cu + 2−d

i+j
2
eu − 2−iu − 2−ju ≤ η (5.22)



74

Similar to Lemma 4, spreading erasure events in different RS symbols evenly gives

the worst case.

Theorem 3 Over the 2u-ary erasure channel, ASD under PMAS can guarantee to

decode up to f < (N −K + 1)/(1 − 2−u) 2u-ary symbol-level erasures if R ≥ 2−u +

1+2−2u−2−u

N
).

Proof 7 According to Lemma 5 and (5.16), spreading erasure events in different

symbols is the worst case erasure pattern if K ≥ 2−uN + 1 + 2−2u − 2−u, that is

R ≥ 2−u + 1+2−2u−2−u

N
. Thus η = N − (1 − 2−u)f . According to (5.16) when the

following condition is satisfied:

f < (N −K + 1)/(1− 2−u) (5.23)

ASD is guaranteed to decode the transmitted codeword.

Remark 1 Note that (5.23) is a generalization of Theorem 2 (with u = 1 as a special

case). As u becomes larger, the asymptotical 2u-ary symbol-level decoding radius gets

smaller. As u → m, f gets close to conventional BM erasure decoding region.

C. Performance Analysis of ASD over Binary Symmetric Channels (BSC)

In this section, we study the performance of ASD over BSC’s. For BSC’s, both the

transmitted and the received symbols are in GF (q), i.e., Xi ∈ GF (q) and Yi ∈ GF (q),

for i = 1, · · · , N . In this case, bit-level reliabilities are the same for all received bits.

However, symbol-level soft information can be utilized by ASD under proper MAS.

Let a candidate symbol in a particular coordinate be of type i if it differs from

the received symbol in that coordinate by i bits and let ai denote the number of

coordinates that the transmitted symbol is of type i. Again, we assign equal multi-
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plicities to candidate symbols of the same type, that is, we set Mi,j = mki,j
, where

ki,j is the number of bit positions in which αi and Yj differ. That is, we assign m0 to

the received symbol, m1 to all the m symbols which differ from the received symbol

in 1-bit position and so on. Note that Mi,j is the multiplicity assigned to αi in the

jth coordinate and mk is the predetermined multiplicity we will assign to candidate

symbols of type k. However, unlike the BEC case, the type of the transmitted symbol

is unknown at the receiver, the MAS optimization problem can not be formulated as

in the BEC case. Therefore, we resort to the asymptotically optimal MAS, i.e., max-

imizing the bit-level decoding radius for the worst case error pattern. It can also be

easily justified that non-uniform multiplicity assignment among symbols of the same

type is strictly suboptimal in terms of achieving the largest decoding radius for the

worst case error pattern, since the worst case error pattern will always correspond to

the candidate symbols with smaller multiplicities. The MAS optimization problem

can be formulated as a max-min problem over {ai} and {mi}.

max
{mi}

min
{ai}

e =
m∑

i=0

iai − 1 (5.24)

s. t.
m∑

i=0

aimi ≤
√√√√2(K − 1)N

m∑
i=0

(
m

i

)
m2

i

2

m∑
i=0

ai = N, where ai are non-negative integers

The above optimization is still quite complicated, since ai’s are integers. Even if

this condition is relaxed, the solution may only be obtained numerically, which does

not give any insight into the exact decoding radius of ASD.

We first take one step back and consider a special case of BSC, called 1-bit flipped

BSC, i.e., in each symbol, at most 1 bit is in error. By doing that, we only have to
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assign multiplicities to two types of symbols. The optimal MAS for this 1-bit flipped

BSC is to assign M to the received vector and tM to 1-bit flipped neighbors. The

asymptotically optimal decoding radius emax and the corresponding optimal t can be

computed in close forms. The derivations are given in Appendix B.

It should be noted that for the 1-bit flipped BSC, the performance improvement

of ASD over GS is significant only when the rate is low. For instance, for N = 255,

K = 223, ASD does not increase the bit-level error correcting radius, for N = 255,

K = 167, ASD gives an extra error correction capability over GS decoding at the

bit-level, for N = 255, K = 77, it corrects 7 more errors and for N = 255, K = 30, it

corrects 45 more errors. For K < 30, all errors can be corrected for the 1-bit flipped

BSC.

Now, we show that the above proposed MAS is also asymptotically optimal for

RS codes over the BSC under certain conditions, which are satisfied for a wide range

of code rates. We begin with the following Lemma.

Lemma 6 Over the BSC, the worst case error pattern for the proposed ASD with

infinite cost is all erroneous bits spread in different symbols, if the total number of bit

errors e ≤ N and the optimal multiplicity coefficient t ≤ 1
2
.

Proof 8 Assume e ≤ N bits get flipped by the channel. If bit errors are spread in

different symbols, as the 1-bit flipped BSC case, the score can be expressed as:

S = M [(N − e) + te] (5.25)

The cost of ASD for the BSC does not change when the MAS is fixed. For a given

number of bit errors, the worst case error pattern minimizes the score of the MAS.

In the above MAS, multiplicities are assigned only to the received symbol and its 1-bit

flipped neighbors only. Thus, a potentially worse error pattern than the 1-bit flipped
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BSC is to group bits in some 1-bit-flipped symbols to reduce the score.

Let the worst case error pattern have e′ symbols containing 1-bit error and e′′

symbols containing more than 1-bit errors. Obviously, for symbols containing more

than 2-bit errors, we can always further decrease the score of the proposed MAS for

1-bit flipped BSC by splitting these bit errors into one symbol containing 2-bit errors

and the other containing the rest of the errors. Consequently, the worst case error

pattern will contain symbols with at most 2-bit errors. We have e′ + 2e′′ = e. The

score becomes:

S ′′ = M [(N − e′ − e′′) + te′] = M [(N − e) + et + e′′(1− 2t)] (5.26)

When t ≤ 1
2
, S ′′ ≥ S, which proves that spreading all erroneous bits in different

symbols is the worst case error pattern for the proposed ASD over the BSC.

Theorem 4 In the infinite cost case, the asymptotically optimal MAS for the BSC is

the same as the asymptotically optimal MAS for the 1-bit flipped BSC if the optimal

decoding radius of the 1-bit flipped BSC emax satisfies emax ≤ N and the corresponding

optimal multiplicity coefficient t ≤ 1
2
. Besides, the bit-level decoding radius of the BSC

is also emax.

Proof 9 According to Lemma 6, over the BSC, all erroneous bits spread in different

symbols is the worst case error pattern for the proposed ASD if e ≤ N and t ≤ 1
2
, which

is nothing but the 1-bit flipped BSC’s. On the other hand, the proposed MAS derived

in Appendix B is asymptotically optimal for the 1-bit flipped BSC, i.e., maximizing

the worst case decoding radius emax. Consequently, the proposed MAS will guarantee

to decode all error patterns with no more than emax-bit errors over BSC’s as well.

The error correction radius of the optimal MAS as a function of t over an RS(255,
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55) code is given in Figure 21. It can be seen that the optimal MAS (which is achieved

by t = 0.2) corrects 13 and 50 more bit-level errors than GS and BM in the worst

case. Besides, we also plot bit-level radius of PMAS as a function of the crossover

probability pb of the BSC. Note that PMAS is not asymptotically optimal for the BSC

here. Even though we choose pb to maximize the bit-level radius (around pb = 0.13),

the bit-level decoding radius is still 1 bit smaller than that of the optimal MAS. The

reason can be explained as follows: the worst case error pattern of this BSC is shown

to be all bit-level errors spread in different symbols, thus, the asymptotically optimal

MAS only has to assign multiplicities to symbols of type 0 and type 1. On the other

hand, PMAS assigns multiplicities proportionally. Thus it also assigns multiplicities

to candidate symbols with more than 1-bit error and unnecessarily spends more cost,

which makes it suboptimal in terms of achieving the worst case bit-level decoding

radius.

We consider the performance of this asymptotically optimal MAS using a toy

example shown in Figure 22. Consider the performance of an RS(7, 3) code over the

BSC. For this code, the decoding radii of conventional BM and GS algorithm are 2

and 3 respectively. Note that, the bit-level decoding radius of PMAS can also be

optimized over the crossover probability. However, in this case, the optimal bit-level

radius of PMAS is still 3, while the optimal MAS, on the other hand, can achieve

bit-level decoding radius 4. We can see from Figure 22, the performance upper bound

of ASD under the asymptotically optimal MAS outperforms GS and BM.

Remark 2 Over BSC’s, the gain of ASD with infinite cost over GS decoding is very

little for practical high rate RS codes. Besides, simply increasing the bit-level decoding

radius may not necessarily lead to better performance at a moderate FER level. Since

GS is a symbol-level decoding algorithm, it may be able to correct more typical error
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patterns at a moderate FER level than a bit-level decoding algorithm with a slightly

larger bit-level decoding radius and hence leads to a better performance at that FER

level than ASD with the proposed asymptotically optimal MAS.

D. Bit-level Decoding Region of Algebraic Soft-decision Decoding Algorithm

In this section, we generalize the analysis in previous two sections to a bit-level error

and erasure channel. A simple MAS is proposed and its properties are studied. The

decoding region of the proposed ASD in terms of the number of errors e and the

number of bit-level erasures f is investigated for both infinite and finite cost cases.

Finally, we show that the decoding region of the proposed ASD monotonically enlarges

as the multiplicity M increases.
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1. Proposed MAS for a Mixed Bit-level Error and Erasure Channel

We first propose a MAS for the mixed channel, which is motivated by the analysis of

the previous two sections. In Section B, a simple proposed MAS has been shown to

have nearly the same performance as the optimal PMAS for high rate RS codes over

BEC’s. On the other hand, as shown in Section C, ASD even with an optimal MAS

has hardly any gain over GS decoder for high rate RS codes over BSC’s. Altogether,

these results suggest that most of the gain of ASD for high rate RS codes is from

taking care of 1-bit erased symbols. Therefore, we expect to obtain most of the gain

of ASD over other channels by proper multiplicity assignment to at most 1-bit erased

symbols. We have the following proposed MAS:

Proposed Multiplicity Assignment Strategy: In each received coordinate, we as-

sign m0 = M if that symbol does not contain erased bits, assign m1 = M/2 to each
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candidate if the symbol contains 1-bit erasure and do not assign any multiplicity for

symbols containing more than 1-bit erasures, that is to set mj = 0, j = 2, · · · , m.

Under the proposed MAS, there are 5 types of symbols, which are listed below

with their corresponding score per symbol SB and cost per symbol CB:

(T-1) correctly received symbol: SB = M and CB = M2+M
2

(T-2) symbol get erased at symbol-level: SB = 0 and CB = 0

(T-3) erroneous symbol without erasure: SB = 0 and CB = M2+M
2

(T-4) 1-bit erased symbol without other errors: SB = M
2

and CB = M2+2M
4

(T-5) 1-bit erased symbol with other errors: SB = 0 and CB = M2+2M
4

As before, we first characterize the worst case error pattern for the proposed

MAS, which dominates the performance for high rate RS codes. We first have the

following lemma:

Lemma 7 ASD under the proposed MAS fails over the mixed channel if S ≤ M(K−
1).

Proof 10 When S ≤ M(K − 1), T (S) ≤ T (M(K − 1)). Since T (M(K − 1)) =

(M + 1)M(K − 1)/2 and T (S) is a convex function, it is easy to verify the following

upper bound on T (S):

T (S) ≤ 1

2
(M + 1)S, 0 ≤ S ≤ M(K − 1) (5.27)

Considering all types of symbols, we have 1
2
(M + 1)SB ≤ CB. Therefore, for any

received codeword, we have the following:

T (S) ≤ 1

2
(M + 1)S ≤ C (5.28)

Next, we show that recovering bit-level erasures in error-free symbols improves

the performance monotonically.
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Lemma 8 Over the mixed channel, suppose a received vector is decodable by ASD

under the proposed MAS with multiplicity M . If any bit-level erasures in an error-

free symbol is recovered, the received vector with recovered erasure is decodable by ASD

under the same multiplicity assignment.

Proof 11 Recovering 1 bit-level erasure from an error-free symbol can be of the fol-

lowing 3 cases:

1) From a symbol with more than 2-bit erasures: ∆S = 0 and ∆C = 0

2) From a symbol with exactly 2-bit erasures: ∆S = M
2

and ∆C = M2+2M
4

3) From a symbol with exactly 1-bit erasure: ∆S = M
2

and ∆C = M2

4

Case 1) is trivially decodable. For Case 2) and Case 3), let S, C and S ′, C ′

be scores and costs before and after erasure recovering. We have a(K − 1) ≤ S ≤
(a+1)(K−1), where a is an integer. Since T (S) > C and according to Lemma 7, we

must have a + 1 > M . Since T (S) is a piecewise linear function with monotonically

increasing slope, we have:

T (S ′) = T

(
S +

M

2

)

≥ T (S) + (a + 1)
M

2

> C(f) +
M2

2

≥ C(f) +
M2 + 2M

4
≥ C(f ′) (5.29)

where (5.29) is due to the fact that M ≥ 2 in the proposed MAS.

The following lemma shows that spreading bit-level erasures in different error-free

symbols results in a worse performance than putting them in the same symbol.

Lemma 9 Over the mixed channel, suppose a received vector has a symbol containing

more than 1 bit-level erasures and we move 1 bit-level erasure from this symbol to a



83

correctly received symbol. If the resulting vector is decodable using the proposed MAS

with multiplicity M , then the original received vector is also decodable by ASD under

the same multiplicity assignment.

Proof 12 Moving 1 bit-level erasure from a symbol with more than 1-bit erasure to

a correctly received symbol can be of the following 3 cases:

1) From a symbol with more than 2 erasures, ∆S = −M
2

and ∆C = −M2

4

2) From a symbol with exactly 2 erasures and no errors, ∆S = 0 and ∆C = M
2

3) From a symbol with 2 erasures and some errors, ∆S = −M
2

and ∆C = M
2

Case 1) is nothing but adding 1-bit erasure in a correct symbol. As shown in

Lemma 8, it results in no better performance. In Case 2) and Case 3), moving 1-bit

erasure to correct symbols leads to no larger scores but a larger costs, therefore, it will

also result in no better performance.

With the above lemmas, we now characterize the worst case error and erasure

pattern.

Theorem 5 Over the mixed channel, for any received codeword, the worst case error

and erasure pattern for the proposed MAS is that all bit-level errors are spread in

different erasure-free symbols and bit-level erasures are spread evenly in the rest sym-

bols. Besides, if the worst case pattern with e errors and f erasures is decodable under

the proposed MAS with multiplicity M , any received codeword with e′ ≤ e bit-level

errors and f ′ ≤ f bit-level erasures is decodable by ASD under the same multiplicity

assignment.

Proof 13 In the worst case, errors should obviously be spread in different symbols.

Besides, having erasures in erroneous symbols will lead to the same score, but a smaller

cost. Hence, in the worst case, errors and erasures should also be spread in different
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symbols. If the number of errors e and the number of bit-level erasures f satisfy

e + f ≤ N , according to Lemma 9, putting erasures in a correctly received symbol is

the worst case. Applying Lemma 9 recursively, in the worst case, bit-level erasures

are spread in different symbols. If e + f > N , putting more than 2 bit-level erasures

in the same symbol essentially reduces the number of bit-level erasures in error-free

symbols and according to Lemma 8, it always leads to no worse performance. As a

result, when e + f > N , in the worst case, we must have errors, 1-bit erased symbols

and 2-bit erased symbols occupying all N coordinates of the received codeword.

On the other hand, fewer errors will lead to better performance in the worst case.

Erasures will only participate in error-free symbols in the worst case. According to

Lemma 8, fewer bit-level erasures in error-free symbols leads to no worse performance.

In conclusion, for any received codeword, the worst case is that all errors are spread

in different erasure-free symbols and erasures are spread evenly in the rest symbols.

Besides, reducing the number of bit-level errors e or the number of bit-level erasures

f will not degrade the worst case performance.

Theorem 5 characterizes the worst case error and erasure pattern, which makes

the decoding region analysis easier.

Corollary 2 Over the mixed channel, the score and the cost of the proposed MAS

with multiplicity M in the worst case with the number of bit-level errors e and bit-level

erasures f .

S = (N − e− f/2) M (5.30)

C ≤ (2N − f)
M2

4
+ N

M

2
(5.31)

Proof 14 The corollary is immediate by considering the worst case error and erasure

pattern in Theorem 5 for both e + f ≤ N and e + f > N cases.
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Corollary 3 Over the mixed channel, the proposed ASD fails if f ≥ 2(N − (K −
1)− e)

Proof 15 The corollary is obtained by combining Lemma 7 and Corollary 2.

Corollary 3 suggests that ASD under the proposed MAS fails before all error-free

symbols get erased at the symbol-level. Besides, it also gives an outer bound on the

decoding region of the proposed MAS. The exact decoding region of the proposed

MAS will be studied in more details in the following subsection.

2. Infinite Cost Performance Analysis

Due to the simplicity, the decoding region of this proposed MAS for medium to high

rate RS codes can be characterized analytically. First, we consider the infinite cost

case.

Theorem 6 Under the proposed MAS with M → ∞, the decoding region over the

mixed channel in terms of e and f when e + f ≤ N is:

e < N − f/2−
√

(K − 1)(N − f/2) (5.32)

Proof 16 When e+ f ≤ N , in the worst case the score and the cost can be expressed

as

S = (N − e− f/2)M (5.33)

C = 1/4M2(1 + o(1))(2N − f) (5.34)

Plugging in (5.8), we can get:

e < N − f/2−
√

(K − 1)(N − f/2) (5.35)
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According to Corollary 2, when e + f > N , (5.35) is still achievable and the actual

decoding region can be larger. When f = 0, the above region becomes the maximum

error correcting radius of GS decoding; when e = 0, we can obtain the worst case

bit-level decoding radius derived in (5.18).

To get an idea on how good this proposed MAS is, we derive an outer bound on

the optimal decoding region of ASD with infinite cost. Using a technique similar to

that used in Section C, we first derive the optimal MAS over a 1-bit flipped or erased

channel. That is, we assume in each symbol of the RS codeword, there is at most

either 1 bit in error or at most 1-bit erasure. The derivation of the optimal decoding

region for this channel is given in Appendix C. In general, the 1-bit flipped or erased

channel is optimistic compared with the actual bit-level error and erasure channel.

Hence, when e + f ≤ N , the optimal decoding region of a 1-bit flipped or erased

channel serves as an outer bound of the actual decoding region of a mixed error and

bit-level erasure channel.

3. Finite Cost Performance Analysis

Consider, the proposed MAS with finite cost, in the simplest case, M = 2. That is,

we assign m0 = 2 to symbols without erasures; if there is 1 bit-level erasure, we assign

m1 = 1 to each candidate symbol; otherwise, we assign mi = 0, i = 2, 3, · · · ,m. The

decoding region is characterized in the following theorem.

Theorem 7 Under the proposed MAS with M = 2, the decoding region of RS codes

of rate R ≥ 2/3 + 1/N over the mixed channel is:

e <
1

2
(N −K + 1)− 1/3f (5.36)

Proof 17 For R ≥ 2/3+1/N , in the worst case, errors and erasures will not overlap.
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Hence, S = 2(N − e− f/2) and C = 3N − f . We must have:

(a + 1)(2(N − e− f/2)− a/2(K − 1)) > 3N − f (5.37)

a(K − 1) < 2(N − e− f/2) ≤ (a + 1)(K − 1), where a is a non-negative integer

(5.38)

For a = 0, 1, we get contradictions.

For a ≥ 3, we get trivial bounds.

For a = 2, we obtain the decoding region:

e <
1

2
(N −K + 1)− 1

3
f, for (K − 1)/N ≥ 2/3 (5.39)

Corollary 4 For RS codes of rate R < 2/3+1/N , the decoding region over the mixed

channel in Theorem 7 is achievable under the proposed MAS.

Proof 18 If e + f ≤ N , when (5.36) is satisfied, we must have T (S) > C; if e + f >

N , again due to Corollary 2, the above region is still achievable.

We can also derive a decoding region of the proposed MAS with any given mul-

tiplicity M as follows:

Theorem 8 Under the proposed MAS with a given multiplicity M , the decoding re-

gion in terms of the number of errors e and the number of bit-level erasures f for

e + f ≤ N as:

e < N − f

2
− â(â + 1)(K − 1)/2 + C

M(â + 1)
(5.40)

with the cost C = 1
2
(N − f)M(M + 1) + f M

2
(M

2
+ 1) and â = b−1+

q
1+ 8C

K−1

2
c.

The derivation of Theorem 8 is provided in Appendix D. Similarly when e + f > N ,

the region in Theorem 8 is still achievable. Though the actual decoding region can
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be even larger for low rate RS codes, the study of which is beyond the scope of this

dissertation.

We give some examples of the decoding region of RS codes over the mixed channel

under different decoding schemes. In Figure 23, a high rate RS(255, 239) code is

considered. When there is no erasure, the number of errors the proposed ASD can

correct is the same as conventional BM and GS decoding. However, when considering

bit-level erasures, the decoding region of the proposed ASD is significantly larger than

BM and GS decoding. The maximum number of bit-level erasures it can correct is

about 1.5 times that of BM and GS decoding at the bit-level. It is clear that the

gain is contributed to treating erasures at the bit-level. In the infinite cost case, the

proposed MAS achieves the outer bound of the decoding region.



89

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

# of erasures

# 
of

 e
rr

or
s

RS(63, 23) decoding region comparison

BM region
GS region, M = 2
simulated bit−level region, M = 2
high rate achievable region, M = 2
general achievable region, M = 2
bit−level achievable region, M = ∞

Fig. 24. Bit-level Decoding Region of ASD for an RS(63, 23) Code

In Figure 24, we show the decoding region of a low rate code RS(63, 23). In

this case, the high rate achievable region in Corollary 4 becomes loose. On the other

hand, the general decoding region derived in Theorem 8 still coincides with the actual

decoding region (by checking the sufficient condition for each error and erasure pair).

When there is no erasure, the maximum number of errors the proposed ASD can

correct is the same as GS decoding. Again, since ASD can take advantage of the

erasure information at the bit-level, the decoding region of the proposed ASD is

strictly larger than the decoding region of GS with symbol-level error and erasure

decoding. When e+f > N in the infinite cost case, the outer bound becomes invalid.

However, the achievable region in the infinite cost case is still a valid achievable region.
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4. Monotonicity

In this subsection, we show the monotonicity of the decoding region of the proposed

MAS as a function of multiplicity M over the mixed channel. It was shown by

McEliece in [39], the error correction radius of GS algorithm is a monotonic function

of multiplicity M . This monotonicity does not hold for ASD algorithms in general.

However, the monotonicity result is of interest since it justifies that the asymptotical

performance analysis by letting M →∞ is indeed the “best” achievable result and it

also verifies that increasing the cost will lead to at least no worse performance.

We need the following property of the function T (S):

Lemma 10 T ((a + 1)x) ≥ a+2
a

T (x), if x ≥ K − 1 and a is a positive integer.

Proof 19 This lemma is similar to Theorem A-1, (A-9) in [39]. Following similar

ideas, we give a simpler proof. Since x ≥ K − 1, we have:

(
1 +

l

a

)
(K − 1) ≤x ≤

(
1 +

l + 1

a

)
(K − 1) for l = 0, 1, 2, · · · , a− 1 (5.41)

(a + l)(K − 1) ≤ax ≤ (a + l + 1)(K − 1) (5.42)

T (ax) can be computed as:

T (ax) = (a + l + 1)

[
ax− a + l

2
(K − 1)

]
(5.43)

On the other hand, (a + 1)x is in the following range as:

a2 + (l + 1)a + l

a
(K − 1) ≤ (a + 1)x ≤ a2 + (l + 2)a + (l + 1)

a
(K − 1) (5.44)

(a + l + 1)(K − 1) ≤ (a + 1)x ≤ (a + l + 3)(K − 1) (5.45)

Since T (S) is a piecewise linear function with monotonically increasing slope, T (S) ≥
(i + 1)(S − i

2
(K − 1)) for any non-negative integer i. Hence, we have the following
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lower bound on T ((a + 1)x):

T ((a + 1)x) ≥ (a + l + 2)

[
(a + 1)x− a + l + 1

2
(K − 1)

]
(5.46)

Combining (5.43) and (5.46), we have the following:

T ((a + 1)x)− a + 2

a
T (ax) ≥ (a + l + 2)

[
(a + 1)x− a + l + 1

2
(K − 1)

]

−a + 2

a
(a + l + 1)

[
ax− a + l

2
(K − 1)

]
(5.47)

≥ −lx +
(a + l + 1)l

a
(K − 1) (5.48)

=
l

a
[(K − 1)(a + l + 1)− ax] ≥ 0 (5.49)

where the final step in (5.49) follows by the fact that l ≥ 0 and ax ≤ (K−1)(a+l+1).

Theorem 9 Over the mixed channel, if a received codeword is decodable using ASD

with multiplicity M , it is decodable under multiplicity M + 2 (M has to be even in

the proposed MAS), which means the performance of ASD under the proposed MAS

is monotonic with multiplicity M .

Proof 20 If a codeword is decodable with multiplicity M , we have T (S(M)) > C(M),

where S(M) and C(M) are score and cost with multiplicity M respectively. Consid-

ering all types of symbols in the received codeword, we have the following relationship:

S(M + 2) =
M + 2

M
S(M) (5.50)

C(M + 2) ≤ (M + 2)(M + 3)

M(M + 1)
C(M) (5.51)

If a received codeword is decodable, according to Lemma 7, we have S(M) >
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M(K − 1). Therefore:

T (S(M + 2)) = T ((M + 2)
S(M)

M
)

≥ (M + 3)(M + 2)

(M + 1)M
T (S(M)) (5.52)

>
(M + 3)(M + 2)

(M + 1)M
C(M)

≥ C(M + 2) (5.53)

where (5.52) is obtained by applying Lemma 10 twice and (5.53) is due to (5.51).

Note that the monotonicity property holds for all RS codes regardless of the rate.

E. Bit-Level Generalized Minimum Distance Decoding Algorithm

In this section, we develop a practical SDD algorithm for RS codes, which is motivated

by the analytical results in the previous sections.

1. The Generic BGMD Algorithm

As shown in Section 3, the proposed MAS has a significantly larger decoding region

than conventional BM and GS decoding over a mixed error and bit-level erasure

channel. This provides the intuition that properly treating erasures at the bit-level

will also help in RS soft-decision decoding over other channels. An efficient way

to utilize erasures over many channels is by ordering the reliability values of the

received bits, treating the LRB’s as erasures and running an error and erasure decoder

successively, namely generalized minimum distance (GMD) decoding [40]. In each

iteration, the decoder can decode erasures in the LRB’s together with some extra

errors in the remaining most reliable bits (MRB’s) as long as the error and erasure

(e, f) pair is within the decoding region of BM algorithm. Due to the similarity
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between the proposed algorithm and conventional symbol-level GMD for RS codes,

it is called bit-level GMD (BGMD).

The generic algorithm of BGMD is described in Algorithm 5.

Remark 3 In terms of implementation, BGMD does not need to run ASD algo-

rithm many times. In fact, the interpolation part can be shared between different

erasure patterns. Similar to the techniques proposed in [35–38], we can generate all

the candidate codewords in one interpolation round by applying factorization in the

intermediate steps during the interpolation procedure. Besides, factorization needs to

be performed only at outer corner (e, f) points. For high rate RS codes, the number

of “test erasure patterns” of BGMD is the same as conventional symbol-level GMD.

2. Performance Analysis of BGMD

Due to the simple structure of BGMD, the performance of BGMD for practical high

rate RS codes over an additive white Gaussian noise (AWGN) channel can be tightly

bounded using ordered statistics techniques. Define D(M) as the decoding region

of the proposed ASD over a mixed bit-level error and erasure channel, namely the

set of error and erasure (e, f) pairs that is decodable by the proposed ASD with

multiplicity M as specified in Theorem 8. Let fmax,M and emax,M be the maximum

number of errors and erasures respectively such that (0, fmax,M) and (emax,M , 0) are

still in D(M). The FER of BGMD can be upper bounded by the FER performance of

using a set of bit-level error and erasure decoders, each with different number of erased

bits f (from 0 to fmax,M) in the LRB’s and a different error correction capability e such

that (e, f) ∈ D(M). Note, however, D(M) is the worst case decoding region of the

proposed ASD, BGMD can in fact correct even more number of errors and erasures

if some of the errors and erasures overlap in some symbols. However, for high rate
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Algorithm 5 Bit-level Generalized Minimum Distance Decoding Based on Algebraic

Soft Decision Decoding for Reed-Solomon Codes

Step1. Initialization: set the initial iteration round j = 1 and generate the log

likelihood ratio (LLR) for each coded bit based on the channel observation yi:

Li = P (ci=0|yi)
P (ci=1|yi)

, for i = 1, 2, · · · , n

Step2. Reliability Ordering: order the coded bits according to the absolute value of

the LLR’s {|Li|} in ascending order and record the ordering indices {si}.

Step3. Hard Decision: ĉi =





0, Li > 0;

1, Li ≤ 0.

Step4. Multiplicity Assignment:

In each symbol of the estimated vector ĉ assign multiplicities according to:

1) if no bit is erased, assign M to the received symbol;

2) if there is 1-bit erasure, assign M/2 to each candidate symbol;

3) if there is more than 1-bit erasure, do not assign any multiplicity.

Step5. Algebraic Soft Decision Decoding: Run ASD according to the multiplicity as-

signment determined in Step4.. Keep the generated codewords in the decoding

list.

Step6. Successive Erasure Generation in the Least Reliable Bits: ĉsj
= ε

Step7. Iteration: If j ≤ n − k and ASD is yet able to correct the current erasures

given no error, set j ← j + 1 and go to Step4. for another decoding iteration.

Step8. Final Decision: Output the most likely codeword in the decoding list. If

there is no codeword in the list, a decoding failure is declared.
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RS codes, this upper bound becomes tight, since the worst case error and erasure

pattern dominates. Performance analysis of BGMD then boils down to bounding

the performance of a conventional GMD decoder for binary codes [72] with a skewed

decoding region D(M). Hence, upper bounds of GMD for binary codes, such as the

one derived in [72], are directly applicable to evaluating the performance of BGMD

decoding. For readers’ convenience, we give the detailed procedure to compute the

FER upper bound on BGMD algorithm in Appendix E. For more comprehensive

studies on this bound, we refer interested readers to [72] and [73] for applications to

other ordered statistics based decoding algorithms.

Due to this upper bound, the performance of BGMD in high SNR’s, where

RS codes operate in many practical systems, can be predicted analytically, which is

beyond the capability of computer simulation. As an example, performance bound

of BGMD over a popular high rate RS(255, 239) is plotted in Figure 25. At an

FER = 10−14, the upper bound of BGMD with M = 2 has a 0.8dB and 0.3dB gain

over conventional BM and GMD upper bound respectively. With asymptotically

large cost M = ∞, the gain of BGMD upper bound over BM increases to 1dB at

an FER = 10−14. On the other hand, the performance of KV algorithm can not be

simulated at such a low FER. Compared with another popular SDD algorithm, i.e.,

the box and match algorithm (BMA) order-1 with 22 bits in the control band [45],

the upper bound of BGMD with M = 2 has a 0.2dB gain at this FER level with a

much smaller complexity and memory consumption than BMA. In high SNR’s, the

upper bound of BGMD with M = 2 also has comparable performance to the upper

bound of Chase type 2 decoding [41] with 16 test error patterns. The performance

gap of BGMD to a genie decoder with decoding radius t = N −K becomes smaller

and smaller as SNR increases. Note that the actual performance of BGMD may

be even better than that predicted by the upper bound as will be shown in the
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simulation results in the following section. The FER upper bound on BGMD can

be further tightened by considering the joint ordered statistics, which also increases

computational complexity.

The generic BGMD algorithm can also be extended to incorporate Chase type

decoding [37, 38, 41]. Under the proposed MAS, the corresponding performance can

also be tightly upper bounded by similar bounding techniques using ordered statistics

as shown in [73].

The proposed ASD algorithm can also be used for threshold based error and

erasure decoding algorithm. We show the performance upper bounds of BMD based

erasure decoding and ASD based erasure decodings for an RS(255, 239) over the

AWGN channel in Figure 26. The erasure threshold is optimized numerically at each

SNR point. It can be seen that bit-level ASD based erasure decoding significantly
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outperforms HDD, while the gain of BMD based erasure decoding over HDD is al-

most negligible. Compared with BGMD, the bit-level ASD based erasure decoding

significantly reduce the computational complexity in reliability sorting and multiple

factorization, while it also incurs slight performance degradation.

3. Discussions

We first discuss a counter-intuitive phenomenon of KV decoding, which was first

observed in [74]. That is, KV decoder may fail even when the received vector does

not contain any errors. We give an example as follows:

Example 1: Consider an RS(255, 239). Suppose in the received vector, no bit is

in error. 255× 7 = 1785 bits are perfectly received, i.e., the magnitude of their LLRs

are all infinity. In each symbol, there is one bit that is corrupted by some noise, but
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still they have the correct signs. The probability that it is the transmitted bit is 0.7

and the probability that it is the wrong bit is 0.3. According to the KV algorithm,

i.e., PMAS, we will have S = 178.5M and C ≈ 73.95M2. It is easy to verify that

even though there is no bit in error, the sufficient condition (5.8) will be violated. It

can also be verified by actual simulation that KV will fail in some cases even when no

bit is in error. In fact, this phenomenon was recently reassured in [75]. The analysis

in [75] showed that under PMAS, the asymptotical decoding radius of ASD might be

0, which suggests the decoder can fail even though there is no error.

At first glance, this phenomenon seems counter-intuitive. It seems to suggest

that soft information even degrades the performance. However, from the analysis in

previous sections, we can get an intuitive and sensible interpretation. ASD in some

sense treats weighted erasures, therefore, similar to erasure decoding over AWGN

channels, in some cases, we may end up erasing too many correct bits and cause a

decoding failure even though there is no error. On the other hand, since BGMD treats

erasures according to the received reliability value and also erases bits successively,

these abnormal cases will be excluded.

Besides, in general, the monotonicity of ASD is not guaranteed. For instance, it is

observed in [33] that for the simplified KV algorithm, the decoding performance does

not monotonically improve as the cost increases. For the proposed BGMD, on the

other hand, as shown in the previous section, the decoding region will monotonically

become larger as a function of the multiplicity number M .

The generic BGMD can naturally be generalized to take more than 1-bit erasures

into account, which will be important in decoding medium to low rate RS codes. The

associated performance bounds are also of great research interest, since for medium

to low rate RS codes, the upper bound considering the worst case bit-level decoding

region alone becomes loose.
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F. Simulation Results

In this section, we show simulation results of the proposed BGMD over various com-

munication channels. We will see that the proposed BGMD, though derived from a

simple MAS, is superior to many existing MAS’s which are far more complicated. Be-

sides, in contrast to most MAS’s in the literature, the ordered statistics based upper

bound can accurately evaluate the actual performance of BGMD for many practical

high rate RS codes.

In Figure 27, we plot the FER performance of an RS(31, 25) over an AWGN

channel. BGMD (M = 2) outperforms conventional BM by 1.3dB at an FER = 10−6.

It also outperforms conventional symbol-level GMD by 0.6dB at an FER = 10−5 and

is slightly inferior to Combined Chase and GMD (CGA(3)), which has a much larger

complexity, by 0.2dB. Compared with existing MAS’s for ASD, it gives favorable

performance as well. With M = 2, it even outperforms KV algorithm with M = ∞
by 0.5dB at an FER = 10−6. With M = ∞, the performance of BGMD outperforms

the performance of Gaussian approximation based MAS [25] and the performance

of Chernoff technique based MAS [26, 76], which are far more complicated than the

proposed BGMD in multiplicity assignment.

In Fig. 28 we evaluate the FER performance of a long code, RS(255,239) code.

Again, BGMD (M = 2) outperforms GMD and is comparable to CGA(3). As the

codeword length increases, KV algorithm becomes asymptotically optimal as shown

in [4]. The performance of the proposed BGMD is still comparable to KV decoding.

In the infinite cost case, the performance of BGMD (M = ∞) is slightly better than

the performance of KV (M = ∞); in the finite cost case, BGMD (M = 2) even

outperforms KV (M = 4.99). Besides, since BGMD only assigns multiplicities to

symbols with at most 1-bit erasure, the memory consumption in storing the assigned
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Fig. 27. Performance of ASD for an RS (31, 25) Code over an AWGN Channel

multiplicities is much smaller than KV. The upper bound is quite tight and it starts

to outperform KV (M = 4.99) and is only 0.1dB inferior to the actual performance

at an FER = 10−5. As shown in Figure 25, it gives an estimate of the performance

of BGMD in high SNR’s as well.

Though the upper bound of BGMD is tight only for medium to high rate RS

codes, the proposed BGMD algorithm actually provides even more significant coding

gain for low rate RS codes. As shown in Figure 29, the performance of BGMD (M =

2) can outperform BM, GMD, CGA(3) decoding by a large margin for an RS(63, 12)

code over an AWGN channel. The gain of BGMD over BM is about 2dB at an FER

= 10−4. In this case, CGA(3) is far more inferior to BGMD. BGMD (M = 2) has

almost identical performance as KV (M = 4.99). While, in the infinite cost case, KV

does have a 0.4dB gain over BGMD at an FER = 10−5, which suggests that taking
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care of more than 1-bit-erased symbols might provide extra gains for low rate RS

codes. It is an interesting open problem to develop such kind of MAS.

The gain of the proposed BGMD over BM and CGA becomes larger when the

channel is similar to a BEC, say Rayleigh fast fading channels, since BGMD can

correct a significantly larger number of bit-level erasures than conventional BM as

discussed in Section B. As shown in Figure 30, the gain of BGMD (M = 2) is about

1.5dB compared with BM at an FER = 10−3. As expected, the gain of BGMD over

CGA(3) is more significant over the fading channel. Compared with KV (M = ∞),

BGMD (M = 2) is slightly inferior to KV (M = ∞) in low SNR’s, but it intersects KV

(M = ∞) at an FER = 10−3 and performs better in high SNR’s. BGMD (M = ∞)

has a 0.75dB gain over KV (M = ∞) at an FER = 10−4. The superior performance

of BGMD seems to suggest that for high rate RS codes, efficiently taking advantage
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Fig. 29. Performance of ASD for an RS (63, 12) Code over an AWGN Channel

of bit-level erasures exploits most of the gain in ASD.

Performance of the proposed BGMD is also investigated over practical magnetic

recording channels, that is, longitudinal channels (see Figure 31) and perpendicu-

lar channels (see Figure 32). More details of the channel model can be found in

[69]. Similar performance gains of BGMD have also been observed over practical

recording channels. BGMD (M = 2) outperforms conventional GMD and performs

competitively with KV and CGA(3), which are much more complex. This superior

performance of BGMD suggests that though RS codes are usually considered as a

powerful burst error correction code, it is still beneficial to taking advantage of soft

information at the bit-level even over practical magnetic recording channel models,

where errors are usually bursty.
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Fig. 30. Performance of ASD for an RS (255, 175) Code over a Rayleigh Fast Fading

Channel

G. Conclusion

We have presented multiplicity assignment strategies and performance analyses of

algebraic soft-decision decoding over erasure channels, binary symmetric channels and

mixed error and bit-level erasure channels. Performance analysis motivates a simple

sequential multiplicity assignment scheme, bit-level generalized minimum distance

decoding. The proposed BGMD outperforms most of the MAS’s in the literature for

RS codes in a wide range of rates over various channels both in terms of performance

and complexity. Due to its simplicity, the performance of BGMD can also be tightly

bounded using ordered statistics based upper bounds even in high SNR’s over an

AWGN channel. The proposed BGMD has potential applications in decoding RS

codes in practical recording systems and RS outer codes in concatenated systems.
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CHAPTER VI

SUMMARY AND FUTURE WORKS

This dissertation studied several advanced channel decoding methods using bit-level

soft information. In particular, we proposed bit-level iterative decoding for HDPC

codes and bit-level algebraic soft-decision list decoding for RS codes. We have demon-

strated that bit-level SDD is a more efficient way to exploit the potential gain of clas-

sical algebraic codes, such as RS codes than traditional symbol-level SDD schemes in

terms of both performance and complexity. In this chapter, we summarize the main

contributions of this dissertation and discuss potential future works.

A. Iterative Decoding of High Density Parity Check Codes

In Chapter III, a gradient descent based iterative algorithm for SISO decoding of

HDPC codes has been proposed. The proposed iterative algorithm uses the SPA

in conjunction with a binary parity check matrix adapted in each decoding itera-

tion according to the bit-level reliabilities. For codes with non-sparse parity check

matrices, this bit-level reliability based adaptation procedure significantly improves

the convergence behavior of the gradient descent based iterative decoding algorithm

compared to iterative decoding algorithms without adaptation. This algorithm is the

first successful iterative decoding algorithm that can achieve a significant gain over

conventional HDD for practical high rate long RS codes.

In Chapter IV, a stochastic shift based iterative decoding (SSID) scheme for

cyclic codes has been proposed. In contrast to the adaptive scheme in Chapter III,

we have shown that stochastic shift of the updated reliability values at each iteration

can also prevent gradient descent based iterative decoding from getting stuck for

short length cyclic codes. The stochastic shift based adaptation scheme is much less
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complex than the Gaussian elimination based adaptation scheme in Chapter IV.

B. Bit-level Algebraic Soft-decision List Decoding

In Chapter V, a novel multiplicity assignment strategy for ASD based on bit-level soft

information has been presented. It is shown that by carefully incorporating bit-level

soft information in multiplicity assignment and interpolation, ASD can significantly

outperform HDD for practical high rate long RS codes even with a very small amount

of complexity. More importantly, the proposed bit-level ASD is the first list decoding

method whose performance is provably better than HDD even for high rate RS codes.

The proposed bit-level ASD algorithm is potentially a feasible alternative to HDD in

many practical systems.

C. Future Works

Bit-level advanced channel coding techniques developed in this dissertation also have

several promising future research directions.

First, one possible extension of the proposed iterative decoding by adapting the

parity check matrix is to use the adaptive algorithm to improve the iterative decoding

performance of LDPC codes in the error floor region. The other potential application

is to use the adaptive algorithm to help the convergence behavior of an LDPC code

as a vector quantizer.

Second, iterative decoding of RS codes has wide applications in many concate-

nated systems. In the recent DVB-H standard, product RS codes are used for forward

error control (FEC) over wireless channels. However, the performance of this concate-

nated system largely depends on the decoding scheme. Naively treating undecodable

RS inner codewords as erasures might lead to very poor performance. Also, due
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to the MDS property of RS codes, efficient decoding algorithms for RS codes over

non-ergodic channels such as orthogonal-frequency-division-multiplexing systems [77]

and multiple antenna systems [78] are also of great research value. Effectively taking

advantage of the soft-information at the bit-level can provide a significant gain in

such systems.

Third, a promising future direction of the proposed bit-level ASD scheme is

to implement ASD using classical BMD for errors and bit-level erasure decoding.

Sidorenko [79] proposed using BMD to achieve the error correction radius of Sudan

decoding. It will be very interesting to extend Sidorenko’s result to more general

ASD case for high rate RS codes. It is also of practical value to study decoding

folded/interleaved RS codes [59] at the bit-level, which is of practical value in channels

with memory.

Fourth, bit-level channel coding techniques also have applications in cross-layer

receiver design. In packet oriented networks, erasure decoding are usually adopted

for FEC. Unlike in wired case, where packet-erasures are mainly due to packet loss in

the network and can not be recovered, in the wireless scenario, the soft information

of each bit is usually available at the receiver. Treating all the bits in an undecodable

packet as erasures is a waste of information. Therefore, it is beneficial to study bit-

level soft decoding of many FEC codes adopted in the transport layer, such as RS

codes and more recent digital fountain codes [80]. How to effectively take advantage

of the soft-information at the bit-level and how to analyze the decoding performance

is a challenging and rewarding open problem.
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APPENDIX A

UNIFORM MULTIPLICITY ASSIGNMENT AMONG CANDIDATES SYMBOLS

IN THE SAME COORDINATE

The optimal multiplicity assignment for a given channel observation y minimizes

the probability of codeword error, that is:

Mopt = argmin
M

P{Ĉ 6= C|y,M} (A.1)

However it is highly nontrivial to take the structure of RS codes into account in

the multiplicity assignment stage [4]. For instance, over BEC’s and BSC’s, the RS

codeword has to be represented using its binary image expansion and then these bits

are transmitted through the channel. However, even the weight enumerators of the

binary image expansions of RS codes are in general not known [55], let alone taking

the code structure into account in the MAS. Therefore, some assumptions are needed

to make the problem analytically tractable. In the literature, the coset code argument

[4, 26] and the dither argument [27] have been used to obtain the optimal MAS for

the average ensemble performance over all RS coset codes (or, equivalently, all dither

patterns).

Throughout this dissertation, we also use the coset code argument, that is, we

assume the symbols in a transmitted codeword are independent and identically dis-

tributed (i.i.d) with a uniform distribution over GF(q) during the multiplicity assign-

ment stage. However, the MAS is designed to be optimal for the worst case RS coset

code. Consequently, it is natural to consider uniform multiplicity assignment among

equiprobable candidates in the same coordinate. Since the channel only generates era-

sures, there is no preference for some candidates over others. Suppose non-uniform
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multiplicities are assigned, in the worst case, the transmitted symbol will correspond

to the candidate with the least multiplicity and therefore, non-uniform multiplicity

assignment will have a strictly smaller score than uniform multiplicity assignment

with the same cost.
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APPENDIX B

DERIVATION OF THE BIT-LEVEL RADIUS A 1-BIT FLIPPED BSC

Suppose there are e ≤ N 1-bit flipped symbols. In the MAS, we assign M to the

received vector and tM to the 1-bit flipped neighbors. As M → ∞, the score and

cost are:

S = (N − e)M + eMt (B.1)

C =
N

2
[M2(1 + mt2)(1 + o(1))] (B.2)

Plugging the score and cost into (5.8), we get:

[(N − e) + et]M >
√

(K − 1)N(1 + mt2)M (B.3)

e <
N −

√
N(K − 1)(1 + mt2)

1− t
(B.4)

For RS codes of rate R < 1
1+m

+ 1
N

, we have (K − 1)(1 + m) < N . Setting t = 1

in (B.3), the inequality becomes independent of e and is always satisfied. In this case,

the transmitted codeword will always be on the list.

For higher rate RS codes, t is optimized to maximize the right hand side (RHS)

of (B.4). This problem is equivalent to maximizing the slope between a given point

(1, N) and a point on the hyperbola y2

N(K−1)
−mx2 = 1, within the range 0 ≤ x ≤ 1

and y ≥
√

N(K − 1), which is nothing but the tangent to the hyperbola. For the

tangential point (x0, y0), we have the following relationships:
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y2
0

N(K − 1)
−mx2

0 = 1 (B.5)

dy

dx
|x=x0 = N(K − 1)m

x0

y0

(B.6)

=
N − y0

1− x0

(B.7)

From the above three equations, we can get:

y0 = (K − 1)(mx0 + 1) (B.8)

Plugging back to (B.5), we get

m [m(K − 1)−N ] x2
0 + 2m(K − 1)x0 − [N − (K − 1)] = 0 (B.9)

Since we are only interested in x0 ∈ [0, 1], it is easy to verify that in all cases, the

solution of (B.9) will be of the following form:

x0 =
−m(K − 1) +

√
∆

m(m(K − 1)−N)
(B.10)

where ∆ = (m(K − 1))2 + (N −K + 1)(m2(K − 1) −mN). Note that the singular

point m(K − 1)−N = 0 can be removed by taking the limit: [m(K − 1)−N ] → 0.

Combing (B.6) and (B.8), the optimal error correction radius is:

emax <
N

1
mx0

+ 1
(B.11)

where x0 is computed in (B.10). The maximum emax satisfying (B.11) is the error

correction radius of ASD algorithm under the asymptotically optimal MAS over 1-bit

flipped BSC and t = x0 is the optimal multiplicity coefficient.
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Moreover,
√

∆ can be further bounded as follows:

√
∆ < m(K − 1)[1 +

1

2

(N −K + 1)(m2(K − 1)−mN)

m2(K − 1)2
] (B.12)

For high rate RS codes, (N − K + 1)(m2(K − 1) − mN) ¿ (m(K − 1))2, the left

hand side (LHS) and RHS of (B.12) becomes very close and the upper bound on
√

∆

becomes tight. Plug (B.12) into (B.10):

x̃0 =
N − (K − 1)

2m(K − 1)
(B.13)

Plug (B.13) into (B.11), we finally get:

ẽmax =
N(N −K + 1)

N + (K − 1)
=

[
N −

√
N(K − 1)

](
1 +

√
N(K − 1)− (K − 1)

N + (K − 1)

)

(B.14)

Note that ẽmax > emax and it serves as an upper bound on the true decoding radius.

However, (B.14) suggests that in the 1-bit flipped BSC case, the improvement of

ASD over GS algorithm is very little for high rate RS codes. A similar result was

independently obtained in [30].
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APPENDIX C

DERIVATION OF THE DECODING REGION OF ASD OVER A 1-BIT

FLIPPED OR ERASED CHANNEL

We consider the following MAS for the 1-bit flipped or erased channel: if the

symbol does not contain erased bits, assign multiplicity M to the received symbol

and Mt1 to all 1-bit flipped neighbors. In the 1-bit erased symbols, we assign Mt2 to

both candidate symbols.

Suppose we have f erasures and e errors. The optimal MAS is such that given

f , we want to maximize e.

In the infinite cost case, the score and the cost are:

S = (N − e− f)M + eMt1 + fMt2 (C.1)

C =
1

2

[
(N − f)(M2 + mM2t21) + 2fM2t22

]
(1 + o(1)) (C.2)

When a received vector is decodable in the infinite cost case, (5.8) has to be satisfied.

We have:

e <
N − f(1− t2)−

√
(K − 1) [(N − f)(1 + mt21) + 2ft22]

1− t1
(C.3)

When f = 0, (C.3) reduces to (B.4). Here, we only consider the non-trivial case,

f > 0. Define

J1 = N − f(1− t2)−
√

(K − 1) [(N − f)(1 + mt21) + 2ft22] (C.4)

J =
J1

1− t1
(C.5)
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We first maximize J1 with respect to t2. Take the derivative, we get:

g(t2) =
∂J1

∂t2
= f − 4(K − 1)ft2

2
√

(K − 1) [(N − f)(1 + mt21) + 2ft22]
(C.6)

Note that g(t2) is a monotonically decreasing function, with g(0) = f > 0. Note that

when limt2→∞ g(t2) > 0 when f > 2(K − 1). This suggests the optimal MAS will

have t2 → ∞. In this case, S ≈ fMt2, C ≈ fM2t22(1 + o(1)) and S ≥
√

2(K − 1)C

will always be satisfied if f > 2(K − 1). Therefore, when f > 2(K − 1), e + f = N

errors and erasures can be recovered for the 1-bit flipped or erased channel, which

is optimal. It can also be shown that when f = 2(K − 1) < N , e + f = N is also

achievable by properly assigning multiplicities to symbols without erasure. This is

not too surprising, since the 1-bit erased symbols are guaranteed to be error free and

therefore, it worth putting more multiplicities on 1-bit erased symbols. For high rate

RS codes, we have 2(K− 1) > N . Hence, g(t2) will have a unique zero in t2 ∈ [0,∞),

which maximizes J1. Set g(t2) = 0, we get:

t2 =

√
(N − f)(1 + mt21)

4(K − 1)− 2f
(C.7)

J1 = N − f −
√

[(K − 1)− f/2] (N − f)(1 + mt21) (C.8)

J can thus be simplified as a function of t1 only as:

J = A× B −
√

1 + mt21
1− t1

(C.9)

where

A =
√

[(K − 1)− f/2] (N − f) (C.10)

B =
√

(N − f)/ [(K − 1)− f/2] (C.11)

(C.9) has a similar structure to (B.4). When f > 2(K−1)+ 4(K−1)−2N
m−1

, let t1 = 1
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and t2 =
√

(N−f)(1+m)
4(K−1)−2f

, the condition (5.8) will always be satisfied.

For f ≤ 2(K − 1) + 4(K−1)−2N
m−1

, we apply the same technique used in (B.4) here,

i.e., to maximize the slope between the point (1, B) and a point on the hyperbola

y2 −mx2 = 1 will give the optimal multiplicity coefficient t1:

t1,opt =
−m +

√
m2 + m(m−B2)(B2 − 1)

m(m−B2)
(C.12)

The optimal J as a function of f is:

Jopt(f) = (N − f)
mt1,opt

mt1,opt + 1
(C.13)

Eventually, the optimal decoding region is:

e < Jopt(f) (C.14)

Any received codeword with e-bit errors and f -bit erasures satisfying (C.14) is decod-

able by ASD under the optimal MAS with t1,opt and t2,opt as the optimal multiplicity

coefficients respectively.
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APPENDIX D

DERIVATION OF THE GENERAL DECODING REGION

Proof 21 When e + f ≤ N , the cost is

C = (N − f)
M(M + 1)

2
+ f

M(M + 2)

4
(D.1)

which does not depend on the number of errors e. T (S), as defined in (5.7), is a piece-

wise linear function with monotonically increasing slope. Since T (S) is monotonic,

we first determine the unique interval where T (S) intersects C, i.e., T (a(k − 1)) ≤
C ≤ T ((a + 1)(K − 1)). Plugging (5.7) in T (a(K − 1)) ≤ C, we get an upper bound

on a:

a ≤
−1 +

√
1 + 8C

K−1

2
(D.2)

with C defined in (D.1). The integer solution of a is:

â = b
−1 +

√
1 + 8C

K−1

2
c (D.3)

The threshold of the score can then determined by

S∗ = T−1(C) =
C

â + 1
+

â

2
(K − 1) (D.4)

where T−1(C) is the inverse function of T (S).

The received codeword is decodable by ASD if S > S∗, where S = (N−e−f/2)M .

Therefore, we have the final decoding region as follows:

e < N − f

2
− â(â + 1)(K − 1)/2 + C

M(â + 1)
(D.5)
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where â and C are defined in (D.3) and (D.1) respectively.
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APPENDIX E

COMPUTATION OF THE FRAME ERROR RATE UPPER BOUND OF BGMD

DECODING

We give a detailed description of the procedure to compute an upper bound on

the FER of BGMD decoder. This upper bound is an extension of the GMD bound

[72] for binary linear block codes with a bounded distance decoder (BDD). Without

loss of generality, we assume that the all-zero codeword is transmitted. Assuming

that BPSK is the modulation scheme and that a zero is mapped to a channel symbol

+1, the received value for the ith bit is ri = 1 + ni, where ni ∼ N (0, N0/2).

Let f(x,N0) = 1√
πN0

e
− x2

N0 be the probability density function (PDF) of a Gaus-

sian random variable (RV) with mean zero and variance N0/2. Then, the cumulative

density function (CDF) of this Gaussian RV is given by:

Q(x,N0) =

∫ ∞

x

f(t, N0)dt (E.1)

The probability that one bit is in error can therefore be expressed as:

Pb = Q(1, N0). (E.2)

Let f e
α and f c

α be the PDF’s of |ri| given that ri ≤ 0 and ri > 0, respectively. It

is shown in [72] that f e
α and f c

α are given by

f e
α =

f(x + 1)

Q(1, N0)
u(x) (E.3)

f c
α =

f(x− 1)

1−Q(1, N0)
u(x) (E.4)

where u(x) is a step function.
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Therefore, the corresponding CDF’s are:

F e
α =

Q(1, N0)−Q(x + 1, N0)

Q(1, N0)
u(x) (E.5)

F c
α =

1−Q(1, N0)−Q(x− 1, N0)

1−Q(1, N0)
u(x) (E.6)

Assume there are i erroneous bits in the received vector. Order the received bits

according to their reliability values in decreasing order. Let βj(i) be the jth ordered

reliability value in i erroneous bits. That is β1(i) ≥ β2(i) ≥ · · · ≥ βi(i). On the other

hand, there are n− i correct bits. Define γl(n− i) as the lth value after ordering. We

have γ1(i) ≥ γ2(i) ≥ · · · ≥ γn−i(n − i). The density of βj(i) and γl(n − i) can be

derived using the ordered statistics as in [81]:

fβj(i)(x) =
i!

(j − 1)!(i− j)!
[1− F e

α(x)]j−1 f e
α(x) [F e

α(x)]i−j (E.7)

fγl(n−i)(x) =
(n− i)!

(l − 1)!(n− i− l)!
[1− F c

α(x)]l−1 f c
α(x) [F c

α(x)]n−i−l (E.8)

Hence, the probability that the event {βj(i) ≥ γl(n− i)} occurs can be evaluated

by the following double integral:

P (βj(i) ≥ γl(n− i)) =

∫ ∞

0

fγl(n−i)(x)

∫ ∞

x

fβj(i)(y) dy dx (E.9)

The performance of BGMD decoding can be bounded as follows:

PBGMD ≤ PML + Plist ≈ PList (E.10)

PList can be computed using the first order approximation in [72]. The basic

idea is that for a specified number of errors in the received vector, the actual FER of

BGMD is upper bounded by the FER of an error and erasure decoder with a fixed
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but optimized number of erasures in the LRB’s. PList can be expressed as:

Plist ≤
fmax,M∑

i=emax,M+1

P i
b (1− Pb)

n−i min
(e,f)∈D(M)

P ((e + 1)errors inthe (N-f) MRB’s)

+
n∑

i=fmax,M+1

P i
b (1− Pb)

n−i

(E.11)

=

fmax,M∑
i=emax,M+1

P i
b (1− Pb)

n−i min
(e,f)∈D(M)

P (βe+1(i) ≥ γn−e−f (n− i))

+
n∑

i=fmax,M+1

P i
b (1− Pb)

n−i

(E.12)

where D(M) is the set of all error and erasure pairs (e, f) that is within the decoding

region of the proposed ASD for a specified multiplicity M , as characterized in Theo-

rem 8. fmax,M and emax,M are the maximum number of erasures and errors such that

(0, fmax,M) and (emax,M , 0) still belong to D(M).



132

VITA

Jing Jiang received the B.S. degree from Shanghai Jiao Tong University in 2002.

He received his Ph.D. degree in electrical engineering from Texas A&M University

in August 2007. His general research interests lie in the areas of communication

theory, channel coding, signal processing and information theory. Jing Jiang can

be contacted at Department of Electrical and Computer Engineering, 214 Zachry

Engineering Center, College Station, Texas, 77843-3128, USA.


