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ABSTRACT 

Using Finite Element Structural Analysis to Study Retroreflective Raised Pavement 

Markers. (August 2007) 

Jiaxin Tong, B.E., Shanghai Jiao Tong University 

Chair of Advisory Committee: Dr. Yunlong Zhang 

 

This thesis investigates the stress inside Retroreflective Raised Pavement Markers 

(RRPMs) under tire-marker impact and laboratory testing scenarios.  Many RRPMs 

have poor durability although they meet certain standards of the existing laboratory 

tests.  It has been suspected that the current testing procedures might not be adequate 

to decide the field performance of RRPMs.  Thus, it is necessary to evaluate the 

existing laboratory testing procedures and develop additional ones that could simulate 

the field performance of RRPMs more accurately.   

The tire-marker impact on rigid and flexible pavement will be investigated to 

identify the critical locations and magnitudes of stress inside markers during the impact.  

Various external factors, such as tire loading, tire speed, contact angle and contact 

location, might have effects on the stress inside markers during the impact and be 

considered as critical factors when developing a laboratory test.  On the other hand, 

RRPMs have different profiles in terms of height, lens slope, and size etc, which affect 

the structure and field performance as well.  The study explores the stress inside 

markers during the impact by varying the external factors and marker profile.  In 

addition, the interface forces between RRPMs and pavement surface will be studied.  

Furthermore, the tire-marker impact simulation on rigid and flexible pavement will be 

compared so that specific testing procedures can be distinguished based on pavement 
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type.  Finally, the existing laboratory tests will be examined and additional tests be 

recommended based on the tire-marker impact analysis.      

The researcher found that the critical compressive stress is produced at the top 

edges of the markers on both types of pavement, while the patterns of critical tensile 

stress can be different between the two types of pavement.  In addition, tire loading 

and contact location were determined to have effect on the stress inside the markers.  

Furthermore, different loading rates should be used in laboratory test based on 

pavement type.  Finally, the researcher evaluated four laboratory tests and found that 

each test has its merit but none of them can test RRPMs comprehensively, so it is 

recommended that the four tests are used together to test RRPMs. 
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INTRODUCTION 

The Manual on Uniform Traffic Control Devices (MUTCD) defines a raised pavement 

marker (RPM) as “a device with a height of at least 10 mm (0.4 in) mounted on or in a 

road surface that is intended to be used as a positioning guide or to supplement or 

substitute for pavement markings or to mark the position of a fire hydrant” (1).  

Retroreflective Raised Pavement Markers (RRPMs) are used for providing delineation 

on highways during nighttime or wet conditions when pavement markings lose their 

effectiveness to provide guidance to motorists.  In addition, the rumbling effect of 

RRPMs reminds drivers to remain appropriate position in their lanes. 

It is expected that RRPMs would remain in the installed locations and have 

sufficient retroreflectivity over time.  However, markers would lose most of their 

effectiveness on highways with high traffic volume in a short period of time after 

installation due to poor retention and durability.  The major problems of marker 

failure are poor retention on pavements (adhesive failure), breaking of marker body or 

lens and loss of retroreflectivity (2).  Various factors responsible for these failures 

include high traffic volume, high loading (such as trucks), sand abrasion and 

environmental factors like ultra-violet radiation (2).  Several research agencies 

suggest that poor manufacturing and inadequate application quality may have 

contributed to the poor durability of markers as well (2). 

 

 

 

 

_____________ 

This thesis follows the styles of Transportation Research Record. 
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PROBLEM STATEMENT 

In addition to marker quality and various external factors, the under performance of 

RRPMs can be attributed to the lack of appropriate laboratory testing standards that 

can test the adequacy of markers to perform well in the field.  The existing laboratory 

testing procedures recommended by American Society of Testing and Materials 

(ASTM) have problems in several areas (3).  First of all, RRPMs are generally only 

tested to some loading levels (pass or fail).  Moreover, the existing testing procedures 

are unable to simulate all the scenarios of tire-marker impact in the field, i.e. contact 

with angle and offset.  Some researchers have tried to demonstrate the capability of 

certain laboratory tests, i.e. ASTM compression test (2, 3).  The problem remains, 

however, that RRPMs passing the tests have displayed markedly different field 

performance.  Therefore, it is necessary to examine the existing testing procedures 

and develop new testing procedures that could better simulate certain field scenarios.  

The evaluation and recommendation of laboratory testing procedures require that the 

critical locations and magnitudes of stress inside RRPMs to be identified during the 

tire-marker impact in the field.  Therefore, the dynamic process of tire-marker impact 

needs to be studied to determine the stresses inside markers during the impact. 

BACKGROUND 

Some researches have been conducted to study the tire-marker impact, but none of 

them were able to analyze the impact dynamically and microscopically until the idea of 

utilizing the finite element simulation tools to study the stress inside RRPMs arose (2, 

4).  The finite element computational techniques are able to simulate the tire-marker 

impact in the field dynamically and thus solve the difficulty of measuring the stress 

inside RRPMs instantaneously in the field and provide the flexibility when various 
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external factors need to be varied.  The finite element simulation is able to capture 

every microscopic step of the tire-marker impact and indicate the critical locations and 

magnitudes of stress inside RRPMs during the impact. 

However, the current tire-marker impact simulation is performed on rigid 

pavement, so it is not adequate to determine the critical locations and magnitudes of 

stress inside markers during the tire-marker impact without simulating the impact on 

flexible pavement.  In fact, it has been observed in the field where testing RRPMs 

were installed on both rigid (concrete) and flexible (asphalt) pavement that several 

RRPM brands had different damage types between two types of pavement.  Such 

field observation especially highlights the necessity of further examining the stress 

inside markers during the tire-marker impact on flexible pavement.  Considering the 

wide application of flexible pavement on roadways in the United States, it is valuable 

to include the pavement properties into the simulation model such that the existing and 

new laboratory testing procedures can be investigated and developed on a more 

comprehensive basis.  

RESEARCH OBJECTIVES 

The primary goal of this research is to identify the critical locations and magnitudes of 

the stress inside markers during the tire-marker impact on both rigid and flexible 

pavement and investigate the difference between the stress inside markers on both 

types of pavement in order to help recommend laboratory testing procedures that could 

better simulate the field conditions.  This research is specifically aimed at the 

following tasks: 

• To model stress inside markers during the tire-marker impact on flexible 

pavement; 
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• To evaluate the external factors of tire-marker impact on flexible pavement; 

• To identify the factors that need to be evaluated while recommending a 

laboratory testing procedure; 

• To compare the stress and interface forces generated from the tire-marker 

impact on both rigid and flexible pavement; 

• To investigate if a same test is suitable for markers on both rigid and flexible 

pavement and if there is a need to distinguish laboratory testing procedures for 

RRPMs based on the pavement type; 

• To study the effect of RRPM profile on the stress inside markers; 

• To evaluate the existing laboratory testing procedures and recommend testing 

procedures based on the achievements of the prior objectives. 

RESEARCH BENEFITS 

This research is an extension of a Texas Transportation Institute (TTI) project, Project 

0-5089 Improvements of Raised Pavement Markers, sponsored by the Texas 

Department of Transportation (TxDOT).  It will provide comprehensive information 

on the critical locations and magnitudes of stress inside RRPMs during the tire-marker 

impact, and thus help determine whether the same laboratory testing procedures can be 

applied to RRPMs to be installed on both rigid and flexible pavement.  Furthermore, 

this research will contribute to the laboratory testing standards for RRPMs to assure 

the quality and hence improve the durability of markers.  

THESIS ORGANIZATION 

This thesis consists of five sections.  The first section introduces the research problem, 

background information, and the objectives as well as benefits of this research.  The 
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second part reviews the RRPM-related state-of-the-art, including the general practice 

of RRPMs, research on the durability of RRPMs using traditional method, and the 

latest research on RRPMs using finite element simulation.  The next part of the thesis 

focuses on the methodology adopted in this research and it provides insight into the 

constitution of tire-marker impact model, the modeling of flexible pavement and the 

study design.  The fourth section gives the results and analysis of the tire-marker 

impact simulation and laboratory test simulation.  The final section concludes with 

findings, remaining issues, and recommended future research.
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STATE-OF-THE-ART AND -PRACTICE 

This section of the thesis reviews the state-of-the-art and state-of-the-practice related to 

RRPMs.  It first introduces the current practice of RRPMs, which is then followed by 

a review of the previous research on the causes of the deterioration of RRPMs.  

Furthermore, it provides insight into the previous and latest study on tire-marker 

impact and laboratory testing procedures. 

OVERVIEW OF CURRENT RRPM PRACTICE 

RRPMs work in complement to pavement markings to provide the overall guidance to 

motorists on highways.  RRPMs have a number of key functions and there are a 

variety of RRPM types on the market.  

Functions 

RRPMs are able to offer delineation over a wider range of environmental conditions, 

i.e. in low-light conditions at night or during inclement weather, than standard 

pavement markings, which might lose their effectiveness in such situations.  

According to a study on pavement markings, the accumulated rain on painted markings 

will reduce the retroreflectivity of the paint and thus affecting the effectiveness of 

standard marking lines (5), while RRPMs stand above the pooled rain water and can 

provide the needed retroreflectivity to motorists.  Besides, lighting is often not 

available along most rural highways, so the pavement markings are insufficient to meet 

motorists’ visibility needs in the darkness in the absence of effective RRPMs.  In 

addition, the rumbling sound of RRPMs as they are hit by vehicles tires can serve as a 
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“wake up call” to those motorists who are not aware of their vehicle position or driving 

situation.   

RRPMs in different colors work in supplement to the pavement marking stripes 

of the same color.  Yellow RRPMs with yellow lens are installed with the yellow 

centerlines to underline the stripes.  White RRPMs are often installed with white lane 

lines as the white lens provides reflectivity to motorists while red lens convoys 

warning message to motorists who enter the wrong way.  

Types 

Generally, there are two types of RPM: retroreflective and non-retroreflective.  This 

research only focuses on RRPM, which can be separated into two subcategories: 

non-snowplowable RRPM and snowplowable RRPM.  The RRPMs studied in this 

research are all non-snowplowable.  Non-snowplowable RRPMs are widely installed 

in warm climate states such as Texas and California where snowfall is not a concern, 

while other states with cold winter climate, such as Massachusetts, New Jersey, Illinois 

etc, use only snowplowable RRPMs to reduce the damage to markers during the 

snowplow activity (6).  Figures 1 and 2 show the typical non-snowplowable and 

snowplowable RRPMs (7).  
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FIGURE 1  Typical non-snowplowable RRPM. 

 

 

FIGURE 2  Typical snowplowable RRPM (7). 
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Currently, there are many models of RRPMs, developed with various 

configurations and characteristics.  Some markers are wedge-shaped, and some are 

round and oval.  Some markers are made of acrylic shell and polyurethane-resin filler, 

and some have a body composed of impact graded acrylonitrile butadiene styrene 

(ABS) instead of filler.  Some markers have lens on both sides, serving both 

directions of traffic, and some only on one side, serving only one direction of traffic.  

Some markers are in yellow color with yellow lens, which are usually used along 

yellow centerlines, and some are in white color with white lens or white-red lens, 

which are designed for both directions of traffic with red lens warning the motorists 

not to enter the wrong way.  Some markers are even in blue, indicating the position of 

fire hydrant (1).  Figure 3 shows some RRPMs with different shapes.  Figure 4 

shows a typical RRPM composed of lens, shell and filler.  In general, RRPMs vary in 

terms of shape, size, color, composition and functionality.  
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FIGURE 3  RRPMs in various shapes. 
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FIGURE 4  Composition of a RRPM. 

Implementation 

MUTCD states the desired spacing for RRPMs in terms of N, the normal cycle length 

of a pavement marking used in combination with markers, and the Federal Highway 

Administration (FHWA)’s Roadway Delineation Practices Handbook provides 

guidelines on the layouts and installation criteria for RRPMs (1, 8).  According to 

MUTCD and Roadway Delineation Practices Handbook, the layout of RRPMs on 

different sections of roadway, i.e. tangent ramps, curves, and intersections, or on 

different types of roadway, i.e. two-lane and multi-lane roadway, has specific 

requirements (1, 8).  The spacing between two consecutive RRPMs on tangents 

should be 80 ft (24 m).  The spacing between two consecutive RRPMs on horizontal 

curves between 3 and 15 degrees should be 40 ft (12 m).  For those curves larger than 

15 degrees a spacing of 20 ft (6 m) is desired.  The layout of RRPMs depends on the 

Filler (polyurethane) 

Acrylic shell 

Lens 

Filler 
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types of the roadway, and is also related to the configuration of the associated 

pavement markings.  Figure 5 presents the layout of RPM system and RPM/Stripe 

system for different types of roadway. 

 

FIGURE 5  Centerline patterns for different roadway types (8). 
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States have their own implementation criteria for RRPMs (6).  In some states, 

i.e. Texas and California, RRPMs are installed on all state-maintained highways, while 

some other states, i.e. Massachusetts, Pennsylvania and Illinois, implement RRPMs 

non-selectively on freeways, and selectively on other types of roadways based on the 

following criteria: 

• Traffic volume, 

• Illumination, 

• Safety record, 

• Speed limits, and 

• Horizontal curves. 

 

The use of adhesive material is also described in Roadway Delineation Practices 

Handbook (8).  The service life of RRPMs is directly related to the bond strength 

provided by the adhesives.  Epoxy is used to bond RRPMs to rigid pavement, i.e. 

concrete pavement, while bitumen is used to affix RRPMs to flexible pavement, i.e. 

asphalt and sealcoat pavement.  Some RRPMs that are pressure sensitive can even be 

installed without adhesives and these markers are usually implemented in work zones.  

Overall, RRPMs are claimed to be the most expensive marking material to install, 

which is also the reason why researchers have been trying to find ways to increase the 

durability of markers (8). 

PREVIOUS RESEARCH ON RRPM FAILURE 

The previous research on the RRPM failure mainly involves investigating the poor 

durability and loss of retroreflectivity of markers.  Besides, some study evaluated the 

pavement characteristics to correlate them to marker failure.  Next, the issues related 
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to these three aspects are reviewed. 

Poor Durability of RRPMs 

McNees and Noel at Texas Transportation Institute (TTI) conducted research to 

determine the major problems related to the poor physical durability of RRPMs on 

roadways (9, 10).  They found that retention and resistance to wear and shear are two 

major problems that underlie the poor durability of RRPMs.  They also concluded the 

major factors that cause such problems as the following: 

 

• Traffic volume, 

• Truck traffic, 

• Service time, and 

• Marker location, i.e. at lane line or centerline. 

 

They pointed out that trucks have a more significant effect on the retention than on the 

loss of retroreflectivity of markers.  It was also found that the retention of markers is 

related to the counts they are hit by the tires, which could be explained by their field 

observation that RRPMs on lane lines disappear and wear at a faster rate than those on 

centerlines as they receive twice as many hits as markers on centerlines (9).  In 

addition, marker shape was recognized as another primary factor in preserving markers.  

Other factors that were found to be responsible for the deterioration of markers include: 

marker type, bond area, vehicle speed, tire pressure, contact location on markers, 

improper installation, temperature, and moisture.  



 15 

Loss of Retroreflectivity  

McNees and Noel conducted a series of study regarding the retroreflectivity of RRPMs 

(10, 11).  They found that RRPMs lose a significant amount of their initial 

retroreflectivity within two years after installation and over two-thirds of their initial 

retroreflectivity is lost in the first year.  They also concluded that the reflective 

retention of RRPMs is approximately 2.5 years and markers would remain effective to 

some extent during this period.  The crack of and abrasion on the marker lens caused 

by tire contacts, the accumulation of road dirt and asphalt on the face of lens, and the 

residue of water remained near the base of markers due to insufficient drainage on 

roadways all reduce the retroreflectivity of RRPMs.  However, the type of RRPMs, 

their initial retroreflectivity, and truck traffic have little impact on the loss of 

retroreflectivity of markers. 

Ullman at TTI conducted a two-year evaluation of the RRPMs installed in 

Texas (12, 13).  He performed some non-linear regression analyses to study the 

correlation between RRPM retroreflectivity and traffic volume, and found that the 

retroreflectivity retention is most related to the cumulative vehicular exposure since the 

time of installation.  Besides, it was slightly less accurate to correlate the 

retroreflectivity retention of RRPMs to the cumulative truck exposure, but truck traffic 

was still considered to be a factor for the loss of retroreflectivity according to his 

research.  

Pavement Characteristics  

In the study conducted by McNees and Noel on the retention of RRPMs, they found 

that pavement failure is another significant factor causing the poor retention of markers, 

especially on asphalt pavement (9).  All three types of stress, tension, compression 



 16 

and shear tend to be generated in pavement under a marker.  Pavement is best at 

supporting the compressive stress which is predominant among three types of stresses.  

Adhesives at the opposite edge of marker undergoes tensile stress when the downward 

force resulted from tire loading is located out of the center one-third of the bonded area 

between markers and pavement.  The shear stress between markers and pavement is 

caused by non-vertical forces which might be produced by vehicle acceleration or 

deceleration.  Furthermore, they revealed that higher RRPM retention can be obtained 

using bitumen which gives asphalt pavement longer fatigue life, but such advantage 

decreases as pavement stiffness grows and input stress level increases. 

Ninety-three percent of U.S. paved roadways are surfaced with asphalt material, 

which is often called flexible pavement, while rigid pavement, surfaced with Portland 

cement concrete (PCC), comprises seven percent of U.S. paved roadways (14).  In 

Texas, about 90 percent of the highways are surfaced with asphalt material (10).  

Flexible pavement has a unique structure consisting of several layers of material, with 

the highest loading bearing material on the top and the lowest one at the bottom (15).  

A typical flexible pavement structure is shown in Figure 6.  On the other hand, rigid 

pavement typically only consists of two layers, the concrete surface and the subgrade 

(existing soil).  The load from vehicle tire distributes differently inside the two types 

of pavement, which is shown in Figure 7.  
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FIGURE 6  Typical flexible pavement structure (15). 

 

 

FIGURE 7  Flexible and rigid pavement loading distribution (14). 

TIRE-MARKER IMPACT 

Various methods have been implemented to study the tire-marker impact.  Some 

conventional ways include laboratory tests and high-speed motion picture while the 

latest research on tire-marker impact utilized the finite element analysis to investigate 

the tire-marker impact. 
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Conventional Methods 

A tire traveling at 50 mph will traverse a typical RRPM in about 4.5 milliseconds.  

This duration is too short to visually determine the path the tire is passing over the 

marker.  So, Noel and Tielking did a high-speed photographic study of the path the 

tire is traversing the marker (16).  It was found that a passenger car tire with 

high-pressure had contact with the entire top surface of the marker and remained in 

contact with a portion of the exit-sloping lens in stead of leaping over the marker.  

Similarly, a truck tire would stay on top of a marker longer than a passenger car tire. 

These findings were used subsequently in a design of a laboratory test to 

measure the fatigue strength of asphalt sustaining loading from tire-marker impact.  

During the experiment, Noel and Tielking found that the most significant impact on 

markers occurs when the sidewall of a tire hits the nearly vertical side (non-lens side) 

of a marker (16).  Such impact often occurs during a turning-passing maneuver.  

This finding is in accordance with the field study carried out in this research as a lot of 

damages on RRPMs were observed at the non-retroreflective side.  They also found 

that tire speed and tire pressure might be the factors for inducing the dynamic forces on 

markers.  

Zhang, et al have been conducting a two-year field study of RRPMs in four test 

decks characterized by different traffic conditions, pavement types, etc (17).  During 

their field evaluation every six months, they summarized some types of marker 

damage.  The top edges of a RRPM are most frequently damaged and Figure 8 shows 

this type of damage.  
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FIGURE 8  A common RRPM damage type. 

 

RRPMs on concrete pavement were more frequently removed than on asphalt 

pavement by shear force induced by vehicle tires.  Besides, some RRPM brands on 

asphalt pavement were observed with damage of split across the mid-bottom-line of 

the markers, which was rarely seen for RRPMs on concrete pavement.  Figure 9 

shows this type of structural damage.  In addition, the non-lens side of a RRPM often 

experienced severe damage as can be seen in Figure 10, indicating that the location of 

tire-marker contact is critical to marker damage. 
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FIGURE 9  A typical damage type for RRPMs on flexible pavement. 

 

 

FIGURE 10  Damage at the non-lens side of a RRPM. 
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Finite Element Analysis 

Finite element analysis (FEA) applies the finite element method to analyze either static 

or dynamic problems in various aspects, including structure analysis, thermal analysis, 

fluid analysis etc (18, 19).  The computational techniques make FEA even more 

powerful in simulating the performance of a complex system.  The FEA software, 

Hypermesh and LS-DYNA, is such a computational tool upon which the FEA model 

can be built and simulated (20, 21).  The finite element model contains the following 

information about the device to be analyzed: geometry, which is subdivided into finite 

element, materials excitation and constraints.   

Researchers at TTI developed a finite element model to find out the critical 

locations and magnitudes of stresses inside markers during the tire-marker impact.  

Dr. Abu-Odeh, an associate research scientist at the Center of Excellence in 

Transportation Computational Mechanics of TTI, built the preliminary tire-marker 

impact model.  Figure 11 shows the model.   

 

FIGURE 11  Preliminary finite element model of tire-marker impact. 



 22 

The model consists of three major components: a truck tire (525 mm in radius), 

a simplified RRPM, and the rigid pavement.  The tire in this model was well 

calibrated by Dr. Abu-Odeh, while the marker originally did not have any constitutive 

material properties and was only a rigid object.  Alberson and Agrawal then worked 

together to build finite element models of three models of RRPMs, which are similarly 

structured as the real RRPMs.  Agrawal calibrated the material properties of those 

marker models based on matching measurements and finite element simulation of 

strains in a laboratory setup (2).   

After the calibration of constitutive material property, Agrawal simulated the 

tire-marker impact model in LS-DYNA to generate stress analysis.  The simulation 

was conduct in such a way that the tire passes over the marker in three stages.  The 

first stage represents the scenario when the tire first contacts the front lens face of the 

marker and is about to ascend the marker.  The second stage represents the scenario 

when the tire stays on top of the marker.  The third stage represents the scenario when 

the tire is still in contact with the rear lens face of the marker and about to descend the 

marker.  He found that predominant compressive stress is produced in the upper half 

as well as the edge of top surface of the contacted retroreflective side in the first stage.  

The same pattern was found in the third stage.  When a tire sits on top of the marker, 

compressive stress is concentrated at the edges of top surface of the marker.  Tensile 

stress is observed throughout the marker during the impact and it is especially intense 

at the opposite side of the location the tire contacts the marker (2). 

In the further research done by Zhang, et al, the effect of external factors, i.e. 

tire loading, tire speed, contact angle and contact location, on the critical locations and 

magnitudes of stress inside markers were identified during the tire-marker impact on 

rigid pavement (4).  Based on the simulations, the critical stress is produced on the 

top edges of the marker (perpendicular to the traffic direction).  Studying the various 
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external factors, the researchers found that the stress inside the markers increases as the 

tire loading is increased and higher stress is seen as the impact location moves away 

from the center of the marker.  Besides, the contact angle was found to affect the 

tensile stress inside the markers, with larger angles causing more tensile stress.  

However, no consistent effect of tire speed was found on the stress inside the markers.  

These findings pointed out that the loading rates and contact location should be 

considered as important factors in developing the laboratory testing procedures.   

However, the studies by Agrawal and Zhang et al. did not consider pavement 

properties.  That is to say, the results from the studies only apply to RRPMs on rigid 

pavement.  The conclusions thus remain incomplete until the impact on flexible 

pavement is evaluated.  It is important to model flexible pavement because not only 

the external factors can be studied thoroughly to see their effects on the impact but also 

it allows researchers to investigate the difference between the patterns and magnitudes 

of stresses inside markers during the impact to distinguish the needs of certain 

laboratory testing procedures for RRPMs to be installed on rigid and flexible 

pavement. 

LABORATORY TESTING PROCEDURES 

American Society of Testing and Materials (ASTM) has standard specification for 

non-snowplowable RRPM, and it is issued under the fixed designation of D 4280 (3).  

Most state agencies use the testing specification in ASTM to test RRPMs.  There are 

two specific tests in ASTM D 4280 regarding the structure durability of RRPMs, a 

compression test and a longitudinal flexural test.  The next part introduces the 

common practices of these two tests and the research work conducted to examine the 

tests. 
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ASTM Compression and Longitudinal Flexural Tests 

The compression test requires the marker being tested have a condition of about 23 

degree Celsius (73 degree Fahrenheit) for 4 hours prior to testing.  The marker base 

should be positioned down at the center of a flat steel plate.  On top of the marker is 

placed an elastomeric pad while another flat steel plate is then placed on top of the 

elastometric pad.  All the steel plates and elastomeric pad should be larger than the 

marker.  A load at a rate of 2.5 mm (0.1 inch) per minute is applied on top of the 

upper steel plate.  It tests the compressive strength of RRPMs.   

The longitudinal flexural test requires the same temperature condition as the 

compression test.  The marker base should be positioned onto two elastomeric pads 

which are perpendicular to the lengthwise of the marker (traffic direction) and placed 

at the two edge sides of the marker.  The pads are located on top of two steel bars and 

both the pads and bars are longer than the bottom width of the marker.  Another 

elastomeric pad and steel bar are placed in the same manner on top of the marker at the 

center with a load at a rate of 5.0 mm (0.2 inch) per minute applied on it until the 

marker breaks.  It tests the longitudinal flexural strength of RRPMs.  Figure 12 

shows the configuration of longitudinal flexural tests.   
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FIGURE 12  ASTM longitudinal flexural test (3). 

Previous Study of Laboratory Tests 

Agrawal simulated five laboratory tests that could replicate the stress conditions during 

the tire-marker impact simulations using finite element computational techniques (2).  

These tests are ASTM compression test, ASTM longitudinal flexural test, reversed 

longitudinal flexural test, cylindrical test and offset test.  Based on the simulation 

results between the lab test model and the tire-marker impact model, Agrawal found 

that the ASTM compression test replicates the second stage of the tire-marker impact 

well while the ASTM longitudinal flexural test simulation does not produce the same 

pattern of stress inside markers as is resulted from the tire-marker impact simulation.  

This might be explained by the fact that the tire-marker impact was simulated on rigid 
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pavement where damage usually occurs on the top edges of markers while the 

longitudinal flexural test is designed to investigate the structural toughness across the 

mid-line of the bottom of markers (perpendicular to the traffic direction).  Such 

damage mode as split across the mid-bottom-line of markers was observed for some 

RRPM brands on asphalt pavement based on the field study conducted by Zhang, et al 

(17).  This again underlines the importance to study the tire-marker impact on flexible 

pavement.   

Agrawal also found that a test that could produce compressive stress on one 

retroreflective side of the marker while producing tensile stress in the other areas of the 

marker would be a good test to simulate the stages of the tire-marker impact where the 

tire ascends or descends the marker.  The offset compression test developed by 

Agrawal was such a test.  It was found that the offset compression test with a higher 

loading rate could replicate the first stage of the tire-marker impact well (2).   

One of the unsolved problems regarding Agrawal’s work on evaluating the 

laboratory tests is attributed to the absence of pavement properties in the tire-marker 

model.  As all the stress results from the simulated laboratory tests were compared 

with those from the tire-marker impact simulation on rigid pavement, it is questionable 

whether these tests can be applied to RRPMs to be installed on flexible pavement.  

Besides, different loading rates were not exercised in the experiment by Agrawal while 

Zhang, et al have found that loading rates should be an important factor in 

recommending laboratory testing procedures. 
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METHODOLOGY 

This research follows the path of the previous research, which is incorporated in the 

same research project as this one, utilizes finite element computational tools to 

simulate the tire-marker impact and laboratory testing set-up, and analyzes the 

tire-marker impact in an even more comprehensive perspective by taking flexible 

pavement into account.  Hence, this research is able to evaluate the existing 

laboratory tests thoroughly and recommend necessary improvements or new standards.  

The implementation of the finite element computational tool in this research involves 

three procedures: pre-processing, processing and post-processing.  Hypermesh is used 

to set up the finite element model, which is processed by LS-DYNA, and finally 

Hyperview is responsible for analyzing the simulation results (20, 21, 22).  The 

details of these finite element tools can be found in the previous research or research in 

other fields using these tools and will not be elaborated here. 

This section of the thesis primarily demonstrates the study design of this 

research.  It first introduces the previous work on finite element modeling of markers 

this research is based on as well as the original work on tire-marker impact simulation.  

Furthermore, the study design of the tire-marker impact analyses is described.  Finally, 

it explains how to evaluate the laboratory testing procedures. 

FINITE ELEMENT MODELING 

It is fundamental to build a finite element model before processing and analyzing it.  

This research not only utilizes the finite element model of tire-marker impact set up in 

the research project this thesis is based on, but also models flexible pavement in the 

current tire-marker impact model.  The next part will introduce the procedures of 
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setting-up these models. 

RRPM Models 

The finite element models of two RRPM brands evaluated in this research were built 

by the predecessors who also worked in the project this thesis is based on.  The 

pictures of the two RRPM brands, which are named as Type A and B in this research, 

are shown in Figures 13 and 14, respectively.  

 

FIGURE 13  RRPM type A. 

A 
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FIGURE 14  RRPM type B. 

The finite element models of the two marker brands were built to replicate the 

real markers both geometrically and structurally.  The real markers were dissected for 

better modeling their inner structures.  The marker models were constructed and 

meshed in Hypermesh, and the completed mesh of marker models of Type A and B are 

shown in Figures 15 and 16, respectively.  

 

FIGURE 15  RRPM type A model. 

B 
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FIGURE 16  RRPM type B model. 

One thing that needs attention here is that the geometry of RRPM B at the 

middle part of the non-lens side does not exactly replicate that of the real RRPM.  For 

real maker, there is a curve in the middle of the non-lens side instead of straight lines 

there on the meshed marker model.  Initially, the marker models were built without 

material properties.  The predecessor of this research then calibrated the material 

properties using an ASTM longitudinal flexural test both in finite element simulation 

and laboratory setup to correlate both the stress and strain results from the two 

approaches.  The material properties were then obtained and input into the tire-marker 

model which will be described in the next part.  The details of the calibration process 

and material properties of the markers can be found in the previous research (2, 4). 

Tire-Marker Impact Model 

The basic information of the preliminary tire-marker impact model was provided in the 

review of the state-of-the-art.  The existing tire-marker impact studied based on this 
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model is only valid for rigid pavement, which is a constraint to a comprehensive 

understanding of the tire-marker impact.  Therefore, the next part will describe how 

flexible pavement is built in the current finite element model.  

As was introduced in the review of the state-of-the-art, flexible pavement is 

structurally different from rigid pavement, and is usually composed of three layers, 

which are surface course, base course, and subgrade.  An optional sub-base layer may 

be constructed between base course and subgrade.  The surface course for flexible 

pavement mostly uses asphalt concrete, which is harder than the material used in base 

course.  Subgrade is actually the existing soil, which is the softest among the three 

layers. 

In order to model flexible pavement as closely as what it is in the real world, 

the researcher inquired some specialists working on flexible pavement in Texas 

Transportation Institute, and acquired some valuable information as well as common 

data they usually use to model flexible pavement in finite element analysis.  The 

thickness and material properties of an average flexible pavement are summarized in 

Table 1 according to the researchers at TTI.  The numbers in the parentheses are for 

flexible pavement on interstate highways with a large percentage of truck traffic.  

Later, the researcher will do a simple sensitivity analysis of pavement thickness 

regarding the critical locations and magnitudes of stress inside the markers during the 

tire-marker impact.  Besides, the results between the average flexible pavement and 

the flexible pavement on interstate highways will be compared as well. 
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TABLE 1  Pavement Profiles and Properties 

Layer Name Thickness (m) Mass Density ( 3kg/m ) Poisson Ratio Modulus (MPa) 

Surface 0.08 (0.20)* 2322 0.35 3000 (3000) 

Base 0.30 (0.30) 2162 0.35 150 (300) 

Subgrade 5.00 (5.00) 2001 0.35 50 (10) 

*The numbers in the parentheses are for flexible pavement on interstate highways with a large 

percentage of truck traffic. 

 

 

The material card for the three layers of flexible pavement is chosen to be 

elastic in the finite element modeling software of Hypermesh, although the 

elastic-plastic card should be more accurate in terms of the material characteristics of 

flexible pavement.  Because modeling elastic-plastic material is much more complex 

than modeling elastic material and requires comprehensive data input for the flexible 

pavement, it is not advised by the researchers at TTI.  Elastic Modulus is the key 

material property that determines the stiffness of the pavement layer and plays a more 

important role than density and Poisson ratio in finite element modeling.  The area of 

the pavement course should be large enough so that elastic deformation inside the 

pavement can be produced during the tire-marker impact. 

Taking all these issues into consideration, the researcher modeled three layers 

of pavement block to form the typical flexible pavement, according to the profiles and 

material properties listed in Table 1, to replace the rigid ground which was originally 

built in the model.  Hence, the tire-marker impact takes place on flexible pavement.  

The tire-marker impact model on flexible pavement is shown in Figure 17.  Later, the 

tire-marker impact analysis will be based on both this model and the original model 

designed on rigid pavement. 
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FIGURE 17  Tire-marker impact model with flexible pavement.  

TIRE-MARKER IMPACT ANALYSIS 

After the finite element model this research studies was introduced, this section of the 

methodology demonstrates the study design of the research which involves both 

tire-marker impact models with rigid and flexible pavement.  The study design 

explains how stresses and interface forces for markers are analyzed and compared 

between two pavement types.  Besides, it covers the evaluation of marker profiles 

based on the tire-marker impact model on rigid pavement.   

Stress 

There are two types of stress generated insides markers during the tire-marker impact, 

compressive and tensile stress, which are distributed differently and have different 

magnitudes as well.  As for finite element analysis, the common stress evaluated is 

Von Mises stress, which is a scalar function of the components of the stress tensor that 
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gives an estimation of the overall magnitude of the tensor according to the definition 

on the encyclopedia (23).  The mathematical equation of Von Mises stress is given as 

follows: 
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where σ1, σ2, and σ3 are the principal stress (23).  The finite element modeling 

software used in this research is able to evaluate all the three types of stress introduced 

above, Von Mises, compressive and tensile stress, and they are selected to be evaluated 

for the purpose of the analysis.   

First of all, the researcher will identify the critical locations and magnitudes of 

stress inside the markers during the tire-marker impact on flexible pavement.  The 

researcher will model and simulate multiple scenarios of tire-marker impact with the 

combination of all the base external factors on flexible pavement.  The Von Mises 

stress plots as well as the stress tensor plots generated from these simulations will be 

examined to identify the critical locations and magnitudes of stress inside the markers. 

Next, the effects of external factors, tire loading, tire speed, contact angle and 

contact location, on the critical Von Mises stress identified in the previous task will be 

examined on flexible pavement in the same way as the researchers did on rigid 

pavement.  Specifically, the researcher will study each external factor separately by 

varying the scenario of one external factor while keeping the others constant in the 

tire-marker impact simulation.  The trend of the critical Von Mises stress over 

different scenarios of each individual external factor will be plotted for both types of 

markers.  More details on how to evaluate the effects of external factors can be found 

in the research done by Zhang, et al (4).   

Furthermore, the compressive and tensile stress inside the markers will be 

chosen as measurement of effectiveness to compare the impact between rigid and 
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flexible pavement.  The reason why these two types of stress are chosen is because 

the compressive strength and tensile strength of the pavement differ significantly as 

compressive strength is much larger.  The two types of stress are also produced at 

different locations inside markers and cause different types of structural damage to 

RRPMs.  As was reviewed, compressive stress tends to damage the top edges and 

non-lens sides of markers, while tensile stress inclines to bend markers and cause 

fracture from the mid-bottom of markers.  On the other hand, marker damages caused 

by tensile stress are more frequently observed on flexible pavement, while 

compression-caused damages are more predominant on rigid pavement.  Therefore, it 

is essential to compare these two types of stress both qualitatively and quantitatively 

between rigid and flexible pavement. 

Specifically, the critical locations, patterns and magnitudes of compressive and 

tensile stress inside the markers will be compared.  Based on the tire-marker impact 

simulations on flexible pavement and the corresponding ones on rigid pavement, the 

researcher will examine the stress tensor plots from these simulations to compare the 

critical locations and patterns of compressive and tensile stress.  Furthermore, the 

magnitudes of the critical compressive and tensile stress at the same locations inside 

the markers will be averaged, respectively, to plot the comparison over the three stages 

of the tire-marker impact between the two types of pavement. 
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Interface Force 

The interface force studied in this research refers to the force produced between the 

marker base and pavement surface during the tire-marker impact.  There are two 

types of interface force evaluated in this research in terms of the direction of the force, 

which are x-direction interface force, also known as the shear force, and the z-direction 

interface force, which is perpendicular in nature.  Both of them can be obtained from 

the tire-marker impact simulation.  The shear force has been considered critical to the 

retention of PPRMs on the road.   

Similarly, this research will compare the interface forces between rigid and 

flexible pavement, as more RRPMs have been observed to be removed from the road 

surface by traffic on rigid pavement than on flexible pavement (17).  Such 

comparison is solely based on the magnitudes of interface forces, for the trend of 

forces over time during the tire-marker impact is pretty much the same between the 

two types of pavement.  By varying the external factors on both rigid and flexible 

pavement, the researcher will be able to obtain multiple scenarios of simulation, which 

makes the study more representative.  As for example, typical plots of shear (x 

direction) and perpendicular (z direction) interface forces between marker base and 

flexible pavement surface over time are shown in Figure 18.   

 

 

 

 



 37 

 

 

FIGURE 18  Shear and perpendicular interface force plots over time. 

The blue lines are the simulation results of interface forces over time, and the 

red lines are the plots after filtering the noises of the results.  The minus shear force 

indicates the opposite direction in which a tire travels, while the minus perpendicular 

force represents the downward force.  Based on the plots, there are two peak shear 
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forces which are produced in opposite directions.  The first one is generated at the 

point when the tire is about to ascend the marker, and the other one occurs when the 

tire is about to descend the marker.  The peak of the perpendicular force is produced 

approximately when the tire sits on top of the marker, which actually explains why the 

overall maximum Von Mises stress is produced at the second stage of the tire-marker 

impact, and which also demonstrates that the perpendicular force can be used to 

validate the credibility of the results of Von Mises stress comparison at the second 

stage of the impact. 

Marker Profile Study 

The profile of RRPMs has been regarded to affect marker durability.  So, it is 

necessary to study the effect of marker profile on the stresses inside markers during the 

impact using the existing tire-marker impact model.  The marker profile here is 

defined as the height, lens slope, length, and width of a marker.  The researcher varies 

these factors in the finite element model to find out how they affect the magnitudes of 

maximum Von Mises stress inside the markers during the impact.  

There is an issue associated with the modeling work – as the mesh of an 

individual marker is based on the whole geometry of the marker, a re-mesh is required 

whenever the shape of a marker is changed, which is very time-consuming.  So, the 

researcher decided to use another approach to fulfill the study, which is varying the 

scale of the marker in the directions of x, y and z in a coordinate system, to get the 

same effect of changing the profile of a marker while reducing the time burden to 

conduct the study.  The only limitation is that it is unable to study the marker height 

and lens slope separately as the scale variation in z direction will change the height and 

lens slope simultaneously.  The compromise nevertheless does not affect the results 
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the researcher expects to achieve.  Another issue which needs to be considered is that 

MUTCD requires a minimum height of RRPM to be 10 mm (0.4 in) (1).  For the sake 

of simplicity, the study is conducted only on rigid pavement.  The coordinate system 

of x, y and z in which a marker model locates is shown in Figure 19.   

 

FIGURE 19  RRPM type B in x, y, z coordinate system. 

LABORATORY TEST EVALUATION 

The laboratory test evaluation consists of two tasks.  One is to evaluate the existing 

standard laboratory tests which are the ASTM compression test and the longitudinal 

flexural test.  The other one is to recommend additional laboratory tests which could 

better simulate the tire-marker impact in some specific scenarios that are proved to be 

critical in this research.  The laboratory tests are built in Hypermesh and simulated by 

LS-DYNA as well.   

The evaluation of the ASTM laboratory tests and the recommended ones is 

conducted by comparing the tensor plots of compressive and tensile stress inside the 
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markers in the laboratory test simulation against the tire-marker impact simulation to 

see whether the simulated laboratory tests can generate the stress in the similar pattern 

and close magnitude as the simulated tire-marker impact does.  The researcher 

believes that it is better than comparing the Von Mises stress, because the tensor plots 

of compressive and tensile stress are more specific in describing the stress distribution 

and more precise in correlating to the tire-marker impact on both types of pavement.  

So, the criteria of selecting a qualified laboratory testing procedure rely on the 

capability of the test to produce the critical stress at the same place inside the markers 

and to produce the similar pattern of critical stress as well as an appropriate loading 

rate to approximate the magnitude of the critical stress generated from the designated 

tire-marker impact. 

Specifically, different laboratory tests have different weights of importance in 

terms of compressive and tensile stress.  Compressive stress should attract more 

attention in the ASTM compression test against the tire-marker impact simulation, 

while tensile stress should be a more critical measurement in the ASTM longitudinal 

flexural test.    The researcher considers it reasonable to weigh a measurement of 

effectiveness over another according to the nature of a laboratory test, and not a single 

test is expected to replicate the tire-marker impact completely.  Overall, compressive 

stress is an important measurement for tire-marker impact on both types of pavement 

as it is predominant inside markers during the impact in terms of the magnitude, and 

tensile stress might be more critical to the impact on flexible pavement, as was 

demonstrated by the unique damage type previously described.  

In addition, the tire-marker impact simulation used to compare with the 

laboratory test simulation consists of the external factors with specific values.  Base 

values are used for the external factors that are proved to be insignificant to the impact 

while the largest values are used for the external factors that are demonstrated to have 
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effects on the impact.  In this way, the laboratory tests can be examined to their limit 

for evaluating the field performance of RRPMs.  Different loading rates are tried in 

the laboratory tests until the best one that generates the approximate critical stress 

compared with the tire-marker impact is determined.  The researcher endeavors to 

differentiate the loading rates for RRPMs to be installed on different types of 

pavement. 
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RESULTS AND ANALYSIS 

The researcher ran a large number of simulations in LS-DYNA for the study design 

described in methodology part.  This section of the thesis presents the results of these 

simulations and the related analysis and discussions.  

TIRE-MARKER IMPACT ANALYSIS 

The researcher utilized the advantage of finite element simulation to investigate 

multiple scenarios of tire-marker impact based on the combination of four external 

factors defined previously for the study design, making the results of the study more 

representative.  The researcher is able to evaluate 43  scenarios of tire-marker impact 

simulation to the extreme extent with the combination of four variables each having 

three scenarios.  The configuration of these scenarios is shown in Table 2. 

TABLE 2  External Factors and Their Scenarios 

External Factors Base Value 1 Value 2 

Tire Loading (N) 22,200 13,300 31,100 

Tire Speed (m/s) 31.3 26.8 35.7 

Contact Angle (Degrees) 0 5 10 

Contact Location (mm offset from center) 0 25 51 

 

The values of tire loading and tire speed correspond to the values in English 

unit at 3000, 5000, 7000 lbs and 60, 70, 80 miles per hour, respectively.  The reasons 

for selecting these values are explained next.  For tire loading, 5000 lb was chosen as 

the base value because the federal government limits vehicle weights on Interstate 

highways to a maximum of 20,000 lb for a single axle, averaging 5000 lb for a single 
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truck tire (24).  Since the load may not be equally distributed among the four tires of 

an axle, 3000 and 7000 lbs were picked up as the lower and upper values.  For tire 

speed, 70 mph was chosen as the base value due to the speed limit on most Interstate 

highways and 60 and 80 mph were used as the lower and upper values. 

The entire process of tire-marker impact was categorized into three stages (2, 4).  

The first stage is defined as when the tire first contacts the front lens face of the marker 

and is about to ascend the marker.  The second stage represents the scenario when the 

tire stays on top of the marker.  At the third stage the tire is still in contact with the 

rear lens face of the marker and about to leave the marker.  Either the critical Von 

Mises stress, or critical compressive and tensile stress at each stage will be selected as 

the measurement of effectiveness for each simulation.  The following results and 

analysis are based on the evaluation of tire-marker impact in three stages. 

Tire-Marker Impact on Flexible Pavement 

The researcher modeled and simulated 9 scenarios of tire-marker impact with the 

combination of all the external factors with base values.  In simulation, the tire rolls 

over the markers in the same manner as it does on rigid pavement, but the markers tied 

with the pavement surface were found to sink at approximately 1 mm, which is 

reasonable as RRPMs on flexible pavement, to some extent, have sunk into the 

pavement over time (See Figure 8) (17).  Reviewing the Von Mises stress plots, the 

researcher found that the critical Von Mises stress was produced at the top edges of the 

markers, identical to the critical locations identified on rigid pavement.  Figures 20 

and 21 show the critical locations and magnitudes of Von Mises stress at the three 

stages of impact on flexible pavement for RRPM type A and B, respectively, which 

were both generated from the simulation consisting of all base external factors.
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FIGURE 20  Von Mises stress plot for RRPM type A. 
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FIGURE 21  Von Mises stress plot for RRPM type B. 
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The maximum Von Mises stresses in the first stage are 118.641 and 47.279 

MPa for RRPM type A and B, respectively.  In the second stage, the maximum Von 

Mises stresses for maker type A and B are 148.38 and 57.501 MPa, respectively.  In 

the third stage, the maximum Von Mises stresses for maker type A and B are 110.282 

and 59.866 MPa, respectively.  The reason why there is a large discrepancy between 

the results of two marker models is that the yield strength set for the material of these 

two marker models is significantly different. 

Reviewing the compressive and tensile stress inside the markers during those 

tire-marker impact simulations, the researcher found that when the tire was about to 

ascend the markers, tensile stress was produced all over the opposite side of the 

markers where the tire contacted the markers while compressive stress was generated 

at the top of the lenses and especially intense at the top edges of the markers.  The 

same pattern occurred when the tire was about to descend the markers.  When the tire 

sat on top of the markers, compressive stress was seen at the non-lens side of the top 

surface of the markers and especially intense at the top edges of the markers while 

tensile stress was found throughout the body of the markers and significant close to the 

mid-bottom of the markers.  In terms of the magnitude, compressive stress was 

predominant, but tensile stress was speculated to damage the inner structure of the 

markers more severely.  The typical tensor plots of compressive and tensile stress for 

RRPM type A and B are shown in Figures 22 and 23, based on the tire-marker impact 

simulation with all the base scenarios of external factors.  The compressive stress is 

represented by negative values and tensile stress by positive values.  
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FIGURE 22  Tensor plot for RRPM type A. 
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FIGURE 23  Tensor plot for RRPM type B. 
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The researcher then did a sensitivity analysis of pavement thickness regarding 

the critical locations and magnitudes of stress inside the markers during the impact.  

Besides the pavement thickness in Table 1, two other groups of pavement thickness 

were used to simulate the tire-marker impact.  The researcher found that the critical 

locations of stress are similar among the three groups of pavement thickness.  

Furthermore, the magnitudes of the critical stress are not much different.  Table 3 

shows the results of the sensitivity analysis. 

TABLE 3  Sensitivity Analysis of Pavement Thickness 

RRPM Type A  RRPM Type B 
Critical 

Stress (Mpa) 

Pavement Thickness 

(mm) 

Surface/Base/Subgrade Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3 

80/300/5000 118.641 148.38 110.282 47.279 57.501 51.882 

120/450/5000 118.989 149.774 112.131 47.647 57.613 52.219 

Von Mises  160/600/5000 119.023 150.403 113.076 47.648 57.775 52.868 

80/300/5000 113.281 136.107 89.286 41.814 52.356 46.717 

120/450/5000 113.706 137.295 92.013 41.963 52.45 46.931 Compressive 

160/600/5000 113.931 137.975 93.188 41.954 52.527 47.181 

80/300/5000 18.951 26.867 30.121 5.665 8.411 6.771 

120/450/5000 18.325 27.421 26.025 5.589 8.504 6.873 Tensile 

160/600/5000 18.441 27.764 24.605 5.628 8.575 7.074 

 

 

In addition, the researcher compared the critical locations and magnitudes of 

stress between the average flexible pavement and the flexible pavement on interstate 

highways whose pavement thickness and material properties are shown in Table 1.  

The critical locations of stress are the same between the two and the magnitudes of the 

critical stress are close as well, which are shown in Table 4.  All these demonstrate 

that the thickness and material properties of an average flexible pavement can be used 

in the tire-marker impact model to conduct the following research tasks as there is not 
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much variation in stress inside the markers between an average asphalt pavement and 

one for extremely heavy loads. 

TABLE 4  Sensitivity Analysis of Average and Interstate Flexible Pavement 

RRPM Type A  RRPM Type B Critical Stress 

(Mpa) 

Flexible 

Pavement  Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3 

Average 118.641 148.38 110.282 47.279 57.501 51.882 

Von Mises Interstate 119.145 150.815 113.316 47.662 57.871 52.36 

Average 113.281 136.107 89.286 41.814 52.356 46.717 
Compressive 

Interstate 114.125 138.264 93.35 41.995 52.727 47.185 

Average 18.951 26.867 30.121 5.665 8.411 6.771 
Tensile 

Interstate 19.886 22.871 27.321 5.621 8.669 7.121 

 

 

Next, the effects of the external factors, tire loading, tire speed, contact angle 

and contact location, on the critical Von Mises stress previously identified were 

examined on flexible pavement.  The researcher was able to study each external 

factor separately by varying the scenario of one external factor while keeping the 

others constant in the tire-marker impact simulation.  Figures 24 and 25 show the 

trend of the critical Von Mises stress over different scenarios of each individual 

external factor for marker type A and B, respectively. 
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FIGURE 24  Effect of external factors on Von Mises stress for RRPM type A. 
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Location Effect on Flexible Pavement
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FIGURE 24  Continued. 
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FIGURE 25  Effect of external factors on Von Mises stress for RRPM type B. 
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Angle Effect on Flexible Pavement
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FIGURE 25  Continued. 

Based on the trend plots for two marker models, the researcher found that the 

tire loading and contact location have consistent effects on Von Mises stress during the 

impact on flexible pavement.  In addition, contact angle has some effect on the stress 

for marker type A, but such effect is inconsistent for marker type B.  Tire speed does 

not have consistent effect on Von Mises stress for both types of marker.  This 

conclusion is in accordance with what was previously reached by researchers in 

evaluating the external factors on rigid pavement.  Therefore, loading and contact 

location should be considered as important factors when developing a laboratory test.  
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More detailed comparisons and discussions between two pavement types are provided 

in the next section. 

Comparison between Rigid and Flexible Pavement 

The critical locations and magnitudes of Von Mises stress as well as compressive and 

tensile stresses were compared between tire-marker impact on rigid and flexible 

pavement.  Based on the Von Mises stress plots in Figures 20 and 21, the critical 

locations of Von Mises stress inside the markers are almost identical between the two 

types of pavement in that they are all located at the top edges of the markers.  

However, in terms of the magnitude of critical Von Mises stress at those locations, it is 

about 10% larger on rigid pavement than on flexible pavement.  Figures 26 and 27 

show the comparison of the average magnitudes of critical Von Mises stress based on 

the 9 scenarios of simulation for marker type A and B, respectively. 
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FIGURE 26  Von Mises stress comparison for RRPM type A.    
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Von Mises Stress Comparison
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FIGURE 27  Von Mises stress comparison for RRPM type B. 

 

Examining the stress tensor plots in Figure 22 and 23, the researcher found that 

the critical locations of compressive stress inside the markers are the same on two 

types of pavement, both are at the top edges of the markers, but the average magnitude 

of compressive stress at those critical locations is about 11% larger on rigid pavement 

than on flexible pavement.  Figures 28 and 29 show the comparison of the average 

magnitudes of critical compressive stress based on the 9 scenarios of simulation for 

marker type A and B, respectively. 
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Compressive Stress Comparison
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FIGURE 28  Compressive stress comparison for RRPM type A. 
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FIGURE 29  Compressive stress comparison for RRPM type B. 

As for tensile stress, it is generally distributed in the same way on both types of 

pavement.  However, for RRPM A, the patterns of the critical tensile stress are 

different between the two types of pavement based on the side view of stress tensor 

plots from the same stage of the simulation, which is shown in Figure 30.  But for 

RRPM B, the patterns of the critical tensile stress look similar, shown in Figure 31.   
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FIGURE 30  Tensile stress pattern comparison for RRPM type A. 

Tire-marker impact on rigid pavement 

Tire-marker impact on flexible pavement 
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FIGURE 31  Tensile stress pattern comparison for RRPM type B. 

Tire-marker impact on rigid pavement 

Tire-marker impact on flexible pavement 
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For marker type A, the critical tensile stress scatters inside the marker on rigid 

pavement while on flexible pavement it is generated from the mid-bottom of the 

marker and going upward with certain angle consistently.  The average magnitudes of 

this group of critical tensile stress are not significantly different between rigid and 

flexible pavement for both types of markers during the first and second stage of the 

impact.  However, the critical tensile stress during the third stage of the impact on 

flexible pavement is significantly larger than that on rigid pavement.  Nevertheless, 

such difference is slight for marker type B.  Figures 32 and 33 show the comparison 

of the average magnitudes of the critical tensile stress based on the simulations for 

marker type A and B, respectively.  
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FIGURE 32  Tensile stress comparison for RRPM type A. 



 60 

Tensile Stress Comparison
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FIGURE 33  Tensile stress comparison for RRPM type B. 

Based on the results and plots above, it is evident that there tends to be a larger 

magnitude of critical Von Mises stress at the top edges of the markers during the 

tire-marker impact on rigid pavement than on flexible pavement, and the critical 

compressive stress, which is predominant in terms of the magnitude compared to the 

critical tensile stress, demonstrates this relationship as well.  Such results are expected 

by the researcher as the field study conducted by Zhang, et al shows that RRPMs on 

rigid pavement have more severe damages at the top edges, upper lens, and the 

non-lens sides, which are caused by compressive stress, than those on flexible 

pavement at the same test deck (17). 

On the other hand, the side view of stress tenor plots for marker type A 

demonstrates that the patterns of the critical tensile stress inside the markers are 

different between the two types of pavement although the general distribution of 

tensile stress is similar.  For the impact on rigid pavement, the critical tensile stress 

scatters in the body of the markers, while the critical tensile stress is produced from the 

mid-bottom of the markers on flexible pavement.  But for marker type B, the critical 

tensile stress is generated from the mid-bottom of the markers on both types of 
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pavement.  Furthermore, the magnitude of the critical tensile stress during the third 

stage of the impact on flexible pavement is larger than that on rigid pavement, as was 

proved by both types of makers, although such difference was considered to be 

insignificant for marker type B.  In fact, the tensile stress for marker type B is 

relatively small in magnitude, which might be a reason for the slight difference 

between two types of pavement.  Overall, it is supportive to the field observation at 

the test deck on flexible pavement that some RRPMs have fracture across the 

mid-bottom of the markers (See Figure 9), which is resulted from the critical tensile 

stress shown in Figures 30 and 31 for the impact on flexible pavement, and such 

structural failure was rarely observed at any test deck on rigid pavement. 

The finding that different magnitudes of critical compressive and tensile stress 

exist inside the markers between rigid and flexible pavement point out that different 

standards on loading rate should be implemented in laboratory tests designed to test 

RRPMs to be installed on the two types of pavement.  Furthermore, a laboratory test 

specialized in examining tensile stress is necessary for RRPMs on both types of 

pavement, but more critical to RRPMs on flexible pavement, while a test that is good 

at testing compressive stress should be important to RRPMs on both types of 

pavement. 

Interface Force Comparison 

Forty-five scenarios of tire-marker impact simulation were set up and run by the 

researcher on both types of pavement.  They are combined with all the scenarios of 

external factors except for the scenarios having contact angle and offset at the same 

time. After obtaining all the results of peak forces in x and z direction, the sample 

means were used to examine the relationship between the peak interface forces on rigid 
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and flexible pavement.  The comparison of the sample means of interface forces in x 

and z direction (Unit: Newton) between two types of pavement is shown in Table 5. 

TABLE 5  Comparison of Interface Forces between Two Types of Pavement 

Interface Forces (RRPM A) Interface Forces (RRPM B) 

 Average Peak Force (N) x(+) x(-) z x(+) x(-) z 

Rigid Pavement 4656  2550  20536  3117  1753  19976  

Flexible Pavement 4244  1718  18886  2821  1438  18530  

 

 

In addition to this comparison, the researcher also plotted the interface forces 

over the entire impact process on both types of pavement simultaneously for marker 

type A and B, respectively, which are shown in Figures 34 and 35.  The blue lines 

represent results on rigid pavement, while red lines are for flexible pavement.  It is 

evident that the interface forces between markers and pavement surface on rigid 

pavement are statistically larger than those on flexible pavement in both x and z 

direction.  The result of perpendicular interface force (z direction) further proves the 

credibility of the comparison of Von Mises stress at the second stage of the impact 

between the two types of pavement.  Furthermore, the researcher believed that 

RRPMs on flexible pavement should undergo less shear interface force (x direction) 

than those on rigid pavement, as can be explained by the fact that RRPMs on flexible 

pavement have sunk into the pavement more or less over a period of time, and was also 

supported by the field study conducted by Zhang, et al who found that much more 

RRPMs had been removed by traffic on rigid pavement than on flexible pavement over 

time at the same test deck (17).  Therefore, the execution of improved procedure or 

the use of stronger binding material to install RRPMs on rigid pavement, especially at 
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places where traffic volume or truck percentage is high should be attached with 

importance. 

 

 

FIGURE 34  Comparison of the magnitudes of interface forces between the two 

types of pavement for RRPM type A. 
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FIGURE 35  Comparison of the magnitudes of interface forces between the two 

types of pavement for RRPM type B. 
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Marker Profile Study 

By varying the scale of the marker in z, x and y direction, the researcher got different 

profiles of the two marker models.  All the marker profiles meet the minimum height 

of 10 mm (0.4 in) required by MUTCD.  Tables 6 and 7 show the profiles of maker 

model A and B in commensurate with the scales. 

TABLE 6  RRPM Type A Profiles (Unit: mm) 

RRPM A 

Direction Scale 

height 

(z) 

length 

(x) 

width 

(y) upper x upper y 

slope 

(degree) 

0.8 12.2 74.997 96 45 70 39  

0.9 13.725 74.997 96 45 70 42  

1 15.25 74.997 96 45 70 45  

1.1 16.775 74.997 96 45 70 48  

Z 1.2 18.3 74.997 96 45 70 51  

0.8 15.25 59.9976 96 36 70 52  

0.9 15.25 67.4973 96 40.5 70 48  

1 15.25 74.997 96 45 70 45  

1.1 15.25 82.4967 96 49.5 70 43  

X 1.2 15.25 89.9964 96 54 70 40  

0.8 15.25 74.997 76.8 45 56 45  

0.9 15.25 74.997 86.4 45 63 45  

1 15.25 74.997 96 45 70 45  

1.1 15.25 74.997 105.6 45 77 45  

Y 1.2 15.25 74.997 115.2 45 84 45  
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TABLE 7  RRPM Type B Profiles (Unit: mm) 

RRPM B 

Direction Scale 

height 

(z) 

length 

(x) 

width 

(y) upper x upper y slope  

0.8 10.8 71 95 38 83 33  

0.9 12.15 71 95 38 83 36  

1 13.5 71 95 38 83 39  

1.1 14.85 71 95 38 83 42  

Z 1.2 16.2 71 95 38 83 44  

0.8 13.5 56.8 95 30.4 83 46  

0.9 13.5 63.9 95 34.2 83 42  

1 13.5 71 95 38 83 39  

1.1 13.5 78.1 95 41.8 83 37  

X 1.2 13.5 85.2 95 45.6 83 34  

0.8 13.5 71 76 38 66.4 39  

0.9 13.5 71 85.5 38 74.7 39  

1 13.5 71 95 38 83 39  

1.1 13.5 71 104.5 38 91.3 39  

Y 1.2 13.5 71 114 38 99.6 39  

 

 

After running the base tire-marker impact simulation on rigid pavement with 

different scenarios of marker profile, the researcher got the maximum Von Mises stress 

generated at the top edges of the markers for each profile scenario.  The researcher 

was able to investigate the effect of marker height combined with lens slope (z 

direction scale), marker length combined with lens slope (x direction), and marker 

width (y direction scale) on the maximum Von Mises stress.  Figure 36 and 37 show 

such effect for marker type A and B, respectively. 
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FIGURE 36  Effect of profile scale on Von Mises stress for RRPM type A. 
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FIGURE 37  Effect of profile scale on Von Mises stress for RRPM type B. 

Based on the plots, the variation of marker scale in z direction has the most 

consistent effect on the stress inside the markers during the tire-marker impact.  As 

the marker scale in z direction increases, the maximum Von Mises stress increases 

consistently for both types of markers, indicating that the increase of marker height and 
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lens slope will result in more stress inside the markers during the tire-marker impact.  

No consistent effect was found in terms of the variation of marker scale in x direction 

(marker length and lens slope) for both types of markers.  As for the scale in y 

direction (marker width), the result from marker type A shows that increasing the 

width of marker will cause more stress inside the marker, which however is not 

reflected in the result for marker type B.  Generally, the marker height and lens slope 

are more critical to the durability of markers, and from this perspective it is better to 

have RRPMs designed with height and lens slope as small as possible.  However, a 

minimum marker height is required by MUTCD, but lens slope can be small to some 

extent as the new technology allows the lens with small slope to provide adequate 

retroreflectivity to the drivers. 

LABORATORY TEST EVALUATION 

Four specific laboratory tests were evaluated in this research: two of them are the 

ASTM compression test and longitudinal flexural test, and the other two are the 

additionally recommended ones, offset test and location offset test, which were 

developed based on the tire-marker impact study conducted in this research.  The 

criteria for selecting a laboratory testing procedure consist of two things.  One is that 

the test should be able to replicate any stage of the tire-marker impact on either type of 

pavement in terms of the critical locations of the stress and the pattern of the critical 

stress, while the other one is that the least loading rate being able to produce the stress 

at those critical locations within 50% of the range larger than that generated from the 

designated tire-marker impact will be selected.  The results of the evaluation are 

presented in the next part. 
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ASTM Compression Test 

The ASTM compression test was simulated and evaluated quantitatively against the 

second stage of the tire-marker impact simulation with tire loading of 31,100 N, tire 

speed of 31.3 m/s and without contact angle and offset.  The simulated setup of the 

test is shown in Figure 38.  

 

FIGURE 38  Simulated ASTM compression test. 

Based on the tensor plots of compressive stress, the ASTM compression test is 

able to produce maximum compressive stress at the four corners of the upper surface 

of the marker, similar to the critical location of compressive stress generated by the 

tire-marker impact.  So, as long as the magnitudes of compressive stress are close 

between the test and tire-marker impact, ASTM compression test is good at testing the 
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compressive stresses inside the markers during the tire-marker impact.  The tensor 

plots of the stresses inside the markers for the test in a loading rate of 4.0 mm/min are 

shown in Figure 39 for maker type A and B, respectively.   

 

 

FIGURE 39  Stress tensor plots for RRPM A and B in ASTM compression test. 

Different loading rates were tried for the test.  The magnitudes of the critical 

compressive and tensile stress in accordance with the loading rates of the test as well 

A 

B 
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as those from the designated tire-marker impact simulation are presented in Table 8.  

Only compressive stress was evaluated to determine the appropriate loading rate.  

Based on the criteria of selecting a loading rate, the loading rates of 3.0 and 4.0 

mm/min are selected for ASTM compression test for RRPMs to be installed on flexible 

and rigid pavement, respectively. 

TABLE 8  Evaluation of ASTM Compression Test in Different Loading Rates 

Laboratory Test ASTM Compression Test Tire-Marker Impact 

Loading Rate (mm/min) 2.5 3.0 4.0 5.0 Flexible Rigid 

RRPM Type A 105.183 129.785 176.042 184.736 124.131 150.201 Compressive 

Stress (Mpa) RRPM Type B 55.258 57.749 63.632 64.936 56.954 63.558 

RRPM Type A 25.88 30.811 37.39 45.738 32.598 25.141 Tensile Stress 

(Mpa) RRPM Type B 13.187 16.886 22.587 33.111 8.098 9.049 

 

ASTM Longitudinal Flexural Test 

The ASTM longitudinal flexural test was simulated and evaluated quantitatively 

against the second or third stage of the tire-marker impact simulation with tire loading 

of 31,100 N, tire speed of 31.3 m/s and without contact angle and offset.  The 

simulated setup of the test is shown in Figure 40. 
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FIGURE 40  Simulated ASTM longitudinal flexural test. 

The test generates a similar pattern of tensile stress inside the markers 

compared to that produced during the entire process of the tire-marker impact on 

flexible pavement.  A significant group of tensile stress is generated from the marker 

base and approaching upward inside the markers, which is considered critical in this 

study.  The side view of the stress tensor plots for marker type A and B in the ASTM 

longitudinal flexural test with a loading rate of 2.5 mm/min is shown in Figure 41. 
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FIGURE 41  Side view of the stress tensor plots for RRPM A and B in ASTM 

longitudinal flexural test. 

After executing different loading rates, the researcher determined that a loading 

rate of 2.5 mm/min was selected for the ASTM longitudinal flexural test for RRPMs to 

be installed on both types of pavement, as a loading rate of 5.0 mm/min might be too 

large for the RRPMs.  The magnitudes of the critical tensile and compressive stress 

along with the corresponding loading rates of the test as well as the critical stress from 

A 

B 
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the designated tire-marker impact simulation are presented in Table 9.  Only tensile 

stress was evaluated to determine the suitable loading rate. 

TABLE 9  Evaluation of ASTM Longitudinal Flexural Test in Different Loading 

Rates 

Laboratory Test  ASTM Longitudinal Flexural Test Tire-Marker Impact 

Loading Rate (mm/min) 2.5  5.0  Flexible Rigid 

RRPM Type A 36.664 87.441 32.598 25.141 Tensile Stress 

(Mpa) RRPM Type B 16.804 35.21 8.098 9.049 

RRPM Type A 84.323 166.926 124.131 150.201 Compressive 

Stress (Mpa) RRPM Type B 33.55 55.088 56.954 63.558 

 

Offset Test 

The offset test was first developed by Agrawal and used to simulate the first or third 

stage of a tire-marker impact (2).  The researcher re-evaluated it against the first or 

third stage of the tire-marker impact simulation with tire loading of 31,100 N, tire 

speed of 31.3 m/s and without contact angle and offset.  The simulated setup of the 

test is shown in Figure 42. 
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FIGURE 42  Simulated offset test. 

Based on the tensor plots of compressive and tensile stresses inside the markers, 

the test is able to replicate the first or third stage of tire-marker impact in that 

maximum compressive stress is generated at the two upper corners of the marker 

where the steel bar contacts the marker while a significant amount of tensile stress is 

produced in the rest part of the marker and a lot of them going up from the bottom of 

the marker is evaluated in this study.  Figures 43 and 44 show an isolated and a side 

view of the tensor plots of the stresses inside marker type A and B during the test in a 

loading rate of 4.0 mm/min. 
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FIGURE 43  Stress tensor plots for RRPM A and B in offset test. 

A 

B 



 78 

 

 

FIGURE 44  Side view of stress tensor plots for RRPM A and B in offset test. 

By varying the loading rate in the test, the researcher compared both the critical 

compressive stress and tensile stress introduced above with those generated from the 

designated tire-marker impact.  The comparison is shown in Table 10.  Based on the 

evaluation criteria, a loading rate of 4.0 mm/min best satisfies the criteria for both 

compressive and tensile stress, and thus is selected as the loading rate for the offset test 

for RRPMs to be installed on both types of pavement.   

A 

B 
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TABLE 10  Evaluation of Offset Test in Different Loading Rates 

Laboratory Test  Offset Test Tire-Marker Impact 

Loading Rate (mm/min) 3.0  4.0  5.0  Flexible Rigid 

RRPM Type A 65.082 134.724 146.935 111.878 131.998 
Compressive Stress (Mpa) 

RRPM Type B 33.106 56.472 62.807 51.151 55.064 

RRPM Type A 12.853 34.707 50.621 32.598 18.618 
Tensile Stress (Mpa) 

RRPM Type B 10.788 17.563 22.204 7.454 7.247 

 

Location Offset Test 

The location offset test was designed to deal with high compressive stress generated 

from the tire-marker impact scenario in which a tire hits the marker with offset rather 

than right in the middle.  So, the test was evaluated against the second stage of the 

tire-marker impact simulation with tire loading of 31,100 N, tire speed of 31.3 m/s, 

contact offset of 51 mm and without contact angle.  The simulated setup of the test is 

shown in Figure 45. 
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FIGURE 45  Simulated location offset test. 

The test produces critical compressive stress at the same two top edges of the 

markers where maximum compressive stress is produced as a tire sits on top of the 

marker with offset, indicating it is a potentially good test for the designed purpose.  

The tensor plots of stress inside the markers during the test at a loading rate of 4.0 

mm/min are shown in Figure 46. 
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FIGURE 46  Stress tensor plots for RRPM A and B in location offset test. 

The magnitudes of the critical compressive and tensile stress commensurate 

with the loading rates of the test as well as those from the designated tire-marker 

impact simulation are presented in Table 11.  Only compressive stress was evaluated 

to determine the appropriate loading rate.  The results demonstrate that the loading 

rates of 4.0 and 5.0 mm/min should be used in the location offset test to examine the 

performance of RRPMs on flexible and rigid pavement, respectively. 

A 

B 
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TABLE 11  Evaluation of Location Offset Test in Different Loading Rates 

Laboratory Test Location Offset Test Tire-Marker Impact 

Loading Rate (mm/min) 3.0  4.0  5.0  Flexible Rigid 

RRPM Type A 117.917 200.238 223.765 186.384 222.884 Compressive Stress 

(Mpa) RRPM Type B 68.302 85.325 88.149 75.82 86.464 

RRPM Type A 29.104 37.462 40.562 33.959 26.249 
Tensile Stress (Mpa) 

RRPM Type B 15.277 23.858 28.677 10.262 10.595 

 

Laboratory Test Summary 

Based on the evaluation of the four laboratory tests, the researcher believes that each of 

them is capable of replicating the tire-marker impact in certain perspectives, but none 

of them is able to replicate the tire-marker impact comprehensively.  Therefore, these 

tests should be used together to test the performance of RRPMs in the field.  

Specifically, ASTM compression test is good at replicating the second stage of the 

tire-marker impact in terms of compressive stress.  ASTM longitudinal flexural test is 

capable of replicating all three stages of the impact in terms of tensile stress.  Offset 

test is able to replicate the distribution of both compressive and tensile stress inside the 

markers at the first and third stage of the impact.  Location offset test replicates the 

critical compressive stress produced at the second stage of the impact with contact 

offset.  On the other hand, ASTM compression test, offset test and location offset test 

are suitable to RRPMs on both types of pavement, while ASTM longitudinal flexural 

test is more appropriate for RRPMs on flexible pavement than on rigid pavement as it 

generates tensile stress in the pattern that is more like what is produced inside the 

markers during the impact on flexible pavement.  Furthermore, the loading rates for 

some laboratory tests can be differentiated for RRPMs on rigid and flexible pavement.  

The summary of these laboratory tests is shown in Table 12. 
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TABLE 12  Laboratory Test Summary 

Tire-Marker Impact 

Stage 1 Stage 2 Stage 3 Laboratory Tests  

Rigid  Flexible Rigid  Flexible Rigid  Flexible 

ASTM Compression N/A N/A 4.0  3.0  N/A N/A 

 ASTM Flexural 2.5  2.5  2.5  2.5  2.5  2.5  

Offset 4.0  4.0  N/A N/A 4.0  4.0  

Loading 

Rates 

(mm/min) 
Location Offset N/A N/A 5.0  4.0  N/A N/A 
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SUMMARY AND FUTURE WORK 

The researcher conducted a comprehensive study of tire-marker impact by 

investigating the impact on flexible pavement and comparing it with that on rigid 

pavement using the finite element computational tools.  First, the critical locations 

and magnitudes of the stress inside the markers during the tire-marker impact on 

flexible pavement were identified.  The researcher then analyzed the effect of various 

external factors on the Von Mises stress inside the markers during the impact on 

flexible pavement.  This work along with the previous research on the tire-marker 

impact on rigid pavement established the basis for a thorough evaluation of the 

laboratory tests and pointed out some critical aspects a good test should take into 

consideration.  Furthermore, the researcher compared the tire-marker impact on the 

two types of pavement in terms of the patterns and magnitudes of the stress inside the 

markers during the impact.  Based on the comparison and field observation, the 

researcher was able to evaluate the individual laboratory tests more specifically and 

distinguish the laboratory testing procedures and standards designed for RRPMs to be 

installed on rigid and flexible pavement, i.e. the suitability and the specific loading rate 

of a laboratory test. 

In addition, the researcher conducted two separate studies of RRPMs which are 

not related to developing laboratory tests.  First, the marker-pavement interface forces 

on both types of pavement were studied to demonstrate the relationship between the 

shear forces generated on rigid and flexible pavement.  In addition, the researcher 

examined the effects of marker profile on the Von Mises stress inside the markers 

during the tire-marker impact on rigid pavement. 

The next part summarizes the findings from these studies, the limitations of this 

research, and the future work to extend and improve this research. 
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FINDINGS 

The major findings from the study of tire-marker impact on flexible pavement are the 

following: 

• The critical Von Mises stress is produced at the top edges of the markers, which 

is identical to what was found on rigid pavement, but the magnitude of the 

critical Von Mises stress on rigid pavement is about 10 percent larger than that 

on flexible pavement for all the three stages of impact; 

• When the tire is about to ascend or descend the markers, tensile stress is 

produced all over the other side of the markers and is especially intense from 

the mid-bottom of the markers, while compressive stress is generated at the top 

of the lens and especially intense at the top edges of the markers where the tire 

contacts the markers.  When the tire sits on top of the markers, the critical 

compressive stress is seen at the non-lens side of the top surface as well as the 

top edges of the markers, while tensile stress is found throughout the markers 

and especially significant from the mid-bottom of the markers.  In terms of the 

magnitude, compressive stress is predominant; 

• The critical locations of compressive stress are at the top edges of the markers, 

identical to what was found for markers on rigid pavement, but the magnitude 

of the critical compressive stress on rigid pavement is approximately 11 percent 

larger than that on flexible pavement for all the three stages of impact.  

Furthermore, the patterns of the critical tensile stress are different for RRPM A 

between the two types of pavement in spite of a similar general distribution.  

The magnitude of the critical tensile stress at the third stage of impact is larger 

on flexible pavement than on rigid pavement, and such difference is significant 

for RRPM A; 
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• Tire loading and contact location have consistent effects on the stress inside the 

markers during the impact on flexible pavement.  However, tire speed and 

contact angle do not have consistent effects on the stress for both types of 

markers.  This conclusion is in agreement with what was previously reached 

on rigid pavement, demonstrating that loading rate and contact location should 

be taken into consideration when developing a laboratory test. 

 

The study of interface forces and marker profile demonstrates the following: 

• Both the shear and perpendicular interface forces generated from the 

tire-marker impact are larger on rigid pavement than on flexible pavement, 

indicating RRPMs on rigid pavement are more likely to be removed by traffic 

than those on flexible pavement if the same bitumen adhesive is used.  This 

conclusion is validated in the field deck study by Zhang et al.  

• The increase of marker height and lens slope will result in more critical stress 

inside the markers during the tire-marker impact while the variation of marker 

scale in the directions of marker length and width does not have consistent 

effect on the stress inside the markers. 

 

The evaluation of ASTM and additionally developed laboratory tests reveals the 

following conclusions: 

• ASTM compression test is good at replicating the second stage of the 

tire-marker impact in terms of compressive stress.  ASTM longitudinal 

flexural test is capable of replicating all three stages of the impact in terms of 

tensile stress.  Offset test is able to replicate the first and third stage of the 

impact in terms of both compressive and tensile stress.  Location offset test 

replicates the critical compressive stress produced at the second stage of the 
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impact with contact offset; 

• ASTM compression test, offset test and location offset test are suitable to 

RRPMs on both types of pavement, while ASTM longitudinal flexural test is 

necessary for both but more critical to RRPMs on flexible pavement than on 

rigid pavement; 

• Each of the four tests is capable of replicating the tire-marker impact in certain 

perspectives, but none of them is able to replicate the tire-marker impact 

comprehensively.  So, these tests should be used together to test the 

performance of RRPMs. 

LIMITATIONS 

The limitations of this research include the following: 

• The material properties for the RRPMs may not be perfectly accurate as they 

were not able to be obtained from an appropriate laboratory testing procedure 

directly.  The values of material properties used in the models were calibrated 

ones from initial values from the manufacturer and online database, and the 

calibration always involves inaccuracy of some degree.  

• The researcher modeled the flexible pavement using elastic material with a 

limited range of material properties, i.e. Modulus, Mass Density and Poisson 

Ratio.  The elastic-plastic characteristics of the asphalt materials were not 

investigated.  Besides, the Modulus values used for the pavement layers are 

common values, and were not calibrated in this research.  All of these might 

cause inaccuracy in the results; 

• The effect of repetitive impact can not be reflected in the current tire-marker 

impact model.  In fact, repetitive impact may lead to marker fatigue failure; 



 88 

• The current tire-marker impact model does not include adhesive material 

between marker and pavement surface, which might affect the conclusion that 

RRPMs on rigid pavement will have more severe retention problem than on 

flexible pavement, as different adhesive material is typically used on the two 

types of pavement; 

• The marker profile was varied in scale, so the researcher was not able to study 

the marker height, length and lens slope separately, nor was he able to find out 

their individual effect on the stress inside the markers; 

• The elastomeric pads were not modeled in the setup of the laboratory tests 

simulated in this research, and ASTM laboratory testing standards actually 

consist of elastomeric pads. 

FUTURE WORK 

The future work of this research can be carried out toward these areas: 

• It is necessary to calibrate the RRPM model based on the material properties 

obtained from an appropriate laboratory testing procedure; 

• The surface layer of the flexible pavement can be modeled with elastic-plastic 

material, which is more representative regarding the characteristics of the 

surface pavement;   

• It would be meaningful to model repetitive impact in the current tire-marker 

impact model, as RRPM fatigue is an issue worth some research efforts; 

• The effect of tire pressure on the stress inside markers was not studied in this 

research, and it is another external factor that might affect the tire-marker 

impact; 

• It would be interesting to model a car tire in the tire-marker impact model so 
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that the extent of the impact on the markers can be compared between truck tire 

and car tire; 

• More laboratory testing procedures should be developed and evaluated based 

on the tire-marker impact analysis from this research as well as the future work 

based on this one.   
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