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ABSTRACT 
 

Multi-Layer Diffusion Approximation for Photon Transport in Biological Tissue.  

(August 2007) 

Joseph Hollmann, B.S., Northeastern University 

Chair of Advisory Committee:  Dr. L. V. Wang 

A method for improving the accuracy of the optical diffusion theory for a multi-layer 

scattering medium is presented.  An infinitesimally narrow incident light beam is 

replaced by multiple isotropic point sources of different strengths that are placed in the 

scattering medium along the incident beam.  The multiple sources are then used to 

develop a multi-layer diffusion theory.  Diffuse reflectance is then computed using the 

multi-layer diffusion theory and compared with accurate data computed by the Monte 

Carlo method.  This multi-source method is found to be significantly more accurate than 

the previous single-source method.  The appendix to this thesis also shows the derivation 

of the extrapolated boundary condition.  This boundary condition is utilized to solve for 

the discontinuity that occurs at the tissue-ambient medium interface.  The boundary 

conditions for common index of refraction mismatches are solved for and listed in a 

table. 
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INTRODUCTION: BACKGROUND 
 

Characterizing the spectral and spatial properties of biological tissue can yield 

information about its physiological parameters.1  These physiological properties, in turn, 

can be used to monitor tissue metabolic status or diagnose disease such as cancer.  Since 

light interacts with tissue at a sub-cellular level, changes in these interactions can indicate 

the presence of cancer or other diseases.  Dermatologists have acknowledged the 

importance of optical absorption in analyzing skin lesions by including color ABCD 

(Asymmetry, Border, Color and Dimension) method for skin cancer diagnosis.2  This 

method is used to qualitatively characterize a lesion based on parameters known to be 

correlated to skin cancer.   

However this is a qualitative method of diagnosis and can vary from doctor to 

doctor.  Also, this method is used as a screening technique to identify suspicious lesions. 

After the initial screening, the gold standard for testing a suspicious lesion is a biopsy.  

This requires a portion of the lesion to be removed and sent off to a lab to be analyzed; a 

process that can take weeks.  There is also a practical limit to the maximum number of 

biopsies that can be collected from a patient with multiple suspicious lesions.  This can 

lead to sites identified through the ABCD method as possibly cancerous to go untested.  

There is also the concern of disfiguring scars associated with the procedure. 

However, with the advent of the field of tissue optics, there is an interest in 

quantifying the spectral and spatial properties of tissue and their correlation to skin 

cancer.  This way the detection of skin cancer can be non-invasively and accurately  

 
______________ 
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accomplished by optically identifying indicators of cancer.  However, this endeavor is 

complicated by the fact photons undergo a large number of scattering events while 

propagating through tissue.  Another confounding factor is tissue can be layered with the 

tissue of interest buried below another layer.  

 

1.1. Current Knowledge 

The radiative transport equation describes the propagation of light through a turbid 

medium such as tissue assuming its polarization and coherence can be ignored.  However, 

a general solution is difficult to obtain so the diffusion approximation to the radiative 

transport equation is often employed.  The resulting diffusion equation is most commonly 

used with simple boundary conditions such as a semi-infinite, turbid medium with 

homogenous optical properties.  However, fitting this model to measured diffuse 

reflectance from tissue with a layered structure can return false optical properties3 and 

hence provide a misleading diagnosis of the tissue’s health or metabolic activity.   

A solution to the diffusion equation for a two-layer medium has been proposed 

but stipulates a single equivalent point source (to be discussed below) is located within 

the first layer; which minimizes the influence of a secondary layer on the resulting 

diffusely reflected signal.  This stipulation can restrict the situations in which the current 

two-layer diffusion equation can be accurately utilized. 
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2. THEORY 

2.1  Setup 

The problem of interest has an infinitesimally narrow, collimated light beam that is 

incident perpendicularly upon the surface of the tissue.  The coordinate system is set up 

so the origin is located at the point where the beam enters the medium; its z+ axis points 

down.  The incident beam is replaced by an equivalent isotropic point source in each 

layer of the turbid medium (to be discussed below).  The ambient and turbid media are 

assumed to have matched indices of reflection.  The spatially resolved, diffusely reflected 

signal from the medium is collected.  

 

2.2  Semi-infinite Medium 

Light transport through tissue can be described using the scattering (µs) and absorption 

coefficients (µa) and the anisotropy factor (g).  The coefficients, µs and µa, describe the 

probabilities of scattering and absorption per unit infinitesimal length, respectively.  The 

anisotropy factor is the mean cosine of the scattering angle4.  Most biological tissue is 

highly forward scattering ( 8.>g ).  The anisotropic dependent scattering coefficient of 

the medium can be replaced by an equivalent isotropic transport or reduced scattering 

coefficient, given as )1(' gss −= µµ , in the diffusion regime5.    

In general, tissue has a high reduced scattering coefficient and a low absorption 

coefficient; which means a photon is likely to undergo many scattering events before 

being absorbed.  After multiple scattering events, photons will travel almost equally in all 
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directions so the diffusion approximation to the radiative transport equation can be 

utilized.   

Another approximation states the reflectance from an infinitesimally narrow, 

collimated beam, incident on the surface of a turbid medium can be represented by an 

equivalent isotropic point source buried within the medium.  This allows the incident 

source to be removed from further calculations.  The diffusion equation for a semi-

infinite homogenous medium is 

),,(),,(),,( 0
2 zzyx

D
wzyx

D
zyx a −−=Φ−Φ∇ δµ   (1) 

where Φ is the fluence, w is the equivalent point source strength and ( ) 1)'(3 −+= asD µµ is 

the diffusion constant.  The Dirac delta function, located at z0, is the position of the 

equivalent point source within the medium. 

The location and strength of the equivalent point source is given by the medium’s 

optical parameters.  A photon that enters the medium at a normal angle, traveling in the 

z+ direction, will have an exponentially decaying probability of progressing to a depth z 

before being either scattered or absorbed.  To remove the incident beam from subsequent 

calculations, each first scattering site in the equivalent isotropic scattering medium 

produces a point source.  A simplifying assumption sums the point sources into a single 

source radiating with an intensity equal to the transport scattering albedo, given by 

a’=µs’/(µs’+µa).  The source position is given by the intensity-weighted mean of the first-

scattered, isotropic sources’ positions within the medium.  For a semi-infinite medium the 

position is given by the mean free path 

ast
tL

µµµ +
== ''

' 11 ,    (2)  
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where µt’ is the transport interaction coefficient.   

As mentioned above, a two-layer model for light propagation through tissue has 

been developed previously.  This model utilizes a single, equivalent isotropic point 

source with an intensity and location based on the first layer’s optical properties.6  From 

the discussion above, we can see this method is not correct because it fails to consider the 

first scattering sites in the second layer.  
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3. TWO-LAYER 
 
For the purposes of our derivations, the tissue will be approximated as a two-layer turbid 

medium (Figure 1).  As stated above, each layer has independent reduced scattering and 

absorption coefficients.  The depth of the boundary between the first and second tissue 

layers is given by L.  The boundary between the tissue and ambient medium is treated 

utilizing the extrapolated boundary condition.7  For our calculations, we assume the 

ambient and turbid medium have matched indices of refraction.  We model the fluence in 

the medium and the diffuse reflectance by placing an equivalent source in each layer. 

These equivalent sources, rather than the incident collimated beam, are used for further 

computation. 

 

 

Figure 1 Positions of isotropic point sources in a two-layer medium.  The first layer has a 

thickness of L. 

The diffusion equation for a two-layer medium is given as 

),,(),,(),,(2
i

i

i
i

i

ai
i zzyx

D
wzyx

D
zyx −

−
=Φ−Φ∇ δµ  i=1, 2 (3) 
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where zi corresponds to the isotropic point source position in the ith layer.      

The equivalent source positions are given by the intensity-weighted mean of the 

first-scattering locations along the z-axis within each layer:  
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Each equivalent source is given a radiative intensity or weighting: 

∫

∫
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These equations can be compared to the semi-infinite case by setting L equal to zero or 

infinity. 

 

3.1 Boundary Conditions 
 

The solution to the two-layer diffusion equation requires four boundary conditions 

to solve for the constants of integration.  The extrapolated boundary condition for a 

matched index of refraction between the turbid and ambient medium is employed.  This 

condition uses the method of images and stipulates a plane of zero fluence located at a 

distance of zb above the medium.   
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0),(1 =− szbφ      (6) 

Incorporating this into equation 3 yields 

0))(exp(
2

)exp()exp(),( 11
11

1
111 =+−+−+== zz

D
wzCzCszz bbbbab α

α
ααφ .   (7) 

Another stipulation is the turbid medium extends to infinity along the positive z-axis.  

Since there is absorption in the medium, the boundary condition can be written as  

0),(2 =+∞ sφ .     (8) 

This boundary condition can be solved as follows 

( ) 0))(exp(
2
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and requires 

0=dC .     (10) 

We have continuity of the fluence rate at the boundary between the layers assuming a 

uniform index of refraction in the tissue:  

1
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The flux at the boundary is written as 
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After computing the derivative, the equation above can be written as 
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We see above one constant of integration was already solved for.  The rest can be found 

by solving the following linear system of equations. 

GAC 1−=      (14) 

where the matrix of coefficients, A, is given as  
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the vector of solutions, G, is  
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and C contains the constants that will be solved for 

T
cba CCCC ,,= .   (17) 

Solving for the constants yields the following solution for the first layer  
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and the following for the second layer 
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The solution for the fluence in each layer is the 2-dimensional Fourier Transform 

of equations above, 

∫ ∫
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To simplify the calculations, the problem is converted into cylindrical coordinates 

dssJszsz ii ∫
∞

=Φ
0

0 )(),(
2
1),( ρφ
π

ρ    (20) 



11 
 

. 

where J0 is a Bessel function of the first kind of the zeroth order, and ρ=x2+y2.  This 

integration is non-trivial and cannot be done in closed form.  To solve this problem, 

Simpson’s numerical quadrature is utilized.  Simpson’s rule for integration is written as 

⎥
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⎡
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⎠
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⎜
⎝
⎛ +

+
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≈∫ ),(
2

,4),(
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),( bzabzazabsz iii

b

a
i φφφφ   (21) 

where the distance between the limits of integration (a and b) is assumed to be small.  For 

the Simpson’s quadrature the distance is assumed to be small enough so a polynomial of 

degree three accurately mimics the function.8 

The fluence rate is then used to solve for the spatially resolved, diffuse reflectance 

by combining the fluence and flux as follows: 

)0,(
2
1)0,(

4
1)(

0

1
11 =

∂
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+=Φ=
=

z
z

DzR
z

ρρρ .  (22) 

As previously mentioned, the solution assumes matched indices of refraction between the 

ambient and turbid medium.   

 

3.2  Simulation  

The solution to the two-layer diffusion equation using multiple sources was programmed 

in MatLab for two scenarios.  It is important to note tissue optical properties are highly 

variable.  For skin, dermatologists use a 6-tier classification technique based on a 

patient’s response to sunlight in an attempt to develop a reproducible assessment of 

skin’s optical properties.9 A quick inspection of your own skin will reveal body-location-

dependent absorption of different wavelengths of light.  This makes finding a consensus 

among researchers on skin’s optical properties difficult, especially since most 
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measurements are taken ex vivo.10 For this reason, we state the purpose of our choice of 

optical properties is to simply illustrate the utility of our model. 
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4. EXPERIMENTAL DESIGN 
 
To verify our results, we utilize Monte Carlo simulations as a “gold” standard.11  A 

Monte Carlo simulation uses random numbers and weightings based on a medium’s 

optical properties to propagate photon packets.  Due to the statistical nature of the Monte 

Carlo method, a large number of photons must be simulated to achieve acceptable 

confidence intervals for the results.  I have chosen to use ten million photons to verify the 

diffusion approximation for normal incidence and fifty million photons for oblique 

incidence.  It is important to note the Monte Carlo has been extensively tested with 

experimental results and its accuracy has been well established.12  By using a Monte 

Carlo we eliminate the uncertainty and error associated with experiments.  It is also 

quicker and cheaper to implement a Monte Carlo simulation.   

The Monte Carlo code was run on my personal laptop, usually overnight.  

Calculating the reflectance curve for a turbid medium illuminated by normal incidence 

usually took about one and a half hours while oblique incidence required fifteen hours.   

 

4.1 Results 

Both the single-source and double-source approximations are tested in two cases. 

First, the thickness of the first layer is greater than one transport mean free path 

( '
11 tL µ> ). In other words, the first layer is optically thick. In this case, we can test the 

single-source solution against the two-source solution. The parameters used are µs1=90 

cm–1, µa1=0.02 cm–1, µs2=110 cm–1, µa2=0.1, g=0.9 and L =0.12 cm.  Figure 2A shows the 

diffuse reflectance, as calculated from these parameters, for distances up to 0.5 cm from 
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the source.  Figure 2A shows good agreement between the Monte Carlo results and both 

diffusion models.  However, if we analyze the absolute relative error relative error 

between the Monte Carlo reflectance and the diffusion models (Figure 2B), we see the 

two-source model has a smaller relative error than the single-source model.  On average, 

the relative error for the two-source model is half of the single source model. 

 

 

Figure 2A Comparison of diffuse reflectance calculated with single-source (dotted line), double-

source approximations (solid line) and with that calculated with the Monte Carlo method (circles). 

The first layer is optically thick. 
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Figure 2B The absolute value of the relative error for the single-source (dotted line) and double-

source (solid line) diffusion approximations. 

Second, the thickness of the first layer is less than one transport mean free path 

( '
11 tL µ< ). In other words, the first layer is considered optically thin. In this case, the 

single-source model is not applicable; but the two-source model still applies since it is not 

limited by the thickness of the first layer as is the single-source model. The parameters 

used are µs1=90 cm–1, µa1=0.02 cm–1, µs2=110 cm–1, µa2=0.1 cm–1, g=0.9 and L = 0.06 cm.  

The results (Figure 3A) show the two-source solution closely follows the Monte Carlo 

results.  A plot of the relative error (Figure 3B) shows the two-source solution has a 

relative error of less than five percent and has an average error of around 2 percent.    
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Figure 3A Comparison of diffuse reflectance calculated with the double-source approximation 

(solid line) and with the Monte Carlo method (circles). The first layer is optically thin. 

 

   

Figure 3B The relative error for the double-source diffusion approximation. 
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5. OBLIQUE INCIDENCE 
 

The method above describes the spatially resolved, diffuse reflectance due to a normally 

incident pencil beam using the two-layer diffusion approximation to the Radiative 

Transport Equation.  However, Wang et al. [13] showed utilizing an obliquely incident 

beam offers an improvement over normal incidence.  It was shown illuminating a turbid 

medium with oblique incidence yields the reduced scattering coefficient through 

measuring the offset of the peak of the diffusion curve from the entry point of the source.  

Lin et al. [14] showed the absorption coefficient could be recovered as well.  This section 

will lay the ground work for utilizing the two-layer diffusion equation to solve for 

obliquely incident light.   

The problem of interest has a collimated light beam incident upon tissue at an 

angle, θi as shown in  Figure 4.  The origin of the coordinate system is taken to be the 

point of incidence, with the z-axis pointing into the tissue.  First, we shall approximate 

tissue as a two-layer turbid medium where the first layer has a thickness, L, and the 

second layer extends to infinity.  For the specific example of skin, these two layers can be 

considered equivalent to the epidermis and dermis layers.   
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 Figure 4 An infinitesimally narrow beam is incident upon a two-layer turbid medium at an angle 

θi and enters the medium at θt1.  The beam is converted into two-equivalent isotropic point 

sources embedded at locations ρ1 and ρ 2 along the transmission axis. 

 

The medium is assumed to be index matched with the surrounding medium so the 

photons’ trajectory angle does not change as they are transmitted into the tissue.  If this 

was not the case, we would use Snell’s law to describe the transmission angle of light 

into the turbid medium as follows 

))sin(sin 1
i

b
t n

na θθ ⎟
⎠
⎞⎜

⎝
⎛=     (23) 

The incident light source is replaced with an equivalent isotropic point source buried 

within each layer along the transmission axis.  These equivalent sources and not the 

incident beam will be used for further calculations.   

The equivalent source positions are given by the intensity weighted mean of the 

isotropic point sources that approximate the first scattering events along the axis of 

transmission within each layer, 
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where iρ Euclidian distance from the origin.  The corresponding positions along the x- 

and z-axis are given by  
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The two-layer diffusion equation for obliquely incident light looks similar to equation 4 

except for the source term is now located at ),0,( ii zx  
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The two-dimensional Fourier Transform of this equation yields 
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This problem can be solved for in a similar manner as above.  The result, similar to 

equation 19 is  
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However, the resulting equation for the fluence within the first layer is not radially 

symmetric.  This means equation 20 cannot be directly utilized. 
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 However, it should be noted the fluence in both layers is a result of a linear 

combination of each individual source’s contribution or 

( )
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where X(z,s) and Y(z,s) are the contributions of the first and second source respectively.  

We see each individual source can be solved for separately.   

 

5.1 Results 
 
To test the model, the diffusion equation for an infinitesimally narrow beam of light 

incident upon a two-layer turbid medium at an oblique angle was programmed in MatLab.  

The geometry of the problem is shown in  Figure 4.  As in previous work13,14 the 

detectors have an offset (∆y) on the y-axis, in a plane parallel to the incident beam.  A 

Monte Carlo simulation of photons propagating through a two-layer turbid medium with 

set optical properties was also programmed for comparison purposes.  

 The medium was assumed to have the following optical properties: µa1=0.05 cm-

1, µa2=0.1 cm-1, µs1=110 cm-1, µs2=90 cm-1, L = 0.6 cm and g = 0.9 for both layers.  The 

detectors were assumed to be located at ∆y =0.15 cm.  It was assumed the light was 

incident on the medium at a 45 degree angle to the normal.  The results of both the 

oblique incidence diffusion equation and the Monte Carlo simulations are shown in 

Figure 5.  The figure shows the peak of the diffuse  
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reflectance curve is offset from the origin on the x-axis.  Previously, this offset, ∆x, has 

been used to predict the reduced scattering coefficient of a semi-infinite turbid medium13.  

Figure 5 Comparison of diffuse reflectance calculated with the double-source approximation 

(solid line) and with Monte Carlo (circles) simulations for a two-layer diffuse medium.   
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6. CONCLUSIONS 
 
This thesis has introduced a novel technique for solving for the diffuse reflectance from a 

multi-layer turbid medium.  Our solution stipulates the fluence rate inside a multi-layer 

medium can best be modeled by multiple, equivalent, isotropic point sources.  For 

illustrative purposes, Appendix A describes the solution to the diffusion equation for two 

layers.   

The method was then validated with Monte Carlo simulations and tested against 

the single-source, two-layer solution for an optically thick layer.  Figures 2A and 2B 

illustrate the two-source approximation performs better than the single-source solution.  

We see the two-source model has an average relative error that is less than half of the 

error for the single source.  The results in Figures 3A and 3B show the two-source 

approximation is also accurate for an optically thin first layer.  In contrast, the single-

source solution can not be used for this situation.  It can be shown from the equations 

above as the thickness of layer 1 approaches zero, so does the strength of the source 

embedded within its medium.  Therefore, we can see that the two-source solution is valid 

at any thickness of layer 1.  By removing this dependency, we have created a much more 

robust solution for the diffusion equation for a two-layer turbid medium. 

The two-layer diffusion equation was then altered to solve for the diffuse 

reflectance from a beam incident upon a turbid medium at an oblique angle.  The results 

in Figure 5 show the equation does not match the results from a Monte Carlo simulation.  

The primary reason is the diffusion equation predicts an asymmetric curve around some 

position, ∆x.  The Monte Carlo results clearly show no such asymmetry.  
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APPENDIX 

The purpose of this thesis has been to introduce a new and more accurate model to solve 

for diffuse light traveling through a turbid medium.  The extrapolated boundary condition 

was utilized without discussion to solve for the fluence in and the reflectance from the 

turbid medium.  For the sake of simplicity, the discussion above was constrained to a 

situation where the ambient and turbid media have matched indices of refraction.  

However, this is not realistic for tissue-air interfaces likely to be encountered when 

modeling the fluence of light through skin. 

The extrapolated boundary condition is most commonly used to compensate for 

the ambient-turbid media boundary.  However, it has been pointed out many researchers 

have incorrectly used a mixture of boundary conditions or incorrectly employed this 

boundary condition when solving the diffusion equation.  A detailed approach deriving 

and explaining how to correctly utilize the extrapolated boundary condition can be found 

elsewhere7.  This appendix seeks to simplify their work and create a reference table that 

can be referenced when solving the diffusion equation for a semi-infinite medium.  To 

this end, we will briefly discuss the derivation of the boundary condition and present 

some results for common index mismatches.   

The extrapolated boundary condition uses the method of images to solve for the 

tissue-ambient media interface.  The condition assumes there is a plane where the fluence 

is equal to zero at a given distance from the boundary within the ambient medium.  A 

detailed discussion and derivation of this boundary condition can be found in more detail 

elsewhere7.  The purpose of this appendix is to illustrate how to calculate the necessary 

parameters to utilize the boundary conditions. 
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 As mentioned above, the diffusion equation assumes unpolarized light is traveling 

through the medium.  The Fresnel coefficient for unpolarized light solves for the 

probability of light propagating over a boundary for a given incident angle. 
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where the indicies of refraction for the ambient and turbid media are na and nm 

respectively.  The incident angle )( iθ refers to the angle the photon hits the boundary at. 

The transmitted angle )( tθ is found with Snell’s law 

)sin()sin( imta nn θθ =     (A2) 

 Photons incident upon the medium at an angle greater than the critical angle, given by  
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are assumed to be internally reflected. 

The radiance or intensity of light is written as  
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where ( )rrΦ is the fluence and )()( rDrj rr
Φ∇−= is the flux and 

( )θφθφθ cos,sinsin,cossinˆ =s  is an unit directional vector and points into the turbid 

medium. 

The irradiance at the tissue-ambient media boundary is set equal to the sum of the 

reflected radiance 
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where zn ˆˆ −= points out of the turbid medium.    

The left hand side of the equation above or irradiance at the boundary is written as 
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Equation   (A5 can be used to write the reflected radiance from the medium as 
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The effective reflection coefficient can be written as follows 
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The effective reflection coefficient can be used to find the z-axis position of the zero-

fluence plane as follows 
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The effective reflection coefficient represents the percentage of the emittance that is 

reflected and becomes the irradiance. 

 The spatially resolved reflectance can be written as follows 
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or if we change the coordinate system and let ( ))(1)( θθ fresRT −=  we get 
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This can be solved easily using Simpson’s numerical integration.  A list of values for 

varying indices of refraction mismatches at the ambient-turbid media interface are found 

in Table 1. 

 

Table 1 List of extrapolated boundary condition parameters for common index of refraction 

mismatches 

 

Relative index of reflection 
 

1 1.33 1.37 1.4 1.48 1.5 1.54 1.6 

Φr  0 0.4719 0.5055 0.5289 0.5839 0.5962 0.6196 0.6509

jr  0 0.3282 0.3634 0.3887 0.4501 0.4642 0.4915 0.5288

effr  0 0.4311 0.4677 0.4934 0.5541 0.5676 0.5936 0.6282

Φt  0.2500 0.1319 0.1236 0.1178 0.1040 0.1009 0.0950 0.0872

jt  0.5000 0.3357 0.3182 0.3057 0.2749 0.2678 0.2541 0.2354
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