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ABSTRACT

Spatially Explicit Load Enrichment Calculation Taoid Cluster Analysis for
Identification ofE. coli Sources in Plum Creek Watershed, Texas. (Augut)20
Aarin Elizabeth Teague, B.S., Texas A&M University

Co-Chairs of Advisory Committee: Dr. R. Karthikeyan
Dr. R. Persyn

According to the 2004 303(d) List, 192 segmentsmapaired by bacteria in the State of
Texas. Impairment of streams due to bacteria ismajor concern in several urban
watersheds in Texas. In order to assess, momtbrranage water quality, it is
necessary to characterize the sources of patheg#nas the watershed. The objective
of this study was to develop a spatially explicéthrod that allocates.coli loads in the
Plum Creek watershed in East Central Texas. Aaecii Plum Creek is classified as
impaired due to bacteria. The watershed contaimnsgpily agricultural activity and is in
the midst of an urban housing boom.

Based on a stakeholder input, possible soutcesli were first identified in the

different regions of the watershed. Locations aftdbuting non-point and point sources
in the watershed were defined using Geographiaimition Systems (GIS). By
distributing livestock, wildlife, wastewater treant plants, septic systems, and pet
sources, the bacterial load in the watershed waitsadly characterized. Contributions
from each source were then quantified by applymgee specific bacterial production
rates. The rank of each contributing source was #ssessed for the entire watershed.
Cluster and discriminant analysis was then usedeatify similar regions within the
watershed for assistance in selection of appraplast management practices. The
results of the cluster analysis and the spatiadplieit method were compared to identify

regions that require further refinement of the SEIEnethod and data inputs.
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CHAPTER|

INTRODUCTION

1.1 Waterborne Diseases Due to Pathogens

Water is essential to the preservation and flourgshbf all life forms, making it the
fundamental need of every human being. Only 2.5#%eworld’s water resources are
freshwaters and 30% of this freshwater is phystaalailable for human use in the form
of groundwater and surface water. At present,@pprately 15% of the world’s
population live in areas of water stress, strugptmmeet their drinking, cooking, and
sanitation needs (Fenwick, 2006). The United NestidJ.N.) predicts that the world
population will grow by 40% to 9.1 billion (UN, 26Dby 2050 resulting in increased
demand for water. Moreover, each year approximdtdl billion people do not have
access to safe water and 2.2 million die due tesatne disease (Mintz et al., 1995).
Waterborne diseases such as typhoid, cholera,itigpand diarrheal diseases are
caused by bacteria, viruses, and protozoa. In thitetd States alone, the estimated cost
of waterborne illness ranges from $269 to $806iomlfor medical costs and $40 to
$107 million in lost work and productivity (Paymeartid Hunter, 2001).

1.2 Total Maximum Daily Load (TMDL) Program

The United States addresses water quality issuesgh the Clean Water Act of 1977.
This legislation authorized the Environmental Peotan Agency (EPA) to set water
guality standards. The EPA requires water to baeitaed for pathogens, nutrients,
metals, organic contaminants and other physicalkcaedical characteristics. Pathogen
monitoring includes testing for the presenc&stheria coli (E. coli)cryptosporidium,

giardia, legionella, and enteric viruses (USEPA)&0 Each state is obligated to assess

This thesis follows the style dfransactions of ASABE



the quality of the water every two years and pibdiseport of all waterbodies that do
not meet the water quality standards. The Texasrission on Environmental Quality
(TCEQ) does this water quality assessment throlgiptiblication of the Texas Water
Quality Inventory and 303(d) list. This inventatgscribes the status of all evaluated
surface waters and classifies the surface wateodiue categories (see Table 1.1).
Category five has three sub-designations:

5a) A TMDL program is underway

5b) Water quality standards are reviewed befor&®L program is

scheduled

5c) Additional data are collected before the wateality standard is

reviewed or TMDL program scheduled

A TMDL stands for Total Maximum Daily Load. A TMDprogram is a process that
includes a scientific model and implementation mlasigned to bring the water body
into compliance with the water quality standar@team segments that are classified
into Category 5 are listed on the 303(d) list apaired water bodies. The most recent
five years of monitoring data are used for thesifacstion of streams. A stream
segment is classified as impaired due to pathof@a86 of its samples exceed 394
cfu/dL or if the geometric mean of the samples egsel26 cfu/dL (TCEQ, 2004). The
indicator organism for pathogen impairmenEiscol..

Table 1.1. Categories of Water Quality Inventory

Classifications Classification Description

Category 1 Waterbody has attained the water qustitydard and
its use not threatened

Category 2 Some of the designated uses are atfadiverd is
insufficient data to evaluate remaining uses

Category 3 There is insufficient data to deternifraany of the
designated uses are threatened

Category 4 The water quality standard is not atthina TMDL
program is not required

Category 5 Waterbody is on the 303(d) list andwh&er quality
standard is not attained for multiple pollutants




Once a stream segment is listed on the 303(d}Histstate is required to establish the
TMDL. The TMDL is the total amount of a pollutathiat a water body can receive each
day from contributing sources and still maintaie tater quality standard. First, the
daily load must be divided amongst the variousytalit sources present in the
watershed. Then an implementation plan that addsedecreasing the pollutant load
from these sources is developed. The goal ofpilais is to achieve the water quality
standard for the impaired segment. The stepseif MDL process include the
guantification of sources, modeling of existing ditions, and definition of reduction
activities that will bring an impaired stream idompliance with the state standards
(USEPA, 1999).

The implementation plan, also called a watersheteption plan (WPP), is defined by
the EPA as a strategy that provides assessmemhanagement information for a
geographically defined watershed, including theyses, actions, participants, and
resources related to development and implementafitme plan (USEPA, 2005). The
developed plan addresses watershed pollution olistic manner. Additionally, it
involves interested parties or stakeholders irptioeess of selecting the reduction
strategies. These reduction strategies, also kraa\Best Management Practices
(BMPs), should be chosen to efficiently and ecorathy address the pollutant sources
according to local conditions.

According to the USEPA, pathogen contaminatiomésgecond most frequent reason
for waterbody impairment classification on the 303(st, comprising over 13% of the
total impairments (USEPA, 2006). In Texas, 42%vafer bodies did not meet water
quality standards (TCEQ, 2005). Of these impaivater bodies, 61% were listed on
the 303(d) list due to pathogens (TCEQ, 2002). @tihe impaired water bodies on the
2006 Texas 303(d) list, 77% of water bodies weneaimed due to bacteria (TCEQ,
2007), an increase from the 2004 303(d) list. Waevaterbody is listed as impaired, it

impacts the local economy due to loss of the deseghuse, such as recreation activities.



1.3 Characterization of Contaminant Sources

The first step in the TMDL process and developnudérat WPP for a pathogen-impaired
stream is to characterize the sources of contaramai here are both direct and indirect
methods applied to characterize the pathogen comggion of a stream. Direct methods
such as bacterial source tracking and load duratioves use direct monitoring data. In
contrast, indirect methods characterize pathogarces within the watershed using

census and self-reporting data.

Methods such as bacterial source tracking (BSTuseel to identify the sources Bf

coli within a stream but do not quantify nor spatialharacterize the sources.
Ribotyping identifies unique genetic sequencesostispecifick. coli for development
of a watershed genetic library. ThEncoliin the water samples are compared to this
library for identification of its source. This tatique has demonstrated the ability to
distinguish betweek. colifrom humans, cattle, swine, horses, chickenseigkdogs,
and migratory geese (Carson et al., 2001). Althabgs method definitively identifies
the source of thE. coli, it is highly expensive, and does not allocateldlael amongst

the sources.

Another method to identify the sourceEfcoli contamination is load duration curve
(LDC) analysis. Load duration curves are usechfiracterize water quality concerns
and to describe patterns associated with the immeent (Cleland, 2003). Load duration
curve methodology is designed to assess the soofeaseedances in relation to stream
flow conditions. First the daily flow data is rakin descending order. Then, for each
flow instance, the percent number of days for whiat flow was exceeded is
calculated. The cumulative frequency curve offtbe data is plotted against the
percent days exceeded to create the flow duratiorec Then the load duration curve is
developed by multiplying the stream flow by the @ajuality standard for fecal

contamination with a safety factor of 10%. Thishe maximum load dE. colithe



stream can receive and still achieve the watertgusthndard at different flow
conditions. In order to find the instances wheteeedances occurred, the actual daily
loads are calculated by multiplying the measuretteantration ok .coli by that day’s
stream flow. Then the actual loads are plottedrstjghe load duration curve. The
points above the curve are exceedances. The lgatiah curve is divided into

different flow conditions (extremely high flow, Higlow, dry, and drought conditions)
based on the percent days exceeded of the stream-The flow condition where most
of the exceedances occur is be used to characteaz®urce of the exceedances. This
is based on the assumption that exceedances augurrhigh flows are due to non-point
sources and exceedances occurring during low fayerslue to point sources (Cleland,
2002). This method assists in differentiating kestw point and non-point sources;
however, it does not give further insight into soeirces within each category.

Furthermore, it does not provide any spatial infation about the sources.

1.4 Load Allocation to Various Sour ces

Indirect methods allocate loads based on modefiagburces of contamination.
Several load allocation methods have been develapedantify the sources for the next
step in the TMDL process. The EPA has publishedmemendations for assessing the
source contributions including identification ofusoes, characterization of the sources,
and estimation of the load produced by each sq8&PA, 2001). Using previously
published literature values, estimations of Eheoliload relate the source population to

the number oE. coliexcreted per day (cfu/day).

Methods such as Bacterial Load Source Calculatb8(), predict the contaminant
output through estimates of the source populati@eskoski et al., 2005), where as
watershed models simuldte.coli transport through the watershed to the streamdbase
on runoff estimates. The BLSC combines spreadsiaetlation of loads based on

animal inventories and human populations with Hiajiw Simulation Program in



Fortran (HSPF) to simulate accumulation and dieobE. coli (Zeckoski et al., 2005).
The watershed is divided into sub-watersheds anctegopulations are assigned to
each sub-watershed. Then HSPF is used to moddjtianics of thés. coli. Division

of the watershed into sub-watersheds introducgsatias component into the analysis.
However within each sub-watershed the loads arspatially allocated. Thus BLSC is

not spatially referenced throughout the watershed.

Watershed models such as the Soil and Water Assesdmaol (SWAT) and HSPF are
based on modeling the runoff from a rainfall eveBased on the runoff through the
watershed, the amount of contaminant enteringttiears is calculatedk. coli fate and
transport are determined by environmental condstioWatershed models consider the
spatial and temporal aspects of microbial movermatthe stream (Fraser et al., 1998).
These models need extensive spatially referengad ttata describing the potential

sources (Tian et al., 2002).

1.5 Spatially Explicit M ethodology

Spatially explicit analysis is needed to investggte location of the sources of a
specific contaminant. By spatially referencigcoli sources, the potential load at each
location in the watershed is determined. Infororatf the load distribution throughout
the watershed can then be combined with waterstuetbling to determine the amount
of E. colithat will be transported by runoff to the streawiith this information, BMPs
can specifically target areas that will contribtdestream impairment. In addition, the
BMPs are designed to target the prominent souleesincreasing the efficiency of the
watershed protection plan. Unfortunately, detadate concerning the distribution and

population of sources is scarce.

The proposed spatially explicit tool, Spatially Egp Load Enrichment Calculation

Tool (SELECT), identifies and distributes the vasgotential sources &. coliin the



watershed. The locations of point sourcek ofoli such as Wastewater Treatment
Plants are first identified. Then the densityaiat populations of the non-point source
populations are estimated. Data pertaining tostivek and human populations can be
acquired from census inventories. Wildlife data ba obtained based on wildlife
studies and local knowledge. In addition, chargties of the locations and the
distribution of theses sources, such as appropnedbéat are incorporated. These
characteristics are then used to identify the apateas and densities of the point and
non-point sources. Application of SELECT is parta&ly useful in areas with limited

data concerning the population and location of @anmbant sources.

1.6 Statistical Clustering

In order to extend the utility of the spatially égpg methodology, statistically unique
areas are identified through clustering. This&tiatl characterization of the watershed
supports WPP development and implementation. Faciw principal component
analysis examine the different variables assocmaigdthe allocation and calculation of
the load in order to reduce the number of varighidsle retaining the variability of the
data. This will decrease the cost of data acdgoisih the TMDL process. Then the
identified factors of variables are evaluated scdminant analysis to determine their
ability to distinguish the different clusters idied by cluster analysis. The unique
factors identified in this statistical process v considered and addressed in

development of the WPP.

1.7 Objectives of the Research

The objective of this research study was to devalspatially explicit tool that would
statistically allocate loads from different contamamt sources. This tool was applied to
Plum Creek Watershed in Texas to specifically aleE. coliloadings from various

contributing sources. Then the characteristidhefwatershed and the allocated loads



were statistically analyzed to determine clustérsimilar regions and the variables that
distinguish these clusters. This holistic progaswides decision support for the

development and successful implementation of th&WP



CHAPTER I

DEVELOPMENT AND APPLICATION OF SPATIALLY EXPLICIT
LOAD ENRICHMENT CALCULATION TOOL (SELECT) FOR
IDENTIFICATION OF E. coli SOURCES

2.1 Introduction

The Clean Water Act authorizes the United Statesr&mmental Protection Agency
(USEPA) to set water quality standards. To ensampliance with the standards set by
the USEPA, the Total Maximum Daily Load (TMDL) pess was developed. It
establishes the allowable pollutant loading foreaesbody based on the relationship
between pollutant sources and water quality comt{USEPA, 1991). The steps in the
TMDL process include quantification of sources, ®loty of existing conditions, and

the definition of reduction activities that willihg an impaired stream into compliance
with state standards (USEPA, 1999). In Texasaserivater quality standards are set by
the Texas Commission on Environmental Quality (TCEZEQ, 1997) as codified by
the Texas Administrative Code Title 30 Chapter 30@.assess water quality
conditions, five years of a stream segment’s moinigodata is reviewed. The data is
compared to a standard criterion for support chrigular water use. The number of
exceedances, determines whether a stream’s qtdlitysupports, partially supports, or
does not support its designated water use. hHeast segment does not support its
designated use it will be listed as impaired oistekhown as 303(d) list. The 303(d) list

is published biannually, to report a state’s impdisurface waters.

In Texas 61% of the stream segments listed on@B&d3 list are impaired due to
pathogens (TCEQ, 2005E. coliis used as the indicator organism for pathogesms fr
fecal contamination (USEPA, 1986). Indicator oligars are used because they

eliminate the need to test water for all potergethogens. They should be easy to
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detect and quantify as well as have similar suhéharacteristics as the pathogens of
concern (Zhang and Lulla, 2006). The TCEQ sdt.acoli limit of a geometric mean of
126 cfu/dL or a single grab sample of 394 cfu/dCERQ, 2004). For the TMDL process
addressing pathogen contamination, the USEPA hdadisecommendations to assess
coli source contribution and identification, charademf the sources, and estimate the
E. col load produced by each source (USEPA, 2001). Idtetion and densities &.

coli contributing sources are identified in order tarecterize the loads.

The USEPA recommends characterizing non-point &supy multiplying individual
species’ excretion rates by corresponding spep@sulation (USEPA, 2001). Then the
estimates of non-point sources are combined wittutated point source contributions.
Previous efforts have automated this non-spatighaumlogy using a spreadsheet
program by dividing the watershed into smaller ng@maent units or sub-watersheds
(Zeckoski et al., 2005). Direct methods estimhateliacterial sources by stream
monitoring including ribotyping, which use genetsting to find the source of the
bacteria (Carson et al., 2001; Ahmed et al., 200®gnd duration curves narrow the
cause of potential exceedances to either poinbofpoint sources. This method uses
direct monitoring data of the stream flow and baateoncentrations (Cleland, 2002;
Bonta and Cleland, 2003). These two methods deputially reference the sources and
thus limit the application within the Watershed temion Plan (WPP) because they do

not provide information regarding the optimal plaent of BMPs.

The objectives of this study were to develop a @pptExplicit Load Enrichment
Calculation Tool (SELECT) for the characterizatairE. coli sources and to apply this

tool to Plum Creek Watershed in Texas for the TMi2lvelopment process.
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2.2 Plum Creck Watershed

The Plum Creek Watershed is a part of the GuaddRingr Basin and is located in East
Central Texas. It encompasses a drainage are226fkinf in the counties of Hays,
Caldwell, and Travis (Figure 2.1). Plum Creek adsngth of 83 river km and joins the
San Marcos River and eventually the Guadalupe RiVle watershed ranges in latitude
from 29°38’33.94”N to 30°5’20.11"N and in longitutem 97°54°36.29"W to
97027'13.60"W. Within the watershed there are sgvapidly growing towns

including Lockhart, Kyle, and Luling. The poputats of Kyle, Lockhart, and Luling

are 19,335, 12,978, and 5,704 respectively (OfficEexas State Demographer, 2006).
Land use varies from urban to agriculture andieltfactivities. The northern part of
the watershed is primarily urban whereas the sonthection has crop and animal
agriculture along with oil wells. The landscapelsracterized as rolling hills of pasture

and cropland surrounded by scrub oak forest (GBB@62.

2.3 SELECT Methodology

The SELECT methodology was developed using ArcG0Sath the Spatial Analyst
extension available from ESRI. This spatially ésipimethod divides the watershed into
a raster grid of 30 m x 30 m cells. For each efdall locations within the watershed the
E. coliloads are estimated from the sources that arefpaitg present at each location.
Custom land use classification was performed bylyeas A&M University Spatial
Sciences Laboratory, using the 2004 National Aducal Imagery (NAIP) aerial
photographs (Figure 2.2). The Soil and Water Assesit Tool (SWAT) was used to
delineate the sub-watersheds within Plum Creeku(€ig.3).

The SELECT method identifies point and non-pointrses throughout the urban and
rural areas. The identified point sources arevactiastewater treatment plants. Non-

point sources from urban areas include urban rusefitic failure, and dogs. Non-point
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Figure 2.1. Location of Plum Creek Watershed int@iexas.
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Plum Creek Land Use Classification

Land Use
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Open Developed
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Figure 2.2. Land Use Classification of Plum Creek.



Plum Creek Sub-watersheds
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Figure 2.3. Thirty-Five Sub-Watersheds in Plum &ree
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sources from rural areas include runoff from lieegt dogs (Schueler, 1999), wildlife
(Weiskel et al., 1996), and septic failure (Reddwe & Yanke LLC, 2001). Wildlife
sources can include many types of wild animalstarak. In this study area the known
wildlife includes feral hogs, whitetail deer, raoos, rodents, opossums, and migratory
birds. Feral hogs and deer were the only wildderces included within SELECT
because they are the only populations of concettm aviailable data. Livestock

production within the study area is primarily catthorses, sheep, and goats.

2.3.1 PotentiaE. coli Load Calculation

EachE. colisource was first distributed to the appropriatatmns within the watershed
and then the load calculated. The average datsnpal load was calculated according
to USEPA guidance (USEPA, 2001). The populatiosaifrces was multiplied by a
daily average fecal coliform excretion rate anchthaultiplied by 0.5. This 50% is a rule
of thumb conversion that estimates that fifty pate# fecal coliform (FC) ar&. coli
(Doyle and Erikson, 2006).

2.3.1.1 Point Sources

Waste Water Treatment Plants

Wastewater Treatment Plants (WWTPSs) are point gsypermitted to discharge treated
effluent into Plum Creek. There are thirteen p&ediWWTPs in the watershed,
however only five release effluent into the strearBach WWTP is permitted to release
effluent at the water quality standard of 126 cfu/d he load from each WWTP is
calculated by multiplying the permitted concentratby the permitted flow in MGD
(Table 2.1).
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Table 2.1. Wastewater Treatment Plant Permitted Flo

WWTP Permitted Flow (MGD)
City of Lockhart 11
Lockhart 2 15
Luling North 0.9
City of Buda 0.3
City of Kyle 15

2.3.1.2 Non-Point Sources

Urban Runoff

Urban runoff includeg& .colithat accumulates on surfaces from various sourges.
study was performed by the engineering consult@aB$S&J in the nearby city of Austin,
Texas to measure tlie coli concentrations in runoff from different locatiof®BS&J,
2000). Based on this data, an empirical relatignglas developed to correlate the
drainage area’s percent impervious cover and theestration oE. coliin the runoff.
The percent impervious cover for Plum Creek’s uréigas was determined based on

the land use classification.

Using the empirical relationship reported by PBS2J00) theE. coli concentrations in
the runoff were calculated. This concentration wassformed to a load by multiplying
the concentration by a volume of runoff. The rdrookefficient was assumed to be one
across the sub-watershed, meaning that each locaditributes runoff equally to the
stream. Then the average daily potential runo walculated from precipitation
reported by the National Weather Service for antidugeather station (NCDC, 2007).
This rainfall depth was multiplied by the area atle raster cell to calculate the volume
of water that would drain from each cell. Thiswole was then multiplied by the
calculated runoff concentration for each city, g in anE. coliload from urban

runoff.



17

Septic Failure

Septic systems can contribute pathogens to a Wwathr due to system failure and
surface or subsurface malfunction (USEPA, 2001gcokding to the stakeholder
feedback to the Plum Creek Watershed Protectiom Réam there are a number of older
failing systems within the study area however themo local data concerning the
distribution or number of failing systems. Bas&daoreport for the Texas On-Site
Waste Water Treatment Research Council, it waswasduhat regulated septic systems
would have a failure rate of 12% and unregulatediesys would have a 50% failure rate
(Reed, Stowe & Yanke LLC, 2001). On-site wastewatsatment systems were
regulated starting in 1989, while systems instaliadr to that remained unregulated
(Lesikar, 2005).

First, the households that would utilize septideys were estimated. Households
outside of a city limit were assumed to use a doimesptic treatment system. All
census blocks that fell within the watershed ancevesitside of a city limit were
selected to calculate the number of householdgsgptic systems. Next the number of
failing systems was calculated. Subdivision datataining the number of lots and the
date the subdivision was built was obtained frortd®@all and Hays counties. Both the
number of houses inside and outside of a subdivisere estimated. Based on each
subdivision’s date built, the number of failing ®mss in each subdivision was
calculated. All households outside of a subdivisiere assumed to be non-regulated

and the number of failing systems calculated adnghd

The number of systems in each subdivision was @tttk ensure that they did not
exceed the number of households reported in theusenf the number of households
found from subdivision data did exceed the numlhéoaseholds reported by the
census, then the number of households reporteldebgensus was assumed to be equal

to the number of households in the subdivision.
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Next the density of failing systems per raster eels assessed. The area of each census
block was found, and the density of failing systeras900 rf calculated. With an
estimated 70 gal/person/day discharge and a 8efi0dL concentration in this

discharge, th&. coliload was calculated according to the equationaibld 2.2 and
parameters converted to appropriate units. Theageenumber per household is the
average number of people in each household asteeploy the 2000 U.S. Census. Then
potentialE. coliload was aggregated for each sub-watershed.

Table 2.2. Calculation d&. coli Loads from Non-Point Source Populations.

Source Calculation

Cattle EC =#Cattle* 2.7*10°cfu/ day

Horses EC =#Horses® 2.1*10°cfu/ day

Sh &

Goea?s EC =#Sheep 9*10°cfu/ day

Deer EC =#Deer* 1.75* 10°cfu/ day

Feral Hogs EC =#Hogs* 445* 10°cfu/ day
EC =#Household% _O&dogs , 25*10°cfu/ day

Dogs Householt

5
Failing EC =#FailingSysems- 5x10°cfu,  70gal , Avet | 37582mL
Septic 100mL  personday Household gal
6

EC = Permitted\VGD* 126cfu, 10°gal , 37582mL

WWTP 100mL MGD gal

Dogs

Of the many pets kept by owners in Plum Creek, dolys were considered to
contribute to urban pet waste. Dog waste is afssgnt source of pathogen
contamination of water resources (Geldreich, 199&)cording to the American
Veterinary Medical Association, Texans own 5.4 iiilldogs (AVMA, 2002, pp 1, 2,

13, 19). By dividing by the number of householiJ exas, the average number of dogs
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per household was found to be 0.8 dogs per houseAdlis average is multiplied by the
number of households in each block to find an estidh number of dogs per census
block. Using the area of each census block, aityepfsdogs per 900 fis found. Then
the census polygons were converted to a rasteth@ndiog density was assigned to each
30 m x 30 m cell. Published values report thatsdagduce 5x10fecal coliform
organisms per day (USEPA, 2001). Again the 50% ofithumb is applied to find the

E. coliload per day from each household. Eheoliload was calculated according to
the equation in Table 2.2. The potenEalcoliload contribution from dogs was

aggregated for each sub-watershed.

Agriculture

Rural non-point sources include agricultural raaganals and wildlife.E. coliin

animal manure can either be directly deposited timostream or can be carried by
runoff from the fields to the streams (Benham gt2006). Range animals such as
cattle, sheep, and goats are primarily kept inypasind on rangeland. Horses are
principally confined to pasture areas. Watershredsathat were classified as pasture
and rangelands were selected from digitized laeddasa and the areas within the city
limits eliminated. The animal populations obtairfiem the United States Department
of Agriculture (USDA) 2002 Agricultural Census wexggregated per county (USDA-
NASS, 2002). This data was uniformly distributedoss the remaining appropriate area
of each county. Based on this distribution, a ilgré animals per 900 fris calculated.
The appropriate lands in Plum Creek were assigmegktdensities and multiplied by the
fecal coliform excretion rate and then converte# tooli potential (see equations in

Table 2.2). Theik .coli loads were aggregated to the sub-watershed level.

Wildlife
Wildlife also contribute to th&. coliwithin Plum Creek watershed. Within the
watershed major wildlife contributors include deed feral hogs. There are many other

wildlife sources, such as birds, opossums, racGaorg coyotes. However, at the time
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of analysis there was not a reliable method toredte these populations. Deer habitat
includes shrubland and forest areas. Feral hogsapity use riparian corridors of
undeveloped land uses. To distribute the deerlpbpn within Plum Creek watershed,
appropriate land use areas with a continuous drgeeater than 20 acres were first
selected. Texas Parks and Wildlife Department (CP\&hnual surveys report a density
of deer per 1000 acres for resource managemerst (RlUs) (Lockwood, 2005). Plum
Creek falls in RMUs 7, 19, and 20. The total nunifedeer was calculated based on
the area of Plum Creek in each RMU. With the afesppropriate land use within each
Plum Creek section of the appropriate RMU, a dgrifiinimals per 900 fris
calculated. The RMU vector data was convertecster format using the same extent
and cell size as the land use data, with the asigyned the deer density per 900 m
Then a fecal coliform excretion rate of 3.5%4f0/day-animal (Zeckoski et al., 2005)
was multiplied by the deer per unit area in oradethen find thee. coliload throughout
the area (see the equation in Table 2.2). ThepdtentialE. coliload was aggregated

to the sub-watershed level.

Feral hog population densities and distributioradsitscarce for Plum Creek watershed.
Estimates of feral hog densities for the Rio GraRtins and lower coastal prairie of
Texas ranges from 3.2 to 6 hogsfkhiellgren, 1997). Plum Creek habitat is
comparable to the landscape of the Rio Grande $&id lower coastal prairies. A
landscape wide density of 5 hogsfkismapplied to the entire watershed to produce an
estimate of 5,141 hogs for the entire watershdues& hogs were then uniformly
distributed to riparian corridors, or the undeveld@nd undeveloped land within 100 m
to a stream. Feral hogs utilize nearly all typelaidscape, but primarily use forested
and shrublands adjacent to river bottomlands. @asethe number of cells with
appropriate habitat, the density of hogs per cal determined and multiplied by the
fecal coliform excretion standard. This is caltethaccording to the equation found in
Table 2.2, where 4.45 x 16fu/animal-day is the fecal coliform excretionerat
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multiplied by the 50% rule of thumb. Then the dimitedE .coliload was aggregated

to the sub-watershed level.

2.3.2E. coli Load Aggregation in Sub-watersheds

In order to give the relative ranking of the sosroa a spatial basis, all sources were
summed for each sub-watershed. This allows fordahking of total potentidt .coli

load on a spatial basis. In addition, the souveer® ranked by total contribution.

2.3.3 Comparison of Potenti&l.coli with Actual Monitoring

The results of SELECT were compared to the actwalitoring data collected by
Guadalupe Blanco River Authority. First the sam@ldates were compared with
meteorlogical data reported by the National WeaB8wwice. The dates with a reported
precipitation event that was large enough to resulinoff were selected. This was
determined by the NRCS curve number method (Haah,et994, pp 63-65) based on
the average curve number for each monitoring stati&/ith the daily precipitation
depth, a runoff depth was calculated using thiswkt Multiplying by the drainage
area for each monitoring station resulted in a finmlume. This runoff volume was
added to the daily volume of effluent that is desged into the drainage area for a total
stream flow volume. The daily average potertatoliload was divided by the total
flow volume to calculate the potential concentnatid his potential concentration was
then compared to the actual monitored concentratibis important to note that
SELECT results and actual monitoring data can belgompared when there is a runoff
event. This is because tkecoliloads estimated from the non-point sources in
SELECT only enter the streams when there is a fuaveit.
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2.4 Results and Discussion

The results from SELECT for all sources are foun#figures 2.4 through Figure 2.14.
The larger loads are found in the darker shadedwaibrsheds. The mid-range loads
are in the medium shaded sub-watersheds and tlesideads in the lightest shaded

sub-watersheds.

2.4.1 Urban Sources

The estimation of potentidé. coliloads from WWTPs are found in Figure 2.4. The fiv
sub-watersheds in which the WWTPs are locatedigtdighted (Figure 2.4). The
higher the permitted effluent discharge, the higherestimated potential load and the
darker sub-watersheds in Figure 2.4. Best managiepnactices such as tertiary
treatment (Godfree and Farrell, 2005) or overflowanitoring , for WWTP would most
efficiently be designed for the sub-watersheds fllahear the cities of Lockhart and
Kyle.

The potential contribution from urban runoff is shoin Figure 2.5. The sub-
watersheds with large septic loads correspondeadith population areas around Kyle,
Lockhart, and Luling. The largest loads are edtahdor the sub-watersheds near the
city of Kyle. Table 2.3 shows sub-watershed 34 (Sigure 2.3), which includes
portions of the city of Kyle, has higher levelshagh and medium intensity development
and has the largest potentialcoliload (Figure 2.5). Low intensity developed lasd i
defined as having from 20% to 49% impervious cowdedium and high intensity
development are defined as having impervious cragging from 50% to 79% and 80%
to 100%. The city of Lockhart falls partially insmb-watershed 16 (Figure 2.3), which
also has high percent land uses classified asdndmedium intensity development
(Table 2.3). The higher percent of low, mediund high intensity development (Table

2.3) centered around urban centers correspondsgeH. coliload allocations (Figure
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Average Daily Potential E. coli Load
from Waste Water Treatment Plants
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Figure 2.4. Average Daily Potential coli Loads Resulting from WWTP in Plum Creek
Watershed.
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Average Daily Potential E.coli Load
from Urban Runoff

[ | cityLimits
E.coli (CFUs) from
Urban

|| 0.00e+000

| 1.00e-002 - 7 40e+011 B A
] 741e+011 - 2 58e+012

- 2.5%9e+012-7.82e+012 [LH:1|OKilometer5

N

Figure 2.5. Average Daily Potential coli Load from Urban Runoff.



Table 2.3 Breakdown of Sub-Watershed Land Use

Percent Land Use in Each Sub-Wwatershed

Dev. Low Med. High
Sub- Open Intensity Intensity Intensity Open Bare Riparian  Mixed
Watershed Space Dev. Dev. Dev. Water Land Forrest Forrest Forrest Range Pasture Crops
1 1.16 16.37 19.95 0.00 2.28 0.00 0.00 1.56 0.00 50.50 3.95 4.22
2 1.06 9.22 0.17 0.00 3.21 0.28 0.00 0.50 0.00 68.51 3.583 13.53
3 1.27 5.24 2.56 2.79 1.14 6.69 0.01 2.57 0.70 52.40 6.79 17.84
4 1.21 15.75 7.09 5.71 1.64 1.28 0.00 0.42 0.45 42.12 14.84 9.49
5 0.32 12.07 3.57 0.00 1.49 0.00 0.43 7.44 3.31 46.20 1.87 23.29
6 0.00 7.01 1.88 0.00 1.86 0.00 0.00 4.59 1.21 56.07 17.71 9.68
7 0.07 9.23 10.54 0.00 1.79 0.00 0.55 0.66 1.65 57.68 7.95 9.88
8 0.13 6.04 0.65 0.00 2.58 0.00 0.74 2.43 4.56 59.59 17.36 5.93
9 0.00 3.66 0.00 0.00 0.03 0.00 0.33 2.09 0.10 4.26 32.25 57.28
10 0.00 5.65 1.23 0.00 3.78 0.00 1.61 1.68 0.72 28.51 17.81 39.01
11 0.14 4.57 2.55 0.01 0.25 0.31 0.32 0.52 0.04 9.07 4.47 77.76
12 0.00 2.55 0.00 0.00 0.19 0.06 0.26 3.20 0.28 12.84 12.09 68.53
13 0.18 3.12 0.14 0.00 1.97 0.00 1.77 6.06 3.51 47.40 24.58 11.27
14 0.00 3.87 1.70 0.00 1.42 0.00 14.34 7.21 4.36 41.29 12.14 13.67
15 0.00 4.45 0.00 0.00 1.01 0.00 8.40 7.68 11.66 42.01 21.17 3.61
16 1.56 3.04 17.13 2.88 0.51 1.06 3.83 3.64 2.57 16.83 19.19 27.76
17 0.00 4.05 0.00 0.00 1.06 0.00 2.64 5.66 13.53 55.32 15.38 2.35
18 0.60 3.48 6.10 2.84 0.45 0.11 2.67 14.26 6.44 25.53 20.96 16.59
19 0.00 2.61 0.03 0.03 1.05 0.34 9.76 7.75 7.37 32.88 31.13 7.05
20 0.00 2.12 0.07 0.00 1.34 0.03 12.59 12.34 14.07 37.76 17.55 2.10
21 0.00 2.21 3.57 3.04 0.79 0.27 4.72 10.37 6.90 19.92 31.80 16.41
22 0.00 241 0.00 0.00 0.76 0.06 4.49 11.53 8.22 43.97 23.65 4.91
23 0.00 2.10 0.19 0.00 0.50 0.14 6.70 3.53 0.63 32.71 20.27 33.22
24 0.00 1.13 0.02 0.00 1.41 0.00 7.73 7.30 13.86 34.49 28.70 5.35
25 0.00 1.15 0.00 0.00 0.64 0.01 25.19 6.50 11.18 28.91 20.27 6.15
26 0.00 0.81 0.00 0.00 0.41 7.16 19.61 6.29 6.84 15.85 39.56 3.46

S¢



Table 2.3 Continued.

Percent Land Use in Each Sub-Watershed

Dev. Low Med. High
Sub- Open Intensity Intensity Intensity Open Bare Riparian  Mixed
Watershed Space Dev. Dev. Dev. Water Land Forrest Forrest Forrest Range Pasture Crops
27 0.00 0.61 0.00 0.00 0.78 0.33 22.31 7.34 16.20 34.49 17.61 0.35
28 0.00 1.27 0.00 0.00 0.34 0.94 18.63 10.84 8.85 26.35 18.20 14.58
29 0.00 0.73 0.00 0.63 1.52 0.22 27.55 5.21 6.29 37.60 14.92 5.33
30 0.00 1.57 0.00 0.00 1.87 0.00 11.03 8.29 12.19 44.33 19.75 0.97
31 0.33 1.24 0.12 0.00 0.98 0.04 12.81 8.09 13.64 44.03 18.44 0.27
32 2.44 1.93 7.71 0.94 0.81 0.54 5.18 6.16 24.13 40.44 9.72 0.00
33 0.32 1.24 0.32 0.00 0.87 14.11 6.64 13.93 0.10 43.19 18.75 0.53
34 6.42 8.31 15.82 9.64 1.32 0.34 0.67 2.73 241 29.67 9.23 13.44
35 0.00 1.42 0.09 0.00 1.32 0.09 21.93 11.83 9.78 39.50 13.98 0.08

9¢
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2.5). Best management practices for urban rusaffh as detention ponds, filter strips,
and artificial wetlands (Braune and Wood, 1999)utthde designed for urban centers

with high percentages of medium to high intensgyelopment.

The estimated potenti@. coliload from septic failure is shown in Figure 2.6eT
darker sub-watersheds indicate the larger estimadgzhtialE. coliload. Larger loads
(2.13 x 108° to 2.34 x 1#cfu) are associated with sub-watersheds that quoresto
the cities of Lockhart and Kyle. However, largads are also associated with sub-
watersheds one, two, four, and seven (Figure Z&gse sub-watersheds have high
percentages of low intensity development as showirable 2.4. The area in sub-
watersheds one, two, four, and seven (Figure 8.8)a north of the watershed have a
large population reported in the 2000 census, wisictot yet incorporated into a city
(Figure 2.6) and thus not provided with sewer sErviln addition, the average age of
the subdivisions in sub-watersheds one, four, andrsare all pre-1988. As a result, the
septic systems in these sub-watersheds are untegul@herefore BMPs should be
designed to address regulation of septic systemngsing on proper operation and

owner maintenance of the system (Lesikar, 2009)imwihis region.

The potentiaE. coliload estimated from dogs is shown in Figure Zudb-watersheds
with large allocations are associated with theesiof Kyle, Lockhart , and Luling. This
can be attributed to the large number of householtise urban areas. In addition, like
the septic estimation, the sub-watersheds of eveg,four, and seven are estimated to
have higher potential loads Bf coli. This area has higher population in comparison to
the rest of the sub-watersheds, despite the ladklba@in centers. The higher population
of this area is attributed to urban sprawl fromnlearby metropolitan area of Austin.
Best management practices such as pooper scoamgaprs and dog owner education
(Kemper, 2000) should be implemented not only endities of Kyle, Lockhart, and
Luling, but also in the areas where urban spraalasncern, primarily in the northern

portion of the watershed.
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Figure 2.6. Average Daily Potential coli Loads Resulting from Septic Failure.
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Figure 2.7. Average Daily Potential coli Load Resulting from Dogs.
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2.4.2 Rural Sources

Rural sources include agricultural animals, wikllilogs, and septic failure. The load
allocations from cattle, sheep and goats, and bawsein Figures 2.8, Figure 2.9, and
Figure 2.10, respectively. Greatercoliloads from cattle are estimated for sub-
watersheds on the southwestern portion of the wla¢erand along the southeastern
edge (Figure 2.8). The sub-watersheds which hargelt estimated loads Bf colifrom
cattle have higher percentage of land used foupasind rangeland (Table 2.3) and
generally are larger in area. In contrast the Eigboli potential sub-watersheds for
sheep and goats are in the north of the watergfigdré 2.9). Like cattle, these sub-
watersheds have a high percentage of pasture agdlaad (Table 2.3). Sub-watershed
34 is the exception with a low percentage of pastund rangeland, however its large
load is due to sub-watershed 34 having a largex. af&eE. coliloads from sheep are
estimated to be primarily in the northern partha tvatershed, whereas tBecoliloads
from cattle are estimated to be primarily in thateern portion of the watershed
because according to the USDA census there isayrefa¢ep and goat production in
Hays and Travis counties and greater cattle promtuat Caldwell county (USDA-
NASS, 2002). Potential loads estimated from hoasegprimarily found in the southern
and middle section of the watershed (Figure 2.1®)ese high potential sub-watersheds
have large areas of pasture lands (Table 2.3). nilieetotal loads allocated to cattle,
sheep and goats, and horses are compared (Figeres® and 2.10), the magnitudes
are quite different. The total estimated potertiatls for cattle (Figure 2.8) and sheep
and goats (Figure 2.9) are two orders of magnitager than the estimated load for
horses (Figure 2.10). Because of the higher ptipulaf cattle, cattle have a larger
potential load than sheep and goats. AgricultBMPs such as riparian fencing,
vegetative filter strips, and alternative water{Agderson and Flaig, 1995), should be
prioritized in the southern section of the watedsfe cattle producers and sheep and
goat producers in the northern section of the vghtt.
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Figure 2.8. Average Daily Potential coli Load from Resulting from Cattle.
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Average Daily Potential E. coli Load
from Sheep and Goats
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Figure 2.9. Average Daily Potential coliLoad Resulting from Sheep and Goats.
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Figure 2.10. Daily Average Potentkal coli Load Resulting from Horses.
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The potentiaE. coli estimated from feral hogs is in Figure 2.11. fsdexd in the
methodology, the feral hogs were distributed tortparian areas around streams. Each
sub-watershed has an estimated potential contoitbditom feral hogs. The highest
potential loads are in areas along the east artti sbthe watershed (Figure 2.11),
where there is a larger area of undeveloped lajatewt to a stream. Feral hogs have
an estimated potential load (Figure 2.11) thahésgame magnitude as cattle (Figure
2.8) and sheep and goats (Figure 2.9). Unfortiyatee best management practices to
addres<. colicontamination from feral hogs are quite challegdecause fencing and
other traditional practice are not practical in @dding this source population. Feral
hogs are highly invasive and destroy agriculturaps and riparian vegetation (Baron,
1982). Therefore landowner education, and popratontrol are the most appropriate
measures to implement in the southern portion @ihtershed.

The potentiaE. coliload from deer is shown in Figure 2.12. The seakhtern portion
of the watershed has the highest loads from deerenthere are large sections of range
and forested areas. The estimated potential lmadeder (Figure 2.12) is two orders of
magnitude smaller than the estimated load for feogk (Figure 2.11). Wildlife BMPs

are more efficiently focused on addressing feragishthan deer.

2.4.3 PotentiaE. coli Sources Throughout the Watershed

Two sources, septic and dogs are considered totheuibbban and rural sources.

However because these sources are associatedumiiinhpopulations, the larger
estimated loads will correspond to population cemntén urban areas, the contributions
will not only be larger in magnitude but also comntcated to a small area. In the rural
areas, these sources are diffuse and smaller initndg (number of cfu in potential

load from each sub-watershed). The WPP shouldeaddhese sources across the entire
watershed. In urban areas a total approach cagkka for dogs and septic. Large

BMPs that are structural in nature, such as detemonds that would collect runoff, are
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Figure 2.11. Daily Average Potenttal coli Load Resulting from Feral Hogs.
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Figure 2.12. Daily Average Potenttal coli Load Resulting from Deer.
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efficient in the urban areas due to the magnitdfdbeeload. For rural areas, homeowner
education should be implemented to increase sepiotenance, but should focus

particularly on residences near to streams.

The total estimated sub-watershed loads are showigure 2.13. The darker sub-
watersheds (4.07 xbto 1.87 x 1&cfu) have the highest estimated potential load.
These four sub-watersheds each correspond to arkas, and have area incorporated
into the cities Kyle, Lockhart, and Luling. The dngm color, or mid range estimated
loads (1.88 x 1% to 4.06 x 1&%cfu), are highly influenced by regional effectsgiie
2.13). Figure 2.13 shows the relative contributtbeach source to the total estimated
load (Figure 2.13) for each sub-watershed. Theramge load sub-watersheds in the
northern section of the watershed (Figure 2.13ysimixed influence of septic, dog, and
agricultural animal sources (Figure 2.14). The maitige load sub-watersheds in the
southern and eastern portions of the watershedi@&® 13) have a high percentage of

the load estimated from agricultural animals anldiMe sources (Figure 2.14).

Table 2.4 displays the sub-watersheds with thedsigpotentiak. coliand the high
potential sources within each of these sub-wateish&able 2.5 displays the five
sources with the highest total potential and thewatersheds that have the highest
potentials for each of these sources. Overalilechfive the highest potential
contribution, with 41% of the total average potalif. coliload (Table 2.5). The
second highest potential daily contributor is urbamoff with 27% of the total potential
load. Dogs and feral hogs each have a potenti@bpfoximately 10.5% of the total
potential load and failing septic systems compaigeroximately 6.5% of the total. All
other sources contribute less than five percetit@dotal potential load. It is notable
that although SELECT did not indicate that WWTPseng major source d. coli,
there is uncertainty as to whether the pathogetisaieffluent are viable but non-
culturable and will be reactivated once further detkeam in a nutrient rich effluent
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Figure 2.14. Comparison of Relative Percent Coutitims from Potential Sources in
Each Sub-Watershed.
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(Petersen et al., 2005). A fate and transport inedeeded to model these physical

phenomena and understaadcoli population dynamics (Steets and Holden, 2003).

Table 2.4. High Potential Sources of High ContiiibgitSub-Watersheds.

High Potential Contributors

Sub-
Rank | Watershed 1 2 3 4 5
1 34 Urban Dogs Septic Cattle Sheep & Goats
2 16 Urban Dogs Cattle Septic Feral Hogs
3 32 Urban Cattle Dog Feral Hogs Septic
5 18 Urban Cattle Dog Septic Feral Hogs
4 3 Urban Cattle Sheep & Goats Feral Hogs Dogs

Table 2.5. Sub-Watersheds of High Potential Sources

Sub-Watershed Contributors

Source 1 2 3 4 5
Cattle 33 13 31 35 20
Urban 34 16 32 18 3
Dogs 16 34 4 32 18

Feral Hogs 35 20 33 27 13

Septic 4 34 1 2 18

Although the highest total potential coliload is estimated to be from cattle (Table
2.5), all the sub-watersheds with the greatest patntial have urban runoff as the
greatest source of potentil coli(Table 2.4). None of the top cattle sub-watersleds
high potential watersheds (Table 2.5). Sheep aatisgare the other top agricultural
sources in the high potential sub-watersheds.oftrast to cattle, the fourth and fifth
high potential sub-watersheds for sheep and gdatid€ 2.5) are also high overall
potential sub-watersheds (Table 2.4). The topwatersheds for urban runoff and dogs
(Table 2.5) are also the overall high potentialaatbersheds (Table 2.4). Of the high
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potential sub-watersheds for septic failure (T&bf, two are also high total potential
sub-watersheds (Table 2.4). Therefore it can lsemed that where urban runoff is
present it is the dominant potential source. Furttore, although cattle are the overall
largest contributor, it is a more diffuse sourcearsoeffects will not be concentrated at a
single point. The sub-watersheds where cattlérer@redominant source do not

contribute similar total potential loads.

The sub-watersheds with high estimated poteBti&ioli loads are sporadically spatially
placed throughout the watershed (Figure 2.13). él@n based on the individual source
analysis, groupings of high potential sub-watersheh be seen. Thus BMPs can be
devised appropriately for each source and targetedrds the spatial placement.
Agricultural BMPs should be placed in the southemd eastern edges of the watershed,
where cattle, horses, and sheep and goats aredmghbutors. Urban non-point BMPs
should be instituted for the sub-watersheds ardbed.uling, Lockhart and Kyle areas
to addres£&. coli from urban runoff, dogs, and septic failure. Hoer the sub-
watersheds of 16 and 18 which include the city@fkhart are not considered to have
high load potential for septic failure, becausertheicipal sewer system serves many of
the households. Best management practices thegssdfitral hogs should be placed in
the sub-watersheds on the southeastern and notdmwesiges of the watershed, were
there is a high degree of riparian corridor.

The comparison of the SELECT results to the acgn@iitoring can be seen in Figure
2.15. For a runoff event to occur the Uhland stahad to have greater than 24.3 mm
rainfall and Lockhart and Luling had to have gre#tan 22.5 and 20.9 mm of rainfall,
respectively. There were four sampling events dleatirred when there was enough
rainfall to produce runoff. One of these samples vaken at the Uhland station, one at
Lockhart station, and two samples were taken aLtiieg station. When the results of
SELECT are compared to the actual monitoring, SELECerestimates the potential

concentration at all four sampling events. Thiefagces the known uncertainties of the
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models, including the exact distribution of the meupopulations. The overestimation
of the concentration is greatest at the UhlandostatThe overestimation of SELECT in
comparison to the actual is a result of incompketewledge of the transport processes.
SELECT assumes that &l coliwill enter the stream. This does not account for
settling, vegetative filtering, temperature or sateactivation and other biological
factors that will reduce the number of viaBlecolithat will enter the stream. In order
to get a more accurate model of thecoli contamination, SELECT should be coupled
with a watershed model that models the transpatteit. col..

Another limitation of this study is that the anasyshows only a snapshot of the
potential. It does not contribute to the temparaderstanding of thE. colisurvival or
movement into the stream. In addition, the pathtsgenvironmental survival and
replication is not modeled. Therefore additiomaderstanding of pathogen fate and
transport is required to further model the systeth greater accuracy (Santhi et al.,
2001).

Current methods such as LDC, bacterial sourceitngcland spreadsheet methods lack
explicit spatial referencing. The SELECT methdls tihis gap by estimating the load
through spatial methods using ArcGIS. It allowsftother watershed modeling using
transport processes models that model fate andpoanof the pathogen contamination.

In addition it provides spatial understanding & tiatershed.

2.5 Conclusions

The SELECT methodology estimates the daily avepagentialE. coli production from
specified sources within the Plum Creek watersHedids in spatially characterizing
the watershed. Both the source type and load guané characterized through
identification of discrete units which have simiftentialE. coliloads. It contributed

to spatial understanding of the most appropriaegrhent of BMPs for efficient
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allocation of resources. This allows for implenation of best management practices
(BMPs) that are suitable for individual areas atiinately results in the increased
efficiency of resource allocation. Furthermores timethod helps in the identification of
locations which benefit from added or increased itoang, which in turn aids in the
understanding dE. coliloads entering the streanihe analysis provides decision
making assistance to watershed protection planldewent and therefore is an

important tool in the TMDL process.
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CHAPTER 11

STASTISTICAL CLUSTERING OF THE WATERSHED TO
SUPPORT WATERSHED PROTECTION PLAN DEVELOPMENT

3.1 Introduction

The cost of a TMDL can range from thousands to evaillion dollars per watershed
(USEPA, 1996). Models are used as an alternatiwaténsive monitoring in order to
save time, reduce cost and provide forecastingWiDIL implementation impacts
(Shirmohammadi et al., 2006). However, the coshofleling to support TMDL efforts
averages 32% of the total costs (USEPA, 1996)s fiépresents a considerable burden
to the stakeholders. In order to reduce the austedfort required to fulfill the goal of
TMDL studies appropriate models must be chosendasehe characteristics of the
watershed. By understanding influence of watersiinedacteristics to the contaminant
load allocations and grouping discrete areas basdtese characteristics, appropriate
efforts can be directed towards targeted areasis Khowledge of the influencing
factors through factor and principal component gsialallows for optimal modeling in
future efforts. Furthermore the watershed canpagially characterized, by cluster
analysis, into groups allowing for targeted effassdetermined by the identified
important factors. Discriminant analysis thensedito check the results of the cluster

analysis so that further refinement of the selegtthbles can improve cluster analysis.

3.2 Statistical Methods

3.2.1 Factor/Principal Component Analysis

Factor and Principal Component Analysis (FAPCAxaaducted in order to redcuce the

number of variables while at the same time retaginive variability of a dataset (Jolliffe,
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2002, pp 111-119). It explores the structure efdhata in order to classify the
relationships between variables. By identifying tiorrelations between different
variables, variables redundant to the end resulteseliminated thus reducing the cost
of data analysis. Factors or principal componamtésderived variables that are
uncorrelated and form the best linear approximatirthe original variables while

producing maximum variance (Helena, 2000).

Factors are found by first finding a matrix of cagace between the original variables.
The eigenvalue of the matrix is equal to the vargaof the factors of the variables. The
sum of the eigenvalues should be equal to the nuofhariables. The process of
extracting factors is also described as variancemmaing rotation of the original
variable space (Alberto et al., 2001). When eualgahe factors to retain, there are two
tests to determine the number of factors retainé first, the Kaiser Criterion states
that only those with an eigenvalue greater thanstioelld be retained (Thyne et al.,
2004). The eigenvalues are plotted in the secoettian, the Scree test. The neck of
the plot or where the value of eigenvalues levehbbne, reflects the number of factors
to retain (Jackson, 1993). Thus the factors withhighest eigenvalues are retained.
Each factor is then a linear combination of theted factor score multiplied by the
original variable (Carlon et al., 2001). The fifattor accounts for a majority of the

variation in the original variance.

3.2.2 Cluster Analysis

Cluster analysis is performed using the factors K¥Means clustering algorithm. The
K-means algorithm iteratively computes a clusterteeand reassigns the cluster
membership based on the shortest Euclidean distdresch member to the cluster
center (Soltani and Modarres, 2006). The numbetusiters is sed priori and the
algorithm terminates when the cluster membershifmnger changes (Jain et al., 1999).

The cluster centers are assigned to maximize thenae between the clusters and the
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algorithm is designed to minimize the variance wite cluster. The clusters are
evaluated using the pseudo F (PSF) statistic, atlbstering criterion (CCC), and
silhouette width. In each of these statisticscallonaximum indicates an appropriate
number of statistics (DeGaetano, 1996).

3.2.3 Discriminant Analysis

The effectiveness of the cluster analysis can latuated by discriminant analysis (DA).
At the same time DA is used to identify the factivat distinguish between the clusters
(Paul et al., 2006). The DA process is the stepaddition of variable with testing of
each variable to make sure it meets certain aitefin F-test is performed at each step
in order to test for the statistical significancehe variable with the highest F-value is
added to the selected variables (Liao et al., 2006&en Wilk's lambda is calculated and
the variable that contributes the least to theralignatory power is removed (SAS,
2003). Wilk’s lambda is the likelihood ratio @iton that is the fractional amount with
cluster variance relative to between cluster vagahat remains unaccounted for after
each variable selected in DA (Paul et al., 2006)e stepwise process stops when all
variables meet the criteria to stop and no othanlbes meet the criteria to enter the
selected set. When all the variables have bebaraiccepted or rejected, then a
discriminant function or a linear combination oétaccepted variable is produced
through linear regression (Liao and Chang, 200%)e linear discriminant function is
then used to create a matrix for evaluation ofeffectiveness of the cluster analysis.
The average squared canonical correlation (ASC@)eiproportion of the variance
accounted for by the accepted variables (Rencl®é2)1

The objective of statistical analysis was to idgrgimilar clusters of the sub-watersheds
of the Plum Creek watershed, Texas, based on émtifidation of distinguishing
variables. The variables that contribute the g@®ab the variability of the dataset are

identified and used to identify clusters of sub-avaheds.
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3.3 Methodology

3.3.1 Overview of Statistical Analysis

Plum Creek watershed was first divided into 35 sabersheds using Soil and Water
Assessment Tool (SWAT) analysis of on land usetamilology, by the Texas A&M
Spatial Sciences Laboratory. The sub-watershexeegions that drain into an

ephemeral or perennial stream (Chapter Il Figuzg 2.

The sub-watersheds are then characterized by tieatyariables that cover percent
land use, average distance to land use, drainatg fand source populations. The data
for each of these variables were normalized togperithe following statistical analysis.
Factor analysis was performed on all 25 variabkectors that were linear combinations
of the normalized variables were identified as gbating most to the variability of the
data set. Scree test and Kaiser criterion were tssddtermine the number of factors to

retain.

The factors of each sub-watershed were then uskemeans clustering. The K-means
clustering algorithm was performed with one to 8&ters. Then the PSF, CCC, and
silhouette width were used to determine the apjpmtgonumber of clusters. With the
cluster membership of each sub-watershed determsteplise DA was performed to
check the clustering results. Based on thesetsgshié discriminating variables
identified by DA were used to re-perform factor lggs and then cluster analysis.

3.3.2 Characterization of Sub-Watersheds

Variables reflecting the percent land use wereutaled using land use classification.
The land use classification was performed by thea$eA&M University Spatial
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Sciences Laboratory, by digitizing the 2004 NAlRi@ehotograph (Chapter Il Figure
2.1). This variable type contributed twelve vakehto the original dataset. Then a
straightline distance was calculated to each typanal use, and an average taken. The
results for each land use were averaged for edzhvatershed.

The drainage factor was calculated by dividingahes of each sub-watershed by the
length of the stream within the sub-watershed. dilea of the sub-watershed was
determined from the output of SWAT, and the lengtthe stream taken from the NHD
dataset (USGS, 2002).

The population of each for each sub-watershed alasilated based on SELECT results
(Chapter Il). The source populations included nemds households using sewers,
number of failing septics, number of dogs, cattfeeep and goats, horses, feral hogs,
and deer. Data was used from the National AgucelBtatistics Survey (USDA, 2002),
U.S. Government Census (USCB, 2000), County SusidiviData, Texas Parks and
Wildlife deer surveys (Lockwood, 2005), and litenat estimates for feral hog densities

(Hellgren, 1997). The populations were evenlyribsted to appropriate land uses.

3.3.3 Normalization of Data

The data set for each variable was tested for ndymesing the Kolmogorv-Smirnov
test (Haan, 2002, pp 213-219). Variables that wetaistributed normally were then
transformed using a Box-Cox transformation (Box @, 1964), with R statistical
software (WU Wien, 2007). Normality was again ¢estising the Kolmogorv-Smirnov
test. Variables that were still not normally distried, were then transformed with a

rank-order transform (Juang et al., 2001).
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3.3.4 Factor Analysis

Using Statistical Analysis Software (SAS), factoabysis was performed on the
normalized data in order to identify the factorattivould affect the load d&.coli from a
sub-watershed. Both the Kaiser criterion and Swsiewere used to determine the

number of factors to retain.

3.3.5 Cluster Analysis

Several techniques were explored to cluster thensmatbrsheds. K-means was
determined to be the most appropriate becausaltfosithm produced the best
clustering results. This method requires thattinaber of clusters be knovenpriori,

so the K-means clustering algorithm was employedihe to 35 clusters and the pseudo
F statistic (PSF), CCC, and silhouette width calted for each algorithm output. Based
on the first local maximum of each statistical tés¢ optimal number of clusters was

determined.

3.3.6 Discriminant Analysis

Discriminant analysis was performed to evaluatecthstering done with cluster
analysis. The cluster membership of the optimatiner of clusters was used with the
original normalized data set. Stepwise DA wasqreneéd. Discriminating variables
were found and the agreement between DA and clastdysis tested. Based on the
percent error between the cluster analysis andiDa#as determined that factor analysis

and cluster analysis should be preformed agairgusity the discriminating variables.
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3.3.7 Duncan’s Multiple Range Test

With the final cluster membership found by re-parimg cluster analysis with the new
factors from only the discriminating variables, @an’s multiple range test evaluated
the similarity of the clusters at an= 0.05, in order to determine the clusters thatewe
statistically different from the other clustersr@gard to each discriminating variable.
Then the means of each variable for each clustes pletted.

3.4 Results

The characteristics of each sub-watershed werendigted through SELECT analysis
(Chapter Il). After testing each variable for natity, the variables were transformed

using either the transform lambda determined by-Box or rank order transform.

Factor analysis was performed on this tranformeédsdd using SAS. Then the number
of factors to retain was determined using the STe=st and Kaiser Criterion. As shown
in the Scree Plot, Figure 3.1, the neck of the eusvapproximately at five factors. This
was in agreement with the Kaiser Criterion (TablB.3 The factors that were retained
are shown in Table 3.1. By examining the cumuéa#igenvalues, these factors reflect
82% of the variability of the dataset. Each facsos linear combination of parameters
for each variable. The parameters that contributsach factor are retained if they are
greater than 0.6. In Table 3.1 these values aterlined. The first factor has
parameters for the percent of low density develaogmmercent of medium density
development, average density to residential lared msmber of households using septic,
and the population of dogs. This first factoreetk low density development. The
second factor is a linear combination of the pojas of cattle, horses, deer, and feral
hogs, thus encompassing animal source populatidhe.third factor includes the
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percent rangeland and the average distance torpadBoth of these parameters reflect
agricultural land use. The fourth factor includles percent riparian corridor and the
average distance to wetlands. The fifth factar imear combination of percent high
density development and the number of householdg gsewer, thus accounting for the

variability due to high density development.

Table 3.1. Factors Retained by Factor Analysis.

Variables Factorl Factor2 Factor3 Factor4 Factor5
Percent Open Developed -0.191 0.400 -0.160 0.274 0.431
Percent Low Intensity Developed 0.602 -0.228 0.235 -0.270 -0.240
Percent Medium Intensity Developed 0.844 -0.244 0.095 -0.054 0.141
Percent High Intensity Developed 0.276 0.122 -0.113 0.044 0.744
Percent Open Water 0.281 0.124 0.508 -0.185 -0.321
Percent Barren 0.039 0.009 -0.094 0.021 0.309
Percent Forest Land -0.412 0.231 -0.087 0.213 0.076
Percent Near Riparian Corridor -0.185 0.388 -0.039 0.800 0.171
Percent Mixed Forest -0.204 0.242 -0.038 0.228 0.174
Percent Rangeland 0.144 0.208 0.833 -0.033 -0.187
Percent Pasture -0.366 0.034 -0.133 0.150 0.081
Percent Cultivated Crops -0.040 -0.467 -0.417 -0.189 0.015
Average Distance to Wetland -0.045 0.376 0.052 0.766 0.139
Average Distance to Forest -0.337 0.464 0.066 0.374 0.086
Average Distance to Residential 0.848 -0.130 0.099 -0.087 0.085
Average Distance to Pasture -0.032 0.224 0.801 0.142 0.132
Drainage Factor -0.102 0.014 -0.038 -0.040 -0.183
Households using Sewers 0.161 -0.022 -0.026 0.301 0.747
Failing Septic Systems 0.873 0.058 0.138 0.003 -0.014
Cattle -0.136 0.874 0.342 0.205 -0.021
Sheep and Goats 0.394 0.147 0.565 -0.301 -0.205
Horses -0.239 0.771 0.052 0.256 0.183
Dogs 0.740 -0.155 -0.123 -0.089 0.232
Deer -0.146 0.772 0.280 0.161 0.055
Feral Hogs -0.052 0.898 0.034 0.138 -0.022
Eigenvalues 8.52 4.34 3.49 1.59 1.17

Cumulative Percent of Variance 36.57 55.20 70.21 77.02 82.04
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The values for each factor were calculated for eathwatershed. These factors were
then used in cluster analysis. Clustering usiegkttmeans algorithm was performed for
k number of clusters from one through thirty-fivEhe appropriate number of clusters
was determined by looking for a local maximum ia gseudo F statistic, cubic
clustering criterion, and the silhouette width.ebch case, a local maximum was found
at four clusters (Figure 3.2 and Figure 3.3). Thisters of sub-watersheds identified by
cluster analysis are shown in Figure 3.4

The sub-watershed cluster membership was thenwisiethe transformed original
dataset in stepwise discriminant analysis. Disicramt analysis identified the
discriminating variables shown in Table 3.2. Faclestep in the process, the variable
with a high F-value was retained. The F-valueet the statistical significance of the
variable to the cluster membership. The Wilk’s teta is the unaccounted for intra-
cluster variance in relation to the inter-clustariance (Paul et al., 2006). The average
squared canonical correlation (ASCC) is the amotimariation in the dataset that is
attributed to the group of selected variables.s@en in Table 3.2, the eight
discriminating variables, selected by the DA altfon, account for 79% of the
variability of the dataset. Using the discrimin&umiction or a linear combination of the
discriminating variables the results of the clustealysis was evaluated. The results of
the cluster analysis and DA are shown in Table 313e highlighted diagonal elements
show where the CA and DA agree (Table 3.3). Fastel one, DA assigned one of the
two sub-watersheds to a different cluster. Thifgd@seven sub-watersheds in cluster
two were reassigned. Two of the 17 sub-watersfreds cluster three and three of the
nine sub-watersheds from cluster four were reassligi®verall, nine of the 35 sub-

watersheds were reassigned, accounting for 35% @rable 3.3).
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Table 3.2. Discriminating Variables Determined hgddiminant Analysis.

Number Wilk's
Step Variables Entered Removed Partial R >  F value Pr>F Lambda  ASCC

1 1 Number of Cows 0.7987 40.99 <.0001 0.2013 0.2662

2 2 Number of Dogs 0.6972 23.03 <.0001 0.0610 0.4928

3 3 Number of Sewers 0.5812 13.41 <.0001 0.0255 0.66
Percent of Mixed

4 4 Forest 0.2383 2.92 0.0514 0.0194 0.7054
Percent of Open

5 5 Developed Land 0.378 5.47 0.0045 0.0121 0.7484
Average Distance

6 6 to Wetlands 0.2228 2.48 0.0831 0.0094 0.7591
Percent Cultivated

7 7 Crops 0.2129 2.25 0.1069 0.0074 0.7714

Percent of Mixed

8 6 Forest 0.1562 1.54 0.2281 0.0088 0.755
Percent High
Intensity

9 7 Development 0.2101 2.22 0.1111 0.0069 0.7615
Percent Med
Intensity

10 8 Development 0.2002 2 0.1405 0.0055 0.788

11 9 Percent Rangeland 0.2744 2.9 0.0568 0.0040 0.8004

Percent High
12 8 Intensity Dev. 0.19 1.8 0.1757 0.0050 0.794

Note. Pr>Wilk's Lambda >0.001 and Pr> ASCC >0.001

89



59

Table 3.3. Errors in Cluster Assignment.

Cluster  Quantity 1 2 3 4 Total

1 Number 1 0 0 1 2
Percentage 50 0 0 50 100

2 Number 1 4 2 0 7
Percentage 14.29 57.14 28.57 0 100

3 Number 0 1 15 1 17
Percentage 0 5.88 88.24 5.88 100

4 Number 1 0 2 6 9
Percentage 11.11 0 22.22 66.67 100

Total Number 3 5 19 8 35
Percentage 8.57 14.29 54.29 22.86 100

Priors 0.25 0.25 0.25 0.25
Error Rate 0.5 0.4286 0.1176 0.3333 0.3449

Based on the error rate of cluster assignment [zt and cluster analysis, the factor
analysis was re-performed using the discriminaviaugables. Following the same
procedure (Scree test Figure 3.5) three factore wetained for cluster analysis (Table
3.4). The cluster membership determined by thed&ms algorithm is shown in Figure
3.6. Three sub-watersheds were reassigned byrfe«péng FA and CA. Then

Duncan’s multiple range test was performed to aeitezd the similarity of the clusters

for each discriminating variable. The resultshe test are in Table 3.5. Clusters that are
grouped together in parenthesis are similar. €tgghat are in a different group are
dissimilar. Then each cluster was given a qualgatanking of high, medium, or low
based on the average mean for that variable withah cluster. The average mean of

each cluster for each variables are plotted inf@@u7 and Figure 3.8.



Scree Plot

2.5+

1.5 4

Eigenvalues

0.5 A

-0.5 -

Number of Factors
Figure 3.5. Three Factors Are Retained Based oSthee Plot Test.

09



Table 3.4. Factors Retained of Discriminating Viales.

Variable Factor 1 Factor 2 Factor 3
Percent Open Developed 0.895 -0.018 -0.140
Percent Medium Intensity

Developed -0.207 0.024 0.798
Percent Rangeland -0.244 0.825 0.043
Percent Cultivated Crops -0.503 -0.671 0.086
Average Distance to Wetland 0.700 0.276 -0.118
Households Using Sewer 0.661 -0.139 0.429
Cattle 0.434 0.648 -0.309
Dogs 0.089 -0.129 0.771
Eigenvalues 2.68 1.64 1.18
Cumulative Percent of Variance 52.53 84.77 107.91

Table 3.5. Cluster Comparison Using Duncan's Migtipange Test.

61

Variable/Cluster 1 2 3 4
Duncan Results

Frequency 8 2 13 12

Percent Open Developed

Land (2)(1,3,4) Low High Low Low

Percent Medium Intensity (2)(1,3,4) Low High Low Low

Pecent Rangeland (1,3,4)(2,3,4) High Medium  Medium Low

Percent Cultivated Crops (2,3,4)(1,2,3) Low High Medium High

Average Distance to

Wetland (1,2,3)(2,3,4) High Medium  Medium Low

Numbers of Sewers (2)(1,3,4) Low High Low Low

Numbers of Cows (1)(3,4)(2,4) High Low Medium  Medium

Numbers of Dogs (2)(1,3,4) Low High Low Low

3.5 Discussion

The eight discriminating variables identified by DAve an ASCC of 0.82 and thus

accounts for 82% of the variability of the origirtidtaset. The four clusters identified

by cluster analysis based on the three factorsattead combination of these

discriminating variables (Table 3.2).
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3.5.1 Cluster One

Cluster one has eight sub-watersheds. These stdvshiads are on the southwestern
and eastern edges of the watershed (Figure 3l6steC one had the greatest mean of
percent open developed land, rangeland, cattledestahce to mixed forest (Figure 3.7).
Duncan’s multiple range test identified cluster’'sreattle population as being
significantly different from other clusters’ catf@pulations (Table 3.5). It would be
most effective for best management practices (BM#&&)cus on addressing loads from

agriculture, such as cattle.

3.5.2 Cluster Two

Cluster two contains two sub-watersheds, 34 an@Fitire 3.6 and Figure 2.2). Both of
these sub-watersheds are urban areas encompdssicigjes of Kyle and Lockhart.
Duncan’s multiple range test identified cluster agbeing distinctly different from the
other clusters, with the characteristics of dogs percent medium intensity
development (Table 3.5). When the discriminatingable cluster means are examined,
cluster two has high mean for medium intensity tgwaent, dogs, and sewers (Figure
3.8). Therefore BMPs should focus on reducing $daoim urban runoff, dogs, and

wastewater treatment plant effluent.

3.5.3 Cluster Three

Cluster three contained 13 sub-watersheds, with sub-watersheds in the center of the
southern portion of the watershed (Figure 3.6)e ®ther four sub-watersheds were
separate and isolated with three placed in thenaortportion and the fourth at the
southern tip of the watershed. Duncan’s multiplege test did not identify any variable
for which cluster three was distinctive from alketbther clusters (Table 3.5). In
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addition, cluster three did not have any variabéans that were the greatest or lowest of
the four clusters (Figure 3.7 and Figure 3.8). @luster means and Duncan’s multiple
range test do not identify any general distinctifiaracteristics that would assist in

decision assistance for identification of BMPs.

3.5.4 Cluster Four

Cluster four has 4 groupings of sub-watershedwu(Ei§.6). Two groups of four sub-
watersheds are in the northern portion of the wae. Two groups of two sub-
watersheds are located in the center and the nertnal edge of the watershed.
Duncan’s multiple range test only identified themher of households using sewers as a
variable that cluster four was significantly di#et from all other clusters (Table 3.5). It
was identified as having low numbers. Cluster floal the highest mean of percent
cultivated crops (Figure 3.7). This distinguishoiwaracteristic of cluster four, does not

assist in decision making or placement of BMPs.

3.5.5 SELECT Validation

When the sub-watersheds were ranked in descendileg oy the SELECT output
(Chapter Il, See Figure 2.13) of average daily poaéload and then compared to the
cluster membership, the clusters and ranks matepeudth the exception of 11 sub-
watersheds (Figures 3.6 and 2.13). This meanghbatatistical analysis and SELECT
matched up for 68.6% of the sub-watersheds. Toereh approximately 69% of the
predictions of potential loads from SELECT can bédated by statistical methods.
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Figure 3.7. Cluster Means of Variables DistinguishRural Sub-Watersheds.
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Figure 3.8. Cluster Means of Variables DistinguighUrban Sub-Watersheds
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3.6 Conclusions

Plum Creek was statistically characterized in otdesluster the sub-watersheds into
groupings of management areas. Four clusters dentified. One cluster was high
density urban, one was high in cultivated cropstlaer with range and forest lands, and
a cluster with no distinguishing characteristidhie discriminating variables that
distinguish the sub-watershed were identified. Véwables of cattle and dog
populations attribute a majority of the variabilitythin the dataset. This information
provides important support for selection of BMMs.addition, it provides direction for

future modeling efforts.

The SELECT method provides decision assistancstédeholders participating in the
TMDL process. It serves as an input for watersinedels that couple the potential
input from SELECT and transport processes. Wheipleal with statistical cluster

analysis, resources for BMPs can be efficientlgcated.
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CHAPTER IV

CONCLUSIONS

4.1 Conclusions

o Spatially Explicit Load Enrichment Calculation T®ELECT) was developed.
This tool was designed to distribute point soua@$ non-point source
populations then calculate the average daily pa@tkBt coliload produced from

each source.

0 SELECT was applied to Plum Creek Watershed in TeX&® results of
SELECT were used to support the development oiviitershed protection plan.
SELECT produced maps of the distribution of nomapsburces and the load
throughout the watershed. In addition, sub-watetsbtals were calculated and

the percentage contribution of each source deteunin

0 The sub-watersheds of Plum Creek watershed weistgtaly characterized and
clustered. This was accomplished through factahyais, cluster analysis, and
discriminant analysis. As a result of these diatikstechniques, the sub-
watersheds were divided into four clusters. Theteariables used to
characterize the sub-watershed was reduced tarsattat captured 80% of the
variability. Furthermore, variables describing dogl cattle population were

found to account for the majority of the varialyinvithin the watershed.
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4.2 Limitations

There are several limitations of SELECT that resthe utility of its application. It
does not account for fate and transport ofEheoli cells or temporal variability. It does
not account for cell death, inactivation, or resgtio. The transport mechanisms that
would carry theE. colifrom deposition to the stream are also not comsdle The
present method assumes that all pote&tiadoli will enter the stream. Therefore
SELECT is only applicable for high flows conditiowgh a runoff event. Other
temporal variations that are not considered aretiamges in the conditions of the
stream that would affect the growth, survival, éraghsport of théz. colito a monitoring

station.

The distribution of non-point sources assumes uamifdistribution to appropriate land
uses. The unknown variability of the distributionits the accuracy of the potential
predictions. In addition, the population dynanoa€she non-point sources are not
considered. The seasonal changes in livestockiatpcates, wildlife population, and
septic failure mechanisms are a few examples @ity which SELECT does not

capture.

4.3 Recommendations

The output of SELECT, information regarding thetriliition of the potentiak. coli
throughout the watershed should be coupled witlatenshed model in order to account
for the transport processes. Future efforts shfmdds on using the SELECT in a
pathogen fate and transport model in an attemptai@ accurately model the actial

coli loading to the stream. Furthermore, SELECT shbeldpplied to other watersheds
and the output evaluated for its utility and accyraBased on these results

improvements can be made. Improvements in dataisitgn should focus on the
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variables that were identified by the statisticadlgtsis as accounting for the greatest

percentage of variability, namely cattle and dogwation distributions.

Overall, further refinement of SELECT should foamsimproved data to increase
accuracy and linking SELCT with a transport proaessiel for a more in depth
understanding of the physical system. These imgm@ants would increase the efficacy
within the TMDL process and the usefulness of thigpot for stakeholder decision
support.

The strength of the combination of SELECT and tlister analysis is that it is a tool
that can guide the stakeholders in determining virétter refinement of data is needed,
where sampling should be implemented, and howffeeteveness of BMPs can be
evaluated. Itis a generic tool that can be appleany watershed by proper selection of
contamination sources. Furthermore, SELECT can ddiffad to also evaluate other
water contaminants, such as nutrients, given tisesafficient information concerning

application and production rates.
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