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ABSTRACT 

 

Spatially Explicit Load Enrichment Calculation Tool and Cluster Analysis for 

Identification of E. coli Sources in Plum Creek Watershed, Texas. (August 2007) 

Aarin Elizabeth Teague, B.S., Texas A&M University 

Co-Chairs of Advisory Committee: Dr. R. Karthikeyan 
        Dr. R. Persyn 
 

According to the 2004 303(d) List, 192 segments are impaired by bacteria in the State of 

Texas. Impairment of streams due to bacteria is of  major concern in several urban 

watersheds in Texas.  In order to assess, monitor and manage water quality, it is 

necessary to characterize the sources of pathogens within the watershed. The objective 

of this study was to develop a spatially explicit method that allocates E.coli loads in the 

Plum Creek watershed in East Central Texas. A section of Plum Creek is classified as 

impaired due to bacteria. The watershed contains primarily agricultural activity and is in 

the midst of an urban housing boom.  

 

Based on a stakeholder input, possible sources E. coli were first identified in the 

different regions of the watershed. Locations of contributing non-point and point sources 

in the watershed were defined using Geographic Information Systems (GIS).  By 

distributing livestock, wildlife, wastewater treatment plants, septic systems, and pet 

sources, the bacterial load in the watershed was spatially characterized. Contributions 

from each source were then quantified by applying source specific bacterial production 

rates. The rank of each contributing source was then assessed for the entire watershed. 

Cluster and discriminant analysis was then used to identify similar regions within the 

watershed for assistance in selection of appropriate best management practices. The 

results of the cluster analysis and the spatially explicit method were compared to identify 

regions that require further refinement of the SELECT method and data inputs. 
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CHAPTER I 
 

 INTRODUCTION 
 
 

1.1 Waterborne Diseases Due to Pathogens 

 

Water is essential to the preservation and flourishing of all life forms, making it the 

fundamental need of every human being.  Only 2.5% of the world’s water resources are 

freshwaters and 30% of this freshwater is physically available for human use in the form 

of groundwater and surface water.  At present, approximately 15% of the world’s 

population live in areas of water stress, struggling to meet their drinking, cooking, and 

sanitation needs (Fenwick, 2006).  The United Nations (U.N.) predicts that the world 

population will grow by 40% to 9.1 billion (UN, 2005) by 2050 resulting in increased 

demand for water.  Moreover, each year approximately 1.1 billion people do not have 

access to safe water and 2.2 million die due to waterborne disease (Mintz et al., 1995). 

Waterborne diseases such as typhoid, cholera, hepatitis, and diarrheal diseases are 

caused by bacteria, viruses, and protozoa. In the United States alone, the estimated cost 

of waterborne illness ranges from $269 to $806 million for medical costs and $40 to 

$107 million in lost work and productivity (Payment and Hunter, 2001).  

 

1.2 Total Maximum Daily Load (TMDL) Program 

 

The United States addresses water quality issues through the Clean Water Act of 1977.  

This legislation authorized the Environmental Protection Agency (EPA) to set water 

quality standards.  The EPA requires water to be monitored for pathogens, nutrients, 

metals, organic contaminants and other physical and chemical characteristics.  Pathogen 

monitoring includes testing for the presence of Escheria coli (E. coli), cryptosporidium, 

giardia, legionella, and enteric viruses (USEPA, 2006).  Each state is obligated to assess  
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the quality of the water every two years and publish a report of all waterbodies that do 

not meet the water quality standards.  The Texas Commission on Environmental Quality 

(TCEQ) does this water quality assessment through the publication of the Texas Water 

Quality Inventory and 303(d) list.  This inventory describes the status of all evaluated 

surface waters and classifies the surface waters into five categories (see Table 1.1).  

Category five has three sub-designations: 

5a)  A TMDL program is underway  

5b)  Water quality standards are reviewed before a TMDL program is 

scheduled 

5c)  Additional data are collected before the water quality standard is 

reviewed or TMDL program scheduled 

A TMDL stands for  Total Maximum Daily Load.  A TMDL program is a process that 

includes a scientific model and implementation plan designed to bring the water body 

into compliance with the water quality standards.  Stream segments that are classified 

into Category 5 are listed on the 303(d) list as impaired water bodies.  The most recent 

five years of monitoring data are used for the classification of streams.  A stream 

segment is classified as impaired due to pathogens if 25% of its samples exceed 394 

cfu/dL or if the geometric mean of the samples exceeds 126 cfu/dL (TCEQ, 2004).  The 

indicator organism for pathogen impairment is E. coli.  

 

Table 1.1.  Categories of Water Quality Inventory 

Classifications  Classification Description 

Category 1 Waterbody has attained the water quality standard and 
its use not threatened 

Category 2 Some of the designated uses are attained; there is 
insufficient data to evaluate remaining uses 

Category 3 There is insufficient data to determine if any of the 
designated uses are threatened 

Category 4 The water quality standard is not attained ; a TMDL 
program is not required 

Category 5 Waterbody is on the 303(d) list and the water quality 
standard is not attained for multiple pollutants 
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Once a stream segment is listed on the 303(d) list, the state is required to establish the 

TMDL.  The TMDL is the total amount of a pollutant that a water body can receive each 

day from contributing sources and still maintain the water quality standard.  First, the 

daily load must be divided amongst the various pollutant sources present in the 

watershed.  Then an implementation plan that addresses decreasing the pollutant load 

from these sources is developed.  The goal of this plan is to achieve the water quality 

standard for the impaired segment.  The steps in the TMDL process include the 

quantification of sources, modeling of existing conditions, and definition of reduction 

activities that will bring an impaired stream into compliance with the state standards 

(USEPA, 1999).  

 

The implementation plan, also called a watershed protection plan (WPP), is defined by 

the EPA as a strategy that provides assessment and management information for a 

geographically defined watershed, including the analyses, actions, participants, and 

resources related to development and implementation of the plan (USEPA, 2005).  The 

developed plan addresses watershed pollution in a holistic manner.  Additionally, it 

involves interested parties or stakeholders in the process of selecting the reduction 

strategies.  These reduction strategies, also known as Best Management Practices 

(BMPs), should be chosen to efficiently and economically address the pollutant sources 

according to local conditions.  

 

According to the USEPA, pathogen contamination is the second most frequent reason 

for waterbody impairment classification on the 303(d) list, comprising over 13% of the 

total impairments (USEPA, 2006).  In Texas, 42% of water bodies did not meet water 

quality standards (TCEQ, 2005).  Of these impaired water bodies, 61% were listed on 

the 303(d) list due to pathogens (TCEQ, 2002).  Out of the impaired water bodies on the 

2006 Texas 303(d) list, 77% of water bodies were impaired due to bacteria (TCEQ, 

2007), an increase from the 2004 303(d) list.  When a waterbody is listed as impaired, it 

impacts the local economy due to loss of the designated use, such as recreation activities.   
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1.3 Characterization of Contaminant Sources 

 

The first step in the TMDL process and development of a WPP for a pathogen-impaired 

stream is to characterize the sources of contamination.  There are both direct and indirect 

methods applied to characterize the pathogen contamination of a stream.  Direct methods 

such as bacterial source tracking and load duration curves use direct monitoring data.  In 

contrast, indirect methods characterize pathogen sources within the watershed using 

census and self-reporting data.  

 

Methods such as bacterial source tracking (BST) are used to identify the sources of E. 

coli within a stream but do not quantify nor spatially characterize the sources.  

Ribotyping identifies unique genetic sequences of host-specific E. coli for development 

of a watershed genetic library.  Then E. coli in the water samples are compared to this 

library for identification of its source.  This technique has demonstrated the ability to 

distinguish between E. coli from humans, cattle, swine, horses, chickens, turkeys, dogs, 

and migratory geese (Carson et al., 2001).  Although this method definitively identifies 

the source of the E. coli, it is highly expensive, and does not allocate the load amongst 

the sources.  

 

Another method to identify the source of E. coli contamination is load duration curve 

(LDC) analysis.  Load duration curves are used to characterize water quality concerns 

and to describe patterns associated with the impairment (Cleland, 2003).  Load duration 

curve methodology is designed to assess the sources of exceedances in relation to stream 

flow conditions.  First the daily flow data is ranked in descending order.  Then, for each 

flow instance, the percent number of days for which that flow was exceeded is 

calculated.  The cumulative frequency curve of the flow data is plotted against the 

percent days exceeded to create the flow duration curve.  Then the load duration curve is 

developed by multiplying the stream flow by the water quality standard for fecal 

contamination with a safety factor of 10%.  This is the maximum load of E. coli the 
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stream can receive and still achieve the water quality standard at different flow 

conditions.  In order to find the instances where exceedances occurred, the actual daily 

loads are calculated by multiplying the measured concentration of E .coli by that day’s 

stream flow.  Then the actual loads are plotted against the load duration curve.  The 

points above the curve are exceedances.  The load duration curve is divided into 

different flow conditions (extremely high flow, high flow, dry, and drought conditions) 

based on the percent days exceeded of the stream-flow.  The flow condition where most 

of the exceedances occur is be used to characterize the source of the exceedances.  This 

is based on the assumption that exceedances occurring in high flows are due to non-point 

sources and exceedances occurring during low flows are due to point sources (Cleland, 

2002).  This method assists in differentiating between point and non-point sources; 

however, it does not give further insight into the sources within each category.  

Furthermore, it does not provide any spatial information about the sources. 

 

1.4 Load Allocation to Various Sources 

 

Indirect methods allocate loads based on modeling the sources of contamination.  

Several load allocation methods have been developed to quantify the sources for the next 

step in the TMDL process.  The EPA has published recommendations for assessing the 

source contributions including identification of sources, characterization of the sources, 

and estimation of the load produced by each source (USEPA, 2001).  Using previously 

published literature values, estimations of the E. coli load relate the source population to 

the number of E. coli excreted per day (cfu/day).   

 

Methods such as Bacterial Load Source Calculator (BLSC), predict the contaminant 

output through estimates of the source populations (Zeckoski et al., 2005), where as 

watershed models simulate E .coli transport through the watershed to the stream based 

on runoff estimates. The BLSC combines spreadsheet calculation of loads based on 

animal inventories and human populations with Hydrologic Simulation Program in 
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Fortran (HSPF) to simulate accumulation and die off of E. coli (Zeckoski et al., 2005).  

The watershed is divided into sub-watersheds and source populations are assigned to 

each sub-watershed. Then HSPF is used to model the dynamics of the E. coli.  Division 

of the watershed into sub-watersheds introduces a spatial component into the analysis.  

However within each sub-watershed the loads are not spatially allocated.  Thus BLSC is 

not spatially referenced throughout the watershed.  

 

Watershed models such as the Soil and Water Assessment Tool (SWAT) and HSPF are 

based on modeling the runoff from a rainfall event.  Based on the runoff through the 

watershed, the amount of contaminant entering the stream is calculated.  E. coli fate and 

transport are determined by environmental conditions.  Watershed models consider the 

spatial and temporal aspects of microbial movement into the stream (Fraser et al., 1998).  

These models need extensive spatially referenced input data describing the potential 

sources (Tian et al., 2002).  

 

1.5 Spatially Explicit Methodology 

 

Spatially explicit analysis is needed to investigate the location of the sources of a 

specific contaminant.  By spatially referencing E. coli sources, the potential load at each 

location in the watershed is determined.  Information of the load distribution throughout 

the watershed can then be combined with watershed modeling to determine the amount 

of E. coli that will be transported by runoff to the stream.  With this information, BMPs 

can specifically target areas that will contribute to stream impairment.  In addition, the 

BMPs are designed to target the prominent sources thus increasing the efficiency of the 

watershed protection plan. Unfortunately, detailed date concerning the distribution and 

population of sources is scarce.  

 

The proposed spatially explicit tool, Spatially Explicit Load Enrichment Calculation 

Tool (SELECT), identifies and distributes the various potential sources of E. coli in the 
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watershed.  The locations of point sources of E .coli such as Wastewater Treatment 

Plants are first identified.  Then the density or total populations of the non-point source 

populations are estimated.  Data pertaining to livestock and human populations can be 

acquired from census inventories.  Wildlife data can be obtained based on wildlife 

studies and local knowledge.  In addition, characteristics of the locations and the 

distribution of theses sources, such as appropriate habitat are incorporated.  These 

characteristics are then used to identify the spatial areas and densities of the point and 

non-point sources.  Application of SELECT is particularly useful in areas with limited 

data concerning the population and location of contaminant sources.  

 

1.6 Statistical Clustering  

 

In order to extend the utility of the spatially explicit methodology, statistically unique 

areas are identified through clustering.  This statistical characterization of the watershed 

supports WPP development and implementation.  Factor and principal component 

analysis examine the different variables associated with the allocation and calculation of 

the load in order to reduce the number of variables, while retaining the variability of the 

data.  This will decrease the cost of data acquisition in the TMDL process.  Then the 

identified factors of variables are evaluated in discriminant analysis to determine their 

ability to distinguish the different clusters identified by cluster analysis.  The unique 

factors identified in this statistical process will be considered and addressed in 

development of the WPP.  

 

1.7 Objectives of the Research 

 

The objective of this research study was to develop a spatially explicit tool that would 

statistically allocate loads from different contaminant sources.  This tool was applied to 

Plum Creek Watershed in Texas to specifically allocate E. coli loadings from various 

contributing sources.  Then the characteristics of the watershed and the allocated loads 
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were statistically analyzed to determine clusters of similar regions and the variables that 

distinguish these clusters.  This holistic process provides decision support for the 

development and successful implementation of the WPP.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  9 

CHAPTER II 
 

 DEVELOPMENT AND APPLICATION OF SPATIALLY EXPLICIT 

LOAD ENRICHMENT CALCULATION TOOL (SELECT) FOR 

IDENTIFICATION OF E. coli SOURCES  

 
 
2.1 Introduction 

 

The Clean Water Act authorizes the United States Environmental Protection Agency 

(USEPA) to set water quality standards.  To ensure compliance with the standards set by 

the USEPA, the Total Maximum Daily Load (TMDL) process was developed.  It 

establishes the allowable pollutant loading for a waterbody based on the relationship 

between pollutant sources and water quality conditions (USEPA, 1991).  The steps in the 

TMDL process include quantification of sources, modeling of existing conditions, and 

the definition of reduction activities that will bring an impaired stream into compliance 

with state standards (USEPA, 1999).  In Texas, surface water quality standards are set by 

the Texas Commission on Environmental Quality (TCEQ) (TCEQ, 1997) as codified by 

the Texas Administrative Code Title 30 Chapter 307.  To assess water quality 

conditions, five years of a stream segment’s monitoring data is reviewed.  The data is 

compared to a standard criterion for support of a particular water use.  The number of 

exceedances, determines whether a stream’s quality fully supports, partially supports, or 

does not support its designated water use.  If a stream segment does not support its 

designated use it will be listed as impaired on a list known as 303(d) list. The 303(d) list 

is published biannually, to report a state’s impaired surface waters. 

 

In Texas 61% of the stream segments listed on the 303(d) list are impaired due to 

pathogens (TCEQ, 2005).  E. coli is used as the indicator organism for pathogens from 

fecal contamination (USEPA, 1986).  Indicator organisms are used because they 

eliminate the need to test water for all potential pathogens.  They should be easy to 
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detect and quantify as well as have similar survival characteristics as the pathogens of 

concern (Zhang and Lulla, 2006).  The TCEQ set an E. coli limit of a geometric mean of 

126 cfu/dL or a single grab sample of 394 cfu/dL (TCEQ, 2004).  For the TMDL process 

addressing pathogen contamination, the USEPA published recommendations to assess E. 

coli source contribution and identification, characterize of the sources, and estimate the 

E. coli load produced by each source (USEPA, 2001).  The location and densities of E. 

coli contributing sources are identified in order to characterize the loads.  

 

The USEPA recommends characterizing non-point sources by multiplying individual 

species’ excretion rates by corresponding species’ population (USEPA, 2001).  Then the 

estimates of non-point sources are combined with calculated point source contributions.  

Previous efforts have automated this non-spatial methodology using a spreadsheet 

program by dividing the watershed into smaller management units or sub-watersheds 

(Zeckoski et al., 2005).  Direct methods estimate the bacterial sources by stream 

monitoring including  ribotyping, which use genetic testing to find the source of the 

bacteria (Carson et al., 2001; Ahmed et al.,  2005).  Load duration curves narrow the 

cause of potential exceedances to either point or non-point sources.  This method uses 

direct monitoring data of the stream flow and bacterial concentrations (Cleland, 2002; 

Bonta and Cleland, 2003).  These two methods do not spatially reference the sources and 

thus limit the application within the Watershed Protection Plan (WPP) because they do 

not provide information regarding the optimal placement of BMPs.  

 

The objectives of this study were to develop a Spatially Explicit Load Enrichment 

Calculation Tool (SELECT) for the characterization of E. coli sources and to apply this 

tool to Plum Creek Watershed in Texas for the TMDL development process.  
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2.2 Plum Creek Watershed 

 

The Plum Creek Watershed is a part of the Guadalupe River Basin and is located in East 

Central Texas.  It encompasses a drainage area of 1028 km2 in the counties of Hays, 

Caldwell, and Travis (Figure 2.1).  Plum Creek has a length of 83 river km and joins the 

San Marcos River and eventually the Guadalupe River.  The watershed ranges in latitude 

from 29º38’33.94”N to 30º5’20.11”N and in longitude from 97º54’36.29”W to 

97º27’13.60”W.  Within the watershed there are several rapidly growing towns 

including Lockhart, Kyle, and Luling.  The populations of Kyle, Lockhart, and Luling 

are 19,335, 12,978, and 5,704 respectively (Office of Texas State Demographer, 2006).  

Land use varies from urban to agriculture and oil field activities.  The northern part of 

the watershed is primarily urban whereas the southern section has crop and animal 

agriculture along with oil wells.  The landscape is characterized as rolling hills of pasture 

and cropland surrounded by scrub oak forest (GBRA 2006).  

 

2.3 SELECT Methodology 

 

The SELECT methodology was developed using ArcGIS 9.0 with the Spatial Analyst 

extension available from ESRI.  This spatially explicit method divides the watershed into 

a raster grid of 30 m × 30 m cells.  For each of the cell locations within the watershed the 

E. coli loads are estimated from the sources that are potentially present at each location.  

Custom land use classification was performed by the Texas A&M University Spatial 

Sciences Laboratory, using the 2004 National Agricultural Imagery (NAIP) aerial 

photographs (Figure 2.2).  The Soil and Water Assessment Tool (SWAT) was used to 

delineate the sub-watersheds within Plum Creek (Figure 2.3).   

 

The SELECT method identifies point and non-point sources throughout the urban and 

rural areas.  The identified point sources are active wastewater treatment plants.  Non-

point sources from urban areas include urban runoff, septic failure, and dogs.  Non-point  
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Figure 2.1. Location of Plum Creek Watershed in Central Texas.  
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Figure 2.2. Land Use Classification of Plum Creek.  
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Figure 2.3. Thirty-Five Sub-Watersheds in Plum Creek 
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sources from rural areas include runoff from livestock, dogs (Schueler, 1999), wildlife 

(Weiskel et al., 1996), and septic failure (Reed, Stowe & Yanke LLC, 2001). Wildlife 

sources can include many types of wild animals and birds.  In this study area the known 

wildlife includes feral hogs, whitetail deer, raccoons, rodents, opossums, and migratory 

birds.  Feral hogs and deer were the only wildlife sources included within SELECT 

because they are the only populations of concern with available data.  Livestock 

production within the study area is primarily cattle, horses, sheep, and goats.  

 

2.3.1 Potential E. coli Load Calculation  

 

Each E. coli source was first distributed to the appropriate locations within the watershed 

and then the load calculated.  The average daily potential load was calculated according 

to USEPA guidance (USEPA, 2001).  The population of sources was multiplied by a 

daily average fecal coliform excretion rate and then multiplied by 0.5. This 50% is a rule 

of thumb conversion that estimates that fifty percent of fecal coliform (FC) are E. coli 

(Doyle and Erikson, 2006).  

 

2.3.1.1 Point Sources 

 

Waste Water Treatment Plants 

Wastewater Treatment Plants (WWTPs) are point sources permitted to discharge treated 

effluent into Plum Creek.  There are thirteen permitted WWTPs in the watershed, 

however only five release effluent into the streams.  Each WWTP is permitted to release 

effluent at the water quality standard of 126 cfu/dL.  The load from each WWTP is 

calculated by multiplying the permitted concentration by the permitted flow in MGD 

(Table 2.1).  
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Table 2.1. Wastewater Treatment Plant Permitted Flow. 
 

 

 

 

 

 

 

 

2.3.1.2 Non-Point Sources 

 

Urban Runoff 

Urban runoff includes E .coli that accumulates on surfaces from various sources.  A 

study was performed by the engineering consultants PBS&J in the nearby city of Austin, 

Texas to measure the E. coli concentrations in runoff from different locations (PBS&J, 

2000).  Based on this data, an empirical relationship was developed to correlate the 

drainage area’s percent impervious cover and the concentration of E. coli in the runoff.  

The percent impervious cover for Plum Creek’s urban areas was determined based on 

the land use classification.   

 

Using the empirical relationship reported by PBS&J (2000) the E. coli concentrations in 

the runoff were calculated.  This concentration was transformed to a load by multiplying 

the concentration by a volume of runoff.  The runoff coefficient was assumed to be one 

across the sub-watershed, meaning that each location contributes runoff equally to the 

stream.  Then the average daily potential runoff was calculated from precipitation 

reported by the National Weather Service for an Austin weather station (NCDC, 2007).  

This rainfall depth was multiplied by the area of each raster cell to calculate the volume 

of water that would drain from each cell.  This volume was then multiplied by the 

calculated runoff concentration for each city, resulting in an E. coli load from urban 

runoff.   

WWTP Permitted Flow (MGD) 
City of Lockhart 1.1 

Lockhart 2 1.5 

Luling North 0.9 

City of Buda 0.3 

City of Kyle 1.5 
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Septic Failure 

Septic systems can contribute pathogens to a water body due to system failure and 

surface or subsurface malfunction (USEPA, 2001).  According to the stakeholder 

feedback to the Plum Creek Watershed Protection Plan Team there are a number of older 

failing systems within the study area however there is no local data concerning the 

distribution or number of failing systems.  Based on a report for the Texas On-Site 

Waste Water Treatment Research Council, it was assumed that regulated septic systems 

would have a failure rate of 12% and unregulated systems would have a 50% failure rate 

(Reed, Stowe & Yanke LLC, 2001).  On-site wastewater treatment systems were 

regulated starting in 1989, while systems installed prior to that remained unregulated 

(Lesikar, 2005). 

 

First, the households that would utilize septic systems were estimated.  Households 

outside of a city limit were assumed to use a domestic septic treatment system.  All 

census blocks that fell within the watershed and were outside of a city limit were 

selected to calculate the number of households using septic systems. Next the number of 

failing systems was calculated.  Subdivision data containing the number of lots and the 

date the subdivision was built was obtained from Caldwell and Hays counties.  Both the 

number of houses inside and outside of a subdivision were estimated.  Based on each 

subdivision’s date built, the number of failing systems in each subdivision was 

calculated.  All households outside of a subdivision were assumed to be non-regulated 

and the number of failing systems calculated accordingly.   

 

The number of systems in each subdivision was checked to ensure that they did not 

exceed the number of households reported in the census.  If the number of households 

found from subdivision data did exceed the number of households reported by the 

census, then the number of households reported by the census was assumed to be equal 

to the number of households in the subdivision. 
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Next the density of failing systems per raster cell was assessed.  The area of each census 

block was found, and the density of failing systems per 900 m2 calculated.  With an 

estimated 70 gal/person/day discharge and a 5 ×106 cfu /dL concentration in this 

discharge, the E. coli load was calculated according to the equation in Table 2.2 and 

parameters converted to appropriate units.  The average number per household is the 

average number of people in each household as reported by the 2000 U.S. Census.  Then 

potential E. coli load was aggregated for each sub-watershed.  

 

 

Table 2.2. Calculation of E. coli Loads from Non-Point Source Populations. 
 

Source Calculation 

Cattle  daycfuCattleEC /10*7.2*# 9=  

Horses  daycfuHorsesEC /10*1.2*# 8=  
Sheep & 
Goats  daycfuSheepEC /10*9*# 9=  

Deer  daycfuDeerEC /10*75.1*# 8=  

Feral Hogs  daycfuHogsEC /10*45.4*# 9=  

Dogs 
 daycfu

Household

dogs
HouseholdsEC /10*5.2*

8.0
*# 9=  

Failing 
Septic 

 
gal

mL

Household

Ave

dayperson

gal

mL

cfux
temsFailingSysEC

2.3758
*

#
*

/

70
*

100

105
*#

5

=  

WWTP 
 

gal

mL

MGD

gal

mL

cfu
GDPermittedMEC

2.3758
*

10
*

100

126
*

6

=  

 

 

Dogs 

Of the many pets kept by owners in Plum Creek, only dogs were considered to 

contribute to urban pet waste.  Dog waste is a significant source of pathogen 

contamination of water resources (Geldreich, 1996).  According to the American 

Veterinary Medical Association, Texans own 5.4 million dogs (AVMA, 2002, pp 1, 2, 

13, 19).  By dividing by the number of households in Texas, the average number of dogs 
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per household was found to be 0.8 dogs per household.  This average is multiplied by the 

number of households in each block to find an estimated number of dogs per census 

block.  Using the area of each census block, a density of dogs per 900 m2 is found.  Then 

the census polygons were converted to a raster and the dog density was assigned to each 

30 m × 30 m cell.  Published values report that dogs produce 5×109  fecal coliform 

organisms per day (USEPA, 2001).  Again the 50% rule of thumb is applied to find the 

E. coli load per day from each household.  The E. coli load was calculated according to 

the equation in Table 2.2.  The potential E .coli load contribution from dogs was 

aggregated for each sub-watershed. 

 

Agriculture 

Rural non-point sources include agricultural range animals and wildlife.  E. coli in 

animal manure can either be directly deposited into the stream or can be carried by 

runoff from the fields to the streams (Benham et al., 2006).  Range animals such as 

cattle, sheep, and goats are primarily kept in pasture and on rangeland.  Horses are 

principally confined to pasture areas.  Watershed areas that were classified as pasture 

and rangelands were selected from digitized land use data and the areas within the city 

limits eliminated.  The animal populations obtained from the United States Department 

of Agriculture (USDA) 2002 Agricultural Census were aggregated per county (USDA-

NASS, 2002).  This data was uniformly distributed across the remaining appropriate area 

of each county.  Based on this distribution, a density of animals per 900 m2 is calculated.  

The appropriate lands in Plum Creek were assigned these densities and multiplied by the 

fecal coliform excretion rate and then converted to E .coli potential (see equations in 

Table 2.2).  Then E .coli loads were aggregated to the sub-watershed level.  

 

Wildlife 

Wildlife also contribute to the E. coli within Plum Creek watershed.  Within the 

watershed major wildlife contributors include deer and feral hogs.  There are many other 

wildlife sources, such as birds, opossums, raccoons, and coyotes.  However, at the time 
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of analysis there was not a reliable method to estimate these populations.  Deer habitat 

includes shrubland and forest areas. Feral hogs primarily use riparian corridors of 

undeveloped land uses.  To distribute the deer population within Plum Creek watershed, 

appropriate land use areas with a continuous area of greater than 20 acres were first 

selected.  Texas Parks and Wildlife Department (TPWD) annual surveys report a density 

of deer per 1000 acres for resource management units (RMUs) (Lockwood, 2005).  Plum 

Creek falls in RMUs 7, 19, and 20.  The total number of deer was calculated based on 

the area of Plum Creek in each RMU.  With the area of appropriate land use within each 

Plum Creek section of the appropriate RMU, a density of animals per 900 m2 is 

calculated.  The RMU vector data was converted to raster format using the same extent 

and cell size as the land use data, with the cells assigned the deer density per 900 m2.  

Then a fecal coliform excretion rate of  3.5x108cfu/day-animal (Zeckoski et al., 2005) 

was multiplied by the deer per unit area in order to then find the E. coli load throughout 

the area (see the equation in Table 2.2).  Then the potential E. coli load was aggregated 

to the sub-watershed level.  

 

Feral hog population densities and distribution data is scarce for Plum Creek watershed.  

Estimates of feral hog densities for the Rio Grande Plains and lower coastal prairie of 

Texas  ranges from 3.2 to 6 hogs/km2  (Hellgren, 1997).  Plum Creek habitat is 

comparable to the landscape of the Rio Grande Plains and lower coastal prairies.  A 

landscape wide density of 5 hogs/km2 is applied to the entire watershed to produce an 

estimate of 5,141 hogs for the entire watershed.  These hogs were then uniformly 

distributed to riparian corridors, or the undeveloped and undeveloped land within 100 m 

to a stream.  Feral hogs utilize nearly all types of landscape, but primarily use forested 

and shrublands adjacent to river bottomlands.  Based on the number of cells with 

appropriate habitat, the density of hogs per cell was determined and multiplied by the 

fecal coliform excretion standard.  This is calculated according to the equation found in 

Table 2.2, where 4.45 x 109 cfu/animal-day is the fecal coliform excretion rate 
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multiplied by the 50% rule of thumb.  Then the distributed E .coli load was aggregated 

to the sub-watershed level. 

 

2.3.2 E. coli Load Aggregation in Sub-watersheds 

 

In order to give the relative ranking of the sources on a spatial basis, all sources were 

summed for each sub-watershed.  This allows for the ranking of total potential E .coli 

load on a spatial basis.  In addition, the sources were ranked by total contribution.  

 

2.3.3 Comparison of Potential E .coli with Actual Monitoring 

 

The results of SELECT were compared to the actual monitoring data collected by 

Guadalupe Blanco River Authority.  First the sampling dates were compared with 

meteorlogical data reported by the National Weather Service.  The dates with a reported 

precipitation event that was large enough to result in runoff were selected. This was 

determined by the NRCS curve number method (Haan et al., 1994, pp 63-65) based on 

the average curve number for each monitoring station.  With the daily precipitation 

depth, a runoff depth was calculated using this method.  Multiplying by the drainage 

area for each monitoring station resulted in a runoff volume.  This runoff volume was 

added to the daily volume of effluent that is discharged into the drainage area for a total 

stream flow volume.  The daily average potential E. coli load was divided by the total 

flow volume to calculate the potential concentration.  This potential concentration was 

then compared to the actual monitored concentration.  It is important to note that 

SELECT results and actual monitoring data can only be compared when there is a runoff 

event.  This is because the E. coli loads estimated from the non-point sources in 

SELECT only enter the streams when there is a runoff event.   
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2.4 Results and Discussion 

 

The results from SELECT for all sources are found in Figures 2.4 through Figure 2.14.  

The larger loads are found in the darker shaded sub-watersheds.  The mid-range loads 

are in the medium shaded sub-watersheds and the lowest loads in the lightest shaded 

sub-watersheds.  

 

2.4.1 Urban Sources 

 

The estimation of potential E. coli loads from WWTPs are found in Figure 2.4.  The five 

sub-watersheds in which the WWTPs are located are highlighted (Figure 2.4).  The 

higher the permitted effluent discharge, the higher the estimated potential load and the 

darker sub-watersheds in Figure 2.4.  Best management practices such as tertiary 

treatment (Godfree and Farrell, 2005) or overflow monitoring , for WWTP would most 

efficiently be designed for the sub-watersheds that fall near the cities of Lockhart and 

Kyle.   

 

The potential contribution from urban runoff is shown in Figure 2.5.  The sub-

watersheds with large septic loads correspond to the high population areas around Kyle, 

Lockhart, and Luling.  The largest loads are estimated for the sub-watersheds near the 

city of Kyle.  Table 2.3 shows sub-watershed 34 (see Figure 2.3), which includes 

portions of the city of Kyle, has higher levels of high and medium intensity development 

and has the largest potential E. coli load (Figure 2.5).  Low intensity developed land is 

defined as having from 20% to 49% impervious cover.  Medium and high intensity 

development are defined as having impervious cover ranging from 50% to 79% and 80% 

to 100%.  The city of Lockhart falls partially into sub-watershed 16 (Figure 2.3), which 

also has high percent land uses classified as high and medium intensity development 

(Table 2.3).  The higher percent of low, medium, and high intensity development (Table 

2.3) centered around urban centers corresponds to large E. coli load allocations (Figure  
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Figure 2.4. Average Daily Potential E. coli Loads Resulting from WWTP in Plum Creek  

      Watershed. 
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Figure 2.5. Average Daily Potential E. coli Load from Urban Runoff. 
 



     

Table 2.3 Breakdown of Sub-Watershed Land Use          

  Percent Land Use in Each Sub-Wwatershed 

Sub-
Watershed  

Dev. 
Open 
Space 

Low 
Intensity 

Dev. 

Med. 
Intensity 

Dev. 

High 
Intensity 

Dev. 
Open 
Water  

Bare 
Land  Forrest  

Riparian 
Forrest 

Mixed 
Forrest  Range Pasture  Crops  

1 1.16 16.37 19.95 0.00 2.28 0.00 0.00 1.56 0.00 50.50 3.95 4.22 
2 1.06 9.22 0.17 0.00 3.21 0.28 0.00 0.50 0.00 68.51 3.53 13.53 
3 1.27 5.24 2.56 2.79 1.14 6.69 0.01 2.57 0.70 52.40 6.79 17.84 
4 1.21 15.75 7.09 5.71 1.64 1.28 0.00 0.42 0.45 42.12 14.84 9.49 
5 0.32 12.07 3.57 0.00 1.49 0.00 0.43 7.44 3.31 46.20 1.87 23.29 
6 0.00 7.01 1.88 0.00 1.86 0.00 0.00 4.59 1.21 56.07 17.71 9.68 
7 0.07 9.23 10.54 0.00 1.79 0.00 0.55 0.66 1.65 57.68 7.95 9.88 
8 0.13 6.04 0.65 0.00 2.58 0.00 0.74 2.43 4.56 59.59 17.36 5.93 
9 0.00 3.66 0.00 0.00 0.03 0.00 0.33 2.09 0.10 4.26 32.25 57.28 
10 0.00 5.65 1.23 0.00 3.78 0.00 1.61 1.68 0.72 28.51 17.81 39.01 
11 0.14 4.57 2.55 0.01 0.25 0.31 0.32 0.52 0.04 9.07 4.47 77.76 
12 0.00 2.55 0.00 0.00 0.19 0.06 0.26 3.20 0.28 12.84 12.09 68.53 
13 0.18 3.12 0.14 0.00 1.97 0.00 1.77 6.06 3.51 47.40 24.58 11.27 
14 0.00 3.87 1.70 0.00 1.42 0.00 14.34 7.21 4.36 41.29 12.14 13.67 
15 0.00 4.45 0.00 0.00 1.01 0.00 8.40 7.68 11.66 42.01 21.17 3.61 
16 1.56 3.04 17.13 2.88 0.51 1.06 3.83 3.64 2.57 16.83 19.19 27.76 
17 0.00 4.05 0.00 0.00 1.06 0.00 2.64 5.66 13.53 55.32 15.38 2.35 
18 0.60 3.48 6.10 2.84 0.45 0.11 2.67 14.26 6.44 25.53 20.96 16.59 
19 0.00 2.61 0.03 0.03 1.05 0.34 9.76 7.75 7.37 32.88 31.13 7.05 
20 0.00 2.12 0.07 0.00 1.34 0.03 12.59 12.34 14.07 37.76 17.55 2.10 
21 0.00 2.21 3.57 3.04 0.79 0.27 4.72 10.37 6.90 19.92 31.80 16.41 
22 0.00 2.41 0.00 0.00 0.76 0.06 4.49 11.53 8.22 43.97 23.65 4.91 
23 0.00 2.10 0.19 0.00 0.50 0.14 6.70 3.53 0.63 32.71 20.27 33.22 
24 0.00 1.13 0.02 0.00 1.41 0.00 7.73 7.30 13.86 34.49 28.70 5.35 
25 0.00 1.15 0.00 0.00 0.64 0.01 25.19 6.50 11.18 28.91 20.27 6.15 
26 0.00 0.81 0.00 0.00 0.41 7.16 19.61 6.29 6.84 15.85 39.56 3.46 

25 



     

 

Table 2.3 Continued.          

  Percent Land Use in Each Sub-Watershed 

Sub-
Watershed  

Dev. 
Open 
Space 

Low 
Intensity 

Dev. 

Med. 
Intensity 

Dev. 

High 
Intensity 

Dev. 
Open 
Water  

Bare 
Land  Forrest  

Riparian 
Forrest 

Mixed 
Forrest  Range Pasture  Crops  

             
27 0.00 0.61 0.00 0.00 0.78 0.33 22.31 7.34 16.20 34.49 17.61 0.35 
28 0.00 1.27 0.00 0.00 0.34 0.94 18.63 10.84 8.85 26.35 18.20 14.58 
29 0.00 0.73 0.00 0.63 1.52 0.22 27.55 5.21 6.29 37.60 14.92 5.33 
30 0.00 1.57 0.00 0.00 1.87 0.00 11.03 8.29 12.19 44.33 19.75 0.97 
31 0.33 1.24 0.12 0.00 0.98 0.04 12.81 8.09 13.64 44.03 18.44 0.27 
32 2.44 1.93 7.71 0.94 0.81 0.54 5.18 6.16 24.13 40.44 9.72 0.00 
33 0.32 1.24 0.32 0.00 0.87 14.11 6.64 13.93 0.10 43.19 18.75 0.53 
34 6.42 8.31 15.82 9.64 1.32 0.34 0.67 2.73 2.41 29.67 9.23 13.44 

35 0.00 1.42 0.09 0.00 1.32 0.09 21.93 11.83 9.78 39.50 13.98 0.08 
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2.5).  Best management practices for urban runoff, such as detention ponds, filter strips, 

and artificial wetlands (Braune and Wood, 1999) should be designed for urban centers 

with high percentages of medium to high intensity development.   

 

The estimated potential E. coli load from septic failure is shown in Figure 2.6. The 

darker sub-watersheds indicate the larger estimated potential E. coli load.  Larger loads 

(2.13 × 1010  to 2.34 × 1012 cfu) are associated with sub-watersheds that correspond to 

the cities of Lockhart and Kyle.  However, large loads are also associated with sub-

watersheds one, two, four, and seven (Figure 2.6).  These sub-watersheds have high 

percentages of low intensity development as shown in Table 2.4.  The area in sub-

watersheds one, two, four, and seven (Figure 2.3) in the north of the watershed have a 

large population reported in the 2000 census, which is not yet incorporated into a city 

(Figure 2.6) and thus not provided with sewer service.  In addition, the average age of 

the subdivisions in sub-watersheds one, four, and seven are all pre-1988.  As a result, the 

septic systems in these sub-watersheds are unregulated.  Therefore BMPs should be 

designed to address regulation of septic systems, focusing on proper operation and 

owner maintenance of the system (Lesikar, 2005) within this region.  

 

The potential E. coli load estimated from dogs is shown in Figure 2.7.  Sub-watersheds 

with large allocations are associated with the cities of Kyle, Lockhart , and Luling.  This 

can be attributed to the large number of households in the urban areas.  In addition, like 

the septic estimation, the sub-watersheds of one, two, four, and seven are estimated to 

have higher potential loads of E. coli.  This area has higher population in comparison to 

the rest of the sub-watersheds, despite the lack of urban centers.  The higher population 

of this area is attributed to urban sprawl from the nearby metropolitan area of Austin.  

Best management practices such as pooper scooper programs and dog owner education 

(Kemper, 2000) should be implemented not only in the cities of Kyle, Lockhart, and 

Luling, but also in the areas where urban sprawl is a concern, primarily in the northern 

portion of the watershed.   
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Figure 2.6. Average Daily Potential E. coli Loads Resulting from Septic Failure. 
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Figure 2.7. Average Daily Potential E. coli Load Resulting from Dogs. 
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2.4.2 Rural Sources 

 

Rural sources include agricultural animals, wildlife, dogs, and septic failure.  The load 

allocations from cattle, sheep and goats, and horses are in Figures 2.8, Figure 2.9, and 

Figure 2.10, respectively.  Greater E. coli loads from cattle are estimated for sub-

watersheds on the southwestern portion of the watershed and along the southeastern 

edge (Figure 2.8).  The sub-watersheds which have larger estimated loads of E. coli from 

cattle have higher percentage of land used for pasture and rangeland (Table 2.3) and 

generally are larger in area.  In contrast the high E. coli potential sub-watersheds for 

sheep and goats are in the north of the watershed (Figure 2.9).  Like cattle, these sub-

watersheds have a high percentage of pasture and rangeland (Table 2.3).  Sub-watershed 

34 is the exception with a low percentage of pasture and rangeland, however its large 

load is due to sub-watershed 34 having a larger area.  The E. coli loads from sheep are 

estimated to be primarily in the northern part of the watershed, whereas the E. coli loads 

from cattle are estimated to be primarily in the southern portion of the watershed 

because according to the USDA census there is greater sheep and goat production in 

Hays and Travis counties and greater cattle production in Caldwell county (USDA-

NASS, 2002).  Potential loads estimated from horses are primarily found in the southern 

and middle section of the watershed (Figure 2.10).  These high potential sub-watersheds 

have large areas of pasture lands (Table 2.3).  When the total loads allocated to cattle, 

sheep and goats, and horses are compared (Figures 2.8, 2.9, and 2.10), the magnitudes 

are quite different.  The total estimated potential loads for cattle (Figure 2.8) and sheep 

and goats (Figure 2.9) are two orders of magnitude larger than the estimated load for 

horses (Figure 2.10).  Because of the higher population of cattle, cattle have a larger 

potential load than sheep and goats.  Agricultural BMPs such as riparian fencing, 

vegetative filter strips, and alternative watering (Anderson and Flaig, 1995), should be 

prioritized in the southern section of the watershed for cattle producers and sheep and 

goat producers in the northern section of the watershed.   
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Figure 2.8. Average Daily Potential E. coli Load from Resulting from Cattle. 
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Figure 2.9. Average Daily Potential E. coli Load Resulting from Sheep and Goats.  
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Figure 2.10. Daily Average Potential E. coli Load Resulting from Horses. 
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The potential E. coli estimated from feral hogs is in Figure 2.11.  As stated in the 

methodology, the feral hogs were distributed to the riparian areas around streams.  Each 

sub-watershed has an estimated potential contribution from feral hogs.  The highest 

potential loads are in areas along the east and south of the watershed (Figure 2.11), 

where there is a larger area of undeveloped land adjacent to a stream.  Feral hogs have 

an estimated potential load (Figure 2.11) that is the same magnitude as cattle (Figure 

2.8) and sheep and goats (Figure 2.9).  Unfortunately, the best management practices to 

address E. coli contamination from feral hogs are quite challenging because fencing and 

other traditional practice are not practical in addressing this source population.  Feral 

hogs are highly invasive and destroy agricultural crops and riparian vegetation (Baron, 

1982).  Therefore landowner education, and population control are the most appropriate 

measures to implement in the southern portion of the watershed.   

 

The potential E. coli load from deer is shown in Figure 2.12.  The south-eastern portion 

of the watershed has the highest loads from deer where there are large sections of range 

and forested areas.  The estimated potential load for deer (Figure 2.12) is two orders of 

magnitude smaller than the estimated load for feral hogs (Figure 2.11).  Wildlife BMPs 

are more efficiently focused on addressing feral hogs than deer.   

 

2.4.3 Potential E. coli Sources Throughout the Watershed 

 

Two sources, septic and dogs are considered to be both urban and rural sources. 

However because these sources are associated with human populations, the larger 

estimated loads will correspond to population centers.  In urban areas, the contributions 

will not only be larger in magnitude but also concentrated to a small area. In the rural 

areas, these sources are diffuse and smaller in magnitude (number of cfu in potential 

load from each sub-watershed).  The WPP should address these sources across the entire 

watershed. In urban areas a total approach can be taken for dogs and septic.  Large 

BMPs that are structural in nature, such as detention ponds that would collect runoff, are  
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Figure 2.11. Daily Average Potential E. coli Load Resulting from Feral Hogs. 
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Figure 2.12. Daily Average Potential E. coli Load Resulting from Deer. 
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efficient in the urban areas due to the magnitude of the load.  For rural areas, homeowner 

education should be implemented to increase septic maintenance, but should focus 

particularly on residences near to streams.  

 

The total estimated sub-watershed loads are shown in Figure 2.13.  The darker sub-

watersheds (4.07 ×1011 to 1.87 × 1012cfu) have the highest estimated potential load.  

These four sub-watersheds each correspond to urban areas, and have area incorporated 

into the cities Kyle, Lockhart, and Luling.  The medium color, or mid range estimated 

loads (1.88 × 1012 to 4.06 × 1012cfu), are highly influenced by regional effects (Figure 

2.13).  Figure 2.13 shows the relative contribution of each source to the total estimated 

load (Figure 2.13) for each sub-watershed.  The mid range load sub-watersheds in the 

northern section of the watershed (Figure 2.13) show mixed influence of septic, dog, and 

agricultural animal sources (Figure 2.14).  The mid range load sub-watersheds in the 

southern and eastern portions of the watershed (Figure 2.13) have a high percentage of 

the load estimated from agricultural animals and wildlife sources (Figure 2.14). 

 

Table 2.4 displays the sub-watersheds with the highest potential E. coli and the high 

potential sources within each of these sub-watersheds.  Table 2.5 displays the five 

sources with the highest total potential and the sub-watersheds that have the highest 

potentials for each of these sources.  Overall, cattle have the highest potential 

contribution, with 41% of the total average potential E. coli load (Table 2.5).  The 

second highest potential daily contributor is urban runoff with 27% of the total potential 

load.  Dogs and feral hogs each have a potential of approximately 10.5% of the total 

potential load and failing septic systems comprise approximately 6.5% of the total.  All 

other sources contribute less than five percent to the total potential load.  It is notable 

that although SELECT did not indicate that WWTPs were a major source of E. coli, 

there is uncertainty as to whether the pathogens in the effluent are viable but non-

culturable and will be reactivated once further downstream in a nutrient rich effluent  
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Figure 2.13. Total Potential Average Daily E. coli Load.  
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Figure 2.14. Comparison of Relative Percent Contributions from Potential Sources in  
          Each Sub-Watershed. 
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(Petersen et al., 2005).  A fate and transport model is needed to model these physical 

phenomena and understand E. coli population dynamics (Steets and Holden, 2003).  

 

 

Table 2.4. High Potential Sources of High Contributing Sub-Watersheds. 
 

  High Potential Contributors 

Rank 
Sub-

Watershed 1 2 3 4 5 
1 34 Urban Dogs Septic Cattle Sheep & Goats 
2 16 Urban Dogs Cattle Septic Feral Hogs 
3 32 Urban Cattle Dog Feral Hogs Septic 
5 18 Urban Cattle Dog Septic Feral Hogs 
4 3 Urban Cattle Sheep & Goats Feral Hogs Dogs 

 

 

Table 2.5. Sub-Watersheds of High Potential Sources. 
 

 Sub-Watershed Contributors 

Source 1 2 3 4 5 
Cattle 33 13 31 35 20 
Urban 34 16 32 18 3 
Dogs 16 34 4 32 18 

Feral Hogs 35 20 33 27 13 
Septic 4 34 1 2 18 

 

 

Although the highest total potential E. coli load is estimated to be from cattle (Table 

2.5), all the sub-watersheds with the greatest total potential have urban runoff as the 

greatest source of potential E. coli (Table 2.4).  None of the top cattle sub-watersheds are 

high potential watersheds (Table 2.5).  Sheep and goats are the other top agricultural 

sources in the high potential sub-watersheds.  In contrast to cattle, the fourth and fifth 

high potential sub-watersheds for sheep and goats (Table 2.5) are also high overall 

potential sub-watersheds (Table 2.4).  The top sub-watersheds for urban runoff and dogs 

(Table 2.5) are also the overall high potential sub-watersheds (Table 2.4).  Of the high 
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potential sub-watersheds for septic failure (Table 2.5), two are also high total potential 

sub-watersheds (Table 2.4).  Therefore it can be observed that where urban runoff is 

present it is the dominant potential source.  Furthermore, although cattle are the overall 

largest contributor, it is a more diffuse source so the effects will not be concentrated at a 

single point.  The sub-watersheds where cattle are the predominant source do not 

contribute similar total potential loads.  

 

The sub-watersheds with high estimated potential E. coli loads are sporadically spatially 

placed throughout the watershed (Figure 2.13).  However, based on the individual source 

analysis, groupings of high potential sub-watersheds can be seen.  Thus BMPs can be 

devised appropriately for each source and targeted towards the spatial placement.  

Agricultural BMPs should be placed in the southern and eastern edges of the watershed, 

where cattle, horses, and sheep and goats are high contributors.  Urban non-point BMPs 

should be instituted for the sub-watersheds around the Luling, Lockhart and Kyle areas 

to address E. coli from urban runoff, dogs, and septic failure.  However, the sub-

watersheds of 16 and 18 which include the city of Lockhart are not considered to have 

high load potential for septic failure, because the municipal sewer system serves many of 

the households.  Best management practices that address feral hogs should be placed in 

the sub-watersheds on the southeastern and northwestern edges of the watershed, were 

there is a high degree of riparian corridor. 

 

The comparison of the SELECT results to the actual monitoring can be seen in Figure 

2.15.  For a runoff event to occur the Uhland station had to have greater than 24.3 mm 

rainfall and Lockhart and Luling had to have greater than 22.5 and 20.9 mm of rainfall, 

respectively.  There were four sampling events that occurred when there was enough 

rainfall to produce runoff.  One of these samples was taken at the Uhland station, one at 

Lockhart station, and two samples were taken at the Luling station. When the results of 

SELECT are compared to the actual monitoring, SELECT overestimates the potential 

concentration at all four sampling events.  This reinforces the known uncertainties of the  
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Figure 2.15. Comparison of the Potential E. coli Concentration with the Actual Monitored Concentration for Samples  
         Occurring During a Runoff Event. 
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models, including the exact distribution of the source populations.  The overestimation 

of the concentration is greatest at the Uhland station.  The overestimation of SELECT in 

comparison to the actual is a result of incomplete knowledge of the transport processes.  

SELECT assumes that all E. coli will enter the stream.  This does not account for 

settling, vegetative filtering, temperature or solar inactivation and other biological 

factors that will reduce the number of viable E. coli that will enter the stream.  In order 

to get a more accurate model of the E. coli contamination, SELECT should be coupled 

with a watershed model that models the transport of the E. coli.  

 

Another limitation of this study is that the analysis shows only a snapshot of the 

potential.  It does not contribute to the temporal understanding of the E. coli survival or 

movement into the stream.  In addition, the pathogen’s environmental survival and 

replication is not modeled.  Therefore additional understanding of pathogen fate and 

transport is required to further model the system with greater accuracy (Santhi et al., 

2001).  

 

Current methods such as LDC, bacterial source tracking, and spreadsheet methods lack 

explicit spatial referencing.  The SELECT method fills this gap by estimating the load 

through spatial methods using ArcGIS.  It allows for further watershed modeling using 

transport processes models that model fate and transport of the pathogen contamination.  

In addition it provides spatial understanding of the watershed.  

 

2.5 Conclusions 

 

The SELECT methodology estimates the daily average potential E. coli production from 

specified sources within the Plum Creek watershed.  It aids in spatially characterizing 

the watershed.  Both the source type and load quantity are characterized through 

identification of discrete units which have similar potential E. coli loads.  It contributed 

to spatial understanding of the most appropriate placement of BMPs for efficient 
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allocation of resources.   This allows for implementation of best management practices 

(BMPs) that are suitable for individual areas and ultimately results in the increased 

efficiency of resource allocation.  Furthermore, this method helps in the identification of 

locations which benefit from added or increased monitoring, which in turn aids in the 

understanding of E. coli loads entering the stream.  The analysis provides decision 

making assistance to watershed protection plan development and therefore is an 

important tool in the TMDL process.  
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CHAPTER III 
 

 STASTISTICAL CLUSTERING OF THE WATERSHED TO 

SUPPORT WATERSHED PROTECTION PLAN DEVELOPMENT 

 
 
3.1 Introduction 

 

The cost of a TMDL can range from thousands to over a million dollars per watershed 

(USEPA, 1996).  Models are used as an alternative to intensive monitoring in order to 

save time, reduce cost and provide forecasting of TMDL implementation impacts 

(Shirmohammadi et al., 2006).  However, the cost of modeling to support TMDL efforts 

averages 32% of the total costs (USEPA, 1996).  This represents a considerable burden 

to the stakeholders.  In order to reduce the cost and effort required to fulfill the goal of 

TMDL studies appropriate models must be chosen based on the characteristics of the 

watershed.  By understanding influence of watershed characteristics to the contaminant 

load allocations and grouping discrete areas based on these characteristics, appropriate 

efforts can be directed towards targeted areas.  Thus knowledge of the influencing 

factors through factor and principal component analysis allows for optimal modeling in 

future efforts.  Furthermore the watershed can be spatially characterized, by cluster 

analysis, into groups allowing for targeted efforts as determined by the identified 

important factors.  Discriminant analysis then is used to check the results of the cluster 

analysis so that further refinement of the selected variables can improve cluster analysis. 

 

3.2 Statistical Methods 

 

3.2.1 Factor/Principal Component Analysis 

 

Factor and Principal Component Analysis (FAPCA)  is conducted in order to redcuce the 

number of variables while at the same time retaining the variability of a dataset (Jolliffe, 



  46   

2002, pp 111-119).  It explores the structure of the data in order to classify the 

relationships between variables.  By identifying the correlations between different 

variables, variables redundant to the end result can be eliminated thus reducing the cost 

of data analysis.  Factors or principal components are derived variables that are 

uncorrelated and form the best linear approximations of the original variables while 

producing maximum variance (Helena, 2000). 

 

Factors are found by first finding a matrix of covariance between the original variables.  

The eigenvalue of the matrix is equal to the variance of the factors of the variables.  The 

sum of the eigenvalues should be equal to the number of variables.  The process of 

extracting factors is also described as variance maximizing rotation of the original 

variable space (Alberto et al., 2001).  When evaluating the factors to retain, there are two 

tests to determine the number of factors retained.  The first, the Kaiser Criterion states 

that only those with an eigenvalue greater than one should be retained (Thyne et al., 

2004).  The eigenvalues are plotted in the second method, the Scree test.  The neck of 

the plot or where the value of eigenvalues level off at one, reflects the number of factors 

to retain (Jackson, 1993).  Thus the factors with the highest eigenvalues are retained. 

Each factor is then a linear combination of the rotated factor score multiplied by the 

original variable (Carlon et al., 2001).  The first factor accounts for a majority of the 

variation in the original variance.  

 

3.2.2 Cluster Analysis 

 

Cluster analysis is performed using the factors in a K-Means clustering algorithm.  The 

K-means algorithm iteratively computes a cluster center and reassigns the cluster 

membership based on the shortest Euclidean distance of each member to the cluster 

center (Soltani and Modarres, 2006).  The number of clusters is set a priori and the 

algorithm terminates when the cluster membership no longer changes (Jain et al., 1999).  

The cluster centers are assigned to maximize the variance between the clusters and the 



  47   

algorithm is designed to minimize the variance within the cluster.  The clusters are 

evaluated using the pseudo F (PSF) statistic, cubic clustering criterion (CCC), and 

silhouette width.  In each of these statistics a local maximum indicates an appropriate 

number of statistics (DeGaetano, 1996).   

 

3.2.3 Discriminant Analysis 

 

The effectiveness of the cluster analysis can be evaluated by discriminant analysis (DA).  

At the same time DA is used to identify the factors that distinguish between the clusters 

(Paul et al., 2006).  The DA process is the stepwise addition of variable with testing of 

each variable to make sure it meets certain criteria.  An F-test is performed at each step 

in order to test for the statistical significance.  The variable with the highest F-value is 

added to the selected variables (Liao et al., 2006).  Then Wilk’s lambda is calculated and 

the variable that contributes the least to the discriminatory power is removed (SAS, 

2003).  Wilk’s  lambda is the likelihood ratio criterion that is the fractional amount with 

cluster variance relative to between cluster variance that remains unaccounted for after 

each variable selected in DA (Paul et al., 2006).  The stepwise process stops when all 

variables meet the criteria to stop and no other variables meet the criteria to enter the 

selected set.  When all the variables have been either accepted or rejected, then a 

discriminant function or a linear combination of the accepted variable is produced 

through linear regression (Liao and Chang, 2005).  The linear discriminant function is 

then used to create a matrix for evaluation of the effectiveness of the cluster analysis.  

The average squared canonical correlation (ASCC) is the proportion of the variance 

accounted for by the accepted variables (Rencher, 1992).   

 

The objective of statistical analysis was to identify similar clusters of the sub-watersheds 

of the Plum Creek watershed, Texas, based on the identification of distinguishing 

variables.  The variables that contribute the greatest to the variability of the dataset are 

identified and used to identify clusters of sub-watersheds. 
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3.3 Methodology 

 

3.3.1 Overview of Statistical Analysis 

 

Plum Creek watershed was first divided into 35 sub-watersheds using Soil and Water 

Assessment Tool (SWAT) analysis of on land use and hydrology, by the Texas A&M 

Spatial Sciences Laboratory.  The sub-watersheds are regions that drain into an 

ephemeral or perennial stream (Chapter II Figure 2.2).  

 

The sub-watersheds are then characterized by twenty five variables that cover percent 

land use, average distance to land use, drainage factor, and source populations.  The data 

for each of these variables were normalized to perform the following statistical analysis.  

Factor analysis was performed on all 25 variables.  Factors that were linear combinations 

of the normalized variables were identified as contributing most to the variability of the 

data set. Scree test and Kaiser criterion were used to determine the number of factors to 

retain.  

 

The factors of each sub-watershed were then used in K-means clustering.  The K-means 

clustering algorithm was performed with one to 35 clusters.  Then the PSF, CCC, and 

silhouette width were used to determine the appropriate number of clusters.  With the 

cluster membership of each sub-watershed determined, stepwise DA was performed to 

check the clustering results.  Based on these results, the discriminating variables 

identified by DA were used to re-perform factor analysis and then cluster analysis.  

 

3.3.2 Characterization of Sub-Watersheds 

 

Variables reflecting the percent land use were calculated using land use classification.  

The land use classification was performed by the Texas A&M University Spatial 
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Sciences Laboratory, by digitizing the 2004 NAIP aerial photograph (Chapter II Figure 

2.1).  This variable type contributed twelve variables to the original dataset.  Then a 

straightline distance was calculated to each type of land use, and an average taken.  The 

results for each land use were averaged for each sub-watershed.  

 

The drainage factor was calculated by dividing the area of each sub-watershed  by the 

length of the stream within the sub-watershed.  The area of the sub-watershed was 

determined from the output of SWAT, and the length of the stream taken from the NHD 

dataset (USGS, 2002).  

 

The population of each for each sub-watershed was calculated based on SELECT results 

(Chapter II).  The source populations included number of households using sewers, 

number of failing septics, number of dogs, cattle, sheep and goats, horses, feral hogs, 

and deer.  Data was used from the National Agriculture Statistics Survey (USDA, 2002), 

U.S. Government Census (USCB, 2000), County Subdivision Data, Texas Parks and 

Wildlife deer surveys (Lockwood, 2005), and literature estimates for feral hog densities 

(Hellgren, 1997).  The populations were evenly distributed to appropriate land uses.  

 

3.3.3 Normalization of Data 

 

The data set for each variable was tested for normality using the Kolmogorv-Smirnov 

test (Haan, 2002, pp 213-219).  Variables that were not distributed normally were then 

transformed using a Box-Cox transformation (Box and Cox, 1964), with R statistical 

software (WU Wien, 2007).  Normality was again tested using the Kolmogorv-Smirnov 

test. Variables that were still not normally distributed, were then transformed with a 

rank-order transform (Juang et al., 2001).  
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3.3.4 Factor Analysis 

 

Using Statistical Analysis Software (SAS), factor analysis was performed on the 

normalized data in order to identify the factors that would affect the load of E.coli from a 

sub-watershed.  Both the Kaiser criterion and Scree test were used to determine the 

number of factors to retain.  

 

3.3.5 Cluster Analysis 

 

Several techniques were explored to cluster the sub-watersheds. K-means was 

determined to be the most appropriate because this algorithm produced the best 

clustering results.  This method requires that the number of clusters be known a priori, 

so the K-means clustering algorithm was employed for one to 35 clusters and the pseudo 

F statistic (PSF), CCC, and silhouette width calculated for each algorithm output.  Based 

on the first local maximum of each statistical test, the optimal number of clusters was 

determined.  

 

3.3.6 Discriminant Analysis 

 

Discriminant analysis was performed to evaluate the clustering done with cluster 

analysis.  The cluster membership of the optimal number of clusters was used with the 

original normalized data set.  Stepwise DA was performed.  Discriminating variables 

were found and the agreement between DA and cluster analysis tested.  Based on the 

percent error between the cluster analysis and DA, it was determined that factor analysis 

and cluster analysis should be preformed again using only the discriminating variables.  
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3.3.7 Duncan’s Multiple Range Test 

 

With the final cluster membership found by re-performing cluster analysis with the new 

factors from only the discriminating variables, Duncan’s multiple range test evaluated 

the similarity of the clusters at an α = 0.05, in order to determine the clusters that were 

statistically different from the other clusters in regard to each discriminating variable.  

Then the means of each variable for each cluster were plotted.   

 

3.4 Results 

 

The characteristics of each sub-watershed were determined through SELECT analysis 

(Chapter II).  After testing each variable for normality, the variables were transformed 

using either the transform lambda determined by Box-Cox or rank order transform.  

 

Factor analysis was performed on this tranformed dataset using SAS.  Then the number 

of factors to retain was determined using the Scree Test and Kaiser Criterion.  As shown 

in the Scree Plot, Figure 3.1, the neck of the curve is approximately at five factors.  This 

was in agreement with the Kaiser Criterion (Table 3.1).  The factors that were retained 

are shown in Table 3.1.  By examining the cumulative eigenvalues, these factors reflect 

82% of the variability of the dataset. Each factor is a linear combination of parameters 

for each variable.  The parameters that contribute to each factor are retained if they are 

greater than 0.6.  In Table 3.1 these values are underlined.  The first factor has 

parameters for the percent of low density development, percent of medium density 

development, average density to residential land use, number of households using septic, 

and the population of dogs.  This first factor reflects low density development.  The 

second factor is a linear combination of the populations of cattle, horses, deer, and feral 

hogs, thus encompassing animal source populations.  The third factor includes the  
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Figure 3.1. Five Factors Retained Based on Scree Plot Test. 
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percent rangeland and the average distance to pasture.  Both of these parameters reflect 

agricultural land use.  The fourth factor includes the percent riparian corridor and the 

average distance to wetlands.  The fifth factor is a linear combination of percent high 

density development and the number of households using sewer, thus accounting for the 

variability due to high density development.  

 

 

Table 3.1. Factors Retained by Factor Analysis. 
 
Variables Factor 1  Factor 2  Factor 3  Factor 4  Factor 5  
Percent Open Developed -0.191 0.400 -0.160 0.274 0.431 
Percent Low Intensity Developed 0.602 -0.228 0.235 -0.270 -0.240 
Percent Medium Intensity Developed 0.844 -0.244 0.095 -0.054 0.141 
Percent High Intensity Developed 0.276 0.122 -0.113 0.044 0.744 
Percent Open Water 0.281 0.124 0.508 -0.185 -0.321 
Percent Barren 0.039 0.009 -0.094 0.021 0.309 
Percent Forest Land -0.412 0.231 -0.087 0.213 0.076 
Percent Near Riparian Corridor -0.185 0.388 -0.039 0.800 0.171 
Percent Mixed Forest -0.204 0.242 -0.038 0.228 0.174 
Percent Rangeland 0.144 0.208 0.833 -0.033 -0.187 
Percent Pasture -0.366 0.034 -0.133 0.150 0.081 
Percent Cultivated Crops -0.040 -0.467 -0.417 -0.189 0.015 
Average Distance to Wetland -0.045 0.376 0.052 0.766 0.139 
Average Distance to Forest -0.337 0.464 0.066 0.374 0.086 
Average Distance to Residential 0.848 -0.130 0.099 -0.087 0.085 
Average Distance to Pasture -0.032 0.224 0.801 0.142 0.132 
Drainage Factor -0.102 0.014 -0.038 -0.040 -0.183 
Households using Sewers 0.161 -0.022 -0.026 0.301 0.747 
Failing Septic Systems 0.873 0.058 0.138 0.003 -0.014 
Cattle -0.136 0.874 0.342 0.205 -0.021 
Sheep and Goats 0.394 0.147 0.565 -0.301 -0.205 
Horses -0.239 0.771 0.052 0.256 0.183 
Dogs 0.740 -0.155 -0.123 -0.089 0.232 
Deer -0.146 0.772 0.280 0.161 0.055 
Feral Hogs -0.052 0.898 0.034 0.138 -0.022 
        
Eigenvalues 8.52 4.34 3.49 1.59 1.17 
Cumulative Percent of Variance 36.57 55.20 70.21 77.02 82.04 
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The values for each factor were calculated for each sub-watershed.  These factors were 

then used in cluster analysis.  Clustering using the K-means algorithm was performed for 

k number of clusters from one through thirty-five.  The appropriate number of clusters 

was determined by looking for a local maximum in the pseudo F statistic, cubic 

clustering criterion, and the silhouette width.  In each case, a local maximum was found 

at four clusters (Figure 3.2 and Figure 3.3).  The clusters of sub-watersheds identified by 

cluster analysis are shown in Figure 3.4 

 

The sub-watershed cluster membership was then used with the transformed original 

dataset in stepwise discriminant analysis.  Discriminant analysis identified the 

discriminating variables shown in Table 3.2.  For each step in the process, the variable 

with a high F-value was retained.  The F-value reflects the statistical significance of the 

variable to the cluster membership.  The Wilk’s lambda is the unaccounted for intra-

cluster variance in relation to the inter-cluster variance (Paul et al., 2006).  The average 

squared canonical correlation (ASCC) is the amount of variation in the dataset that is 

attributed to the group of selected variables.  As seen in Table 3.2, the eight 

discriminating variables, selected by the DA algorithm, account for 79% of the 

variability of the dataset.  Using the discriminant function or a linear combination of the 

discriminating variables the results of the cluster analysis was evaluated.  The results of 

the cluster analysis and DA are shown in Table 3.3.  The highlighted diagonal elements 

show where the CA and DA agree (Table 3.3).  For cluster one, DA assigned one of the 

two sub-watersheds to a different cluster.  Three of the seven sub-watersheds in cluster 

two were reassigned.  Two of the 17 sub-watersheds from cluster three and three of the 

nine sub-watersheds from cluster four were reassigned.  Overall, nine of the 35 sub-

watersheds were reassigned, accounting for 35% error (Table 3.3).   
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Figure 3.2. Division of Watershed into Four Clusters Based on Pseudo F (PSF) statistic and  
        Cubic Clustering Criterion (CCC). 
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Figure 3.3. Division of Watershed into Four Clusters Based on Silhouette Width. 
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Figure 3.4. Preliminary Clusters of Sub-Watersheds in Plum Creek. 



      
    

Table 3.2. Discriminating Variables Determined by Discriminant Analysis. 
 

Step 
Number 
Variables Entered Removed Partial R 2  F value Pr > F 

Wilk's 
Lambda ASCC 

                  
1 1 Number of Cows  0.7987 40.99 <.0001 0.2013 0.2662 
2 2 Number of Dogs  0.6972 23.03 <.0001 0.0610 0.4928 
3 3 Number of Sewers  0.5812 13.41 <.0001 0.0255 0.66 

4 4 
Percent of Mixed 
Forest  0.2383 2.92 0.0514 0.0194 0.7054 

5 5 
Percent of Open 
Developed Land  0.378 5.47 0.0045 0.0121 0.7484 

6 6 
Average Distance 
to Wetlands  0.2228 2.48 0.0831 0.0094 0.7591 

7 7 
Percent Cultivated 
Crops  0.2129 2.25 0.1069 0.0074 0.7714 

8 6  
Percent of Mixed 
Forest 0.1562 1.54 0.2281 0.0088 0.755 

9 7 

Percent High 
Intensity 
Development  0.2101 2.22 0.1111 0.0069 0.7615 

10 8 

Percent Med 
Intensity 
Development  0.2002 2 0.1405 0.0055 0.788 

11 9 Percent Rangeland  0.2744 2.9 0.0568 0.0040 0.8004 

12 8   
Percent High 
Intensity Dev. 0.19 1.8 0.1757 0.0050 0.794 

 
Note. Pr>Wilk’s Lambda >0.001 and Pr> ASCC >0.001 
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Table 3.3. Errors in Cluster Assignment. 
 

Cluster Quantity 1 2 3 4 Total 
              
1 Number  1 0 0 1 2 
 Percentage 50 0 0 50 100 
       
2 Number  1 4 2 0 7 
 Percentage 14.29 57.14 28.57 0 100 
       
3 Number  0 1 15 1 17 
 Percentage 0 5.88 88.24 5.88 100 
       
4 Number  1 0 2 6 9 
 Percentage 11.11 0 22.22 66.67 100 
       

Total Number  3 5 19 8 35 
  Percentage 8.57 14.29 54.29 22.86 100 
       

Priors  0.25 0.25 0.25 0.25  
Error Rate   0.5 0.4286 0.1176 0.3333 0.3449 

 

 

Based on the error rate of cluster assignment between DA and cluster analysis, the factor 

analysis was re-performed using the discriminating variables.  Following the same 

procedure (Scree test Figure 3.5) three factors were retained for cluster analysis (Table 

3.4).  The cluster membership determined by the K-means algorithm  is shown in Figure 

3.6.  Three sub-watersheds were reassigned by re-performing FA and CA.  Then 

Duncan’s multiple range test was performed to determined the similarity of the clusters 

for each discriminating variable.  The results of the test are in Table 3.5. Clusters that are 

grouped together in parenthesis are similar.  Clusters that are in a different group are 

dissimilar.  Then each cluster was given a qualitative ranking of high, medium, or low 

based on the average mean for that variable within each cluster.  The average mean of 

each cluster for each variables are plotted in Figure 3.7 and Figure 3.8.  
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Figure 3.5. Three Factors Are Retained Based on the Scree Plot Test. 
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Table 3.4. Factors Retained of Discriminating Variables. 
 
Variable Factor 1 Factor 2 Factor 3 
Percent Open Developed 0.895 -0.018 -0.140 
Percent Medium Intensity 
Developed -0.207 0.024 0.798 
Percent Rangeland -0.244 0.825 0.043 
Percent Cultivated Crops -0.503 -0.671 0.086 
Average Distance to Wetland 0.700 0.276 -0.118 
Households Using Sewer 0.661 -0.139 0.429 
Cattle 0.434 0.648 -0.309 
Dogs 0.089 -0.129 0.771 
    
Eigenvalues 2.68 1.64 1.18 
Cumulative Percent of Variance 52.53 84.77 107.91 

 

 

Table 3.5. Cluster Comparison Using Duncan's Multiple Range Test. 
 
Variable/Cluster   1 2 3 4 
                                              Duncan Results                                                                
Frequency   8 2 13 12 
Percent Open Developed 
Land (2)(1,3,4) Low High Low Low 
Percent Medium Intensity (2)(1,3,4) Low High Low Low 
Pecent Rangeland (1,3,4)(2,3,4) High Medium Medium Low 
Percent Cultivated Crops (2,3,4)(1,2,3) Low High Medium High 
Average Distance to 
Wetland (1,2,3)(2,3,4) High Medium Medium Low 
Numbers of Sewers (2)(1,3,4) Low High Low Low 
Numbers of Cows (1)(3,4)(2,4) High Low Medium Medium 
Numbers of Dogs (2)(1,3,4) Low High Low Low 

 

 

3.5 Discussion 

 

The eight discriminating variables identified by DA have an ASCC of 0.82 and thus 

accounts for 82% of the variability of the original dataset.  The four clusters identified 

by cluster analysis based on the three factors that are a combination of these 

discriminating variables (Table 3.2).  
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3.5.1 Cluster One  

 

Cluster one has eight sub-watersheds.  These sub-watersheds are on the southwestern 

and eastern edges of the watershed (Figure 3.6).  Cluster one had the greatest mean of 

percent open developed land, rangeland, cattle, and distance to mixed forest (Figure 3.7).  

Duncan’s multiple range test identified cluster one’s cattle population as being 

significantly different from other clusters’ cattle populations (Table 3.5).  It would be 

most effective for best management practices (BMPs) to focus on addressing loads from 

agriculture, such as cattle.  

 

3.5.2 Cluster Two 

 

Cluster two contains two sub-watersheds, 34 and 16 (Figure 3.6 and Figure 2.2).  Both of 

these sub-watersheds are urban areas encompassing the cities of Kyle and Lockhart. 

Duncan’s multiple range test identified cluster two as being distinctly different from the 

other clusters, with the characteristics of dogs and percent medium intensity 

development (Table 3.5).  When the discriminating variable cluster means are examined, 

cluster two has high mean for medium intensity development, dogs, and sewers (Figure 

3.8).  Therefore BMPs should focus on reducing loads from urban runoff, dogs, and 

wastewater treatment plant effluent.  

 

3.5.3 Cluster Three 

 

Cluster three contained 13 sub-watersheds, with nine sub-watersheds in the center of the 

southern portion of the watershed (Figure 3.6).  The other four sub-watersheds were 

separate and isolated with three placed in the northern portion and the fourth at the 

southern tip of the watershed.  Duncan’s multiple range test did not identify any variable 

for which cluster three was distinctive from all the other clusters (Table 3.5).  In  
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Figure 3.6. Final Clusters of Sub-Watersheds in Plum Creek.  
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addition, cluster three did not have any variable means that were the greatest or lowest of 

the four clusters (Figure 3.7 and Figure 3.8).  The cluster means and Duncan’s multiple 

range test do not identify any general distinctive characteristics that would assist in 

decision assistance for identification of BMPs.  

 

3.5.4 Cluster Four 

 

Cluster four has 4 groupings of sub-watersheds (Figure 3.6).  Two groups of four sub-

watersheds are in the northern portion of the watershed.  Two groups of two sub-

watersheds are located in the center and the north central edge of the watershed.  

Duncan’s multiple range test only identified the number of households using sewers as a 

variable that cluster four was significantly different from all other clusters (Table 3.5).  It 

was identified as having low numbers.  Cluster four had the highest mean of percent 

cultivated crops (Figure 3.7).  This distinguishing characteristic of cluster four, does not 

assist in decision making or placement of BMPs.  

 

3.5.5 SELECT Validation 

 

When the sub-watersheds were ranked in descending order by the  SELECT output  

(Chapter II, See Figure 2.13) of average daily potential load and then compared to the 

cluster membership, the clusters and ranks matched up with the exception of 11 sub-

watersheds (Figures 3.6 and 2.13).  This means that the statistical analysis and SELECT 

matched up for 68.6% of the sub-watersheds.  Therefore in approximately 69% of the 

predictions of potential loads from SELECT can be validated by statistical methods.   
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Figure 3.7. Cluster Means of Variables Distinguishing Rural Sub-Watersheds. 
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Figure 3.8. Cluster Means of Variables Distinguishing Urban Sub-Watersheds 
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3.6 Conclusions 

 
Plum Creek was statistically characterized in order to cluster the sub-watersheds into 

groupings of management areas.  Four clusters were identified.  One cluster was high 

density urban, one was high in cultivated crops, another with range and forest lands, and 

a cluster with no distinguishing characteristics.  The discriminating variables that 

distinguish the sub-watershed were identified.  The variables of cattle and dog 

populations attribute a majority of the variability within the dataset.  This information 

provides important support for selection of BMPs.  In addition, it provides direction for 

future modeling efforts.   

 

The SELECT method provides decision assistance for stakeholders participating in the 

TMDL process.  It serves as an input for watershed models that couple the potential 

input from SELECT and transport processes.  When coupled with statistical cluster 

analysis, resources for BMPs can be efficiently allocated.   
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CHAPTER IV 
 

CONCLUSIONS 
 

 

4.1 Conclusions 

 

o Spatially Explicit Load Enrichment Calculation Tool (SELECT) was developed.  

This tool was designed to distribute point sources and  non-point source 

populations then calculate the average daily potential E. coli load produced from 

each source.  

 

o SELECT was applied to Plum Creek Watershed in Texas.  The results of 

SELECT were used to support the development of the watershed protection plan.  

SELECT produced maps of the distribution of non-point sources and the load 

throughout the watershed. In addition, sub-watershed totals were calculated and 

the percentage contribution of each source determined.   

 

o The sub-watersheds of Plum Creek watershed were statistically characterized and 

clustered.  This was accomplished through factor analysis, cluster analysis, and 

discriminant analysis.  As a result of these statistical techniques, the sub-

watersheds were divided into four clusters.  The set of variables used to 

characterize the sub-watershed was reduced to factors that captured 80% of the 

variability. Furthermore, variables describing dog and cattle population were 

found to account for the majority of the variability within the watershed.  
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4.2 Limitations 

 

There are several limitations of SELECT that restrict the utility of its application.  It 

does not account for fate and transport of the E. coli cells or temporal variability.  It does 

not account for cell death, inactivation, or re-growth.  The transport mechanisms that 

would carry the E. coli from deposition to the stream are also not considered.  The 

present method assumes that all potential E. coli will enter the stream.  Therefore 

SELECT is only applicable for high flows conditions with a runoff event.  Other 

temporal variations that are not considered are the changes in the conditions of the 

stream that would affect the growth, survival, and transport of the E. coli to a monitoring 

station.  

 

The distribution of non-point sources assumes uniform distribution to appropriate land 

uses.  The unknown variability of the distribution limits the accuracy of the potential 

predictions.  In addition, the population dynamics of the non-point sources are not 

considered.  The seasonal changes in livestock stocking rates, wildlife population, and 

septic failure mechanisms are a few examples of variability which SELECT does not 

capture.  

 

4.3 Recommendations 

 

The output of SELECT, information regarding the distribution of the potential E. coli 

throughout the watershed should be coupled with a watershed model in order to account 

for the transport processes.  Future efforts should focus on using the SELECT in a 

pathogen fate and transport model in an attempt to more accurately model the actual E. 

coli loading to the stream.  Furthermore, SELECT should be applied to other watersheds 

and the output evaluated for its utility and accuracy.  Based on these results 

improvements can be made.  Improvements in data acquisition should focus on the 
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variables that were identified by the statistical analysis as accounting for the greatest 

percentage of variability, namely cattle and dog population distributions.  

 

Overall, further refinement of SELECT should focus on improved data to increase 

accuracy and linking SELCT with a transport process model for a more in depth 

understanding of the physical system.  These improvements would increase the efficacy 

within the TMDL process and the usefulness of the output for stakeholder decision 

support.  

 

The strength of the combination of SELECT and the cluster analysis is that it is a tool 

that can guide the stakeholders in determining what further refinement of data is needed, 

where sampling should be implemented, and how the effectiveness of BMPs can be 

evaluated.  It is a generic tool that can be applied to any watershed by proper selection of 

contamination sources. Furthermore, SELECT can be modified to also evaluate other 

water contaminants, such as nutrients, given there is sufficient information concerning 

application and production rates.  
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