

FRAMEWORK FOR A

VISUAL ENERGY USE SYSTEM

A Thesis

by

CHRISTOPHER ERNEST MCDONALD

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2007

Major Subject: Architecture

FRAMEWORK FOR A

VISUAL ENERGY USE SYSTEM

A Thesis

by

CHRISTOPHER ERNEST MCDONALD

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Charles Culp
Committee Members, David Claridge
 Vinod Srinivasan
Head of Department, Mark Clayton

August 2007

Major Subject: Architecture

 iii

ABSTRACT

Framework for a

Visual Energy Use System. (August 2007)

Christopher Ernest McDonald, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Charles Culp

The goals of this research include developing and identifying software technologies,

which facilitate the use of buildings described in Building Information Modeling (BIM)

tools in both a simulation and visualization. The study focused on the development of a

tool to fulfill the visualization needs of a Visual Energy Use System. To accomplish this,

the study identified an open BIM file standard, the Industry Foundation Classes (IFC).

The study also identified a video game based 3D virtual environment, the Doom 3

Engine. A tool developed during the study, IFCtoMAP, converts IFC data into the .MAP

file format understood by the Doom 3 Engine. Finally, the study identified the IFCtoIDF

utility, which translates IFC data into a format understood by the building energy

simulation program EnergyPlus.

Data from the Building Information Modeling tool Revit Building exports to the .IFC

file format, which in turn drives the two conversion utilities IFCtoMAP and IFCtoIDF.

The output of the IFCtoIDF tool consists of an .IDF file that EnergyPlus uses to perform

an energy simulation. The output of the IFCtoMAP tool consists of a .MAP file, which

the Doom 3 game engine uses to display three dimensional first person perspective

visualization.

 iv

The result of the study was the successful creation of an automated tool that converts

building geometry found in .IFC files into the .MAP file format understood by Doom 3

game engine. This document details the methods employed by the IFCtoMAP software

along with a brief discussion of the IFCtoIDF conversion utility.

 v

To my family for

all the loving support.

 vi

ACKNOWLEDGMENTS

I take this opportunity to thank the chair of my advisory committee, Dr. Charles Culp,

for his time and assistance over the last few years. I am also grateful to my committee

members, Dr. David Claridge and Dr. Vinod Srinivasan, for their assistance in creating

this document. A special thanks to Yoshinobu Adachi of SECOM Ltd. for both the

IFCsvr ActiveX object and answering questions about IFC. Finally, I would like to thank

my parents for the unfaltering support they have given to me over the years.

 vii

TABLE OF CONTENTS

Page

1 INTRODUCTION ... 1

2 PURPOSE AND OBJECTIVES .. 3

3 LITERATURE REVIEW... 5

3.1 Introduction to Computer Building Energy Simulation 5
3.2 Developments in the Acquisition of Building Geometry 6
3.3 Manual Simplification .. 6
3.4 Semi-Automated Data Extraction... 7
3.5 Developments in Building Energy Simulation... 9
3.6 Fundamental Information Visualization Concepts... 12
3.7 Emerging Trends in Architectural Visualization.. 15
3.8 Game Architecture.. 16
3.9 Game Engine Genres .. 16
3.10 Game Engine Availability .. 17
3.11 Game Modding... 18
3.12 Summary... 19

4 PROPOSED RESEARCH METHODOLOGY.. 20

5 SOFTWARE BACKGROUND ... 21

5.1 Introduction .. 21
5.2 Doom 3 Engine Considerations.. 25
5.3 Developing Software with IFC... 27
5.4 Doom 3 Engine .MAP File Format .. 29
5.5 Summary... 33

6 VISUALIZATION METHODS: IFCTOMAP.. 34

6.1 Introduction .. 34
6.2 Internal Data Structures .. 40
6.3 IFC File Loading .. 43
6.4 Conversion from IFC to .MAP... 61
6.5 Writing the .MAP File Format ... 86
6.6 Summary... 89

 viii

Page

7 SIMULATION METHODS... 91

7.1 Introduction .. 91
7.2 Energy Plus... 93
7.3 Summary... 97

8 RESULTS .. 98

9 CONCLUSIONS AND RECOMMENDATIONS... 109

9.1 Further Work .. 111

REFERENCES ... 114

APPENDICES .. 123

VITA... 141

 ix

LIST OF FIGURES

Page

Figure 2.1 Framework for a Visual Energy Use System ...4

Figure 3.1 Information Visualization Pipeline33 ..13

Figure 5.1 Example of Concave and Convex Shapes ..26

Figure 5.2 Example of Line Intersections of Concave and Convex Shapes....................27

Figure 5.3 brushDef3 Code Representation of a 128x128 Unit Cube31

Figure 5.4 Top Down XY Representation of a 128x128 Unit Cube in D3Editor32

Figure 5.5 brushDef Components of a Single Plane..33

Figure 6.1 IFCtoMAP Design Intent ...36

Figure 6.2 IFC File Reading ..37

Figure 6.3 Methods for Geometric Transformation Left, .MAP File Writing Right.......38

Figure 6.4 Internal Data Structures..38

Figure 6.5 Diagram of Major Component Classes ..39

Figure 6.6 Building Class Diagram ...40

Figure 6.7 GeoObjects Class Inheritance Diagram ..42

Figure 6.8 File Reading: IFCLoader Class Diagram ...44

Figure 6.9 IFCtoMAP Screenshot Showing the ‘Select IFC Input File’ Dialog44

Figure 6.10 User Feedback Dialog ..45

Figure 6.11 File Reading: IFCLoader Class Implementation..47

Figure 6.12 IFCExplorer Tree View of a Common IfcWallStandardCase Entity...........49

Figure 6.13 Cross Product of Z and X Which Yields Y ..51

Figure 6.14 Example of Local Relative Placement ...54

 x

Page

Figure 6.15 IFCExplorer Tree View of IfcProductDefinitionShape55

Figure 6.16 IFCExplorer Tree View of IfcRectangleProfileDef57

Figure 6.17 IFCExplorer Tree View of a Boundary Representation Object58

Figure 6.18 IFCExplorer Tree View of a IfcFurnishingElement Object61

Figure 6.19 Closed Polygon Loop Representation of a Wall ..63

Figure 6.20 Vector Projection of Point P onto Vector
LV ...65

Figure 6.21 Determining the Sign of Distance ..67

Figure 6.22 Constrained Triangulation Example...70

Figure 6.23 Line Intersection Test ...72

Figure 6.24 Extruded CDT IfcArbitraryClosedProfileDef ..74

Figure 6.25 Example of Two Possible Hole Types ...75

Figure 6.26 Labeled Exterior Edge and Hole Points ...76

Figure 6.27 Example of Injecting a Hole into an Exterior Edge77

Figure 6.28 Minimizing Wall Points ...79

Figure 6.29 XY View of Minimized Wall Points ..80

Figure 6.30 Example IfcRelVoidElement(s) such as Doors and Windows.....................80

Figure 6.31 Projection of Two Lowest Points of IfcRelVoidElement on to Wall...........81

Figure 6.32 Projection of H0 and H1 on Line Segment 2-3 ...81

Figure 6.33 Three Segments Created by Wall Opening. ...82

Figure 6.34 Left: Door Extrusions, Right: Window Extrusions83

Figure 6.35 Door in Red, Seen When Wall Width Is Thicker than Door Width.............84

Figure 6.36 Doors Rotate Clockwise About Point H0 ...84

 xi

Page

Figure 6.37 Doors: Single on the Left, Double on the Right...85

Figure 6.38 Simple Generic .MAP File ...86

Figure 6.39 Example Light Entity ..87

Figure 6.40 Example func_rotatingdoor Entity ...88

Figure 6.41 Example func_static Entity..89

Figure 7.1 Three Representations of Langford Building B: Left Revit Building,95

Figure 8.1 Arial View of Architecture Building B on Campus98

Figure 8.2 Langford Building B Floor Plans ...100

Figure 8.3 Langford B Lobby: Virtual Representation on Top, Actual on Bottom.........102

Figure 8.4 Woodshop Office: Virtual Representation on Top, Actual on Bottom..........103

Figure 8.5 Auditorium: Virtual Representation on Top, Actual on Bottom....................104

Figure 8.6 Stairs: Actual on Left, Virtual Representation on Right105

Figure 8.7 Upstairs Hallway: Actual on Left, Virtual Representation on Right106

Figure 8.8 Round Off Errors..107

Figure 8.9 Backwards Triangles ..108

Figure 9.1 Framework for a Visual Energy Use System ...110

 xii

LIST OF TABLES

Page

Table 5.1 Doom 3 System Requirements ..25

Table 5.2 Doom 3 Engine Map Files ...29

Table 5.3 .MAP File Components ...30

3Table 6.1 Supported IFC Object Types/Building Elements ..48

Table 6.2 IFC Representation of IfcRectangularProfileDef ..62

Table 6.3 Intermediate Representation of IfcRectangularProfileDef62

Table 6.4 Example Constrained Triangulation Table of Points.......................................69

This thesis follows the format of Computer.

1

1 INTRODUCTION

According to the Annual Energy Review of 2004, the combined electrical energy

requirements for cooling and heating in commercial buildings in the U.S. reached 948

trillion BTUs a year in 19991. This study identified space conditioning as the single

largest consumer of electricity in commercial buildings. Determining the amount of

energy consumed becomes an important task for many applications, including building

design and operational energy conservation. One method of determining the energy

consumed by a building uses computer based energy simulation. Hui describes energy

simulation as a means to “analyze the energy performance of a building to gain a better

understanding of the relationship between design parameters and the energy use

characteristics of the building”2.

Determining the energy consumption of a building can be accomplished using a

number of methods. The most common method uses computer based modeling to

simulate the energy consumption. The most commonly used energy simulation programs

have been those supported by the US government in the 1960s and 1970s. Kusuda

explains that these programs have their roots in cold war studies into the “thermal

environment in fallout shelters by an hour by hour simulation of heat and moisture

transfer process between human occupants and shelter walls under limited ventilation

conditions”3. These programs require a user to have advanced knowledge in the fields of

building Heating Ventilation and Air Conditioning (HVAC) equipment and software

programming to prepare and understand the output from a simulation.

2

According to Hong, simulation programs of the 1970s and 80s required mainframes

to run the software which limited their use to “research laboratories and [were] rarely

employed in building design practice because of the level of difficulty and high cost

involved in their use”4. While there a need exists for building designers and engineers to

improve their understanding of the buildings they design and operate, the complexity of

simulation programs has continued to limit the user base. According to the Crawley,

Donn, Hui, and Lam surveys; building designers and engineers want to improve building

energy simulations by making use of existing Computer Aided Drafting (CAD) design

tools, thereby reducing the complexity of simulation preparation and offering a more

intuitive and visual correlation between the results and the built environment2, 5-7.

As the computing resources for running the simulations have become economically

accessible, so also have the resources for visualizing results and linking CAD tools to the

simulation. This work will be a significant first step in the direction of bringing together

CAD tools and energy simulation results in a three dimensional virtual environment4, 8-

10. Although the underlying technologies for each aspect of this project have existed

since 1999, the software developed for this thesis is unique for the Architecture,

Engineering, and Construction (AEC) industry. To date, published reports of software

technology developed for this thesis have not been found in any of the searches in the

journals cited in the References section.

3

2 PURPOSE AND OBJECTIVES

The objectives of this research include identifying and developing software

technology, which provides a link between a building’s geometry from an object

oriented CAD file with the calculation of a simplified energy simulation of the same

building represented in the CAD file. The results will then be displayed visually in a

spatially relevant virtual environment.

To accomplish these objectives, the author performed the following tasks:

1. The author selected an open CAD file standard to provide the geometry data for

the visualization and simulation.

2. The author selected a video game based 3D virtual environment to display the

building’s geometry and the results of the energy simulation.

3. The author identified software simulation technology that calculates the energy

consumption of a building using the same geometry as used in both the CAD file

and the 3D virtual environment.

4. The author developed software that represents the technology framework for

extracting selected information from the CAD files and transforming that

information into a format usable by the 3D virtual environment and energy

simulation.

 This research will develop and identify the software requirements to link a

simulation and a visualization together using a single CAD data source. Figure 2.1

illustrates the intended flow of information from the Building Information Model

(BIM) software through the CAD file standard into both the 3D virtual environment

4

and the energy simulation software. The sum of building information model coupled

with the visualization and energy simulation components represent the Framework

for a Visual Energy Use System.

BIM Software

3D Virtual

Environment

Energy

Simulation

CAD

StandardBIM SoftwareBIM Software

3D Virtual

Environment

Energy

Simulation

CAD

Standard

Figure 2.1 Framework for a Visual Energy Use System

5

3 LITERATURE REVIEW

The review of related literature included the following categories: 1) computer based

building energy simulation; 2) fundamental information visualization concepts; and 3)

emerging trends in architectural visualization. The primary sources for this literature

survey included books, journals, conference proceedings, and similar publications from

both the building industry and computer science communities.

3.1 Introduction to Computer Building Energy Simulation

Methods of evaluating energy consumption in buildings have evolved and have

included simplified hand calculations, measuring the usage of each component of a

system over time, and computer based modeling. The first method, simplified hand

calculations, requires training and produces a broad range of estimated loads and

consumption. However, Clarke states that “calculations are based on analytic

formulations that embody many simplified assumptions,” which render the results

difficult to translate into real world operational changes to improve building efficiency11.

The second method, measuring the usage of each component of a system over time,

produces the most numerically accurate estimate of energy consumption; however, it

also requires the most expense. Installing monitoring systems, and gathering and

compiling data requires time and significant capital investment.

The third method, computer based modeling, simulates the energy consumption of a

building. This method avoids the simplifying assumptions used in manual calculations

and the time and expense of costly monitoring systems.

6

3.2 Developments in the Acquisition of Building Geometry

Multiple contemporary approaches to acquiring building geometry for energy

simulations and visualizations include manual simplification of a building into abstract

zones and scanning CAD files with proprietary software. According to Bazjanac, when

using the current generation of energy simulation programs, up to 80% of the time can

be required for the preparation of the building geometry and defining the building’s

zones12. Building geometry involves the physical layout and materials of the building as

they relate to energy simulation. Waltz explains that building elements that partition

zones such as walls, windows and doors (both exterior and interior) have importance for

simulation purposes, whereas adiabatic walls within a single zone have no impact on an

energy simulation13. For the purposes of this research, adiabatic walls and doors between

zones will be taken into account, as they provide for spatial context within the

visualization.

3.3 Manual Simplification

Bazjanac describes the first method of acquiring building geometry, manual

simplification of a building geometry into abstract zones as the “standard practice in

preparing energy simulation input typically [involving] repetitive manual operations that

in essence amounts to duplication of existing data” 12. This method of acquiring building

geometry requires the user to create an artificial representation of the building and does

not make use of available geometry information in CAD files. A number of applications

available have graphical user interfaces to facilitate this process and reduce the

7

simulation preparation time for government sponsored simulation software such as

DOE-2.0, BLAST, or Energy Plus (EP). One such program known as EP-Quick (EP-Q)

uses simple templates for the shape and zone layout of a building to generate the input

files for Energy Plus14. EP-Q, as a typical example of geometry input file generation

tools, allows up to 24 different building spaces / zone layouts. These tools let the users

quickly generate building geometry, but introduce a layer of abstraction between the

resulting calculations and the actual building. This additional layer of abstraction

requires the interpretation of calculated results, rather than visually aligning these results

to the building being simulated.

3.4 Semi-Automated Data Extraction

The second method for acquiring building geometry does not require the re-creation

of information, but rather uses existing CAD building geometry information to generate

the input geometry description for an energy simulation program. Bazjanac explains that

the level of effort required for the preparation of a building energy simulation input file

can be reduced by a factor of four through the use of semi-automated tools12. One factor

slowing the adoption of this method in general practice centers on the unique file format

generated by each CAD software package. These unique file formats restrict the use of

analysis tools and require re-creation or translation of the data when moving from one

building software package to another. Chaisuparasmikul laments that it “is inevitable in

the traditional design process to recreate the same building model as much as seven or

eight times”15. In the past, translation programs convert data from one application’s

8

unique file format to another. These interface programs add development cost and

require commitment to a particular software package.

The International Alliance for Interoperability (IAI) has developed a building

information model (BIM) known as the Industry Foundation Classes (IFC) standard for

the exchange of building information. This includes building geometry and building

systems16. The IAI formed in October 1995 when 12 U.S. based companies joined

together to address the need for interoperability in the Architecture, Engineering, and

Construction (AEC) industries. The first standard published in 1997 had limited support

for some processes in the AEC community. Because of the release of the IFC2.x model,

the Building Lifecycle Interoperable Software (BLIS) consortium formed to assist in the

creation of software data exchange interoperability. In November 2002, the International

Standards Organization (ISO) adopted the IFC 2.x standard as the publicly available

specifications under the title ISO/PAS 1679317. The ISO-PAS designation represents and

important milestone for IFC because it implies a level of maturity and stability of the

model that justifies implementation by commercial companies. According to

Chaisuparasmikul, in the United States, the General Services Administration (GSA) and

other government agencies require the use of BIM solutions for work done at their

facilities15. At present all major BIM-CAD software developers (e. g. Autodesk, Bentley,

GraphiSoft) offer a minimum of IFC core module support, and a few energy simulation

tools (e. g. Energy Plus) offer limited IFC interoperability18-24.

9

3.5 Developments in Building Energy Simulation

Haberl explains, that the first generation of Computer based Building Energy

Simulations (CBES) were developed in the mid-1960s when a group of mechanical

engineers formed the Automated Procedures for Engineering Consultants, Inc (APEC)25.

APEC created a CBES known as the APEC Heating and Cooling Peak Load Calculation

(HCC) Program26. APEC designed HCC to calculate peak heating and cooling loads and

air quantities for the sizing of building HVAC equipment. In 1967 a number of the

APEC and American Society of Heating, Refrigeration and Air Conditioning Engineers

(ASHRAE) members formed the ASHRAE Task Group on Energy Requirements,

TGER27. TGER published procedures for determining heating and cooling loads for

computerized energy calculations in 1969. These procedures included simulating

dynamic heat transfer through building envelopes, and calculating psychometric

properties and algorithms for the simulation of both primary and secondary HVAC

system components.

Widespread use of computer based building energy performance simulation

programs grew out of the significant increase in computational power and the threat of

an Arab oil embargo in the early 1970s28. Early development of CBES received financial

support, primarily from the government, in particular the United States Post Office

Department, the Department of Energy, and the Department of Defense. The first such

public domain energy analysis program became known as the Post Office Program. The

Post Office Program later merged with the National Bureau of Standards Load

Determination (NBSLD) program29. NBSLD, originally designed for the cooling load

10

analyses of a room for the design-cooling day with a clear sky condition, was also the

first program to couple a space heat gain/heat loss with the cooling/heating capacity of a

building’s HVAC systems through the heating/cooling coils.

The program generated from the union of the Post Office program and NBSLD

released by the National Aeronautics and Space Administration (NASA) known as

NASA’s Energy Cost Analysis Program, or NECAP30. In 1976, the California Energy

Commission, along with the Energy Research and Development Administration (ERDA,

which later became the Department of Energy), funded the collaboration between

Lawrence Berkeley Laboratory, the Los Alamos Scientific Laboratory, the Argonne

National Laboratory, and the Computational Consultants Bureau to improve NECAP.

The improved version of NECAP released as CAL-ERDA in recognition of the funding

organizations. At the same time, another variant existed based on NBSLD, known as

Building Loads Analysis and System Thermodynamics (BLAST). The release of CAL-

ERDA and BLAST marked the beginning of the second generation of CBES. Shortly

after the ERDA became the U.S. Department of Energy in 1978, CAL-ERDA and

CAL/CON, a variant of CAL-ERDA, were merged into DOE-131. In 1979, releases of

DOE-2 and BLAST 2.0 became available.

The second generation of computer based energy simulators in the 1980s saw an

explosion of proprietary energy analysis programs tailored for use in large commercial

and residential buildings11. First generation CBES required mainframes to run the

software, whereas second generation programs were developed to run on the emerging

workstation and micro Personal Computer (PC) technologies. However, most of these

11

programs were neither easy to use nor well documented. In addition, the programs were

still very expensive. This resulted in many of these proprietary systems not surviving

into the third generation.

With the advent of improved user interfaces for the PC such as Windows in the late

1980s, the third generation of computer based building energy simulation programs also

achieved the Graphical User Interface, or GUI11. The Department of Energy developed a

directory of over 200 tools which specialize in everything from day lighting calculations

to whole building load and analysis tools32.

This thesis work reviewed feedback from users of contemporary tools. In a survey of

241 architectural and engineering firms conducted in the United States in 1997, Donn

reported a low usage of simulation in the design process6. The results in the United

States were later confirmed by a survey of 584 firms in Singapore by Lam in 1999,

which found that only 1.6% of architecture firms and 46.4% of engineering firms used

performance-based energy and HVAC sizing simulations tools7. Of the firms that used

the various software tools, none of the architects who responded had training regarding

their use. Among the reasons for not using the software, those surveyed cited: the

extensive data input requirements, the lack of CAD design tool integration, and the

disconnection between results and the real buildings. Both surveys indicate that building

designers and engineers want building energy simulations tools to use existing CAD

design tools, to simplify simulation preparation, and have a more intuitive and visual

correlation between the results and the built

environment2, 5-7.

12

When choosing a method for simulation, three options will be considered: (1) the

creation of a new energy simulation calculation tool that would be linked to 3D virtual

environment; (2) the creation of calculations from within the 3D virtual environment;

and (3) the reuse of an existing simulation calculation tool such as EnergyPlus, the latest

government sponsored energy simulation tool, based on DOE2 and BLAST.

3.6 Fundamental Information Visualization Concepts

Given building geometry and input to the energy calculation system, the next step in

building energy simulation process involves visualizing the building and the results of

the calculations. The method chosen to visualize the calculation results has the potential

to greatly increase the user’s ability to understand the simulation results or to greatly

obscure understanding. For instance, if the result of a year’s worth of hourly

calculations, presented in a spreadsheet with 8760 rows and 20 or more columns, it

would be difficult to understand the data. However, with graphed data, trends can be

seen that often disappear in tabular form. Energy calculation results become significantly

more valuable when not only the numerical values convey meaning, but also when the

effects of those values on the overall performance of a building become highlighted.

Blazej describes the process of creating visualizations as a “visualisation pipeline”33;

because just as water flows through a pipeline to its final destination, information flows

from an author to an audience via a “visualisation pipeline” as seen in Figure 3.1. This

“visualisation pipeline” occurs in three stages: the encoding of information by the author

13

using a symbolic map, the subsequent display, and finally the decoding of the

information by the audience.

Figure 3.1 Information Visualization Pipeline

33

When an author determines that a set of information could be better understood

visually, the author must decide the best method to convey the intended meaning to the

audience. Blazej explains that the “encoding and decoding [of information is] connected

via visual attributes such as shape, position, and colour, and textual attributes such as

text and symbols which themselves are represented by simple visual attributes” 33.

According to Blazej, the information to be conveyed must be transformed from a

concept, a collection of numbers, or some other raw format into a symbolic map. This

symbolic map contains a collection of visual attributes that give meaning to a

visualization. Having chosen a symbolic map, the author then displays the encoded

information to the audience.

14

Figure 3.1 combines the use of text, arrows, and pictorials to describe the flow of

information from the left side of the graphic to the right. The text used in the graphic

contains germane words and phases that convey key concepts. The concepts

interconnected by bounding volumes and directional arrows. The use of arrows serves a

dual role; the solid arrows describe information flow, and the dotted arrows describe a

conceptual link between words. Now that the information has been encoded and

displayed, the audience decodes the message.

The ultimate goal of encoding information visually is the successful decoding of the

information by an audience. Wise explains that during the encoding stage, the author

spatially transforms information into a visual representation revealing thematic patterns

and relationships34. This encoding uses a symbolic map, assumed to be familiar to the

audience, to translate the information into an illustration. As the audience perceives the

information, they form a cognitive understanding as it passes through a personal

preconceived symbolic map. The personal symbolic map, a variation of a universal

symbolic map, is a specialized symbolic map defined by a group in society who share

common information. For example, architects and engineers have a common set of

terminology and symbols used in the exchange of information pertaining to their

respective professions. When an audience understands the information being conveyed,

then an author finds success.

15

3.7 Emerging Trends in Architectural Visualization

An emerging trend in the field of architecture uses real-time graphics engines for

visualization. The use of video gaming technologies outside of the entertainment

industry has been gaining momentum and credibility in the last seven years according to

Zyda35. The first account found in this literature survey related to this trend reported that

Richens in conjunction with the CADLAB at Cambridge in London used the Quake II

game engine to demonstrate the use of existing gaming technology for remote

collaborative design review in 199936. The same year V. Miliano released “Unrealty,” a

commercial real estate demonstration program based on the Unreal game engine37. Both

of these programs led a consumer focused visualization revolution. Before 1999, the use

of visualizations existed with only those organizations that possessed resources to invest

in virtual reality (VR) and “until right after the turn of the century, [these] high-end VR-

systems outperformed the game systems by being capable of handling several orders of

magnitude more polygons, textures, and fill rates”38.

Lewis explains that there no longer exists a need for supercomputers in the creation

of “realistic simulations and sophisticated graphics;” the more contemporary approach

offers the means to “trade down from expensive gear to standard PCs running game

software” 39. Contemporary game systems have closed the performance gap between

high-end VR and consumer graphics systems. The gaming industry’s pursuit of realistic

real-time graphic solutions drives the strides made in consumer graphics. The U.S. video

and computer game industry generated record revenues of $9.4, $10.5, and $12.5 billion

in 2001, 2005, and 2006, respectively40, 41.

16

3.8 Game Architecture

Wynters and Wunsche both explain that gaming developers cannot recover the entire

cost of game design on a single game title42, 43. Common practice in the game industry

involves designing games in a modular fashion. Licensed game engines may be used in

three or more major game titles. Wunsche divides games into three major components:

game engines, game logic, and game art43. Game engines handle the input, output, and

physics or interactions for the game world39. Game logic describes the particular

application of the game engine and defines the game play and uses of the game engine

and game art. For example, game logic might define a game as a vehicle racing game as

opposed to a children’s mystery game. However, both games use the same engine for the

graphics and interaction. The engines track users, locations, and objects in complex 3D

environments.

3.9 Game Engine Genres

Graphically based computer games come in almost as many different styles or genres

as do game engines. Three very prominent genres include First Person Shooters (FPS),

Real Time Strategy (RTS), and Role Playing Games (RPG)33. Further classifications

could be made into single player games and multi-player games. However, most

contemporary games have the ability to co-exist in both single and multi-player domains.

The virtual environments of the FPS game genres involved viewing from the perspective

of a character or agent. The user experiences the world as if seeing it through the

character’s eyes, and then in turn interacts with the environment using virtual

17

extremities. In RTS, the user experiences the virtual environment from a third person’s

perspective of a large environment. The user does not experience the environment as a

character from within but rather as a controlling agent from without (e. g. controlling an

army on a battlefield). The RPG genre is very similar to the RTS however; the user can

only control one character within the environment.

The genre chosen for use in this work, the FPS style, conveys a sense of spatial

presence not seen in the other two genres. This spatial presence allows the user to

experience the virtual environment in as close a fashion as possible to actually being

within the environment43.

3.10 Game Engine Availability

Devmaster.net maintains a database of more than 230 game engines44. Game engines

come in two major categories: open-source and closed source. Open-source game

engines developed by a community of users where every aspect of the game engine,

game logic, and game art can be customized. Closed source game engines allow a user to

modify the game logic and the game art but not the engine itself. Open-source engines

can be an inexpensive medium in which to develop and have a community of support.

Many closed source games engines come from major game development companies that

use the same engine in multiple games. Closed source engines generally offer more

advanced options than open-source engines, offering unique features not seen elsewhere,

such as code optimizations. Source code for closed source engines can only be obtained

by those who license these engines.

18

Because both types of engines allow for the modification of game logic and game

art, the author chose a closed source engine based on the online community support for

modification and the author’s modification experience. The chosen engine, the Doom 3

engine, developed by id Software and that receives its’ named from the first released

title, Doom 3, which used the engine45. The Doom 3 game engine released to the public

in August 2004 and has been enhanced and re-released twice with Quake 4 (2006) and

Prey (2006).

3.11 Game Modding

“Many popular game engines come with scripting languages that allow users to

modify their behaviors, create new worlds for exploration, or even modify existing

games into completely new ones”, a process often referred to as modding
46. “The

customization of existing commercial games through the use of freely available

development tools can provide an excellent means of creating applications … without

requiring the time and money that is needed to create a game from scratch”47. Similar to

other commercial games, Doom 3 has a number of built-in tools that the original game

creators used in production which released with the games allow game modding

communities to edit the game content.

19

Although a comparison of available game engines will be discussed in more detail

later in this study, the Doom 3 game was chosen primarily for the built-in tools for

modding and the size and activity level of the online modding community. The online

Doom 3 modding community has approximately 10,000 registered users at

Doom3World.org alone and the forums include more than 100,000 threads related to

game modifications.

3.12 Summary

The proposed research focuses on creation of a software tool which brings CAD

tools, energy simulation, and information visualization together into a virtual

environment. Computer based energy simulation has matured over the past 50 years

from mainframe resource intensive calculations that required highly trained individuals

to much simpler software that can be run on a personal computer. However, the AEC

community seeks an even more intuitive approach to energy simulation and the

presentation of calculation results. This study directly addresses the needs as expressed

by users of energy simulators in both the Lam and Donn surveys6, 7.

20

4 PROPOSED RESEARCH METHODOLOGY

The aim of this research is to develop software technology for reusing buildings

described in the IFC BIM standard in both a simulation and visualization. The following

outlines the methodology:

1. Identify the geometric elements from IFC that will be used in the selected

visualization engine.

2. Research and identify the modification requirements for the visualization engine.

3. Develop software that:

a. Transforms building geometry in IFC files into the format required by the

selected virtual environment.

b. Simulates the energy consumption of the building.

4. Obtain drawings for a building that can be converted into the IFC file format.

The selected building will be a demonstration for the virtual environment

transformation and the energy simulation.

5. Analyze the technologies developed and identify areas of future research.

To meet the research goal, an on campus building was selected as a test case. The

selected building is the Architecture B building located on main campus between the

Bright building and the Architecture A and C Buildings. The Architecture B building

currently serves multiple purposes as it contains: a woodshop, an auditorium,

classrooms, and research space. The Architecture B building contains many elements of

a common office building and will serve as a good example of the geometry that can be

transformed for the visualization engine.

21

5 SOFTWARE BACKGROUND

5.1 Introduction

To meet the objectives of the proposed research, the author chose an open CAD file

standard and a video game based 3D virtual environment. When choosing the CAD file

standard, the author considered two important elements: first, the standard needed to

contain information related to building geometry; and second, the standard needed to be

capable of providing thermally relevant information about a building. It was clear that

the CAD standard would need to be a Building Information Model (BIM). Ibrahim and

Krawczyk describe Building Information Models as a specialized form of CAD that

approaches buildings as objects and decomposes buildings into elements that contain

both geometry and data associated with relevant properties of an object in a building48.

Bazjanac defines a Building Information Model as “an instance of a populated data

model of buildings that contains multidisciplinary data specific to a particular building

which they describe unambiguously.”10

The BIM-CAD file standard chosen for this project is the Industry Foundation

Classes (IFC) developed by the International Alliance for Interoperability. The IFC

standard first published in 1997, has been revised a number of times over the last ten

years. According to Blazjanac and O’Donnell, the most current releases, IFC2x2 and

later, have frozen the core kernel data, and extensions have been added which

specifically target ‘post-CAD’ tools such as energy simulation16, 23.

22

In choosing the video game based 3D virtual environment (VE), the author examined

a number of important considerations: (1) the VE must be accessible to those who will

use it; (2) the availability and quality of documentation; (3) the size and nature of the

user community; and finally (4) the ease of extensibility of the environment.

For the technology developed by this research to be disseminated, the VE must be

accessible on commonly available computer hardware and software. These requirements

led to the selection of a game engine that could be run on common and popular PC

hardware.

The accessibility factor being satisfied, the ability to extend the game content and

functionality became the focus of the VE search. This ability requires quality

documentation and knowledgeable user communities. The three largest user

communities found on the web were for Doom 3, Torque and Unreal. When examining

these communities, the extensibility and ease of content creation for the game engines

became apparent.

Each of these game engines have ‘world building’ tools that allow the game

designers to create and organize content within the VE. When creating content for

playable VEs, called maps, Meigs explains that there exists a number of approaches

ranging from one extreme, a self written standalone editor, to the other, using the tools

that accompany a commercially licensed engine technology49. Because writing a

standalone editor for one of these engines could not be created within the time

constraints, the author chose a commercially available world building tool. The author

23

reviewed the world building tools UnrealEd (Unreal 2 Engine), and D3Radiant (Doom 3

Engine).

UnrealEd, the world building tool for the Unreal 2 game engine uses the principle of

Constructive Solid Geometry (CSG)50. When creating a map, the world in UnrealEd

begins as a giant cubic mass. To create space for a player to inhabit, the space must be

subtracted from the mass. Fristch explains that objects created by CSG form as a logical

combination of simple forms such as cuboids, pyramids, and spheres51. After

performing Boolean subtractions, spaces form in which solids can be placed back into

the world to form structures such as walls, stairs, and other objects. The input map files

for the unreal engine, .unr files, consists of binary packages containing map geometry

and texture references in addition to compiled UnrealScript code, sounds, textures, and

music52. These files can not be read by people, a factor considered to unnecessarily

complicate this study.

The D3Radiant tool takes the opposite approach to building a world. The map begins

as a void, and the elements added create the boundaries of space. The D3Radiant tool

uses ASCII files to store the map data in sets of bounding planes, which define the

contours of solid objects. At run time, the map compiles and the engine converts the

bounding plane sets into a respective set of polygons for solid convex primitive objects.

The resulting set of optimized faces does not include the removed hidden or redundant

faces created by adjacent objects. This face set when converted into a binary space

partition tree (commonly called a "BSP tree") representation can be used for both

collision detection purposes and efficient visibility calculations. Each of the primitive

24

objects, known as BrushDef3, are created from the intersection of planes and therefore

cannot contain concave features. This requires that all objects generated from primitives

to be convex. ASCII input files for this engine can be generated outside of the

D3Radiant tool. Another noted benefit of this engine is the forward compatibility with

ASCII .map files created for previous engines, such as Quake 3, developed by the same

company. The forward compatibility leads to an extended life of the work developed and

adds value to the work produced using this format.

While other game engines and map editing programs to choose from, these options

represent two large online game modding communities. Lewis and Jacobs state that

“while neither id Software nor Epic Games is in the business of supporting research,

their user communities can provide active sources of help and information for game-

using researchers”39.

Between the UnrealEd and D3Radiant, D3Radiant best met the needs of this research

because the input files, being ASCII, can be generated outside the D3Radiant tool. The

size and activity level of the Doom 3 modding community was also considered.

Therefore, the Doom 3 game was chosen as the virtual environment for this research

work. Table 5.1 details the computer hardware specifications for this project. A detailed

minimum hardware requirements list for running the Doom 3 game has been added in

the Appendices as Doom 3 System Requirements.

25

Table 5.1 Doom 3 System Requirements

Minimum Requirements Test System

CPU Intel P4 1.5ghz/AMD Athalon 1500 AMD64 3500+

Graphics Nvidia GeForce3/ATI Radeon 8500 Nvidia 6600GT

RAM 384MB 2 GB

Hard Drive 2.8GB 120GB

Operating System Windows 2000 Windows XP SP2
Software DirectX 9b DirectX 9c

5.2 Doom 3 Engine Considerations

After selecting the Doom 3 engine for this project, an effort was made to understand

and outline the known limitations of the engine. The following summarize the

restrictions as they relate to this thesis.

There exists a significant and noticeable visual performance degradation appears

(lower than 20fps) when more than 600K+ polygons become visible at any given time.

This limitation requires the use of visibility culling of polygons, VisPortals, to decrease

the total number of visible polygons. However, VisPortals do not cull imported objects

from art packages (3D Max, Maya, Lightwave, etc.). After some testing, it was

determined that importing full 3D models of buildings from art packages was not a

viable solution for the visualization.

The following discussion illustrates the Doom 3 engine’s use of Brushdef3

primitives, which require all objects to be constructed from a set of convex primitives.

Figure 5.1 shows two 2D objects, a green cross and a yellow pentagon. The red dot in

the center of both figures below represents the origin. The yellow pentagon is a convex

26

shape and the green cross is concave. When described in the brushDef3 format, the

Doom 3 Engine renders the closest set of intersecting lines. Given this rendering logic,

the pentagon maintains the original shape as seen in Figure 5.2. On the other hand, the

green cross becomes the left shape in Figure 5.2 because only the intersection of the

closest lines to the origin (in red), as derived from the original shape of the cross, are

rendered. The cross shape, when defined in this manner, yields a square and the original

shape is not preserved. In order to preserve the original shape, the cross must be

converted into a set of convex shapes such as triangles.

Figure 5.1 Example of Concave and Convex Shapes

Concave Convex

27

Figure 5.2 Example of Line Intersections of Concave and Convex Shapes

5.3 Developing Software with IFC

The method for acquiring building geometry chosen for this research is a semi-

automated approach. The automation extracts select elements of a building’s geometry

from IFC and transforms that information into a representation that is understood by

Doom 3 engine. Autodesk, the software developer of Revit, is a member of the IAI that

published the IFC standard. It is among the major companies adopting import/export

functions for IFC. For these reasons, Revit Building was selected as the BIM file

creation tool and was used to generate all of the test-case IFC files.

To expedite the addition of .IFC file support for applications, the IAI has added a list

of companies offering auxiliary tools, such as application programming interfaces (API)

or toolboxes. Although the specification and format of the IFC model file have been

published for a number of years and the AEC community holds many aspirations for

Concave Convex

28

BIM interoperability, mature and inexpensive auxiliary tools for IFC implementers are

still not common. Fu attributes the limited availability of auxiliary tools to the gaps in

the specification and file formats between different versions of IFC 53. These file-based

toolboxes provide developers with an easy way to read, modify, add and represent the

data in an IFC model. One such API toolbox is the freeware IFCsvr released by the

SECOM CO.,LTD. Intelligent Systems Laboratory of Japan54. When selecting a toolbox,

this researcher contacted a number of toolbox developers and the only Yoshinobu

Adachi of SECOM CO., Ltd55 responded.

Adachi offered an Excel spreadsheet developed in 2000 that converted extruded

rectangular profile geometry from IFC2.0 to Quake 3 file format as an example of where

to start learning about IFC56. Adachi then sent the source code for IFCExplorer, an IFC

file viewing program that uses the IFCsvr300 toolbox57.

The IFCExplorer source code offered a number of clear examples of how to use the

IFCsvr toolbox. The IFCsvr is an ActiveX component for the handling of Industry

Foundation Classes data. The IFCsvr API (Application Program Interface) is written in

C# .NET and was used to allow IFCtoMAP to read IFC information from test files that

were generated in Autodesk Revit 9. However, the IFCsvr provides not only a

programming interface to IFC data for importing but also for exporting, searching,

creating, and modifying. By using the IFCsvr to provide the input mechanism,

IFCtoMAP can seamlessly support input and output functions for various

implementations of .ifc including STEP Part21, BLIS-XML, in addition to IFC2x3 Final

29

and ifcXML. IFC2x3 Final is the latest revision of IFC, released in December 2005, and

at this time is still the most current version of IFC.

5.4 Doom 3 Engine .MAP File Format

The Doom 3 game engine (D3E) uses a file with the extension .map to generate

playable levels (virtual environments) for the game. Unlike other engines, D3E uses the

.map file in both the level editor as well as in the game with no need to compile the

editor .map file into a different format for the engine. The .map files are raw ASCII

linking files used to create three more files by using the dmap command from a D3E

command prompt. The three files created are mapfilename.cm, mapfilename.proc, and

mapfilename.aas. Table 5.2 explains the purpose of these files.

Table 5.2 Doom 3 Engine Map Files

File Extension Description

mapfilename.map

Defines all the entities, brushes and patches in the map. Used

to generate .cm, .proc, and .aas files by using the dmap

command.

mapfilename.cm
Defines the collision geometry used by the physics system for

collision detection.

mapfilename.proc

Contains all the pre-processed geometry as visible triangles,

batched as surfaces, in addition to pre-calculated shadow

volumes if light and brushes do not move.

mapfilename.aas
Contains the area awareness data for the Artificial Intelligence

to navigate through the level.

30

Within the D3E .map files there is a structure that allows the engine to define the

virtual environment. This structure defines all entities, brushes and patches in the virtual

environment. Entities are objects, which can be dynamically controlled using game logic

or .map level scripts and are often composed with brushes, patches or models.

Table 5.3 .MAP File Components

.map Object Description

Entities

Functional objects in a map such as lights, monsters, items,

light switches, doors. They can be composed of brushes,

patches or models. These objects are dynamically controlled by

either game logic or level scripts.

Brushes

Convex solids that form the basic geometry of a map. Objects

which do not require a model are produced with brushes, such

as floors, ceilings, walls, steps, beams, columns, etc.

Additionally, brushes can be used to define volumes within a

map with unique properties such as ladders or force fields.

Patches
Rounded or curved surfaces within a map which cannot be

created by brushes and are defined by Bezier curves.

Model

Objects which are too complex to be defined by either brushes

or patches. These objects are models in external 3d modeling

applications and imported as .ASE or .LWO files formats.

The .map file format has not changed radically since the release in 2004. The .map

files created using the method described here can be used in all games released using the

D3E. In order to understand the conversion from IFC CAD information into the .map

format used in the D3E, a brief explanation of the .map file format follows.

The .map files hold entities in an ASCII format. The only required element of an

entity is the classname variable. The classname variable links the entities in the

.map file to functions within the game logic code. The only entity that must be present is

31

worldspawn. The worldspawn entity is composed of primitive elements defined by

brushes and patches, or brushDef3 and patchDef2 as they are known in the engine. As

described in Table 5.3, patchDef2 patches define smooth curved surfaces governed by

Bezier curves.

Code:

Figure 5.3 brushDef3 Code Representation of a 128x128 Unit Cube

To better understand how primitives such as a brushDef3 object are represented in

the D3 engine, a discussion follows describing the creation of a 128X128 unit cube

centered on the coordinates (0, 0, 0). Figure 5.4 is a screenshot from the built-in D3E

.map editor, known as D3editor, showing a 128X128 unit cube that is centered on the

coordinates (0, 0, 0) as seen from a top down XY direction, with Z representing the up

direction.

1 Version 2

2 // entity 0

3 {

4 "classname" "worldspawn"

5 //Primative 0

6 brushDef3

7 {

8 (0 0 -1 -64) ((0.125 0 0) (0 0.125 0)) "_emptyname" 0 0 0

9 (0 0 1 -64) ((0.125 0 0) (0 0.125 0)) "_emptyname" 0 0 0

10 (0 -1 0 -64) ((0.125 0 0) (0 0.125 0)) "_emptyname" 0 0 0

11 (1 0 0 -64) ((0.125 0 0) (0 0.125 0)) "_emptyname" 0 0 0

12 (0 1 0 -64) ((0.125 0 0) (0 0.125 0)) "_emptyname" 0 0 0

13 (-1 0 0 -64) ((0.125 0 0) (0 0.125 0)) "_emptyname" 0 0 0

14 }

15 }

32

6464

Figure 5.4 Top Down XY Representation of a 128x128 Unit Cube in D3Editor

The cube seen in Figure 5.4 is the same cube described in the code in Figure 5.3.

Looking more closely at this code, one can see that line 6 defines a brushDef3 as the

type of brush being used and line 7 starts the syntax of the object. The brushDef3 are

primitive objects composed of planes. In Figure 5.3, each of the lines 8-13 that follows

the brushDef3 statement inside the curly braces (“{“ and “}”) is a plane. Each plane is

defined by three sets of numbers and a string as seen in Figure 5.5. The first set of four

numbers labeled as A and B in Figure 5.5 relate to the orientation and position of the

plane. The first three numbers in this first set, labeled as A, are a unit vector in the

direction of the plane’s normal. The fourth number in the first set, labeled as B, is the

distance from the origin to the closest point on the plane along the normal defined by the

first three numbers. By convention this number is negative if the distance from the origin

to the closest point on the plane is in the direction of the normal of the plane and positive

if the distance from the origin to the closest point on the plane is in the opposite direction

of the normal to the plane.

33

(0 0 -1 -64) ((0.125 0 0) (0 0.125 0)) "_emptyname" 0 0 0

A B C D E

Figure 5.5 brushDef Components of a Single Plane

The second sets of numbers, labeled as C, relate to the size and orientation of the

texture, or color information file, on the plane. Label C is not dynamically altered at the

moment, as a library of known tileable textures and sizes are stored and the visualization

is limited to a small texture pallet. The “_emptyname” string following the first two sets

of numbers represents the relative path to the texture for this plane from the Doom 3

base folder. After contacting id Software, searching the community knowledge base and

consulting the documentation, no clear answer as to the use of the last three numbers,

labeled as E, has been determined. For the purposes of this discussion, the last numbers

will always be zeros.

5.5 Summary

In meeting the technical challenges involved in this thesis work, software tools and

technologies were identified based on information gathered during the literature review.

Those tools include a Building Information Model, the Industry Foundation Classes; an

API toolbox for interacting with IFC data, IFCsvr and, finally, a video game based 3D

virtual environment, the Doom 3 game engine. Each of these technologies have

implementation requirements as detailed above. The following sections discuss the

visualization methods and the benefits and limitations of the technologies.

34

6 VISUALIZATION METHODS: IFCtoMAP

6.1 Introduction

The technology developed by this thesis work, which brings together BIM and

visualization, is appropriately named IFCtoMAP as it converts a building’s IFC

information contained in CAD BIM files into D3E .map file format which may then be

visually toured in the Doom 3 game engine. According to Terzidis, scientific

visualization has been used to present a clear and faithful representation of aspects of the

physical world that are impossible to perceive 58. The purpose of this research was to

develop a framework for the encoding of building geometry and energy information for

architects and engineers into a visualization engine. In order to encode the information a

symbolic map is required that will be quickly identified and understood by architects and

engineers.

35

Computer Aided Drafting (CAD), and in particular Building Information Modeling

(BIM), gives us such an initial symbolic map. Both professions share information about

building design using BIM drawings. The design intent of IFCtoMAP is to allow

architects and engineers the ability to define a building’s geometry in Building

Information Model (BIM) software, and in the test case this is Autodesk Revit. Then

using the BIM model elements, in conjunction with additional building related inputs,

generate a building energy simulation. The results will become the subject of the

visualization. A Visual Energy Use System is composed of two components: the

visualization and the simulation tools, both of which use the same data source.

IFCtoMAP represents the geometric conversion utility that transforms selected IFC

geometric data into a format understood by the Doom 3 game engine. Figure 6.1 shows a

diagram of the IFCtoMAP program consisting of IFC file reading methods, geometry

transformation methods, .map file writing methods, and internal data structures. The

details of Figure 6.1 are seen in Figure 6.2, Figure 6.3 and Figure 6.4.

3
6

Figure 6.1 IFCtoMAP Design Intent

IFC File Reading Conversion
Method

.MAP
File

Writing

Data Structure Elements

 Autodesk
Revit
BIM

.IFC

.IFC Input

IFCtoMAP - Implementation

.MAP Output Files

.MAP

IFCtoMAP

3
7

Figure 6.2 IFC File Reading

3
8

Figure 6.3 Methods for Geometric Transformation Left, .MAP File Writing Right

Figure 6.4 Internal Data Structures

39

The following sections detail the method used to develop the IFCtoMAP program,

specifically how information found in the .IFC test files, generated by Revit, are used to

create primitive brushes in the Doom 3 game engine. The IFCtoMAP component of the

VEUS system is likewise broken into four major components: internal data structures,

IFC file reading, geometry transformations, and .map file writing. IFC file reading uses

the IFCsvr ActiveX object to traverse input files and extract specific elements from the

data structure, which becomes the input to the geometry transformation. When the

calculations finish, the output of the geometric transformations become .map file format

compatible and written as such. The four important components mentioned above can be

seen in Figure 6.5.

The internal data structures, which maintain the data throughout the process

.ifc file data extraction functions Method of conversion from the
IFC data representation to the

.MAP representation

functions which write the .MAP
file format

The internal data structures, which maintain the data throughout the process

.ifc file data extraction functions Method of conversion from the
IFC data representation to the

.MAP representation

functions which write the .MAP
file format

Figure 6.5 Diagram of Major Component Classes

40

6.2 Internal Data Structures

After extracting information from IFC and before the data is in a form understood by

the .MAP file format, there was need for an internal data structure that could hold both

sets of information. This subsection discusses initially how the internal data is structured

in the Building class, followed by a discussion of the other three major component

classes. A number of class objects when composed form the data structures of this work.

The top most level of this data structure was the class called Building. The

Building class can be seen in the class diagram labeled as Figure 6.6.

Class

Fields

geoObjs

LengthUnit

NongeoObjs

P21ID

Prefix

ProjectID

ScaleFactor

StartLocation

Methods

Building

Figure 6.6 Building Class Diagram

As the name implies this class maintains all the information related to a single

building. Among the data stored in the Building object are the following:

• The building’s unique P21ID number

41

• The building’s unique ProjectID number

• The user’s StartLocation within the map

• The metric unit of length prefix called Prefix, which is null if the units of

measure are imperial

• The unit of length called LengthUnit, which could be either imperial or metric

• The ScaleFactor for converting the units of measure from the IFC file to the

.map scale

• A list of geometric objects from IFC which will be converted into .map

primatives called geoObjs

• A list of objects from IFC that will not be converted into .map primatives but

rather will be linked to 3D art models called NongeoObjs

The two elements in the Building class most often referenced are the two object

lists: geoObjs and NongeoObjs. These two lists contain different object classes

that inherit attributes from a common class, GeoObjects, as seen in Figure 6.7.

42

Class

Fields

EntityType

Origin

P21ID

ProjectID

SegmentType

Slabs

Tag

Transformations

Properties

Wall

WallPlanes

WallPoints

GeoObjects

Class

GeoObjects

Class

GeoObject

Class

Figure 6.7 GeoObjects Class Inheritance Diagram

All GeoObjects contain the following:

• An EntityType delcaration, which holds the IFC entity name. (e. g. IfcSlab,

IfcWallStandardCase, or IfcStairFlight)

• The Origin which defines the first point of an object and is used as the pivot

point for doors and the center of rotation for NongeoObjs

• The building’s unique P21ID number

• The building’s unique ProjectID number

43

• A SegmentType, which defines the IfcShapeRepresentation of an object

• A list called Slabs, which contains:

o The object’s unique ID number which is called a Tag

o A set of transformations, which when applied to the points contained within a

single slab in the list Slabs, translate and rotate the points into the correct

location relative to other objects in the building

The NongeoObj class contains objects whose geometric representation will not be

extracted from IFC by IFCtoMAP. Rather, NongeoObj objects act as a object locator

and file link to art assets generated in 3D modeling packages. GeoObject, on the other

hand, contains data structures for holding IFC geometric representations for

IfcRectangleProfileDef, IfcArbitraryClosedProfileDef and B-Rep - Boundary

Representation objects. IfcFillElement inherits properties from GeoObject and is used

to store data related to openings such as doorways and windows.

6.3 IFC File Loading

The first important class is the IFCLoader class, which can be seen in the class

diagram labeled Figure 6.8. This class is an abstract class that contains a number of

methods used to extract data from the IFC file format. IFCLoader is a generic loader

class that contains methods for traversing an IFC file using the IFCsvr object. The

IFCLoader class uses IFCsvr methods to identify the units of measure in an IFC

document, determine the geometric representation of building elements, extract the

44

specific 3D geometric data for those elements and finally extract the transformation to be

applied to those elements in order to place them in 3D space.

Abstract Class

Methods

FgetIfcAxis2Placement2D

FgetIfcAxis2Placement3D

fillTransformations

GetAttribute

getExtrudedAreaSolid

getIfcFacetedBrep

GetRepresenation

PopulateData

RetrieveObjects (+ 1 overload)

RetrieveUnits

UnitPrefix

Figure 6.8 File Reading: IFCLoader Class Diagram

The static public method PopulateData is called by the sucessful selection of a

.IFC file in the dialog generated by the GUI button labeled ‘Browse’ next to the ‘Select

IFC Input File’ as seen in Figure 6.9 .

Figure 6.9 IFCtoMAP Screenshot Showing the ‘Select IFC Input File’ Dialog

45

The PopulateData function is passed a file name, a set of building elements to be

extracted and a pointer to a textbox object. The file name includes the file path of the

IFC file to be loaded. The pointer to a textbox points to an element in the GUI used to

send text feedback about file loading progress, such as the number of IFC elements

found in a particular file, as seen in Figure 6.10. The textbox is also used to display

messages when errors occur during the file loading and parsing functions.

Figure 6.10 User Feedback Dialog

46

Figure 6.10 shows how the PopulateData method progresses. First, a new

Building object is created. Then, the units of measure and a numeric scale factor are

extracted and generated, followed by a succession of counted building elements.

Because the IFCLoader is an abstract class, there are no instances of the object.

Figure 5.8 shows eight classes that inheret the methods from ICFLoader and are called

by the static method PopulateData. Theses classes are generally named after the IFC

building elements that they load.

One implementation of the IFCLoader, the protected virtual function

RetrieveObjects accepts an IFCsvr.Design object, which contains the input

file data, and a Building object in which to put data. Using the IFCsvr function

FindObject all elements in the design can be found when provided a string with the

object type name which coresponding to an IFC object type. The supported IFC object

types / building elements are seen in Table 6.1.

47

Figure 6.11 File Reading: IFCLoader Class Implementation

48

Table 6.1 Supported IFC Object Types/Building Elements

IFC Objects Description

IfcWalls

Used for all other occurrences of wall, particularly for walls with

changing thickness along the wall path, or walls with a non-

rectangular cross sections.

IfcWallsStandardCase

Used for all occurrences of walls that have a non-changing

thickness along the wall path and where the thickness parameter

can be fully described by a material layer set. These walls are

always represented geometrically by a SweptSolid geometry, if a

3D geometric representation is assigned.

IfcSlab

A slab is a component of the construction that normally encloses

a space vertically. The slab may provide the lower support (floor)

or upper construction (roof slab) in any space in a building. A

special type of slab is the landing, described as a floor section to

which one or more stair flights or ramp flights connect.

IfcRamp

A vertical passageway which provides a human circulation link

between one floor level and another floor level at a different

elevation. It may include a landing as an intermediate floor slab.

IfcRampFlight
Inclined slab segment, normally providing a human circulation link

between two landings, floors or slabs at different elevations.

IfcStair

A vertical passageway allowing occupants to walk (step) from one

floor level to another floor level at a different elevation. It may

include a landing as an intermediate floor slab.

IfcStairFlight

Assembly of building components in a single "run" of stair steps

(not interrupted by a landing). The stair steps and any stringers

are included in this object. A winder is regarded as part of a stair

flight.

IfcWindows

A window consists of a lining and one or several panels.

Properties concerning the lining and panel(s) are defined by the

IfcWindowLiningProperties and the IfcWindowPanelProperties.

IfcRelVoidsElement

Objectified Relationship between an building element and one

opening element that creates a void in the element. This

relationship implies a Boolean Operation of subtraction for the

geometric bodies of Element and Opening Element.

IfcRelFillsElement
Objectified relationship between an opening element and an

building element that fills (or partially fills) the opening element.

IfcBuildingElementProxy

The IfcBuildingElementProxy is a proxy definition that provides

the same functionality as an IfcBuildingElement, but without

having a defined meaning of the special type of building element

it represents. The building element proxy should be used to

exchange special types of building elements, for which the current

IFC Release does not yet provide a semantic definition.

IfcFurnishingElement Generalization of all furniture related objects.

IfcConversionBasedUnit
A conversion based unit is a unit that is defined based on a

measure with unit.

49

The above list of supported elements may appear to be redundant as it includes both

IfcStair and IfcStairFlight. This is not so however, as IFC specifies IfcStair as a single

uninterrupted flight moving from one level of a building to the next, and IfcStairFlight

could consist of two or more flights of stairs moving between levels of a building that

may include a landing.

The IFCLoader function RetrieveObjectProperties accepts a set of IFCsvr

Entities and a Building object. The result of the FindObject function, an

Entities object contains a list of all records in the design of a particular type (e.g.

IfcWall). RetrieveObjectProperties then loops through the list of entities, and

for each entity creates a new geoObject and retrieves the requisite ProjectID,

P21ID, EntityType, SegmentType, Name, slabs, Transformations, and

Tag.

Figure 6.12 IFCExplorer Tree View of a Common IfcWallStandardCase Entity

The geometric representations defined in IFC Releases 2.0 and 2.x match closely to

the ISO 10303-42:1994 STEP geometric definition. Objects, stored in IFC with a

geometric representation have two attributes: ObjectPlacement and Representation as

50

seen in Figure 6.12. Both object placement and a geometric representation exist, and the

RetrieveObjectProperties function then parses through each entity and calls

the fillTransformations and GetRepresenation.

The fillTransformations function traverses the ObjectPlacement tree and

extracts the location information from local to world origin. The IFC IfcLocalPlacement

specifies the location of an object based on a coordinate space from two vectors, Axis

and RefDirection, and an origin point, Location. The XYZ axis placement is

calculated from Axis and RefDirection. Axis represents the direction of the

local Z-axis as a 3D unit vector. If the Axis value is omitted, then it can be assumed to

be [0, 0, 1] or the positive
axis

Z . RefDirection represents a vector within the

positive XZ plane; many times this is the
axis

X though it is not necessarily orthogonal

to the Axis. If the RefDirection value is omitted, then it can be assumed to be [1,

0, 0] or the positive
axis

X . Following the right hand rule, the cross product of these two

unit vectors can be calculated by using the Equation 6.1 to create the third unit vector in

3d space orthogonal to the XZ plane, the
axis

Y . This is shown graphically in Figure

6.13.

onRefDirectiAxisYaxis ×=

Equation 6.1

51

(0,0,0)(0,0,0)

Figure 6.13 Cross Product of Z and X Which Yields Y

Because RefDirection is not necessarily the
axis

X it is calculated by crossing

the newly created
axis

Y with the
axis

Z as shown in Equation 6.2.

AxisYX Axisaxis ×=

Equation 6.2

The object’s axis origin then is translated to the Location point, which becomes the

new origin. In Figure 6.13 the point is not translated and remains at the position (0, 0, 0).

As mentioned above, the IFC definition describes the position of objects as a tree of

related transformations. A coordinate system matrix, SystemCoordinateM , is built from each of

the transformations as seen in Equation 6.3. The top three left rows contain the

coordinate system axes listed in order, vertically. The Location point also known as

the translation point, T, appears vertically in the last column. By convention, the bottom

row contains the values (0, 0, 0, 1).

52

=

1000

zAxisAxisAxis

yAxisAxisAxis

xAxisAxisAxis

SystemCoordinate
TZZZ

TYYY

TXXX

M

ZYX

ZYX

ZYX

Equation 6.3

In the following example a global coordinate system is built from the following

values; Axis = [0, 0, 1]; refDirection = [1, 0, 0]; and Location = [0, 0, 0], then,

from Equation 6.1 the Y-axis would be [0, 1, 0]. When composed into Equation 6.3 the

result would be Equation 6.4.

=

1000

0100

0010

0001

MGlobal

Equation 6.4

Continuing the example, if there were a new local coordinate system into which an

object were transformed with the following coordinate system built from the values,

Axis = [1, 0, 0], refDirection = [0, 0, -1], and Location = [-7, 1, 6]. Then, using

Equation 6.1 the Y-axis would be [0, 1, 0]. When composed into Equation 6.3 the result

would be Equation 6.5.

53

 −−

=

1000

6001

1010

7100

M Local

Equation 6.5

When transforming an object from the most local coordinate system into the most

global coordinate system a matrix multiplication takes place. Each coordinate matrix is

multiplied by the next more global coordinate system until a single transformation

matrix exists. This matrix can be applied once to all points in an object to transfer them

from the local coordinate system into the global coordinate system. This can be seen in

Equation 6.6.

GlobalnLocalformTotalTransM M*M...M*M 0=

Equation 6.6

When multiplying the matrix Mlocal and Mglobal in this example, the result is a -90

degree rotation about the Y-axis and a translation from the coordinates [0, 0, 0] to the

location [-7, 1, 6] in the global coordinate system. This can be seen in Figure 6.14. Once

all coordinate transformations have been composed into a single transformation

MTotalTransform as seen in Equation 6.6, the MTotalTransform can be applied to all points in an

object, resulting in the proper placement of the object relative to other objects in the IFC

file.

54

(0,0,0)

(-7,1,6)

(0,0,0)

(-7,1,6)

Figure 6.14 Example of Local Relative Placement

The next function relates to extracting an object’s geometric representation. Similar

to the method used to traverse the .ifc file in the fillTransformations function, the

GetRepresenation also traverses the data structure to extract information related to an

object’s geometric representation. The geometric representation is found within an entity

called IfcProductDefinitionShape by IFC. Figure 6.15 shows an example of an

IfcProductDefinitionShape that contains two IfcShapeRepresentation(s). The first

IfcShapeRepresentation is of type Curve2D; the second is of type SweptSolid. For the

purposes of this discussion, the two dimensional representation seen as Curve2D

representations of building elements are ignored in favor of the second SweptSolid 3D

representation of the same elements. SweptSolid in this context represents an extruded

55

two-dimensional shape. The IFCLoader function GetRepresenation distinguishes

between the following three 3D representation types:

• SweptSolid

• Clipping

• B-rep

Figure 6.15 IFCExplorer Tree View of IfcProductDefinitionShape

 SweptSolid objects consist of four elements: Position, ExtrudedDirection, Depth,

and SweptArea. The position property is the most local coordinate system /

transformation a SweptSolid can have and is added to the list of coordinate

transformations kept in the GeoObject. The ExtrudedDirection, as it claims, is a

vector in the direction of the extrusion. Commonly, walls extrude up, positive Z,

56

from the level of a building (e. g. First Level/Floor), and floors or slabs are extruded

down, negative Z, from the level of a building. The Depth is the length of the

extrusion in the direction of ExtrudedDirection. The last element of the SweptSolid

is the SweptArea. There are more than four different possible values for SweptArea,

ranging from complex parametric curved shapes to simple parametric rectangular

shapes. The only two values of SweptArea supported by IFCtoMAP are

IfcArbitraryClosedProfileDef and IfcRectangleProfileDef.

 The first of the two SweptArea(s), IfcArbitraryClosedProfileDef consists of an

IfcPolyline. Examining the example above in Figure 6.15, one can see an IfcPolyline

consisting of a set of seven IfcCartesianPoints. The convention used by the

IfcArbitraryClosedProfileDef is that the first point and the last point are the same.

For simplicity, the IFCtoMAP internal data structures follow the same convention.

The second of the two SweptArea(s), IfcRectangleProfileDef seen in Figure 6.16,

consists of an additional IfcAxis2Placement2D position, an X-dimension and a Y-

dimension. It is important to note that the IfcRectangleProfileDef definition of

Position is an additional transformation added into the list of transformations in

GeoObject(s).

57

Figure 6.16 IFCExplorer Tree View of IfcRectangleProfileDef

The second type of 3D representation supported by the IFCLoader function

GetRepresenation is Clipping. A Clipping geometric representation of an object is

often the boolean addition, subtraction or difference between an extruded SweptArea

and a second SweptArea or a plane. To simplify the .ifc reading process, the boolean

additions, subtractions, and difference calculations are not performed. The

GetRepresenation function only extracts the extruded SweptArea portion of the

object and ignores the clipping elements. This results in a reuse of the SweptArea code

while allowing for the addition of full support for Clipping object types to be added in

the future.

The third geometric representation supported by GetRepresenation is

Boundary Representation, referred to as B-rep, objects. The implementation of B-rep

objects recognized by GetRepresenation is defined as a set of IfcClosedShell(s).

Each of the IfcClosedShell consists of one or more IfcFace(s). In turn each IfcFace is

58

composed of four or more IfcFaceOuterBound ‘polygons,’ and each of the ‘polygons’ in

an IfcFaceOuterBound is composed of three or more IfcCartesianPoints, as seen in

Figure 6.17. To maintain the data integrity in the IFCtoMAP, internal data structures

mimic the IFC data structures in that B-Rep objects are stored as a linked list of related

IfcClosedShell(s) linked to a list of polygon faces consisting of points.

Figure 6.17 IFCExplorer Tree View of a Boundary Representation Object

In addition to extracting objects with geometry or geoObjects from IFC,

IFCLoader and its child classes also extract what have been termed as

NongeoObjects. The term NongeoObjects comes from the fact that the

IFCtoMAP program uses information about those objects from IFC without extracting

the objects’ geometry. The only loader that creates NongeoObjects is

CustomObjectLoader and its child class IfcFurnatureLoader. These are special cases that

59

share the IFCLoader functions for determing position – rotation and displacement

transformations, but do not use the geometry from IFC.

The NongeoObjects class objects provide a way to use Revit and IFC for Doom

3 specific .map information within the bounds of the IFC conventions and are not an

officially recognized method of sharing IFC information.

The method of creating NongeoObjects was decided as a result of having chosen

Revit as the IFC data provider. Although Revit provides IFC2x2 Final support for basic

building features such as walls, windows, doors, floors and ceilings, Revit does not

allow users to specifiy new IFC export options such as IfcPropertySet(s). IfcPropertySet

is the IFC’s way of expanding the data dictionary for custom information exchange. An

example of an IfcPropertySet object would be exporting the color of a wall from Revit.

If the IFC standard did not have a definition of how to color walls, other IFC tools would

not necessarily implement the wall color and would ignore the Revit IfcPropertySet

related to wall color. IfcPropertySet allows for IFC software developers to encode and

exchange non-standard information in .IFC files even if the IFC standard does not

currently support the feature. Often, what begins as an IfcPropertySet may eventually be

incorporated into the IFC standard and receive an IFC name and definition. In the

example above, if the wall color was eventually encorporated, it may be given the name

IfcWallStandardCaseColor or something similar.

Revit does implement all IFC building elements. All objects in Revit are members of

Families. Frequently used Families, such as walls, windows, doors, floors and ceilings

have support for export to IFC. Revit users are allowed to create custom Families, based

60

on the frequently used Families or may create a Family from scratch. Revit does not

support linking a custom Family to a specific IFC element. For example, the start

location of viewer inside the .map file format requires a special entity classname called

info_player_start. In order to place this entity, a custom Family was created inside of

Revit with the prefix IFCtoMAP. When exported to IFC, the custom Family is exported

as an IfcBuildingProxyObject. The CustomObjectLoader parses all of the

IfcBuildingProxyObject(s) and whichever have the name with prefix IFCtoMAP are

handled differently than those objects which are fully supported by IFC.

The FurnishingLoader inherits properties of the CustomObjectLoader. As previously

discussed, .map uses models generated in 3D art packages to describe complete objects

that fill the space in the virtual environment with elements such as furniture. The

FurnishingLoader class parses all IfcFurnishingElement(s) and those with a name string

with the ‘IFCtoMAP’ prefix, similar to the example seen in Figure 6.18, are read into the

internal data structures as a NongeoObject. FurnishingLoader extracts both the

ObjectPlacement and ObjectType data. The ObjectPlacement is the same transformation

and displacement information used by all IFCLoader classes. The ObjectType, however,

specifies a relative path within the Doom 3 game structure and points to a 3D model that

can be linked in the .map file. As an example, Figure 6.18 shows an

IfcFurnishingElement object, a chair, which when linked to the game would be located

in a file on the hard drive as: C:\Doom

3\base\models\IFCtoMAP\Chair.lwo. Note that the geometric representation

stored in IFC is not converted into primatives because most of these objects contain 3D

61

shapes with concave parts and are better defined as models from 3D art packages, in this

example a Lightwave .LWO file. Breaking up a 3D shape into a set of convex 3D shapes

is outside the scope of this project.

Figure 6.18 IFCExplorer Tree View of a IfcFurnishingElement Object

6.4 Conversion from IFC to .MAP

Having loaded the IFC file into the internal data structures, the next task is to convert

the geometric representions into a format understood by the Doom 3 game engine. This

section details the conversion method from the three supported IFC geometric

representations IfcRectangularProfileDef, IfcArbitraryClosedProfileDef, and Boundary

Representation into a geometric representation suitable for writing to the .map

brushDef3 format.

The first IFC geometric representation is IfcRectangularProfileDef. One might recall

from Section 6.3 that IfcRectangularProfileDef(s) consists of three basic components: an

X-dimension, a Y-Dimension and an ExtrusionDepth. Those components will be

referred to as X-dim, Y-dim and Depth respectively as seen in Table 6.2.

62

Table 6.2 IFC Representation of IfcRectangularProfileDef

Name Value

XDim 40

YDim 0.66

Depth 9.99

In the example in Table 6.2, we will assume for this discussion that the IFC file uses

feet as the units of measure. The IfcRectangularProfileDef in IFC is .66 feet or 8 inches

wide, 40 feet long and about 10 feet tall. The parametric form of the

IfcRectangularProfileDef is then converted into an internal representation as a set of four

co-planer counterclockwise ordered points, using the formulas seen in Table 6.3.

Table 6.3 Intermediate Representation of IfcRectangularProfileDef

Point X Y X Y

1a 0 .5 * YDim 0 -0.33

2 0 -0.5 * YDim 0 0.33

3 XDim -0.5 * YDim 40 0.33

4 XDim .5 * YDim 40 -0.33

1b 0 .5 * YDim 0 -0.33

It is important to note that the first point, 1a, and the last point, 1b, are the same in

Table 6.3. This and ordering the points in a counterclockwise manner are both

conventions of IFC. These conventions allow the internal data structures to maintain

uniformity that facilitates reuse of code functionality. IFC defines

63

IfcRectangularProfileDef as being positioned with the left-most points centered about

the x-axis. When plotted, the points result in a closed polygon loop as seen in Figure

6.19.

Plotted Wall

-0.68

-0.34

0

0.34

0.68

-5 0 5 10 15 20 25 30 35 40 45

X-Axis

Y
-A

x
is

Figure 6.19 Closed Polygon Loop Representation of a Wall

Although Figure 6.19 is a two dimensional figure, each of the lines that define the

rectangle are representative of planes that define the sides of a rectangular cuboid. The

next step in order to move the IfcRectangularProfileDef from this internal intermediate

representation into the .MAP file format is to generate a set of the plane unit normals and

distances from the origin to the closet point on the plane.

64

To accomplish this, the program generates vectors using two points at a time from

the set of points seen in Figure 6.19. Because the points are stored in a counterclockwise

order, the algorithms in the IFCtoMAP program traverse the points in a

counterclockwise direction. The order the points are traversed is important for

maintaining the direction of the normals of the plane facing away from the center of the

object and towards a viewer. The vectors are constructed using the cross product formula

(see in Equation 6.7) where P0 is the first point and P1 is the second point in

counterclockwise order around the shape.

01
PPVN ×=

Equation 6.7

The result of the cross product, the vector NV , is then normalized into a unit vector.

The magnitude NV of a vector is Length=+ y x 22 . This equation is said to be

normalized if 1 y x 22 =+ and thus NV is considered a unit normal vector after

normalization.

The next step is to find the shortest distance between the plane, described by the

vector NV , and the origin. Distance computations are fundamental in computer graphics

and computational geometry and there are well-known formulas for them. An illustration

of the vector projection can be seen in Figure 6.20 where w is a vector between point P0

65

and the origin P, and P(b) is the closest point between the origin and the plane defined

by the vector NV .

w

LV

P

0P0P)(bP

),(LPd

L

w

LV

P

0P0P)(bP

),(LPd

L

Figure 6.20 Vector Projection of Point P onto Vector
LV

The distance ()LPd , seen in Figure 6.20 can be calculated by first finding

wproju
LV

= or the vector projection of the vector w onto LV . w , being the vector

constructed from P0 to the origin, P, using the Equation 6.8; and LV being the vector

constructed from P0 to P1, using the calculation seen in Equation 6.9. Having solved for

LV and w , the shortest distance is then calculated using Equation 6.10.

() 10,0 PPw −=

Equation 6.8

66

01
PPVL −=

Equation 6.9

2

L

L

V
V

wV
wproju

L

•
==

Equation 6.10

() wuVLPd L ∗+=,

Equation 6.11

The result of the above calculations seen in Equation 6.7, NV , and Equation 6.8, w ,

as used in Equation 6.10, produce the needed unit vector in the direction of the normal of

a plane along with the distance from P, the origin, to P(b). This unit normal vector

represents the first three variables in the description of a plane within a brushDef3

object. The magnitude of the distance from plane to the origin is, however, a positive

number as a result of the magnitude equation Length=+ y x 22 . Therefore the plane

described by the normal exists either behind, or in front of the point of origin as P(b) or

P(b)’. See Figure 6.21. The location of P(b) can be determined by evaluating the formula

of a line, Equation 6.12, and solving for d. The sign of d then becomes the third number

in the first set of four used in the brushDef3’s description of a plane.

67

NV

NV

)(′bP

)(bP

P

),(′LPd

),(LPd

NV

NV

)(′bP

)(bP

P

),(′LPd

),(LPd

Figure 6.21 Determining the Sign of Distance

NVdbPP *)(+=

Equation 6.12

This method is then repeated for each set of points until the entire set of points have

been traversed. Then the bottom and top of the IfcRectangularProfileDef are inserted as

unit normal NV [0, 0, -1] at distance 0 from the origin and unit normal NV = [0, 0, 1] at

a distance of the extrusion depth respectively. Note that many of the Figures in this

subsection are two dimensional, but this does not change calculation equations because

68

the vector calculations can be extended to the third dimension by using (X, Y, Z)

components.

An IfcRectangularProfileDef, by the nature of a rectangle, is inherently convex.

IfcArbitraryClosedProfileDef objects define any arbitrary closed profile of points that

are not necessarily convex. To ensure that the calculations above will work with

IfcArbitraryClosedProfileDef objects, a set of pre-processing functions, contained within

the ConstrainTriangulation class, when applied to the closed loop points, break

the loop into a set of triangular loops. (To understand the necessity for this conversion

to triangles, the reader should review section 5.2 Doom Considerations.) The purpose of

the ConstrainTriangulation class is to eliminate the possibility of concave

objects being sent to the MapWriter class by IfcArbitraryClosedProfileDef objects. The

set of triangular loops, when viewed as a complete set, generates the same shape as the

original IfcArbitraryClosedProfileDef.

The calculation method used is called a Constrained Delaunay Triangulation

(CDT)59. The known constraints on the points are the counterclockwise order and their

closed loop nature. Data points on the IfcArbitraryClosedProfileDef traverse as a set of

three consecutive points. The algorithm used to triangulate the

IfcArbitraryClosedProfileDef into a set of triangles appears in detail below. To illustrate

the CDT used by the IFCtoMAP software, one can consider a concave shape such as the

one seen numerically in and graphically in Figure 6.22. The Figures for this discussion

are in the Appendices labeled as Constrained Triangulation Example Figures 1-14.

69

Table 6.4 Example Constrained Triangulation Table of Points

Point # X Y Z

0 46.25 36.72 0

1 54.75 36.72 0

2 54.75 43.89 0

3 45.92 43.89 0

4 25.59 43.89 0

5 25.59 23.89 0

6 10.25 23.89 0

7 10.25 28.39 0

8 5.59 28.39 0

9 5.59 23.56 0

10 5.59 3.22 0

11 46.25 3.22 0

12 46.25 36.72 0

7
0

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X - Values

Y
 -

 V
a
lu

e
s

Series1

P1

P2

P0/12

P3P4

P5P6

P7P8

P9

P10 P11

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X - Values

Y
 -

 V
a
lu

e
s

Series1

P1

P2

P0/12

P3P4

P5P6

P7P8

P9

P10 P11

Figure 6.22 Constrained Triangulation Example

71

The shape seen in Figure 6.22 is the same shape seen in the Appendices as Figures 1-

14. Note that point 0, P0, and point 12, P12, are the same and all points are

counterclockwise in order, which follows the convention first seen in Table 6.3

Intermediate Representation of IfcRectangularProfileDef. The following are steps of the

algorithm in triangulating Figure 6.22.

1. The first step selects a pivot point. The first pivot point chosen will be the first point

in the set point P0.

2. The next step creates a test edge between points P0 and P2. This results in a triangle

consisting of points P0, P1, and P2 as seen in Figure 1.

3. After this test edge has been created, checks are made that determine whether the

points used to generate the test triangle are ordered in a counterclockwise manor.

The sign of the determinate of a matrix representing the points, as in Equation 6.13,

reveals the orientation of the points. If the determinate is positive the points are

clockwise; if the result is negative the points are ordered counterclockwise. In this

case the triangle is counterclockwise in orientation.

yxyxyxyxyxyx

yx

yx

oyox

PP

PP

PP

Det 120120022110

22

11 P*P - P*P - P*P -P*P + P* P + PP

1

1

1

∗=

=

Equation 6.13

4. Next, test the edge created by P0 and P2 against all other edges in the

IfcArbitraryClosedProfileDef and any triangles that have been removed from it

72

during the course of triangulation. The algorithm used to perform the intersection test

between two line segments requires the creation of a vector r orthogonal to the

original line segment, in this case 0P and 2P , and the test line segment, 0Tp and

2Tp , as seen in the Figure 6.23 and Equation 6.14.

r
0Tp

1Tp

0P 2P

r
0Tp

1Tp

0P 2P

Figure 6.23 Line Intersection Test

()⊥−=
20

PPr

Equation 6.14

The line segment intersection test checks to see if the interval created by Equation

6.15 spans 0. If the interval does span 0, then the lines intersect. Otherwise, they do not

intersect. If the edge created by P0 and P2 does not intersect any of the object’s other

edges then create a new related IfcArbitraryClosedProfileDef object from points P0, P1,

and P2, and remove point P2 from the original set of points.

73

() ()

•−•−

r

rPTp

r

rPTp 0001 ,

Equation 6.15

5. After P2 has been removed, the algorithm continues with the same result as seen in

Constrained Triangulation Example 2-4.

6. However, in Constrained Triangulation Example 5 the test edge created by points P0

and P6 crosses the edge between P4 and P5, and the resulting test triangle is also

clockwise in orientation. In this case, the algorithm will shift the pivot point from P0

to P5 and begin again as seen in Constrained Triangulation Example 6.

7. After changing the pivot point to P5 in Constrained Triangulation Example 6, the

algorithm again fails as the triangle created by P5, P6 and P7 is not counterclockwise

in orientation. In this case, the algorithm will again shift the pivot point from P5 to P6

and begin again as seen in Constrained Triangulation Example 6.

8. After the pivot has changed to P6, the algorithm continues and breaks off four more

triangles as seen in Constrained Triangulation Example 7-10.

9. In Constrained Triangulation Example 11, a test edge between P0/12 to P6 intersects

with the edge created by P4 and P5.

10. The pivot point is then changed to P11, and the edge created by P11 and P5 is tested,

yielding another triangle as see in Constrained Triangulation Example 12.

11. Finally, an edged is created and tested between P11 and P6 as seen in Constrained

Triangulation Example 13 which yields the last triangle.

74

12. The resulting shape seen in Constrained Triangulation Example 14 consists of 12

triangles which when seen as a set compose the original shape. When finally

extruded, the resulting shape seen in Constrained Triangulation Example14 will look

like the Figure 6.24.

Figure 6.24 Extruded CDT IfcArbitraryClosedProfileDef

The implemented CDT algorithm discussed does not solve all possible cases of

IfcArbitraryClosedProfileDef shapes, but does offer a solution that includes a number of

shapes seen in building layouts.

Having covered both IfcRectangularProfileDef and IfcArbitraryClosedProfileDef

shapes, one must also consider special cases. These include holes in floors, such as

shafts, and openings in walls, such as doors and windows.

75

The first special cases considered are openings in floors; these are often seen in

floors where there are stairwells or elevator shafts. In Figure 6.25, there are three closed

polylines labeled as Exterior Edge, Hole A, and Hole B. The blue polyline labeled

Exterior Edge represents an IfcArbitraryClosedProfileDef of either a floor or ceiling.

Each of the other three shapes are holes, or IfcVoidElements, in the surface. Hole A

contains two edges that intersect with the Exterior Edge. IFCtoMAP does not support

holes similar to Hole A. IFCtoMAP does support all holes that exist within the bounds of

an IfcArbitraryClosedProfileDef.

Exterior Edge Hole A Hole B

Hole A

Hole B

Figure 6.25 Example of Two Possible Hole Types

76

Figure 6.26 shows the names and locations of points on both the Exterior Edge and

Hole B. The exterior edge points, 0-8, and the Hole B points, B0-B5, both follow the

standard convention: first point and last point are the same, and the points organized in a

counterclockwise manor as indicated by the arrows.

Exterior Edge Hole B

0/8

1 2

3 4

6

7

5

C0/5

C1

C2

C3

C4

Exterior Edge Hole B

0/8

1 2

3 4

6

7

5

C0/5

C1

C2

C3

C4

Figure 6.26 Labeled Exterior Edge and Hole Points

Because IfcArbitraryClosedProfileDef objects must triangulate, the solution selected

for handling holes follows these steps:

1. Create a new edge between the first point, 1, on the Exterior and the first point on the

Hole, B0.

77

2. Check the new edge verses all other edges in both the set of exterior points and the

set of hole points. If the new edge intersects any other edges, start over with the

second point on the exterior. If the new edge does not intersect any other edges on

the exterior or the hole, continue.

3. Reverse the orientation, that is the order, of the hole points from B0, B1, B2, B3, B4,

B5 to B5, B4, B3, B2, B1, B0.

4. Then, inject those points into the list of exterior edge points as seen in Figure 6.27:

Exterior Edge Points Before: 0, 1, 2, 3, 4, 5, 6, 7, 8

Exterior Edge Points After: 0, B5, B4, B3, B2, B1, B0, 1, 2, 3, 4, 5, 6, 7, 8

Exterior Edge Hole C

0/8

1 2

3 4

6

7

5

B0/5

B1

B2

B3

B4

BExterior Edge Hole C

0/8

1 2

3 4

6

7

5

B0/5

B1

B2

B3

B4

Exterior Edge Hole C

0/8

1 2

3 4

6

7

5

B0/5

B1

B2

B3

B4

B

Figure 6.27 Example of Injecting a Hole into an Exterior Edge

78

The result is a single set of points defining an IfcArbitraryClosedProfileDef, which

are counterclockwise in order with the same first and last points that can be sent to the

CDT function for triangulation. This process of adding holes can be repeated for as

many holes as there are in a shape. This solution is not optimal and can inject holes into

exterior edges that cause the CDT function to fail. However, the solution works for

simple shapes seen in typical office building geometry.

The next types of opening considered were openings in walls that consist of empty

openings, doors and windows. When imported from IfcWalls, these are either

IfcRectangularProfileDef or IfcArbitraryClosedProfileDef shapes.

IfcRectangularProfileDef shapes have only four points that define the entire shape,

where IfcArbitraryClosedProfileDef could have more. When creating an opening using

an IfcRelVoidElements in a wall, the following method is used:

1. First the total number of points that define the wall is reduced to the smallest set of

points possible, often four points as seen in Figure 6.28.

79

Before

After

Before

After

Figure 6.28 Minimizing Wall Points

This is done by traversing the set of wall points in a counter clockwise order and

calculating the angle between three points at a time. If the angle between the points

is equal to 0 or 180, then the middle of the three points is removed. Otherwise all

points are kept, and the next three sets of points are checked. From an XY

perspective, the wall looks as shown in Figure 6.29. In this example, the points

would be listed as follows: 0, 1, 2, 3, 4.

80

0/4 1

23

0/4 1

23

Figure 6.29 XY View of Minimized Wall Points

2. Figure 6.30 shows an example of IfcRelVoidElement(s), such as doors and windows

which are defined in the XZ or YZ plane, where as IfcRectangularProfileDef and

IfcArbitraryClosedProfileDef are most often defined in the XY plane. The next step

is to identify the lowest two points on the IfcRelVoidElement object and project

them into the XY plane. This is done by only using the XY components of the points

and ignoring the Z component.

Figure 6.30 Example IfcRelVoidElement(s) such as Doors and Windows

81

3. The projections of each of the two lowest points, H0 and H1, when added into the set

of points that define the wall, maintain the ordered counterclockwise orientation of

points as seen in Figure 6.31. The resulting list of points: 0, H0, H1, 1, 2, 3, 4.

0/4 1

23

H0 H1
0/4 1

23

H0 H1

Figure 6.31 Projection of Two Lowest Points of IfcRelVoidElement on to Wall

4. The other side of the hole in the wall is then calculated by projecting both H0 and H1

onto the line segment created by points 2 and 3. The result is the creation of points

H2 and H3. H2 and H3 when added into the point list, result in the following order 0,

H0, H1, 1, 2, H3, H2 3, 4. The result can be seen in Figure 6.32.

0/4 1

23

H0 H1

H2 H3

0/4 1

23

H0 H1

H2 H3

Figure 6.32 Projection of H0 and H1 on Line Segment 2-3

82

5. The shape then splits into three parts, as shown in Figure 6.33. The two segments

consisting of points from the original shape and points from the IfcRelVoidElement

shape extrude to the full height of the wall.

0/4 1

23

H0 H1

H2 H3

Full Extrusion Full Extrusion
Opening

0/4 1

23

H0 H1

H2 H3

Full Extrusion Full Extrusion
Opening

0/4 1

23

H0 H1

H2 H3

0/4 1

23

H0 H1

H2 H3

0/4 1

23

H0 H1

H2 H3

Full Extrusion Full Extrusion
Opening

Figure 6.33 Three Segments Created by Wall Opening.

6. The opening shape, which contains only the points generated by the

IfcRelVoidElement calculations, extrude differently based on the IfcRelFillElement

associated with the opening. If the IfcRelFillElement is a door, then the opening

extrudes from the top of the door to the full height of the wall, as shown on the left

of Figure 6.34. Likewise, if the IfcRelFillElement is a window, then the opening

points extrude from the bottom of the floor to the bottom of the window, and a

second object extrudes from the top of the window to the full height of the wall. This

appears as the shape on the right in Figure 6.34.

83

Figure 6.34 Left: Door Extrusions, Right: Window Extrusions

7. If the opening was intended for a window, a third extrusion is created using the same

profile used for the top and bottom opening extrusions. This is done from the bottom

of the window to the top, between the previous two extrusions. In order to

differentiate the window from the wall a transparent glass texture is applied to the

window surfaces.

8. If the opening were intended for a door, however, the width of the wall is taken into

account. If the width of the wall is greater then the width of the door to be placed in

the opening, as seen in Figure 6.35, the two points that correspond to the depth of the

door points are added, D0 and D1. The resulting list of door points would be H0, H1,

D1, D0, and H0. These points extrude to the height of the door.

84

H0
H1

D0 D1

H0
H1

D0 D1

Figure 6.35 Door in Red, Seen When Wall Width Is Thicker than Door Width

9. When passed to the .map file writing function, doors are special entities known as

func_rotatingdoor. Doors in Doom 3 slide open to the left and right.

func_rotatingdoor is a custom object script written for Doom 3 by Bruce

Worrall that allows doors to rotate about a pivot point 60.

10. The point sent as the pivot point is H0. In the visualization, all doors rotate in a

clockwise manner about their respective H0 as seen from a top down XY perspective.

For example, see Figure 6.36. Doors rotate clockwise about point H0.

H0H0

Figure 6.36 Doors Rotate Clockwise About Point H0

When performing a conversion, it is important to note that a single method handles

both single and double door. The result of using this method, when passed double doors,

produces a single brush that spans the width of the double door opening. The large

85

double door opens and closes in the same fashion as the single doors, using the first

point in the opening as a pivot point. The result is not an error and can be seen in Figure

6.37. The double doors are shown as very wide single doors. Algorithms for handling

double doors were discussed; however, time limitations prevented them from being

implemented.

Double Doors
Single Doors

Double Doors
Single Doors

Figure 6.37 Doors: Single on the Left, Double on the Right

86

6.5 Writing the .MAP File Format

After all IFC building elements have been read from the .IFC file and converted into

a format compatible with the .map file format, the .map file writing class traverses all

GeoObject(s) and NongeoObject(s) and writes the result of the transformation

function into .map file format. The simplest .map file that can be played is shown in

Figure 6.38. .map files consist of a number of entities written together in a single ASCII

file. The only two entities required to create a map that can by ‘played’ or walked around

inside of are the worldspawn and info_player_start entities.

Code:

Figure 6.38 Simple Generic .MAP File

The worldspawn entity contains the definition of all brushes, brushDef3(s), which

do not move (static brushes), in a map. These include all geoObjects such as walls,

Version 2

// Example worldspawn entity

{

"classname" "worldspawn"

//Primitive 0

brushDef3 …
}

// Example Player Start Entity

{

"classname" "info_player_start"

"name" "info_player_start_1"

"origin" "1825.13 1013.36 0"

}

87

windows, floors and ceilings. The info_player_start entity designates the start

position of a player when the level is loaded. With these two entities, a map can be

created and played. However, Doom 3 does not have ambient light so additional entities

such as Light(s) are needed to add illumination to the space. Light(s), as shown in

Figure 6.39, contain at a minimum, the classname, a unique object name, and finally

the origin of where the light is located.

Code:

Figure 6.39 Example Light Entity

As mentioned in the transformation above, Doors are written into the Doom 3 .map

file format as special entities called func_rotatingdoor. Figure 6.40 shows an

example of a func_rotatingdoor. func_rotatingdoor entities consist of the

classname, a unique object name, the name of a model, an origin, an

open_angle and finally a primitive brushDef3. The model entry has the same

name as the object name, and this informs the Doom 3 of a brushDef3 object defined

within this entity. The origin is the rotational pivot point mentioned in the conversion

above and labeled as the point H0. The open_angle determines the direction of

// Example Light entity

{

"classname" "light"

"name" "IFCtoMAP_Light 47303"

"origin" "1590.4 -73.286 71.7556"

}

88

rotation about the pivot point when a door is activated. Figure 6.40 shows an example of

a door that rotates about the y-axis counterclockwise, -90 degrees when activated.

Code:

Figure 6.40 Example func_rotatingdoor Entity

The only other objects to be transferred are NongeoObject(s). The special case

NongeoObject(s), such as Light(s) and the info_player_start location, have

been mentioned above. All other NongeoObject(s) are written generically as

func_static entities in the .map format, as demonstrated in Figure 6.41. The

func_static entities consist of the classname, a unique object name, an

origin, an open_angle and a model. The model in the .map format is a string that

holds a relative path to the location of a 3D model to be loaded by the game at runtime.

// Example Door entity

{

"classname" "func_rotatingdoor"

"name" "func_rotatingdoor_3871"

"model" "func_rotatingdoor_3871"

"origin" "1986.91 419.199 0"

"open_angle" "0 90 0"

// primitive 0

{

 brushDef3

 {

 (0 0 1 -90)((0 0 -11) (0 0 -39)) "texturename" 0 0 0

 (0 0 -1 0)((0 0 -11) (0 0 -39)) "texturename" 0 0 0

 (0 1 0 -0)((0 0 -11) (0 0 -39)) "texturename" 0 0 0

 (1 0 -0 -40)((0 0 -11) (0 0 -39)) "texturename" 0 0 0

 (0 -1 0 -3)((0 0 -11) (0 0 -39)) "texturename" 0 0 0

 (-1 0 0 0)((0 0 -11) (0 0 -39)) "texturename" 0 0 0

 }

}

}

89

In the example in Figure 6.41, if the Doom 3 were run from the base folder installed in

program files then the chair model might be located as follows:

C:\Doom 3\base\models\IFCtoMAP\Chair.lwo

Code:

Figure 6.41 Example func_static Entity

6.6 Summary

The IFCtoMAP program reads a specific set of IFC building elements and converts

the IFC representation into a format understood by the Doom 3 game engine. This

conversion uses the IFCLoader classes, the ConversionMethod class, and the MapWriter

class. Throughout the process, the data is stored in an instance of the Building class. The

class structure of the program allows for the addition of new IFC building elements and

IfcShapeRepresentation(s) by extending the current definitions.

// Example func_static entity - Chair

{

"classname" "func_static"

"name" "/models/IFCtoMAP/Chair.lwo 46199"

"origin" "1897.13 745.483 0"

"model" "/models/IFCtoMAP/Chair.lwo"
}

90

When selecting additional IfcShapeRepresentation(s) to implement, one should

consider the expected frequency of that shape representation occurring in IFC files. For

example, adding basic support for B-rep objects in IFCtoMAP allowed for the reading of

IfcStair and IfcStairFlight objects. However, the numbers of staircases seen in a building

are relatively limited as compared to the number of holes in walls, such as those for

doors and windows. Within the scope of the files tested during the creation of the

IFCtoMAP program, the most commonly seen IfcShapeRepresentation(s) were

IfcRectangularProfileDef and IfcArbitraryClosedProfileDef. Therefore, the author

concluded time was best spent working on commonly seen IfcShapeRepresentation(s),

such as IfcRectangularProfileDef and IfcArbitraryClosedProfileDef.

The above discussion is an overview of the methods used by the IFCtoMAP software

to convert information from IFC into .MAP file format. For more detailed information

related to the C# implementation, the IFCtoMAP program source code can be found in

the Appendices in the Electronic File attachments as Source Code and Doxygen

Documentation.

91

7 SIMULATION METHODS

7.1 Introduction

When choosing the method for simulation, three options were considered: (1) the

creation of a new energy simulation calculation tool that would be linked to Doom 3

visualization; (2) the creation of calculations from within the Doom 3 game; and (3) the

reuse of an existing simulation calculation tool such as EnergyPlus.

The first option was to create a new energy simulation calculation tool which could

be externally linked to the game engine. There are two obstacles identified with this

approach. First, the new simulation needed to use IFC data, however, there is only one

program found in the literature survey which can write IFC HVAC data: MagiCAD.

Second, capturing the output data from the energy calculations and reading them into the

visualization was problematic. The Doom 3 game logic source code is available for

download from the Id Software Developer website as a Software Development Kit

(SDK). The Doom 3 game logic only allows for the reading and writing of a limited

number of file types (.map, .script, .def, etc). With the author’s limited knowledge of

C++ and the limited documentation related to file reading and writing, the level of effort

required to add file reading and writing routines for new file types into the Doom 3 game

logic were considered to be out of the scope of this research. However, it is possible to

rewrite the game logic and add support for reading new file types, such as the output

from an energy simulation.

92

The second option for simulation involved integrating the energy calculations into

the game. One way to do this would be to edit the game logic code from the SDK.

Similar to adding new reading and writing methods discussed in the previous paragraph,

the addition of an energy simulation into the Doom 3 game logic was outside the scope

of this research. An alternative approach is to use Doom 3’s on-the-fly script compiler,

where a script written in the D3 scripting language compiles and run when the game

runs. Similar to the func_rotatingdoor a new entity type created with additional

properties such as an energy calculation. When investigated, the use of scripts became an

issue when gathering data from the user. Doom 3 uses a custom .GUI or graphical user

interface file to create and display interactive data from within the virtual environment.

A number of factors limit the interactions; most importantly, the users can only interact

with the GUIs by the use of a left click; text data entry is not possible. The data

collection requirements for an energy simulation require input of multiple numeric

variables that cannot reasonably be entered by left clicking alone.

The third option, reusing the simulation calculation tool Energy Plus, appeared to be

promising as numerous journal articles and papers described tools such as IFCtoIDF,

IFC interface to Energy Plus, and Energy Plus HVAC GUI that were intended to

simplify the creation of simulation inputs by reusing data from IFC files16, 21-23, 61-63.

Reports of the tools were similar to this:

In addition to its previously released IFCtoIDF utility that semi-

automates the import of building geometry, the new IFC HVAC interface

to EnergyPlus (released at the end of 2003) makes it possible to import

93

and export most of the data that define HVAC equipment and systems in

a building directly from and to other IFC compatible software tools. This

reduces the manual input of other data needed for successful simulation

with EnergyPlus to a minimum… EnergyPlus is the first building energy

performance simulation model able to import data directly from a

Building Information Model (BIM) that describes a given building in IFC

format. Its IFCtoIDF utility allows users to seamlessly acquire data that

completely describe a given building geometry in a format needed for the

simulation
22.

7.2 Energy Plus

These reports created the expectation that a set of tools is currently available to

facilitate the movement of geometric and mechanical HVAC data from IFC to an Input

Data File (.IDF) file format used by Energy Plus. These reports were accurate in that

data formatted according to the IFC specification was converted into an Energy Plus

input file. However, the reports also stated that as of yet “no IFC files that contain

diverse IFC2x2 based HVAC data can be generated by other tools at the moment…”22.

Bazjanac described one of the IFC HVAC data generation tools, MagiCAD. To test

MagiCAD for this research, a copy was obtained from Jani Suonvieri. The first task

attempted was to load the Langford Building B .ifc file, which was exported from Revit.

This was unsuccessful as the MagiCAD software crashed each time an attempt was

made to load the Langford file. MagiCAD came with a sample IFC file that contained

94

data already created. Using Revit, an attempt was made to open the MagiCAD sample

file. Likewise, Revit crashed when importing the MagiCAD file. After contacting both

software developers, it is uncertain the exact cause of the incompatibility.

After investigating the one possible source of IFC HVAC data, attention was focused

on moving building geometry into Energy Plus to generate a minimum a set of loads.

During the investigation of Energy Plus, the author found that the building geometry

conversion utility IFCtoIDF successfully converted data from IFC to IDF format.

However, the IFCtoIDF utility did not convert all elements of the building’s geometry

from IFC into the IDF format.

Figure 7.1 shows a three dimensional view of the Langford B Building as it appears

in Autodesk Revit Building including the walls, top, the floors and ceilings, center, and

the combination of both, bottom. In the center of the same figure, one sees a screenshot

of the .ifc file data as rendered by a freeware .ifc file viewer software called IFC Engine

Viewer64. The Autodesk Revit .rvt file is attached in Appendix 0 These items accompany

this thesis as separate files available for downloading as

070607_CMc_LangfordBuildingB.zip and 070607_CMc_ThesisMod.zip:

• The file 070607_CMc_LangfordBuildingB.zip contains the Langford Building B file

data as follows:

Langford Building B Revit File.

9
5

.RVT Revit Building .IFC Engine Viewer .IDF DrawEzPlus.RVT Revit Building .IFC Engine Viewer .IDF DrawEzPlus

Figure 7.1 Three Representations of Langford Building B: Left Revit Building,

Center .ifc as seen in IFC Engine Viewer, Right .idf as seen in DrawEzPlus.

96

The right side of Figure 7.1 shows the IDF output of the IFCtoIDF conversion of the

same data set, Langford Building B. When looking at these three images, notice the IFC

representation of the Langford Building appears almost indistinguishable from the Revit

representation. The IDF output on the other hand is visibly missing elements seen in the

other two files. Most notably the IDF file is missing the building roof, large swaths of

the floor space in the center of the building, and many wall segments. These elements

are missing as a result of the IFCtoIDF conversion process. Connected geometry is not

necessary in order to perform an Energy Plus simulation. However, the simulation does

require that all thermal zones be bounded by at least six surfaces as shown in the

Appendices labeled as Langford Building B IFCtoIDF EnergyPlus Error File. The

missing surfaces prevent the simulation from being performed.

The input data file for Energy Plus generated by the IFCtoIDF converter, attached as

Appendix o, consists of more than ten thousand lines of ASCII text. Debugging this file

would not be a trivial task, however it could be done. Debugging the Langford Building

B IDF file could produce a successful simulation. For the purposes of this research it

was sufficient to have verified that the IFCtoIDF conversion is still a semi-automated

system that still requires the interaction of a user to generate a successful simulation.

97

7.3 Summary

Of the options explored none resulted in the successful creation of a simulation that

made full use of existing BIM data from IFC. Each approach had limitations requiring an

additional software development effort to make them truly automated. There is a lack of

IFC mechanical equipment generation tools, forcing a user to create a simulation

separate from the geometry creation. This results in a disconnect between the geometry

and the simulation (mechanical information). The resolution of this situation has great

practical benefits.

98

8 RESULTS

The aim of this research was to develop software technology for reusing buildings

described in the IFC BIM standard in both a simulation and visualization. To test this

goal, an on campus building was selected to use as a test case for the visualization. The

selected building was the Architecture B Building located on main campus between the

Bright Building and the Architecture A and C buildings, as shown in Figure 8.1. The

Architecture B Building has a number of spaces serving multiple purposes including: a

woodshop, an auditorium, classrooms, and research space.

Figure 8.1 Arial View of Architecture Building B on Campus

99

The selected Architecture Building B contains many elements of a common office

building and served as a good example of the typical geometry that can be transformed

in the .map file format. What follows is a brief review of the supported IFC Building

Elements as they exist within the Architecture B building and how they compared to the

virtual building elements from the resulting .ifc file.

Figure 8.2 shows the floor plans of the Architecture Building B color coded to

describe the space usage and labeled with numbered bubbles to represent camera

positions of Figure 8.3-Figure 8.7. The camera positions are as follows:

1. The lobby from the perspective of the main double doors at the side entrance to the

building

2. The woodshop office walls as seen from the within the woodshop

3. The auditorium from the perspective of a front corner

4. A first floor view of the stairwell that links the first to the second floor

5. The second floor hallways directly leading out from the stairwell

100

Figure 8.2 Langford Building B Floor Plans

The first two images in Figure 8.3 show the Langford Building B lobby from the

perspective of the main double doors at the side entrance to the building and are labeled

as camera positions 1 in Figure 8.2. Three distinct differences between the actual lobby

and the virtual representation are the textures on the surfaces, the lighting, and the doors

are set into the walls. The textures are the generic textures described earlier that

IFCtoMAP applies to all similar surfaces. A marble tile texture is placed on all +Z facing

101

surfaces, particularly floors; a ceiling tile texture on all -Z facing surfaces, such as

ceilings; and an off-white texture is placed on all ±X and ±Y surfaces, such as the walls

and sides of floor slabs. Because Doom 3 does not have global illumination or ambient

lighting, point lights were placed by hand to illuminate the space. Finally, the doors are

set into the walls by the automated function discussed above that places doors in walls

based on the first point describing the door and the depth of the wall.

Figure 8.4 shows the Langford Building B woodshop office walls as seen from the

within the woodshop and is labeled as camera position 2 in Figure 8.2. The visual results

created by the Doom 3 engine are quite similar to the actual environment. Similar to

doors, the frames of the windows are not converted by the IFCtoMAP program, only the

openings. In the case of windows, extruded shapes are generated to fill the window

opening.

Figure 8.5 shows the Langford Building B auditorium from the corner of the room

and is labeled as camera position 3 in Figure 8.2. The auditorium is a large open space

with curved steps with seats. The Revit file represented the steps as rectangular slabs and

they were imported into the visualization as such. It is important to note that there exists

a perspective difference between the virtual representation and the actual representation

that is caused by the difference in the field of view of the camera and the virtual user.

The virtual user has between a 90-120 degree field of view where the camera image has

90 degrees or less in the field of view.

102

Figure 8.3 Langford B Lobby: Virtual Representation on Top, Actual on Bottom

103

Figure 8.4 Woodshop Office: Virtual Representation on Top, Actual on Bottom

104

Figure 8.5 Auditorium: Virtual Representation on Top, Actual on Bottom

105

Missing
Landing
Missing
Landing

Figure 8.6 Stairs: Actual on Left, Virtual Representation on Right

There are distinct differences in the two images seen in Figure 8.6, labeled as camera

position 4 in Figure 8.2. First, the number of stairs in the actual picture are not the same

as the number of stairs in the right image. The reason for the discrepancy lies within the

BIM model used. The BIM model has stairs placed in the stairwell that do not

correspond to the actual number of stairs in the building. The second difference is the

left half of the landing was not displayed in the Doom 3 model. This was investigated

and landings are often composed of B-rep objects with concavities. These concavities

can cause the B-rep objects to “disappear” in Doom 3. This same error can occur with

any B-rep object that contains concavities.

106

Figure 8.7 Upstairs Hallway: Actual on Left, Virtual Representation on Right

With the exception of the perspective distortion seen in the virtual representation, the

images in Figure 8.7 are a fairly accurate match showing the second floor of Langford

Building B, labeled as camera position 5 in Figure 8.2. The field of view of a user within

the Doom 3 game engine is set to 90 degrees by default, but can be changed to suit the

user.

When transforming data from a point representation into a plane and distance based

representation, there was a need to round off numbers to compare values. For example,

when comparing .0000003 to 0, the result would be false. These numbers are not the

same. However, in many instances .0000003 is so small that it can be considered to be 0

to reduce the calculation time. The results, as seen in Figure 8.8, are the creation of small

jagged edges that come from the constrained triangulation calculations where a number

is rounded off and the planes do not intersect exactly where expected.

107

Figure 8.8 Round Off Errors

Figure 8.9 shows the result of a Doom 3 engine’s failed attempt at optimizing

geometry and flipping a triangle’s surface normal in order to correct backwards

triangles. However, these segments of wall did not contain backwards triangles and as a

result the engine did not render them properly. These cases happen within the Doom 3

engine, and can be corrected by a manual adjustment of the brushes. No discernable

pattern has been recognized as to why this happens.

108

Figure 8.9 Backwards Triangles

109

9 CONCLUSIONS AND RECOMMENDATIONS

This document describes the process through which information from a Building

Information Modeling tool such as Autodesk Revit Building can be moved through the

Industry Foundation Classes into a visualization, such as Doom 3 and an energy

simulation such as Energy Plus. A test building, the Langford Building B was used to

demonstrate the process.

The objective of the research was to identify and develop software technologies that

could use a building’s geometry from a BIM file within both a visualization and the

calculation of an energy simulation. The results of the energy calculations were intended

to be displayed in a spatially relevant virtual environment. In order to achieve that

objective the following tasks were undertaken:

• The Doom 3 game engine was selected as the game based 3D virtual environment to

display the building’s geometry.

• The IFC CAD file standard was selected and common building elements such as

walls, windows, doors, floors and ceilings were selected and converted into a format

recognizable by the Doom 3 game engine.

• The IFCtoMAP software was developed, which represents a technology framework

for extracting select information from IFC files and transforming that information

into a format usable by the Doom 3 game engine.

• IFCtoIDF was identified as a possible software solution that could facilitate the use

of a building’s geometry stored in an IFC file within Energy Plus.

110

The objectives of the research were successfully met. Technologies were developed

and identified that could be used in a Visual Energy Use System by facilitating the use

of Building Information Modeling tools in driving a visualization and a simulation as

seen in Figure 9.1. Finally, the author proposes that with a change in game logic code, in

a game such as Doom 3, the output of an energy simulation could be read into a game

engine and displayed for a user. This objective was explored, but not fully achieved.

Autodesk
Revit Building

IFCtoMAP
Doom 3

Engine

IFCtoIDF
Energy

Simulation

.IFCAutodesk
Revit Building

Autodesk
Revit Building

IFCtoMAP
Doom 3

Engine

IFCtoIDF
Energy

Simulation

.IFC

Figure 9.1 Framework for a Visual Energy Use System

The state of the art IFCtoIDF tool was identified as a potential tool for semi-

automated conversion of IFC data into Energy Plus. The IFCtoIDF technology has IFC

compatibility issues to work out. As of the writing of this document, IFCtoIDF had been

removed from the Energy Plus installer for at least three releases (1 year). The IFCtoIDF

conversion performed on the Langford Building B IFC file did not produce a simulation

that could be immediately run. The errors generated by the conversion could be resolved

by reviewing the ten thousand line IDF file and manually correcting the errors. This

leads back to Bazjanac’s claim that the level of effort required for the preparation of a

111

building energy simulation input file can be reduced by a factor of four through the use

of semi-automated tools 12.

In addition to identifying the potential of IFCtoIDF, a new conversion utility was

developed, IFCtoMAP. The IFCtoMAP conversion utility takes a building’s geometry as

found in an IFC file and converts the geometric representation into a format understood

by the Doom 3 game engine. This conversion utility demonstrates the versatility of the

data stored within an IFC file.

The IFCtoMAP component has many applications beyond energy simulation

visualization. There were no reports within the literature survey of instances where BIM

information could be directly converted into first person perspective visualization.

Included among the applications of IFCtoMAP outside the scope of this research are:

real estate pre-sales walkthroughs with long distance clients; the rapid creation of

models for the build to suit industry; architectural pre-design walkthroughs; and the

rapid creation of visualizations for virtual rehearsals of military tactical operations.

9.1 Further Work

This research is an initial study in the creation of a Visual Energy Use System. To

further integrate visualizations and energy simulations into a single Visual Energy Use

System, the following considerations warrant further study.

• When developing software, it is critical to have a well documented API and

community of developers working with the same software. The longest delays when

developing the software for this work were when learning to understand the IFC file

112

format. The documentation was vague and there were no free support communities

found to assist in deciphering the documentation. Much of what was learned about

IFC came from trial and error. The method most commonly used to understand the

IFC was to export an IFC file from Revit, open it in IFCExplorer and review to see if

the output was as expected. This method was done on single walls, walls connected

to each other, floors, furniture, etc. Doom 3, though, was much simpler to learn

because Doom3world.org has such an active community supporting anyone looking

for help using the engine. With 150k+ threads of discussion, it was easy to find

detailed answers to questions by using the built-in search function.

• From experience on this work, it does not appear that a first person perspective (FPP)

game engine is the optimal approach to be taken when simulating a building’s energy

consumption. The same reasons that were used to justify choosing the first person

perspective engine at the start of this thesis work are the same reasons this does not

appear to be an optimal approach.

o The user has a spatial sense of position within the building and those elements

which make up the building. When seen from a first person perspective, the lack

of detail in a space becomes apparent. The time spent creating visually pleasing

art assets to hide or mask the lack of detail uses valuable time that could be spent

more effectively on other aspects of the simulation.

o Along the same lines, a FPP system puts the user in a single space within the

building, and the user can easily lose perspective of the building as a whole. One

113

of the reasons for a building level simulation is to get a perspective of the entire

building performance. This might be lost by a FPP system.

o For these reasons, the author advises against using a FPP system in the future for

this purpose.

• Given the above, a third person perspective or isometric perspective of a building is a

more suitable approach. This researcher believes that a user may be more likely to

accept a lower level of detail and more visual abstraction than a FPP system.

• From a development perspective, the need for fewer art assets and an overall lower

level of detail is a distinct advantage over a first person perspective system.

• Based on the finding of this thesis research, the licensing of a third person

perspective real time strategy game engine and the creation of custom game logic

code may be a better approach to creating an energy consumption centric

visualization. Using the game logic from an off the shelf game such as Doom limits

the developer to using someone else’s logic, which may be optimized for a first

person shooter game but not for a FPP visualization.

114

REFERENCES

1. EIA, "Annual Energy Review 2004," Department of Energy, Washington, D.C.

DOE/EIA-0384 (2004), September 2005.

2. S. C. M. Hui, "Simulation Based Design Tools for Energy Efficient Buildings in

Hong Kong," Hong Kong Papers in Design and Development, Department of

Architecture, University of Hong Kong, 1998, pp. 40-46.

3. T. Kusuda, "Early History and Future Prospects of Building System Simulation,"

Proc. Building Simulation, vol. 1, 1999, pp. 3–15.

4. T. Hong, S. K. Chou, and T. Y. Bong, "Building Simulation: An Overview of

Developments and Information Sources," Building and Environment, vol. 35,

2000, pp. 347-361.

5. D. B. Crawley, L. K. Lawrie, F. C. Winkelmann, W. F. Buhl, A. E. Erdem, C. O.

Pedersen, R. J. Liesen, and D. E. Fisher, "The Next-Generation in Building

Energy Simulation - A Glimpse of the Future," Proc. of Building Simulation, vol.

3, 1997, pp. 395-402.

6. M. R. Donn, "A Survey of Users of Thermal Simulation Programs," Proc. Of

IBPSA, vol. 3, 1997, pp. 37-45.

7. K. P. Lam, N. H. Wong, and F. Henry, "Computer-Based Performance

Simulation for Building Design and Evaluation: The Singapore Perspective,"

Simulation & Gaming, vol. 34, 2003, pp. 457-477.

115

8. Al-Sallal, K. A., and L. Degelman, "A Hypermedia Model for Supporting Energy

Design in Buildings," Proc. of ACADIA: Reconnecting, 1994, pp. 39-49.

9. J. Whyte, N. Bouchlaghem, A. Thorpe, and R. McCaffer, "From CAD to Virtual

Reality: Modeling Approaches, Data Exchange and Interactive 3D Building

Design Tools," Automation in Construction, vol. 10, 2000, pp. 43-55.

10. V. Bazjanac, "Virtual Building Environments (VBE) - Applying Information

Modeling to Buildings," ECPPM 2004 – eWork and eBusiness in Architecture,

Engineering and Construction, Istanbul, Turkey, 2004, pp. 41-48.

11. J. A. Clarke, Energy Simulation in Building Design, 2nd ed. Oxford, Boston:

Butterworth-Heinemann, 2001.

12. V. Bazjanac, "Acquisition of Building Geometry in the Simulation of Energy

Performance," Proc. Building Simulation Conference, Rio de Janeiro, Brazil,

vol. 1, 2001, pp. 305-311.

13. J. P. Waltz, Computerized Building Energy Simulation Handbook. New York:

Marcel Dekker, Inc., 2000.

14. J. Glazer, [Software] EP-Quick, Glazer Software, 2005.

15. P. Chaisuparasmikul, "Bidirectional Interoperability Between CAD and Energy

Performance Simulation Through Virtual Model System Framework," Synthetic

Landscapes Proc. of the 25th Annual Conference of the Association for

Computer-Aided Design in Architecture, Louisville, KY, 2006, pp. 232-250.

116

16. V. Bazjanac, "Improving Building Energy Performance Simulation with

Software Interoperability," Eighth International IBPSA Conference Eindhoven,

The Netherlands, vol. 1, 2003, pp. 87-92.

17. I. Kim and J. Seo, "Founding a Common Ground for the Emerging Industry

Model Standard (IFC) and ISO Model Standard (STEP) for the Global

Construction Industry," Proc. of the World IT Conference for Design and

Construction / INCITE, Malaysia, 2004, pp. 535-542.

18. Autodesk Inc., Autodesk Revit Building 9 Fully Certified for IFC Export, San

Rafael, CA, Autodesk Inc., 2006.

19. Bentley Architecture Inc., Bentley Architecture Achieves IFC2x3 Certification,

Exton, PA, Bentley Architecture Inc., 2007.

20. Graphisoft, IFC 2x Edition 2 Add-On Available for ArchiCAD, Budapest,

Hungary, Graphisoft, 2007.

21. E. Morrissey, J. O’Donnell, M. Keane, and V. Bazjanac, "Specification and

Implementation of IFC Based Performance Metrics to Support Building Life

Cycle Assessment of Hybrid Energy Systems," SimBuild, IBPSA-USA, National

Conference Boulder, CO, 2004.

22. V. Bazjanac and T. Maile, "IFC HVAC interface to EnergyPlus - A Case of

Expanded Interoperability for Energy Simulation," SimBuild, IBPSA-USA,

National Conference Boulder, CO, 2004.

117

23. J. O'Donnell, E. Morrissey, M. Keane, and V. Bazjanac, "BuildingPI: A Future

Tool for Building Life Cycle Analysis," SimBuild, IBPSA-USA, National

Conference Boulder, CO, 2004.

24. J. Plume and J. Mitchell, "Collaborative Design Using a Shared IFC Building

Model--Learning from Experience," Automation in Construction, vol. 16, pp. 28-

36, 2007.

25. J. S. Haberl and S. Cho, "Literature Review of Uncertainty of Analysis

Methods," Texas A&M University, College Station ESL-TR-04/11-1, November

2004.

26. APEC, HCC-Heating/Cooling Load Calculation Program, Dayton, OH:

Automated Procedures for Engineering Consultants, Inc., 1967.

27. H. Lau and J. M. Ayres, "Building Energy Analysis Programs," 11th Conference

on Winter Simulation, San Diego, CA, vol. 1, 1979, pp. 283-289.

28. J. M. Ayres and E. Stamper, "Historical Development of Building Energy

Calculations," ASHRAE Journal, vol. 37, 1995, p. 8.

29. T. Kusuda, NBSLD: Heating and Cooling Loads Calculation Program, National

Bureau of Standards. Washington D.C.: Dept. of Commerce, National Bureau of

Standards, 1976.

30. R. H. Henninger, J. McNally, and R. Wallace, NECAP - NASA's Energy - Cost

Analysis Program, Part I - User's Manual, Part II - Engineering Manual:

National Aeronautics and Space Administration, 1975.

118

31. G. S. Leighton, H. D. Ross, M. Lokmanhekim, A. H. Rosenfeld, F. C.

Winkelmann, and Z. O. Cumali, "DOE-1: A New State-of-the-art Computer

Program for the Energy Utilization Analysis of Buildings," International

Symposium on the Use of Computers for Environmental Engineering Related to

Buildings Banff, Canada, 1978.

32. U. S. DOE, [Available Online] "Building Energy Software Tools Directory,"

available online http://www.eere.energy.gov/buildings/tools_directory/, 2005.

33. K. Blazej, W. Burkhard, G. John, and H. John, "Information Visualisation

Utilising 3D Computer Game Engines Case Study: A Source Code

Comprehension Tool," Proc. of the 6th ACM SIGCHI New Zealand chapter's

international conference on Computer-human Interaction: Making CHI Natural

Auckland, New Zealand: ACM Press, vol. 94, 2005, pp. 53-60.

34. J. A. Wise, J. J. Thomas, K. Pennock, D. Lantrip, M. Pottier, A. Schur, and V.

Crow, "Visualizing the Non-visual: Spatial Analysis and Interaction with

Information from Text Documents," Information Visualization, 1995, pp. 51 –

58.

35. M. Zyda, "From Visual Simulation to Virtual Reality to Games," Computer, vol.

38, 2005, pp. 25-32.

36. P. Richens and M. Trinder, "Design Participation through the Internet,"

Architectural Research Quarterly, vol. 3, 1999, pp. 1-14.

119

37. V. Miliano, [Available Online] "Unrealty: Application of a 3D Game Engine to

Enhance the Design, Visualization and Presentation of Commercial Real Estate,"

5th International Conference on Virtual Systems and MultiMedia Dundee,

Scotland, UK: International Society on Virtual Systems and MultiMedia,

http://www.unrealty.net/vsmm99/, 1999.

38. B. Stang, "Game Engines Features and Possibilities," Institute of Informatics and

Mathematical Modeling at the Technical University of Denmark, 2003, p. 1-33.

39. M. Lewis and J. Jacobson, "Game Engines in Scientific Research,"

Communications of the ACM, vol. 45, 2002 pp. 27-31.

40. K. T. L. Tran, "U.S. Videogame Industry Posts Record Sales," Wall Street

Journal, p. B.5, Feb. 7, 2002.

41. Reuters, "U.S. Game Sales Hit $13.5 Billion in 2006," News.com: CNET

Networks, Inc., 2007.

42. E. L. Wynters, "3D Video Games: No Programming Required " Journal of

Computing Sciences in Colleges, vol. 22, 2007, pp. 105-111.

43. B. C. Wunsche, B. Kot, A. Gits, R. Amor, J. Hosking, and J. Grundy, "A

Framework for Game Engine Based Visualizations.," Image and Vision

Computing, vol. 1, 2005, pp. 465-470.

44. Jelsoft Enterprises Ltd., [Available Online] Devmaster.net, "3D Engines

Database," http://www.devmaster.net/, 2006.

45. id Software, [Software] "Doom 3 Engine," ver. 1.2. Mesquite, TX, 2004.

120

46. M. S. El-Nasr and B. K. Smith, "Learning Through Game Modding," Computers

in Entertainment, vol. 4, 2006, p. 7.

47. F. Emmerson, "Exploring the Video Game as a Learning Tool," ERCIM News,

vol. 57, 2004.

48. M. Ibrahim and R. Krawczyk, "The Level of Knowledge of CAD Objects within

the Building Information Model," Annual Conference of the Association for

Computer Aided Design In Architecture, Indianapolis, IN, 2003, pp. 173-177.

49. T. Meigs, Ultimate Game Design: Building Game Worlds. New York, NY:

McGraw-Hill/Osborne, 2003.

50. J. X. Chen, Guide to Graphics Software Tools. New York, NY: Springer-Verlag

Inc., 2002.

51. D. Fritsch and M. Kada, "Visualisation Using Game Engines," Geo-Imagery

Bridging Continents XXth ISPRS Congress, Istanbul, Turkey, 2004, pp. 621-625.

52. BeyondUnreal, [Available Online] “Package Extension Catalog”,

"http://wiki.beyondunreal.com/wiki/Package_Extension_Catalog," 2007.

53. C. Fu, G. Aouad, A. Lee, A. Mashall-Ponting, and S. Wu, "IFC Model Viewer to

Support nD Model Application," Automation in Construction, vol. 15, 2006, pp.

178-185.

54. Y. Adachi, [Software, Available Online] "IFCsvr," ver. R300, SECOM CO.,

LTD. Intelligent Systems Laboratory, http://tech.groups.yahoo.com/group/ifcsvr-

users/files/IFCsvrR300/ifcsvrr300_setup_1008_en.zip, 2006.

121

55. Y. Adachi, [Personal Communication, E-Mail] "IFCtoMAP Conversion Utility,"

C. McDonald, College Station, TX, 2006.

56. Y. Adachi, [Spreadsheet, Available Online]

"IFCsvrR200Tk_MAPcnv_000428.xls,"

http://tech.groups.yahoo.com/group/ifcsvr-

users/files/ToolKit/Ifc2QuakeMap/IFCsvrR200Tk_MAPcnv_000428.zip, 2000.

57. Y. Adachi, [Software, Available Online] "IFCExplorer," ver. 1.0.0.1, SECOM

CO., LTD. Intelligent Systems Laboratory,

http://tech.groups.yahoo.com/group/ifcsvr-

users/files/IFCsvrR300/Sample/setup_ifcexplorer1.zip, 2006.

58. K. Terzidis and D. Campbell, "Data-Stream Driven Distributed Virtual

Environments: Air Quality Management District Visualization," IBPSA 1999

Kyoto, Japan, 1999, cód. A-01.

59. L. P. Chew, "Constrained Delaunay Triangulations," Proc. of the Third Annual

Symposium on Computational Geometry Waterloo, Ontario, Canada: ACM Press,

1987, pp. 215-222.

60. B. Worrall, [Doom 3 Script, Available Online] "func_rotatingdoor.script,"

http://www.doom3world.org/phpbb2/viewtopic.php?f=65&t=15463, 2005.

61. B. O’Sullivan and M. Keane, "Specification of an IFC bases Intelligent Graphical

User Interface to Support Building Energy Simulation," 9th IBPSA Conference

Montréal, Canada, 2005, pp. 875-882.

122

62. A. Karola, H. Lahtela, R. Hänninen, R. Hitchcock, Q. Chen, S. Dajka, and K.

Hagström, "BSPRO COM-Server– Interoperability between Software Tools

Using Industry Foundation Classes," 7th IBPSA Conference Rio de Janeiro,

Brazil, 2001, pp. 507-514.

63. H. S. He, A. Hammad, and P. Fazio, "Application of IT and International

Standards to Improve Building Envelope Performance," 9th IBPSA Conference

Montreal, Canada, 2005, pp. 389-396.

64. P. Bonsma, [Software, Available Online] "IFC Engine Viewer," ver. 1.10 Beta,

http://www.ifcbrowser.com/downloads/BETA/IFC%20Engine%20Viewer.exe,

2005.

123

APPENDICES

Electronic Files

These items accompany this thesis as separate files available for downloading as

070607_CMc_LangfordBuildingB.zip and 070607_CMc_ThesisMod.zip:

• The file 070607_CMc_LangfordBuildingB.zip contains the Langford Building B file

data as follows:

o Langford Building B Revit File: LangfordBuildinB.rvt

o Langford Building B IFC File: LangfordBuildinB.ifc

o Langford Building B IDF File: LangfordBuildinB.idf

� This is the output of the IFCtoIDF Converter which has been passed through

the EnergyPlus Version Translation programs from version 1.2 to v1.3 to

v1.4 to v2.0. Attached as the electronic file

• The file 070607_CMc_ThesisMod.zip, contains the Mod directory for the Doom 3

game engine and has been tested using Doom 3 and Prey. To use unzip the file into

the Doom 3 and place the converted .MAP file into the ‘map’ subdirectory.

Source Code & Doxygen Documentation for IFCtoMAP these items accompany this

thesis as separate files available for downloading as:

070607_CMc_IFCtoMAP_SourceCode.zip and 070607_CMc_Doxygen.zip:

• 070607_CMc_IFCtoMAP_SourceCode.zip includes the solution directory for the

IFCtoMAP Visual Studio 2005 project along with a compiled version of the software

124

in the bin\release directory. IFCtoMAP Source Code. This includes the C# source

code used to compile the IFCtoMAP program. In order to compile the solution

Visual Studio 2005 or newer with the C# compiler is needed. To use the solution in

Visual Studio 2005 decompress the zip file and select IFCtoMAP.sln.

• 070607_CMc_Doxygen.zip includes an HTML directory containing the output of a

Doxygen run on the IFCtoMAP source code. To begin viewing this documentation

select the file index.htm.

1
2
5

Constrained Triangulation Example Figures 1-14

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X - Values

Y
 -

 V
a
lu

e
s

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X - Values

Y
 -

 V
a
lu

e
s

P1

P2

P0

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X - Values

Y
 -

 V
a
lu

e
s

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X - Values

Y
 -

 V
a
lu

e
s

P1

P2

P0

Figure 1 Constrained Triangulation Example 1

1
2
6

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X - Values

Y
 -

 V
a
lu

e
s

P3 P2

P0

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X - Values

Y
 -

 V
a
lu

e
s

P3 P2

P0

Figure 2 Constrained Triangulation Example 2

1
2
7

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X - Values

Y
 -

 V
a
lu

e
s

P4 P3

P0

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X - Values

Y
 -

 V
a
lu

e
s

P4 P3

P0

Figure 3 Constrained Triangulation Example 3

1
2
8

Figure 4 Constrained Triangulation Example 4

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X - Values

Y
 -

 V
a
lu

e
s

P4

P5

P0

1
2
9

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X - Values

Y
 -

 V
a
lu

e
s

P5

X

P6

P0

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X - Values

Y
 -

 V
a
lu

e
s

P5

X

P6

P0

Figure 5 Constrained Triangulation Example 5

1
3
0

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X - Values

Y
 -

 V
a
lu

e
s

P5

P7

P6

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X - Values

Y
 -

 V
a
lu

e
s

P5

P7

P6

Figure 6 Constrained Triangulation Example 6

1
3
1

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X - Values

Y
 -

 V
a
lu

e
s

P7P8

P6

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X - Values

Y
 -

 V
a
lu

e
s

P7P8

P6

Figure 7 Constrained Triangulation Example 7

1
3
2

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X - Values

Y
 -

 V
a
lu

e
s

P8

P9
P6

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X - Values

Y
 -

 V
a
lu

e
s

P8

P9
P6

Figure 8 Constrained Triangulation Example 8

1
3
3

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X - Values

Y
 -

 V
a
lu

e
s

P9

P10

P6

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X - Values

Y
 -

 V
a
lu

e
s

P9

P10

P6

Figure 9 Constrained Triangulation Example 9

1
3
4

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X - Values

Y
 -

 V
a
lu

e
s

P10 P11

P6

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X - Values

Y
 -

 V
a
lu

e
s

P10 P11

P6

Figure 10 Constrained Triangulation Example 10

1
3
5

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X-Values

Y
-V

a
lu

e
s

P11

X

P6

P0

P4

P5

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X-Values

Y
-V

a
lu

e
s

P11

X

P6

P0

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X-Values

Y
-V

a
lu

e
s

P11

X

P6

P0

P4

P5

Figure 11 Constrained Triangulation Example 11

1
3
6

Figure 12 Constrained Triangulation Example 12

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X-Values

Y
-V

a
lu

e
s

P11

 P5

P0

1
3
7

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X - Values

Y
 -

 V
a
lu

e
s

P11

P6
P5

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X - Values

Y
 -

 V
a
lu

e
s

P11

P6
P5

Figure 13 Constrained Triangulation Example 13

1
3
8

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X - Values

Y
 -

 V
a
lu

e
s

P11

P6
P5

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X - Values

Y
 -

 V
a
lu

e
s

P11

P6
P5

Figure 14 Constrained Triangulation Example 14

139

Doom 3 System Requirements

• 3D Hardware Accelerator Card Required - 100% DirectX® 9.0b compatible
64MB Hardware Accelerated video card and the latest drivers*.

• English version of Microsoft® Windows® 2000/XP
• Pentium® IV 1.5 GHz or Athlon® XP 1500+ processor or higher
• 384MB RAM
• 8x Speed CD-ROM drive (1200KB/sec sustained transfer rate) and latest drivers
• 2.2GB of uncompressed free hard disk space (plus 400MB for Windows® swap

file)
• 100% DirectX® 9.0b compatible 16-bit sound card and latest drivers
• 100% Windows® 2000/XP compatible mouse, keyboard and latest drivers
• DirectX® 9.0b (included)

MULTIPLAYER REQUIREMENTS:

• Internet (TCP/IP) and LAN (TCP/IP) play supported
• Internet play requires broadband connection and latest drivers
• LAN play requires network interface card and latest drivers

Important Note: *Some 3D accelerator cards with the chipset listed here may not

be compatible with the 3D accelerator features utilized by Doom 3. Please refer

to your hardware manufacturer for 100% DirectX 9.0b compatibility. This

product does not support Microsoft® Windows® 95/98/ME or NT.
SUPPORTED CHIPSETS:

• ATI® Radeon(tm) 8500
• ATI® Radeon(tm) 9000
• ATI® Radeon(tm) 9200
• ATI® Radeon(tm) 9500
• ATI® Radeon(tm) 9600
• ATI® Radeon(tm) 9700
• ATI® Radeon(tm) 9800
• All nVidia® GeForce(tm) 3/Ti series
• All nVidia® GeForce(tm) 4MX series
• All nVidia® GeForce(tm) 4/Ti series
• All nVidia® GeForce(tm) FX series
• nVidia® GeForce(tm) 6800

140

Langford Building B IFCtoIDF EnergyPlus Error File.

Program Version,EnergyPlus 2.0.0.025, 4/19/2007 3:11 PM,IDD_Version 2.0.0.025

 ** Warning ** GetSurfaces: Surfaces with interface to Ground found but no

"GroundTemperatures" were input.

 ** ~~~ ** Found first in surface=0HDUCC6BB75WLCEGCFDTDZ3SGAMKIGB1P8_OBRAYJHOD>FF0

 ** ~~~ ** Defaults, constant throughout the year of (18.0) will be used.

 ** Severe ** GetSurfaceData: Zone has no surfaces, Zone=0HDUCC6BB75WLCEGCFDTDV2

 ** Warning ** GetSurfaceData:The total number of floors, walls, roofs and internal

mass surfaces in Zone 0HDUCC6BB75WLCEGCFDTDK

 ** ~~~ ** is < 6. This may cause an inaccurate zone heat balance calculation.

 ** Warning ** GetSurfaceData:The total number of floors, walls, roofs and internal

mass surfaces in Zone 0HDUCC6BB75WLCEGCFDTDQ

 ** ~~~ ** is < 6. This may cause an inaccurate zone heat balance calculation.

 ** Warning ** GetSurfaceData:The total number of floors, walls, roofs and internal

mass surfaces in Zone 37HSCZC0D1DBSPKQFCEYL1

 ** ~~~ ** is < 6. This may cause an inaccurate zone heat balance calculation.

 ** Warning ** GetSurfaceData:The total number of floors, walls, roofs and internal

mass surfaces in Zone 37HSCZC0D1DBSPKQFCEYL2

 ** ~~~ ** is < 6. This may cause an inaccurate zone heat balance calculation.

 ** Warning ** GetSurfaceData:The total number of floors, walls, roofs and internal

mass surfaces in Zone 37HSCZC0D1DBSPKQFCEYLF

 ** ~~~ ** is < 6. This may cause an inaccurate zone heat balance calculation.

 ** Warning ** GetSurfaceData:The total number of floors, walls, roofs and internal

mass surfaces in Zone 37HSCZC0D1DBSPKQFCEYL8

 ** ~~~ ** is < 6. This may cause an inaccurate zone heat balance calculation.

 ** Warning ** GetSurfaceData:The total number of floors, walls, roofs and internal

mass surfaces in Zone 37HSCZC0D1DBSPKQFCEYKR

 ** ~~~ ** is < 6. This may cause an inaccurate zone heat balance calculation.

 ** Warning ** GetSurfaceData:The total number of floors, walls, roofs and internal

mass surfaces in Zone 37HSCZC0D1DBSPKQFCEYJM

 ** ~~~ ** is < 6. This may cause an inaccurate zone heat balance calculation.

 ** Fatal ** Fatal error discovered in GetSurfaceData, see previous messages

 ************* Fatal error -- final processing. More error messages may appear.

 ************* Testing Individual Branch Integrity

 ************* All Branches passed integrity testing

 ************* Testing Individual Supply Air Path Integrity

 ************* All Supply Air Paths passed integrity testing

 ************* Testing Individual Return Air Path Integrity

 ************* All Return Air Paths passed integrity testing

 ************* No node connection errors were found.

 ************* EnergyPlus Terminated--Fatal Error Detected. 9 Warning; 1 Severe Errors;

Elapsed Time=00hr 00min 2.94sec

141

VITA

Name: Christopher Ernest McDonald

Address: U.S. Department of State 2201 C Street NW Washington, DC 20520

Email Address: mcdonaldce@gmail.com

Education: B.S. Computer Engineering, Texas A&M University, 2005
 M.S. Architecture, Texas A&M University, 2007

