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ABSTRACT 

Framework for a 

Visual Energy Use System. (August 2007) 

Christopher Ernest McDonald, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Charles Culp 

 

The goals of this research include developing and identifying software technologies, 

which facilitate the use of buildings described in Building Information Modeling (BIM) 

tools in both a simulation and visualization. The study focused on the development of a 

tool to fulfill the visualization needs of a Visual Energy Use System. To accomplish this, 

the study identified an open BIM file standard, the Industry Foundation Classes (IFC). 

The study also identified a video game based 3D virtual environment, the Doom 3 

Engine. A tool developed during the study, IFCtoMAP, converts IFC data into the .MAP 

file format understood by the Doom 3 Engine. Finally, the study identified the IFCtoIDF 

utility, which translates IFC data into a format understood by the building energy 

simulation program EnergyPlus. 

Data from the Building Information Modeling tool Revit Building exports to the .IFC 

file format, which in turn drives the two conversion utilities IFCtoMAP and IFCtoIDF. 

The output of the IFCtoIDF tool consists of an .IDF file that EnergyPlus uses to perform 

an energy simulation. The output of the IFCtoMAP tool consists of a .MAP file, which 

the Doom 3 game engine uses to display three dimensional first person perspective 

visualization. 



 iv 

The result of the study was the successful creation of an automated tool that converts 

building geometry found in .IFC files into the .MAP file format understood by Doom 3 

game engine. This document details the methods employed by the IFCtoMAP software 

along with a brief discussion of the IFCtoIDF conversion utility. 
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1 INTRODUCTION 

According to the Annual Energy Review of 2004, the combined electrical energy 

requirements for cooling and heating in commercial buildings in the U.S. reached 948 

trillion BTUs a year in 19991. This study identified space conditioning as the single 

largest consumer of electricity in commercial buildings. Determining the amount of 

energy consumed becomes an important task for many applications, including building 

design and operational energy conservation. One method of determining the energy 

consumed by a building uses computer based energy simulation. Hui describes energy 

simulation as a means to “analyze the energy performance of a building to gain a better 

understanding of the relationship between design parameters and the energy use 

characteristics of the building”2.  

Determining the energy consumption of a building can be accomplished using a 

number of methods. The most common method uses computer based modeling to 

simulate the energy consumption. The most commonly used energy simulation programs 

have been those supported by the US government in the 1960s and 1970s. Kusuda 

explains that these programs have their roots in cold war studies into the “thermal 

environment in fallout shelters by an hour by hour simulation of heat and moisture 

transfer process between human occupants and shelter walls under limited ventilation 

conditions”3. These programs require a user to have advanced knowledge in the fields of 

building Heating Ventilation and Air Conditioning (HVAC) equipment and software 

programming to prepare and understand the output from a simulation. 
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According to Hong, simulation programs of the 1970s and 80s required mainframes 

to run the software which limited their use to “research laboratories and [were] rarely 

employed in building design practice because of the level of difficulty and high cost 

involved in their use”4. While there a need exists for building designers and engineers to 

improve their understanding of the buildings they design and operate, the complexity of 

simulation programs has continued to limit the user base. According to the Crawley, 

Donn, Hui, and Lam surveys; building designers and engineers want to improve building 

energy simulations by making use of existing Computer Aided Drafting (CAD) design 

tools, thereby reducing the complexity of simulation preparation and offering a more 

intuitive and visual correlation between the results and the built environment2, 5-7.  

As the computing resources for running the simulations have become economically 

accessible, so also have the resources for visualizing results and linking CAD tools to the 

simulation. This work will be a significant first step in the direction of bringing together 

CAD tools and energy simulation results in a three dimensional virtual environment4, 8-

10. Although the underlying technologies for each aspect of this project have existed 

since 1999, the software developed for this thesis is unique for the Architecture, 

Engineering, and Construction (AEC) industry. To date, published reports of software 

technology developed for this thesis have not been found in any of the searches in the 

journals cited in the References section. 
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2 PURPOSE AND OBJECTIVES 

The objectives of this research include identifying and developing software 

technology, which provides a link between a building’s geometry from an object 

oriented CAD file with the calculation of a simplified energy simulation of the same 

building represented in the CAD file. The results will then be displayed visually in a 

spatially relevant virtual environment.  

To accomplish these objectives, the author performed the following tasks: 

1. The author selected an open CAD file standard to provide the geometry data for 

the visualization and simulation. 

2. The author selected a video game based 3D virtual environment to display the 

building’s geometry and the results of the energy simulation. 

3. The author identified software simulation technology that calculates the energy 

consumption of a building using the same geometry as used in both the CAD file 

and the 3D virtual environment. 

4. The author developed software that represents the technology framework for 

extracting selected information from the CAD files and transforming that 

information into a format usable by the 3D virtual environment and energy 

simulation. 

 This research will develop and identify the software requirements to link a 

simulation and a visualization together using a single CAD data source. Figure 2.1 

illustrates the intended flow of information from the Building Information Model 

(BIM) software through the CAD file standard into both the 3D virtual environment 
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and the energy simulation software. The sum of building information model coupled 

with the visualization and energy simulation components represent the Framework 

for a Visual Energy Use System. 
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Figure 2.1 Framework for a Visual Energy Use System 
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3 LITERATURE REVIEW 

The review of related literature included the following categories: 1) computer based 

building energy simulation; 2) fundamental information visualization concepts; and 3) 

emerging trends in architectural visualization. The primary sources for this literature 

survey included books, journals, conference proceedings, and similar publications from 

both the building industry and computer science communities. 

3.1 Introduction to Computer Building Energy Simulation  

Methods of evaluating energy consumption in buildings have evolved and have 

included simplified hand calculations, measuring the usage of each component of a 

system over time, and computer based modeling. The first method, simplified hand 

calculations, requires training and produces a broad range of estimated loads and 

consumption. However, Clarke states that “calculations are based on analytic 

formulations that embody many simplified assumptions,” which render the results 

difficult to translate into real world operational changes to improve building efficiency11.  

The second method, measuring the usage of each component of a system over time, 

produces the most numerically accurate estimate of energy consumption; however, it 

also requires the most expense. Installing monitoring systems, and gathering and 

compiling data requires time and significant capital investment.  

The third method, computer based modeling, simulates the energy consumption of a 

building. This method avoids the simplifying assumptions used in manual calculations 

and the time and expense of costly monitoring systems.  
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3.2 Developments in the Acquisition of Building Geometry  

Multiple contemporary approaches to acquiring building geometry for energy 

simulations and visualizations include manual simplification of a building into abstract 

zones and scanning CAD files with proprietary software. According to Bazjanac, when 

using the current generation of energy simulation programs, up to 80% of the time can 

be required for the preparation of the building geometry and defining the building’s 

zones12. Building geometry involves the physical layout and materials of the building as 

they relate to energy simulation. Waltz explains that building elements that partition 

zones such as walls, windows and doors (both exterior and interior) have importance for 

simulation purposes, whereas adiabatic walls within a single zone have no impact on an 

energy simulation13. For the purposes of this research, adiabatic walls and doors between 

zones will be taken into account, as they provide for spatial context within the 

visualization. 

3.3 Manual Simplification 

Bazjanac describes the first method of acquiring building geometry, manual 

simplification of a building geometry into abstract zones as the “standard practice in 

preparing energy simulation input typically [involving] repetitive manual operations that 

in essence amounts to duplication of existing data” 12. This method of acquiring building 

geometry requires the user to create an artificial representation of the building and does 

not make use of available geometry information in CAD files. A number of applications 

available have graphical user interfaces to facilitate this process and reduce the 
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simulation preparation time for government sponsored simulation software such as 

DOE-2.0, BLAST, or Energy Plus (EP). One such program known as EP-Quick (EP-Q) 

uses simple templates for the shape and zone layout of a building to generate the input 

files for Energy Plus14. EP-Q, as a typical example of geometry input file generation 

tools, allows up to 24 different building spaces / zone layouts. These tools let the users 

quickly generate building geometry, but introduce a layer of abstraction between the 

resulting calculations and the actual building. This additional layer of abstraction 

requires the interpretation of calculated results, rather than visually aligning these results 

to the building being simulated.  

3.4 Semi-Automated Data Extraction 

The second method for acquiring building geometry does not require the re-creation 

of information, but rather uses existing CAD building geometry information to generate 

the input geometry description for an energy simulation program. Bazjanac explains that 

the level of effort required for the preparation of a building energy simulation input file 

can be reduced by a factor of four through the use of semi-automated tools12. One factor 

slowing the adoption of this method in general practice centers on the unique file format 

generated by each CAD software package. These unique file formats restrict the use of 

analysis tools and require re-creation or translation of the data when moving from one 

building software package to another. Chaisuparasmikul laments that it “is inevitable in 

the traditional design process to recreate the same building model as much as seven or 

eight times”15. In the past, translation programs convert data from one application’s 
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unique file format to another. These interface programs add development cost and 

require commitment to a particular software package.  

The International Alliance for Interoperability (IAI) has developed a building 

information model (BIM) known as the Industry Foundation Classes (IFC) standard for 

the exchange of building information. This includes building geometry and building 

systems16.  The IAI formed in October 1995 when 12 U.S. based companies joined 

together to address the need for interoperability in the Architecture, Engineering, and 

Construction (AEC) industries. The first standard published in 1997 had limited support 

for some processes in the AEC community. Because of the release of the IFC2.x model, 

the Building Lifecycle Interoperable Software (BLIS) consortium formed to assist in the 

creation of software data exchange interoperability. In November 2002, the International 

Standards Organization (ISO) adopted the IFC 2.x standard as the publicly available 

specifications under the title ISO/PAS 1679317. The ISO-PAS designation represents and 

important milestone for IFC because it implies a level of maturity and stability of the 

model that justifies implementation by commercial companies. According to 

Chaisuparasmikul, in the United States, the General Services Administration (GSA) and 

other government agencies require the use of BIM solutions for work done at their 

facilities15. At present all major BIM-CAD software developers (e. g. Autodesk, Bentley, 

GraphiSoft) offer a minimum of IFC core module support, and a few energy simulation 

tools (e. g. Energy Plus) offer limited IFC interoperability18-24.  
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3.5 Developments in Building Energy Simulation 

Haberl explains, that the first generation of Computer based Building Energy 

Simulations (CBES) were developed in the mid-1960s when a group of mechanical 

engineers formed the Automated Procedures for Engineering Consultants, Inc (APEC)25. 

APEC created a CBES known as the APEC Heating and Cooling Peak Load Calculation 

(HCC) Program26. APEC designed HCC to calculate peak heating and cooling loads and 

air quantities for the sizing of building HVAC equipment. In 1967 a number of the 

APEC and American Society of Heating, Refrigeration and Air Conditioning Engineers 

(ASHRAE) members formed the ASHRAE Task Group on Energy Requirements, 

TGER27. TGER published procedures for determining heating and cooling loads for 

computerized energy calculations in 1969. These procedures included simulating 

dynamic heat transfer through building envelopes, and calculating psychometric 

properties and algorithms for the simulation of both primary and secondary HVAC 

system components.  

Widespread use of computer based building energy performance simulation 

programs grew out of the significant increase in computational power and the threat of 

an Arab oil embargo in the early 1970s28. Early development of CBES received financial 

support, primarily from the government, in particular the United States Post Office 

Department, the Department of Energy, and the Department of Defense. The first such 

public domain energy analysis program became known as the Post Office Program. The 

Post Office Program later merged with the National Bureau of Standards Load 

Determination (NBSLD) program29. NBSLD, originally designed for the cooling load 
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analyses of a room for the design-cooling day with a clear sky condition, was also the 

first program to couple a space heat gain/heat loss with the cooling/heating capacity of a 

building’s HVAC systems through the heating/cooling coils.  

The program generated from the union of the Post Office program and NBSLD 

released by the National Aeronautics and Space Administration (NASA) known as 

NASA’s Energy Cost Analysis Program, or NECAP30. In 1976, the California Energy 

Commission, along with the Energy Research and Development Administration (ERDA, 

which later became the Department of Energy), funded the collaboration between 

Lawrence Berkeley Laboratory, the Los Alamos Scientific Laboratory, the Argonne 

National Laboratory, and the Computational Consultants Bureau to improve NECAP. 

The improved version of NECAP released as CAL-ERDA in recognition of the funding 

organizations. At the same time, another variant existed based on NBSLD, known as 

Building Loads Analysis and System Thermodynamics (BLAST). The release of CAL-

ERDA and BLAST marked the beginning of the second generation of CBES. Shortly 

after the ERDA became the U.S. Department of Energy in 1978, CAL-ERDA and 

CAL/CON, a variant of CAL-ERDA, were merged into DOE-131. In 1979, releases of 

DOE-2 and BLAST 2.0 became available. 

The second generation of computer based energy simulators in the 1980s saw an 

explosion of proprietary energy analysis programs tailored for use in large commercial 

and residential buildings11. First generation CBES required mainframes to run the 

software, whereas second generation programs were developed to run on the emerging 

workstation and micro Personal Computer (PC) technologies. However, most of these 
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programs were neither easy to use nor well documented. In addition, the programs were 

still very expensive. This resulted in many of these proprietary systems not surviving 

into the third generation.  

With the advent of improved user interfaces for the PC such as Windows in the late 

1980s, the third generation of computer based building energy simulation programs also 

achieved the Graphical User Interface, or GUI11. The Department of Energy developed a 

directory of over 200 tools which specialize in everything from day lighting calculations 

to whole building load and analysis tools32.  

This thesis work reviewed feedback from users of contemporary tools. In a survey of 

241 architectural and engineering firms conducted in the United States in 1997, Donn 

reported a low usage of simulation in the design process6. The results in the United 

States were later confirmed by a survey of 584 firms in Singapore by Lam in 1999, 

which found that only 1.6% of architecture firms and 46.4% of engineering firms used 

performance-based energy and HVAC sizing simulations tools7. Of the firms that used 

the various software tools, none of the architects who responded had training regarding 

their use. Among the reasons for not using the software, those surveyed cited: the 

extensive data input requirements, the lack of CAD design tool integration, and the 

disconnection between results and the real buildings. Both surveys indicate that building 

designers and engineers want building energy simulations tools to use existing CAD 

design tools, to simplify simulation preparation, and have a more intuitive and visual 

correlation between the results and the built  

environment2, 5-7. 
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When choosing a method for simulation, three options will be considered: (1) the 

creation of a new energy simulation calculation tool that would be linked to 3D virtual 

environment; (2) the creation of calculations from within the 3D virtual environment; 

and (3) the reuse of an existing simulation calculation tool such as EnergyPlus, the latest 

government sponsored energy simulation tool, based on DOE2 and BLAST. 

3.6 Fundamental Information Visualization Concepts 

Given building geometry and input to the energy calculation system, the next step in 

building energy simulation process involves visualizing the building and the results of 

the calculations. The method chosen to visualize the calculation results has the potential 

to greatly increase the user’s ability to understand the simulation results or to greatly 

obscure understanding. For instance, if the result of a year’s worth of hourly 

calculations, presented in a spreadsheet with 8760 rows and 20 or more columns, it 

would be difficult to understand the data. However, with graphed data, trends can be 

seen that often disappear in tabular form. Energy calculation results become significantly 

more valuable when not only the numerical values convey meaning, but also when the 

effects of those values on the overall performance of a building become highlighted.  

Blazej describes the process of creating visualizations as a “visualisation pipeline”33; 

because just as water flows through a pipeline to its final destination, information flows 

from an author to an audience via a “visualisation pipeline” as seen in Figure 3.1. This 

“visualisation pipeline” occurs in three stages: the encoding of information by the author 



 

 

13 

using a symbolic map, the subsequent display, and finally the decoding of the 

information by the audience.   

 

 
Figure 3.1 Information Visualization Pipeline

33
 

 
 

When an author determines that a set of information could be better understood 

visually, the author must decide the best method to convey the intended meaning to the 

audience. Blazej explains that the “encoding and decoding [of information is] connected 

via visual attributes such as shape, position, and colour, and textual attributes such as 

text and symbols which themselves are represented by simple visual attributes” 33. 

According to Blazej, the information to be conveyed must be transformed from a 

concept, a collection of numbers, or some other raw format into a symbolic map. This 

symbolic map contains a collection of visual attributes that give meaning to a 

visualization. Having chosen a symbolic map, the author then displays the encoded 

information to the audience. 
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Figure 3.1 combines the use of text, arrows, and pictorials to describe the flow of 

information from the left side of the graphic to the right. The text used in the graphic 

contains germane words and phases that convey key concepts. The concepts 

interconnected by bounding volumes and directional arrows. The use of arrows serves a 

dual role; the solid arrows describe information flow, and the dotted arrows describe a 

conceptual link between words. Now that the information has been encoded and 

displayed, the audience decodes the message.  

The ultimate goal of encoding information visually is the successful decoding of the 

information by an audience. Wise explains that during the encoding stage, the author 

spatially transforms information into a visual representation revealing thematic patterns 

and relationships34. This encoding uses a symbolic map, assumed to be familiar to the 

audience, to translate the information into an illustration. As the audience perceives the 

information, they form a cognitive understanding as it passes through a personal 

preconceived symbolic map. The personal symbolic map, a variation of a universal 

symbolic map, is a specialized symbolic map defined by a group in society who share 

common information. For example, architects and engineers have a common set of 

terminology and symbols used in the exchange of information pertaining to their 

respective professions. When an audience understands the information being conveyed, 

then an author finds success. 
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3.7 Emerging Trends in Architectural Visualization 

An emerging trend in the field of architecture uses real-time graphics engines for 

visualization. The use of video gaming technologies outside of the entertainment 

industry has been gaining momentum and credibility in the last seven years according to 

Zyda35. The first account found in this literature survey related to this trend reported that 

Richens in conjunction with the CADLAB at Cambridge in London used the Quake II 

game engine to demonstrate the use of existing gaming technology for remote 

collaborative design review in 199936. The same year V. Miliano released “Unrealty,” a 

commercial real estate demonstration program based on the Unreal game engine37. Both 

of these programs led a consumer focused visualization revolution. Before 1999, the use 

of visualizations existed with only those organizations that possessed resources to invest 

in virtual reality (VR) and “until right after the turn of the century, [these] high-end VR-

systems outperformed the game systems by being capable of handling several orders of 

magnitude more polygons, textures, and fill rates”38.  

Lewis explains that there no longer exists a need for supercomputers in the creation 

of “realistic simulations and sophisticated graphics;” the more contemporary approach 

offers the means to “trade down from expensive gear to standard PCs running game 

software” 39. Contemporary game systems have closed the performance gap between 

high-end VR and consumer graphics systems. The gaming industry’s pursuit of realistic 

real-time graphic solutions drives the strides made in consumer graphics. The U.S. video 

and computer game industry generated record revenues of $9.4, $10.5, and $12.5 billion 

in 2001, 2005, and 2006, respectively40, 41.  
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3.8 Game Architecture 

Wynters and Wunsche both explain that gaming developers cannot recover the entire 

cost of game design on a single game title42, 43. Common practice in the game industry 

involves designing games in a modular fashion. Licensed game engines may be used in 

three or more major game titles. Wunsche divides games into three major  components: 

game engines, game logic, and game art43. Game engines handle the input, output, and 

physics or interactions for the game world39. Game logic describes the particular 

application of the game engine and defines the game play and uses of the game engine 

and game art. For example, game logic might define a game as a vehicle racing game as 

opposed to a children’s mystery game. However, both games use the same engine for the 

graphics and interaction. The engines track users, locations, and objects in complex 3D 

environments.  

3.9 Game Engine Genres 

Graphically based computer games come in almost as many different styles or genres 

as do game engines. Three very prominent genres include First Person Shooters (FPS), 

Real Time Strategy (RTS), and Role Playing Games (RPG)33. Further classifications 

could be made into single player games and multi-player games. However, most 

contemporary games have the ability to co-exist in both single and multi-player domains. 

The virtual environments of the FPS game genres involved viewing from the perspective 

of a character or agent. The user experiences the world as if seeing it through the 

character’s eyes, and then in turn interacts with the environment using virtual 
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extremities. In RTS, the user experiences the virtual environment from a third person’s 

perspective of a large environment. The user does not experience the environment as a 

character from within but rather as a controlling agent from without (e. g. controlling an 

army on a battlefield). The RPG genre is very similar to the RTS however; the user can 

only control one character within the environment.  

The genre chosen for use in this work, the FPS style, conveys a sense of spatial 

presence not seen in the other two genres. This spatial presence allows the user to 

experience the virtual environment in as close a fashion as possible to actually being 

within the environment43. 

3.10 Game Engine Availability 

Devmaster.net maintains a database of more than 230 game engines44. Game engines 

come in two major categories: open-source and closed source. Open-source game 

engines developed by a community of users where every aspect of the game engine, 

game logic, and game art can be customized. Closed source game engines allow a user to 

modify the game logic and the game art but not the engine itself. Open-source engines 

can be an inexpensive medium in which to develop and have a community of support. 

Many closed source games engines come from major game development companies that 

use the same engine in multiple games. Closed source engines generally offer more 

advanced options than open-source engines, offering unique features not seen elsewhere, 

such as code optimizations. Source code for closed source engines can only be obtained 

by those who license these engines.  
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Because both types of engines allow for the modification of game logic and game 

art, the author chose a closed source engine based on the online community support for 

modification and the author’s modification experience. The chosen engine, the Doom 3 

engine, developed by id Software and that receives its’ named from the first released 

title, Doom 3, which used the engine45. The Doom 3 game engine released to the public 

in August 2004 and has been enhanced and re-released twice with Quake 4 (2006) and 

Prey (2006).  

3.11 Game Modding 

“Many popular game engines come with scripting languages that allow users to 

modify their behaviors, create new worlds for exploration, or even modify existing 

games into completely new ones”, a process often referred to as modding
46. “The 

customization of existing commercial games through the use of freely available 

development tools can provide an excellent means of creating applications … without 

requiring the time and money that is needed to create a game from scratch”47. Similar to 

other commercial games, Doom 3 has a number of built-in tools that the original game 

creators used in production which released with the games allow game modding 

communities to edit the game content. 
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Although a comparison of available game engines will be discussed in more detail 

later in this study, the Doom 3 game was chosen primarily for the built-in tools for 

modding and the size and activity level of the online modding community.  The online 

Doom 3 modding community has approximately 10,000 registered users at 

Doom3World.org alone and the forums include more than 100,000 threads related to 

game modifications. 

3.12 Summary 

The proposed research focuses on creation of a software tool which brings CAD 

tools, energy simulation, and information visualization together into a virtual 

environment. Computer based energy simulation has matured over the past 50 years 

from mainframe resource intensive calculations that required highly trained individuals 

to much simpler software that can be run on a personal computer. However, the AEC 

community seeks an even more intuitive approach to energy simulation and the 

presentation of calculation results. This study directly addresses the needs as expressed 

by users of energy simulators in both the Lam and Donn surveys6, 7.  
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4 PROPOSED RESEARCH METHODOLOGY 

The aim of this research is to develop software technology for reusing buildings 

described in the IFC BIM standard in both a simulation and visualization. The following 

outlines the methodology: 

1. Identify the geometric elements from IFC that will be used in the selected 

visualization engine. 

2. Research and identify the modification requirements for the visualization engine. 

3. Develop software that: 

a. Transforms building geometry in IFC files into the format required by the 

selected virtual environment. 

b. Simulates the energy consumption of the building. 

4. Obtain drawings for a building that can be converted into the IFC file format. 

The selected building will be a demonstration for the virtual environment 

transformation and the energy simulation. 

5. Analyze the technologies developed and identify areas of future research. 

To meet the research goal, an on campus building was selected as a test case. The 

selected building is the Architecture B building located on main campus between the 

Bright building and the Architecture A and C Buildings. The Architecture B building 

currently serves multiple purposes as it contains: a woodshop, an auditorium, 

classrooms, and research space. The Architecture B building contains many elements of 

a common office building and will serve as a good example of the geometry that can be 

transformed for the visualization engine.  
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5 SOFTWARE BACKGROUND 

5.1 Introduction 

To meet the objectives of the proposed research, the author chose an open CAD file 

standard and a video game based 3D virtual environment. When choosing the CAD file 

standard, the author considered two important elements: first, the standard needed to 

contain information related to building geometry; and second, the standard needed to be 

capable of providing thermally relevant information about a building. It was clear that 

the CAD standard would need to be a Building Information Model (BIM). Ibrahim and 

Krawczyk describe Building Information Models as a specialized form of CAD that 

approaches buildings as objects and decomposes buildings into elements that contain 

both geometry and data associated with relevant properties of an object in a building48. 

Bazjanac defines a Building Information Model as “an instance of a populated data 

model of buildings that contains multidisciplinary data specific to a particular building 

which they describe unambiguously.”10  

The BIM-CAD file standard chosen for this project is the Industry Foundation 

Classes (IFC) developed by the International Alliance for Interoperability. The IFC 

standard first published in 1997, has been revised a number of times over the last ten 

years. According to Blazjanac and O’Donnell, the most current releases, IFC2x2 and 

later, have frozen the core kernel data, and extensions have been added which 

specifically target ‘post-CAD’ tools such as energy simulation16, 23.  
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In choosing the video game based 3D virtual environment (VE), the author examined 

a number of important considerations: (1) the VE must be accessible to those who will 

use it; (2) the availability and quality of documentation; (3) the size and nature of the 

user community; and finally (4) the ease of extensibility of the environment.  

For the technology developed by this research to be disseminated, the VE must be 

accessible on commonly available computer hardware and software. These requirements 

led to the selection of a game engine that could be run on common and popular PC 

hardware.  

The accessibility factor being satisfied, the ability to extend the game content and 

functionality became the focus of the VE search. This ability requires quality 

documentation and knowledgeable user communities. The three largest user 

communities found on the web were for Doom 3, Torque and Unreal. When examining 

these communities, the extensibility and ease of content creation for the game engines 

became apparent. 

Each of these game engines have ‘world building’ tools that allow the game 

designers to create and organize content within the VE. When creating content for 

playable VEs, called maps, Meigs explains that there exists a number of approaches 

ranging from one extreme, a self written standalone editor, to the other, using the tools 

that accompany a commercially licensed engine technology49. Because writing a 

standalone editor for one of these engines could not be created within the time 

constraints, the author chose a commercially available world building tool. The author 
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reviewed the world building tools UnrealEd (Unreal 2 Engine), and D3Radiant (Doom 3 

Engine).  

UnrealEd, the world building tool for the Unreal 2 game engine uses the principle of 

Constructive Solid Geometry (CSG)50. When creating a map, the world in UnrealEd 

begins as a giant cubic mass. To create space for a player to inhabit, the space must be 

subtracted from the mass. Fristch explains that objects created by CSG form as a logical 

combination of simple forms such as cuboids, pyramids, and spheres51.  After 

performing Boolean subtractions, spaces form in which solids can be placed back into 

the world to form structures such as walls, stairs, and other objects. The input map files 

for the unreal engine, .unr files, consists of binary packages containing map geometry 

and texture references in addition to compiled UnrealScript code, sounds, textures, and 

music52. These files can not be read by people, a factor considered to unnecessarily 

complicate this study.  

The D3Radiant tool takes the opposite approach to building a world. The map begins 

as a void, and the elements added create the boundaries of space. The D3Radiant tool 

uses ASCII files to store the map data in sets of bounding planes, which define the 

contours of solid objects.  At run time, the map compiles and the engine converts the 

bounding plane sets into a respective set of polygons for solid convex primitive objects.  

The resulting set of optimized faces does not include the removed hidden or redundant 

faces created by adjacent objects. This face set when converted into a binary space 

partition tree (commonly called a "BSP tree") representation can be used for both 

collision detection purposes and efficient visibility calculations. Each of the primitive 
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objects, known as BrushDef3, are created from the intersection of planes and therefore 

cannot contain concave features. This requires that all objects generated from primitives 

to be convex. ASCII input files for this engine can be generated outside of the 

D3Radiant tool. Another noted benefit of this engine is the forward compatibility with 

ASCII .map files created for previous engines, such as Quake 3, developed by the same 

company. The forward compatibility leads to an extended life of the work developed and 

adds value to the work produced using this format.  

While other game engines and map editing programs to choose from, these options 

represent two large online game modding communities. Lewis and Jacobs state that 

“while neither id Software nor Epic Games is in the business of supporting research, 

their user communities can provide active sources of help and information for game-

using researchers”39.  

Between the UnrealEd and D3Radiant, D3Radiant best met the needs of this research 

because the input files, being ASCII, can be generated outside the D3Radiant tool. The 

size and activity level of the Doom 3 modding community was also considered. 

Therefore, the Doom 3 game was chosen as the virtual environment for this research 

work. Table 5.1 details the computer hardware specifications for this project. A detailed 

minimum hardware requirements list for running the Doom 3 game has been added in 

the Appendices as Doom 3 System Requirements. 
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Table 5.1 Doom 3 System Requirements 

 
Minimum Requirements Test System

CPU Intel P4 1.5ghz/AMD Athalon 1500 AMD64 3500+

Graphics Nvidia GeForce3/ATI Radeon 8500 Nvidia 6600GT

RAM 384MB 2 GB

Hard Drive 2.8GB 120GB

Operating System Windows 2000 Windows XP SP2
Software DirectX 9b DirectX 9c  

 

5.2 Doom 3 Engine Considerations 

After selecting the Doom 3 engine for this project, an effort was made to understand 

and outline the known limitations of the engine. The following summarize the 

restrictions as they relate to this thesis. 

There exists a significant and noticeable visual performance degradation appears 

(lower than 20fps) when more than 600K+ polygons become visible at any given time. 

This limitation requires the use of visibility culling of polygons, VisPortals, to decrease 

the total number of visible polygons. However, VisPortals do not cull imported objects 

from art packages (3D Max, Maya, Lightwave, etc.). After some testing, it was 

determined that importing full 3D models of buildings from art packages was not a 

viable solution for the visualization.  

The following discussion illustrates the Doom 3 engine’s use of  Brushdef3 

primitives, which require all objects to be constructed from a set of convex primitives. 

Figure 5.1 shows two 2D objects, a green cross and a yellow pentagon. The red dot in 

the center of both figures below represents the origin. The yellow pentagon is a convex 
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shape and the green cross is concave. When described in the brushDef3 format, the 

Doom 3 Engine renders the closest set of intersecting lines. Given this rendering logic, 

the pentagon maintains the original shape as seen in Figure 5.2. On the other hand, the 

green cross becomes the left shape in Figure 5.2 because only the intersection of the 

closest lines to the origin (in red), as derived from the original shape of the cross, are 

rendered. The cross shape, when defined in this manner, yields a square and the original 

shape is not preserved. In order to preserve the original shape, the cross must be 

converted into a set of convex shapes such as triangles. 

 

 

 

Figure 5.1 Example of Concave and Convex Shapes 

 
 

 

Concave Convex 
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Figure 5.2 Example of Line Intersections of Concave and Convex Shapes 

 
 

5.3 Developing Software with IFC 

The method for acquiring building geometry chosen for this research is a semi-

automated approach. The automation extracts select elements of a building’s geometry 

from IFC and transforms that information into a representation that is understood by 

Doom 3 engine. Autodesk, the software developer of Revit, is a member of the IAI that 

published the IFC standard. It is among the major companies adopting import/export 

functions for IFC. For these reasons, Revit Building was selected as the BIM file 

creation tool and was used to generate all of the test-case IFC files. 

To expedite the addition of .IFC file support for applications, the IAI has added a list 

of companies offering auxiliary tools, such as application programming interfaces (API) 

or toolboxes. Although the specification and format of the IFC model file have been 

published for a number of years and the AEC community holds many aspirations for 

Concave Convex 
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BIM interoperability, mature and inexpensive auxiliary tools for IFC implementers are 

still not common. Fu attributes the limited availability of auxiliary tools to the gaps in 

the specification and file formats between different versions of IFC 53. These file-based 

toolboxes provide developers with an easy way to read, modify, add and represent the 

data in an IFC model. One such API toolbox is the freeware IFCsvr released by the 

SECOM CO.,LTD. Intelligent Systems Laboratory of Japan54. When selecting a toolbox, 

this researcher contacted a number of toolbox developers and the only Yoshinobu 

Adachi of SECOM CO., Ltd55 responded.  

Adachi offered an Excel spreadsheet developed in 2000 that converted extruded 

rectangular profile geometry from IFC2.0 to Quake 3 file format as an example of where 

to start learning about IFC56. Adachi then sent the source code for IFCExplorer, an IFC 

file viewing program that uses the IFCsvr300 toolbox57. 

The IFCExplorer source code offered a number of clear examples of how to use the 

IFCsvr toolbox. The IFCsvr is an ActiveX component for the handling of Industry 

Foundation Classes data. The IFCsvr API (Application Program Interface) is written in 

C# .NET and was used to allow IFCtoMAP to read IFC information from test files that 

were generated in Autodesk Revit 9. However, the IFCsvr provides not only a 

programming interface to IFC data for importing but also for exporting, searching, 

creating, and modifying. By using the IFCsvr to provide the input mechanism, 

IFCtoMAP can seamlessly support input and output functions for various 

implementations of .ifc including STEP Part21, BLIS-XML, in addition to IFC2x3 Final 
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and ifcXML. IFC2x3 Final is the latest revision of IFC, released in December 2005, and 

at this time is still the most current version of IFC.  

5.4 Doom 3 Engine .MAP File Format 

The Doom 3 game engine (D3E) uses a file with the extension .map to generate 

playable levels (virtual environments) for the game. Unlike other engines, D3E uses the 

.map file in both the level editor as well as in the game with no need to compile the 

editor .map file into a different format for the engine. The .map files are raw ASCII 

linking files  used to create three more files by using the dmap command from a D3E 

command prompt. The three files created are mapfilename.cm, mapfilename.proc, and 

mapfilename.aas. Table 5.2 explains the purpose of these files.  

 

Table 5.2 Doom 3 Engine Map Files 

 
File Extension Description

mapfilename.map

Defines all the entities, brushes and patches in the map. Used 

to generate .cm, .proc, and .aas files by using the dmap 

command.

mapfilename.cm
Defines the collision geometry used by the physics system for 

collision detection.

mapfilename.proc

Contains all the pre-processed geometry as visible triangles, 

batched as surfaces, in addition to pre-calculated shadow 

volumes if light and brushes do not move.

mapfilename.aas
Contains the area awareness data for the Artificial Intelligence 

to navigate through the level.
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Within the D3E .map files there is a structure that allows the engine to define the 

virtual environment. This structure defines all entities, brushes and patches in the virtual 

environment. Entities are objects, which can be dynamically controlled using game logic 

or .map level scripts and are often composed with brushes, patches or models.  

 

Table 5.3 .MAP File Components 

 
.map Object Description

Entities

Functional objects in a map such as lights, monsters, items, 

light switches, doors. They can be composed of brushes, 

patches or models. These objects are dynamically controlled by 

either game logic or level scripts.

Brushes

Convex solids that form the basic geometry of a map. Objects 

which do not require a model are produced with brushes, such 

as floors, ceilings, walls, steps, beams, columns, etc. 

Additionally, brushes can be used to define volumes within a 

map with unique properties such as ladders or force fields.

Patches
Rounded or curved surfaces within a map which cannot be 

created by brushes and are defined by Bezier curves.

Model

Objects which are too complex to be defined by either brushes 

or patches. These objects are models in external 3d modeling 

applications and imported as .ASE or .LWO files formats.

 

 

 

The .map file format has not changed radically since the release in 2004. The .map 

files created using the method described here can be used in all games released using the 

D3E. In order to understand the conversion from IFC CAD information into the .map 

format used in the D3E, a brief explanation of the .map file format follows.  

The .map files hold entities in an ASCII format. The only required element of an 

entity is the classname variable. The classname variable links the entities in the 

.map file to functions within the game logic code. The only entity that must be present is 
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worldspawn. The worldspawn entity is composed of primitive elements defined by 

brushes and patches, or brushDef3 and patchDef2 as they are known in the engine. As 

described in Table 5.3, patchDef2 patches define smooth curved surfaces governed by 

Bezier curves. 

 

Code: 

 

Figure 5.3 brushDef3 Code Representation of a 128x128 Unit Cube 

 
 

To better understand how primitives such as a brushDef3 object are represented in 

the D3 engine, a discussion follows describing the creation of a 128X128 unit cube 

centered on the coordinates (0, 0, 0). Figure 5.4 is a screenshot from the built-in D3E 

.map editor, known as  D3editor, showing a 128X128 unit cube that is centered on the 

coordinates (0, 0, 0) as seen from a top down XY direction, with Z representing the up 

direction. 

 

1  Version 2 

2  // entity 0 

3  { 

4  "classname" "worldspawn" 

5  //Primative 0 

6  brushDef3 

7  {  

8   ( 0 0 -1 -64 ) ( ( 0.125 0 0 ) ( 0 0.125 0 ) ) "_emptyname" 0 0 0  

9   ( 0 0 1 -64 ) ( ( 0.125 0 0 ) ( 0 0.125 0 ) ) "_emptyname" 0 0 0  

10  ( 0 -1 0 -64 ) ( ( 0.125 0 0 ) ( 0 0.125 0 ) ) "_emptyname" 0 0 0  

11  ( 1 0 0 -64 ) ( ( 0.125 0 0 ) ( 0 0.125 0 ) ) "_emptyname" 0 0 0  

12  ( 0 1 0 -64 ) ( ( 0.125 0 0 ) ( 0 0.125 0 ) ) "_emptyname" 0 0 0  

13  ( -1 0 0 -64 ) ( ( 0.125 0 0 ) ( 0 0.125 0 ) ) "_emptyname" 0 0 0  

14 } 

15 } 
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6464

 

Figure 5.4 Top Down XY Representation of a 128x128 Unit Cube in D3Editor 

 
 

The cube seen in Figure 5.4 is the same cube described in the code in Figure 5.3. 

Looking more closely at this code, one can see that line 6 defines a brushDef3 as the 

type of brush being used and line 7 starts the syntax of the object. The brushDef3 are 

primitive objects composed of planes. In Figure 5.3, each of the lines 8-13 that follows 

the brushDef3 statement inside the curly braces (“{“ and “}”) is a plane. Each plane is 

defined by three sets of numbers and a string as seen in Figure 5.5. The first set of four 

numbers labeled as A and B in Figure 5.5 relate to the orientation and position of the 

plane. The first three numbers in this first set, labeled as A, are a unit vector in the 

direction of the plane’s normal. The fourth number in the first set, labeled as B, is the 

distance from the origin to the closest point on the plane along the normal defined by the 

first three numbers. By convention this number is negative if the distance from the origin 

to the closest point on the plane is in the direction of the normal of the plane and positive 

if the distance from the origin to the closest point on the plane is in the opposite direction 

of the normal to the plane.  
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( 0 0 -1 -64 ) ( ( 0.125 0 0 ) ( 0 0.125 0 ) ) "_emptyname" 0 0 0 

A B C D E
 

Figure 5.5 brushDef Components of a Single Plane 

 

The second sets of numbers, labeled as C, relate to the size and orientation of the 

texture, or color information file, on the plane. Label C is not dynamically altered at the 

moment, as a library of known tileable textures and sizes are stored and the visualization 

is limited to a small texture pallet. The “_emptyname” string following the first two sets 

of numbers represents the relative path to the texture for this plane from the Doom 3 

base folder. After contacting id Software, searching the community knowledge base and 

consulting the documentation, no clear answer as to the use of the last three numbers, 

labeled as E, has been determined. For the purposes of this discussion, the last numbers 

will always be zeros.  

5.5 Summary 

In meeting the technical challenges involved in this thesis work, software tools and 

technologies were identified based on information gathered during the literature review. 

Those tools include a Building Information Model, the Industry Foundation Classes; an 

API toolbox for interacting with IFC data, IFCsvr and, finally, a video game based 3D 

virtual environment, the Doom 3 game engine. Each of these technologies have 

implementation requirements as detailed above. The following sections discuss the 

visualization methods and the benefits and limitations of the technologies. 
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6 VISUALIZATION METHODS: IFCtoMAP 

6.1 Introduction 

The technology developed by this thesis work, which brings together BIM and 

visualization, is appropriately named IFCtoMAP as it converts a building’s IFC 

information contained in CAD BIM files into D3E .map file format which may then be 

visually toured in the Doom 3 game engine. According to Terzidis, scientific 

visualization has been used to present a clear and faithful representation of aspects of the 

physical world that are impossible to perceive 58. The purpose of this research was to 

develop a framework for the encoding of building geometry and energy information for 

architects and engineers into a visualization engine. In order to encode the information a 

symbolic map is required that will be quickly identified and understood by architects and 

engineers.  
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Computer Aided Drafting (CAD), and in particular Building Information Modeling 

(BIM), gives us such an initial symbolic map. Both professions share information about 

building design using BIM drawings. The design intent of IFCtoMAP is to allow 

architects and engineers the ability to define a building’s geometry in Building 

Information Model (BIM) software, and in the test case this is Autodesk Revit. Then 

using the BIM model elements, in conjunction with additional building related inputs, 

generate a building energy simulation. The results will become the subject of the 

visualization. A Visual Energy Use System is composed of two components: the 

visualization and the simulation tools, both of which use the same data source. 

IFCtoMAP represents the geometric conversion utility that transforms selected IFC 

geometric data into a format understood by the Doom 3 game engine. Figure 6.1 shows a 

diagram of the IFCtoMAP program consisting of IFC file reading methods, geometry 

transformation methods, .map file writing methods, and internal data structures. The 

details of Figure 6.1 are seen in Figure 6.2, Figure 6.3 and Figure 6.4. 
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Figure 6.1 IFCtoMAP Design Intent 
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Figure 6.2 IFC File Reading 
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Figure 6.3 Methods for Geometric Transformation Left, .MAP File Writing Right 

 

 
Figure 6.4 Internal Data Structures 
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The following sections detail the method used to develop the IFCtoMAP program, 

specifically how information found in the .IFC test files, generated by Revit, are used to 

create primitive brushes in the Doom 3 game engine. The IFCtoMAP component of the 

VEUS system is likewise broken into four major components: internal data structures, 

IFC file reading, geometry transformations, and .map file writing. IFC file reading uses 

the IFCsvr ActiveX object to traverse input files and extract specific elements from the 

data structure, which becomes the input to the geometry transformation. When the 

calculations finish, the output of the geometric transformations become .map file format 

compatible and written as such. The four important components mentioned above can be 

seen in Figure 6.5.  

 

The internal data structures, which maintain the data throughout the process 

.ifc file data extraction functions Method of conversion from the 
IFC data representation to the 

.MAP representation 

functions which write the .MAP 
file format 

The internal data structures, which maintain the data throughout the process 

.ifc file data extraction functions Method of conversion from the 
IFC data representation to the 

.MAP representation 

functions which write the .MAP 
file format 

 

Figure 6.5 Diagram of Major Component Classes 
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6.2 Internal Data Structures 

After extracting information from IFC and before the data is in a form understood by 

the .MAP file format, there was need for an internal data structure that could hold both 

sets of information. This subsection discusses initially how the internal data is structured 

in the Building class, followed by a discussion of the other three major component 

classes. A number of class objects when composed form the data structures of this work. 

The top most level of this data structure was the class called Building. The 

Building class can be seen in the class diagram labeled as Figure 6.6. 

 

Class

Fields

geoObjs

LengthUnit

NongeoObjs

P21ID

Prefix

ProjectID

ScaleFactor

StartLocation

Methods

Building

 

Figure 6.6 Building Class Diagram 

 
 

As  the name implies this class maintains all the information related to a single 

building. Among the data stored in the Building object are the following: 

• The building’s unique P21ID number 
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• The building’s unique ProjectID number 

• The user’s StartLocation within the map 

• The metric unit of length prefix called Prefix, which is null if the units of 

measure are imperial 

• The unit of length called LengthUnit, which could be either imperial or metric 

• The ScaleFactor for converting the units of measure from the IFC file to the 

.map scale 

• A list of geometric objects from IFC which will be converted into .map 

primatives called  geoObjs 

• A list of objects from IFC that will not be converted into .map primatives but 

rather will be linked to 3D art models called NongeoObjs 

The two elements in the Building class most often referenced are the two object 

lists: geoObjs and NongeoObjs. These two lists contain different object classes 

that inherit attributes from a common class, GeoObjects, as seen in Figure 6.7.  
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Class

Fields

EntityType

Origin

P21ID

ProjectID

SegmentType

Slabs

Tag

Transformations

Properties

Wall

WallPlanes

WallPoints

GeoObjects

Class

GeoObjects

Class

GeoObject

Class

 

Figure 6.7 GeoObjects Class Inheritance Diagram 

 
 

All GeoObjects contain the following: 

• An EntityType delcaration, which holds the IFC entity name. (e. g. IfcSlab, 

IfcWallStandardCase, or IfcStairFlight) 

• The Origin which defines the first point of an object and is used as the pivot 

point for doors and the center of rotation for NongeoObjs 

• The building’s unique P21ID number 

• The building’s unique ProjectID number 
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• A SegmentType, which defines the IfcShapeRepresentation of an object 

• A list called Slabs, which contains:  

o The object’s unique ID number which is called a Tag 

o A set of transformations, which when applied to the points contained within a 

single slab in the list Slabs, translate and rotate the points into the correct 

location relative to other objects in the building 

The NongeoObj class contains objects whose geometric representation will not be 

extracted from IFC by IFCtoMAP. Rather, NongeoObj objects act as a object locator 

and file link to art assets generated in 3D modeling packages. GeoObject, on the other 

hand, contains data structures for holding IFC geometric representations for 

IfcRectangleProfileDef, IfcArbitraryClosedProfileDef and B-Rep - Boundary 

Representation objects. IfcFillElement inherits properties from GeoObject and is used 

to store data related to openings such as doorways and windows.  

6.3 IFC File Loading 

The first important class is the IFCLoader class, which can be seen in the class 

diagram labeled Figure 6.8. This class is an abstract class that contains a number of 

methods used to extract data from the IFC file format. IFCLoader is a generic loader 

class that contains methods for traversing an IFC file using the IFCsvr object. The 

IFCLoader class uses IFCsvr methods to identify the units of measure in an IFC 

document, determine the geometric representation of building elements, extract the 
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specific 3D geometric data for those elements and finally extract the transformation to be 

applied to those elements in order to place them in 3D space.  

 

Abstract Class

Methods

FgetIfcAxis2Placement2D

FgetIfcAxis2Placement3D

fillTransformations

GetAttribute

getExtrudedAreaSolid

getIfcFacetedBrep

GetRepresenation

PopulateData

RetrieveObjects (+ 1 overload)

RetrieveUnits

UnitPrefix

 

Figure 6.8 File Reading: IFCLoader Class Diagram 

 
 

The static public method PopulateData is called by the sucessful selection of a 

.IFC file in the dialog generated by the GUI button labeled ‘Browse’ next to the ‘Select 

IFC Input File’ as seen in Figure 6.9 .  

 

 

Figure 6.9 IFCtoMAP Screenshot Showing the ‘Select IFC Input File’ Dialog 
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The PopulateData function is passed a file name, a set of building elements to be 

extracted and a pointer to a textbox object. The file name includes the file path of the 

IFC file to be loaded. The pointer to a textbox points to an element in the GUI used to 

send text feedback about file loading progress, such as the number of IFC elements 

found in a particular file, as seen in Figure 6.10. The textbox is also used to display 

messages when errors occur during the file loading and parsing functions. 

 

 

Figure 6.10 User Feedback Dialog 
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Figure 6.10 shows how the PopulateData method progresses. First, a new 

Building object is created. Then, the units of measure and a numeric scale factor are 

extracted and generated, followed by a succession of counted building elements.  

Because the IFCLoader is an abstract class, there are no instances of the object. 

Figure 5.8 shows eight classes that inheret the methods from ICFLoader and are called 

by the static method PopulateData. Theses classes are generally named after the IFC 

building elements that they load.  

One implementation of the IFCLoader, the protected virtual function 

RetrieveObjects accepts an IFCsvr.Design object, which contains the input 

file data, and a Building object in which to put data. Using the IFCsvr function 

FindObject all elements in the design can be found when provided a string with the 

object type name which coresponding to an IFC object type. The supported IFC object 

types / building elements are seen in Table 6.1. 
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Figure 6.11 File Reading: IFCLoader Class Implementation 
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Table 6.1 Supported IFC Object Types/Building Elements 

 
IFC Objects Description

IfcWalls

Used for all other occurrences of wall, particularly for walls with 

changing thickness along the wall path, or walls with a non-

rectangular cross sections.

IfcWallsStandardCase

Used for all occurrences of walls that have a non-changing 

thickness along the wall path and where the thickness parameter 

can be fully described by a material layer set. These walls are 

always represented geometrically by a SweptSolid geometry, if a 

3D geometric representation is assigned.

IfcSlab

A slab is a component of the construction that normally encloses 

a space vertically. The slab may provide the lower support (floor) 

or upper construction (roof slab) in any space in a building. A 

special type of slab is the landing, described as a floor section to 

which one or more stair flights or ramp flights connect.

IfcRamp

A vertical passageway which provides a human circulation link 

between one floor level and another floor level at a different 

elevation. It may include a landing as an intermediate floor slab.

IfcRampFlight
Inclined slab segment, normally providing a human circulation link 

between two landings, floors or slabs at different elevations.

IfcStair

A vertical passageway allowing occupants to walk (step) from one 

floor level to another floor level at a different elevation. It may 

include a landing as an intermediate floor slab.

IfcStairFlight

Assembly of building components in a single "run" of stair steps 

(not interrupted by a landing). The stair steps and any stringers 

are included in this object. A winder is regarded as part of a stair 

flight.

IfcWindows

A window consists of a lining and one or several panels. 

Properties concerning the lining and panel(s) are defined by the 

IfcWindowLiningProperties and the IfcWindowPanelProperties.

IfcRelVoidsElement

Objectified Relationship between an building element and one 

opening element that creates a void in the element. This 

relationship implies a Boolean Operation of subtraction for the 

geometric bodies of Element and Opening Element.

IfcRelFillsElement
Objectified relationship between an opening element and an 

building element that fills (or partially fills) the opening element.

IfcBuildingElementProxy

The IfcBuildingElementProxy is a proxy definition that provides 

the same functionality as an IfcBuildingElement, but without 

having a defined meaning of the special type of building element 

it represents. The building element proxy should be used to 

exchange special types of building elements, for which the current 

IFC Release does not yet provide a semantic definition.

IfcFurnishingElement Generalization of all furniture related objects.

IfcConversionBasedUnit
A conversion based unit is a unit that is defined based on a 

measure with unit.  
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The above list of supported elements may appear to be redundant as it includes both 

IfcStair and IfcStairFlight. This is not so however, as IFC specifies IfcStair as a single 

uninterrupted flight moving from one level of a building to the next, and IfcStairFlight 

could consist of two or more flights of stairs moving between levels of a building that 

may include a landing.  

The IFCLoader function RetrieveObjectProperties accepts a set of IFCsvr 

Entities and a Building object. The result of the FindObject function, an 

Entities object contains a list of all records in the design of a particular type (e.g. 

IfcWall). RetrieveObjectProperties then loops through the list of entities, and 

for each entity creates a new geoObject and retrieves the requisite ProjectID, 

P21ID, EntityType, SegmentType, Name, slabs, Transformations, and 

Tag. 

 

 

Figure 6.12 IFCExplorer Tree View of a Common IfcWallStandardCase Entity 

 
 

The geometric representations defined in IFC Releases 2.0 and 2.x match closely to 

the ISO 10303-42:1994 STEP geometric definition. Objects, stored in IFC with a 

geometric representation have two attributes: ObjectPlacement and Representation as 
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seen in Figure 6.12. Both object placement and a geometric representation exist, and the 

RetrieveObjectProperties function then parses through each entity and calls 

the fillTransformations and GetRepresenation.  

The fillTransformations function traverses the ObjectPlacement tree and 

extracts the location information from local to world origin. The IFC IfcLocalPlacement 

specifies the location of an object based on a coordinate space from two vectors, Axis 

and RefDirection, and an origin point, Location. The XYZ axis placement is 

calculated from Axis and RefDirection. Axis represents the direction of the 

local Z-axis as a 3D unit vector. If the Axis value is omitted, then it can be assumed to 

be [0, 0, 1] or the positive 
axis

Z . RefDirection represents a vector within the 

positive XZ plane; many times this is the 
axis

X though it is not necessarily orthogonal 

to the Axis. If the RefDirection value is omitted, then it can be assumed to be [1, 

0, 0] or the positive
axis

X . Following the right hand rule, the cross product of these two 

unit vectors can be calculated by using the Equation 6.1 to create the third unit vector in 

3d space orthogonal to the XZ plane, the 
axis

Y . This is shown graphically in Figure 

6.13.  

 

onRefDirectiAxisYaxis ×=  

Equation 6.1 
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(0,0,0)(0,0,0)

 

Figure 6.13 Cross Product of Z and X Which Yields Y 

 

Because RefDirection is not necessarily the
axis

X  it is calculated by crossing 

the newly created 
axis

Y  with the 
axis

Z  as shown in Equation 6.2. 

 

AxisYX Axisaxis ×=  

Equation 6.2  

 

 

The object’s axis origin then is translated to the Location point, which becomes the 

new origin. In Figure 6.13 the point is not translated and remains at the position (0, 0, 0). 

As mentioned above, the IFC definition describes the position of objects as a tree of 

related transformations. A coordinate system matrix, SystemCoordinateM , is built from each of 

the transformations as seen in Equation 6.3. The top three left rows contain the 

coordinate system axes listed in order, vertically. The Location point also known as 

the translation point, T, appears vertically in the last column. By convention, the bottom 

row contains the values (0, 0, 0, 1).   



 

  

52 
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zAxisAxisAxis

yAxisAxisAxis

xAxisAxisAxis

SystemCoordinate
TZZZ

TYYY

TXXX

M

ZYX

ZYX

ZYX

 

Equation 6.3 

 
 

In the following example a global coordinate system is built from the following 

values; Axis = [0, 0, 1]; refDirection = [1, 0, 0]; and Location = [0, 0, 0], then, 

from Equation 6.1 the Y-axis would be [0, 1, 0]. When composed into Equation 6.3 the 

result would be Equation 6.4. 

 



















=

1000

0100

0010

0001

MGlobal  

Equation 6.4 

 
 

Continuing the example, if there were a new local coordinate system into which an 

object were transformed with the following coordinate system built from the values, 

Axis = [1, 0, 0], refDirection = [0, 0, -1], and Location = [-7, 1, 6]. Then, using 

Equation 6.1 the Y-axis would be [0, 1, 0]. When composed into Equation 6.3 the result 

would be Equation 6.5. 
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 −−

=

1000

6001

1010

7100

M Local  

Equation 6.5 

 
 

When transforming an object from the most local coordinate system into the most 

global coordinate system a matrix multiplication takes place. Each coordinate matrix is 

multiplied by the next more global coordinate system until a single transformation 

matrix exists. This matrix can be applied once to all points in an object to transfer them 

from the local coordinate system into the global coordinate system. This can be seen in 

Equation 6.6. 

 

GlobalnLocalformTotalTransM M*M...M*M 0=  

Equation 6.6 

 
 

When multiplying the matrix Mlocal and Mglobal in this example, the result is a -90 

degree rotation about the Y-axis and a translation from the coordinates [0, 0, 0] to the 

location [-7, 1, 6] in the global coordinate system. This can be seen in Figure 6.14. Once 

all coordinate transformations have been composed into a single transformation 

MTotalTransform as seen in Equation 6.6, the MTotalTransform can be applied to all points in an 

object, resulting in the proper placement of the object relative to other objects in the IFC 

file. 
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(0,0,0)

(-7,1,6)

(0,0,0)

(-7,1,6)

 

Figure 6.14 Example of Local Relative Placement 

 
 

The next function relates to extracting an object’s geometric representation. Similar 

to the method used to traverse the .ifc file in the fillTransformations function, the 

GetRepresenation also traverses the data structure to extract information related to an 

object’s geometric representation. The geometric representation is found within an entity 

called IfcProductDefinitionShape by IFC. Figure 6.15 shows an example of an 

IfcProductDefinitionShape that contains two IfcShapeRepresentation(s). The first 

IfcShapeRepresentation is of type Curve2D; the second is of type SweptSolid. For the 

purposes of this discussion, the two dimensional representation seen as Curve2D 

representations of building elements are ignored in favor of the second SweptSolid 3D 

representation of the same elements. SweptSolid in this context represents an extruded 
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two-dimensional shape. The IFCLoader function GetRepresenation distinguishes 

between the following three 3D representation types: 

• SweptSolid 

• Clipping 

• B-rep 

 

 

Figure 6.15 IFCExplorer Tree View of IfcProductDefinitionShape 

 
 

 SweptSolid objects consist of four elements: Position, ExtrudedDirection, Depth, 

and SweptArea. The position property is the most local coordinate system / 

transformation a SweptSolid can have and is added to the list of coordinate 

transformations kept in the GeoObject. The ExtrudedDirection, as it claims, is a 

vector in the direction of the extrusion. Commonly, walls extrude up, positive Z, 
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from the level of a building (e. g. First Level/Floor), and floors or slabs are extruded 

down, negative Z, from the level of a building. The Depth is the length of the 

extrusion in the direction of ExtrudedDirection. The last element of the SweptSolid 

is the SweptArea. There are more than four different possible values for SweptArea, 

ranging from complex parametric curved shapes to simple parametric rectangular 

shapes. The only two values of SweptArea supported by IFCtoMAP are 

IfcArbitraryClosedProfileDef and IfcRectangleProfileDef.  

 The first of the two SweptArea(s), IfcArbitraryClosedProfileDef consists of an 

IfcPolyline. Examining the example above in Figure 6.15, one can see an IfcPolyline 

consisting of a set of seven IfcCartesianPoints. The convention used by the 

IfcArbitraryClosedProfileDef is that the first point and the last point are the same. 

For simplicity, the IFCtoMAP internal data structures follow the same convention. 

The second of the two SweptArea(s), IfcRectangleProfileDef seen in Figure 6.16, 

consists of an additional IfcAxis2Placement2D position, an X-dimension and a Y-

dimension. It is important to note that the IfcRectangleProfileDef definition of 

Position is an additional transformation added into the list of transformations in 

GeoObject(s). 
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Figure 6.16 IFCExplorer Tree View of IfcRectangleProfileDef 

 
 

The second type of 3D representation supported by the IFCLoader function 

GetRepresenation is Clipping. A Clipping geometric representation of an object is 

often the boolean addition, subtraction or difference between an extruded SweptArea 

and a second SweptArea or a plane. To simplify the .ifc reading process, the boolean 

additions, subtractions, and difference calculations are not performed. The 

GetRepresenation function only extracts the extruded SweptArea portion of the 

object and ignores the clipping elements. This results in a reuse of the SweptArea code 

while allowing for the addition of full support for Clipping object types to be added in 

the future.  

The third geometric representation supported by GetRepresenation is 

Boundary Representation, referred to as B-rep, objects. The implementation of B-rep 

objects recognized by GetRepresenation is defined as a set of IfcClosedShell(s). 

Each of the IfcClosedShell consists of one or more IfcFace(s). In turn each IfcFace is 
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composed of four or more IfcFaceOuterBound ‘polygons,’ and each of the ‘polygons’ in 

an IfcFaceOuterBound is composed of three or more IfcCartesianPoints, as seen in 

Figure 6.17. To maintain the data integrity in the IFCtoMAP, internal data structures 

mimic the IFC data structures in that B-Rep objects are stored as a linked list of related 

IfcClosedShell(s) linked to a list of polygon faces consisting of points.  

 

 

Figure 6.17 IFCExplorer Tree View of a Boundary Representation Object 

 
 

In addition to extracting objects with geometry or geoObjects from IFC, 

IFCLoader and its child classes also extract what have been termed as 

NongeoObjects. The term NongeoObjects comes from the fact that the 

IFCtoMAP program uses information about those objects from IFC without extracting 

the objects’ geometry. The only loader that creates NongeoObjects is 

CustomObjectLoader and its child class IfcFurnatureLoader. These are special cases that 
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share the IFCLoader functions for determing position – rotation and displacement 

transformations, but do not use the geometry from IFC.  

The NongeoObjects class objects provide a way to use Revit and IFC for Doom 

3 specific .map information within the bounds of the IFC conventions and are not an 

officially recognized method of sharing IFC information.  

The method of creating NongeoObjects was decided as a result of having chosen 

Revit as the IFC data provider. Although Revit provides IFC2x2 Final support for basic 

building features such as walls, windows, doors, floors and ceilings, Revit does not 

allow users to specifiy new IFC export options such as IfcPropertySet(s). IfcPropertySet 

is the IFC’s way of expanding the data dictionary for custom information exchange. An 

example of an IfcPropertySet object would be exporting the color of a wall from Revit. 

If the IFC standard did not have a definition of how to color walls, other IFC tools would 

not necessarily implement the wall color and would ignore the Revit IfcPropertySet 

related to wall color. IfcPropertySet allows for IFC software developers to encode and 

exchange non-standard information in .IFC files even if the IFC standard does not 

currently support the feature. Often, what begins as an IfcPropertySet may eventually be 

incorporated into the IFC standard and receive an IFC name and definition. In the 

example above, if the wall color was eventually encorporated, it may be given the name 

IfcWallStandardCaseColor or something similar. 

Revit does implement all IFC building elements. All objects in Revit are members of 

Families. Frequently used Families, such as walls, windows, doors, floors and ceilings 

have support for export to IFC. Revit users are allowed to create custom Families, based 
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on the frequently used Families or may create a Family from scratch. Revit does not 

support linking a custom Family to a specific IFC element. For example, the start 

location of viewer inside the .map file format requires a special entity classname called 

info_player_start. In order to place this entity, a custom Family was created inside of 

Revit with the prefix IFCtoMAP. When exported to IFC, the custom Family is exported 

as an IfcBuildingProxyObject. The CustomObjectLoader parses all of the 

IfcBuildingProxyObject(s) and whichever have the name with prefix IFCtoMAP are 

handled differently than those objects which are fully supported by IFC. 

The FurnishingLoader inherits properties of the CustomObjectLoader. As previously 

discussed, .map uses models generated in 3D art packages to describe complete objects 

that fill the space in the virtual environment with elements such as furniture. The 

FurnishingLoader class parses all IfcFurnishingElement(s) and those with a name string 

with the ‘IFCtoMAP’ prefix, similar to the example seen in Figure 6.18, are read into the 

internal data structures as a NongeoObject. FurnishingLoader extracts both the 

ObjectPlacement and ObjectType data. The ObjectPlacement is the same transformation 

and displacement information used by all IFCLoader classes. The ObjectType, however, 

specifies a relative path within the Doom 3 game structure and points to a 3D model that 

can be linked in the .map file. As an example, Figure 6.18 shows an 

IfcFurnishingElement object, a chair,  which when linked to the game would be located 

in a file on the hard drive as: C:\Doom 

3\base\models\IFCtoMAP\Chair.lwo. Note that the geometric representation 

stored in IFC is not converted into primatives because most of these objects contain 3D 
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shapes with concave parts and are better defined as models from 3D art packages, in this 

example a Lightwave .LWO file. Breaking up a 3D shape into a set of convex 3D shapes 

is outside the scope of this project. 

 

 

Figure 6.18 IFCExplorer Tree View of a IfcFurnishingElement Object 

 
 

6.4 Conversion from IFC to .MAP 

Having loaded the IFC file into the internal data structures, the next task is to convert 

the geometric representions into a format understood by the Doom 3 game engine. This 

section details the conversion method from the three supported IFC geometric 

representations IfcRectangularProfileDef, IfcArbitraryClosedProfileDef, and Boundary 

Representation into a geometric representation suitable for writing to the .map 

brushDef3 format.  

The first IFC geometric representation is IfcRectangularProfileDef. One might recall 

from Section 6.3 that IfcRectangularProfileDef(s) consists of three basic components: an 

X-dimension, a Y-Dimension and an ExtrusionDepth. Those components will be 

referred to as X-dim, Y-dim and Depth respectively as seen in Table 6.2.  
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Table 6.2 IFC Representation of IfcRectangularProfileDef 

 
Name Value

XDim 40

YDim 0.66

Depth 9.99  

 

In the example in Table 6.2, we will assume for this discussion that the IFC file uses 

feet as the units of measure. The IfcRectangularProfileDef in IFC is .66 feet or 8 inches 

wide, 40 feet long and about 10 feet tall. The parametric form of the 

IfcRectangularProfileDef is then converted into an internal representation as a set of four 

co-planer counterclockwise ordered points, using the formulas seen in Table 6.3.  

 

Table 6.3 Intermediate Representation of IfcRectangularProfileDef 

 
Point X Y X Y

1a 0 .5 * YDim 0 -0.33

2 0 -0.5 * YDim 0 0.33

3 XDim -0.5 * YDim 40 0.33

4 XDim .5 * YDim 40 -0.33

1b 0 .5 * YDim 0 -0.33  

 

It is important to note that the first point, 1a, and the last point, 1b, are the same in 

Table 6.3. This and ordering the points in a counterclockwise manner are both 

conventions of IFC. These conventions allow the internal data structures to maintain 

uniformity that facilitates reuse of code functionality. IFC defines 
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IfcRectangularProfileDef as being positioned with the left-most points centered about 

the x-axis. When plotted, the points result in a closed polygon loop as seen in Figure 

6.19. 
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Figure 6.19 Closed Polygon Loop Representation of a Wall 

 
 

Although Figure 6.19 is a two dimensional figure, each of the lines that define the 

rectangle are representative of planes that define the sides of a rectangular cuboid. The 

next step in order to move the IfcRectangularProfileDef from this internal intermediate 

representation into the .MAP file format is to generate a set of the plane unit normals and 

distances from the origin to the closet point on the plane.  
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To accomplish this, the program generates vectors using two points at a time from 

the set of points seen in Figure 6.19. Because the points are stored in a counterclockwise 

order, the algorithms in the IFCtoMAP program traverse the points in a 

counterclockwise direction. The order the points are traversed is important for 

maintaining the direction of the normals of the plane facing away from the center of the 

object and towards a viewer. The vectors are constructed using the cross product formula 

(see in Equation 6.7) where P0 is the first point and P1 is the second point in 

counterclockwise order around the shape. 

 

01
PPVN ×=  

Equation 6.7 

 
 

The result of the cross product, the vector NV , is then normalized into a unit vector. 

The magnitude NV  of a vector is Length=+  y  x 22 . This equation is said to be 

normalized if  1 y  x 22 =+  and thus NV  is considered a unit normal vector after 

normalization.  

The next step is to find the shortest distance between the plane, described by the 

vector NV , and the origin. Distance computations are fundamental in computer graphics 

and computational geometry and there are well-known formulas for them. An illustration 

of the vector projection can be seen in Figure 6.20 where w  is a vector between point P0 
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and the origin P, and P(b) is the closest point between the origin and the plane defined 

by the vector NV . 
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Figure 6.20 Vector Projection of Point P onto Vector 
LV  

 
 
 

The distance ( )LPd ,  seen in Figure 6.20 can be calculated by first finding 

wproju
LV

=  or the vector projection of the vector w onto LV . w , being the vector 

constructed from P0 to the origin, P, using the Equation 6.8; and LV  being the vector 

constructed from P0 to P1, using the calculation seen in Equation 6.9. Having solved for 

LV and w , the shortest distance is then calculated using Equation 6.10. 

 

( ) 10,0 PPw −=  

Equation 6.8 
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01
PPVL −=  

Equation 6.9 
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Equation 6.10 

 
 

( ) wuVLPd L ∗+=,  

Equation 6.11  

 
 

The result of the above calculations seen in Equation 6.7, NV , and Equation 6.8, w ,  

as used in Equation 6.10, produce the needed unit vector in the direction of the normal of 

a plane along with the distance from P, the origin, to P(b). This unit normal vector 

represents the first three variables in the description of a plane within a brushDef3 

object. The magnitude of the distance from plane to the origin is, however, a positive 

number as a result of the magnitude equation Length=+  y  x 22 . Therefore the plane 

described by the normal exists either behind, or in front of the point of origin as P(b) or 

P(b)’. See Figure 6.21. The location of P(b) can be determined by evaluating the formula 

of a line, Equation 6.12, and solving for d. The sign of d then becomes the third number 

in the first set of four used in the brushDef3’s description of a plane.  
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Figure 6.21 Determining the Sign of Distance 

 
 

 

NVdbPP *)( +=   

Equation 6.12 

 
 

 

This method is then repeated for each set of points until the entire set of points have 

been traversed. Then the bottom and top of the IfcRectangularProfileDef are inserted as 

unit normal NV  [0, 0, -1] at distance 0 from the origin and unit normal NV = [0, 0, 1] at 

a distance of the extrusion depth respectively. Note that many of the Figures in this 

subsection are two dimensional, but this does not change calculation equations because 
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the vector calculations can be extended to the third dimension by using (X, Y, Z) 

components. 

An IfcRectangularProfileDef, by the nature of a rectangle, is inherently convex. 

IfcArbitraryClosedProfileDef objects define any arbitrary closed profile of points that 

are not necessarily convex. To ensure that the calculations above will work with 

IfcArbitraryClosedProfileDef objects, a set of pre-processing functions, contained within 

the ConstrainTriangulation class, when applied to the closed loop points, break 

the loop into a set of triangular loops.  (To understand the necessity for this conversion 

to triangles, the reader should review section 5.2 Doom Considerations.)  The purpose of 

the ConstrainTriangulation class is to eliminate the possibility of concave 

objects being sent to the MapWriter class by IfcArbitraryClosedProfileDef objects. The 

set of triangular loops, when viewed as a complete set, generates the same shape as the 

original IfcArbitraryClosedProfileDef.  

The calculation method used is called a Constrained Delaunay Triangulation 

(CDT)59. The known constraints on the points are the counterclockwise order and their 

closed loop nature. Data points on the IfcArbitraryClosedProfileDef traverse as a set of 

three consecutive points. The algorithm used to triangulate the 

IfcArbitraryClosedProfileDef into a set of triangles appears in detail below. To illustrate 

the CDT used by the IFCtoMAP software, one can consider a concave shape such as the 

one seen numerically in and graphically in Figure 6.22. The Figures for this discussion 

are in the Appendices labeled as Constrained Triangulation Example Figures 1-14.  
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Table 6.4 Example Constrained Triangulation Table of Points 

 
Point # X Y Z

0 46.25 36.72 0

1 54.75 36.72 0

2 54.75 43.89 0

3 45.92 43.89 0

4 25.59 43.89 0

5 25.59 23.89 0

6 10.25 23.89 0

7 10.25 28.39 0

8 5.59 28.39 0

9 5.59 23.56 0

10 5.59 3.22 0

11 46.25 3.22 0

12 46.25 36.72 0
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Figure 6.22 Constrained Triangulation Example 
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The shape seen in Figure 6.22 is the same shape seen in the Appendices as Figures 1-

14. Note that point 0, P0, and point 12, P12, are the same and all points are 

counterclockwise in order, which follows the convention first seen in Table 6.3 

Intermediate Representation of IfcRectangularProfileDef. The following are steps of the 

algorithm in triangulating Figure 6.22. 

1. The first step selects a pivot point. The first pivot point chosen will be the first point 

in the set point P0.  

2. The next step creates a test edge between points P0 and P2. This results in a triangle 

consisting of points P0, P1, and P2 as seen in Figure 1.  

3. After this test edge has been created, checks are made that determine whether the 

points used to generate the test triangle are ordered in a counterclockwise manor. 

The sign of the determinate of a matrix representing the points, as in Equation 6.13, 

reveals the orientation of the points. If the determinate is positive the points are 

clockwise; if the result is negative the points are ordered counterclockwise. In this 

case the triangle is counterclockwise in orientation. 
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4. Next, test the edge created by P0 and P2 against all other edges in the 

IfcArbitraryClosedProfileDef and any triangles that have been removed from it 
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during the course of triangulation. The algorithm used to perform the intersection test 

between two line segments requires the creation of a vector r orthogonal to the 

original line segment, in this case 0P  and 2P , and the test line segment, 0Tp  and 

2Tp , as seen in the Figure 6.23 and Equation 6.14.  

 

r
0Tp

1Tp

0P 2P

r
0Tp

1Tp

0P 2P
 

Figure 6.23 Line Intersection Test 
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20

PPr  

Equation 6.14 

 
 

The line segment intersection test checks to see if the interval created by Equation 

6.15 spans 0. If the interval does span 0, then the lines intersect. Otherwise, they do not 

intersect. If the edge created by P0 and P2 does not intersect any of the object’s other 

edges then create a new related IfcArbitraryClosedProfileDef object from points P0, P1, 

and P2, and remove point P2 from the original set of points.  
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Equation 6.15 

 
5. After P2 has been removed, the algorithm continues with the same result as seen in 

Constrained Triangulation Example 2-4.  

6. However, in Constrained Triangulation Example 5 the test edge created by points P0 

and P6 crosses the edge between P4 and P5, and the resulting test triangle is also 

clockwise in orientation. In this case, the algorithm will shift the pivot point from P0 

to P5 and begin again as seen in Constrained Triangulation Example 6. 

7. After changing the pivot point to P5 in Constrained Triangulation Example 6, the 

algorithm again fails as the triangle created by P5, P6 and P7 is not counterclockwise 

in orientation. In this case, the algorithm will again shift the pivot point from P5 to P6 

and begin again as seen in Constrained Triangulation Example 6. 

8. After the pivot has changed to P6, the algorithm continues and breaks off four more 

triangles as seen in Constrained Triangulation Example 7-10.  

9. In Constrained Triangulation Example 11, a test edge between P0/12 to P6 intersects 

with the edge created by P4 and P5.  

10. The pivot point is then changed to P11, and the edge created by P11 and P5 is tested, 

yielding another triangle as see in Constrained Triangulation Example 12. 

11. Finally, an edged is created and tested between P11 and P6 as seen in Constrained 

Triangulation Example 13 which yields the last triangle. 
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12. The resulting shape seen in Constrained Triangulation Example 14 consists of 12 

triangles which when seen as a set compose the original shape. When finally 

extruded, the resulting shape seen in Constrained Triangulation Example14 will look 

like the Figure 6.24. 

 

Figure 6.24 Extruded CDT IfcArbitraryClosedProfileDef 

 
 

The implemented CDT algorithm discussed does not solve all possible cases of 

IfcArbitraryClosedProfileDef shapes, but does offer a solution that includes a number of 

shapes seen in building layouts.  

Having covered both IfcRectangularProfileDef and IfcArbitraryClosedProfileDef 

shapes, one must also consider special cases. These include holes in floors, such as 

shafts, and openings in walls, such as doors and windows.  
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The first special cases considered are openings in floors; these are often seen in 

floors where there are stairwells or elevator shafts. In Figure 6.25, there are three closed 

polylines labeled as Exterior Edge, Hole A, and Hole B. The blue polyline labeled 

Exterior Edge represents an IfcArbitraryClosedProfileDef of either a floor or ceiling. 

Each of the other three shapes are holes, or IfcVoidElements, in the surface. Hole A 

contains two edges that intersect with the Exterior Edge. IFCtoMAP does not support 

holes similar to Hole A. IFCtoMAP does support all holes that exist within the bounds of 

an IfcArbitraryClosedProfileDef.  

 

 

Exterior Edge Hole A Hole B

Hole A  

Hole B 

 

Figure 6.25 Example of Two Possible Hole Types 
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Figure 6.26 shows the names and locations of points on both the Exterior Edge and 

Hole B. The exterior edge points, 0-8, and the Hole B points, B0-B5, both follow the 

standard convention: first point and last point are the same, and the points organized in a 

counterclockwise manor as indicated by the arrows.  
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Figure 6.26 Labeled Exterior Edge and Hole Points 

 
 

Because IfcArbitraryClosedProfileDef objects must triangulate, the solution selected 

for handling holes follows these steps: 

1. Create a new edge between the first point, 1, on the Exterior and the first point on the 

Hole, B0.   
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2. Check the new edge verses all other edges in both the set of exterior points and the 

set of hole points. If the new edge intersects any other edges, start over with the 

second point on the exterior. If the new edge does not intersect any other edges on 

the exterior or the hole, continue. 

3. Reverse the orientation, that is the order, of the hole points from B0, B1, B2, B3, B4, 

B5 to B5, B4, B3, B2, B1, B0.  

4. Then, inject those points into the list of exterior edge points as seen in Figure 6.27: 

Exterior Edge Points Before: 0, 1, 2, 3, 4, 5, 6, 7, 8 

Exterior Edge Points After: 0, B5, B4, B3, B2, B1, B0, 1, 2, 3, 4, 5, 6, 7, 8 
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Figure 6.27 Example of Injecting a Hole into an Exterior Edge 
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The result is a single set of points defining an IfcArbitraryClosedProfileDef, which 

are counterclockwise in order with the same first and last points that can be sent to the 

CDT function for triangulation. This process of adding holes can be repeated for as 

many holes as there are in a shape. This solution is not optimal and can inject holes into 

exterior edges that cause the CDT function to fail. However, the solution works for 

simple shapes seen in typical office building geometry.  

The next types of opening considered were openings in walls that consist of empty 

openings, doors and windows. When imported from IfcWalls, these are either 

IfcRectangularProfileDef or IfcArbitraryClosedProfileDef shapes. 

IfcRectangularProfileDef shapes have only four points that define the entire shape, 

where IfcArbitraryClosedProfileDef could have more. When creating an opening using 

an IfcRelVoidElements in a wall, the following method is used: 

1. First the total number of points that define the wall is reduced to the smallest set of 

points possible, often four points as seen in Figure 6.28.  
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Before

After

Before

After
 

Figure 6.28 Minimizing Wall Points 

 
 

This is done by traversing the set of wall points in a counter clockwise order and 

calculating the angle between three points at a time. If the angle between the points 

is equal to 0 or 180, then the middle of the three points is removed. Otherwise all 

points are kept, and the next three sets of points are checked. From an XY 

perspective, the wall looks as shown in Figure 6.29. In this example, the points 

would be listed as follows: 0, 1, 2, 3, 4. 
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Figure 6.29 XY View of Minimized Wall Points 

 
 
2. Figure 6.30 shows an example of IfcRelVoidElement(s), such as doors and windows 

which are defined in the XZ or YZ plane, where as IfcRectangularProfileDef  and 

IfcArbitraryClosedProfileDef are most often defined in the XY plane. The next step 

is to identify the lowest two points on the IfcRelVoidElement object and project 

them into the XY plane. This is done by only using the XY components of the points 

and ignoring the Z component.  

 

 

Figure 6.30 Example IfcRelVoidElement(s) such as Doors and Windows 
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3. The projections of each of the two lowest points, H0 and H1, when added into the set 

of points that define the wall, maintain the ordered counterclockwise orientation of 

points as seen in Figure 6.31. The resulting list of points: 0, H0, H1, 1, 2, 3, 4. 
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H0 H1
0/4 1
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H0 H1
 

Figure 6.31 Projection of Two Lowest Points of IfcRelVoidElement on to Wall 

 
 
4. The other side of the hole in the wall is then calculated by projecting both H0 and H1 

onto the line segment created by points 2 and 3. The result is the creation of points 

H2 and H3. H2 and H3 when added into the point list, result in the following order 0, 

H0, H1, 1, 2, H3, H2 3, 4. The result can be seen in Figure 6.32. 
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Figure 6.32 Projection of H0 and H1 on Line Segment 2-3 
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5. The shape then splits into three parts, as shown in Figure 6.33. The two segments 

consisting of points from the original shape and points from the IfcRelVoidElement 

shape extrude to the full height of the wall.  
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Figure 6.33 Three Segments Created by Wall Opening. 

 
 
6. The opening shape, which contains only the points generated by the 

IfcRelVoidElement calculations, extrude differently based on the IfcRelFillElement 

associated with the opening. If the IfcRelFillElement is a door, then the opening 

extrudes from the top of the door to the full height of the wall, as shown on the left 

of Figure 6.34. Likewise, if the IfcRelFillElement is a window, then the opening 

points extrude from the bottom of the floor to the bottom of the window, and a 

second object extrudes from the top of the window to the full height of the wall. This 

appears as the shape on the right in Figure 6.34.  



 

 

83 

 

Figure 6.34 Left: Door Extrusions, Right: Window Extrusions 

 
 
7. If the opening was intended for a window, a third extrusion is created using the same 

profile used for the top and bottom opening extrusions. This is done from the bottom 

of the window to the top, between the previous two extrusions. In order to 

differentiate the window from the wall a transparent glass texture is applied to the 

window surfaces.  

8. If the opening were intended for a door, however, the width of the wall is taken into 

account. If the width of the wall is greater then the width of the door to be placed in 

the opening, as seen in Figure 6.35, the two points that correspond to the depth of the 

door points are added, D0 and D1. The resulting list of door points would be H0, H1, 

D1, D0, and H0. These points extrude to the height of the door. 
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Figure 6.35 Door in Red, Seen When Wall Width Is Thicker than Door Width 

 

9. When passed to the .map file writing function, doors are special entities known as 

func_rotatingdoor. Doors in Doom 3 slide open to the left and right. 

func_rotatingdoor is a custom object script written for Doom 3 by Bruce 

Worrall that allows doors to rotate about a pivot point 60. 

10. The point sent as the pivot point is H0. In the visualization, all doors rotate in a 

clockwise manner about their respective H0 as seen from a top down XY perspective. 

For example, see Figure 6.36. Doors rotate clockwise about point H0. 

 

H0H0  

Figure 6.36 Doors Rotate Clockwise About Point H0 

 
 

When performing a conversion, it is important to note that a single method handles 

both single and double door. The result of using this method, when passed double doors, 

produces a single brush that spans the width of the double door opening. The large 



 

 

85 

double door opens and closes in the same fashion as the single doors, using the first 

point in the opening as a pivot point. The result is not an error and can be seen in Figure 

6.37. The double doors are shown as very wide single doors. Algorithms for handling 

double doors were discussed; however, time limitations prevented them from being 

implemented.  

 

Double Doors
Single Doors

Double Doors
Single Doors

 
Figure 6.37 Doors: Single on the Left, Double on the Right 
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6.5 Writing the .MAP File Format  

After all IFC building elements have been read from the .IFC file and converted into 

a format compatible with the .map file format, the .map file writing class traverses all 

GeoObject(s) and NongeoObject(s) and writes the result of the transformation 

function into .map file format. The simplest .map file that can be played is shown in 

Figure 6.38. .map files consist of a number of entities written together in a single ASCII 

file. The only two entities required to create a map that can by ‘played’ or walked around 

inside of are the worldspawn and info_player_start entities.  

 

Code:  
 

 
 

Figure 6.38 Simple Generic .MAP File 

 
 

The worldspawn entity contains the definition of all brushes, brushDef3(s), which 

do not move (static brushes), in a map. These include all geoObjects such as walls, 

Version 2 

// Example worldspawn entity 

{ 

"classname" "worldspawn" 

//Primitive 0 

brushDef3 … 
} 

// Example Player Start Entity 

{ 

"classname" "info_player_start" 

"name" "info_player_start_1" 

"origin" "1825.13 1013.36 0" 

} 
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windows, floors and ceilings. The info_player_start entity designates the start 

position of a player when the level is loaded. With these two entities, a map can be 

created and played. However, Doom 3 does not have ambient light so additional entities 

such as Light(s) are needed to add illumination to the space. Light(s), as shown in 

Figure 6.39, contain at a minimum, the classname, a unique object name, and finally 

the origin of where the light is located.  

 

Code: 

 

Figure 6.39 Example Light Entity 

 
 

As mentioned in the transformation above, Doors are written into the Doom 3 .map 

file format as special entities called func_rotatingdoor. Figure 6.40 shows an 

example of a func_rotatingdoor. func_rotatingdoor entities consist of the 

classname, a unique object name, the name of a model, an origin, an 

open_angle and finally a primitive brushDef3. The model entry has the same 

name as the object name, and this informs the Doom 3 of a brushDef3 object defined 

within this entity. The origin is the rotational pivot point mentioned in the conversion 

above and labeled as the point H0. The open_angle determines the direction of 

// Example Light entity  

{ 

"classname" "light" 

"name" "IFCtoMAP_Light 47303" 

"origin" "1590.4 -73.286 71.7556" 

} 



 

 

88 

rotation about the pivot point when a door is activated. Figure 6.40 shows an example of 

a door that rotates about the y-axis counterclockwise, -90 degrees when activated. 

 

Code:

 

Figure 6.40 Example func_rotatingdoor Entity 

 
 

The only other objects to be transferred are NongeoObject(s). The special case 

NongeoObject(s), such as Light(s) and the info_player_start location, have 

been mentioned above. All other NongeoObject(s) are written generically as 

func_static entities in the .map format, as demonstrated in Figure 6.41. The 

func_static entities consist of the classname, a unique object name, an 

origin, an open_angle and a model. The model in the .map format is a string that 

holds a relative path to the location of a 3D model to be loaded by the game at runtime. 

// Example Door entity  

{ 

"classname" "func_rotatingdoor" 

"name" "func_rotatingdoor_3871" 

"model" "func_rotatingdoor_3871" 

"origin" "1986.91 419.199 0" 

"open_angle" "0 90 0" 

// primitive 0 

{ 

 brushDef3 

 { 

  ( 0 0 1 -90 )(( 0 0 -11 ) ( 0 0 -39 ) ) "texturename" 0 0 0 

  ( 0 0 -1 0  )(( 0 0 -11 ) ( 0 0 -39 ) ) "texturename" 0 0 0 

  ( 0 1 0 -0  )(( 0 0 -11 ) ( 0 0 -39 ) ) "texturename" 0 0 0 

  ( 1 0 -0 -40)(( 0 0 -11 ) ( 0 0 -39 ) ) "texturename" 0 0 0 

  ( 0 -1 0 -3 )(( 0 0 -11 ) ( 0 0 -39 ) ) "texturename" 0 0 0 

  ( -1 0 0 0  )(( 0 0 -11 ) ( 0 0 -39 ) ) "texturename" 0 0 0 

 } 

} 

} 
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In the example in Figure 6.41, if the Doom 3 were run from the base folder installed in 

program files then the chair model might be located as follows: 

C:\Doom 3\base\models\IFCtoMAP\Chair.lwo 

 

Code: 

 

Figure 6.41 Example func_static Entity 

 
 

6.6 Summary 

The IFCtoMAP program reads a specific set of IFC building elements and converts 

the IFC representation into a format understood by the Doom 3 game engine. This 

conversion uses the IFCLoader classes, the ConversionMethod class, and the MapWriter 

class. Throughout the process, the data is stored in an instance of the Building class. The 

class structure of the program allows for the addition of new IFC building elements and 

IfcShapeRepresentation(s) by extending the current definitions.  

// Example func_static entity - Chair 

{ 

"classname" "func_static" 

"name" "/models/IFCtoMAP/Chair.lwo 46199" 

"origin" "1897.13 745.483 0" 

"model" "/models/IFCtoMAP/Chair.lwo" 
} 



 

 

90 

When selecting additional IfcShapeRepresentation(s) to implement, one should 

consider the expected frequency of that shape representation occurring in IFC files. For 

example, adding basic support for B-rep objects in IFCtoMAP allowed for the reading of 

IfcStair and IfcStairFlight objects. However, the numbers of staircases seen in a building 

are relatively limited as compared to the number of holes in walls, such as those for 

doors and windows. Within the scope of the files tested during the creation of the 

IFCtoMAP program, the most commonly seen IfcShapeRepresentation(s) were 

IfcRectangularProfileDef and IfcArbitraryClosedProfileDef.  Therefore, the author 

concluded time was best spent working on commonly seen IfcShapeRepresentation(s), 

such as IfcRectangularProfileDef and IfcArbitraryClosedProfileDef.  

The above discussion is an overview of the methods used by the IFCtoMAP software 

to convert information from IFC into .MAP file format. For more detailed information 

related to the C# implementation, the IFCtoMAP program source code can be found in 

the Appendices in the Electronic File attachments as Source Code and Doxygen 

Documentation.  
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7 SIMULATION METHODS 

7.1 Introduction 

When choosing the method for simulation, three options were considered: (1) the 

creation of a new energy simulation calculation tool that would be linked to Doom 3 

visualization; (2) the creation of calculations from within the Doom 3 game; and (3) the 

reuse of an existing simulation calculation tool such as EnergyPlus. 

The first option was to create a new energy simulation calculation tool which could 

be externally linked to the game engine. There are two obstacles identified with this 

approach. First, the new simulation needed to use IFC data, however, there is only one 

program found in the literature survey which can write IFC HVAC data: MagiCAD. 

Second, capturing the output data from the energy calculations and reading them into the 

visualization was problematic. The Doom 3 game logic source code is available for 

download from the Id Software Developer website as a Software Development Kit 

(SDK). The Doom 3 game logic only allows for the reading and writing of a limited 

number of file types (.map, .script, .def, etc). With the author’s limited knowledge of 

C++ and the limited documentation related to file reading and writing, the level of effort 

required to add file reading and writing routines for new file types into the Doom 3 game 

logic were considered to be out of the scope of this research. However, it is possible to 

rewrite the game logic and add support for reading new file types, such as the output 

from an energy simulation. 
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The second option for simulation involved integrating the energy calculations into 

the game. One way to do this would be to edit the game logic code from the SDK. 

Similar to adding new reading and writing methods discussed in the previous paragraph, 

the addition of an energy simulation into the Doom 3 game logic was outside the scope 

of this research. An alternative approach is to use Doom 3’s on-the-fly script compiler, 

where a script written in the D3 scripting language compiles and run when the game 

runs. Similar to the func_rotatingdoor a new entity type created with additional 

properties such as an energy calculation. When investigated, the use of scripts became an 

issue when gathering data from the user. Doom 3 uses a custom .GUI or graphical user 

interface file to create and display interactive data from within the virtual environment. 

A number of factors limit the interactions; most importantly, the users can only interact 

with the GUIs by the use of a left click; text data entry is not possible. The data 

collection requirements for an energy simulation require input of multiple numeric 

variables that cannot reasonably be entered by left clicking alone. 

The third option, reusing the simulation calculation tool Energy Plus, appeared to be 

promising as numerous journal articles and papers described tools such as IFCtoIDF, 

IFC interface to Energy Plus, and Energy Plus HVAC GUI that were intended to 

simplify the creation of simulation inputs by reusing data from IFC files16, 21-23, 61-63. 

Reports of the tools were similar to this: 

In addition to its previously released IFCtoIDF utility that semi-

automates the import of building geometry, the new IFC HVAC interface 

to EnergyPlus (released at the end of 2003) makes it possible to import 
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and export most of the data that define HVAC  equipment and systems in 

a building directly from and to other IFC compatible software tools. This 

reduces the manual input of other data needed for successful simulation 

with EnergyPlus to a minimum… EnergyPlus is the first building energy 

performance simulation model able to import data directly from a 

Building Information Model (BIM) that describes a given building in IFC 

format. Its IFCtoIDF utility allows users to seamlessly acquire data that 

completely describe a given building geometry in a format needed for the 

simulation
22. 

7.2 Energy Plus 

These reports created the expectation that a set of tools is currently available to 

facilitate the movement of geometric and mechanical HVAC data from IFC to an Input 

Data File (.IDF) file format used by Energy Plus. These reports were accurate in that  

data formatted according to the IFC specification was converted into an Energy Plus 

input file. However, the reports also stated that as of yet “no IFC files that contain 

diverse IFC2x2 based HVAC data can be generated by other tools at the moment…”22. 

Bazjanac described one of the IFC HVAC data generation tools, MagiCAD. To test 

MagiCAD for this research, a copy was obtained from Jani Suonvieri. The first task 

attempted was to load the Langford Building B .ifc file, which was exported from Revit. 

This was unsuccessful as the MagiCAD software crashed each time an attempt was 

made to load the Langford file. MagiCAD came with a sample IFC file that contained 
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data already created. Using Revit, an attempt was made to open the MagiCAD sample 

file. Likewise, Revit crashed when importing the MagiCAD file. After contacting both 

software developers, it is uncertain the exact cause of the incompatibility.  

After investigating the one possible source of IFC HVAC data, attention was focused 

on moving building geometry into Energy Plus to generate a minimum a set of loads. 

During the investigation of Energy Plus, the author found that the building geometry 

conversion utility IFCtoIDF successfully converted data from IFC to IDF format. 

However, the IFCtoIDF utility did not convert all elements of the building’s geometry 

from IFC into the IDF format.  

Figure 7.1 shows a three dimensional view of the Langford B Building as it appears 

in Autodesk Revit Building including the walls, top, the floors and ceilings, center, and 

the combination of both, bottom. In the center of the same figure, one sees a screenshot 

of the .ifc file data as rendered by a freeware .ifc file viewer software called IFC Engine 

Viewer64. The Autodesk Revit .rvt file is attached in Appendix 0 These items accompany 

this thesis as separate files available for downloading as 

070607_CMc_LangfordBuildingB.zip and 070607_CMc_ThesisMod.zip:  

• The file 070607_CMc_LangfordBuildingB.zip contains the Langford Building B file 

data as follows: 

Langford Building B Revit File.
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.RVT Revit Building .IFC Engine Viewer .IDF DrawEzPlus.RVT Revit Building .IFC Engine Viewer .IDF DrawEzPlus
 

Figure 7.1 Three Representations of Langford Building B: Left Revit Building,  

Center .ifc as seen in IFC Engine Viewer, Right .idf as seen in DrawEzPlus. 
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The right side of Figure 7.1 shows the IDF output of the IFCtoIDF conversion of the 

same data set, Langford Building B. When looking at these three images, notice the IFC 

representation of the Langford Building appears almost indistinguishable from the Revit 

representation. The IDF output on the other hand is visibly missing elements seen in the 

other two files. Most notably the IDF file is missing the building roof, large swaths of 

the floor space in the center of the building, and many wall segments. These elements 

are missing as a result of the IFCtoIDF conversion process. Connected geometry is not 

necessary in order to perform an Energy Plus simulation. However, the simulation does 

require that all thermal zones be bounded by at least six surfaces as shown in the 

Appendices labeled as Langford Building B IFCtoIDF EnergyPlus Error File. The 

missing surfaces prevent the simulation from being performed.  

The input data file for Energy Plus generated by the IFCtoIDF converter, attached as 

Appendix o, consists of more than ten thousand lines of ASCII text. Debugging this file 

would not be a trivial task, however it could be done. Debugging the Langford Building 

B IDF file could produce a successful simulation. For the purposes of this research it 

was sufficient to have verified that the IFCtoIDF conversion is still a semi-automated 

system that still requires the interaction of a user to generate a successful simulation. 
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7.3 Summary 

Of the options explored none resulted in the successful creation of a simulation that 

made full use of existing BIM data from IFC. Each approach had limitations requiring an 

additional software development effort to make them truly automated. There is a lack of 

IFC mechanical equipment generation tools, forcing a user to create a simulation 

separate from the geometry creation. This results in a disconnect between the geometry 

and the simulation (mechanical information). The resolution of this situation has great 

practical benefits. 
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8 RESULTS 

The aim of this research was to develop software technology for reusing buildings 

described in the IFC BIM standard in both a simulation and visualization. To test this 

goal, an on campus building was selected to use as a test case for the visualization. The 

selected building was the Architecture B Building located on main campus between the 

Bright Building and the Architecture A and C buildings, as shown in Figure 8.1. The 

Architecture B Building has a number of spaces serving multiple purposes including: a 

woodshop, an auditorium, classrooms, and research space.  

 

 

Figure 8.1 Arial View of Architecture Building B on Campus 
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The selected Architecture Building B contains many elements of a common office 

building and served as a good example of the typical geometry that can be transformed 

in the .map file format. What follows is a brief review of the supported IFC Building 

Elements as they exist within the Architecture B building and how they compared to the 

virtual building elements from the resulting .ifc file.  

Figure 8.2 shows the floor plans of the Architecture Building B color coded to 

describe the space usage and labeled with numbered bubbles to represent camera 

positions of Figure 8.3-Figure 8.7. The camera positions are as follows: 

1. The lobby from the perspective of the main double doors at the side entrance to the 

building 

2. The woodshop office walls as seen from the within the woodshop 

3. The auditorium from the perspective of a front corner 

4. A first floor view of the stairwell that links the first to the second floor 

5. The second floor hallways directly leading out from the stairwell 
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Figure 8.2 Langford Building B Floor Plans 

 
 

The first two images in Figure 8.3 show the Langford Building B lobby from the 

perspective of the main double doors at the side entrance to the building and are labeled 

as camera positions 1 in Figure 8.2. Three distinct differences between the actual lobby 

and the virtual representation are the textures on the surfaces, the lighting, and the doors 

are set into the walls. The textures are the generic textures described earlier that 

IFCtoMAP applies to all similar surfaces. A marble tile texture is placed on all +Z facing 
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surfaces, particularly floors; a ceiling tile texture on all -Z facing surfaces, such as 

ceilings; and an off-white texture is placed on all ±X and ±Y surfaces, such as the walls 

and sides of floor slabs. Because Doom 3 does not have global illumination or ambient 

lighting, point lights were placed by hand to illuminate the space. Finally, the doors are 

set into the walls by the automated function discussed above that places doors in walls 

based on the first point describing the door and the depth of the wall. 

Figure 8.4 shows the Langford Building B woodshop office walls as seen from the 

within the woodshop and is labeled as camera position 2 in Figure 8.2. The visual results 

created by the Doom 3 engine are quite similar to the actual environment. Similar to 

doors, the frames of the windows are not converted by the IFCtoMAP program, only the 

openings. In the case of windows, extruded shapes are generated to fill the window 

opening.  

Figure 8.5 shows the Langford Building B auditorium from the corner of the room 

and is labeled as camera position 3 in Figure 8.2. The auditorium is a large open space 

with curved steps with seats. The Revit file represented the steps as rectangular slabs and 

they were imported into the visualization as such. It is important to note that there exists 

a perspective difference between the virtual representation and the actual representation 

that is caused by the difference in the field of view of the camera and the virtual user. 

The virtual user has between a 90-120 degree field of view where the camera image has 

90 degrees or less in the field of view.  
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Figure 8.3 Langford B Lobby: Virtual Representation on Top, Actual on Bottom 
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Figure 8.4 Woodshop Office: Virtual Representation on Top, Actual on Bottom 
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Figure 8.5 Auditorium: Virtual Representation on Top, Actual on Bottom 
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Figure 8.6 Stairs: Actual on Left, Virtual Representation on Right 

 
 

There are distinct differences in the two images seen in Figure 8.6, labeled as camera 

position 4 in Figure 8.2. First, the number of stairs in the actual picture are not the same 

as the number of stairs in the right image. The reason for the discrepancy lies within the 

BIM model used. The BIM model has stairs placed in the stairwell that do not 

correspond to the actual number of stairs in the building. The second difference is the 

left half of the landing was not displayed in the Doom 3 model. This was investigated 

and landings are often composed of B-rep objects with concavities. These concavities 

can cause the B-rep objects to “disappear” in Doom 3. This same error can occur with 

any B-rep object that contains concavities.  
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Figure 8.7 Upstairs Hallway: Actual on Left, Virtual Representation on Right 

 
 

With the exception of the perspective distortion seen in the virtual representation, the 

images in Figure 8.7 are a fairly accurate match showing the second floor of Langford 

Building B, labeled as camera position 5 in Figure 8.2. The field of view of a user within 

the Doom 3 game engine is set to 90 degrees by default, but can be changed to suit the 

user. 

When transforming data from a point representation into a plane and distance based 

representation, there was a need to round off numbers to compare values. For example, 

when comparing .0000003 to 0, the result would be false. These numbers are not the 

same. However, in many instances .0000003 is so small that it can be considered to be 0 

to reduce the calculation time. The results, as seen in Figure 8.8, are the creation of small 

jagged edges that come from the constrained triangulation calculations where a number 

is rounded off and the planes do not intersect exactly where expected.  
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Figure 8.8 Round Off Errors 

 
 

Figure 8.9 shows the result of a Doom 3 engine’s failed attempt at optimizing 

geometry and flipping a triangle’s surface normal in order to correct backwards 

triangles. However, these segments of wall did not contain backwards triangles and as a 

result the engine did not render them properly. These cases happen within the Doom 3 

engine, and can be corrected by a manual adjustment of the brushes. No discernable 

pattern has been recognized as to why this happens.  
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Figure 8.9 Backwards Triangles 
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9 CONCLUSIONS AND RECOMMENDATIONS 

This document describes the process through which information from a Building 

Information Modeling tool such as Autodesk Revit Building can be moved through the 

Industry Foundation Classes into a visualization, such as Doom 3 and an energy 

simulation such as Energy Plus. A test building, the Langford Building B was used to 

demonstrate the process.  

The objective of the research was to identify and develop software technologies that 

could use a building’s geometry from a BIM file within both a visualization and the 

calculation of an energy simulation. The results of the energy calculations were intended 

to be displayed in a spatially relevant virtual environment. In order to achieve that 

objective the following tasks were undertaken: 

• The Doom 3 game engine was selected as the game based 3D virtual environment to 

display the building’s geometry. 

• The IFC CAD file standard was selected and common building elements such as 

walls, windows, doors, floors and ceilings were selected and converted into a format 

recognizable by the Doom 3 game engine. 

• The IFCtoMAP software was developed, which represents a technology framework 

for extracting select information from IFC files and transforming that information 

into a format usable by the Doom 3 game engine. 

• IFCtoIDF was identified as a possible software solution that could facilitate the use 

of a building’s geometry stored in an IFC file within Energy Plus.  
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The objectives of the research were successfully met. Technologies were developed 

and identified that could be used in a Visual Energy Use System by facilitating the use 

of Building Information Modeling tools in driving a visualization and a simulation as 

seen in Figure 9.1. Finally, the author proposes that with a change in game logic code, in 

a game such as Doom 3, the output of an energy simulation could be read into a game 

engine and displayed for a user. This objective was explored, but not fully achieved.  

 

Autodesk
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Energy

Simulation

.IFCAutodesk
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Figure 9.1 Framework for a Visual Energy Use System 

 
 

The state of the art IFCtoIDF tool was identified as a potential tool for semi-

automated conversion of IFC data into Energy Plus. The IFCtoIDF technology has IFC 

compatibility issues to work out. As of the writing of this document, IFCtoIDF had been 

removed from the Energy Plus installer for at least three releases (1 year). The IFCtoIDF 

conversion performed on the Langford Building B IFC file did not produce a simulation 

that could be immediately run. The errors generated by the conversion could be resolved 

by reviewing the ten thousand line IDF file and manually correcting the errors. This 

leads back to Bazjanac’s claim that the level of effort required for the preparation of a 
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building energy simulation input file can be reduced by a factor of four through the use 

of semi-automated tools 12.  

In addition to identifying the potential of IFCtoIDF, a new conversion utility was 

developed, IFCtoMAP. The IFCtoMAP conversion utility takes a building’s geometry as 

found in an IFC file and converts the geometric representation into a format understood 

by the Doom 3 game engine. This conversion utility demonstrates the versatility of the 

data stored within an IFC file.  

The IFCtoMAP component has many applications beyond energy simulation 

visualization. There were no reports within the literature survey of instances where BIM 

information could be directly converted into first person perspective visualization. 

Included among the applications of IFCtoMAP outside the scope of this research are: 

real estate pre-sales walkthroughs with long distance clients; the rapid creation of 

models for the build to suit industry; architectural pre-design walkthroughs; and the 

rapid creation of visualizations for virtual rehearsals of military tactical operations.  

9.1 Further Work 

This research is an initial study in the creation of a Visual Energy Use System. To 

further integrate visualizations and energy simulations into a single Visual Energy Use 

System, the following considerations warrant further study.  

• When developing software, it is critical to have a well documented API and 

community of developers working with the same software. The longest delays when 

developing the software for this work were when learning to understand the IFC file 
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format. The documentation was vague and there were no free support communities 

found to assist in deciphering the documentation. Much of what was learned about 

IFC came from trial and error. The method most commonly used to understand the 

IFC was to export an IFC file from Revit, open it in IFCExplorer and review to see if 

the output was as expected. This method was done on single walls, walls connected 

to each other, floors, furniture, etc. Doom 3, though, was much simpler to learn 

because Doom3world.org has such an active community supporting anyone looking 

for help using the engine. With 150k+ threads of discussion, it was easy to find 

detailed answers to questions by using the built-in search function.  

• From experience on this work, it does not appear that a first person perspective (FPP) 

game engine is the optimal approach to be taken when simulating a building’s energy 

consumption. The same reasons that were used to justify choosing the first person 

perspective engine at the start of this thesis work are the same reasons this does not 

appear to be an optimal approach.  

o The user has a spatial sense of position within the building and those elements 

which make up the building. When seen from a first person perspective, the lack 

of detail in a space becomes apparent. The time spent creating visually pleasing 

art assets to hide or mask the lack of detail uses valuable time that could be spent 

more effectively on other aspects of the simulation.  

o Along the same lines, a FPP system puts the user in a single space within the 

building, and the user can easily lose perspective of the building as a whole. One 
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of the reasons for a building level simulation is to get a perspective of the entire 

building performance. This might be lost by a FPP system.  

o For these reasons, the author advises against using a FPP system in the future for 

this purpose. 

• Given the above, a third person perspective or isometric perspective of a building is a 

more suitable approach. This researcher believes that a user may be more likely to 

accept a lower level of detail and more visual abstraction than a FPP system. 

• From a development perspective, the need for fewer art assets and an overall lower 

level of detail is a distinct advantage over a first person perspective system. 

• Based on the finding of this thesis research, the licensing of a third person 

perspective real time strategy game engine and the creation of custom game logic 

code may be a better approach to creating an energy consumption centric 

visualization. Using the game logic from an off the shelf game such as Doom limits 

the developer to using someone else’s logic, which may be optimized for a first 

person shooter game but not for a FPP visualization. 
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APPENDICES 

Electronic Files 

These items accompany this thesis as separate files available for downloading as 

070607_CMc_LangfordBuildingB.zip and 070607_CMc_ThesisMod.zip:  

• The file 070607_CMc_LangfordBuildingB.zip contains the Langford Building B file 

data as follows: 

o Langford Building B Revit File: LangfordBuildinB.rvt 

o Langford Building B IFC File: LangfordBuildinB.ifc 

o Langford Building B IDF File: LangfordBuildinB.idf 

� This is the output of the IFCtoIDF Converter which has been passed through 

the EnergyPlus Version Translation programs from version 1.2 to v1.3 to 

v1.4 to v2.0. Attached as the electronic file  

• The file 070607_CMc_ThesisMod.zip, contains the Mod directory for the Doom 3 

game engine and has been tested using Doom 3 and Prey. To use unzip the file into 

the Doom 3 and place the converted .MAP file into the ‘map’ subdirectory.   

Source Code & Doxygen Documentation for IFCtoMAP these items accompany this 

thesis as separate files available for downloading as: 

070607_CMc_IFCtoMAP_SourceCode.zip and 070607_CMc_Doxygen.zip:  

• 070607_CMc_IFCtoMAP_SourceCode.zip includes the solution directory for the 

IFCtoMAP Visual Studio 2005 project along with a compiled version of the software 
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in the bin\release directory. IFCtoMAP Source Code. This includes the C# source 

code used to compile the IFCtoMAP program. In order to compile the solution 

Visual Studio 2005 or newer with the C# compiler is needed. To use the solution in 

Visual Studio 2005 decompress the zip file and select IFCtoMAP.sln. 

• 070607_CMc_Doxygen.zip includes an HTML directory containing the output of a 

Doxygen run on the IFCtoMAP source code. To begin viewing this documentation 

select the file index.htm. 
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Figure 1 Constrained Triangulation Example 1 
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Figure 2 Constrained Triangulation Example 2 
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Figure 3 Constrained Triangulation Example 3 
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Figure 4 Constrained Triangulation Example 4 
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Figure 5 Constrained Triangulation Example 5 
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Figure 6 Constrained Triangulation Example 6 



 

  

1
3
1
 

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X - Values

Y
 -

 V
a
lu

e
s

P7P8

P6

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00

X - Values

Y
 -

 V
a
lu

e
s

P7P8

P6

  
Figure 7 Constrained Triangulation Example 7 
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Figure 8 Constrained Triangulation Example 8 
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Figure 9 Constrained Triangulation Example 9 
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Figure 10 Constrained Triangulation Example 10 
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Figure 11 Constrained Triangulation Example 11 
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Figure 12 Constrained Triangulation Example 12 
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Figure 13 Constrained Triangulation Example 13 
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Figure 14 Constrained Triangulation Example 14 
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Doom 3 System Requirements 

• 3D Hardware Accelerator Card Required - 100% DirectX® 9.0b compatible 
64MB Hardware Accelerated video card and the latest drivers*. 

• English version of Microsoft® Windows® 2000/XP 
• Pentium® IV 1.5 GHz or Athlon® XP 1500+ processor or higher 
• 384MB RAM 
• 8x Speed CD-ROM drive (1200KB/sec sustained transfer rate) and latest drivers 
• 2.2GB of uncompressed free hard disk space (plus 400MB for Windows® swap 

file)  
• 100% DirectX® 9.0b compatible 16-bit sound card and latest drivers  
• 100% Windows® 2000/XP compatible mouse, keyboard and latest drivers  
• DirectX® 9.0b (included)  

MULTIPLAYER REQUIREMENTS:  

• Internet (TCP/IP) and LAN (TCP/IP) play supported  
• Internet play requires broadband connection and latest drivers  
• LAN play requires network interface card and latest drivers  

Important Note: *Some 3D accelerator cards with the chipset listed here may not 

be compatible with the 3D accelerator features utilized by Doom 3. Please refer 

to your hardware manufacturer for 100% DirectX 9.0b compatibility. This 

product does not support Microsoft® Windows® 95/98/ME or NT.  
SUPPORTED CHIPSETS:  

• ATI® Radeon(tm) 8500 
• ATI® Radeon(tm) 9000 
• ATI® Radeon(tm) 9200 
• ATI® Radeon(tm) 9500 
• ATI® Radeon(tm) 9600  
• ATI® Radeon(tm) 9700 
• ATI® Radeon(tm) 9800 
• All nVidia® GeForce(tm) 3/Ti series 
• All nVidia® GeForce(tm) 4MX series 
• All nVidia® GeForce(tm) 4/Ti series 
• All nVidia® GeForce(tm) FX series 
• nVidia® GeForce(tm) 6800 
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Langford Building B IFCtoIDF EnergyPlus Error File. 

Program Version,EnergyPlus 2.0.0.025, 4/19/2007 3:11 PM,IDD_Version 2.0.0.025 

   ** Warning ** GetSurfaces: Surfaces with interface to Ground found but no 

"GroundTemperatures" were input. 

   **   ~~~   ** Found first in surface=0HDUCC6BB75WLCEGCFDTDZ3SGAMKIGB1P8_OBRAYJHOD>FF0 

   **   ~~~   ** Defaults, constant throughout the year of (18.0) will be used. 

   ** Severe  ** GetSurfaceData: Zone has no surfaces, Zone=0HDUCC6BB75WLCEGCFDTDV2 

   ** Warning ** GetSurfaceData:The total number of floors, walls, roofs and internal 

mass surfaces in Zone 0HDUCC6BB75WLCEGCFDTDK 

   **   ~~~   ** is < 6. This may cause an inaccurate zone heat balance calculation. 

   ** Warning ** GetSurfaceData:The total number of floors, walls, roofs and internal 

mass surfaces in Zone 0HDUCC6BB75WLCEGCFDTDQ 

   **   ~~~   ** is < 6. This may cause an inaccurate zone heat balance calculation. 

   ** Warning ** GetSurfaceData:The total number of floors, walls, roofs and internal 

mass surfaces in Zone 37HSCZC0D1DBSPKQFCEYL1 

   **   ~~~   ** is < 6. This may cause an inaccurate zone heat balance calculation. 

   ** Warning ** GetSurfaceData:The total number of floors, walls, roofs and internal 

mass surfaces in Zone 37HSCZC0D1DBSPKQFCEYL2 

   **   ~~~   ** is < 6. This may cause an inaccurate zone heat balance calculation. 

   ** Warning ** GetSurfaceData:The total number of floors, walls, roofs and internal 

mass surfaces in Zone 37HSCZC0D1DBSPKQFCEYLF 

   **   ~~~   ** is < 6. This may cause an inaccurate zone heat balance calculation. 

   ** Warning ** GetSurfaceData:The total number of floors, walls, roofs and internal 

mass surfaces in Zone 37HSCZC0D1DBSPKQFCEYL8 

   **   ~~~   ** is < 6. This may cause an inaccurate zone heat balance calculation. 

   ** Warning ** GetSurfaceData:The total number of floors, walls, roofs and internal 

mass surfaces in Zone 37HSCZC0D1DBSPKQFCEYKR 

   **   ~~~   ** is < 6. This may cause an inaccurate zone heat balance calculation. 

   ** Warning ** GetSurfaceData:The total number of floors, walls, roofs and internal 

mass surfaces in Zone 37HSCZC0D1DBSPKQFCEYJM 

   **   ~~~   ** is < 6. This may cause an inaccurate zone heat balance calculation. 

   **  Fatal  ** Fatal error discovered in GetSurfaceData, see previous messages 

   ************* Fatal error -- final processing.  More error messages may appear. 

   ************* Testing Individual Branch Integrity 

   ************* All Branches passed integrity testing 

   ************* Testing Individual Supply Air Path Integrity 

   ************* All Supply Air Paths passed integrity testing 

   ************* Testing Individual Return Air Path Integrity 

   ************* All Return Air Paths passed integrity testing 

   ************* No node connection errors were found. 

   ************* EnergyPlus Terminated--Fatal Error Detected. 9 Warning; 1 Severe Errors; 

Elapsed Time=00hr 00min  2.94sec 
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