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ABSTRACT

Topics in Functional Data Analysis with Biological Applications. (August 2006)

Yehua Li, B.S., Tsinghua University;

M.S., Texas A&M University

Co-Chairs of Advisory Committee: Dr. Raymond J. Carroll
Dr. Tailen Hsing

Functional data analysis (FDA) is an active field of statistics, in which the primary sub-

jects in the study are curves. My dissertation consists of two innovative applications of

functional data analysis in biology. The data that motivated the research broadened the

scope of FDA and demanded new methodology. I develop new nonparametric methods to

make various estimations, and I focus on developing large sample theories for the proposed

estimators.

The first project is motivated from a colon carcinogenesis study, the goal of which is to

study the function of a protein (p27) in colon cancer development. In this study, a number

of colonic crypts (units) were sampled from each rat (subject) at random locations along

the colon, and then repeated measurements on the protein expression level were made on

each cell (subunit) within the selected crypts. In this problem, measurements within each

crypt can be viewed as a function, since the measurements canbe indexed by the cell

locations. The functions from the same subject are spatially correlated along the colon,

and my goal is to estimate this correlation function using nonparametric methods. We use

this data set as an motivation and propose a kernel estimatorof the correlation function

in a more general framework. We develop a pointwise asymptotic normal distribution

for the proposed estimator when the number of subjects is fixed and the number of units
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within each subject goes to infinity. Based on the asymptotictheory, we propose a weighted

block bootstrapping method for making inferences about thecorrelation function, where the

weights account for the inhomogeneity of the distribution of the unit locations. Simulation

studies are also provided to illustrate the numerical performance of the proposed method.

My second project is on a lipoprotein profile data, where the goal is to use lipoprotein

profile curves to predict the cholesterol level in human blood. Again, motivated by the data,

we consider a more general problem: the functional linear models (Ramsay and Silverman,

1997) with functional predictor and scalar response. Thereis literature developing different

methods for this model; however, there is little theory to support the methods. Therefore,

we focus more on the theoretical properties of this model. There are other contemporary

theoretical work on methods based on Principal Component Regression. Our work is dif-

ferent in the sense that we base our method on roughness penalty approach and consider a

more realistic scenario that the functional predictor is observed only on discrete points. To

reduce the difficulty of the theoretical derivations, we restrict the functions with a periodic

boundary condition and develop an asymptotic convergence rate for this problem in Chap-

ter III. A more general result based on splines is a future research topic that I give some

discussion in Chapter IV.
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CHAPTER I

INTRODUCTION

Functional Data Analysis (FDA) is a new area of statistics which combines and extends ex-

isting methodologies and theories from nonparametric/semiparametric smoothing, stochas-

tic processes, multivariate analysis and generalized linear models. In contrast to the tradi-

tional methods, FDA deals with data sets, in which a data point is a function defined on a

fixed compact set, instead of a vector. In other words, the random variables are defined on a

functional space instead of a vector space. In this sense, FDA is an extension of multivariate

analysis, where the random vectors are of infinite dimension. We need theory of stochas-

tic processes to model the population of these random functions. However, in real life,

these functional subjects are always measured on discrete points, and the measurements

are usually contaminated with measurement errors. That is why we need nonparametric

smoothing methods to recover the functions.

1.1 Functional Data

Ramsay and Silverman (1997) and Ramsay and Silverman (2002)gave a good summary

of examples and methods in FDA. In my dissertation, I will work on two projects both on

functional data. Both projects are new applications of function data, that extends the scope

of FDA described in Ramsay and Silverman (1997). I will give abrief introductions to

these data sets, and use them to illustrate how functional data are unique in nature and why

we need to develop new methodology to analyze them. The proposed methods, theory and

This thesis follows the style ofBiometrics.



2

data analysis are given int the following chapters.

1.1.1 Colon Carcinogenesis Data

The biomarker that we are interested in is p27, which is a lifecycle protein that affects cell

apoptosis, proliferation and differentiation. An important goal of the study is to understand

the function of p27 in the early stage of the cancer development process. In the experiment,

12 rats were administered azoxymethane (AOM), which is a colon specific carcinogen.

After 24 hours, the rats were terminated and a segment of colon tissue was excised from

each rat. About 20 colonic crypts were randomly picked alonga linear slice on the colon

segment. The physical distances between the crypts were measured. Then, within each

crypt, we measured cells at different depths within the crypts, and then the expression level

of p27 was measured for each cell within the chosen crypts.

The first plot in Figure 1 shows the colonic crypts. As we can see that the cells line up

within the crypt so that we can index the measurements withina crypt by the relative cell

depth. If we denote the cell location in the bottom of a crypt to be 0 and top to be 1, it is

natural to consider the true p27 expression levels within a crypt to be a continuous function

on [0, 1]. Therefore, the measurements on cells can be considered as discrete observations

on the function. The number of cells per crypt is roughly 30, but it varies from crypt to

crypt. Consequently, the observation locations are different from function to function.

1.1.2 Lipoprotein Profile Data

The goal of this project is to use lipoprotein profile curves to predict cholesterol levels from

a patient. The lipoprotein curves were generated by the following protocol. A standard

amount (50µl) of diluted serum sample from each patient was process in thecentrifuga-

tion machine, such that different types of lipoproteins were separated into layers according

to their densities. A chemical stain was added to show the concentrations of the choles-
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terol, and the profile curve was generated by recording the intensity of the stain at different

heights using digital cameras.

The second plot in Figure 1 shows a typical lipoprotein profile generated in this study.

We re-scale the abscissa to make each profile curve defined on[0, 1], with 0 corresponds

to the top of the tub and1 corresponds to the bottom. As one can see, there are usually

three peaks in a profile curve, which correspond to the three major types of lipoprotein

with different densities. The three types of lipoprotein are Very Low Density Lipoprotein

(VLDL), Low Density Lipoprotein (LDL) and High Density Lipoprotein (HDL), from the

left to the right of the profile. In this study we have 24 patients, each with a lipoprotein

profile curve and a cholesterol level measured separately. Each profile curve consists of

over 1,000 equally spaced measurements. The goal is to builda linear model to predict the

cholesterol level from these profile curves.

Other typical examples of functional data described in Ramsay and Silverman (1997) are

the growth curves, temperature curves and so on.

1.1.3 Why Is Functional Data Special

The compelling reasons for developing new methodology for functional data instead of

applying multivariate analysis are the following:

• In many functional data, the dimension of the vector is much higher than the number

of subjects. For example, in the lipoprotein profile project, the number of points in

each curve depends on the resolution of the camera. In this kind of study, the number

of subject is always limited, but as technology advances we can sample more and

more points on each curve. Traditional multivariate analysis does not apply in this

case, and new methods should be developed to take into account the smoothness of

the curves underlying the discrete observations.
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Figure 1: Functional data. Upper panel: a picture of coloniccrypts; lower panel: a lipopro-
tein profile curve.
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• The observation locations are different from curve to curve, for example, the colon

carcinogenesis data. In this case, the dimension of the vectors could be different

from one curve to another, values on the same entries in different vectors could mean

different things.

• In some application, the model is concerned with the functional properties of these

curves. For example, Ramsay and Silverman (1997) gives an example on growth

curves. In this study, the heights of a group of children weremeasured over time,

while the acceleration (second derivative) of these growthcurves are of interest.

1.2 General Ideas of Functional Data Analysis

In this section, I will review some general ideas and methodsin Functional Data Analysis,

which are related to my research topic.

In FDA, the data are a sample of curves. It is natural to model the population of

these curves as a stochastic processX(t) defined on the same compact set. Two important

ideas are generally used to deal with functional data: one isto do dimension reduction and

reduce the problem to multivariate analysis; the other is use a roughness penalty approach

that utilize the smooth nature of the curves. Both method will help to reduce the variability

of the result but introduce some bias.

1.2.1 Functional Principal Component Analysis

In stochastic process, there is a long-established result that a stochastic processX(t) de-

fined on[0, 1] has the following Karhunen-Leóve expansion (Ash and Gardner, 1975). Sup-

poseR(s, t) = cov{X(s), X(t)} has eigenvaluesλ1 ≥ λ2 ≥ · · ·, with φ1(·), φ2(·), · · ·

being the corresponding eigenfunctions, then

X(t) = m(t) +
∞∑

k=1

ξkφk(t),
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wherem(t) = E{X(t)}, ξk are the principal component scores withE(ξk) = 0 and

var(ξk) = λk.

1.2.2 Roughness Penalty

The roughness penalty idea is probably first used in nonparametric regressions.

One of the most popular methods in nonparametric regressionis the penalized spline

method(Ruppert, Wand, and Carroll, 2003), the general framework of which is as the fol-

lowing. Suppose the data we observed are

Yi = f(xi) + ǫi, i = 1, · · · , n,

wheref is an unknown function. This is a typical regression problem, but f may not be

of any parametric form. To increase the flexibility of the model, we can estimatef by f̂

which is spanned by a set of basis functions,BBB = {B1(x), · · · , BK(x)}T. The penalized

spline estimator is defined as

f̂(x) = β̂TBBB(x), (1.1)

whereβ̂ is the minimizer of a penalized least square

n∑

i=1

{Yi − βTBBB(xi)}
2 + λβTDβ,

whereD is positive definite matrix andλ > 0 is a tuning parameter.

In this method, we usually include a relatively large numberof basis functions to make

the model flexible, and use the roughness penaltyβTDβ to force the estimated curve to be

smooth.λ controls the tradeoff between flexibility and variation.

The penalized spline given by (1.1) is quite general, it includes many previous spline

variants as special cases. For example, whenBBB(x) are B-spline functions and the penalty is

on the divided differences of the coefficients, it is the penalized B-spline method introduced
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by Eilers and Marx (1996). WhenBBB(x) are the natural spline basis with knots on allxi and

the penalty is onJ(f) =
∫
{f (m)(x)}2dx with

D =

∫
BBBm(x){BBB(m)(x)}Tdx,

the penalized spline is equivalent to smoothing spline (Eubank, 1988). Ruppert et al. (2003)

propose to use the truncated power series as spline basis,

BBB(x) = {1, x, x2, · · · , xp, (x− κ1)
p
+, · · · , (x− κK−p−1)

p
+},

and letD = diag(000p+1,111K−p−1). Another possibility is letBBB(x) be the fourier basis,

{1, cos(jπx), sin(jπx); j = 1, 2, · · ·}, and use the same penalty as in smoothing spline,

this method is referred as periodic smoothing spline in Eubank (1988).

The roughness penalty approach has a close relation with themixed effect models,

and has been widely used beyond the scope of nonparametric regression discussed above.

For example, the roughness penalty idea has been extended topenalized likelihood and

penalized quasilikelihood methods for the generalized additive models. See Ruppert et al.

(2003) for an overview.

Ramsay and Silverman (1997) also applied the roughness penalty idea in Functional

Data Analysis. For example, for the functional linear modelthat we will discuss in Chapter

III,

Yi = µ+

∫ 1

0

Xi(t)f(t)dt+ ǫi,

where they spanXi(·) on a set of basis functions and estimate the unknown coefficient func-

tion f(·) by minimizing a penalized least square, with the penalty on the second derivative

of f .

1.3 Overview Structure

The following is the general structure of my dissertation.
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In Chapter II, I present the results for the project on colon carcinogenesis data. In this

data set, the measurements within a crypt are discrete observations on a function, but these

functions are correlated within the same subject (rat). I study the nonparametric kernel

methods to estimate the spatial correlation between these functions. Asymptotic normal

distributions are developed for the proposed estimators. Iwill also discuss other issues in

data analysis, for example bandwidth selection and inference procedure. Simulation studies

are also provided to check the performance of the proposed methods.

In Chapter III, I will focus on the theoretical properties for the functional linear model

with functional predictor and scalar response. Although I believe the best method for such

models should be based splines due to the various desirable properties of spline functions,

I will restrict my theoretical derivation to methods based on periodic spline simply because

they are much more tractable mathematically. I derive an asymptotic convergence rate for

the functional linear model under some periodic boundary conditions, but the result can be

inferred to more general spline methods.

In Chapter IV, I will discuss some possible extensions of my work. I will talk about

spline methods for functional linear models, apply them to the lipoprotein profile data

and compare the results to those of the periodic spline methods discussed in the previous

chapter.

All theoretical derivations are given in the appendix.
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CHAPTER II

NONPARAMETRIC CORRELATION ESTIMATION FOR THE COLON

CARCINOGENESIS DATA

2.1 Introduction

This project concerns kernel-based nonparametric estimation of covariance and correlation

functions. Our methods and theory are applicable to longitudinal and spatial data as well

as time series data, where observations within the same subject at different time points

or locations have strong correlations, which are stationary in time or distance lags. The

structure for the observation at a particular time or location within one subject can be very

general, for example a vector or even a function.

Our study arises from a colon carcinogenesis experiment. The biomarker that we are

interested in is p27, which is a life cycle protein that affects cell apoptosis, proliferation

and differentiation. An important goal of the study is to understand the function of p27 in

the early stage of the cancer development process. In the experiment, 12 rats were admin-

istered azoxymethane (AOM), which is a colon specific carcinogen. After 24 hours, the

rats were terminated and a segment of colon tissue was excised from each rat. About 20

colonic crypts were randomly picked along a linear slice on the colon segment. The phys-

ical distances between the crypts were measured. Then, within each crypt, we measured

cells at different depths within the crypts, and then the expression level of p27 was mea-

sured for each cell within the chosen crypts. In this data set, crypts are naturally functional

data (Ramsay and Silverman 1997), that the responses withina crypt are coordinated by

cell depths. There is a literature about similar data, for example Morris et al. (2001).

However, in this project, we will be focused on a very different perspective. In this

application, the spatial correlation between crypts is of biological interest, because it helps
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answer the question: if we observe a crypt with high p27 expression, how likely are the

neighboring crypts to have high p27 expression? We will phrase much of our discussion

in terms of this example, but as seen later sections, we have aquite general structure that

includes time series as a special case. In that context, the asymptotic theory is as the number

of ”time series locations”, i.e., crypts, increases to infinity.

Although motivated by a very specific problem, nonparametric covariance/correlation

estimators worth being investigated in their own right. They can be used in a statistical

analysis as: (a) an exploratory device to help formulate a parametric model; (b) an inter-

mediate tool to do spatial prediction (kriging); (c) a diagnostic for parametric model; (d) a

robust tool to test correlation. Understanding the theoretical properties of the nonparamet-

ric estimator is important under any of these situation. A limiting distribution theory would

be especially valuable for purpose (d).

There is previous work on the subject of nonparametric covariance estimation. Hall

et al. (1994) developed an asymptotic convergence rate of a kernel covariance estimator in

a time series setting. They required not only an increasing time domain, but increasingly

denser observations. Diggle and Verbyla (1998) suggested akernel weighted local lin-

ear regression estimator for estimating the non-stationary variogram in longitudinal data,

without developing asymptotic theory. Guan, Sherman and Calvin (2004) used a kernel

variogram estimator when assessing isotropy in geostatistics data. They proved asymp-

totic normality for their kernel variogram estimator in a geostatistics setting, where they

required the spatial locations to be sampled from the field according to a two dimensional

homogeneous Poisson process.

As we will show below and as implied by the result from Guan et al. (2004) if the ob-

servation locations (or times) in the design are random, Hall’s assumption, namely that the

number of observation on a unit domain goes to infinity, is toorestrictive and not necessary.

However, in the setting of Guan et al., given the sample size,spatial locations are uniformly
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distributed within the field, which does not fit our problem, where crypt locations within a

rat are, in fact, not even close to uniformly distributed.

Our work differs from the previous work on the kernel covariance estimators in the

following ways. First, our approach accommodates more complex data structure at each

location or time. Secondly, we allow the spatial locations to be sampled in an inhomoge-

neous way, and as we will show below that this inhomogeneity will affect the asymptotic

results and inference procedures. In doing so, we generalize the setting of Guan et al.

(2004), and link it to the setting of Hall et al. (1994). Also,Guan et al. (2004) is mainly

concerned with comparing variograms on a few pre-selected distance lags, we, on the other

hand, are more interested in the correlation as a function. Thirdly, we propose an inference

procedure, thus filling a gap in the previous literature.

This chapter is organized as follows. Section 2.2 introduces our model assumptions

and estimators, while asymptotic results are given in Section 2.3. A brief analysis of the

data motivating this work is given in Section 2.4, where we also discuss bandwidth selection

and a procedure to estimate the standard deviation of the correlation estimator. Section 2.5

describes a simulation study, and final comments are given inSection 2.6. All proofs are

given in the appendix.

2.2 Model Assumptions and Estimators

The data considered here have the following structure:

• There are arer = 1, ..., R independent subjects, which in our example are rats. We

allowR = 1.

• The data for each subject have two levels. The first level has an increasing domain,

as in time series or spatial statistics, and are the crypts inour example. We label this

first level as a ”unit”, and it is these units that have time series or spatial structure in
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their locations. Within each subject, there arei = 1, ..., Nr such units.

• The second level of the data consists of observations withineach of the primary units.

In our case, these are the cells within the primary units, thecolonic crypts. We will

label this secondary level as the ”sub-units”, which are labelled with locations. The

locations with the sub-units are on the interval[0, 1]. For simplicity, we will assume

there are exactlym sub-units (cells) within each unit (crypt), with thejth sub-unit

having location (relative cell depth)x = (j − 1)/(m− 1). However, all theories and

methods in our paper will go through if the sub-units take theform of an arbitrary

finite set.

• In the time series setting of Hall et al. (1994) or the spatialsetting of Guan et al.

(2004),m = 1.

Let Θ(s, x) be a random field onT ×X , wheres is the unit (crypt) location and andx

is the sub-unit(cell) location, so thatT = [0,∞), X = {(j − 1)/(m− 1), j = 1, · · · ,m}.

Assume thatΘr(·, ·), r = 1, · · · , R, are independent realizations ofΘ(·, ·). We use the

short-hand notationΘri(x) = Θr(Sri, x), whereSri is the location of theith unit (crypt)

within therth subject (rat). Our model for the observed data is that

Yrij = Θri(xj) + ǫrij, (2.1)

whereY is the response (logarithm of p27 level),ǫrij are zero-mean uncorrelated mea-

surement errors with varianceσ2
ǫ , r = 1, · · · , R, i = 1, · · · , Nr andj = 1, · · · ,m are the

indices for subjects (rats), units (crypts) and sub-units (cells). DefineΘr(·) = Er{Θri(·)}

to be the subject-level mean, and the notation “Er” refers to expectation conditional on the

subject. Another way to understandΘr(·) is to decompose the random fieldΘr(·, ·) into

the following random effect model,Θri(x) = Θr(x) + Λri(x), whereΘr(·) is the subject

(rat) effect,Λri are the zero-mean, spatially correlated unit (crypt) effects.
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Within each subject, we assume that the correlation of the mean unit (crypt)-level

functions is stationary over the distances between the units. In addition, the covariance

between unit locations(s1, s2) at sub-unit (cell) locations(x1, x2) is assumed to have the

following form:

V{x1, x2,∆} = E[{Θr(s1, x1) − Θr(x1)}{Θr(s2, x2) − Θr(x2)}], (2.2)

where∆ = s1 − s2. While we develop general results for model (2.2), in many cases it is

reasonable to assume that the covariance function is separable, i.e.,

V(x1, x2,∆) = G(x1, x2)ρ(∆). (2.3)

When the covariance function is separable, the correlationfunction at the unit-level,ρ(·),

is of interest in itself. In our application,ρ(·) is the correlation between crypts. We provide

an estimator ofρ(·) as well as an asymptotic theory for that estimator.

A first estimator for the covariance function has the following form:

V̂(xj, xl,∆) = [
∑

r

∑

i

∑

k 6=i

Kh{∆r(i, k) − ∆}(Yrij − Y r·j)(Yrkl − Y r·l)]

×[
∑

r

∑

i

∑

k 6=i

Kh{∆r(i, k) − ∆}]−1, (2.4)

whereY r·j = N−1
r

∑Nr

i=1 Yrij, ∆r(i, k) = Sri − Srk, Kh(·) = h−1K(·/h) with K being a

kernel function satisfying the conditions in Section 3.

It is usually reasonable to assume thatV(x1, x2,∆) has some symmetry property, that

it is an even function in∆ andV(x1, x2,∆) = V(x2, x1,∆). However, the estimator

defined in (2.4) does not enjoy this property. To see this, we observe that, forxj 6= xl,

although(Yrij − Y r·j)(Yrkl − Y r·l) and(Yril − Y r·l)(Yrkj − Y r·j) estimate the same thing,

they only contribute tôV(xj, xl,∆) andV̂(xj, xl,−∆), respectively. We also observe that

V̂(x1, x2,∆) = V̂(x2, x1,−∆).
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To correct the asymmetry of the covariance estimator, for∆ ≥ 0, define

Ṽ(xj, xl,∆) = [
∑

r

∑

i

∑

k 6=i

Kh{|∆r(i, k)| − ∆}(Yrij − Y r·j)(Yrkl − Y r·l)]

×[
∑

r

∑

i

∑

k 6=i

Kh{|∆r(i, k)| − ∆}]−1, (2.5)

and let Ṽ(xj, xl,∆) = Ṽ(xj, xl,−∆) for ∆ < 0. As shown in the proof of Theorem

II.2, for a fixed ∆ 6= 0, Ṽ(x1, x2,∆) is asymptotically equivalent to{V̂(x1, x2,∆) +

V̂(x1, x2,−∆)}/2.

In addition, when the separable structure (2.3) is assumed,define estimators

Ĝ(x1, x2) = Ṽ(x1, x2, 0), (2.6)

and

ρ̂(∆) = {
∑

x1∈X

∑

x2≤x1

Ṽ(x1, x2,∆)}/{
∑

x1∈X

∑

x2≤x1

Ĝ(x1, x2)}. (2.7)

2.3 Asymptotic Results

The following are our model assumptions. Each subject (rat)is of lengthL, where in our

exampleL is the length of the segment of tissue from each rat. The units(crypts) are

located on the interval[0, L], and in our asymptotics we letL → ∞, so that we have an

increasing domain. Suppose that the positions of the units (crypts) within therth subject

(rat) areSr1, · · · , SrNr , where theSri’s are points from an inhomogeneous Poisson process

on [0, L]. Then∆r,ik = Sri − Srk. The definition of an inhomogeneous Poisson process

is adopted from Cressie (1993). We assume the inhomogeneousPoisson process has a

local intensityνg∗(s), whereν is a positive constant andg∗(s) = g(s/L) for a continuous

density functiong(·) on [0, 1].

A special case of our setting is thatg(·) is a uniform density function and the units

(crypts) are sampled according to a homogeneous Poisson process. This is the setting
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investigated in Guan et al. (2004). Our setting resembles that of Hall et al. (1994) in the

sense that we also model the unit locations as random variables with the same distribution:

in our setting, the number of units within a subject (rat) isNr ∼ Poisson(νL); given

Nr, Sr1/L, · · · , Sr,Nr/L are independent and identically distributed with densityg(·). By

properties of Poisson processes,Nr/L = O(ν) almost surely, asL → ∞, that is, the

number of units (crypts) on a unit length tends to a constant.It is worth noting that Hall et

al. (1994) required this ratio to go to infinity. We require less samples on the domain than

do Hall et al. (1994).

In what follows, we provide a list of definitions and conditions needed to present our

theoretical findings.

1. We assume thatg(·) is continuous andc1 ≥ g(t) ≥ c2 > 0 for all t ∈ [0, 1]. Suppose

ti, i = 1, 2, 3, 4, are independent random variables with densityg(·), definef1, f2, f3

to be the density fort1 − t2, (t1 − t2, t3 − t2), (t1 − t2, t3 − t4, t2 − t4), respectively.

Sinceg(·) is bounded, one can easily derive thatf1(0), f2(0, 0) andf3(0, 0, 0) are

positive. We also assume thatf2 is Lipschitsz continuous in the neighborhood of

0, i.e. |f2(u, v) − f2(0, 0)| ≤ λ1|u| + λ2|v|, for ∀u, v and some fixed constants

λ1, λ2 > 0.

2. AssumeV(x1, x2,∆) has two bounded continuous partial derivatives in∆, and that

supx1,x2

∫
|V(x1, x2,∆)|d∆ <∞.

3. Let

M(x1, x2, x3, x4, u, v, w)

= Er

[
{Θri1(x1) − Θr(x1)}{Θri2(x2) − Θr(x2)}{Θri3(x3) − Θr(x3)}

{Θri4(x4) − Θr(x4)}|∆r(i1, i2) = u,∆r(i3, i4) = v,

∆r(i2, i4) = w
]
− V(x1, x2, u)V(x3, x4, v).
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We assumeM has bounded partial derivatives inu, v andw, and

sup
x1,x2,x3,x4,u,v

∫
|M(x1, x2, x3, x4, u, v, w)|dw <∞. (2.8)

4. Denotebr(x1, x2,∆) = L−1
∑

i

∑
k 6=iKh{∆ − ∆r(i, k)}{Yr(Sri, x1) − Θr(x1)}

×{Yr(Srk, x2) − Θr(x2)}. We assume that, for any fixed∆,

sup
L,x1,x2

E(|var−1/2{br(x1, x2,∆)}[br(x1, x2,∆) − E{br(x1, x2,∆)}]|2+η)

≤ Cη <∞ (2.9)

for someη > 0.

5. LetF(T ) be theσ-algebra generated by{Θ(s, x), s ∈ T, x ∈ X}, for any Borel set

T ⊂ T . Assume that the random field satisfies the following mixing condition

α(τ) = sup
t

[|P (A1 ∩ A2) − P (A1)P (A2)| :

A1 ∈ F{(−∞, t]}, A2 ∈ F{[t+ τ,∞)}]

= O(τ−δ) for someδ > 0. (2.10)

6. The kernel functionK is a symmetric, continuous probability density function, sup-

ported on[−1, 1]. Defineσ2
K =

∫
u2K(u)du andRK =

∫
K2(v)dv.

7. Assume thatm andR are fixed numbers,L → ∞, h → 0, Lh → ∞, andLh5 =

O(1).

In assumption 1, we are imposing some regularity conditionsong andfi. In fact, wheng is

differentiablefi are piecewise differentiable, but usually not differentiable at0. However,

the Lipschitz condition onf2 is easily satisfied when, for example,g is Lipschitz. Sincef1

is a marginal density off2’s, this condition meansf1 is also Lipschitz at0.
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Since we are estimating the covariance function, which is the second moment function,

we need a regularity condition on the4th moment function as in (2.8). Condition (2.9)

may seem a little too strong at first sight, but it really is just a condition to bound the tail

probability of our statistics. In fact, for example, if we have an assumption analogous to

(2.8) for the8th moment ofΘr(s, x), one can use arguments as in Lemma A.3 to show that

E([br(x1, x2,∆)−E{br(x1, x2,∆)}]4) = O(L−3h−3), therefore condition (2.9) is satisfied

for η = 2.

DenoteV(0,0,2)(x1, x2,∆) = ∂2V(x1, x2,∆)/∂∆2. LetV(∆), V̂(∆) andṼ(∆) denote

the vectors collectingV(x1, x2,∆), V̂(x1, x2,∆) andṼ(x1, x2,∆) respectively, for all dis-

tinct pairs of(x1, x2). The following are our main results for the asymptotic theories, all

proofs are provided in the appendix. Note that Theorem II.1 refers toV̂(·) in (2.4), while

Theorem II.2 refers tõV(·) in (2.5).

Theorem II.1 Under assumptions1-7, for ∆ 6= ∆′, we have

(RLh)1/2




V̂(∆) − V(∆) − bias{V̂(∆)}

V̂(∆′) − V(∆′) − bias{V̂(∆′)}




⇒ Normal


0, {ν2f1(0)}−1




Σ(∆) C(∆,∆′)

CT (∆,∆′) Σ(∆′)





 ,

where the asymptotic bias bias{V̂(∆)} is a vector having entries bias{V̂(x1, x2,∆)} =

σ2
KV(0,0,2)(x1, x2,∆)h2/2, Σ(∆) is the covariance matrix with the entry corresponding to

cov{V̂(x1, x2,∆), V̂(x3, x4,∆)} equal toRK{M(x1, x2, x3, x4,∆,∆, 0) +I(x2 = x4)σ
2
ǫ

V(x1, x3, 0) + I(x1 = x3)σ
2
ǫV(x2, x4, 0) + (x1 = x3, x2 = x4)σ

4
ǫ} + I(∆ = 0)RK

{M(x1, x2, x3, x4, 0, 0, 0)+I(x1 = x4)σ
2
ǫV(x2, x3, 0)+I(x2 = x3)σ

2
ǫV(x1, x4, 0)+I(x1 =

x4, x2 = x3)σ
4
ǫ}; C(∆,∆′) is the matrix with the entry corresponding to cov{V̂(x1, x2,∆),

V̂(x3, x4,∆
′)} equal toI(∆′ = −∆){M(x1, x2, x3, x4,∆,−∆,−∆) + I(x2 = x3)σ

2
ǫ

V(x1, x4, 0) + I(x1 = x4)σ
2
ǫV(x2, x3, 0) + I(x1 = x4, x2 = x3)σ

4
ǫ}.



18

Theorem II.2 Under assumptions1-7, for ∆ 6= ±∆′, we have

(RLh)1/2




Ṽ(∆) − V(∆) − bias{Ṽ(∆)}

Ṽ(∆′) − V(∆′) − bias{Ṽ(∆′)}




⇒ Normal


0, {ν2f1(0)}−1




Ω(∆) 0

0 Ω(∆′)





 ,

where bias{Ṽ(∆)} is a vector with entries bias{Ṽ(x1, x2,∆)} = σ2
KV(0,0,2)(x1, x2,∆)h2/2,

Ω(∆) is the covariance matrix with the entry corresponding to cov{Ṽ(x1, x2,∆), Ṽ(x3, x4,∆)}

equal to(1/2)RK{M(x1, x2, x3, x4,∆,∆, 0) + M(x1, x2, x3, x4,∆,−∆,−∆) + I(x2 =

x4)σ
2
ǫ V(x1, x3, 0) + I(x1 = x3)σ

2
ǫV(x2, x4, 0) + I(x1 = x3, x2 = x4)σ

4
ǫ + I(x2 =

x3)σ
2
ǫV(x1, x4, 0) + I(x1 = x4)σ

2
ǫV(x2, x3, 0) + I(x1 = x3, x2 = x4)σ

4
ǫ} + I(∆ =

0)(1/2)RK{2M(x1, x2, x3, x4, 0, 0, 0)+I(x2 = x4)σ
2
ǫV(x1, x3, 0)+I(x1 = x3)σ

2
ǫV(x2, x4,

0) + I(x1 = x3, x2 = x4)σ
4
ǫ + I(x2 = x3)σ

2
ǫV(x1, x4, 0) + I(x1 = x4)σ

2
ǫV(x2, x3, 0) +

I(x1 = x3, x2 = x4)σ
4
ǫ}.

Corollary II.1 Suppose the covariance function has the separable structure in (2.3) with
∑

x1

∑
x2≤x1

G(x1, x2) 6= 0, andρ̂(∆) is defined in (2.7). Then for∆ 6= 0, we have

(RLh)1/2[ρ̂(∆) − ρ(∆) − bias{ρ̂(∆)}] ⇒ Normal[0, {ν2f1(0)}−1σ2
ρ(∆)],

where bias{ρ̂(∆)} = {ρ(2)(∆) − ρ(∆)ρ(2)(0)}σ2
Kh

2/2 is the asymptotic bias of̂ρ(∆),

σ2
ρ(∆) = {

∑
x1

∑
x2≤x1

G(x1, x2)}
−2{111T Ω(∆)111 + ρ2(∆)111T Ω(0)111}.

We have the following remarks on our theoretical results:

1. The measurement errors in (2.1) affect the covariance estimator mainly though the

nugget effect (Cressie, 1993). In our covariance estimators (2.4) and (2.5), we get

rid of the nugget effect by excluding thek = i terms in the summation. As a result,

the measurement errors do not introduce bias to our covariance estimators. However,
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they do affect the variation of the covariance estimators and hence the correlation

estimator, becauseσ2
ǫ is in the variance expressions for all our estimators.

2. The result in Theorem II.2 suggest that the covariance estimators at different distance

lag are asymptotically independent. This result may seem counterintuitive. It is

caused by the kernel smoothing: we choose the bandwidth to make this happen. This

result holds for two fixed values,∆ and∆′, whenh goes to0.

2.4 Data Analysis

In this section we apply our methods to study the between-crypt dependence in the car-

cinogenesis experiment. Recall that the main subjects are rats, the units of interest are

colonic crypts and the sub-units within a unit are cells, at which we observe the loga-

rithms of p27 in a cell. The sub-unit locations that we work with in this illustration are at

x = 0, 0.1, 0.2, · · · , 1.0. We discuss three key issues in our analysis, namely bandwidth

selection, standard error estimation and positive semi-definite adjustment in the following

three subsections.

2.4.1 Bandwidth Selection

2.4.1.1 Global Bandwidth

Diggle and Verbyla (1998) suggested a cross-validation procedure to choose the bandwidth

for a kernel variogram estimator. We modify their procedureinto the following two types

of ’leave-one-subject-out’ cross-validation criteria. The first is based on prediction error

without assuming any specific covariance structure, and is given as

CV1(h) =
∑

r

∑

|∆r(i,k)|<∆0

m∑

j=1

m∑

l=1

[vr,ik(xj, xl) − Ṽ(−r){xj, xl,∆r(i, k)}]
2, (2.11)

wherevr,ik(xj, xl) = (Yrij − Y r·j)(Yrkl − Y r·l), Ṽ(−r)(x1, x2,∆) is the kernel covariance

estimator using bandwidthh, as defined in (2.5), with all information on therth subject
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(rat) left out. Here we focus on the range|∆r(i, k)| < ∆0, where∆0 is a pre-chosen cut-

off point. The criterionCV1(h) thus evaluates the prediction error for differenth within the

range of|∆r(i, k)| < ∆0.

Cross-validation criterion (2.11) assumes no specific covariance structure, while our

second cross-validation criterion takes into account the separable structure in (2.3), and is

given as

CV2(h) =
∑

r

∑

|∆r(i,k)|<∆0

m∑

j=1

m∑

l=1

[vr,ik(xj, xl) − Ĝ(−r)(xj, xl)ρ̂(−r){∆r(i, k)}]
2 (2.12)

whereĜ(−r)(x1, x2) andρ̂(−r)(∆) are the estimators ofG andρ defined in (2.6) and (2.7),

with therth subject (rat) left out.

We evaluated both criteria to estimate the bandwidthh. We choose∆0 = 500 microns.

The first two columns of Table 1 gives the minimum points and minimum values of the two

cross-validation criterions.

By observing Table 1, we find the two criteria gave almost identical minimum val-

ues. Since the cross-validation scores are estimates of theprediction errors, the two cross-

validation criteria represent prediction errors with or without the separable structure (2.3).

The phenomenon, thatCV1(·) andCV2(·) have almost the same minimum values, suggests

that the separability assumption (2.3) fits the data well.

2.4.1.2 Two Bandwidths

The independent variables in the kernel estimator are|∆r(i, k)| for all pairs of crypts within

one subject. As shown in Figure 2, the distribution of|∆r(i, k)| that are less than 1000

microns, even more than the target range of interest, is locally somewhat akin to a uniform

distribution.

As a robustness check on the global bandwidth, we repeated our analysis, except we

used one bandwidth for|∆| ≤ 200 microns, and we used a second bandwidth for|∆| >
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200, and then repeated the cross-validation calculations in (2.11) and (2.12). The minimum

values of the two cross-validation criterions are reportedin the3rd column of Table 1.

Comparing the results in columns 2 and 3 in Table 1, we find the minimum values of

the cross-validation functions did not change much, i.e. anextra smoothing parameter did

not substantially reduce the prediction error for the domain |∆| ≤ 500 microns. In other

words, it appears sufficient to use a global bandwidth to estimateρ(∆) for |∆| ≤ 500. For

the following analysis, we use the bandwidthh = 122 microns, as suggested byCV2.

optimalh min CV score min score, 2 par
CV1 124.2334 6.5073 6.4867
CV2 122.7202 6.4955 6.4788

Table 1: Outcomes of two cross-validation procedures on thecarcinogenesis p27 data. The
data used in the validation are those with∆ values less than∆0 = 500 microns. The first
column gives the optimal global bandwidth, the second column gives the value of the cross-
validation function at the optimal global bandwidth; the third column gives the minimum
value of cross-validation functions using two different smoothing parameters.

2.4.2 Standard Error Estimation

Our primary goal in this section is to construct an estimate of the standard error for̂ρ(∆).

The asymptotic variance of̂ρ(∆) has a very complicated form, which involves the4th

moment function of the random field,M(x1, x2, x3, x4, u, v, w). With so many estimates

of higher order moments involved, a plug-in method, while feasible, is not desirable. We

instead use a bootstrap method to estimate the variance directly.

In our model assumptions, the number of subjects (rats)R is fixed, which means

that bootstrapping solely on the subject level will not givea consistent estimator of the

variance. Consequently, we decided to sub-sample within each subject. When the data
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Figure 2: Histogram of|∆r(i, k)| in the carcinogenesis p27 data.|∆| less than 1000 mi-
crons are considered.

are dependent, block bootstrap methods have been investigated and used, see Shao and Tu

(1995). Politis and Sherman (2001) also justified using a block sub-sampling method to

estimate the variance of a statistic when the data are from a marked point process. Our data

can be viewed as a marked inhomogeneous Poisson process. However, the inhomogeneity

does require a modification of their procedure: if we sub-sample a block from each subject

and compute the statistiĉρ(∆) by combining these blocks, then the variance of the statistic

depends on the locations of these blocks.

By lettingR = 1 in Corollary II.1, our theory implies that if the number of units goes

to infinity, each subject will provide a consistent estimator of ρ(∆). Now, suppose the

Poisson process for each subject has a different local intensity, νrg
∗
r(s), r = 1, · · · , R. With

a slight modification of our theoretical derivations, one can show that,

{
R∑

r=1

ν2
rfr,1(0)Lh}1/2[ρ̂(∆) − ρ(∆) − bias{ρ̂(∆)}] ⇒ Normal{0, σ2

ρ(∆)}

wherefr,1(t) =
∫
gr(t + u)gr(u)du, r = 1, · · · , R, are the counterparts off1(t) used in

Theorem II.1, II.2 and Corollary II.1.
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DefineA(∆) =
∑

r

∑
i

∑
k 6=iKh{∆r(i, k) − ∆}, then by Lemma A.2,

A(∆)/{
R∑

r=1

ν2
rfr,1(0)L} → 1, in L2.

Now we propose our weighted bootstrap procedure:

1. Re-sampleR subjects (rats) with replacement from the original collection of subjects.

2. Within each re-sampled subject, randomly sub-sample a block with lengthL∗.

3. Combine theR blocks as our re-sampled data, computeρ̂(∆) andA(∆) using the

re-sampled data, with the same bandwidthh as for the kernel estimator (2.7).

4. Repeat steps 1-3B times, denoting the results from thebth iteration asρ̂∗b(∆) and

A∗
b(∆).

5. Obtain the estimator of the standard deviation as

ŝd{ρ̂(∆)} = [A−1(∆)B−1
B∑

b=1

A∗
b(∆){ρ̂∗b(∆) − ρ̂∗· (∆)}2]1/2,

whereρ̂∗· (∆) = B−1
∑B

b=1 ρ̂
∗
b(∆).

The block lengthL∗ should increase slowly withL. Politis and Sherman (2001) suggested

takingL∗ = Lc, for some0 < c < 1, but choosing a good block length under a finite sample

size is still a challenging problem. One operational idea inour context is to chooseL∗ such

that the correlation dies out outside the block but still keep a relatively large numbers of

blocks. In our analysis, we tookL∗ = 1 cm (=10,000 microns). We used the same choice

of L∗ in our simulation study and got quite successful results.

Figure 3 shows the kernel estimatorρ̂(·) andρ̂±1 standard deviation. The plot implies

that the correlation is practically zero when the crypt distance is larger than about 500

microns.
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Figure 3: The estimate and the standard deviation band ofρ for the carcinogenesis p27
data. The solid curve iŝρ(∆) with bandwidthh = 122 microns. The dotted curves are
ρ̂(∆) ± ŜD{ρ̂(∆)}.

2.4.3 Positive Semi-Definite Adjustment

By definition,ρ(∆) is a stationary correlation function, therefore is positive semi-definite,

i.e.
∫ ∫

ρ(∆1 − ∆2)ω(∆1)ω(∆2)d∆1d∆2 ≥ 0 for all integrable functionsω(·). By

Bochner’s theorem, the positive semi-definiteness is equivalent to nonnegativity of the

Fourier transformation ofρ, i.e. ρ+(θ) ≥ 0 for all θ, whereρ+(θ) =
∫∞

−∞
ρ(∆) exp(iθ∆)d∆

= 2
∫∞

0
ρ(∆) cos(θ∆)d∆.

To makeρ̂ a valid correlation function, we apply an adjustment procedure suggested

by Hall (1994). First, we compute the Fourier transformation of ρ̂(·),

ρ̂+(θ) = 2

∫ ∞

0

ρ̂(∆) cos(θ∆)d∆.

In practice, we can not accurately estimateρ(∆) for a large∆ because of data constraints.
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So, what we should do is to multiplŷρ by a weight functionw(∆) ≤ 1, and let

ρ̂+(θ) = 2

∫ ∞

0

ρ̂(∆)w(∆) cos(θ∆)d∆.

Possible choices ofw(·), suggested by Hall et al. (1994), arew1(∆) = I(|∆| ≤ D) for

some threshold valueD > 0; andw2(∆) = 1 if |∆| < D1, (D2 − |∆|)/(D2 − D1) if

D1 ≤ |∆| ≤ D2, 0 if |∆| > D2.

Now, letθ0 = inf{θ : ρ̂+(θ) < 0, θ ≥ 0}, then the adjusted estimator is defined by

ρ̃(∆) = (2π)−1

∫ θ0

−θ0

ρ̂+(θ) cos(θ∆)dθ.

Figure 4 showŝρ(·) andρ̃(·) for the colon carcinogenesis data. The size of the corre-

lation even at200-300 microns is surprising. We have done other, parametric analysis that

will be reported elsewhere with a Matérn correlation structure, and this parametric analysis

yields correlation estimates at200-300 microns that are very similar to those seen in Figure

4.

2.5 Simulation Studies

We present two simulation studies to illustrate the numerical performance of the kernel

correlation estimation under different settings.

2.5.1 Simulation 1

Our first simulation study is to mimic the colon carcinogenesis data, so that the result could

be inferred to evaluate the performance of our estimators inthe data analysis and to justify

our choice of tuning parameters.

The simulated data arise from the model

Y ∗
r (sri, xj) = Θ∗

r(sri, xj) + ǫ∗rij,
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Figure 4: Positive semi-definite adjusted estimate ofρ(∆) for the carcinogenesis p27 data.
The dashed curve is the unadjusted correlation estimateρ̂(∆), while the solid curve is the
adjusted estimatẽρ(∆).

whereΘ∗
r(s, x) is therth replicate of a zero-mean Gaussian random fieldΘ∗(s, x), r =

1, · · · , 12. As in our data analysis,x takes values in{0.0, 0.1, · · · , 0.9, 1.0}. We used the

actual unit (crypt) locations from the data as the sample locationssri in the simulated data.

In addition,Θ∗(s, x) has covariance structure (2.2) and (2.3), with

G∗(x1, x2) = (

12∑

r=1

Nr)
−1

12∑

r=1

Nr∑

i=1

{Yri(x1) − Y r·(x1)}{Yri(x2) − Y r·(x2)}, (2.13)

which is computed from the data, andρ∗(∆) chosen from the Matérn correlation fam-

ily ρ∗(∆;φ, κ) = {2κ−1Γ(κ)}−1(∆/φ)κKκ(∆/φ), whereKκ(·) is the modified Bessel

function, see Stein (1999). In our simulation, we choseκ = 1.5 andφ = 120 microns.

In addition, theǫ∗rij are independent identically distributed with Normal(0, σ2
ǫ∗). For σ2

ǫ∗,

we use an estimate ofσ2
ǫ from the data:σ2

ǫ∗ = 1
11

∑11
j=1{G

∗(xj, xj) − Ĝ(xj, xj)}, where
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xj = (j − 1)/10, j = 1, · · · , 11,G∗ andĜ are defined in (2.13) and (2.6), respectively.

For each simulated data set, we computedρ̂(∆) and the standard deviation estimator

ŜD{ρ̂(∆)} that we proposed in Section 2.4.2, for bandwidthh = 120 and200 microns.

When doing the bootstrap, we used block sizeL∗ = 1 cm, as we did in the p27 data

analysis. We repeated the simulation 200 times.

Figure 5 shows the means,5% and95% pointwise percentiles of̂ρ for the two band-

widths, and compares them to the truthρ∗. Obviously, as expected from the theory, the

larger bandwidth incurs the bigger bias. By the plots, it seems that whenh = 120 the

kernel estimator̂ρ behaves quite well. We compare the true bias from the simulation study

to the asymptotic bias computed with the true correlation function ρ∗, under bandwidth

h = 120. We find the difference between the two are less than 0.04. This means the bias

shown in Figure 5 is explainable by our asymptotic theory.

In Fig. 6, we show the pointwise standard deviation ofρ̂ from the simulation and the

mean of the bootstrap standard deviation estimates. The closeness of the two curves implies

that our bootstrap procedure in Section 2.4.2 gives an approximately unbiased estimator of

the true standard deviation, which also implies that our choice of block length,L∗ = 1 cm,

is reasonable. In our simulation, we also tried other block sizes, and the results are almost

the same.

2.5.2 Simulation 2

We also provide another simulation study to justify our theoretical assertion that when

the locations or times are from an inhomogeneous Poisson process, we have a consistent

estimator forρ asL → ∞. Also, we intend to show the usefulness of a nonparametric

correlation estimator in a situation that an ’off-the-shelf’ parametric model fails to fit the

data.

We found that when the spectrum density is a multi-mode mixture density function
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Figure 5: Plots of̂ρ(∆) in the simulation study. Upper panel:h = 120; lower panel:
h = 200. In each plot, the solid curve is the mean ofρ̂(·), the dashed curve is the true
correlation functionρ(·), and the dotted curves are the5% and95% pointwise percentiles
of ρ̂, respectively.
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Figure 6: Standard deviation of̂ρ. The solid curve is the pointwise standard deviation
of ρ̂ from the simulation, and the dashed curve is the mean of the 200 bootstrap standard
deviation estimates. The bandwidthh = 120 was used.

like in the upper panel of Fig. 7, the correlation function will have bumpy shape as the

dashed curve in the second plot in Fig. 7, which is also the target correlation function in our

second simulation study. We simulate only one time series with correlation function given

in Fig. 7, and we observe the process on a prolonged time domain [0, L]. For simplicity, the

observation at each time point is a single value. The observation times are sampled from an

inhomogeneous Poisson process with local intensity function νg(·/L), where we takeg(·)

to be a truncated normal density function on[0, 1]. The expected number of time points is

set to be500. We also impose some measurement errors to our observations.

We simulated the marked Poisson process described above for200 times, and com-

puted our kernel correlation estimator for each simulated data set. In the second plot of Fig.
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7, the mean of our kernel correlation estimator is given by the solid curve, while the dotted

curve is the best approximation to the true correlation function from the Mat́ern family. We

also make a comparison for mean of our bootstrap standard deviation estimator with the

true pointwise standard deviation curve in Fig. 7.

As one can see, our nonparametric method can consistently estimate a non-monotone

correlation function as we chose in this simulation study, while many parametric models

would not be consistent even with large sample size, simply because of their restricted

shapes.

2.6 Discussion

We have proposed an estimator of stationary correlation functions for longitudinal or spatial

data, where within-subject observations have a complex data structure. The application we

presented has a functional data flavor, in that each unit (crypt) in a ”time series” has sub-

units (cells) the values from which can be viewed as a function. However, in this paper, we

have focused on estimating the spatial correlation betweenthe units.

We established an asymptotic normal limit distribution forthe proposed estimator. The

techniques used in our theoretical derivation were significantly different from the standard

kernel regression literature. In our theoretical framework, as long as we have an increas-

ing number of observations within a subject, each subject yields a consistent estimate of the

correlation function. Our method and theory are especiallyuseful to the cases that the num-

ber of subject is limited but we have a relatively large number of repeated measurements

within each subject. Since having more subjects will just further reduce the variation of the

estimator, our main theorems hold whenR goes to infinity as well. In that case, we need to

replace the condition thatLh5 = O(1) in assumption 7 in Section 2.3 withRLh5 = O(1).

In fact, when the number of subjectR → ∞, we can consistently estimate the within-

subject covariance without a large number of units within each subject. For example, Yao,
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Figure 7: Simulation 2. Upper panel: the spectrum density ofthe correlation used in the
simulation; middle panel: the dashed curve is the true correlation function, the solid curve
is the mean of the kernel correlation estimator and the dotted curve is the best Matérn
approximation to the true correlation; lower panel: the solid curve is the true pointwise
standard deviation for the kernel correlation estimator, the dashed curve is the mean for the
bootstrap standard deviation estimator.
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Müller, and Wang (2005) proposed using smoothing methods to estimate within subject

covariance for sparse longitudinal data, where the covariance is not necessary stationary.

In spatial statistics, many authors prefer intrinsic stationary to second-order stationary,

for example Besag, York, and Mollie (1991) and Besag and Higdon (1999), because it is a

slightly weaker assumption. In our case, each unit within a subject has further structure, we

can define cross-variogram (Cressie 1993) instead of covariance functionV(x1, x2,∆), and

similar limiting distribution theorems can be proved as in Theorem II.1 and II.2. However,

when it comes to Spatio-Temporal modelling, many authors, Cressie and Huang (1999) and

Stein (2005), would come back to covariance because it is a more natural way to introduce

the separable structure (2.3). In our data analysis, we provided some practical ideas to

justify the separable structure in our data, where we compare the cross-validation scores

with or without the separable assumption.

Lemma A.2 in the proofs implies that the denominator of estimator (2.4) gives the

order of the asymptotic distribution of̂V , Ṽ and ρ̂. Based on this fact, we proposed a

weighted Bootstrap method to estimate the standard deviation of the correlation estimator

ρ̂. Our simulation shows that our correlation estimator and the bootstrap standard deviation

estimator work well.

The analysis of the colon carcinogenesis p27 data suggests that the correlation of the

crypts diminishes to 0 at about∆ = 500 microns. The estimator and the standard deviation

band also suggests the shape of the correlation function.
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CHAPTER III

FUNCTIONAL LINEAR MODEL

3.1 Introduction

As a byproduct of modern science and technology, a lot of the data that are observed or col-

lected in many fields nowadays are exceptionally high-dimensional. One such example is

functional data, where each observation in a sample can be viewed as a function, as opposed

to a scalar or a vector. In reality, for one reason or another if not simply human limitation,

instead of observing such functions in their entirety, one only observes the values of the

functions at a finite set of points. Nevertheless, the numberof values observed per func-

tion may be quite large, sometimes much larger than the totalnumber of functions, so that

traditional multivariate analytical theory and methodology are not directly applicable. In-

deed, the analysis of functional data has been steadily gaining attention among statisticians

and practitioners, and there has been much progress on the methodology front in trying to

understand how to deal with such data. The books Ramsay and Silverman (1997, 2002,

2005) and their website “http://ego.psych.mcgill.ca/misc/fda” contain a substantial amount

of information in that regard. However, there has been much less progress on the theory

front. This is not a surprise in view of the nature of the difficulties, as a theoretical result

in this regard invariably involves the theory of functionalanalysis, multivariate analysis,

optimization, and nonparametric function estimation.

One relatively simple problem, the linear regression, did receive a considerable atten-

tion theory-wise. Consider the model

Yi = µ+

∫ b

a

Xi(t)f(t)dt+ εi, i = 1, · · · , n, (3.1)

where the responseYi, the fixed interceptµ and errorεi are scalar, and the predictorXi and
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regression weight functionf are functions on[a, b]. For now, assume that we observe the

Xi, Yi and we are interested in the inference ofµ, f and the variance ofε. In this regard,

we mention the papers by Cai and Hall (2006), Cardot, Ferraty, and Sarda (1999, 2003),

Cardot and Sarda (2005), Hall and Horowitz (2004) and Müller and Stadtm̈uller (2005).

These papers contain highly sophisticated analysis and results which will be useful for

many other situations in functional data analysis. However, all of the papers assumed that

the functional predictorsXi are completely observed. This assumption is crucial for their

approaches, but is seldom met in practice. To make matters worse, in reality there may be

measurement error in observingXi. The goal of the present paper is to address the linear

regression problem under these practical situations.

This problem is ill-posed in the sense that a minute change inthe data may lead to a

huge changes in the resulting estimates, see Tykohonov and Arsenin (1977). One of the

greatest challenges here (and elsewhere in functional dataanalysis) is how to interface the

finite-dimensional space where the data reside and the infinite-dimensional space where

the truth resides. Ramsay and Silverman (1997) proposed thefollowing practical solution.

First represent both theXi andg, any candidate estimate off , in terms of a set of pre-

selected basis functionsφ1, . . . , φK , say, so that

X̃i,ρ =
K∑

k=1

bi,kφk and g =
K∑

k=1

ckφk,

where the “̃ ” in X̃i,ρ signifies the fact that this is a function that approximates the true

functionXi based on the finitely observed values ofXi. Then estimateµ andf by the

minimizer of the following penalized least squares criterion function

n−1

n∑

i=1

[
Yi − ν −

∫ 1

0

X̃i,ρg
]2

+ λ

∫ 1

0

[g(m)]2

= n−1
n∑

i=1

[
Yi − ν −

K∑

k=1

K∑

ℓ=1

bi,kcℓ

∫ 1

0

φkφℓ

]2
+ λ

K∑

k=1

K∑

ℓ=1

ckcℓ

∫ 1

0

φ
(m)
k φ

(m)
ℓ ,
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whereλ is a smoothing parameter. They noted that the choice of the basis functions de-

pends on the nature of the problem and the data. This is appealing since now we have a

finite-dimensional optimization problem to cope with. Furthermore, if the basis functions

are such that the matrix{
∫ 1

0
φ

(m)
k φ

(m)
ℓ }K

k,ℓ=1 has a band structure, the computations will be

even more straightforward; examples of such basis functions include Fourier, B-splines,

and natural splines. It is also worth mentioning that variations of the basis-function ap-

proaches are adopted by other authors in studying the linearregression model; they include

Cardot et al. (2003) who studied penalized B-splines, and James (2002) who considered a

parametric approach.

The splines are general and flexible approximating functions which have a lot of de-

sirable properties for this problem. However, theoretically they are more difficult to deal

with, and we will address that problem in a forthcoming paper. In the present paper, we

will focus on Fourier basis. The Fourier functions are a ideal basis if the data are smooth

and exhibit periodicity; an example of that is the Canadian weather data in Ramsay and

Silverman (1997). They are certainly the most convenient basis functions to work with in

terms of of proving theory, since they are orthogonal, theirm-th derivatives are orthogonal,

and the orthogonality even carries over to the discretized basis vectors when the set of dis-

crete points are equally-spaced. Our goal of this paper is tostudy the rate of convergence

of the penalized least squares estimation using the Fourierbasis. We will show that the rate

of convergence is similar to that obtained in nonparametricregression function estimation.

The nature of the topic makes it necessary to employ some standard functional analysis

terminology and results. They are quite basic and will not gobeyond the first course in

functional analysis. The reader is referred to Conway (1990) for details. This paper is

structured as follows. Section 3.2 describes the assumptions and main results. All proofs

and lemmas are collected in Section 3.3.
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3.2 Main Results

Assume that the functional predictorX is a real-valued zero-mean, second-order stochastic

process on[0, 1]. Further, for some positive integerm, assume that with probability oneX

belongs to the periodic Soblev Space

Wm
2,per = {g ∈ L2[0, 1] : g ism-times differentiable whereg(m) ∈ L2[0, 1] andg(ν) is

absolutely continuous withg(ν)(0) = g(ν)(1), 0 ≤ ν ≤ m− 1}.

It is well known thatWm
2,per is dense inL2[0, 1], therefore our methodology below based on

this assumption applies to even situations for which this assumption is not met. However,

relaxing the smoothness and boundary conditions do affect the convergence rate of our

estimator. Denote byR(s, t) the covariance function

R(s, t) = E[X(s)X(t)], s, t ∈ [0, 1],

andT the corresponding covariance operator

T : g →

∫ 1

s=0

R(s, ·)g(s)ds, g ∈ L2[0, 1],

For convenience, we will assume throughout without furthermention thatE‖X‖4
L2 < ∞.

This implies, among other things, that

∫ 1

0

∫ 1

0

R2(s, t)dsdt =

∫ 1

0

∫ 1

0

E2[X(s)X(t)]dsdt

≤

∫ 1

0

∫ 1

0

E[X2(s)X2(t)]dsdt = E(‖X‖4
L2) <∞,

which shows thatT is a Hilbert-Schmidt operator.

LetXi, 1 ≤ i ≤ n, ben independent realizations ofX. Below we consider the linear

regression model (3.1) withµ = 0. This simplification is minor for our results, but entails a

considerable saving in term of notation. Lettj = (2j−1)/(2J), 1 ≤ j ≤ J , be the locations
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where we observe theXi; assume that the data that are observed areYi, 1 ≤ i ≤ n, and

ZZZ i = (Zi,1, . . . , Zi,J)T = (Xi(t1) + ςi,1, . . . , Xi(tJ) + ςi,J)T , 1 ≤ i ≤ n,

whereςi,j is measurement error forXi(tj). Theεi, ςi are assumed to be mutually uncorre-

lated, and independent of theXi(tj), with mean zero and

var(εi) = σ2
ε and var(ςi,j) = σ2

ς .

The Fourier basis functions that we use here are the complex Fourier functionsφk(t) =

e2πikt, k = 0,±1,±2, · · ·. It is well known that eachg ∈ Wm
2,per can be uniquely repre-

sented asg =
∑∞

k=−∞ ckφk in theL2 sense with̄ck = c−k. Let

K = [(J − 1)/2] = max{k ≤ (J − 1)/2; k is an integer},

and put

φ(t) = (φ−K(t), · · · , φ0(t), · · · , φK(t))T ,

Φ = {φk(tj)}j=1,···,J ;k=−K,···,K ,

and

W = {〈φ
(m)
i , φ

(m)
j 〉L2}

K
i,j=−K .

Clearly,

W = diag{(2πK)2m, · · · , (2π)2m, 0, (2π)2m, . . . , (2πK)2m}, (3.2)

and, since thetj are equally spaced,

J−1Φ̄T Φ = I.
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First, for some smoothing parameterρ, approximate eachZZZ i by X̃i,ρ, the minimizeru =
∑K

k=−K bkφk of the penalized least squares criterion function

J−1
J∑

j=1

[Zi,j − u(tj)]
2 + ρ

∫ 1

0

|u(m)|2,

namely,

X̃i,ρ(t) = φT (t)J−1(I + ρW )−1Φ̄TZZZi = φT (t)PρZZZ i. (3.3)

Since theZZZi are real, it is easily seen that thẽXi,ρ are real. Note that this smoother

is an approximation to the periodic smoothing spline which uses infinitely many Fourier

basis functions. In Theorem III.2 below, we will show that, under certain assumptions, the

convergence rate of the smoother in (3.3) is comparable to that of periodic smoothing spline

given by Rice and Rosenblatt (1981). See Eubank (1988), Section 6.3.1 for more details

on periodic splines. This justifies the usage of roughly the same number of Fourier basis

functions as the number of points. Using a finite number of basis functions is, of course,

crucial for the computations that have to be performed in this problem.

Now, in addition to the smoothing parameterρ that we used for obtaining thẽXi,ρ let

λ be a second smoothing parameter, andf̂λ,ρ be the minimizerg ∈ Wm
2,per of the following

criterion function:

n−1

n∑

i=1

|Yi − 〈X̃i,ρ, g〉|
2 + λ

∫ 1

0

|g(m)|2, (3.4)

where〈g, h〉 is defined as
∫ 1

0
gh̄ for complex-valued functionsg, h.

Our main results below address the rate of convergence off̂λ,ρ as functions ofρ, λ, as

well as the sample sizesn, J . Denote byE the space spanned by the eigenfunctions of the

covariance operatorT . It is clear that iff is not inE then it is not possible to estimatef

consistently since the information that we have onf comes ultimately from〈Xi, f〉. More

generally, if the eigenspaces that correspond to small eigenvalues are estimated poorly due



39

to a small or biased sample or having significant measurementerror in the sample, then it

is also unrealistic to expect good estimates of the projections off on those subspaces. To

“standardize” the estimation error of̂fλ,ρ relative to the amount of information available, a

reasonable measure of distance betweenf̂λ,ρ andf is

E(‖f̂λ,ρ − f‖2
T̃ρ
|ZZZ), (3.5)

whereZZZ = (ZZZ1, · · · ,ZZZn)T , T̃ρ is the covariance operator of the sample covariance function

R̃ρ(s, t) =
1

n

n∑

i=1

X̃i,ρ(s)X̃i,ρ(t), (3.6)

and

〈g, h〉T̃ρ
= 〈g, T̃ρh〉 and ‖g‖2

T̃ρ
= 〈g, g〉T̃ρ

.

This consideration is not new. For example, Cardot et al. (2003) consideredE(‖f̂λ,ρ−f‖
2
T );

also, since

‖f̂λ,ρ − f‖2
T̃ρ

= n−1

n∑

i=1

|〈X̃i,ρ, f〉 − 〈X̃i,ρ, f̂λ,ρ〉|
2,

the distance measure in (3.5) is similar to that in Cai and Hall (2004).

Now we state the main results, all proofs are given in Appendix B.

Theorem III.1 There exists some finite constantC that depends only onf such that

E(‖f̂λ,ρ − f‖2
T̃ρ
|ZZZ) ≤ C

(
λ+ n−1λ−1/(2m)ν2

ρ +
1

n

n∑

i=1

E(‖X̃i,ρ −Xi‖
2
L2|ZZZ i)

)
(3.7)

for all n, λ, andρ, whereνρ is the largest eigenvalue of̃Tρ.

Note that the first and second terms on the right of (3.7) describe the square bias and

variance, respectively, of the procedure; the third term there essentially reflects the error of

approximatingXi by X̃i,ρ.

To obtain a concrete rate of convergence forE(‖f̂λ,ρ−f‖
2
T̃ρ
|ZZZ), the following Theorem

III.2 is crucial.
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Theorem III.2 Assume thatX ∈Wm
2,per a.s. andE‖X(m)‖2

L2 <∞. Then for allJ → ∞,

ρ → 0, with J2mρ → ∞, there exists a finite constantC which doesn’t depend onJ or ρ

such that

E(‖X̃1,ρ −X1‖
2
L2) ≤ C(ρ+ J−1ρ−1/(2m)). (3.8)

If, in addition,X ∈ W 2m
2,per a.s. andE‖X(2m)‖2

L2 < ∞, then forJ, ρ as above, there exists

a finite constantC which doesn’t depend onJ or ρ such that

E(‖X̃1,ρ −X1‖
2
L2) ≤ C(ρ2 + J−1ρ−1/(2m)). (3.9)

Theorem III.2 is similar in spirit to Theorem 2 of Rice and Rosenblatt (1981), which stud-

ies the rate of convergence of the periodic smoothing splineestimator in nonparametric

regression. As we mentioned before, even thoughX̃1,ρ is estimated with a finite number

of Fourier basis functions, the rate of convergence is comparable to that of the periodic

smoothing spline estimator using an infinite number of basisfunctions. The result (3.9)

shows that with the extra conditionsX1 ∈ W 2m
2,per a.s. andE(‖X

(m)
1 ‖2

L2) < ∞ in place but

not specifically taken into account in the estimation procedure, the rate of convergence will

nevertheless improve. This also parallels Rice and Rosenblatt’s treatment of the periodic

smoothing spline.

For the case whereσς = 0, i.e. theXi(tj) are observed without measurement error,

we have

E(‖X̃1,0 −X1‖
2
L2) ≤ CJ−(2m−1),

underE‖X(m)
1 ‖2

L2 < ∞. The proof of this result follows in a straightforward manner from

the derivations in the proof of Theorem III.2 and is omitted.

The termn−1
∑n

i=1 E(‖X̃i,ρ − Xi‖
2
L2|ZZZ i) in (3.7) clearly converges inL1 to 0 at the

rates described by (3.8) and (3.9) under the respective settings there. Further, sinceT is
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bounded, it is natural to expect thatT̃ρ is also bounded so thatνρ = Op(1) under appropriate

conditions. Thus, we state the following result.

Theorem III.3 Suppose thatX ∈Wm
2,per a.s., andE(‖X(m)‖2

L2) <∞. Then

E(‖f̂λ,ρ − f‖2
T̃ρ
|ZZZ) = Op(λ+ ρ+ n−1λ−1/(2m) + J−1ρ−1/(2m)), (3.10)

for λ → 0, ρ → 0, n2mλ → ∞, andJ2mλ → ∞. If, in addition,X ∈ W 2m
2,per a.s., and

E(‖X(2m)‖2
L2) <∞, then we have

E(‖f̂λ,ρ − f‖2
T̃ρ
|ZZZ) = Op(λ+ ρ2 + n−1λ−1/(2m) + J−1ρ−1/(2m)) (3.11)

for λ→ 0, ρ→ 0, n2mλ→ ∞, andJ2mλ→ ∞.

It follows from (3.10) that the optimal rate of convergence of f̂λ,ρ in T̃ρ-norm is

n−2m/(2m+1) + J−2m/(2m+1)

under the general assumptions of Theorem III.3; the rate canbe improved to

n−2m/(2m+1) + J−4m/(4m+1)

under the additional assumptionsX ∈ W 2m
2,per a.s. andE(‖X(2m)‖2

L2) < ∞, as described

by (3.11).

In the following, we consider rates of convergence ifT̃ρ is replaced byT . To do that

we need to quantify the distance betweenT̃ρ andT , for which the Hilbert-Schmidt norm

seems ideal. For any self-adjoint operatorA onL2[0, 1], let ‖A‖H be the Hilbert-Schmidt

norm of the operator.

Theorem III.4 Suppose that, for somem ≥ 2, X ∈ Wm
2,per a.s.,supt E{[X

(m)(t)]2} <

∞, andE(‖X(m)‖4
L2) <∞. Also assume thatE(ς4) <∞. Then

E(‖T̃ρ − T‖2
H) = O(n−1 + ρ+ J−2ρ−1/(2m))
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for λ → 0, ρ → 0, n2mλ → ∞, and J2mλ → ∞. If, in addition,X ∈ W 2m
2,per a.s.,

supt E{[X
(2m)(t)]2} <∞, andE(‖X(2m)‖4

L2) <∞, then

E(‖T̃ρ − T‖2
H) = O(n−1 + ρ2 + J−2ρ−1/(2m))

for λ→ 0, ρ→ 0, n2mλ→ ∞, andJ2mλ→ ∞.

Note that Theorem III.4 should be compared with the results in Dauxois, Pousse, and

Romain (1982) which were proved under the assumption that theXi are completely and

precisely observed.

The following result gives the rates of convergence off̂λ,ρ in T -norm.

Theorem III.5 Suppose that for somem ≥ 2, X ∈ Wm
2,per a.s.,supt E{[X(m)(t)]2} <

∞, andE(‖X(m)‖4
L2) <∞. Also assume thatE(ς4) <∞. Then

E(‖f̂λ,ρ − f‖2
T |ZZZ) = Op(n

−1/2 + λ+ n−1λ−1/(2m) + ρ1/2 + J−1ρ−1/2m)

for n, J, λ, ρ with

λ→ 0, ρ→ 0, n2mλ→ ∞, J2mλ→ ∞, and(ρ+ J−1ρ−1/(2m))/λ = O(1), (3.12)

If, in addition,X ∈W 2m
2,per a.s.,supt E{[X

(2m)(t)]2} <∞, andE(‖X(2m)‖4
L2) <∞, then

E(‖f̂λ,ρ − f‖2
T |ZZZ) = Op(n

−1/2 + λ+ n−1λ−1/(2m) + ρ+ J−1ρ−1/2m)

for n, J, λ, ρ satisfying (3.12).
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CHAPTER IV

CONCLUSIONS, EXTENSIONS AND FUTURE WORK

4.1 Correlation Estimation for Functional Data

In Chapter II, we proposed a very general framework for the colon carcinogenesis data,

that is, each crypt is a function and we want to estimate the spatial correlation between

functions. However, to make the mathematics in the derivation of the asymptotic theory

tractable, we did some dimension reduction in the crypts. Inother words, we reduced the

functions to vectors.

As we argued in Section 1.1, the same entry in different vectors do not have the mea-

surements at the same cell location. Therefore, recoveringeach unit into a curve and do

estimation in the functional way may bring more accuracy. Therefore, in the next step, we

will consider the case that the number of cells per cryptm also goes to infinity, and we will

do smoothing within each crypt.

Another possible extension is apply local linear regression in the∆ direction. This

extension will not incur stronger assumption on the underlying random fieldθ, but will

increase the efficiency a lot. Applying higher order local polynomial regression to the∆

direction is possible, but it will generally require higherorder partial derivatives of the

covariance functionV(x1, x2,∆), which may not be an appropriate assumption.

In terms of methodology, we also need to develop a spatial adaptive bandwidth selec-

tion procedure. When estimating the covariance function, we generally have less observa-

tion at larger distance lags. Therefore, in principle, we should use a bigger bandwidth at a

larger value of∆.
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4.2 Spline Methods for Functional Linear Model

In Chapter III, we explore the convergence rate for the functional linear model using a two-

stage roughness penalty approach, where we smooth each curve by a periodic smoothing

spline in the first step and estimate the unknown coefficient functionf by minimizing a

penalized least square in the second step. We apply the methodology to the lipoprotein

profile data that we introduced in Chapter I, and use the profile curves to predict the total

cholesterol level in the patients. The first plot in Figure 8 shows the estimated coefficient

function f̂ using this method.

In general, periodic splines require the period boundary condition given in Chapter

III, which is too restrictive for statistical practice. Thepenalized spline methods given in

Section 3 in Chapter I are more flexible and more popular in data analyses.

The method that we are considering for the future work is the following. We first

choose a set of spline basis functionBBB(t), and smooth each curve by the P-Spline given by

(1.1). And then minimize a penalized least square criterionsimilar to (3.4),

n−1

n∑

i=1

{Yi − µ− 〈X̃i,ρ, g〉}
2 + λJ(g),

where we restrictg = βTBBB to be in the functional subspace spanned byBBB(·), J(g) =

βTDβ is the roughness penalty andD is a positive semi-definite matrix. All smoothing

parameters can be selected by generalized cross-validation (GCV).

We apply the spline method to the lipoprotein profile data, and the result forf̂ is

shown in the second plot of Figure 8. As we can see that the methods based fourier basis

and spline basis give almost the same results. At the first sight, the result looks strange,

since the estimated coefficient function sees to down weightthe region corresponding to

HDL. In Figure 9, we show the P-Spline fit for the first 5 profile curves. As we can see that

everybody seems to have a similar HDL component, but there are much more variations
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Figure 8: Functional linear regression applied to the lipoprotein profile data. The first plot
is the estimated coefficient function̂f using periodic spline method; the second plot isf̂
by the P-spline method.
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in the VLDL and LDL components. So, the right way to interpretf̂ is that the VLDL and

LDL parts have some positive effects on the total cholesterol level from the interceptµ.

One of my future research goal is to develop some asymptotic theory for the P-Spline

method. However, it is going to be a very difficult problem, since a general asymptotic

theory for smoothing one curve via P-Spline is still missing.
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20
30

40
50
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X
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Figure 9: P-Spline fit for the first 5 lipoprotein profiles.
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APPENDIX A

PROOFS FOR CHAPTER II

The proofs are organized in the following way: in the first section, we provide lemmas

regarding asymptotic properties of the covariance estimators when there is only one subject;

in the second section, we provide lemmas on the estimators with multiple subjects, and the

proofs of Theorems II.1, II.2 and Corollary II.1 are given inthe end.

Estimation Within One Subject

We will first discuss a case that there is only one subject and the number of units goes

to infinity. LetN(·) be the inhomogeneous Poisson process on[0, L] with local intensity

νg∗(s). As in Karr (1986), denoteN2(ds1, ds2) = N(ds1)N(ds2)I(s1 6= s2). Let Θ(s, ·)

denote the unit-level mean at unit locations, andΘ(·) denote the subject-level mean. Define

a(∆) = L−1
∑

i

∑

k 6=i

Kh(∆ − ∆ik) = L−1

∫ L

0

∫ L

0

Kh{∆ − (s1 − s2)}N2(ds1, ds2);

b(x1, x2,∆) = L−1
∑

i

∑

k 6=i

Kh(∆ − ∆ik){Y (Si, x1) − Θ(x1)}{Y (Sk, x2) − Θ(x2)}

= L−1

∫ L

0

∫ L

0

Kh{∆ − (s1 − s2)}{Y (s1, x1) − Θ(x1)}

×{Y (s2, x2) − Θ(x2)}N2(ds1, ds2).

Lemma A.1 Let thatX1 andX2 be real valued random variables measurable with re-

spect toF{[0, t]} andF{[t + τ,∞)} respectively, such that|Xi| < Ci, i = 1, 2. Then

|cov(X1, X2)| ≤ 4C1C2α(τ). If X1 andX2 are complex random variables, this inequality

holds with the constant4 replaced by16.

Proof: The proof is analogous to that of Theorem 17.2.1 in Ibragimov and Linnik (1971).



52

DenoteT1 = [0, t], T2 = [t+ τ,∞), then we have

|E(X1X2) − E(X1)E(X2)| = |E[E{X1X2|F(T1)}] − E(X1)E(X2)|

= |E(X1[E{X2|F(T1)} − E(X2)])| ≤ C1E|E{X2|F(T1)} − E(X2)|

= C1E(u1[E{X2|F(T1)} − E(X2)])

whereu1 = sign[E{X2|F(T1)} − E(X2)]. It is easy to see thatu1 is measurable with

respect toF(T1), therefore|E(X1X2) − E(X1)E(X2)| ≤ C1|E(u1X2) − E(u1)E(X2)|.

By the same argument, we have|E(u1X2)−E(u1)E(X2)| ≤ C2|E(u1u2)−E(u1)E(u2)|,

whereu2 = sign[E{u1|F(T2)} − E(u1)]. Now, we have|E(X1X2) − E(X1)E(X2)| ≤

C1C2|E(u1u2) − E(u1)E(u2)|. Define the eventsA1 = {u1 = 1} ∈ F(T1), A1 = {u1 =

−1} ∈ F(T1),A2 = {u2 = 1} ∈ F(T2) andA2 = {u2 = −1} ∈ F(T2). Then,

|E(u1u2) − E(u1)E(u2)| = |P (A1A2) − P (A1A2) − P (A1A2) + P (A1A2)

−P (A1)P (A2) + P (A1)P (A2) + P (A1)P (A2) − P (A1)P (A2)|

≤ |P (A1A2) − P (A1)P (A2)| + |P (A1A2) − P (A1)P (A2)|

+|P (A1A2) − P (A1)P (A2)| + |P (A1A2) − P (A1)P (A2)|

≤ 4α(τ).

Thus, the proof is completed for the real random variable case. IfX1 andX2 are complex,

we can apply the same arguments to the real and imaginary parts separately.

Lemma A.2 With the assumptions stated in Section 2.3, for any fixed∆, we havea(∆) →

ν2f1(0) in L2 sense, asL→ ∞.

Proof: Recall that by definition off1(·), if X1 andX2 are independent and identically

distributed with densityg(·), thenf1(u) =
∫
g(t + u)g(t)dt is the density ofX1 − X2.

Thus, for fixed∆,

E{a(∆)} = ν2L−1

∫ ∫

s1 6=s2

Kh{∆ − (s1 − s2)}g(s1/L)g(s2/L)ds1ds2
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= ν2L

∫ 1

0

∫ 1

0

Kh{∆ − L(t1 − t2)}g(t1)g(t2)dt1dt2

= ν2L

∫ ∫
Kh(∆ − Lu)g(t2 + u)g(t2)dudt2

= ν2L

∫
Kh(∆ − Lu)f1(u)du = ν2

∫
K(v)f1{(∆ − hv)/L}dv

= ν2

∫
K(v){f1(0) +O(L−1)}dv = ν2f1(0) +O(L−1).

Next,

E{a2(∆)} = L−2

∫ L

0

∫ L

0

∫ L

0

∫ L

0

Kh{∆ − (s1 − s2)}Kh{∆ − (s3 − s4)}

×E{N2(ds1, ds2)N2(ds3, ds4)}.

Calculations as in Guan et al. (2004) show that

E{N2(ds1, ds2)N2(ds3, ds4)} = ν4g∗(s1)g
∗(s2)g

∗(s3)g
∗(s4)ds1ds2ds3ds4

+ν3g∗(s1)g
∗(s2)g

∗(s4)ǫs1(ds3)ds1ds2ds4 + ν3g∗(s1)g
∗(s2)g

∗(s3)ǫs1(ds4)ds1ds2ds3

+ν3g∗(s1)g
∗(s2)g

∗(s4)ǫs2(ds3)ds1ds2ds4 + ν3g∗(s1)g
∗(s2)g

∗(s3)ǫs2(ds4)ds1ds2ds3

+ν2g∗(s1)g
∗(s2)ǫs1(ds3)ǫs2(ds4)ds1ds2 + ν2g∗(s1)g

∗(s2)ǫs1(ds4)ǫs2(ds3)ds1ds2,

whereǫx(·) is a point measure defined in Karr (1986), such thatǫx(dy) = 1 if x ∈ dy, 0

otherwise. Heredy is defined to be a small disc centered aty. There are 7 terms in the

expression above, so the expression forE{a2(∆)} can be decomposed into 7 integrals:

denote them asA11-A17. Similar to the calculations ofE{a(∆)}, we have

A11 = ν4L−2

∫ ∫

s1 6=s2

∫ ∫

s3 6=s4

Kh{∆ − (s1 − s2)}Kh{∆ − (s3 − s4)}

×g(s1/L)g(s2/L)g(s3/L)g(s4/L)ds1ds2ds3ds4

= ν4f2
1 (0) + o(1).

A12 = ν3L−2

∫

s1 6=s2,s4

Kh{∆ − (s1 − s2)}Kh{∆ − (s1 − s4)}
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×g(s1/L)g(s2/L)g(s4/L)ds1ds2ds4

= ν3L

∫ ∫
Kh(∆ − Lu1)Kh{∆ − L(u1 − u2)}f2(u1, u2)du1du2

(by definition off2)

= ν3L−1

∫ ∫
K(v1)K(v2)f2{(∆ − hv1)/L, (v2 − v1)h/L}dv1dv2

= ν3L−1f2(0, 0) +O(L−2).

Similarly,A13 − A15 are of orderO(L−1). Next,

A16 = ν2L−2

∫

s1 6=s2

K2
h{∆ − (s1 − s2)}g(s1/L)g(s2/L)ds1ds2

= ν2

∫
K2

h(∆ − Lu)f1(u)du

= ν2L−1h−1

∫
K2(v)f1{(∆ − hv)/L}dv

= ν2L−1h−1f1(0)RK + o(Lh−1).

Similarly, we can show thatA17 is of the same order asA16. This means thatA11 is the

leading term inE{a2(∆)}. Hence,E{a(∆) − ν2f1(0)}2 → 0, completing the proof.

Lemma A.3 For any fixed∆, defineβ(x1, x2,∆) = b(x1, x2,∆) − a(∆)V(x1, x2,∆).

Then

E{β(x1, x2,∆)} = ν2f1(0){V(0,0,2)(x1, x2,∆)σ2
Kh

2/2 + o(h2)},

cov{β(x1, x2,∆), β(x3, x4,∆
′)}

= ν2L−1h−1RKf1(0)[I(∆ = ∆′){M(x1, x2, x3, x4,∆,∆, 0)

+I(x2 = x4)σ
2
ǫV(x1, x3, 0) + I(x1 = x3)σ

2
ǫV(x2, x4, 0) + I(x1 = x3, x2 = x4)σ

4
ǫ}

+I(∆ = −∆′){M(x1, x2, x3, x4,∆,−∆,−∆) + I(x2 = x3)σ
2
ǫV(x1, x4, 0)

+I(x1 = x4)σ
2
ǫV(x2, x3, 0) + I(x1 = x3, x2 = x4)σ

4
ǫ}] + o(L−1h−1),

whereV(0,0,2)(x1, x2,∆) = ∂2V(x1, x2,∆)/∂∆2.
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Proof: Rewrite

β(x1, x2,∆) = L−1

∫ ∫
Kh{∆ − (s1 − s2)}[{Y (s1, x1) − Θ(x1)}

×{Y (s2, x2) − Θ(x2)} − V(x1, x2,∆)]N2(ds1, ds2),

it follows that

E{β(x1, x2,∆)} = ν2L−1

∫ ∫

s1 6=s2

Kh{∆ − (s1 − s2)}

×{V(x1, x2, s1 − s2) − V(x1, x2,∆)}g(s1/L)g(s2/L)ds1ds2

= ν2L

∫
Kh(∆ − Lu){V(x1, x2, Lu) − V(x1, x2,∆)}f1(u)du

= ν2

∫
K(v){−V(0,0,1)(x1, x2,∆)hv + V(0,0,2)(x1, x2,∆)h2v2/2 + o(h2)}

×{f1(0) + f ′
1(0)(∆ − hv)/L+ o(L−1)}dv

= ν2{f1(0)V(0,0,2)(x1, x2,∆)σ2
Kh

2/2 + o(h2)}.

In addition,

cov{β(x1, x2,∆), β(x3, x4,∆
′)}

= L−2

∫ ∫ ∫ ∫
Kh{∆ − (s1 − s2)}Kh{∆

′ − (s3 − s4)}

[V(x1, x2,∆)V(x3, x4,∆
′) − V(x1, x2, s1 − s2)V(x3, x4,∆

′)

−V(x1, x2,∆)V(x3, x4, s3 − s4) + V(x1, x2, s1 − s2)V(x3, x4, s3 − s4)

+M{x1, x2, x3, x4, (s1 − s2), (s3 − s4), (s2 − s4)}

+I(s1 = s3)I(s2 6= s4)I(x1 = x3)σ
2
ǫV{x2, x4, (s2 − s4)}

+I(s1 = s4)I(s2 6= s3)I(x1 = x4)σ
2
ǫV{x2, x3, (s2 − s3)}

+I(s2 = s3)I(s1 6= s4)I(x2 = x3)σ
2
ǫV{x1, x4, (s1 − s4)}

+I(s2 = s4)I(s1 6= s3)I(x2 = x4)σ
2
ǫV{x1, x3, (s1 − s3)}

+I(s1 = s3, s2 = s4){I(x2 = x4)σ
2
ǫV(x1, x3, 0) + I(x1 = x3)σ

2
ǫV(x2, x4, 0)

+I(x1 = x3, x2 = x4)σ
4
ǫ}



56

+I(s1 = s4, s2 = s3){I(x2 = x3)σ
2
ǫV(x1, x4, 0) + I(x1 = x4)σ

2
ǫV(x2, x3, 0)

+I(x1 = x4, x2 = x3)σ
4
ǫ}]E{N2(ds1, ds2)N2(ds3, ds4)}

−ν4L−2

∫ ∫ ∫ ∫
Kh{∆ − (s1 − s2)}Kh{∆

′ − (s3 − s4)}

×{V(x1, x2, s1 − s2) − V(x1, x2,∆)}{V(x3, x4, s3 − s4) − V(x3, x4,∆
′)}

×g(s1/L)g(s2/L)g(s3/L)g(s4/L)ds1ds2ds3ds4.

As in Lemma A.2, according to the expression forE{N2(ds1, ds2)N2(ds3, ds4)}, we can

summarize this covariance expression as the sum of 7 terms, denoted asA21-A27.

A21 = ν4L−2

∫ L

0

∫ L

0

∫ L

0

∫ L

0

Kh{∆ − (s1 − s2)}Kh{∆
′ − (s3 − s4)}

×M{x1, x2, x1, x2, (s1 − s2), (s3 − s4), (s2 − s4)}

×g(s1/L)g(s2/L)g(s3/L)g(s4/L)ds1ds2ds3ds4

= ν4L2

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

Kh{∆ − L(t1 − t2)}Kh{∆
′ − L(t3 − t4)}

×M{x1, x2, x1, x2, L(t1 − t2), L(t3 − t4), L(t2 − t4)}

×g(t1)g(t2)g(t3)g(t4)dt1dt2dt3dt4

= ν4L2

∫ ∫ ∫
Kh(∆ − Lu1)Kh(∆

′ − Lu2)M(x1, x2, x1, x2, Lu1, Lu2, Lu3)

f3(u1, u2, u3)du1du2du3

= ν4L−1

∫ ∫ ∫
K(v1)K(v2)M(x1, x2, x1, x2,∆ − hv1,∆

′ − hv2, v3)

f3{(∆ − hv1)/L, (∆
′ − hv2)/L, v3/L}dv1dv2dv3

≤ ν4L−1C

∫
M(x1, x2, x1, x2,∆,∆

′, v)dv + o(L−1),

whereC is the upper bound for the density functionf3(u, v, w) on [−1, 1]3. By assumption

1 in Section 2.3 thatg(·) is bounded, one can easily derive thatC is a finite constant.

A22 = ν3L−2

∫ ∫ ∫
Kh{∆ − (s1 − s2)}Kh{∆

′ − (s1 − s4)}

×([V(x1, x2,∆) − V{x1, x2, (s1 − s2)}][V(x3, x4,∆
′) − V{x3, x4, (s1 − s4)}]
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+M{x1, x2, x3, x4, (s1 − s2), (s1 − s4), (s2 − s4)}

+I(x1 = x3)σ
2
ǫV{x2, x4, (s2 − s4)})g(s1/L)g(s2/L)g(s4/L)ds1ds2ds4

= ν3L

∫ ∫ ∫
Kh{∆ − L(t1 − t2)}Kh{∆

′ − L(t1 − t4)}

×([V(x1, x2,∆) − V{x1, x2, L(t1 − t2)}][V(x3, x4,∆
′) − V{x3, x4, L(t1 − t4)}]

+M{x1, x2, x3, x4, L(t1 − t2), L(t1 − t4), L(t2 − t4)}

+I(x1 = x3)σ
2
ǫV{x2, x4, L(t2 − t4)})g(t1)g(t2)g(t4)dt1dt2dt4

= ν3L

∫ ∫
Kh(∆ + Lu1)Kh(∆

′ + Lu2)

×[{V(x1, x2,∆) − V(x1, x2,−Lu1)}{V(x3, x4,∆
′) − V(x3, x4,−Lu2)}

+M{x1, x2, x3, x4,−Lu1,−Lu2, L(u1 − u2)}

+I(x1 = x3)σ
2
ǫV{x2, x4, L(u1 − u2)}]f2(u1, u2)du1du2

= ν3L−1

∫ ∫
K(v1)K(v2)[I(x1 = x3)σ

2
ǫV{x2, x4, (v1 − v2)h+ ∆′ − ∆}

+{V(x1, x2,∆) − V(x1, x2,∆ − hv1)}{V(x3, x4,∆) − V(x3, x4,∆
′ − hv2)}

+M{x1, x2, x3, x4,∆ − hv1,∆
′ − hv2, (v1 − v2)h+ ∆′ − ∆}]

×f2{(−∆ + hv1)/L, (−∆ + v1h)/L}dv1dv2

= ν3L−1f2(0, 0){M(x1, x2, x3, x4,∆,∆
′,∆′ − ∆)

+I(x1 = x3)σ
2
ǫV(x2, x4,∆

′ − ∆)} + o(L−1).

It is easy to see thatA23-A25 have the same order asA22. Further, we have

A26 = ν2L−2

∫ ∫
Kh{∆ − (s1 − s2)}Kh{∆

′ − (s1 − s2)}

×(M{x1, x2, x3, x4, (s1 − s2), (s1 − s2), 0}

+[V(x1, x2,∆) − V{x1, x2, (s1 − s2)}][V(x3, x4,∆
′) − V{x3, x4, (s1 − s2)}]

+{I(x2 = x4)σ
2
ǫV(x1, x3, 0) + I(x1 = x3)σ

2
ǫV(x2, x4, 0)

+I(x1 = x3, x2 = x4)σ
4
ǫ}) × g(s1/L)g(s2/L)ds1ds2
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= I(∆ = ∆′)ν2

∫ ∫
K2

h{∆ − L(t1 − t2)}

×(M{x1, x2, x3, x4, L(t1 − t2), L(t1 − t2), 0}

+[V(x1, x2,∆) − V{x1, x2, L(t1 − t2)}][V(x3, x4,∆) − V{x3, x4, L(t1 − t2)}]

+{I(x2 = x4)σ
2
ǫV(x1, x3, 0) + I(x1 = x3)σ

2
ǫV(x2, x4, 0)

+I(x1 = x3, x2 = x4)σ
4
ǫ}) × g(t1)g(t2)dt1dt2

= I(∆ = ∆′)ν2

∫
K2

h(∆ − Lu)[M(x1, x2, x3, x4, Lu, Lu, 0)

+{V(x1, x2,∆) − V(x1, x2, Lu)}{V(x3, x4,∆) − V(x3, x4, Lu)}

+{I(x2 = x4)σ
2
ǫV(x1, x3, 0) + I(x1 = x3)σ

2
ǫV(x2, x4, 0)

+I(x1 = x3, x2 = x4)σ
4
ǫ}] × f1(u)du

= I(∆ = ∆′)ν2L−1h−1

∫
K2(v)[M(x1, x2, x3, x4,∆ − hv,∆ − hv, 0)

+{V(x1, x2,∆) − V(x1, x2,∆ − hv)}{V(x3, x4,∆) − V(x3, x4,∆ − hv)}

+{I(x2 = x4)σ
2
ǫV(x1, x3, 0) + I(x1 = x3)σ

2
ǫV(x2, x4, 0)

+I(x1 = x3, x2 = x4)σ
4
ǫ}] × f1{(∆ − hv)/L}dv

= I(∆ = ∆′)ν2L−1h−1RKf1(0)[M(x1, x2, x3, x4,∆,∆, 0) + {I(x2 = x4)σ
2
ǫ

×V(x1, x3, 0) + I(x1 = x3)σ
2
ǫV(x2, x4, 0) + I(x1 = x3, x2 = x4)σ

4
ǫ} + o(1)].

Similarly,

A27 = ν2L−2

∫ ∫
Kh{∆ − (s1 − s2)}Kh{∆

′ − (s2 − s1)}

×(M{x1, x2, x3, x4, (s1 − s2), (s2 − s1), (s2 − s1)}

+[V(x1, x2,∆) − V{x1, x2, (s1 − s2)}][V(x3, x4,∆
′) − V{x3, x4, (s2 − s1)}]

+{I(x2 = x3)σ
2
ǫV(x1, x4, 0) + I(x1 = x4)σ

2
ǫV(x2, x3, 0)

+I(x1 = x3, x2 = x4)σ
4
ǫ}) × g(s1/L)g(s2/L)ds1ds2

= I(∆ = −∆′)ν2

∫ ∫
K2

h{∆ − L(t1 − t2)}
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×(M{x1, x2, x3, x4, L(t1 − t2), L(t2 − t1), L(t2 − t1)}

+[V(x1, x2,∆) − V{x1, x2, L(t1 − t2)}][V(x3, x4,−∆) − V{x3, x4, L(t2 − t1)}]

+{I(x2 = x3)σ
2
ǫV(x1, x4, 0) + I(x1 = x4)σ

2
ǫV(x2, x3, 0)

+I(x1 = x3, x2 = x4)σ
4
ǫ}) × g(t1)g(t2)dt1dt2

= I(∆ = −∆′)ν2

∫
K2

h(∆ − Lu)[M(x1, x2, x3, x4, Lu,−Lu,−Lu)

+{V(x1, x2,∆) − V(x1, x2, Lu)}{V(x3, x4,∆) − V(x3, x4, Lu)}

+{I(x2 = x3)σ
2
ǫV(x1, x4, 0) + I(x1 = x4)σ

2
ǫV(x2, x3, 0)

+I(x1 = x3, x2 = x4)σ
4
ǫ}] × f1(u)du

= I(∆ = −∆′)ν2L−1h−1

∫
K2(v)[M(x1, x2, x3, x4,∆ − hv,−∆ + hv,−∆ + hv)

+{V(x1, x2,∆) − V(x1, x2,∆ − hv)}{V(x3, x4,∆) − V(x3, x4,∆ − hv)}

+{I(x2 = x3)σ
2
ǫV(x1, x4, 0) + I(x1 = x4)σ

2
ǫV(x2, x3, 0)

+I(x1 = x3, x2 = x4)σ
4
ǫ}] × f1{(∆ − hv)/L}dv

= I(∆ = −∆′)ν2L−1h−1RKf1(0)[M(x1, x2, x3, x4,∆,−∆,−∆)

+{I(x2 = x3)σ
2
ǫV(x1, x4, 0) + I(x1 = x4)σ

2
ǫV(x2, x3, 0)

+I(x1 = x3, x2 = x4)σ
4
ǫ} + o(1)].

Both A26 andA27 are of orderO{(Lh)−1}, while the rest terms are of orderO(L−1).

The proof is completed by summarizing the contribution of each term to cov{β(x1, x2,∆),

β(x3, x4,∆
′)}.

Lemma A.4 With β(x1, x2,∆) defined as in Lemma A.3, and with all assumptions in

Section 2.3, we have

(Lh)1/2[β(x1, x2,∆) − E{β(x1, x2,∆)}] ⇒ Normal{0, ν2f1(0)σ2(x1, x2,∆)},

whereσ2(x1, x2,∆) = RK{M(x1, x2, x1, x2,∆,∆, 0)+σ2
ǫV(x1, x1, 0)+σ2

ǫV(x2, x2, 0)+

σ4
ǫ} + I(∆ = 0)RK [{M(x1, x2, x1, x2, 0, 0, 0) + I(x1 = x2){2σ

2
ǫV(x1, x1, 0) + σ4

ǫ}].
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Proof: The proof shares the similar structure to that of Theorem 2 in Guan et al. (2004).

Definea1 = 0, b1 = Lp − Lq, ai = ai−1 + Lp, bi = ai + Lp − Lq, i = 2, · · · , kL, for some

1/(1+ δ) < q < p < 1 (δ is defined in (2.10)). We thus have divided the interval[0, L] into

kL ≈ L/Lp disjoint subintervals each having lengthLp − Lq and at leastLq apart. Define

Ii = [ai, bi], I = ∪kL
i=1Ii, I

′
i = [ai/L, bi/L], I ′ = ∪kL

i=1I
′
i, and

βi(x1, x2,∆) = L−1

∫ ∫

Ii×Ii

Kh{∆ − (s1 − s2)}[{Y (s1, x1) − Θ(x1)}

×{Y (s2, x2) − Θ(x2)} − V(x1, x2,∆)]N2(ds1, ds2),

β̃(x1, x2,∆) =

kL∑

i=1

βi(x1, x2,∆).

Define independent random variablesγi(x1, x2,∆) on a different probability space, such

that they have the same distributions asβi(x1, x2,∆), and define

γ(x1, x2,∆) =

kL∑

i=1

γi(x1, x2,∆).

Letφ(ξ) andψ(ξ) be the characteristic functions of(Lh)1/2[β̃(x1, x2,∆)−E{β̃(x1, x2,∆)}]

and(Lh)1/2[γ(x1, x2,∆) − E{γ(x1, x2,∆)}], respectively.

We finish the proof in the following 3 steps:

(i) (Lh)1/2([{β(x1, x2,∆)−E{β(x1, x2,∆)}]−{β̃(x1, x2,∆)−E{β̃(x1, x2,∆)}])
p

−→

0;

(ii) ψ(ξ) − φ(ξ) → 0;

(iii) (Lh)1/2[γ(x1, x2,∆) − E{γ(x1, x2,∆)}] ⇒ Normal{0, ν2f1(0)σ2(x1, x2,∆)}.

To show (i), notice that, with|Ii| → ∞, calculations as in Lemma A.3 show that

kL∑

i=1

var{βi(x1, x2,∆)} =

kL∑

i=1

ν2L−1h−1RKfi,1(0){σ2(x1, x2,∆) + o(1)}, (A.1)
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wherefi,1(u) =
∫
gi(u + t)gi(t)dt is the counterpart off1(u), with gi(t) = g(t)I(t ∈ I ′i).

Sinceg(·) is bounded away from both 0 and∞, fi,1(0) =
∫

I′i
g2(t) = O(|I ′i|) = O(Lp−1),

and var{βi(x1, x2,∆)} = O(Lp−2h−1).

Observe that|I ′| =
∑kL

i=1 |I
′
i| = kL × (Lp − Lq)/L ≈ L/Lp × (Lp − Lq)/L =

1 − Lq−p → 1, and

kL∑

i=1

fi,1(0) =

kL∑

i=1

∫

I′i

g(t)2dt =

∫

I′
g(t)2dt→

∫ 1

0

g(t)2dt = f1(0). (A.2)

Therefore,
∑kL

i=1 var{βi(x1, x2,∆)} = var{β(x1, x2,∆)}+ o(L−1h−1). Further but equiv-

alent derivations show that
∑

i6=j cov{βi(x1, x2,∆), βj(x1, x2,∆)} = O(L−1). The calcu-

lations here are similar to those in Lemma A.3, except that the i 6= j condition excluded

terms likeA22 throughA27. Now we have

var{β̃(x1, x2,∆)} =

kL∑

i=1

var{βi(x1, x2,∆)} +
∑

i6=j

cov{βi(x1, x2,∆), βj(x1, x2,∆)}

= var{β(x1, x2,∆)} + o(L−1h−1).

Similarly, one can show that

cov{β̃(x1, x2,∆), β(x1, x2,∆)} = var{β(x1, x2,∆)} + o(L−1h−1).

Therefore,(Lh)var[{β(x1, x2,∆) − {β̃(x1, x2,∆)}] → 0, and step (i) is established.

To show (ii), we follow similar arguments that prove Theorem2 (S2) in Guan et al. (2004).

DenoteUi = exp(Ix(Lh)1/2[βi(x1, x2,∆)−E{βi(x1, x2,∆)}]), whereI is the unit imag-

inary number. Then by definitions,φ(x) = E(
∏kL

i=1 Ui), ψ(x) =
∏kL

i=1E(Ui).

Observing|E(Ui)| ≤ 1 for all Ui, we have

|φ(x) − ψ(x)| ≤ |E(

kL∏

i=1

Ui) − E(

kL−1∏

i=1

Ui)E(UkL
)| + |E(

kL−1∏

i=1

Ui)E(UkL
) −

kL∏

i=1

E(Ui)|

≤ |E(

kL∏

i=1

Ui) − E(

kL−1∏

i=1

Ui)E(UkL
)| + |E(

kL−1∏

i=1

Ui) −

kL−1∏

i=1

E(Ui)||E(UkL
)|
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≤ |E(

kL∏

i=1

Ui) − E(

kL−1∏

i=1

Ui)E(UkL
)| + |E(

kL−1∏

i=1

Ui) −

kL−1∏

i=1

E(Ui)|.

By induction,

|φ(x) − ψ(x)| ≤

kL−1∑

j=1

|E(

j+1∏

i=1

Ui) − E(

j∏

i=1

Ui)E(Uj+1)| =

kL−1∑

j=1

|cov(
j∏

i=1

Ui, Uj+1)|.

Observe that
∏j

i=1 Ui andUj+1 areF([0, bj]) andF([aj+1, bj+1]) measurable respectively,

with |
∏j

i=1 Ui| ≤ 1 and|Uj+1| ≤ 1, and the index sets are at leastLq away. By Lemma

A.1,

|φ(x) − ψ(x)| ≤

kL−1∑

j=1

16α(Lq) ≤ 16L1−p × L−qδ.

By our choice ofp andq, it is easy to check1−p−qδ < 0, and therefore|φ(x)−ψ(x)| → 0.

(iii) can be proved by applying Lyapounov’s central limit theorem and by the fact that

(Lh)

kL∑

i=1

var{γi(x1, x2,∆)} → ν2f1(0)σ2(x1, x2,∆),

which has been shown in (A.1) and (A.2).

It remains to check the Lyapounov’s condition. By condition(2.9),

kL∑

i=1

E(|γi(x1, x2,∆) − E{γi(x1, x2,∆)}|2+η)

[var{γ(x1, x2,∆)}](2+η)/2
= L1−p ×

O{(Lp−2h−1)(2+η)/2}

O{(L−1h−1)(2+η)/2}

= O(L−(1−p)η/2) → 0.

The proof is thus complete.

Lemma A.5 Let ~β(∆) be the vector collecting allβ(x1, x2,∆) for distinct pairs of(x1, x2).

Then, with all assumptions above, for∆′ 6= ∆,

(Lh)1/2




~β(∆) − E{~β(∆)}

~β(∆′) − E{~β(∆′)}


⇒ Normal





0, ν2f1(0)




Σ(∆) C(∆,∆′)

CT (∆,∆′) Σ(∆′)







,
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whereΣ(∆) is the covariance matrix with the entry corresponding to cov{β(x1, x2,∆), β(x3,

x4,∆)} equal toRK{M(x1, x2, x3, x4,∆,∆, 0) + I(x2 = x4)σ
2
ǫV(x1, x3, 0) + I(x1 =

x3)σ
2
ǫV(x2, x4, 0) + (x1 = x3, x2 = x4)σ

4
ǫ} + I(∆ = 0)RK{M(x1, x2, x3, x4, 0, 0, 0) +

I(x1 = x4)σ
2
ǫV(x2, x3, 0) + I(x2 = x3)σ

2
ǫV(x1, x4, 0) + I(x1 = x4, x2 = x3)σ

4
ǫ};

C(∆,∆′) is the matrix with the entry corresponding to cov{β(x1, x2,∆), β(x3, x4,∆
′)}

equal toI(∆′ = −∆){M(x1, x2, x3, x4,∆,−∆,−∆)+I(x2 = x3)σ
2
ǫV(x1, x4, 0)+I(x1 =

x4)σ
2
ǫV(x2, x3, 0) + I(x1 = x4, x2 = x3)σ

4
ǫ}.

Proof: Using similar proofs as for Lemma A.3 and A.4, we can show that any linear com-

bination
∑k

i=1 ciβ(xi1, xi2,∆) +
∑k′

i=1 c
′
iβ(xi1, xi2,∆

′) is asymptotically normal. By the

Crámer-Wold device (Serfling 1980), the joint normality is established.

Note: If ∆′ = −∆, the limiting distribution on the right hand side is a degenerate multi-

variate normal distribution, becauseβ(x1, x1,∆) = β(x1, x1,−∆) for all x1.

Estimation With Multiple Subjects

Now suppose we haveR subjects, andR is a fixed number. Define

Yr,ik(xj, xl) = {Yrij − Θr(xj)}{Yrkl − Θr(xl)},

ar(∆) = L−1
∑

i

∑

k 6=i

Kh(∆ − ∆r,ik),

br(xj, xl,∆) = L−1
∑

i

∑

k 6=i

Yr,ik(xj, xl)Kh{∆ − ∆r(i, k)},

βr(xj, xl,∆) = br(xj, xl,∆) − ar(∆)V(xj, xl,∆),

cr(xj,∆) = L−1
∑

i

∑

k 6=i

{Yrij − Θr(xj)}Kh{∆ − ∆r(i, k)}.

Further, define

a(∆) =
∑

r

ar(∆), b(xj, xl,∆) =
∑

r

br(xj, xl,∆),

β(xj, xl,∆) =
∑

r

βr(xj, xl,∆),

V̂0(x1, x2,∆) = b(x1, x2,∆)/a(∆).
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Let V̂0(∆) andV(∆)) be the vectors collecting all̂V0(x1, x2,∆) andV(x1, x2,∆)) for all

distinct pairs of(x1, x2), respectively.

Lemma A.6 With the assumptions in Section 2.3, for∆′ 6= ∆,

(RLh)1/2





V̂0(∆) − V(∆) − σ2
KV(2)(∆)h2/2

V̂0(∆
′) − V(∆′) − σ2

KV(2)(∆′)h2/2





⇒ Normal


0, {ν2f1(0)}−1




Σ(∆) C(∆,∆′)

CT (∆,∆′) Σ(∆′)





 ,

whereV(2)(∆) is the vector collectingV(0,0,2)(x1, x2,∆) for all distinct pairs of(x1, x2).

Proof: Notice that

V̂0(x1, x2,∆) − V(x1, x2,∆) = [
R∑

r=1

{br(x1, x2,∆) − ar(∆)V(x1, x2,∆)}]/{
R∑

r=1

ar(∆)}

= β(x1, x2,∆)/a(∆)

Since subjects are independent, by Lemma A.2,a(∆)/{ν2Rf1(0)}
p

−→ 1. Also, by Lemma

A.5, (R−1Lh)1/2{~β(∆)T , ~β(∆′)T}T are asymptotically jointly normal with the covariance

matrix given in Lemma A.5. Thus, by Slutsky’s theorem (Serfling, 1980),

(RLh)1/2




β(∆)/a(∆) − E{β(∆)}/a(∆)

β(∆′)/a(∆′) − E{β(∆′)}/a(∆′)




⇒ Normal


0, {ν2f1(0)}−1




Σ(∆) C(∆,∆′)

CT (∆,∆′) Σ(∆′)





 .

Finally, by Lemma A.3,E{β(x1, x2,∆)} = Rν2f1(0){V(0,0,2)(x1, x2,∆)σ2
Kh

2/2+o(h2)},

so that we haveE{β(x1, x2,∆)}/a(∆) = σ2
KV(0,0,2)(x1, x2,∆)h2/2 + op(h

2). Theop(h
2)

term is eliminated by the assumption thatLh5 = O(1).

Lemma A.7 With all the assumptions above, we have that

V̂(x1, x2,∆) = V̂0(x1, x2,∆) +Op{L
−1h−1/2}
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Proof: Notice that

V̂(xj, xl,∆) = V̂0(xj, xl,∆) +
[∑

r

{Y r·j − Θr(xj)}cr(xl,∆)

+
∑

r

{Y r·j − Θr(xj)}{Y r·l − Θr(xl)}ar(∆)

+
∑

r

{Y r·l − Θr(xl)}cr(xj,∆)
]
× a(∆)−1, (A.3)

cr(x1,∆) = L−1

∫ ∫
{Y (s1, x1) − Θr(x1)}Kh{∆ − (s1 − s2)}N2(ds1, ds2).

Using the expression above, it is easy to see thatE{cr(x1,∆)} = 0, and calculations as in

Lemma A.3 show that

var{cr(x1,∆)} = L−2

∫ ∫ ∫ ∫
Kh{∆ − (s1 − s2)}Kh{∆ − (s3 − s4)}

×[V{x1, x1, (s1 − s3)} + I(s1 = s3)σ
2
ǫ ]

×E{N2(ds1, ds2)N2(ds3, ds4)}

= O{ν2L−1h−1}.

On the other hand,Y r·j − Θr(xj) = 1
Nr

∫
{Yr(s, xj) − Θr(s, xj)}N(ds). It is easy to see

thatE{Y r·j − Θr(xj)} = 0, and that

var[Nr{Y r·j − Θr(xj)}] =

∫ ∫
[V{xj, xj , (s1 − s2)} + I(s1 = s2)σ

2
ǫ ]

×{ν2g(s1/L)g(s2/L)ds1ds2 + νg(s1/L)ǫs1(ds2)ds1}

= ν2L2

∫
V(xj , xj, Lu)f1(u)du

+νL

∫
{V(xj, xj, 0) + σ2

ǫ}g(s1)ds1

= ν2Lf1(0)

∫
V(xj, xj, u)du+ νL{V(xj, xj, 0) + σ2

ǫ} + o(L).

By properties of Poisson processes, we haveNr/(νL) → 1 a.s.. Therefore, we haveY r·j −

Θr(xj) = Op{L
−1/2}, cr(x1,∆) = Op{L

−1/2h−1/2}. By Lemma A.2,ar(∆) = Op(1).

Therefore,̂V(x1, x2,∆) − V̂0(x1, x2,∆) = Op{L
−1h−1/2}, completing the proof.
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Proof of Theorem II.1: This is a direct result from Lemma A.6 and A.7.

Proof of Theorem II.2: For a fixed∆ 6= 0, whenh ≤ |∆|, we have

Ṽ(x1, x2,∆) = {V̂(x1, x2,∆) + V̂(x1, x2,−∆)}/2.

This equation is true automatically for∆ = 0. Therefore, asymptotic distribution of̃V(∆)

is the same as that of{V̂(∆) + V̂(−∆)}/2, for any fixed∆.

For ∆1 6= ±∆2, by Theorem II.1,{V̂(∆1), V̂(−∆1)}
T and{V̂(∆2), V̂(−∆2)}

T are

asymptotically independent, and the joint asymptotic normality of the four vectors can be

established. ThereforẽV(∆1) andṼ(∆2) are jointly asymptotic normal and asymptotically

independent. It suffices to show thatΩ(∆) is the asymptotic covariance matrix ofṼ(∆).

For ∆ 6= 0, apply the delta method to the joint asymptotic distribution of V̂(∆) and

V̂(−∆), the following gives the asymptotic covariance betweenṼ(x1, x2,∆) andṼ(x3, x4,∆):

(1/4)(RLh)−1{ν2f1(0)}−1RK × {M(x1, x2, x3, x4,∆,∆, 0)

+M(x1, x2, x3, x4,−∆,−∆, 0)

+2M(x1, x2, x3, x4,∆,−∆,−∆) + 2I(x2 = x4)σ
2
ǫV(x1, x3, 0)

+2I(x1 = x3)σ
2
ǫV(x2, x4, 0) + 2I(x1 = x3, x2 = x4)σ

4
ǫ

+2I(x2 = x3)σ
2
ǫV(x1, x4, 0) + 2I(x1 = x4)σ

2
ǫV(x2, x3, 0)

+2I(x1 = x3, x2 = x4)σ
4
ǫ}

Note thatM(x1, x2, x3, x4,−∆,−∆, 0) = M(x1, x2, x3, x4,∆,∆, 0) by the symmetry in

the definition ofM(x1, x2, x3, x4, u, v, w). Next, for ∆ = 0, we haveṼ(x1, x2, 0) =

V̂(x1, x2, 0), the asymptotic covariance betweenṼ(x1, x2, 0) and Ṽ(x3, x4, 0) is given in

Theorem II.1. The proof is completed.

Proof of Corollary II.1: The result follows from Theorem II.2 and the Delta-method. To

see this, note that, with the separable structure in (2.3), we haveV(x1, x2,∆) = G(x1, x2)ρ(∆)
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andV(0,0,2)(x1, x2,∆) = G(x1, x2)ρ
(2)(∆). By the Delta-method, the asymptotic mean of

ρ̂(∆) is

∑
x1∈X

∑
x2≤x1

{V(x1, x2,∆) + σ2
KV(0,0,2)(x1, x2,∆)h2/2 + op(h

2)}∑
x1∈X

∑
x2≤x1

{G(x1, x2) + σ2
KG(x1, x2)ρ(2)(0)h2/2 + op(h2)}

= {ρ(∆) + σ2
Kρ

(2)(∆)h2/2 + op(h
2)}/{1 + σ2

Kρ
(2)(0)h2/2 + op(h

2)}

= {ρ(∆) + σ2
Kρ

(2)(∆)h2/2 + op(h
2)} ∗ {1 − σ2

Kρ
(2)(0)h2/2 + op(h

2)}

= ρ(∆) + {ρ(2)(∆) − ρ(∆)ρ(2)(0)}σ2
Kh

2/2 + op(h
2).

The asymptotic variance of̂ρ(∆) also follows from the Delta-method.
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APPENDIX B

PROOFS FOR CHAPTER III

Throughout this appendix chapter, we adopt the following notations: for any complex-

valued vectorb, ‖b‖2 = bT b̄; for any zero-mean, complex-valued, random variablesX and

Y , cov(X,Y ) = E(XȲ ).

Proof of Theorem III.1

Since X̃i,ρ ∈ span{φi(·), i = −K, · · · ,K}, by orthogonality of Fourier basis,̂fλ,ρ is

spanned by the same set of basis functions. Writef̂λ,ρ = φT β̂. Thenβ̂ minimizes

n−1

n∑

i=1

|Yi −ZZZT
i V b̄|

2 + λbTWb̄

among all2K + 1 dimensional complex vectors, whereV = P T
ρ 〈φ, φT 〉L2 = J−1Φ̄(I +

ρW )−1, Pρ being defined in (3.3). The penalized least square function above is a variant

of (3.4). SinceYi andX̃i,ρ are real valued, it is clear that̂fλ,ρ is real-valued, and̂β satisfies

β̂j = β̂−j, j = −K, · · · ,K.

Define

Ωn,J = n−1ZZZTZZZ, andΩ̌ρ = n−1V̄ TZZZTZZZV, (B.1)

and

ri = 〈Xi, f〉L2 − 〈X̃i,ρ, f〉L2 and rrr = (r1, · · · , rn)T .

It is easy to check thaťΩρ is an Hermite matrix, i.e. Ω̌
T

ρ = Ω̌ρ. Suppose thatf =
∑∞

j=−∞ βjφj , and denote by̌f the projection off onto span{φ−K , · · · , φK}, and β̌ =

(β−K , · · · , βK)T . By orthogonality of Fourier basis,〈X̃i,ρ, f〉L2 = 〈X̃i,ρ, f̌〉L2 = ZZZT
i V β̌.
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On the other hand, since both̃Xi,ρ andf are real-valued functions, we have〈X̃i,ρ, f〉L2 =

ZZZT
i V̄ β̌. Writing εεε = (ε1, . . . , εn)T , we have

f̂λ,ρ(t) = φT (t)(V TZZZTZZZV̄ + nλW )−1V TZZZTYYY

= φT (t)(Ω̌T
ρ + λW )−1n−1V TZZZT (ZZZV̄ β̌ + rrr + εεε)

=: φT (t)(β̌λ + β̂r + β̂ǫ)

=: f̌λ,ρ(t) + gλ(t) + hλ(t). (B.2)

By (3.6),

R̃ρ(s, t) =
1

n

n∑

i=1

X̃i,ρ(s)X̃i,ρ(t) = φ(s)TPρΩn,JP
T
ρ φ(t).

For anyg(t) = φ(t)T b ∈ span{φ−K , . . . , φK}, we have

(T̃ρg)(t) =

∫
R̃ρ(s, t)g(s)ds = φT (t)PρΩn,J P̄

T
ρ {

∫
φ̄(s)φT (s)ds}b = φT (t)PρΩn,J V̄ b

and hence by (B.1),

‖g‖2
T̃ρ

= 〈g, T̃ρg〉L2 = bT V̄ T Ωn,JV b̄ = bT Ω̌ρb̄ = n−1‖ZZZV̄ b‖2. (B.3)

It follows from (B.2) that

‖f̂λ,ρ − f‖2
T̃ρ

≤ 3‖f̌λ,ρ − f‖2
T̃ρ

+ 3‖gλ‖
2
T̃ρ

+ 3‖hλ‖
2
T̃ρ
. (B.4)

First, consider‖f̌λ,ρ − f‖2
T̃ρ

which is equal to‖f̌λ,ρ − f̌‖2
T̃ρ

. By (B.3),

‖f̌λ,ρ − f‖2
T̃ρ

= ‖f̌λ,ρ − f̌‖2
T̃ρ

= n−1‖ZZZV̄ (β̌λ − β̌)‖2

Sincef̌λ,ρ is the solution of the following problem

min
g=φT b

{n−1‖ŽZZV̄ (b− β̌)‖2 + λbTWb̄},
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we conclude that

‖f̌λ,ρ − f‖2
T̃ρ

= n−1‖ZZZV̄ (β̌λ − β̌)‖2

≤ n−1‖ZZZV̄ (β̌λ − β̌)‖2 + λβ̌T
λWβ̌λ

≤ λβ̌TWβ̌ = λ‖f̌ (m)‖2
L2 ≤ λ‖f (m)‖2

L2. (B.5)

Note that this is an approach for handling the bias introduced by Craven and Wahba (1979).

Next, by (B.3),

E(‖hλ‖
2
T̃ρ
|ZZZ) = E{εεεTn−1ZZZV (Ω̌ρ + λW )−1Ω̌ρ(Ω̌

T

ρ + λW )−1n−1V̄ TZZZTεεε|ZZZ}

= n−1σ2
εtr{(Ω̌ρ + λW )−1Ω̌ρ(Ω̌ρ + λW )−1Ω̌ρ}.

Let ωi, νi, ρi, andηi be thei-th smallest eigenvalue ofW, Ω̌n,J , Ω̌n,J + λW , and(Ω̌n,J +

λW )−1Ω̌n,J , respectively. Observe that for any complex-valued functiong = φT b, we have

〈g, T̃ρg〉L2

‖g‖2
L2

=
bΩ̌ρb̄

bT b̄
, (B.6)

and hence the eigenvalues ofΩ̌ρ are the same as those ofT̃ρ, then Ω̌ρ is positive semi-

definite andνi ≥ 0 for all i. Note thatν2K+1 is denoted asνρ in the statement of the

theorem to emphasize its dependence onρ. By (3.2),ωi = ([i/2]2π)2m, i = 1, · · · , 2K+1.

We clearly also have

ηi ≤ 1 and ρi ≥ λ([i/2]2π)2m ≥ λ((i− 1)π)2m for all i.

It follows from Theorem 7 of Merikoski and Kumar (2004) that

η(2K+1)−i+1 ≤ ρ−1
i νρ for all i.

Thus,

η(2K−1)−i+1 ≤ min(1, νρπ
−2mλ−1(i− 1)−2m) for all i,



71

and therefore

tr{(Ω̌ρ + λW )−1Ω̌ρ(Ω̌ρ + λW )−1Ω̌n,J}

=
2K+1∑

i=1

η2
i ≤

[λ−1/(2m)]∑

i=1

1 +
ν2

ρ

π4mλ2

2K+1∑

i=[λ−1/(2m)]+1

(i− 1)−4m ≤ Cλ−1/(2m)ν2
ρ .

Hence,

E(‖hλ‖
2
T̃ρ
|ZZZ) ≤ Cn−1λ−1/(2m)ν2

ρ . (B.7)

Next,

E(‖gλ‖
2
T̃ρ
|ZZZ) = E{rrrTn−1ZZZV (Ω̌ρ + λW )−1Ω̌ρ(Ω̌ρ + λW )−1n−1V̄ TZZZTrrr|ZZZ}.

Since the eigenvalues ofZZZV (Ω̌ρ +λW )−1Ω̌ρ(Ω̌ρ +λW )−1n−1V̄ TZZZT are the same as those

of

(Ω̌ρ + λW )−1Ω̌ρ(Ω̌ρ + λW )−1n−1V̄ TZZZTZZZV = [(Ω̌ρ + λW )−1Ω̌ρ]
2,

which are bounded by 1, we conclude that

E(‖gλ‖
2
T̃ρ
|ZZZ) ≤

1

n
E(rrrTrrr|ZZZ) =

1

n

n∑

i=1

E(r2
i |ZZZ i) ≤

‖f‖2
L2

n

n∑

i=1

E(‖X̃i,ρ −Xi‖
2
L2|ZZZ i), (B.8)

by the Cauchy-Schwarz inequality. The result follows from (B.4), (B.5), (B.7), and (B.8).

Proof of Theorem III.2

Lemma B.1 Supposetj = (2j − 1)/(2J), j = 1, · · · , J , then

J∑

j=1

φ̄k1(tj)φk2(tj) = {
(−1)sJ, if k2 = k1 + sJ ;

0 otherwise.

Proof. If k2 − k1 is not a multiple ofJ , we have

J∑

j=1

φ̄k1(tj)φk2(tj) =
J∑

j=1

e(k2−k1)2πitj =
e(k2−k1)2πi(2J+1)/(2J) − e(k2−k1)2πi/(2J)

1 − e(k2−k1)2πi/J
= 0.
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Next, supposek2 = k1 + sJ for some integers, we have

J∑

j=1

φ̄k1(tj)φk2(tj) =
J∑

j=1

esπi(2j−1) =
J∑

j=1

(−1)s = J(−1)s.

Lemma B.2 Let g ∈ Wm
2,per have the Fourier basis representationg =

∑∞
j=−∞ cjφj(t) in

L2[0, 1]. Then the Fourier basis representation forg(m) is

∞∑

j=−∞

cj(2πji)
mφj(t),

and we have

‖g(m)‖2
L2 =

∞∑

j=−∞

(2πj)2m|cj|
2.

Proof. Let gk =
∑k

j=−k cjφj and considerg(m) − g
(m)
k . Note that the assumption implies

thatg(ν)(0) = g(ν)(1), 0 ≤ ν ≤ m− 1, andφ(s)
j (0) = φ

(s)
j (1) for all s. Integrating by parts

repeatedly,

〈g(m) − g
(m)
k , φj〉L2 = (−1)m〈g − gk, (2πji)

mφj〉L2 = 0, for all j = −k, · · · , k.

This means thatg(m)
k =

∑k
i=−k(2πji)

mcjφj is theL2 projection ofg(m) on span{φj, j =

−k, · · · , k}. Sinceg(m) ∈ L2[0, 1], and the Fourier basis is complete, we conclude that

g
(m)
k → g(m) in L2[0, 1] and the result follows.

Proof of Theorem III.2. The proof is similar to those in Rice and Rosenblatt (1981).

As before,

XXX = (X(t1), · · · , X(tJ))T , ς = (ς1, · · · , ςJ), andZZZ =XXX + ς.

LetX(t) =
∑∞

j=−∞ ajφj(t). By Lemma B.1,

ãj := J−1

J∑

l=1

φj(tl)X(tl) =
∞∑

s=−∞

(−1)saj+sJ , j = −K, · · · ,K
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Thus,

X̃ρ(t) = φT (t)(I + ρW )−1J−1ΦTZZZ

=
K∑

j=−K

(1 + (2π)2mρj2m)−1(ãj + ς̃j)φj(t),

whereς̃j = J−1
∑J

k=1 φj(tk)ςk. Next,

E(‖X̃ρ −X‖2)

= E
[ ∫

|
K∑

j=−K

{aj − (1 + (2π)2mρj2m)−1(ãj + ς̃j)}φj(t)|
2dt
]

+E
[ ∫

|
∑

|j|>K

ajφj(t)|
2dt
]

= E
[ K∑

j=−K

|ρ(2π)2mj2maj − (ãj − aj) − ς̃j|
2

(1 + ρ(2π)2mj2m)2

]
+ E

[ ∑

|j|>K

|aj |
2
]

≤ 2E
[ K∑

j=−K

ρ2(2π)4mj4m|aj |
2

(1 + ρ(2π)2mj2m)2

]
+ 2E

[ K∑

j=−K

|ãj − aj |
2

(1 + ρ(2π)2mj2m)2

]

+
K∑

j=−K

J−1σ2
ς

(1 + ρ(2π)2mj2m)2
+ E

[ ∑

|j|>K

|aj |
2
]
.

Note that, by Lemma B.2,

‖X(m)‖2
L2 =

∞∑

j=−∞

(2jπ)2m|aj |
2 a.s.

and therefore, with probability one,

K∑

j=−K

ρ2(2π)4mj4m|aj |
2

(1 + ρ(2π)2mj2m)2
≤

K∑

j=−K

ρ(2π)2mj2m|aj |
2

(1 + ρ(2π)2mj2m)
≤ ρ

K∑

j=−K

(2π)2mj2m|aj |
2 ≤ ρ‖X(m)‖2

L2.

and

∑

|j|>K

|aj |
2 ≤ (2π)−2mK−2m

∑

|j|>K

(2π)2mj2m|aj |
2 ≤ K−2m(2π)−2m‖X(m)‖2

L2.

By integral approximation,

K∑

j=−K

(1 + ρ(2πj)2m)−r ∼ (2π)−1ρ−1/(2m)

∫ ∞

−∞

(1 + x2m)−rdx, r ≥ 1. (B.9)
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On the other hand, with probability one,

|ãj − aj |
2 = |

∑

s6=0

(−1)saj+sJ |
2

≤ {
∑

s6=0

(j + sJ)−2m}{
∑

s6=0

(j + sJ)2m|aj+sJ |
2}

= O(J−2m)‖X(m)‖2
L2,

so that

K∑

j=−K

|ãj − aj|
2

(1 + ρ(2π)2mj2m)2
= O(J−2mρ−1/2m)‖X(m)‖2

L2

Combining these and applying the assumptionsK ∼ J/2, andE(‖X(m)‖2
L2) < ∞, we

obtain (3.8).

Next, if X ∈ W 2m
2,per, we have

∑∞
j=−∞(2πj)4m|aj|

2 = ‖X(2m)‖2
L2. The proof of (3.9)

is the same as that for (3.8), except that now we have, with probability one,

∑

|j|>K

|aj|
2 ≤ (2π)−4mK−4m

∑

|j|>K

(2π)4mj4m|aj |
2 ≤ K−4m(2π)−4m‖X(2m)‖2

L2;

|ãj − aj |
2 ≤ {

∑

s6=0

(j + sJ)−4m}{
∑

s6=0

(j + sJ)4m|aj+sJ |
2} ≤ O(J−4m)‖X(2m)‖2

L2 ;

K∑

j=−K

ρ2(2π)4mj4m|aj |
2

(1 + ρ(2π)2mj2m)2
≤ ρ2

K∑

j=−K

(2π)4mj4m|aj |
2 ≤ ρ2‖X(2m)‖2

L2.

Therefore, the termO(ρ) in (3.8) is replaced byO(ρ2) and (3.9) follows.

Proof of Theorem III.3

In view of the discussions prior to the statement of the theorem, it suffices to show thatνρ =

Op(1) whereνρ is the largest eigenvalue of̃Tρ. By (B.6), T̃ρ andΩ̌ρ have the same eigen-

values. By (B.1), the eigenvalues ofΩ̌ρ are bounded by those ofJ−1Ωn,J = J−1n−1ZZZTZZZ.

Hence it suffices to show that

sup
n,J

J−2E[tr(Ω2
n,J)] <∞.
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Straightforward computations show that

1

J2
E[tr(Ω2

n,J)] =
1

nJ2

J∑

j=1

J∑

k=1

E[(X1(tj) + ς1,j)
2(X1(tk) + ς1,k)

2]

+
n− 1

nJ2

J∑

j=1

J∑

k=1

E2[(X1(tj) + ς1,j)(X1(tk) + ς1,k)].

By the Cauchy-Schwarz inequality, it is sufficient to deal with the first expression on the

right. In view of independence,

1

J2

J∑

j=1

J∑

k=1

E[(X1(tj) + ς1,j)
2(X1(tk) + ς1,k)

2]

=
1

J2

J∑

j=1

J∑

k=1

{E[X2
1 (tj)X

2
1 (tk)] + σ2

ς (E[X2
1 (tj)] + E[X2

1 (tk)]) + σ4
ς },

which will be bounded under the assumption thatE(‖X1‖
4
L2) <∞.

Proof of Theorem III.4

LetX{ℓ} =
∑ℓ

j=−ℓ ajφj , namely the projection ofX on span{φk,−ℓ ≤ k ≤ ℓ}. Then

R(s, t) = E[X(s)X̄(t)] = lim
ℓ1,ℓ2→∞

E[X{ℓ1}(s)X̄{ℓ2}(t)] =
∞∑

j1=−∞

∞∑

j2=−∞

E(aj1 āj2)φj1(s)φ̄j2(t).

For convenience, writeaj1,j2 = E(aj1 āj2). By an argument similar to that used in Lemma

B.2, using the assumptionE{[X(m)(s)]2} <∞ for all s, we have

R(m,m)(s, t) =
∞∑

j1=−∞

∞∑

j2=−∞

aj1,j2(2πij1)
m(−2πij2)

mφj1(s)φ̄j2(t)

= lim
ℓ1,ℓ2→∞

E[X
(m)
{ℓ1}

(s)X
(m)
{ℓ1}

(t)] = E[X(m)(s)X(m)(t)].

Consequently, we have

∞∑

j1=−∞

∞∑

j2=−∞

(2πj1)
2m(2πj2)

2m|aj1,j2 |
2 (B.10)

=

∫ 1

0

∫ 1

0

[R(m,m)(s, t)]2dsdt =

∫ 1

0

∫ 1

0

E2[X(m)(s)X(m)(t)] ≤ E‖X(m)‖4
L2 <∞.
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Similarly, under the additional conditionsX ∈ W 2m
2,per a.s.,E{[X(2m)(s)]2} < ∞ for all s,

andE‖X(2m)‖2
L2 <∞, we can show

∞∑

j1=−∞

∞∑

j2=−∞

(2πj1)
4m|aj1,j2 |

2 =

∫ 1

0

∫ 1

0

|R(2m,0)(s, t)|2 =

∫ 1

0

∫ 1

0

E2[X(2m)(s)X(t)]

≤
(
E‖X(2m)‖4

L2E‖X‖4
L2

)1/2
<∞. (B.11)

DefineRρ = E[R̃ρ(s, t)] and letTρ be the corresponding covariance operator. The follow-

ing calculations are similar to those in Lemma III.2. LetΣ = E(XXX1XXX
T
1 ) = (R(tl, tk))

J
l,k=1,

it follows that

Rρ(s, t) = φT (s)PρE(ZZZ1ZZZ
T
1 )P̄ T

ρ φ̄(t)

= J−2φT (s)(I + ρW )−1Φ̄T (Σ + σ2
ς I)Φ(I + ρW )−1φ̄(t)

=
K∑

j=−K

K∑

k=−K

ãjk{1 + ρ(2πj)2m}−1{1 + ρ(2πk)2m}−1φj(s)φ̄k(t)

+σ2
ς J

−1
K∑

j=−K

{1 + ρ(2πj)2m}−2φj(s)φ̄j(t),

where

ãj1,j2 =
J∑

l=1

J∑

k=1

R(tl, tk)φ̄j1(tl)φj2(tk)

=
∞∑

s1=−∞

∞∑

s2=−∞

(−1)s1+s2aj1+s1J,j1+s2J , −K ≤ j1, j2 ≤ K.

Then

‖Tρ − T‖2
H =

∫ 1

0

∫ 1

0

[Rρ(s, t) − R(s, t)]2dsdt

≤ 2
K∑

j1=−K

K∑

j2=−K

|ãj1,j2{1 + ρ(2πj1)
2m}−1{1 + ρ(2πj2)

2m}−1 − aj1,j2 |
2

+2σ4
ς J

−2
K∑

j=−K

{1 + ρ(2πj)2m}−4 +
∑

|j1|>K

∑

|j2|>K

|aj1,j2 |
2.
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Suppose first thatX ∈Wm
2,per andE‖X(m)‖4

L2 <∞. By (B.10),

∑

|j1|>K

∑

|j2|>K

|aj1,j2 |
2 ≤ (2πK)−4m

∑

|j1|>K

∑

|j2|>K

(2πj1)
2m(2πj2)

2m|aj1,j2|
2 = Op(J

−4m),

and by (B.9) withr = 4,

J−2
K∑

j=−K

{1 + ρ(2πj)2m}−4 = O(J−2ρ−1/(2m)).

Now,

K∑

j1=−K

K∑

j2=−K

|ãj1,j2{1 + ρ(2πj1)
2m}−1{1 + ρ(2πj2)

2m}−1 − aj1,j2 |
2 ≤ 2(A+B)

where

A =
K∑

j1=−K

K∑

j2=−K

|ãj1,j2 − aj1,j2|
2{1 + ρ(2πj1)

2m}−2{1 + ρ(2πj2)
2m}−2

B =
K∑

j1=−K

K∑

j2=−K

|aj1,j2{1 + ρ(2πj1)
2m}−1{1 + ρ(2πj2)

2m}−1 − aj1,j2 |
2.

It follows that

|ãj1,j2 − aj1,j2|
2 ≤ (

∑

(s1,s2) 6=(0,0)

|aj1+s1J,j1+s2J |)
2

≤ {
∑

(s1,s2) 6=(0,0)

(j1 + s1J)−2m(j2 + s2J)−2m}

×{
∑

(s1,s2) 6=(0,0)

(j1 + s1J)2m(j2 + s2J)2m|aj1,j2 |
2}

≤ [{
∑

s1 6=0

(j1 + s1J)−2m}{
∞∑

s2=−∞

(j2 + s2J)−2m}

+{
∞∑

s1=−∞

(j1 + s1J)−2m}{
∑

s2 6=0

(j2 + s2J)−2m}]

×

∫ 1

0

∫ 1

0

|R(m,m)(s, t)|2dsdt

= O(J−2m). (B.12)
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By (B.9) with r = 2 and (B.12),

A = O(J−2mρ−1/m).

Next,

B ≤ 3
K∑

j1=−K

K∑

j2=−K

ρ2(2πj1)
4m|aj1,j2 |

2 + ρ2(2πj2)
4m|aj1,j2 |

2

{1 + ρ(2πj1)2m}2{1 + ρ(2πj2)2m}2

+3
K∑

j1=−K

K∑

j2=−K

ρ4(2πj1)
4m(2πj2)

4m|aj1,j2 |
2

{1 + ρ(2πj1)2m}2{1 + ρ(2πj2)2m}2
.

Clearly,

ρ2(2πj1)
4m + ρ2(2πj2)

4m

{1 + ρ(2πj1)2m}2{1 + ρ(2πj2)2m}2
≤ ρ(2πj1)

2m + ρ(2πj2)
2m,

and

ρ4(2πj1)
4m(2πj2)

4m

{1 + ρ(2πj1)2m}2{1 + ρ(2πj2)2m}2
≤ ρ2(2πj1)

2m(2πj2)
2m.

We thus have

B ≤ 3
K∑

j1=−K

K∑

j2=−K

{ρ(2πj1)
2m + ρ(2πj2)

2m + ρ2(2πj1)
2m(2πj2)

2m}|aj1,j2 |
2 = O(ρ).

Combining the various computations, using the fact that ifm ≥ 2 andJ−1ρ−1/(2m) → 0

thenJ−2mρ−1/m = o(J−2ρ−1/(2m)), we conclude

E(‖Tρ − T‖2
H) = O(ρ) +O(J−2ρ−1/(2m)) if X ∈Wm

2,per andE‖X(m)‖4
L2 <∞. (B.13)

Now if X ∈ W 2m
2,per andE‖X(2m)‖2

L2 < ∞, the same approach shows thatB = O(ρ2).

Thus,

E(‖Tρ − T‖2
H) = O(ρ2) +O(J−2ρ−1/(2m)) if X ∈ W 2m

2,per andE‖X(2m)‖4
L2 <∞.(B.14)

Next,

E(‖T̃ρ − Tρ‖
2
H) = E

∫ 1

0

∫ 1

0

[R̃ρ(s, t) −Rρ(s, t)]
2dsdt

= n−1

∫ 1

0

∫ 1

0

var{X̃ρ(s)X̃ρ(t)}dsdt ≤ n−1E(‖X̃ρ‖
4
L2).
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If follows that

E(‖X̃ρ‖
4
L2) ≤ 8E(‖X‖4

L2) + 8E(‖X̃ρ −X‖4
L2),

whereE(‖X‖4
L2) <∞ by assumption. By calculations in Lemma III.2, we have

‖X̃ρ −X‖2
L2 ≤ {ρ+O(J−2m)}‖X‖2

S
+ 2

J∑

j=1

ς̃2j
(1 + ρπ2mj2m)2

.

Some tedious but straightforward calculations show thatE(ς̃2j ς̃
2
k) = O(J−2), and we obtain

E(‖X̃ρ −X‖4
L2) = O(ρ2) +O(J−2ρ−1/m).

We have shown

E(‖T̃ρ − Tρ‖
2
H) = O(n−1). (B.15)

The results in theorem follow from (B.13)-(B.15).

Proof of Theorem III.5

Define bilinear forms

L(g) = 〈g, Tρg〉L2 + 〈g(m), g(m)〉L2 and L̃(g) = 〈g, T̃ρg〉L2 + 〈g(m), g(m)〉L2 .

Lemma B.3 Assume that the conditions of Theorem III.4 hold. Letn, J, ρ be such that

n−1 + ρ+ J−1ρ−1/(2m) → 0. The following can be shown:

1. lim infJ,ρ infg=φT b,‖g‖L2=1 L(g) > 0, and

2. limn,J,ρ P (infg=φT b,‖g‖L2=1 L̃(g) > c) = 1.

Proof. For convenience letn, J, ρ be indexed byk andn−1
k + ρk + J−1

k ρ
−1/(2m)
k → 0 as

k → ∞.

(i) Notice that the null space of〈g(m), g(m)〉L2 is spanned byφ0. On the other hand, by

our assumption,〈φ0, Tφ0〉L2 = c0 > 0. Fix 0 < ǫ < c0 and pick a large enoughk so that
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we have‖Tρ −T‖ < ǫ and〈φ0, Tρφ0〉L2 ≥ c0 − ǫ by Theorem III.4. Note that in this proof,

the operator norm can be the usual sup-norm, which is dominated by the Hilbert-Schmidt

norm. For anyg = φT b with bT b̄ = 1, let h = g − b0φ0, then‖h‖2 = 1 − |b0|
2. Thus,

L(g) ≥ c1|b0|
2 − 2|b0||〈φ0, Tρh〉L2| + 〈h(m), h(m)〉L2

≥ c1|b0|
2 − 2c2‖h‖ + c3‖h‖

2 for all largek;

on the other hand,L(g) ≥ 〈g(m), g(m)〉L2 = 〈h(m), h(m)〉L2 ≥ c3‖h‖
2, therefore

L(g) ≥ (c1|b0|
2 − 2c2‖h‖)+ + c3‖h‖

2 for all largek.

Note that the minimum of this lower bound does not depend onJ or ρ.

(ii) Let c be thelim inf in part (i). For any0 < ǫ < c,

P ( inf
g=φT b,bT b̄=1

L̃(g) ≥ c− ǫ) = P ( inf
g=φT b,bT b̄=1

L̃(g) ≥ c− ǫ, ‖T̃ρ − Tρ‖ ≤ ǫ)

+P ( inf
g=φT b,bT b̄=1

L̃(g) > c− ǫ, ‖T̃ρ − Tρ‖ > ǫ).

Whenk is large enough, the first term is equal toP (‖T̃ρ − Tρ‖ ≤ ǫ) which tends to 1 as

k → ∞, and the second term tends to 0.

Proof of Theorem III.5: We will start by showing thatE(‖f̂λ,ρ‖
2|ZZZ) = Op(1). First,

‖f̌λ,ρ‖
2
L2 = ‖(Ω̌T

ρ + λW )−1Ω̌T
ρ β̌‖

2 ≤ ‖β̌‖2 = ‖f̌‖2
L2 < ‖f‖2

L2.

Second, letλmin(·) andλmax(·) be the functions that return the smallest and largest eigen-

values of a matrix. For any functiong(t) = φT (t)b, we haveL̃(g) = bT (Ω̌ρ + W )b̄,

then by Lemma B.3,λmin(Ω̌ρ + W ) = Op(1). Hence,λmin(Ω̌ρ + λW ) = Op(λ), and

λmax{(Ω̌ρ + λW )−1} = Op(λ
−1). Also, as stated before, the eigenvalues ofΩ̌ρ are the

same as those of̃Tρ, and hencěΩρ is positive semi-definite. It then follows that

E(‖hλ‖
2
L2|ZZZ) = E{εεεn−1ZZZV (Ω̌ρ + λW )−2n−1V̄ TZZZTεεε|ZZZ}
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= n−1σ2
ǫ tr{(Ω̌ρ + λW )−2Ω̌ρ}

≤ n−1σ2
ǫ tr{(Ω̌ρ + λW )−1}

≤ n−1σ2
ǫ [λmax{(Ω̌ρ + λW )−1} + 2λ−1

K∑

j=1

(2πj)−2m]

= Op(n
−1λ−1).

Thirdly, by assumption that(ρ+ J−1ρ−1/(2m))/λ is bounded,

E(‖gλ‖
2
L2|ZZZ) = E{rrrn−1ZZZV (Ω̌ρ + λW )−2n−1V̄ TZZZTrrr|ZZZ}

≤ n−1λmax{(Ω̌ρ + λW )−1}E{rrrn−1ZZZV (Ω̌ρ + λW )−1V̄ ZZZTrrr|ZZZ}

≤ n−1λmax{(Ω̌ρ + λW )−1}E(rrrTrrr|ZZZ)

= Op(λ
−1){Op(ρ) +Op(J

−1ρ−1/(2m))} = Op(1).

Now, by (B.2), we haveE(‖f̂λ,ρ‖
2
L2|ZZZ) = Op(1), and thereforeE(‖f̂λ,ρ−f‖

2
L2 |ZZZ) = Op(1).

Finally, notice that

E(‖f̂λ,ρ − f‖2
T |ZZZ) = E(‖f̂λ,ρ − f‖2

T̃ρ
|ZZZ) + E{〈f̂λ,ρ − f, (T − T̃ρ)(f̂λ,ρ − f)〉L2|ZZZ}

≤ E(‖f̂λ,ρ − f‖2
T̃ρ
|ZZZ) + ‖T − T̃ρ‖HE(‖f̂λ,ρ − f‖2

L2|ZZZ).

The result follows from Theorems III.3 and III.4.
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