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ABSTRACT

Topics in Functional Data Analysis with Biological Applitans. (August 2006)
Yehua Li, B.S., Tsinghua University;
M.S., Texas A&M University

Co-Chairs of Advisory Committee: Dr. Raymond J. Carroll
Dr. Tailen Hsing

Functional data analysis (FDA) is an active field of statstin which the primary sub-
jects in the study are curves. My dissertation consists of itnmovative applications of
functional data analysis in biology. The data that motidatee research broadened the
scope of FDA and demanded new methodology. | develop newamangetric methods to
make various estimations, and | focus on developing larggatheories for the proposed
estimators.

The first project is motivated from a colon carcinogenesidtthe goal of which is to
study the function of a protein (p27) in colon cancer develept. In this study, a number
of colonic crypts (units) were sampled from each rat (sulpjacrandom locations along
the colon, and then repeated measurements on the proteissiqn level were made on
each cell (subunit) within the selected crypts. In this peol) measurements within each
crypt can be viewed as a function, since the measurementbecamdexed by the cell
locations. The functions from the same subject are spatialirelated along the colon,
and my goal is to estimate this correlation function usingpayametric methods. We use
this data set as an motivation and propose a kernel estimnftbe correlation function
in a more general framework. We develop a pointwise asynepitmirmal distribution

for the proposed estimator when the number of subjects id fixel the number of units



within each subject goes to infinity. Based on the asymptbéory, we propose a weighted
block bootstrapping method for making inferences abouttneelation function, where the
weights account for the inhomogeneity of the distributibthe unit locations. Simulation
studies are also provided to illustrate the numerical perémce of the proposed method.
My second project is on a lipoprotein profile data, where th& ¢s to use lipoprotein
profile curves to predict the cholesterol level in human dlodgain, motivated by the data,
we consider a more general problem: the functional lineatetso)(Ramsay and Silverman,
1997) with functional predictor and scalar response. Tisdrerature developing different
methods for this model; however, there is little theory tpsart the methods. Therefore,
we focus more on the theoretical properties of this modekrétare other contemporary
theoretical work on methods based on Principal Componegig2sion. Our work is dif-
ferent in the sense that we base our method on roughnessypapptoach and consider a
more realistic scenario that the functional predictor iseslied only on discrete points. To
reduce the difficulty of the theoretical derivations, wettiesthe functions with a periodic
boundary condition and develop an asymptotic convergeategfor this problem in Chap-
ter I. A more general result based on splines is a futureaesh topic that | give some

discussion in Chapter M.
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CHAPTER |

INTRODUCTION

Functional Data Analysis (FDA) is a new area of statisticgcwltombines and extends ex-
isting methodologies and theories from nonparametridfsa&rametric smoothing, stochas-
tic processes, multivariate analysis and generalizea@dinedels. In contrast to the tradi-
tional methods, FDA deals with data sets, in which a datatpsia function defined on a

fixed compact set, instead of a vector. In other words, theaarvariables are defined on a
functional space instead of a vector space. In this sengkj$=&h extension of multivariate

analysis, where the random vectors are of infinite dimensiga need theory of stochas-
tic processes to model the population of these random fumeti However, in real life,

these functional subjects are always measured on discogtespand the measurements
are usually contaminated with measurement errors. Thahyswe need nonparametric

smoothing methods to recover the functions.

1.1 Functional Data

Ramsay and Silverman (1997) and Ramsay and Silverman (2202)a good summary
of examples and methods in FDA. In my dissertation, | will won two projects both on
functional data. Both projects are new applications of fismcdata, that extends the scope
of FDA described in Ramsay and Silverman (1997). | will giveraef introductions to
these data sets, and use them to illustrate how functiomalkuda unique in nature and why

we need to develop new methodology to analyze them. The pegpmethods, theory and

This thesis follows the style @iometrics



data analysis are given int the following chapters.
1.1.1 Colon Carcinogenesis Data

The biomarker that we are interested in is p27, which is ecljfde protein that affects cell
apoptosis, proliferation and differentiation. An impantgoal of the study is to understand
the function of p27 in the early stage of the cancer developm®cess. In the experiment,
12 rats were administered azoxymethane (AOM), which is arcspecific carcinogen.
After 24 hours, the rats were terminated and a segment ohd@sue was excised from
each rat. About 20 colonic crypts were randomly picked alatigear slice on the colon
segment. The physical distances between the crypts wersumeek Then, within each
crypt, we measured cells at different depths within the ty@and then the expression level
of p27 was measured for each cell within the chosen crypts.

The first plot in Figure 1 shows the colonic crypts. As we cantkat the cells line up
within the crypt so that we can index the measurements wéhirypt by the relative cell
depth. If we denote the cell location in the bottom of a crypbé 0 and top to be 1, it is
natural to consider the true p27 expression levels withiryatd¢o be a continuous function
on [0, 1]. Therefore, the measurements on cells can be consideréscaste observations
on the function. The number of cells per crypt is roughly 3@ ibvaries from crypt to

crypt. Consequently, the observation locations are d@ffefrom function to function.
1.1.2 Lipoprotein Profile Data

The goal of this project is to use lipoprotein profile curveptedict cholesterol levels from
a patient. The lipoprotein curves were generated by thewitly protocol. A standard
amount p0u!l) of diluted serum sample from each patient was process iceh&ifuga-
tion machine, such that different types of lipoproteinseve&eparated into layers according

to their densities. A chemical stain was added to show theadnations of the choles-



terol, and the profile curve was generated by recording tieagity of the stain at different
heights using digital cameras.

The second plot in Figure 1 shows a typical lipoprotein peajinerated in this study.
We re-scale the abscissa to make each profile curve definéi gnwith 0 corresponds
to the top of the tub and corresponds to the bottom. As one can see, there are usually
three peaks in a profile curve, which correspond to the thra@mtypes of lipoprotein
with different densities. The three types of lipoproteie &ery Low Density Lipoprotein
(VLDL), Low Density Lipoprotein (LDL) and High Density Liparotein (HDL), from the
left to the right of the profile. In this study we have 24 patsereach with a lipoprotein
profile curve and a cholesterol level measured separatelgh [grofile curve consists of
over 1,000 equally spaced measurements. The goal is todliiildar model to predict the

cholesterol level from these profile curves.

Other typical examples of functional data described in Rgnmad Silverman (1997) are

the growth curves, temperature curves and so on.
1.1.3 Why Is Functional Data Special

The compelling reasons for developing new methodology dioicfional data instead of

applying multivariate analysis are the following:

¢ In many functional data, the dimension of the vector is mughér than the number
of subjects. For example, in the lipoprotein profile prajélce number of points in
each curve depends on the resolution of the camera. In tidsdtistudy, the number
of subject is always limited, but as technology advances avesample more and
more points on each curve. Traditional multivariate analgees not apply in this
case, and new methods should be developed to take into dadbeusmoothness of

the curves underlying the discrete observations.
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Figure 1: Functional data. Upper panel: a picture of colenypts; lower panel: a lipopro-
tein profile curve.



e The observation locations are different from curve to cufge example, the colon
carcinogenesis data. In this case, the dimension of thergecbuld be different
from one curve to another, values on the same entries inreliffe’ectors could mean

different things.

¢ In some application, the model is concerned with the funetigproperties of these
curves. For example, Ramsay and Silverman (1997) gives amge on growth
curves. In this study, the heights of a group of children wesasured over time,

while the acceleration (second derivative) of these grawittres are of interest.

1.2 General Ideasof Functional Data Analysis

In this section, | will review some general ideas and method&inctional Data Analysis,
which are related to my research topic.

In FDA, the data are a sample of curves. It is natural to modelpgopulation of
these curves as a stochastic procEss) defined on the same compact set. Two important
ideas are generally used to deal with functional data: oteds dimension reduction and
reduce the problem to multivariate analysis; the other ésausoughness penalty approach
that utilize the smooth nature of the curves. Both methotiheip to reduce the variability

of the result but introduce some bias.
1.2.1 Functional Principal Component Analysis

In stochastic process, there is a long-established rdsatliat stochastic process(t) de-
fined on|0, 1] has the following Karhunen-léae expansion (Ash and Gardner, 1975). Sup-
poseR(s,t) = coW{ X (s), X(t)} has eigenvalues; > Ay > ---, with ¢1(-), da(-), - -

being the corresponding eigenfunctions, then

X(t) =m(t)+ Y &dnlt),
K1



wherem(t) = E{X(t)}, & are the principal component scores witl{¢;,) = 0 and

var(&y) = Ag.
1.2.2 Roughness Penalty

The roughness penalty idea is probably first used in nonpetrammegressions.
One of the most popular methods in nonparametric regressitre penalized spline
method(Ruppert, Wand, and Carroll, 2003), the generaldveonk of which is as the fol-

lowing. Suppose the data we observed are
}/Z:f(xl)+€l7 izla"'ana

where f is an unknown function. This is a typical regression prohlent f may not be
of any parametric form. To increase the flexibility of the rabdve can estimat¢ by 7
which is spanned by a set of basis functioBs= {B;(z),- -, Bx(z)}*. The penalized

spline estimator is defined as
f(a) = 3" B(x), (1.1)
WhereB is the minimizer of a penalized least square
S (¥, - 8TB(n)}? + AFTDS,
i=1

whereD is positive definite matrix and > 0 is a tuning parameter.

In this method, we usually include a relatively large nuntifdrasis functions to make
the model flexible, and use the roughness penalti 3 to force the estimated curve to be
smooth.\ controls the tradeoff between flexibility and variation.

The penalized spline given by (1.1) is quite general, itudels many previous spline
variants as special cases. For example, wBer) are B-spline functions and the penalty is

on the divided differences of the coefficients, it is the piged B-spline method introduced



by Eilers and Marx (1996). WheRB(x) are the natural spline basis with knots omaland
the penalty is o/ (f) = [{f™ (x)}?dx with

D= [ B(@)(B" (@) ds,

the penalized spline is equivalent to smoothing spline @aikb1988). Ruppert et al. (2003)

propose to use the truncated power series as spline basis,
B(’I) = {17 I,sz, e 7Ip7 (ﬂf - /{l)ﬁ-v Tty (..'l:' - /{K—p—l)ﬁ}a

and letD = diag0,:1,1x-,-1). Another possibility is letB(x) be the fourier basis,
{1, cos(jmx),sin(jrz);j = 1,2,---}, and use the same penalty as in smoothing spline,
this method is referred as periodic smoothing spline in Bul{a988).

The roughness penalty approach has a close relation witmiked effect models,
and has been widely used beyond the scope of nhonparamefrassgon discussed above.
For example, the roughness penalty idea has been extengehatized likelihood and
penalized quasilikelihood methods for the generalizedt@ddnodels. See Ruppert et al.
(2003) for an overview.

Ramsay and Silverman (1997) also applied the roughnessty@rea in Functional
Data Analysis. For example, for the functional linear mdtat we will discuss in Chapter

1
KzuﬁAXNU®ﬁ+%

where they spaX;(-) on a set of basis functions and estimate the unknown coeffittiac-
tion f(-) by minimizing a penalized least square, with the penaltyhensecond derivative

of f.

1.3 Overview Structure

The following is the general structure of my dissertation.



In Chapter II, | present the results for the project on colarcimogenesis data. In this
data set, the measurements within a crypt are discreteathsers on a function, but these
functions are correlated within the same subject (rat).utlgtthe nonparametric kernel
methods to estimate the spatial correlation between thessions. Asymptotic normal
distributions are developed for the proposed estimatonsll blso discuss other issues in
data analysis, for example bandwidth selection and int&r@nocedure. Simulation studies
are also provided to check the performance of the proposduoaie

In Chapter Ill, | will focus on the theoretical properties fbe functional linear model
with functional predictor and scalar response. Althoughklidve the best method for such
models should be based splines due to the various desinadgenties of spline functions,
I will restrict my theoretical derivation to methods basedp@riodic spline simply because
they are much more tractable mathematically. | derive amasytic convergence rate for
the functional linear model under some periodic boundanddmns, but the result can be
inferred to more general spline methods.

In Chapter IV, | will discuss some possible extensions of noykw | will talk about
spline methods for functional linear models, apply themhe lipoprotein profile data
and compare the results to those of the periodic spline mdsttscussed in the previous
chapter.

All theoretical derivations are given in the appendix.



CHAPTER I

NONPARAMETRIC CORRELATION ESTIMATION FOR THE COLON
CARCINOGENESIS DATA

2.1 Introduction

This project concerns kernel-based nonparametric estimat covariance and correlation
functions. Our methods and theory are applicable to lodgial and spatial data as well
as time series data, where observations within the samedudyj different time points
or locations have strong correlations, which are statpimatime or distance lags. The
structure for the observation at a particular time or la@atvithin one subject can be very
general, for example a vector or even a function.

Our study arises from a colon carcinogenesis experimerd.bldmarker that we are
interested in is p27, which is a life cycle protein that affecell apoptosis, proliferation
and differentiation. An important goal of the study is to argtand the function of p27 in
the early stage of the cancer development process. In trezimgnt, 12 rats were admin-
istered azoxymethane (AOM), which is a colon specific cagen. After 24 hours, the
rats were terminated and a segment of colon tissue was exit@a each rat. About 20
colonic crypts were randomly picked along a linear slicel@dolon segment. The phys-
ical distances between the crypts were measured. Thennwei#ich crypt, we measured
cells at different depths within the crypts, and then theresgion level of p27 was mea-
sured for each cell within the chosen crypts. In this datacsgpts are naturally functional
data (Ramsay and Silverman 1997), that the responses \aitbippt are coordinated by
cell depths. There is a literature about similar data, fanegle Morris et al. (2001).

However, in this project, we will be focused on a very diffgreerspective. In this

application, the spatial correlation between crypts isioldgical interest, because it helps
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answer the question: if we observe a crypt with high p27 esgiom, how likely are the
neighboring crypts to have high p27 expression? We will ganauch of our discussion
in terms of this example, but as seen later sections, we hguéegeneral structure that
includes time series as a special case. In that contextsyme#otic theory is as the number
of "time series locations”, i.e., crypts, increases to iifin

Although motivated by a very specific problem, nonpararoe&iariance/correlation
estimators worth being investigated in their own right. ylean be used in a statistical
analysis as: (a) an exploratory device to help formulaterampatric model; (b) an inter-
mediate tool to do spatial prediction (kriging); (c) a diagtic for parametric model; (d) a
robust tool to test correlation. Understanding the thézakeproperties of the nonparamet-
ric estimator is important under any of these situation.nditing distribution theory would
be especially valuable for purpose (d).

There is previous work on the subject of nonparametric ¢amae estimation. Hall
et al. (1994) developed an asymptotic convergence rate efreekcovariance estimator in
a time series setting. They required not only an increasimg tlomain, but increasingly
denser observations. Diggle and Verbyla (1998) suggesteztreel weighted local lin-
ear regression estimator for estimating the non-statjomariogram in longitudinal data,
without developing asymptotic theory. Guan, Sherman andil€§2004) used a kernel
variogram estimator when assessing isotropy in geoststidata. They proved asymp-
totic normality for their kernel variogram estimator in aogaatistics setting, where they
required the spatial locations to be sampled from the fietd@tng to a two dimensional
homogeneous Poisson process.

As we will show below and as implied by the result from Guanlet2904) if the ob-
servation locations (or times) in the design are random,dHadsumption, namely that the
number of observation on a unit domain goes to infinity, isrestrictive and not necessary.

However, in the setting of Guan et al., given the sample sgzatjal locations are uniformly
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distributed within the field, which does not fit our problenmheve crypt locations within a
rat are, in fact, not even close to uniformly distributed.

Our work differs from the previous work on the kernel covade estimators in the
following ways. First, our approach accommodates more ¢exngata structure at each
location or time. Secondly, we allow the spatial locatiom®é sampled in an inhomoge-
neous way, and as we will show below that this inhomogeneillyaffect the asymptotic
results and inference procedures. In doing so, we genertiz setting of Guan et al.
(2004), and link it to the setting of Hall et al. (1994). Alsduan et al. (2004) is mainly
concerned with comparing variograms on a few pre-seledtgdrte lags, we, on the other
hand, are more interested in the correlation as a functibmdlly, we propose an inference
procedure, thus filling a gap in the previous literature.

This chapter is organized as follows. Section 2.2 introdumé model assumptions
and estimators, while asymptotic results are given in 8e@i3. A brief analysis of the
data motivating this work is given in Section 2.4, where vg@aliscuss bandwidth selection
and a procedure to estimate the standard deviation of thelaton estimator. Section 2.5
describes a simulation study, and final comments are giv&eation 2.6. All proofs are

given in the appendix.

2.2 Modd Assumptionsand Estimators

The data considered here have the following structure:

e There are are = 1, ..., R independent subjects, which in our example are rats. We

allow R = 1.

e The data for each subject have two levels. The first level has@easing domain,
as in time series or spatial statistics, and are the crypsirexample. We label this

first level as a "unit”, and it is these units that have timeeseor spatial structure in
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their locations. Within each subject, there are 1, ..., NV, such units.

e The second level of the data consists of observations wéidah of the primary units.
In our case, these are the cells within the primary unitsctienic crypts. We will
label this secondary level as the "sub-units”, which arelligdl with locations. The
locations with the sub-units are on the interjall]. For simplicity, we will assume
there are exactlyn sub-units (cells) within each unit (crypt), with th& sub-unit
having location (relative cell depth)= (j — 1)/(m — 1). However, all theories and
methods in our paper will go through if the sub-units takeftiven of an arbitrary

finite set.

¢ In the time series setting of Hall et al. (1994) or the spatetting of Guan et al.
(2004),m = 1.

LetO(s,x) be arandom field off x X', wheres is the unit (crypt) location and and
is the sub-unit(cell) location, so thd@t = [0,00), X = {(j —1)/(m —1),j = 1,--- ,m}.
Assume tha®,(-,-), » = 1,---, R, are independent realizations -, -). We use the
short-hand notatio®,;(z) = ©,(S,;, ¥), wheresS,; is the location of the™ unit (crypt)

within ther'" subject (rat). Our model for the observed data is that
Y = Ori(z;) + €45, (2.1)

whereY is the response (logarithm of p27 levet);; are zero-mean uncorrelated mea-
surement errors with varianeg, r = 1,---,R,i = 1,---, N, andj = 1,---,m are the
indices for subjects (rats), units (crypts) and sub-umiédlg). Defineo,.(-) = E,.{0,;(:)}

to be the subject-level mean, and the notatibh™refers to expectation conditional on the
subject. Another way to understa@il(-) is to decompose the random fiehj (-, -) into
the following random effect mode®),;(z) = O,.(z) + A,;(z), where©,(-) is the subject

(rat) effect,A,; are the zero-mean, spatially correlated unit (crypt) ¢$fec
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Within each subject, we assume that the correlation of thenmit (crypt)-level
functions is stationary over the distances between thes.utit addition, the covariance
between unit location§s,, s,) at sub-unit (cell) locationéx;, z5) is assumed to have the

following form:

V{zy,x2,AY = E[{O,(s1,21) — O,(21) H{O, (52, 12) — O (w2)}], (2.2)

whereA = s; — so. While we develop general results for model (2.2), in margesat is

reasonable to assume that the covariance function is sdpara.,
V(.Z'l,ZEQ,A) = G(ZEl,Ig)p(A> (23)

When the covariance function is separable, the correldtination at the unit-levelp(-),
is of interest in itself. In our application-) is the correlation between crypts. We provide
an estimator op(-) as well as an asymptotic theory for that estimator.

A first estimator for the covariance function has the follogviorm:

Vi, o, ) = DSOS KA k) = ANYi; = Vo) Yo — V)]
r i k#
<D YD KA E) - AN (2.4)
r 1 k#i

whereY,; = N-' SO Y, Au(is k) = Spi — Sy Kin(-) = B~ K (-/h) with K being a
kernel function satisfying the conditions in Section 3.

It is usually reasonable to assume tRat:, 25, A) has some symmetry property, that
it is an even function iMA and V(z1, 25, A) = V(z9,21,A). However, the estimator
defined in (2.4) does not enjoy this property. To see this, baeove that, for; # x,
although(Y,;; — Y,;) (Yo — Y1) @and (Y, — Y,p) (Yor; — Y ;) estimate the same thing,
they only contribute td7(xj, x, A) andV(xj, x;, —A), respectively. We also observe that

ﬁ(xl,:@, A) = ]A)(xg,xl, —A).
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To correct the asymmetry of the covariance estimator/Nfor 0, define

Vi(wj, o, A) = DY EKu{|A( k)| = ANy = Vo) (Yo — V)]

r i k#i

<D YOS KA R) - AY T (2.5)

T ki
and Ietf)(xj,xl,A) = ﬁ(xj,xl, —A) for A < 0. As shown in the proof of Theorem
1.2, for a fixed A # 0, V(z1, 2, A) is asymptotically equivalent thA)(:zrl,xz,A) +
V(xy, 9, —A)}/2.

In addition, when the separable structure (2.3) is assudedihe estimators

~ ~

G(Jfl,l’g) = V(l‘l,l‘Q,O), (26)
and
PA) = D> VLo, A D Gla, )} (2.7)
r1€X r2<x] r1€X r2<x]

2.3 Asymptotic Results

The following are our model assumptions. Each subject {(satj lengthZ, where in our
exampleL is the length of the segment of tissue from each rat. The (aigpts) are
located on the intervdD, L], and in our asymptotics we lét — oo, so that we have an
increasing domain. Suppose that the positions of the unigpis) within thert® subject
(rat) areS,q, - - -, S.n,, Where theS,.;’s are points from an inhomogeneous Poisson process
on [0, L]. ThenA, ;, = S,; — S, The definition of an inhomogeneous Poisson process
is adopted from Cressie (1993). We assume the inhomoger&mason process has a
local intensityvg*(s), wherev is a positive constant ang (s) = ¢(s/L) for a continuous
density functiory(-) on [0, 1].

A special case of our setting is that-) is a uniform density function and the units

(crypts) are sampled according to a homogeneous Poissa@esxo This is the setting
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investigated in Guan et al. (2004). Our setting resemblasahHall et al. (1994) in the
sense that we also model the unit locations as random vesiabth the same distribution:
in our setting, the number of units within a subject (rat)Nis ~ Poisson(vL); given
N, S;1/L,---, S, n,./L are independent and identically distributed with dengity. By
properties of Poisson processég,/. = O(v) almost surely, ad. — oo, that is, the
number of units (crypts) on a unit length tends to a constarg.worth noting that Hall et
al. (1994) required this ratio to go to infinity. We requiredesamples on the domain than
do Hall et al. (1994).

In what follows, we provide a list of definitions and condit®needed to present our

theoretical findings.

1. We assume that-) is continuous and; > ¢(t) > ¢, > 0 for all ¢ € [0, 1]. Suppose
ti,i = 1,2, 3,4, are independent random variables with dengity, definefi, fs, f3
to be the density fot, — to, (t1 — ta,t3 — ta), (t1 — ta, t3 — t4,t2 — t4), respectively.
Sinceg(+) is bounded, one can easily derive tifat0), f»(0,0) and f3(0,0,0) are
positive. We also assume thét is Lipschitsz continuous in the neighborhood of
0, i.e. |fa(u,v) — f2(0,0)] < Aj|u| + Ao|v|, for Yu,v and some fixed constants

)\1, )\2 > 0.

2. AssumeV(zq, z2, A) has two bounded continuous partial derivatived\inand that

SUP,, o, | V@1, 22, A)|dA < 0.
3. Let

Mz, 29, 3,24, u, v, W)
=k, [{@m(m) — O,(71) H{Orip (12) — O,(22) H{Opis(23) — O, (23)}
{Oriy(24) — Or(4) }A (i1, 49) = u, A (i3, i) = v,

A, (i, i) = w] — V(21, x2, u)V(x3, T4,0).
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We assume\ has bounded partial derivatives:dnv andw, and

sup /|M(x1,x2,x3,x4,u,v,w)\dw < 0. (2.8)

T1,22,23,T4,U,V

4. Denoteb, (x1,29,A) = L7153, D i Kn{A — AL (4, k) HY (S, 21) — ©,(21)}
x{Y,(Srk, x2) — ©,(x2)}. We assume that, for any fixeH,

sup E(|var‘1/2{br(x1, Lo, AV b (21, w9, A) — E{b, (1, 22, A)}][*T)

L,z1,x2

<C, <o (2.9)
for somen > 0.

5. LetF(T') be theo-algebra generated B\O (s, x),s € T,z € X'}, for any Borel set

T C 7. Assume that the random field satisfies the following mixiagdition

a(t) = SlipHP(Al NAy) — P(A))P(Ay)| -
Ay € F{(—o0,t]}, Ay € F{[t + 7,00)}]

= O(r7°) for somes > 0. (2.10)

6. The kernel functiork’ is a symmetric, continuous probability density functiomps

ported on[—1, 1]. Definecy = [w*K (u)duandRg = [ K*(v)dv.

7. Assume thatn and R are fixed numbersl, — oo, h — 0, Lh — oo, andLh® =

0(1).

In assumption 1, we are imposing some regularity conditimgand f;. In fact, whery is
differentiable f; are piecewise differentiable, but usually not differelligaat0. However,
the Lipschitz condition orf; is easily satisfied when, for exampleis Lipschitz. Sincef;

is a marginal density of,’s, this condition meang; is also Lipschitz a0.
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Since we are estimating the covariance function, whichastétond moment function,
we need a regularity condition on td& moment function as in (2.8). Condition (2.9)
may seem a little too strong at first sight, but it really istjasondition to bound the tail
probability of our statistics. In fact, for example, if weveaan assumption analogous to
(2.8) for thes'™ moment ofo,.(s, z), one can use arguments as in Lemma A.3 to show that
E([by(x1, 12, A) — E{b.(x1, 22, A)}]*) = O(L3h~3), therefore condition (2.9) is satisfied
forn = 2.

DenoteV 002 (1, 25, A) = 02V(z1, 72, A) JOA2. LetV(A), V(A) andV(A) denote
the vectors collecting(z1, z2, A), ]7(9:1, x9, A) andﬁ(xl, x9, A) respectively, for all dis-
tinct pairs of(z,z,). The following are our main results for the asymptotic thesyrall
proofs are provided in the appendix. Note that Theorem Hférs toﬁ(-) in (2.4), while
Theorem I1.2 refers t®(-) in (2.5).

TaEOREM I1.1 Under assumptions7, for A # A’, we have

V(A) — V(A) — bias{V(A)}

(RLR)V? | R
V(A) — V(A) — biag[V(A)}

= Normal |0, {2 f,(0)}* 2A) OA4) :
CT(A,A)  B(A)
where the asymptotic bias bigs(A)} is a vector having entries biB(z;, 75, A)} =
o2 V00 (1, 2, A)R?/2, ¥(A) is the covariance matrix with the entry corresponding to
COV{]A)(:vl, T, A),9($3,$4,A)} equal toRg{ M (1, xo, v3, 4, A, A, 0) +1(19 = 24)02
V(xy,23,0) + (11 = 23)02V(29,24,0) + (v1 = 33,79 = 14)02} + (A = 0)Rg
{M(21, 29, 3,24,0,0,0)+1 (11 = 24)02V (29, 13,0)+1 (19 = 23)0*V (21, 74,0)+1 (7 =
14,79 = x3)00}; C(A, A') is the matrix with the entry corresponding to Rz, 72, A),

V(.I‘g,I4,A/>} equal tOI<A/ = —A>{M($1,$2,$3,I4,A,—A, —A) + I(SL’Q = .Z'3)O'2

V(z1,74,0) + I(z1 = 24)0*V (29, 23,0) + (11 = 24, 0 = 13)02}.
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THEOREM I1.2 Under assumptionk-7, for A # +A’, we have

V(A) — V(A) — bias{V(A)}

(RLR)'? | -
V(A') = V(A') — bias[V(A')}

ey o
= Normal |0, {v2f,(0)} !

0 Q)

where bia§V(A)} is a vector with entries bidd (1, 75, A)} = 02 V002 (21 x, A)h2/2,
Q(A) is the covariance matrix with the entry corresponding to{@, x5, A), V(x5 24, A)}
equal to(1/2) R { M (x1, x2, x3, 24, A, A, 0) + M(21, 22, 23, 24, A, — A, —A) + [ (29 =
24)0? V(z1,13,0) + I(xy = 13)02V(22,24,0) + [(x1 = x3,29 = x4)0) + [(29 =
23)02V(21,74,0) + I(x1 = x4)0°V(22,23,0) + [(z1 = x3,29 = 24)02} + [(A =
0)(1/2) R {2M (21, T2, T3, 74,0,0,0)+1 (29 = 24)02V(x1, 3,0)+1 (21 = 23)02V (19, T4,
0) + I(x) = x3,09 = x4)0r + [(12 = 23)02V (21, 24,0) + I[(x1 = 24)0°V(22,73,0) +

I(z) = z3,T9 = 24)02}.

COROLLARY I1.1 Suppose the covariance function has the separable seuet(®.3) with

Doy Doz, G(T1,72) # 0,andp(A) is defined in (2.7). Then foA # 0, we have
(RLR)2[p(A) — p(A) — bias{p(A)}] = Normal0, {12 f,(0)} o5 (A)],

where biagp(A)} = {p®P(A) — p(A)p®(0)}o2.h?/2 is the asymptotic bias gf(A),

o (A) = {324, apen Glan, 22)} H{1TQ(ANL + p*(A)17Q(0)1}.

We have the following remarks on our theoretical results:

1. The measurement errors in (2.1) affect the covarianema&str mainly though the
nugget effect (Cressie, 1993). In our covariance estimg@#) and (2.5), we get
rid of the nugget effect by excluding tiie= i terms in the summation. As a result,

the measurement errors do not introduce bias to our covariastimators. However,



19

they do affect the variation of the covariance estimatois la@nce the correlation

estimator, becaus€ is in the variance expressions for all our estimators.

2. Theresultin Theorem Il.2 suggest that the covarianaagirs at different distance
lag are asymptotically independent. This result may seeamteointuitive. It is
caused by the kernel smoothing: we choose the bandwidthke thas happen. This

result holds for two fixed valueg) andA’, whenh goes td0.

24 DataAnalysis

In this section we apply our methods to study the betweeptatgpendence in the car-
cinogenesis experiment. Recall that the main subjectsaise the units of interest are
colonic crypts and the sub-units within a unit are cells, aiclv we observe the loga-
rithms of p27 in a cell. The sub-unit locations that we workhain this illustration are at

x = 0,0.1,0.2,---,1.0. We discuss three key issues in our analysis, namely batidwid
selection, standard error estimation and positive serimnitke adjustment in the following

three subsections.

2.4.1 Bandwidth Selection
2.4.1.1 Global Bandwidth

Diggle and Verbyla (1998) suggested a cross-validationgare to choose the bandwidth
for a kernel variogram estimator. We modify their procedute the following two types
of ’leave-one-subject-out’ cross-validation criteriah€lfirst is based on prediction error
without assuming any specific covariance structure, antvé&nas
CVith) =D D> DD Tomalwy,w) = Vienfey, o, A0 k)P, (2.11)
TA(R) <A j=1 1=1
wherev, i (2, 1) = (Yeij — Y)Y — Y1), 13(_,,)(551, x9, A) is the kernel covariance

estimator using bandwidth, as defined in (2.5), with all information on thé&" subject
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(rat) left out. Here we focus on the rang®, (i, k)| < Ay, wherel, is a pre-chosen cut-
off point. The criterionC'V; (h) thus evaluates the prediction error for differénwithin the
range oflA,.(z, k)| < Ay.

Cross-validation criterion (2.11) assumes no specific itamee structure, while our
second cross-validation criterion takes into account épasable structure in (2.3), and is
given as

CVah) =" Y D> ey, m) = Gn(a, 2)pn A, R)}] (2.12)

TAM(ik)|<Ag j=1 1=1

whereG » (21, 22) andp_,)(A) are the estimators @ andp defined in (2.6) and (2.7),
with ther*" subject (rat) left out.

We evaluated both criteria to estimate the bandwidt¥We choose\, = 500 microns.

The first two columns of Table 1 gives the minimum points andimum values of the two
cross-validation criterions.

By observing Table 1, we find the two criteria gave almost iah minimum val-
ues. Since the cross-validation scores are estimates pfeléction errors, the two cross-
validation criteria represent prediction errors with otheut the separable structure (2.3).
The phenomenon, thatV; (-) andC'V;(-) have almost the same minimum values, suggests

that the separability assumption (2.3) fits the data well.
2.4.1.2 Two Bandwidths

The independent variables in the kernel estimatorAréi, k)| for all pairs of crypts within
one subject. As shown in Figure 2, the distribution|Af.(i, k)| that are less than 1000
microns, even more than the target range of interest, idlyosamewhat akin to a uniform
distribution.

As a robustness check on the global bandwidth, we repeateanalysis, except we

used one bandwidth fg\| < 200 microns, and we used a second bandwidth| fof >
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200, and then repeated the cross-validation calculations.ifijand (2.12). The minimum
values of the two cross-validation criterions are repoinetie 3' column of Table 1.
Comparing the results in columns 2 and 3 in Table 1, we find timenmum values of
the cross-validation functions did not change much, i.eexdra smoothing parameter did
not substantially reduce the prediction error for the domai| < 500 microns. In other
words, it appears sufficient to use a global bandwidth tareggp(A) for |A| < 500. For

the following analysis, we use the bandwidtk= 122 microns, as suggested bil5.

optimalh,  min CV score min score, 2 par
CVy | 124.2334 6.5073 6.4867
CV, | 122.7202 6.4955 6.4788

Table 1: Outcomes of two cross-validation procedures ogdheinogenesis p27 data. The
data used in the validation are those withvalues less tharh\, = 500 microns. The first
column gives the optimal global bandwidth, the second calgives the value of the cross-
validation function at the optimal global bandwidth; theadhcolumn gives the minimum
value of cross-validation functions using two differentathing parameters.

2.4.2 Standard Error Estimation

Our primary goal in this section is to construct an estimété® standard error fgs(A).
The asymptotic variance @{A) has a very complicated form, which involves e
moment function of the random field(x1, xo, 3, x4, u, v, w). With SO many estimates
of higher order moments involved, a plug-in method, whilasible, is not desirable. We
instead use a bootstrap method to estimate the varianagigire
In our model assumptions, the number of subjects (rAt$$ fixed, which means
that bootstrapping solely on the subject level will not gaveonsistent estimator of the

variance. Consequently, we decided to sub-sample withech sabject. When the data
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Figure 2: Histogram ofA,.(z, k)| in the carcinogenesis p27 data\| less than 1000 mi-
crons are considered.

are dependent, block bootstrap methods have been investigad used, see Shao and Tu
(1995). Politis and Sherman (2001) also justified using akbkub-sampling method to
estimate the variance of a statistic when the data are fromrked point process. Our data
can be viewed as a marked inhomogeneous Poisson processvétptine inhomogeneity
does require a modification of their procedure: if we sub{slara block from each subject
and compute the statistit A) by combining these blocks, then the variance of the statisti
depends on the locations of these blocks.

By letting R = 1 in Corollary 11.1, our theory implies that if the number ofitengoes
to infinity, each subject will provide a consistent estimadb o(A). Now, suppose the
Poisson process for each subject has a different localdityen, g’ (s), r = 1,---, R. With

a slight modification of our theoretical derivations, ona saow that,
R
(D v fra(O) LAY 2[(A) = p(A) — bias{p(A)}] = NormaK0, 05 (A)}
r=1

wheref,1(t) = [ g.(t + u)g,(u)du, r = 1,---, R, are the counterparts ¢ (¢) used in

Theorem I1.1, 11.2 and Corollary 11.1.
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Define A(A) =32, >, > iz Kn{A:(i, k) — A}, then by Lemma A.2,

A)/{ER: v2f1(0)L} — 1, in L2,
r=1
Now we propose our weighted bootstrap procedure:
1. Re-samplé? subjects (rats) with replacement from the original coltatbf subjects.
2. Within each re-sampled subject, randomly sub-sampleekhtith lengthZ*.

3. Combine theR blocks as our re-sampled data, comppit&) and A(A) using the

re-sampled data, with the same bandwiklths for the kernel estimator (2.7).

4. Repeat steps 1-B times, denoting the results from thé iteration asp;(A) and

Ap(A).

5. Obtain the estimator of the standard deviation as

wherep®(A) = B™' 320, (D).

The block length* should increase slowly with. Politis and Sherman (2001) suggested
takingL* = L¢, forsome) < ¢ < 1, but choosing a good block length under a finite sample
size is still a challenging problem. One operational ideauincontext is to choosk* such
that the correlation dies out outside the block but stillkeerelatively large numbers of
blocks. In our analysis, we toak* = 1 cm (=10,000 microns). We used the same choice
of L* in our simulation study and got quite successful results.

Figure 3 shows the kernel estimajiir) andp=+ 1 standard deviation. The plot implies
that the correlation is practically zero when the cryptahse is larger than about 500

microns.
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Figure 3. The estimate and the standard deviation bandfof the carcinogenesis p27
data. The solid curve ig(A) with bandwidthh = 122 microns. The dotted curves are

p(A) £ SD{p(A))}.
2.4.3 Positive Semi-Definite Adjustment

By definition, p(A) is a stationary correlation function, therefore is posithsemi-definite,
ie. [ [p(Ar — Ag)w(Ar)w(As)dA1dA, > 0 for all integrable functionsv(-). By
Bochner’s theorem, the positive semi-definiteness is @dgm¢ to nonnegativity of the
Fourier transformation of, i.e. p*(0) > Oforall 6, wherep™ (6) = [~ p(A) exp(i0A)dA
=2 [77 p(A) cos(0A)dA.

To makep a valid correlation function, we apply an adjustment pracedsuggested

by Hall (1994). First, we compute the Fourier transformatd o(-),

pt(h) =2 /000 P(A) cos(A)dA.

In practice, we can not accurately estimaté\) for a largeA because of data constraints.
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So, what we should do is to multipfyby a weight functiono(A) < 1, and let
pt(0) = 2/ P(A)w(A) cos(A)dA.
0

Possible choices afi(-), suggested by Hall et al. (1994), are(A) = I(|]A| < D) for
some threshold valu® > 0; andwy(A) = 1if |A] < Dy, (Dy — |A])/(Dy — Dy) if
Dy < |A| < Do, 0if |A] > Ds,.
Now, letd, = inf{6 : p™(0) < 0,6 > 0}, then the adjusted estimator is defined by
0o

p(A) = (27)~* / 57 (0) cos(AA)db.

6o
Figure 4 show$(-) andp(-) for the colon carcinogenesis data. The size of the corre-

lation even aR00-300 microns is surprising. We have done other, parametric arsatiiat

will be reported elsewhere with a Mah correlation structure, and this parametric analysis

yields correlation estimates 2(0-300 microns that are very similar to those seen in Figure

4.

2.5 Simulation Studies

We present two simulation studies to illustrate the nuna¢nerformance of the kernel

correlation estimation under different settings.
2.5.1 Simulation 1

Our first simulation study is to mimic the colon carcinogeseésta, so that the result could
be inferred to evaluate the performance of our estimatattsarata analysis and to justify
our choice of tuning parameters.

The simulated data arise from the model

Y (800 25) = O7(smi, 5) + €45
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Figure 4: Positive semi-definite adjusted estimatg(df) for the carcinogenesis p27 data.
The dashed curve is the unadjusted correlation estipia¢, while the solid curve is the
adjusted estimatg(A).

where©: (s, z) is ther™ replicate of a zero-mean Gaussian random fiefds, z), » =
1,---,12. As in our data analysis; takes values i{0.0,0.1,---,0.9,1.0}. We used the

actual unit (crypt) locations from the data as the samplationss,; in the simulated data.

In addition,©*(s, z) has covariance structure (2.2) and (2.3), with

G (ne2) = (3 N D0 o) = Voo HYolea) - Vo)), (213)

which is computed from the data, apt(A) chosen from the M&rn correlation fam-
ily p*(A;0,k) = {2°7'T(k)}H(A/P)"K.(A/d), where K,.(-) is the modified Bessel
function, see Stein (1999). In our simulation, we chese 1.5 and¢ = 120 microns.

In addition, thec?;. are independent identically distributed with Noriitab2 ). For o2,

riJ
~

we use an estimate of from the data:c? = & 3.1 {G*(x;,2;) — G(z;, z;)}, where
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r;=(—1)/10,5=1,---,11,G* andG are defined in (2.13) and (2.6), respectively.

For each simulated data set, we compyiefl) and the standard deviation estimator
@{ﬁ(A)} that we proposed in Section 2.4.2, for bandwidite= 120 and200 microns.
When doing the bootstrap, we used block size= 1 cm, as we did in the p27 data
analysis. We repeated the simulation 200 times.

Figure 5 shows the means}; and95% pointwise percentiles g for the two band-
widths, and compares them to the tryth Obviously, as expected from the theory, the
larger bandwidth incurs the bigger bias. By the plots, ins®e¢hat whem, = 120 the
kernel estimatop behaves quite well. We compare the true bias from the simulatudy
to the asymptotic bias computed with the true correlatiarcfion p*, under bandwidth
h = 120. We find the difference between the two are less than 0.04 fmieans the bias
shown in Figure 5 is explainable by our asymptotic theory.

In Fig. 6, we show the pointwise standard deviatio &fom the simulation and the
mean of the bootstrap standard deviation estimates. Thermdss of the two curves implies
that our bootstrap procedure in Section 2.4.2 gives an appately unbiased estimator of
the true standard deviation, which also implies that ourahof block length.* = 1 cm,

IS reasonable. In our simulation, we also tried other blozkéss and the results are almost

the same.
2.5.2 Simulation 2

We also provide another simulation study to justify our tle¢ical assertion that when
the locations or times are from an inhomogeneous Poissaegspwe have a consistent
estimator forp asL — oo. Also, we intend to show the usefulness of a nonparametric
correlation estimator in a situation that an ’'off-the-§hparametric model fails to fit the
data.

We found that when the spectrum density is a multi-mode maxtensity function
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Figure 5: Plots ofp(A) in the simulation study. Upper panek = 120; lower panel:
h = 200. In each plot, the solid curve is the meangf), the dashed curve is the true
correlation functiorp(-), and the dotted curves are th% and95% pointwise percentiles
of p, respectively.
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Figure 6: Standard deviation @f The solid curve is the pointwise standard deviation
of p from the simulation, and the dashed curve is the mean of tBeb@btstrap standard
deviation estimates. The bandwidth= 120 was used.

like in the upper panel of Fig. 7, the correlation functiorll\mave bumpy shape as the
dashed curve in the second plot in Fig. 7, which is also tlgetarorrelation function in our
second simulation study. We simulate only one time seridéls egrrelation function given
in Fig. 7, and we observe the process on a prolonged time adtdi|. For simplicity, the
observation at each time pointis a single value. The observames are sampled from an
inhomogeneous Poisson process with local intensity faneti(-/ L), where we take(-)
to be a truncated normal density functiononl]. The expected number of time points is
set to bes00. We also impose some measurement errors to our observations

We simulated the marked Poisson process described abo2@@aimes, and com-

puted our kernel correlation estimator for each simulatdd det. In the second plot of Fig.
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7, the mean of our kernel correlation estimator is given leystblid curve, while the dotted
curve is the best approximation to the true correlation fiondrom the Maérn family. We
also make a comparison for mean of our bootstrap standaidtibevestimator with the
true pointwise standard deviation curve in Fig. 7.

As one can see, our nonparametric method can consistetittya#s a non-monotone
correlation function as we chose in this simulation studyilevmany parametric models
would not be consistent even with large sample size, simplyabse of their restricted

shapes.

2.6 Discussion

We have proposed an estimator of stationary correlatioctioms for longitudinal or spatial
data, where within-subject observations have a complexstaicture. The application we
presented has a functional data flavor, in that each unipt{ciy a "time series” has sub-
units (cells) the values from which can be viewed as a functitowever, in this paper, we
have focused on estimating the spatial correlation betweeanits.

We established an asymptotic normal limit distributiontfoe proposed estimator. The
techniques used in our theoretical derivation were sigaifly different from the standard
kernel regression literature. In our theoretical framéwais long as we have an increas-
ing number of observations within a subject, each subjettigia consistent estimate of the
correlation function. Our method and theory are especimful to the cases that the num-
ber of subject is limited but we have a relatively large nunmiferepeated measurements
within each subject. Since having more subjects will justhfer reduce the variation of the
estimator, our main theorems hold whBmgoes to infinity as well. In that case, we need to
replace the condition thdth® = O(1) in assumption 7 in Section 2.3 witRL25 = O(1).

In fact, when the number of subjeét — oo, we can consistently estimate the within-

subject covariance without a large number of units withichesubject. For example, Yao,
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Figure 7: Simulation 2. Upper panel: the spectrum densitthefcorrelation used in the
simulation; middle panel: the dashed curve is the true tafoa function, the solid curve
is the mean of the kernel correlation estimator and the datteve is the best Matn
approximation to the true correlation; lower panel: thadsolrve is the true pointwise
standard deviation for the kernel correlation estimatwr,dashed curve is the mean for the
bootstrap standard deviation estimator.
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Miller, and Wang (2005) proposed using smoothing methodstimate within subject
covariance for sparse longitudinal data, where the covegids not necessary stationary.

In spatial statistics, many authors prefer intrinsic stadry to second-order stationary,
for example Besag, York, and Mollie (1991) and Besag and éhgd 999), because it is a
slightly weaker assumption. In our case, each unit withintgext has further structure, we
can define cross-variogram (Cressie 1993) instead of @waeifunction’(z,, z2, A), and
similar limiting distribution theorems can be proved as hredrem II.1 and II.2. However,
when it comes to Spatio-Temporal modelling, many authomss§ie and Huang (1999) and
Stein (2005), would come back to covariance because it isra magural way to introduce
the separable structure (2.3). In our data analysis, weiggdvsome practical ideas to
justify the separable structure in our data, where we coenfia cross-validation scores
with or without the separable assumption.

Lemma A.2 in the proofs implies that the denominator of eaton (2.4) gives the
order of the asymptotic distribution 3, V and p. Based on this fact, we proposed a
weighted Bootstrap method to estimate the standard dewiafithe correlation estimator
p. Our simulation shows that our correlation estimator aedithotstrap standard deviation
estimator work well.

The analysis of the colon carcinogenesis p27 data sugdedtdhe correlation of the
crypts diminishes to 0 at abotd = 500 microns. The estimator and the standard deviation

band also suggests the shape of the correlation function.
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CHAPTER I

FUNCTIONAL LINEAR MODEL

3.1 Introduction

As a byproduct of modern science and technology, a lot of #te that are observed or col-
lected in many fields nowadays are exceptionally high-dsmaral. One such example is
functional data, where each observation in a sample careleedias a function, as opposed
to a scalar or a vector. In reality, for one reason or anofhestisimply human limitation,
instead of observing such functions in their entirety, onl/ @bserves the values of the
functions at a finite set of points. Nevertheless, the nurbealues observed per func-
tion may be quite large, sometimes much larger than the notaber of functions, so that
traditional multivariate analytical theory and methodpiare not directly applicable. In-
deed, the analysis of functional data has been steadilynggattention among statisticians
and practitioners, and there has been much progress on thedoéogy front in trying to
understand how to deal with such data. The books Ramsay &redrSan (1997, 2002,
2005) and their website “http://ego.psych.mcgill.cagfida” contain a substantial amount
of information in that regard. However, there has been mash progress on the theory
front. This is not a surprise in view of the nature of the diffiees, as a theoretical result
in this regard invariably involves the theory of functioraadalysis, multivariate analysis,
optimization, and nonparametric function estimation.

One relatively simple problem, the linear regression, ditkive a considerable atten-

tion theory-wise. Consider the model

b

where the responsg, the fixed intercept and error:; are scalar, and the predictdr and
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regression weight functioifi are functions orja, b]. For now, assume that we observe the
X;,Y; and we are interested in the inferenceuof and the variance of. In this regard,

we mention the papers by Cai and Hall (2006), Cardot, Fereaigt Sarda (1999, 2003),
Cardot and Sarda (2005), Hall and Horowitz (2004) andllét and Stadtraller (2005).
These papers contain highly sophisticated analysis andtseshich will be useful for
many other situations in functional data analysis. Howea#of the papers assumed that
the functional predictor; are completely observed. This assumption is crucial far the
approaches, but is seldom met in practice. To make mattensewin reality there may be
measurement error in observiig. The goal of the present paper is to address the linear
regression problem under these practical situations.

This problem is ill-posed in the sense that a minute chandgedardata may lead to a
huge changes in the resulting estimates, see Tykohonov esehid (1977). One of the
greatest challenges here (and elsewhere in functionabaatssis) is how to interface the
finite-dimensional space where the data reside and theteininensional space where
the truth resides. Ramsay and Silverman (1997) proposdditbeing practical solution.
First represent both th&; andg, any candidate estimate ¢f in terms of a set of pre-

selected basis functions, . . ., ¢k, say, so that

K K
Xip= bixtp and g=>_ cxoy,
s s

where the “” in f(@p signifies the fact that this is a function that approximatesttue
function X; based on the finitely observed valuesXf Then estimate; and f by the

minimizer of the following penalized least squares crdgrriunction

n

1 9 1
n_IZ[Yi_V_/ Xi,pg] +A/ g™
i=1 0 0

n

- . , K K 1
= n! Z [Y;- —v— Z Z bi,kce/ ¢kz¢4 +A Z Z Ckcﬁ/ 91",
0 0

i=1 k=1 (=1 k=1 ¢=1
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where\ is a smoothing parameter. They noted that the choice of this anctions de-
pends on the nature of the problem and the data. This is apgesahce now we have a
finite-dimensional optimization problem to cope with. Fgmmore, if the basis functions
are such that the matri«§<f01 qﬁ,ﬁm)gbém)},ﬁff:l has a band structure, the computations will be
even more straightforward; examples of such basis funstinolude Fourier, B-splines,
and natural splines. It is also worth mentioning that vasreg of the basis-function ap-
proaches are adopted by other authors in studying the Iregagssion model; they include
Cardot et al. (2003) who studied penalized B-splines, ante3g2002) who considered a
parametric approach.

The splines are general and flexible approximating funstimhich have a lot of de-
sirable properties for this problem. However, theorelyctiley are more difficult to deal
with, and we will address that problem in a forthcoming paperthe present paper, we
will focus on Fourier basis. The Fourier functions are a lideeis if the data are smooth
and exhibit periodicity; an example of that is the Canadiaativer data in Ramsay and
Silverman (1997). They are certainly the most conveniesisbfanctions to work with in
terms of of proving theory, since they are orthogonal, theih derivatives are orthogonal,
and the orthogonality even carries over to the discretizsisb/ectors when the set of dis-
crete points are equally-spaced. Our goal of this paperssuidy the rate of convergence
of the penalized least squares estimation using the Fduass. We will show that the rate
of convergence is similar to that obtained in nonparamedgecession function estimation.

The nature of the topic makes it necessary to employ somédatafunctional analysis
terminology and results. They are quite basic and will nobggond the first course in
functional analysis. The reader is referred to Conway (1980details. This paper is
structured as follows. Section 3.2 describes the assungpéind main results. All proofs

and lemmas are collected in Section 3.3.
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3.2 Main Results

Assume that the functional predictdris a real-valued zero-mean, second-order stochastic
process of0, 1]. Further, for some positive integer, assume that with probability oné

belongs to the periodic Soblev Space

Wyt = {g € L?0,1]: gism-times differentiable wherg™ < L2[0,1] andg™) is

absolutely continuous with™ (0) = ¢®)(1),0 < v <m — 1}.

It is well known thatiV»

5" e IS dense inL?[0, 1], therefore our methodology below based on

this assumption applies to even situations for which thésiagption is not met. However,
relaxing the smoothness and boundary conditions do affectonvergence rate of our

estimator. Denote by (s, t) the covariance function
R(s,t) = E[X(s)X(t)], s,t € [0,1],
andT the corresponding covariance operator

1
79— [ Risgs)is.g € 0.1
s=0

For convenience, we will assume throughout without furthention that|| X |7, < occ.

This implies, among other things, that

/01/01}32(5”5)053‘“f = /0 1 /0 ERLX ()X (0)dsd

< | 1 / E[X2(s)X2(8)]dsdt = B(|X|[%) < oo,

which shows thaf’ is a Hilbert-Schmidt operator.
Let X;, 1 <1 < n, ben independent realizations of. Below we consider the linear
regression model (3.1) witta = 0. This simplification is minor for our results, but entails a

considerable saving in term of notation. tet= (2j—1)/(2J),1 < 5 < J, be the locations
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where we observe th&,;; assume that the data that are observedare< i < n, and
Z;=(Ziy,..., Zi,J>T = (Xi(t1) + iy, Xi(ty) + gi,J>T7 1<i<n,

whereg; ; is measurement error fox;(¢;). Thee;,s; are assumed to be mutually uncorre-

lated, and independent of tk& (¢;), with mean zero and

2
€

var(e;) = o2 and vaf; ;) = o’

The Fourier basis functions that we use here are the complaxdf functionsy () =
™, k = 0,41,42,---. Itis well known that eacly € ;" . can be uniquely repre-

sentedag = >~ ¢y in the L? sense witle, = c_. Let

K =[(J—1)/2] = max{k < (J —1)/2; k is an intege},

and put
Ot) = (-x(t), -+, do(t), -, ox(1))",
© = {Dk(ty) i1, gp= o i
and
W= {(&™. 65"}
Clearly,

W =diag{(2rK)*",---,(27)*™,0, (27)*", ..., (27 K)*"}, (3.2)
and, since the; are equally spaced,

JoTd =1,
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First, for some smoothing paramejgrapproximate eac; by Xi,p, the minimizeru =
Z;}K:_K br.¢y. Of the penalized least squares criterion function

J—l

J
Jj=

1
[Zi5 — ult)]* + P/O ut™)?,

1

namely,
Xi,(t)=¢" )T NI+ pW) '®"Z, = ¢" (t)P,Z,. (3.3)

Since theZ; are real, it is easily seen that thé,p are real. Note that this smoother
IS an approximation to the periodic smoothing spline whiskaiinfinitely many Fourier
basis functions. In Theorem IIl.2 below, we will show thatder certain assumptions, the
convergence rate of the smoother in (3.3) is comparablatmfiperiodic smoothing spline
given by Rice and Rosenblatt (1981). See Eubank (1988)j0Be@13.1 for more details
on periodic splines. This justifies the usage of roughly #mae number of Fourier basis
functions as the number of points. Using a finite humber ofsbfasctions is, of course,
crucial for the computations that have to be performed is pinoblem.

Now, in addition to the smoothing paramegethat we used for obtaining thﬁi,p let
A be a second smoothing parameter, ﬁhg be the minimizey € Wy of the following

criterion function:
n 5 1
YW= (KP4 [l (3.4)
i=1 0

where(g, h) is defined a%l gh for complex-valued functiong, h.

Our main results below address the rate of convergenfgpoeﬁs functions op, \, as
well as the sample sizes J. Denote by€ the space spanned by the eigenfunctions of the
covariance operatdf’. It is clear that iff is not in£ then it is not possible to estimafe
consistently since the information that we haveforcomes ultimately fron{ X}, f). More

generally, if the eigenspaces that correspond to smalhegdges are estimated poorly due
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to a small or biased sample or having significant measuresrent in the sample, then it
is also unrealistic to expect good estimates of the prajestof f on those subspaces. To
“standardize” the estimation error ﬁp relative to the amount of information available, a

reasonable measure of distance betwﬁgnandf is

E(lfxe — f1I312), (3.5)

whereZ = (Z,,---,Z,)7, Tp is the covariance operator of the sample covariance fumctio

Ro(s, 1) = 37 Kipls) Ko, (3.6)

and

<g7h>fp = <g7TIJh> and HgH’%‘p - <gvg>7~“p

This consideration is not new. For example, Cardot et aD@Oonsideretﬂ](||fA,,,—f||?p);

also, since

n

”f%p - f”% =n! Z |<Xi7/17 f> - <Xi7m fA,p>|27

i=1

the distance measure in (3.5) is similar to that in Cai and (2804).
Now we state the main results, all proofs are given in AppeBdi
THEOREM I11.1 There exists some finite constd@nthat depends only ofi such that
. 1 <& -
B(I £, — fl7,12) < C (A £ AT 4 =S B (X — Xz-uiﬂzi)) 3.7
=1

for all n, A, andp, wherev,, is the largest eigenvalue Gﬁ;

Note that the first and second terms on the right of (3.7) dest¢he square bias and
variance, respectively, of the procedure; the third terendtessentially reflects the error of
approximatingX; by X; ,.

To obtain a concrete rate of convergence]'j‘()hrf&p—ﬂ@p |Z), the following Theorem

I11.2 is crucial.
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THEOREM |11.2 Assume thak € W3 a.s. andi|| X ™2, < co. ThenforallJ — oo,
p — 0, with J?™p — oo, there exists a finite constaat which doesn’t depend as or p

such that
B(|| X1, — Xil[12) < Clp+ J ' p~ /™). (3.8)

If, in addition, X € W3™ a.s. andE||X*™ |2, < oo, then for.J, p as above, there exists

a finite constant” which doesn’t depend anhor p such that

E(| X1, — Xi[2:) < C(p* + T Lp~/m), (3.9)

Theorem 1l1.2 is similar in spirit to Theorem 2 of Rice and Roblatt (1981), which stud-
ies the rate of convergence of the periodic smoothing s@stemator in nonparametric
regression. As we mentioned before, even thoigl is estimated with a finite number
of Fourier basis functions, the rate of convergence is coaipa to that of the periodic
smoothing spline estimator using an infinite number of basistions. The result (3.9)
shows that with the extra conditiod§, € W37, a.s. an(E(||X{m)||%2) < oo in place but
not specifically taken into account in the estimation pracedthe rate of convergence will
nevertheless improve. This also parallels Rice and Roatishireatment of the periodic
smoothing spline.
For the case where, = 0, i.e. theX,(¢;) are observed without measurement error,

we have
E([| X1 — Xi|3.) < CJ~CmD),

underEHXl(”””)HQL2 < oo. The proof of this result follows in a straightforward manfrem
the derivations in the proof of Theorem Ill.2 and is omitted.
The termn = 30" E(||X;, — Xi||2.|Z;) in (3.7) clearly converges if' to O at the

rates described by (3.8) and (3.9) under the respectiviegetihere. Further, sincg is
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bounded, it is natural to expect thﬁtis also bounded so that = O, (1) under appropriate

conditions. Thus, we state the following result.

TueoreM 11.3 Suppose thak' € Wy . a.s., andE([| X ™)]2,) < cc. Then
E(”f)\,p — f||§~,p|Z) = Op(/\ +p+ n_l/\—l/(2m) + J—lp—l/(Qm)), (310)

for A\ — 0,p — 0,7""\ — oo, and J*"\ — oc. If, in addition, X € W37 a.s., and

E(| X®™]2,) < oo, then we have
E(Hf)\,p — flI312) = O,(A + p* + nIATY/@m) 4 g1 1/ 2m)y (3.11)

for A — 0,p — 0,n*™\ — oo, and.J>"\ — ooc.

It follows from (3.10) that the optimal rate of convergenctqup in Tp-norm is

n—?m/(2m+1)+J—2m/(2m+1)

under the general assumptions of Theorem I11.3; the ratdoeamproved to

n—2m/(2m+1) + J—4m/(4m+1)

under the additional assumptiods € W3 a.s. andE([|[X*™||2,) < oo, as described
by (3.11).

In the following, we consider rates of convergenc@,;’ﬁs replaced byl". To do that
we need to quantify the distance betwdénandT, for which the Hilbert-Schmidt norm
seems ideal. For any self-adjoint operatbon L?[0, 1], let || A||+; be the Hilbert-Schmidt

norm of the operator.

THEOREM |11.4 Suppose that, for some > 2, X € Wi a.s.,sup, E{[X™)(1)]*} <

oo, andE([| X ™)||1,) < co. Also assume that(c*) < co. Then

E(HTP - TH’?—[) = O(n_l +p+ J_Zp—l/(2m))
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for A — 0,p — 0,n*"X — oo, and J*"\ — oc. If, in addition, X € W37 as.,

sup, E{[X®™(1)]*} < oo, andE(||X®™||1,) < oo, then
E(|T, = Tl3) = O(n™" + p* + J2p~ /™)
for A — 0,p — 0,n*™\ — oo, andJ?>"\ — oo.

Note that Theorem IIl.4 should be compared with the resnli3auxois, Pousse, and
Romain (1982) which were proved under the assumption tleakthare completely and
precisely observed.

The following result gives the rates of convergencépj in T-norm.

THEOREM |11.5 Suppose that for some > 2, X € Wi a.s.,sup, E{[X™)(¢)]*} <

oo, andE(|| X™)||1,) < co. Also assume thdi(s*) < oo. Then
E(llfrp = FII712) = Op(n™"? + X 4 n7 ATV E™ 4 pl/2 4 =1 pt/2m)
forn, J, A\, p with
A—0,p— 0,02\ — 00, J™\ — oo, and(p+ J 1 p V) /XN = 0(1), (3.12)
If, in addition, X € W3 a.s.,sup, E{[X @™ (1)]?} < oo, andE(||X#™||1,) < oo, then

E(lfrp = fII712) = Op(n™2 +- A n7INTVEM g p g =1 pm1/2m)

forn, J, \, p satisfying (3.12).
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CHAPTER IV

CONCLUSIONS, EXTENSIONS AND FUTURE WORK

4.1 Correation Estimation for Functional Data

In Chapter I, we proposed a very general framework for thHercearcinogenesis data,
that is, each crypt is a function and we want to estimate tla¢iadpcorrelation between
functions. However, to make the mathematics in the deawatif the asymptotic theory
tractable, we did some dimension reduction in the cryptsthmer words, we reduced the
functions to vectors.

As we argued in Section 1.1, the same entry in different yeato not have the mea-
surements at the same cell location. Therefore, recoveaat unit into a curve and do
estimation in the functional way may bring more accuracyer€fore, in the next step, we
will consider the case that the number of cells per cry@lso goes to infinity, and we will
do smoothing within each crypt.

Another possible extension is apply local linear regressmothe A direction. This
extension will not incur stronger assumption on the undeglyandom fieldd, but will
increase the efficiency a lot. Applying higher order localypomial regression to thé&
direction is possible, but it will generally require higherder partial derivatives of the
covariance functio®(z4, zo, A), which may not be an appropriate assumption.

In terms of methodology, we also need to develop a spatigtagebandwidth selec-
tion procedure. When estimating the covariance functiangenerally have less observa-
tion at larger distance lags. Therefore, in principle, weuwti use a bigger bandwidth at a

larger value ofA.
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4.2 Spline Methods for Functional Linear Model

In Chapter Ill, we explore the convergence rate for the fionetl linear model using a two-
stage roughness penalty approach, where we smooth eachlmuevperiodic smoothing
spline in the first step and estimate the unknown coefficienttion f by minimizing a
penalized least square in the second step. We apply the dudtiyy to the lipoprotein
profile data that we introduced in Chapter |, and use the profitves to predict the total
cholesterol level in the patients. The first plot in Figureh®ws the estimated coefficient
functionfusing this method.

In general, periodic splines require the period boundandimn given in Chapter
[, which is too restrictive for statistical practice. Tipenalized spline methods given in
Section 3 in Chapter | are more flexible and more popular ia daalyses.

The method that we are considering for the future work is tilewing. We first
choose a set of spline basis functiBiit), and smooth each curve by the P-Spline given by

(1.1). And then minimize a penalized least square critesiarilar to (3.4),

n

Y Y= = (X )} + M (g),

=1
where we restricy = 3B to be in the functional subspace spannedByy), J(g) =
BTDg is the roughness penalty addlis a positive semi-definite matrix. All smoothing
parameters can be selected by generalized cross-vahd&ioV).

We apply the spline method to the lipoprotein profile dataj #re result forf is
shown in the second plot of Figure 8. As we can see that theadsthased fourier basis
and spline basis give almost the same results. At the firkt,dliige result looks strange,
since the estimated coefficient function sees to down welghtegion corresponding to
HDL. In Figure 9, we show the P-Spline fit for the first 5 profileees. As we can see that

everybody seems to have a similar HDL component, but thererarch more variations
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(t)

f()

0.0 0.2 0.4 0.6 0.8 1.0
t

Figure 8: Functional linear regression applied to the Iipogin profile data. The first plot

is the estimated coefficient functiq?lusing periodic spline method; the second plofis
by the P-spline method.
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in the VLDL and LDL components. So, the right way to interpfe's that the VLDL and
LDL parts have some positive effects on the total cholestevel from the intercept..

One of my future research goal is to develop some asymptamy for the P-Spline
method. However, it is going to be a very difficult problermca a general asymptotic

theory for smoothing one curve via P-Spline is still missing

X

Figure 9: P-Spline fit for the first 5 lipoprotein profiles.
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APPENDIX A

PROOFS FOR CHAPTER Il

The proofs are organized in the following way: in the firsttgeg we provide lemmas
regarding asymptotic properties of the covariance estirmathen there is only one subject;
in the second section, we provide lemmas on the estimatdinsmiltiple subjects, and the

proofs of Theorems I1.1, 11.2 and Corollary 1.1 are givertire end.

Estimation Within One Subject

We will first discuss a case that there is only one subject hechtimber of units goes
to infinity. Let N(-) be the inhomogeneous Poisson procesf)oh| with local intensity
vg*(s). As in Karr (1986), denotéVs(ds;, dss) = N(dsi)N(ds2)I(s1 # s2). LetO(s,-)
denote the unit-level mean at unit locatigrandO(-) denote the subject-level mean. Define
L L
a(A) =LY Ky (A = Ay) = Ll/o /0 Ki{A — (s1 — 55)}No(dsy, dss);

i ki

b(w1, w2, A) = L7 Y K (A = Ay ){Y (i, 1) — O (1) H{Y (Sk, 72) — O ()}
i ki

e / / KA — (51— 5)HY (81, 22) — O(1))
X{Y(SQ, l‘g) — @(ZEQ)}NQ(dSl, dSQ).

LEMMA A.1 Let that X; and X, be real valued random variables measurable with re-
spect toF{[0,¢]} and F{[t + 7,00)} respectively, such thatX;| < C;, i = 1,2. Then
|cov( Xy, Xo)| < 4C,Cha(T). If X7 and X, are complex random variables, this inequality
holds with the constant replaced byl 6.

Proof The proof is analogous to that of Theorem 17.2.1 in lbragi@uad Linnik (1971).
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Denotel; = [0,¢], T, = [t + 7, 00), then we have

|E(X1X2) — E(X1)E(Xy)| = [E[E{X1 Xo|F(T7)}] — E(X1)E(Xy)|
= |E(XG[E{Xo|F(Th)} — E(Xy)])| < CLE|E{X,|F(T1)} — E(Xs)|

= CiE(u[E{X2|F(Th)} — E(Xy)])

wherew; = signfE{X,|F(11)} — E(X,)]. Itis easy to see that; is measurable with
respect tQF(Tl), therefore|E(X1X2) — E(Xl)E(X2)| < Cl|E(U1X2) — E(ul)E(X |
E
whereuy, = signNE{u,|F (1)} — E(up)]. Now, we have E(X; X,) — E(X))E(Xs)| <

2)
By the same argument, we ha\e(u, Xs) — E(u;) E(Xs)| < Co|E(uius) — E(uy) E(uz)

0102|E(U1U2) — E(Ul)E(U2)| Define the eventSll = {Ul = ].} € F(T1>, Zl = {u1 =
—1} < f(Tl), A2 = {U,g = 1} < f(TQ) andZQ = {UQ = —1} S f(TQ) Then,

‘E<U1U2) — E(Ul)E(UQ)| = ’P(AlAQ) — P(Alzg) - P(ZlAQ) + P(leg)
—P(A1)P(As) + P(A1)P(As) + P(A)P(As) — P(A) P (4)]
< |P(A1Ay) — P(A1)P(Ay)| + |P(A1Ay) — P(Ay) P(Ay)|

+|P(Z1A2) — P(Z1)P(A2)| + |P(ZlZQ) — P(A;)P(Ay)|

< Adao(r).

Thus, the proof is completed for the real random variable.cHsX; and X, are complex,
we can apply the same arguments to the real and imaginary sggarately.

LEMMA A.2 With the assumptions stated in Section 2.3, for any fixed/e havei(A) —
v2f1(0) in L? sense, ag — oo.

Proof Recall that by definition off;(-), if X; and X, are independent and identically
distributed with density(-), then fi(u) = [ g(t + u)g(t)dt is the density ofX; — X,.
Thus, for fixedA,

E{a(A)} = V2L_1/ ) Ki{A — (s1 — $2)}g(s1/L)g(s2/L)ds1dss
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= VL /01 /01 K {A — L(ty — t2) }g(t1)g(ts)dt, dty
T / / Kn(A = Lu)g(ts + u)g(ts)dudts
-y / Ku(A — Lu) fy (u)du = 2 / K@) fi{(A — hv)/LYdv
_ / K@){£1(0) + O(L~)}dv = 12£,(0) + O(L™Y).
Next,

pre@) = 12 [ [0 R - 6 s s - )
XE{Ng(dsl,ng)Ng(ng,dS4)}.

Calculations as in Guan et al. (2004) show that

E{Ns(dsy,dss)No(dss,dss)} = 1/49*(81)g*(Sg)g*(Sg)g*(84)d81d82d83d84
+1°g%(51)9%(52) 9" (84)€s, (ds3)ds1dsadsy + v g* (1) g% (52) g% (53)€s, (ds4)dsidsadss
+u3g*(31)g*(52)g*(34)652(dsg)d31d32d84 + u3g*(31)g*(52)g*(33)652(ds4)dsldsgdsg

+u2g*(31)g* (s2)€s, (ds3)es, (dsy)dsidse + 1/29*(81)9*(82)651 (dsq)es,(dss)dsydsa,

wheree, () is a point measure defined in Karr (1986), such thétly) = 1 if x € dy, 0
otherwise. Herely is defined to be a small disc centeredyatThere are 7 terms in the
expression above, so the expression fidu?(A)} can be decomposed into 7 integrals:

denote them ad;-A;7. Similar to the calculations af{a(A)}, we have

Ay = AL / /7& / [ KB = (o= s D (5 s0)
xg(s1/L)g(sa/L)g(s3/L)g(s4/L)ds1dsodssdsy

= V2(0) + ().

A12 = VgL_2/ Kh{A — (81 — SQ)}Kh{A — (Sl — 84)}
S$17#82,84



54

<951/ L)g(5a/ L)g(ss/L)dsrdssdsy
_ L / / KA — Lug ) K {A — Lty — )} folus, uz)dus dus

(by definition of f)
_ S / / K@) K (02) fo{(A — hon) /L, (vs — v1)h/ L} dvndos
— L(0,0) + O(L72).

Similarly, A;3 — A5 are of ordeiO(L~1). Next,

Ay = VL7 KHA — (51— s9)}g(s1/L)g(s2/L)ds1dsy

81782

= yz/Kﬁ(A—Lu)fl(u)du

N / K2(0) fi{(A — ho)/L}do
— LW (0) Ry + ol LAY,

Similarly, we can show tha#i; is of the same order ad,5s. This means tha#,, is the
leading term inE{a?(A)}. Hence,E{a(A) — v*f1(0)}* — 0, completing the proof.
LEmMA A.3 For any fixedA, definef(xy, z2, A) = b(x1, 29, A) — a(A)V(x1, 29, A).
Then

E{B (1,9, A)} = V2 fLO) VOO (), 29, A)oich® /2 + o(h)},

cov{B(xy, w2, A), B3, 24, A')}
=1V L' R f1(0)[T(A = ANV M (21, 29, 73, 14, A, A, 0)
I (2o = 24)02V(w1, 23,0) + (21 = 23)0°V (22, 24,0) + (21 = 23, T2 = 24)0"}
+I(A = —AV Mz, 09, 23, 24, A, =N, —A) + (x5 = 23)0°V (1, 24, 0)

+I<$1 = I4)0'62V<I2,£L’3, 0) + I(.Tl = T3,To = I‘4)O'§}] + O(L_lh_l),

WhereV(O’O’z)(:L“l, Lo, A) = 82V($1, X2, A)/@Az



55

Proof Rewrite

Bler, s A) = L7 / / KA — (51— s2)}[{¥(s1,2) — O(a1)}
x{Y (s52,22) — O(x2)} — V(21,72, A)|Na(dsy, dsy),

it follows that

N I RS R
xX{V (21, 22, 51 — s2) — V(21,22,A) }g(s1/L)g(s2/L)dsdss
_ L / Kn(A — Lu){(V(xy, 29, L) — V(1,79 AV} 1 ()
_ 2 / K@) {=VOOD (1, 25, AYhw + VOO (21, 2y, AYR22/2 + o(h)}
x{f1(0) + f1(0)(A — hv) /L + o(L™") }dv

= V{ fi(0O)VOO?) (21, 29, A)oich? /2 + o(h®)}.
In addition,

cov{ (1, z2, A), B3, 24, A')}

s ////Kh{A (51— s2)} KA {A — (53— 50))
V(x1, 22, A)V(x3, 24, A') — V(21, 29, 51 — $2)V(x3, 14, A)
—V(x1, 22, A)V(x3, 24, S3 — S4) + V(x1, T2, 51 — $2)V(x3, T4, S3 — S4)
+M{xy, 29, 13,24, ($1 — S2), (83 — S4), (S2 — 84)}
+1(s1 = 83)1(s9 # 54)I (71 = 3)02V{T9, T4, (52 — 54)}
+1(s1 = s4)1(s9 # s3)I (71 = 24)02 V{29, T3, (52 — 53)}
+1(s2 = s3) (51 # sa)I (w9 = w3)0V{w1, 24, (51 — 54)}
(52 = s4) (51 # s3)I (9 = wa)oV{w1, 23, (51 — 83)}
+1(s1 = 83,80 = 54){1(29 = 14)0°V (21, 23,0) + [ (21 = 23)0>V(9, 74,0)

+I(xy = 23,29 = m)of}
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+1(s1 = 84,89 = 53){1(29 = 23)0°V (21, 24,0) + [ (21 = 24)0>V(12, 73,0)
+1(x) = 24, 19 = 23)0 }|E{No(dsy, dsy) No(dss, dss) }

— L2 ////Kh{A (51— 82) KR {A" — (53 — 54)}
x{V(x1, w9, 51 — 82) — V(x1, 22, A)H{V (3, 14, 83 — 54) — V(w3,24, A")}

xg(s1/L)g(sa/L)g(s3/L)g(s4/L)ds1dsadssdsy.

As in Lemma A.2, according to the expression fof Ny(dsy, dss)No(dss, dsy)}, we can

summarize this covariance expression as the sum of 7 teemstet asd,;- A,;.

Ay = 1/4L_2/0L /OL /OL /OL Kp{A — (51— s2) }Kp{A" — (53 — s4)}

XM{xy, x9, 11,22, (S1 — S2), (S3 — S4), (S2 — S4)}
xg(s1/L)g(sa/L)g(ss/L)g(s4/L)ds dsadssds,
= 4L2/ / / / Kn{A = L(ty — t2) }Kp{A" — L(t5 — ta)}
X M{ w1, g, 11, k9, L(ty — ta), L(ts — t4), L(ta — t4)}
X g(t1)g(t2)g(ts)g(ts)dt dtadtsdt,
= 1/4L2///Kh(A—Lul)Kh(A’—Lug)./\/l(xl,xg,xl,xg,Lul,Lug,Lug)
fa(ur, ug, us)duydusdus
= L ///K v1) K (vg) M (21, T2, x1, 19, A — hvy, A" — hvg, v3)
f3{(A = hvy) /L, (A" — hvy) /L, vs3/ L}dvydvadus

< 1/4L_IC/M(x1,x2,x1,:I:2,A,A’,v)dv—i—O(L_l),

where(' is the upper bound for the density functigy{u, v, w) on[—1,1]>. By assumption

1 in Section 2.3 thag(-) is bounded, one can easily derive thats a finite constant.

Ap = L ///Kh{A (51 — 52) VW {A — (51 — 54)}
X ([V(x1, 22, A) — V{x1, T2, (51 — 82) }][V (3, 24, A) — V{3, 24, (51 — 54)}]
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M@, 22, 25,24, (51— 52), (51— 54), (52 = s4) }
(w1 = @3) 02V {@e, 4, (52— 52) })g(51/L)g(52/ L) g(54/ L)ds1dszdsy
_ 3L///Kh{A Lt — ta) VR {A — L(t, — 1))
X ([V(x1, 22, A) — V{x1, 0, L(t; — to) H[V (23, 24, A") — V{3, 24, L(t; — t4)}]
+M{xy, xo, w3, x4, L(t; — ta), L(ty — t4), L(ta — t4)}
+1(xy = 23)02V{x0, 24, L(ts — t4)})g(t1)g(t) g(ts)dt dtsdty
_ u3L//Kh(A + Lu) Kn(A + Luy)
X[{V(x1,29, A) — V(x1, T0, —Luy) H{V (3, 24, A') — V(23,74, —Lus)}
+M{xy, x9, 23, x4, —Luy, —Lug, L(uy — us)}
13)02V{xg, 24, L(uy — ug) ¥ folur, ug)duidusy
= L7} //K 01) K (v2)[I (21 = x3)02 V{22, 24, (11 — v2)h + A — A}
+H{V(21, 22, A) — V(x1, 09, A — hvy) H{V(x3, 24, A) — V(23,24, A" — hy)}
M1, 20, w5, 20, A — hor, A — b, (01 — v)h + A — AY]
< fol (=A + hoy) /L, (—A + i) /LY dvy dos
= VL7 (0,00 {M (1, 29, 73, 24, A, A, A — A)

+1(z1 = 13)02V (29, 74, A — A)} + 0o(L7H).
It is easy to see that,3-A,5 have the same order &s,. Further, we have

A = 217 [ [ K8~ (o= s} K = (51 = 52))
X (M{xy, z9, 3,24, (S1 — S2), (51 — $2),0}
+V (@1, 2, A) = V{1, 22, (51 = s2) HV (w3, 24, A) = V{3, 24, (51 = 52) }]
(I (s = 24)0V (a1, 5,0) + (21 = 25)0°V (s, 24, 0)

+1(x) = 23,09 = 24)0}) X g(51/L)g(s5/L)ds1ds



58

= (A= A’)yz//Kﬁ{A — L(t; — t5)}
X (M{xy, 29, 3,24, L(t; — t3), L(t; — t2),0}
FV(@1, 29, A) — Viy, 29, Lty — ta) Y[V (s, 24, A) — Vs, 24, L(ty — t2)}]
+{I (29 = 24)02V (21, 23,0) + I (21 = 23)0V (29, 74,0)
+1(x = 23,09 = 24)0}) X g(t1)g(ts)dt dty
_I(A = A2 / K2(A — Lu)[M(zr, 25, 29, 24, L, L, 0)
+{V(x1,29, A) — V(21, T2, Lu) }H{V(x3, 24, A) — V(23, 24, Lu) }
H(zy = 14)02V (21, 23,0) + (21 = 23)0°V (79, 74, 0)
V(21 = a3, 0 = 24)0}] X fi(u)du
= I(A=A)VWL'h! / K?(0)[M(wy, 29, 23, 24, A — hv, A — hv, 0)
V(@1 29, A) — V(1,29 A — )MV (@s, 20, A) — V(s 24, A — hw)}
+{I (29 = 24)02V (21, 73,0) + (21 = 23)02V (29, 74,0)
(21 = 23, 00 = 24)0}] X fi{(A — hv)/L}dv
= (A =AYVAL R R f1(0) [ M1, 29, 73, 24, A, A, 0) + {1 (29 = 24) 07

xV(x1,23,0) + [(z1 = 23)02V(29,24,0) + [ (21 = 23,79 = 74)0°} + 0(1)].
Similarly,

A = 27 [ [ K8~ (o= s} K = (52 = 51)
X (M{ay, 9, 25,24, (51— 52), (52 = 51), (2 — 51)}
+V (@1, w2, A) = V{1, 22, (51 — s2) H[V(ws, 24, A) = V{ws, x4, (52 — 51)}]
{2y = 230"V (@1, 24,0) + (21 = 24)0° V(2. 23,0)
(w1 = 13,32 = 24)0l}) X g(51/L)g(s2/L)ds1ds

= Ha=-a [ [ KA - Lt - 1)
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X (MA@, 29, w3, x4, L(t1 — t2), L(ty — t1), L(t2 — 1)}
+V (21, 22, A) = V{x1, 29, L(t1 — t2) }][V (23, x4, —A) — V{x3, 24, L(ts — t1)}]
H{I (g = 23)02V (21, 74,0) + (21 = 34)02V (29, 73,0)
+1(zy = 13,79 = 14)02}) X g(t1)g(t2)dt,dty

_ I = —A)2 / K2(A — Lu)[M (21, 29, 5, 24, Ltt, — L, — L)
+H{V(x1, 22, A) — V(x1, x0, Lu) H{V (23, 24, A) — V(3,24, Lu)}
H{(zy = 23)02V (21, 24,0) + (21 = 24)02V (79, 73, 0)
+I(x) = 3,09 = 24)0° Y] x f1(u)du

= I(A=-AWL'ht /K2 M(x1, 29,73, 24, A — hv, —A + hv, —A + hv)
+H{V(x1, 22, A) = V(x1, 29, A — ho)  {V (23, 4, A) — V(x3,24, A — hv)}
+{I (29 = 23)02V(21,74,0) + (21 = 24)02V (29, 73,0)
+1(x = 23,79 = 24)0 }] X fL{(A — hv)/L}dv

= I(A=-AVWL 'R 'R f1(0) M (21, w2, 3, 4, A, — A, —A)
+H{I (29 = 23)02V(21,74,0) + (21 = 4)02V (29, 73,0)
+1(x = 23,19 = 24)0} + 0(1)].

Both Ay and A,; are of orderO{(Lh)~'}, while the rest terms are of ordér(L!).

The proof is completed by summarizing the contribution afeterm to coyj(zy, x2, A),

ﬁ($3,$4aA/>}-
LEMMA A.4 With G(xq, 22, A) defined as in Lemma A.3, and with all assumptions in

Section 2.3, we have
(Lh)l/Q[ﬂ(ml,xQ, A) — E{B(x1, 29, A)}] = NormaK0, v f1(0)o*(z1, 22, A)},

WhereO'Q(SL’l,.Z'Q,A) = RK{M(CL’l,l’Q,xl,IQ,A,A,O)+O'€2V(I‘1,I1,0)+U€2V<I2,CL’2,O)+
O'él} -+ [(A = O)RK[{M(I’l,.CI?Q,IEl,Z'Q, 0,0, 0) + [($1 = IEQ){ZO'?V(I’l,.CI?l, 0) + O'?}]
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Proof The proof shares the similar structure to that of Theorem Guan et al. (2004).
Definea; =0,by = LP — L9, a; = a;—1 + LP,b; = a; + LP — L%, i=2,--- ki, for some
1/(1+0) < ¢ <p<1(disdefinedin (2.10)). We thus have divided the intef@al | into

k; ~ L/LP disjoint subintervals each having length — L7 and at leasf.? apart. Define

I = [a;, b)), I = U™ I, I! = [a;/L,b;/ L], I' = UM, 1!, and

Bi(xy, 20, A) = L_l/ . Ki{A — (s1 — s2) }{Y (s1,21) — O(21) }
x{Y (s9,22) — O(x2)} — V(x1, 2, A)|Nao(dsy, dss),

kr,
Blx1,22,A) = Zﬁi(l‘l,ﬂfg, A).
i=1

Define independent random variabte$z,, z2, A) on a different probability space, such

that they have the same distributions®:,, z,, A), and define
kr
Y(w, 22, A) = Z%(xl,xg, A).
i=1

Let () andy(¢) be the characteristic functions @th ) /2[3(xy, x5, A)— E{B(x1, 15, A)}]
and(Lh)Y2[y(zy1, 22, A) — E{y(x1, 72, A)}], respectively.

We finish the proof in the following 3 steps:

(i) (L) ({821, 29, A) = E{B(x1, 22, A)}]| = {321, 29, A) = E{B(w1, 22, A)}]) =
0;

(i) (&) — o(&) — O;
(iii) (LR)'2[y(x1, 29, A) — E{y(x1, 29, A)}] = NormaK0, v° f1(0)0 (1, 9, A) }.
To show (i), notice that, with/;| — oo, calculations as in Lemma A.3 show that

kr, kr
Zvar{ﬁi(xl,xQ,A)} = ZVzL_lh_lRKfm(O){az(xl,xQ,A)—|—0(1)}, (A.1)
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wheref; 1 (u) = [ gi(u+ t)g;(t)dt is the counterpart of; (u), with g;(t) = g(¢)I(t € I}).
Sinceg(+) is bounded away from both 0 and, f; ;( fl, O(|I]]) = O(LP71),
and vaf 3;(z, ro, A)} = O(LP~2R71).

Observe thatl’| = S % |Il| = kp x (LP — L9)/L ~ L/LP x (L? — L%)/L =
1—-L%7 —1,and

Z fia(0) = Z /I g(t)%dt = /]/g(t)th—> /0 g(t)*dt = f1(0). (A.2)

Therefore Y"1, var{ 3 (z1, 75, A)} = var{3(z1, x5, A)} + o(L~'h~"). Further but equiv-
alent derivations show that,,; cov{ 8 (x1, 22, A), B (21, w2, A)} = O(L™1). The calcu-
lations here are similar to those in Lemma A.3, except that ## ; condition excluded
terms like Ay, throughA,;. Now we have
kL
var{(zy, 25, A)} = Y var{fi(z1, 22, A)} + Y COV (w1, 2, A), B(w1, 72, A) }
=1

i#£]
= var{B(zy, 15, A)} + oL A7),

Similarly, one can show that
Cov{g(l’l,@, A), B(z1, 2, A)} = var{B(z1, 32, A)} + o(L'h™1).

Therefore,(Lh)var{3(z, 9, A) — {B(x1, zs, A)}] — 0, and step (i) is established.

To show (ii), we follow similar arguments that prove Theor2if82) in Guan et al. (2004).
Denotel; = exp(lx(Lh)Y?[Bi(x1, 20, A) — E{B;(x1, z2,A)}]), wherel is the unit imag-
inary number. Then by definitiong(z) = E([]%, Uh), ¥ (z) = [1%, E(U;).

Observing £(U;)| < 1 for all U;, we have

kr, kr—1 kr—1 kr,
ww—wmslﬂﬂw%EQIWM%MHﬂHUmwm—HﬂU

kp—1 kp—1 kp—1

< |BQL - B vaB@)I+ 1B ] 0 - [T BONIE)

i=1 i=1
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kr—1 kr—1 kp—1

E(ﬁUi) H U)EU,)| + |E(]] ) H E(U;)).

=1
By induction,

kr—1 J+1 kr—1

|6(2) = Z [E( HU H Ujr)| = Z \COVH Ujs1)].

Observe thaf[/_, U; andU,, areF([0,b;]) andF([a;41, b;+1]) measurable respectively,
with | []/_, Ui] < 1 and|U;;,| < 1, and the index sets are at ledstaway. By Lemma

Al,

kr—1
[p(z) —b(x)| < ) 16a(L9) < 16L"P x L™,

Jj=1

By our choice op andg, it is easy to check—p—qé < 0, and thereforép(z) —(z)| — 0.

(iii) can be proved by applying Lyapounov’s central limiethrem and by the fact that
kL
(Lh) Zvar{%(xl,@, A)} = v f1(0)0* (21, 22, A),
i=1
which has been shown in (A.1) and (A.2).

It remains to check the Lyapounov’s condition. By condit{@rB),

i E(|yi(x1, 22, A) — E{v;(x1, 22, A)}*T) _ Iiey 0{(Lp—2h—1)(2+n)/2}
i=1 var{~(x1, s, A)}] /2 a O{(L-Th—1)@m/2y

— O(L—(l—p)n/2) — 0.

The proof is thus complete.
LEMMA A5 Let3(A) be the vector collecting all(z1, x5, A) for distinct pairs of z, z»).

Then, with all assumptions above, faf # A,

BA) = BB} | Normal 0.2 ,(0) %(A)  CAA) |

(Lh)1/2 3 B
BAT) — E{B(AY)} CT(A, A7) B(A)
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whereX(A) is the covariance matrix with the entry corresponding to{¢idy;, xo, A), B(x3,
14, A)} equal toRg{M(z1, 10, 23,74, A, A, 0) + [z = 14)0*V (21, 23,0) + [(2; =
13)0V (29, 14,0) + (11 = 3,09 = x4)0} + [(A = 0)Rg{ M (21, 29, 73, 24,0,0,0) +
I(xy = z4)02V (29,23, 0) + I(z2 = 23)02V(21,74,0) + [(x; = 34,79 = x3)02};
C(A,A") is the matrix with the entry corresponding to €Nz, z2, A), B(x3, x4, A')}
equaltol (A" = =AY M(xy, z9, x5, 24, A, —A, —A)+1 (29 = 23)0*V(21, 24, 0)+ (71 =
24)02V (29, 13,0) + [ (21 = 14, 79 = 73)02}.

Proof Using similar proofs as for Lemma A.3 and A.4, we can show émg linear com-
blnatlonz (i1, T, A) + Zz LGBz, zi0, A) is asymptotically normal. By the
Cramer-Wold device (Serfling 1980), the joint normality isadsished.

Note If A’ = —A, the limiting distribution on the right hand side is a degate multi-

variate normal distribution, becaugér,, z1, A) = f(x1, z1, —A) for all x;.
Estimation With Multiple Subjects
Now suppose we havk subjects, and is a fixed number. Define

V(g 21) = {Yeij — O0(2) H{Y i — O, (1)},

ar(A) - L_l Z ZKh(A - Ar,ik)7

br(xj’ L, A) =L Z Z Yr,ik(xja xl)Kh{A - Ar(ia k)}>
i ki
5T(xja Xy, A) = b?“(xjyxla A) - GT(A)V(I']', Xy, A)a
cr(, A 122{}%3 r(2) KR {A = Ar (i k) )
i k#i

Further, define
a(A) = ZaT(A) b(z;,x, A Zb zj,x, A
I'J,I'l, Zﬁr lL'],I'l,

Volay, 9, A) =b<x1,x2, A)/a(A).
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Let Vy(A) andV(A)) be the vectors collecting ally(z1, 22, A) andV(zq, 25, A)) for all
distinct pairs of(z1, z5), respectively.
LEMMA A.6 With the assumptions in Section 2.3, faf # A,
Vo(A) = V(A) — 62V (A)R2/2
e ] ) = VIA) VO
Vo(A) = V(A') — 02V (A)h? /2

L(A)  C(AA)

CT(A A B(A)

= Normal |0, {#2f,(0)}*

whereV®) (A) is the vector collecting’*%) (z,, 2, A) for all distinct pairs oz, z).

Proof Notice that

R R

170(1517@, A) = V(z1,22,A) = [Z{br(h,M?A) - ar<A)V($1a$2yA)}]/{Z ar(A)}

r=1 r=1

= B(z1,12,A)/a(A)
Since subjects are independent, by Lemma A2 /{v*Rf,(0)} - 1. Also, by Lemma
A5, (R™1LR)Y2{F(A)T, 3(A")T}T are asymptotically jointly normal with the covariance
matrix given in Lemma A.5. Thus, by Slutsky’s theorem (Sed]i1980),
B(A)/a(A) = E{B(A)}/a(A)

B(A")/a(A) = E{B(A)}/a(A)

(RLR)Y?

S(A) (A, A)
CT(A,A)  X(A)

= Normal |0, {v2f,(0)}

Finally, by LemmaA.3E{3(z1, 29, A)} = Rv2f1(0){V 02 (21, 25, A)o%h?/24+0(h?)},
so that we havé&{3(z1, 29, A)}/a(A) = 02V O02) (11 29, A)h?/2 + 0,(h?). Theo,(h?)
term is eliminated by the assumption that® = O(1).

LEMMA A.7 With all the assumptions above, we have that

9(1’1, T, A) = 90(1’1, T, A) + Op{L71h71/2}
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Proof Notice that

V(wja,A) = Volzj, a1, A [Z{YM () Yo (21, A)
+Z{Ym (@) HY v = Op(21) }ar (D)
+Z{Y” = 6,(z)}erlj, )] x a(2) 7, (A.3)
er(z1,A) = L1//{wsl,xl)—@,(ml)}Kh{A—(sl—52)}N2(d51,ds2).

Using the expression above, it is easy to see #at.(x;, A)} = 0, and calculations as in

Lemma A.3 show that

varlen(on ) = 12 [ [ [ [Kafs = (s = s} = s - s0)
xW{wr, 21, (51— 83)} + I(s1 = s3)0¢]
X E{Ny(dsy, dss)No(dss, dss)}
= O{v’L'h '}
On the other handy,.; — ©,(z;) = NL J{Y.(s,x;) — ©,(s,x;)} N(ds). Itis easy to see
that E{Y,.; — ©,(z;)} = 0, and that

VAN AT, = Orle))] = [ [ (51 = sa)} + T = 52)07)
x{v?g(s1/L)g(sa/L)ds1dss + vg(si/L)es, (ds2)ds }
= VL7 / V(zj, 2, Lu) fi(u)du
+VL/{V($j»flfja0) + 02} g(s1)ds)
= v2Lf(0) /V(xj, zj,u)du + vL{V(z;,1;,0) + 02} + o(L).
By properties of Poisson processes, we havé(vL) — 1 a.s.. Therefore, we havé, ; —

O,(z;) = O, {L7Y?}, ¢,(x1,A) = O,{L1/2h~1/2}. By Lemma A.2,a,(A) = O,(1).
Therefore ) (1, 22, A) — Vo(a1, 23, A) = O,{ L~ h~'/2}, completing the proof.
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Proof of Theorem |1.1: This is a direct result from Lemma A.6 and A.7.

Proof of Theorem I1.2: For a fixedA # 0, whenh < |A|, we have

V(Il,fz, A) = {ﬁ(xlv'x% A) + 9(551,1’2, _A)}/Q

This equation is true automatically féx = 0. Therefore, asymptotic distribution &(A)
is the same as that ¢1(A) + V(—A)}/2, for any fixedA.

For Ay # +A,, by Theorem IL.1{V(A1), V(=A1)}T and {V(A,), V(—A,)}7 are
asymptotically independent, and the joint asymptotic radityr of the four vectors can be
established. TherefonE(Al) andf/(Ag) are jointly asymptotic normal and asymptotically
independent. It suffices to show thatA) is the asymptotic covariance matrix BfA).

For A # 0, apply the delta method to the joint asymptotic distribotad 17(A) and

17(—A), the following gives the asymptotic covariance betw®én, , z,, A) andV (x5, x4, A):

(1/4)(RLA) M2 f1(0)} 'Ry x {M (21, 72, 73, 24, A, A, 0)
+M(x1, T2, 23, 4, —A, —A,0)
F2M (21, T, T3, 14, A, — A, —A) + 21 (25 = 24)0°V (21, 3,0)
+21(xy = 23)02V (22, 74,0) + 2 (z) = 73,79 = 4)0"
+21 (29 = x3)0°V (21, 24,0) + 21 (21 = 24)02V(39, 23, 0)
421 (11 = 23,79 = 14)0"}
Note thatM (x1, zo, x3, T4, —A, —A,0) = M(z1, 2, 3,24, A, A, 0) by the symmetry in
the definition of M (x4, zo, x3, x4, u, v, w). Next, for A = 0, we have]N/(xl,xQ,O) =

V(z1,22,0), the asymptotic covariance betweB(u:, z,,0) andV(z3, z,4,0) is given in

Theorem Il.1. The proof is completed.

Proof of Corollary I1.1: The result follows from Theorem 11.2 and the Delta-method. T

see this, note that, with the separable structure in (28have) (1, x2, A) = G(x1, 22)p(A)
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andV %02 (1, z9, A) = G(z1,22)p? (A). By the Delta-method, the asymptotic mean of
p(A)is
Do er 2ompem WV (@1, 02, A) + 07 VOOD (21, 2, A)? /2 + 0, (%)}

2 riex 2amp< {G (21, 72) + 05 G (w1, 2) P (0)h? /2 + 05 (h?) }
= {p(D) + okpP (AR 12+ 0, (h*)} /{1 + 05cp® (0)h? /2 + 0,(h?)}

= {p(D) + okpP (A2 + 0, (h*)} + {1 = aicp (0 /2 + 0, (h*)}

= p(A) +{pP(A) = p(2)pP(0)}oich?/2 + 0, (h?).

The asymptotic variance @ A) also follows from the Delta-method.
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APPENDIX B

PROOFS FOR CHAPTER IlI

Throughout this appendix chapter, we adopt the followintations: for any complex-
valued vectob, ||b||?> = b”b; for any zero-mean, complex-valued, random variaBlesnd

Y,couX,Y) = E(XY).
Proof of Theorem |11.1

SinceX’i,p € span{¢;(-),i = —K,---, K}, by orthogonality of Fourier basis,/fhp is

spanned by the same set of basis functions. Wite= ¢” 3. Then minimizes
n Y Y= ZTVHP + AW
=1

among all2K + 1 dimensional complex vectors, wheve = PpT<q5, oT) . = J1O(I +
pW)~!, P, being defined in (3.3). The penalized least square functimveis a variant

of (3.4). SinceY; and X, , are real valued, it is clear thdf , is real-valued, and satisfies
/éj :B—jlj - _Ka"'7K'

Define
Qs =n"'Z"Z, andQ, = n'VTZ"ZV, (B.1)
and
ri = (Xi, fpe — ()N(W,f>L2 and r=(ry,---,r,)".

- =T -
It is easy to check tha, is an Hermite matrix, i.e.Q, = (2,. Suppose thaf =
> B¢, and denote by the projection off ontospan{¢_x,--,¢x}, andf =
(B_x,---.Bx)". By orthogonality of Fourier basi§X; ,, f),. = (X;,, f),. = ZTVB.
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On the other hand, since botfy , and f are real-valued functions, we hay&, ,, f),» =

Z!'V 3. Writing e = (c1,...,£,)7, we have

Pty = ¢"OVTZTZV +nAW) VT ZTY
= ") Q) +AW) I VTIZT(ZV B + 1 +¢)
= ¢"(t)(Br+ B, + )

=1 fro(t) + or(t) + (). (B.2)
By (3.6),
Xip(8)Xi,p(t) = 6(5)T P2 s Py (1)
For anyg(t) = ¢(t)"b € span{¢_x, ..., ¢k }, We have
(To9)(t) = / R (s,0)g(s)ds = 6" (1) P, 2,1 PT { / B(5)87 (3)ds}b = o7 (£) P2, Vb
and hence by (B.1),
913, = (9. Tpg) 2 = VT Vo = bTQb = n Y| ZVb||%. (B.3)
It follows from (B.2) that
1fve = FIF, < 3l1fve = flI3, +3llaal3, + 3llaall3 - (B.4)
First, considet| f,,, — f[|3 which is equal td| fy,, — fII3 . By (B.3),
1w = £, = 1 Frp = FI5, =n7H 12V (5 - D)
Sincej},p is the solution of the following problem

min {n | ZV (b — B)||* + \bT Wb},
g=¢Tb
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we conclude that

e —fl3 = n1ZV(3 =B
< 0 ZV (B = B)|* + AFTW By

< ATWE = AFT < AF (B.5)

Note that this is an approach for handling the bias introdigeCraven and Wahba (1979).
Next, by (B.3),

. . =T _
E(ImI7,12) = E{e"n™'ZV(Q, + AW)7'Q,(Q, + MV In~tVTZ%¢|Z)

= n to2tr{(Q, + AW)TQ,(Q, + AW) Q).

Letw;, 14, pi, andn; be thei-th smallest eigenvalue 6¥, 2, 7, Q.7 + AW, and(Q,, ; +

AWV)~1Q, s, respectively. Observe that for any complex-valued fumggi= ¢ b, we have

(9. T,9) 12 _ prB

- 7 (B6)
gl13- bTh

and hence the eigenvalues ©f are the same as those Bf, then(), is positive semi-

definite andy; > 0 for all :. Note thatr,x,, is denoted ag, in the statement of the

theorem to emphasize its dependence.oBy (3.2),w; = ([i/2]27)?™, i =1,---,2K + 1.

We clearly also have
n; <1 and p; > A([i/2]27)*™ > \((i — 1)7)*" forall i.
It follows from Theorem 7 of Merikoski and Kumar (2004) that
Nek+1)-iv1 < p; v, foralli.
Thus,

77(2K—1)—i+1 S min(l, I/pﬂ'_zm)\_l(’i — 1)—2m) for all 7;,
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and therefore

tr{ (Q, + AW) 71, (Q, + AW)'Q,, s}

2K +1 [A—1/@m)) 2 2K +1
— 2 4 - q\—4m —-1/(2m), 2
_ Z ;< Z L+ i Yo -1nTm<oa V2.
i=1 i=1 i=[A"1/@m)] 41
Hence,
E(||hA||§,p|Z) < Cn~tATVEm2 (B.7)
Next,

E(||gA||%)|Z) =E{r"n ' ZV(Q, + A\W)71Q,(Q, + \W) VT Z | Z).

Since the eigenvalues @V (Q, + AW)~'Q,(Q, + AW) " 'n~'VTZ" are the same as those

of
(Q, + AW)IQ,(Q, + \W) VT ZTZV = [(Q, + AW) 1, )2,

which are bounded by 1, we conclude that

1 1
E(l9:l7,12) < ~E(r'r|Z) = ZE (r}Z:) < =~ > E(IX, - Xil7.1Z:).(B.8)
=1
by the Cauchy-Schwarz inequality. The result follows fram(, (B.5), (B.7), and (B.8).

Proof of Theorem |11.2

LEMMA B.1 Suppose; = (25 —1)/(2J),j=1,---,J, then

(—1)SJ, if kQ = kl + SJ,

Z ¢k2 {

Proor. If ky — k; is not a multiple of/, we have

0 otherwise

e(k2—k1)2mi(2J+1)/(2) _ o(k2—k1)2mi/(27)

J
(ko—k1)2mit; __ —
Z tj)Pny (L Z elhamia)mit = 1 — elka—k1)2mi/J =0.
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Next, supposé, = k; + sJ for some integes, we have

J J

Z ¢k2 Zesm‘@j—l) _ Z(_l)s _ J(_]_)s.

j=1 j=1

LEMMA B.2 Letg € Wo"

>her NAVE the Fourier basis representatign= > >~ c;j¢;(t) in

L?[0, 1]. Then the Fourier basis representation fgf is

> ci2mii)me,(t),

j=—o0

and we have

o0

g™ 72 = > @mi)*™|esl

j=—00
PROOF. Letg;, = Zf}k ¢;6; and considey™ — ¢{™. Note that the assumption implies
thatg™ (0) = g™ (1),0 <v <m — 1, andgbés)(o) = gzﬁg-s)(l) for all s. Integrating by parts

repeatedly,

<g( _gk a¢]> - ( 1)m<g_gk7<2ﬂ-]l)m¢3>L2 :07 for a”] - _kv"'ak'

This means thag!™ = S (27ji)™¢;¢; is the L? projection ofg™ onspan{¢;,j =
—k,---,k}. Sinceg'™ ¢ L2[0,1], and the Fourier basis is complete, we conclude that

g™ — ¢t in L£2]0, 1] and the result follows.

Proor or THEOREM III.2. The proof is similar to those in Rice and Rosenblatt (1981).

As before,
X =(X(t), . Xt)" s=(s,,5s), andZ = X +.

Let X (t) = Y72 a;0,(t). By LemmaB.1,

[e.e]

J
aj = J7Y it X () = Y (“1)°ajee, j= K, K
=1

S§=—00
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Thus,
X,(t) = ") +pW) I 0"Z
= i L+ (2m)""pg™™) (@ + G5 (1),
whereS; = J=1 S 6;(t )k Next,

E(IX, - X|)

- B[ /| i faj = (L4 (2m)2"2™) (@5 + &)}y (1) Pt
B[ /13 aostoPal

li1>K
K , . 3
Jp(2mYmma; — (6 — a) = G
= E[ j i % J }+E[ |aj]2]
2 ey =
K 2 dm ;4m 2 K
pe2m)™] ’aJ’ la; — a;|?
< 28| } +2E[ ]
]Z:K (1 + p(27’[‘)2 ] Z 1 + p 271- 2m]2m)2

n i J—lU? +E[Z‘a ‘2:|
(T pOm P !

j=—K iI>K

Note that, by Lemma B.2,

o

IXM)5 = Y (@m)°"la;* as.

j=—o00

and therefore, with probability one,

K 2 dm 4m|,, |2 K 2m 2m|,, |2 K
pe(2m)* ) ’aJ’ p(2m)=" 5" ay| 2m ;2 2 (m) (12
> <> I < p > @2m) ) < p| XU
— 2m ,2m\ — J - L
2 (Ut p(ampmem) = 2 (1 p(ampmjem) =P 2
and

Z |aj|2 27_(_ QmK—Qm Z 27T 2m 2m|a |2 < K~ 2m(2ﬂ_) 2m||X(m ||2
71> K li|>K
By integral approximation,

K 0
Z (14 p(275)*™) " ~ (277)1p1/(2m)/ (1+2*™)"dx, r > 1. (B.9)

i=K
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On the other hand, with probability one,

|dj—aj‘2 = |Z(_1)Saj+sJ|2

s#0
< {0+ )G + 5 a0}
s#£0 s#£0

= O(J*M)IX"™|Z,

so that

S !a—aP
2 T plamppgamy = OV I

Combining these and applying the assumptidns~ J/2, andE(||X™]]2,) < oo, we
obtain (3.8).
Next, if X € Wj™ , we have)

2 per?

2mj) ™ a; > = || X@™)||2,. The proof of (3.9)

j=—ool

is the same as that for (3.8), except that now we have, withgimtity one,

Z |aj|2 (271_) dm pr—4m Z 27T 4m 4m|a]|2 <K~ 4m(27r) 4mHX(2m)||2 .
li|>K lil>K
a5 — 0P < {0+ HI G+ s agas2} < O XE| 2

s#0 s#£0
K

K 2 4m ;4m 2
P (2ﬂ> J |a'| m :4m m
2 (1 <t > (@2 ) < 2 X

j=—K =K

Therefore, the termd(p) in (3.8) is replaced by (p?) and (3.9) follows.

Proof of Theorem |11.3

In view of the discussions prior to the statement of the teeniit suffices to show thai, =
O,(1) wherev, is the largest eigenvalue 671; By (B.6), Tp ande have the same eigen-
values. By (B.1), the eigenvalues @f are bounded by those dof 'Q,, ; = J-'n"'Z" Z.

Hence it suffices to show that

sup J ZE[tr(Q2 ;)] < oo.
n,J



75

Straightforward computations show that

L) = 5 33BN + s () 60

7=1 1

PSS R 0) o) (Xa(te) + 1)

7=1 k=1
By the Cauchy-Schwarz inequality, it is sufficient to dealhathe first expression on the

right. In view of independence,

5l -
-
]~

<
Il
—
i

E[(X1(t;) + <1.5)*(X1(te) + s1.6)°]

1

5l =
o
M~

B
Il
—
=
Il

{BIT (1) X (t)] + o2 (BIXT (1)) + BIXT (t)]) + 07}

1

which will be bounded under the assumption thaf X, ||7.) < cc.

Proof of Theorem 111.4
Let Xy = Zﬁz_é a;¢;, namely the projection ok on spaf¢;, —¢ < k < ¢}. Then

R(‘S?t) = E[X<S)X(t)] = 0 IZEQOOE[X{&}( X{ZQ} Z Z a]laJQ ¢]1 )ngg <t>

For convenience, write;, ;, = E(a;,a;,). By an argument similar to that used in Lemma

B.2, using the assumptidd{[X ) (s)]?} < oo for all s, we have

R(m7m)(8,t> = Z Z aj17j2(27Tij1>m(_27mj2)m¢jl(S)qgj2<t>

J1=—00 jo=—00

= lim BIXEH ()X (0] = BIX™ ()X (1))

Consequently, we have

> @rh)™(2m)* " ag, )7 (B.10)

J1=—00 ja=—00

1 1 1 1
/ / [R™™) (s, 1)]dsdt = / / E2[X ™M) () X™) (1)) < E|| XM, < .
0 0 0 0
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Similarly, under the additional condition$ € W3 a.s..E{[X@™)(s)]?} < oo for all s,

andE| X ™2, < oo, we can show

o0 o0

SY @) a2 = / / [REmO (5, 1) / / E2[XCm(s)X (¢)

J1=—00 ja=—00

m 1/2
< (E[IXC™|5LE|X|12) " < oo. (B.11)

DefineR, = E[R,(s,t)] and letT,, be the corresponding covariance operator. The follow-
ing calculations are similar to those in Lemmal lll.2. bt E(X X ]) = (R(t, k)i s

it follows that

Ry(s,t) = &' (s)F,B(2,:Z1)P, ()
= ‘2¢T( )+ pW) TN (S + ol D) (T + pW) " o(t)

_ Z Z {1+ p(2m5)*™}H1 + p(21k)* ™} b (5) Pr(t)

—Kk=—K

+o2J7! Z {1+ p(27m5)*"} 20 (s)d;(t),

j=—

where
J J
gy = 3> R(tite)o, (t)ds, (k)
=1 k=1
e.) oo
- Z Z <_1)81+S2aj1+81J7j1+82J’ —K <ji,j2 < K.
§1=—00 S2=—00
Then

IT, - T, = / / R(s,t)|dsdt
K K

< 23 > gl +p@2mi) Y {1+ p(2152)* " = a5

n=—Kjo=—K

+204J Z{1+P (2mj)* " + Z Z [

71> K [j2|>K
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Suppose first thak” € W3 . andE[| X ™|}, < cc. By (B.10),

Do lapalP @R Y Y (2mi) T (2me) " g, F = Op(J),

li1|>K |j2|>K 711> K [j2|>K

and by (B.9) withr = 4,

K
T2 {1+ p(2mj)™ ) = O(T 2/,
j=—K

Now,

K K

DY a1+ p2mi)?" {1+ p(2m2)* "} = ay,0]* < 2(A+ B)

J1=—K jo=—K

where
K K
A= )0 > g — ag {1+ p(2mi) " {1+ p(2m2) "
n=—Kjo=—K
K K
B = > > lapp{l+p@ri)*m 1+ p(2m52)* " — a1

j1=—K jo=—K

It follows that

‘&j1,j2 - aj1,j2’2 < ( Z ‘aj1+81J,j1+82JD2
(31732)7é(070)

{ > (h+s) (2 +s20) "
(31732)7&(070)

x{ Z (J1 + 51)*" (G2 + s2J)* " |aj, 3]}
(51732)7&(070)

< DG+ H D (a4 520) 7"

$17#0 So=—00

+{ Z (1 + 81J)72m}{2(j2 + 590) 7" ]

$1=—00 5270

1 1
« / / R (s 4)[2dsdt
0 0

= O(J7™), (B.12)

IN
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By (B.9) withr = 2 and (B.12),

A=0@Jmptm).

Next,
K K . -
B =3 Z Z p 27T]14 |a]”2’2_|_p <27TJ2)4 ’ay1jz|2
e e LT+ pCmj P L+ p2m )
T N
+3
33 i s
Clearly,
2 = \dm 2 - \dm
p*(2m1)"" + p? (27 ja) o .
< p(2 m 2 m
{1+ p(2mj1)2m}2{1 + p(2mjy)2m}2 — p(2mj1)"™ + p(2mj2) ™",
and

pt(2m ) (2w )t
{1+ p(27j1)? ™ P2{1 + p(27ja

We thus have

gz < < p*(2mj0)*" (2mh2)""

< 3 Z Z {p(2mj1) 2™ + p(2mj2)*™ + p* (27 41)*™(2752) ™ Hay, j, |2 = O(p).

J1=—K jo=—K

Combining the various computations, using the fact that i 2 and.J~'p~1/?™) — 0

thenJ—2mp=t/m = o(J~2p~1/(2™) we conclude
E(|T, — T|l3) = O(p) + O(J 2p~ V™M) if X € W3 andE[| X ™][1, < co. (B.13)

Now if X € W3m andE[|X?™|2, < oo, the same approach shows that= O(p?).

2,per

Thus,
E(|T, — T|2,) = O(p*) + O(J2p~ @™y if X € W™ andE[| X®™ |4, < c0.(B.14)

2,per

Next,

BT, =T = B[ [ 1Rylst) = Ryls.t)Pasar

_ / / var{ X, (s) X, (1) bsdt < n~'B(| X, L.).
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If follows that
E(||X,]I72) < 8E(| X ||12) + 8E([| X, — X||72),

whereE(|| X ||7.) < oo by assumption. By calculations in Lemma l11.2, we have

~2
Sj

1+ pﬂ-2mj2m)2 :

1X, = X172 < {p+ O(J 2" }IX|§ +2 XJ: (
j=1
Some tedious but straightforward calculations showlif{atc;) = O(J~?), and we obtain
E(||X, = X|72) = O(p?) + O(J 2p~/™).
We have shown
B(IT, - T,I3) = O(n™). (B.15)
The results in theorem follow from (B.13)-(B.15).

Proof of Theorem |11.5

Define bilinear forms
L(g) = (9. Tpg) 2 + (¢"™, ¢") . and L(g) = (9. T,9) 2 + (g™, ¢"™) ..

LeEMMA B.3 Assume that the conditions of Theorem I111.4 hold. kef, p be such that

n~ 4 p+ J1p~ /2™ — 0. The following can be shown:
1. lim ian7p infg:¢Tb7Hg”L2:1 L(g) > (), and

2. limn7J7pP(infg:¢Tb’HgHL2:1 L(g) > C) =1.

PROOF. For convenience let, J, p be indexed by: andn; ! + p + J; 'p;/®™ — 0 as

k — oo.
(i) Notice that the null space d@f™, ¢™)) , is spanned by,. On the other hand, by

our assumptiongg, T'¢o) ;> = co > 0. FiX0 < e < ¢ and pick a large enoughso that
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we havel|T, — T'|| < e and(¢o, T,¢0) ;2 > co — € by Theorem Ill.4. Note that in this proof,
the operator norm can be the usual sup-norm, which is dosdrat the Hilbert-Schmidt

norm. For anyy = ¢Tb with b7b = 1, leth = g — by, then||h||? = 1 — |bo|. Thus,

Lig) = albo® = 2Jboll{¢o, Tph) 2| + (R, h™) 1,

> c1|bol® — 2¢o||h|| + c3|R|)? for all largek;
on the other hand, (g) > (g™, g™) ., = (L™ KM} , > c3||h||?, therefore
L(g) > (c1]bo* = 2¢a]|h]|)+ + c3)|h|)? for all largek.

Note that the minimum of this lower bound does not depend onp.

(ii) Let ¢ be thelim inf in part (i). For anyd < € < ¢,

(g:(ﬁq}ngB:l (g) - C 6) <g=¢7}£bTB:1 (g) el C E, H P PH < E)

+P( inf  L(g)>c—e¢||T, —T,|| > e).
(g:¢T1£bTB=1 (9) > c—¢€ T, =T, > €)

When’ is large enough, the first term is equalRg||T, — T,|| < ¢) which tends to 1 as

k — oo, and the second term tends to O.

PROOF OF THEOREM II1.5: We will start by showing thal (| f,[|2|Z) = O,(1). First,
1 FnollZe = 1€ + W) QTBIP < 18117 = 11172 < I fIIZ--

Second, let i, (-) and \,.«(-) be the functions that return the smallest and largest eigen-
values of a matrix. For any function(t) = ¢”(t)b, we haveL(g) = b7 (Q, + W)b,
then by Lemma B.3)\ (02, + W) = O,(1). Hence\min(Q, + AW) = O,()\), and
Amax{ (2, + AW) 71} = O,(A71). Also, as stated before, the eigenvaluesgfare the

same as those df,, and hence), is positive semi-definite. It then follows that

E(||h2212) = E{en'ZV(Q, + \W)2n"'VTZ"e|Z}
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= ntoZtr{(Q, + \W)72Q,}
< et {(Q, + AW)
K
< 070 A { (@ + AW) T 2070 " (2m) 7

J=1

= O,(n'A\7h).
Thirdly, by assumption thdtp + J~'p~1/(™) /X is bounded,

E(loall3:12) = E{rn™'ZV(Q,+ W) *n 'V Z r|Z}
< T A (Q, XV E{rn T ZV(Q, + W)V Z | Z)
< T e (Q, + AW)THE(r|Z)

= O,H{Oyp) + 0TV} = 0,(1)

Now, by (B.2), we hav&(|| f»,||2.|Z) = O,(1), and therefor&(|| f»,— f||2.|Z) = O,(1).

Finally, notice that

E(lfvp = FI712) = Ellfn, = f1312) + E{frp = f. (T = T,)(Jrp = 1)) 1212}

< E(lfy = FI312) + 1T = Tl+E(l = f17212).

The result follows from Theorems 111.3 and 111.4.
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