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ABSTRACT 
 
 

Dark World and the Standard Model. 

(August 2006)  

Gang Zhao, B.S., Nankai University 

Chair of Advisory Committee: Dr. Dimitri Nanopolous  

 
 

The most popular way to achieve accelerated expansion of the universe is by 

introducing a scalar field in which motion of state varies with time. The accelerated 

expanded universe was first observed by Type Ia supernovae and future confirmed by the 

latest of CMB (Cosmic Microwave Background). The reason for the accelerated universe 

is the existence of dark energy. In this dissertation, we discuss the relationship between 

dark matter, dark energy, reheating and the standard model, and we find that it is possible 

for us to unify dark energy, dark matter and a reheating field into one scalar field. There is 

a very important stage called inflationary, and we find that the residue of the inflationary 

field, which is also described by a scalar field, can form bubbles in our universe due to 

the gravity force. We discuss that these bubbles are stable since they are trapped in their 

potential wells, and the bubbles can be a candidate for dark matter. We also discuss the 

scalar singlet filed, with the simplest interaction with the Higgs field, and we find that a 

static, classical droplet can be formed. The physics picture of the droplet is natural, and it 
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is almost the same as the formation of an oil droplet in water. We show that the droplet is 

absolutely stable. Due to the very weak interaction with the Standard Model particles, the 

droplet becomes a very promising candidate for dark matter.  
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CHAPTER I 

INTRODUCTION 

Observations of Type Ia high red shift supernova [1] have revealed that the expansion 

of the universe is speeding up rather than slowing down. The accelerated expansion of the 

universe which was further confirmed by the observation of Cosmic Microwave 

Background (CMB), indicates that there is an energy component in the universe which is 

dark and has negative pressure. The recent data suggest that the universe compose of dark 

energy (73%) dark matter (23%) and matter (4%) [2]. The simplest way to achieve 

accelerated expansion of the universe is by introducing a cosmological constant, which 

has the effective equation of state p=-ρ, i.e. w=p/ρ=-1, where p is pressure and ρ is energy 

density. But it is well known that the unevolving cosmological constant faced a serious 

“fine tuning” problem. A more general way to obtain expansion of the universe is by 

introducing a scalar field φ (“quintessence”) which rolls down a potential V(φ) leading to 

an accelerated expansion at the current epoch. In such models, the dark energy 

component Ωφ=ρφ/ρc varies with time. One of these models is AS model [3] in which the 

parameters involved are roughly of order of one in Plank unites (Mpl=2.44*10^18GeV). 

At the stage of inflation, according to the inflationary scenario [4], the universe is 

void of particles and its energy density is dominated by the potential energy of a scalar  

  

This dissertation follows the style of Physical Review D. 
_________________________________ 
This dissertation follows the style of Physical Review D. 
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field φ. 

At the end of inflation, the inflation field oscillated quasiperiodicly near the 

minimum of its effective potential with slowly decreasing amplitude. Quasiperiodic 

motion of the inflation field leads to the creation of almost all particles in the universe, 

and after thermalization of particles due to collisions and decays, the universe comes to a 

state of thermal equilibrium at some temperature Tr, which was called the reheating 

temperature. 

The quintessence field makes the universe undergo in an accelerated expansion today, 

and the inflation scalar field produces particles at the stage of reheating. Both of them can 

be described by scalar field.  One objective of my thesis is to try to unify these two 

different fields into one field but at different stages of universe. 

In reheating theory, the simplest form of potential is   

                     2 2 41 1( )
2 4

V mφ φ λ= + φ .                      (1) 

   The equation of motion for field φ  can be written as  

                     
..

2 3 0mφ φ φ λφ− + + = .                       (2) 

And its energy density is  

                      
.
2 2 2 4 *1 1 1 1

2 2 4 2
mρ φ φ λφ φ φ= + + + ∇ ∇ .         (3) 

Due to gravity, a static bubble of the reheating field φcould be formed and becomes a 

candidate of the dark matter. This is the second objective of my thesis. 

Standard Model of particle physics is successful in both theoretical and experiment 

physics. And in standard model, there is very important scalar which provides the 
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breaking of symmetry and gives particles mass in standard models, is call Higgs field. 

And the form of this Higgs field can be written as  

                       2 2 41 1
2 4

V m φ λφ= +                        (4) 

where φ  is doublet, 

                  0

φ
φ

φ

+⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 

In Standard Model, is negative and 2m λ  is positive number. Generally to say, 

since φ  is doublet and has two components φ+  and 0φ ,  should be a mass matrix.  

If there is a scalar field which has the same form as (4), but with  as mass matrix, we 

discussed the possibility that dark world, dark energy and dark matter be described with 

this scalar field. And we found it cannot be since no droplet of scalar field 

2m

2m

φ+  can 

formed in scalar field 0φ . Then we moved to a little more complicated case which with 

potential  

                         

2 2 4
1 2 1 1 1 1

2 2
1 2

2 2 4
2 2 2 2

1 1( , )
2 4

1
2
1 1
2 4

V m

g

m

φ φ φ

φ φ

φ λ φ

= +

+

− +

λφ

               (5) 

And we found that with this kind of potential, the scalar field 1φ  can form a droplet 

in the scalar field 2φ  due to the interaction term. We discussed this model and require 

the parameter of potential in (5) to satisfy the constraint that the universe is accelerated 

expansion today and the universe needed a slow expansion in the period of 

nucleosynthesis. We also discuss some other models which can unify the dark energy and 
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dark matter. Droplet is very important since it is totally classical and it is a solution. We 

also discussed the shape of droplet, the surface energy, and some problems which we 

cannot be solved. 

In this paper, we also talked some previous work which is useful to our model. We 

talked Sidney Coleman’s Q balls theory. Q balls, although dealing with different 

questions with our droplet, there is some resemblance, and some techniques in the paper 

can be used directly to our droplet model. 
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CHAPTER II 

COSMOLOGY, DARK ENERGY AND REHEATING 

Cosmology is the study of the universe as whole, that is, how the universe began, 

how it developed to be like what it looks today, and how it will end in the future. Because 

of the discovery of accelerated expansion of universe, cosmology becomes one of hottest 

topics in physics, and many high energy physicists try to explain this phenomenon with 

superstring and supersymmetry physics. To cosmologist, Big Bang theory is one of the 

most useful methods to deal with universe problems. Big Bang theory，which is a very 

successful theory to study universe, presents a clear and natural picture how the evolution 

of universe from the beginning to our current age, around 13.6 billion years later and with 

3k CMB, and to the future. This theory is a theoretical work based on general relativity 

which is put forward by Albert Einstein and Alexander A. Friedmann in the 1920s, and 

there are some observational facts to support the Big Bang Theory: First, the expansion of 

the universe, discovered by Edwin P.Hubble in the 1930s, and accelerated expansion, 

discovered by the observation of supernova. Second, the relative abundance of light 

elements, explained by George Gamow in the 1940s, mainly that of helium, deuterium 

and lithium, which were cooked from the nuclear was a few times hotter than the core of 

the sun. Third, the cosmic microwave background (CMB), the afterglow of the Big Bang, 

discovered in 1965 by Arno A. Penzias and Robert W.Wilson as a very isotropic 

blackbody radiation at a temperature of about 3 degrees Kelvin, emitted when the 
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universe was cold enough to form neutral atoms, and photons decoupled form matter (the 

photons cannot decays into electrons), approximately 380,000 years after the Big Bang. 

Today, these observations are confirmed by experiments to within a few of percent 

accuracy, and have helped establish the hot Big Bang as the preferred model of the 

universe. 

     Cosmology begun as a quantitative science with the advent of Einstein’s general 

relativity and the geometry of space-time, and thus the general attraction of matter, is 

determined by the energy momentum content of content of the universe 

                      1 8
2

G R g R g GTµν µν µν µν π≡ − + Λ = µν  

The third term of the equation is cosmology constant term which is important for the 

accelerated expansion universe. These non-linear equations are very difficult to solve, but 

with some kinds of symmetry of universe, it can be solved, and sometimes, we can solve 

it numerically. 

Although at small scales the universe looks very inhomogeneous and anisotropic, 

such as the stars and clusters, the deepest galaxy like 2dF GRS and SDSS suggest that the 

universe on large scales is very homogeneous and isotropic. And, the cosmic microwave 

background (CMB), which contains information about the early universe when the 

photons decoupled from matters, indicates that the deviations from homogeneity and 

isotropy were just a few parts per million at the time of photon decoupling. Therefore, we 

can impose those metric satisfying homogeneity and isotropy is the 

Fridmann-Poberson-Walker(FRW) metric, written here in terms of the invariant geodesic 
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distance 2ds g dx dxµ ν
µν=  in four dimensions µ =0,1,2,3. And by this way, we can 

simplify the Einstein Equation.  

We consider homogenous, isotropic spatially flat cosmology described by the line 

element 

                   .                          (6) 2 2 2 ( )ds dt a t dx= − 2

The scalar field action is  

                   4 1[ (
2 2

) ]RS dx g g Vµν
µ νφ φ= − ∂ ∂ − −∫             (7) 

where R is curvature scalar. 

The most general matter fluid consistent with the assumption of homogeneity and 

isotropy is a perfect fluid, one is which an observer commoving with the fluid would see 

the universe around it as isotropic. The energy momentum tensor associated with such a 

fluid can be written as  

              ( )T pg p U Uµν µν µ νρ= + +                            (8) 

Where p (t) and ( )tρ are the pressure and energy density of the fluid in the expansion, 

measured by this commoving observer, and U µ  is the commoving four-velocity, 

satisfying . For such a commoving observer, the matter content looks 

isotropic, 

1U Uµ µ = −

                                   (9) ( ( ), ( ), ( ), ( ))T diag t p t p t p tµ
ν ρ= −

The conservation of energy ( ; 0T µν
ν = ), a direct consequence of the general covariance 

of the theory ( ; 0Gµν
ν = ), can be written in terms of the FRW metric and the perfect fluid 

tensor (9) as 
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                       3 ( ) 0a p
a

ρ ρ+ + =

i
i

                       (10) 

In order to find explicit solutions, one has to supplement the conservation equation 

with an equation of state relating the pressure and the density of the fluid. The most 

relevant fluids are barotropic, i.e. fluids whose pressure is linearly proportional to the 

density, p wρ=  and therefore the speed of sound is constant in those fluids. Generally to 

say, there are three main types of fluids with different value of w: 

1) Radiation, w=1/3, with equation of state / 3R Rp ρ= , like photons, associated with 

relativistic degrees of freedom (i.e. particles with temperatures much greater than 

their mass). In this case, the energy of matter decays as  with the 

expansion of the universe. 

4~R aρ −

2) Matter, w=0, the equation of state , associated with nonrelativistic degrees 

of freedom (i.e. particles with temperatures much smaller than their mass). In this 

case, the energy density of matter decays as 

0Mp

3~M aρ −  with the expansion of the 

universe. Usually, we treat the dark matter in this group. 

3) Vacuum energy, w=-1, with equation vp vρ= − , associated with quantum vacuum 

fluctuations. In this case, the vacuum energy density remains constant with the 

expansion of the universe. (For dark energy, w can be any value smaller than 0. 

Recent data indicates that w of dark matter should smaller than -0.7 ) 
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Reheating 

There is a very important stage of universe called reheating. Reheating theory was 

introduced by L.Fofman, A.Linde, et al. and I will review their work here since we will 

use this theory in our model. According to the theory of inflationary scenario, the 

universe in the past expands exponentially with time while the energy density is 

dominated by the potential energy of a scalar singlet fieldϕ , called inflation. Right after 

inflation the universe is empty of particles. Quasiperiodic evolution of the inflation field 

leads to creation of Standard Model particles and dark matter, after thermalization of 

which due to collision and decays the universe becomes “hot”. There are two kinds of 

procedure of particles production: Born approximation and Parametric Resonance.  

Consider the inflation scenario based on the scalar field dynamics. The Lagrangian of 

the model is  

                    
2

21 ( ) ( )
2 1

PML Vϕ ϕ
6

R
π

= ∇ − −  

With the inflation field potential  

                     4( ) | |q qV ϕ λµ ϕ−=  

The equation of motion can be written as 

                      

2
2

2

'

8 1[ (
3 2

3 ( ) 0

P

H V
M

H V

π )]ϕ ϕ

ϕ ϕ ϕ
⋅⋅ ⋅

= +

+ + =

i

 

The solution is 

                       3 '(co ( ) )a nst V a dϕ ϕ
⋅

−= − 3 t∫  
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As the scalar field rolls towards its smaller values, the equation of motion can be 

rewritten as  

                        

2
2

2

8
3

3

P

H
M

H

π ρ

ρ ϕ
⋅

=

= −
i

 

where 

                        
21 ( )

2
Vρ ϕ ϕ

⋅

= +  

is the scalar field energy density. Introducing the positive value 0 ( )tϕ  by the relation 

                     0( ( )) ( )V t tϕ ρ=  

We can present the evolution of the scalar field in the form 

                       0( ) ( ) cos ( )t t W tϕ ϕ= dt∫  

where W (t) is can be written as the form 

            2 2
0

2[ ( )] 6 ( )(1 1 )
2

V H VW
q

ρ ϕ ϕ ϕ
ϕ ϕ ρρ
−

= ± −
−

 

If           2 (
0

2( )
48 2

q q
P

q q 2) / 2Mϕ
π

++
 

Then approximately W can be 

               2 2
0

2[ ( )]VW ρ ϕ
ϕ ϕ
−

≈
−

 

and             6 [ ( )]H Vρ ρ ϕ= − −
i

 

taking the average of both sides, we get  

                          
0

( ) 6 [ ( )]
TT H V d

T T
tρ ρ ϕ∆

= − −∫  

where ( )Tρ∆  is the change of ρ  over the time period T. And approximately we can 
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write 

                         6
2

q H
q

ρ ρ≈ −
+

i
 

                             0 0
6

2
H

q
ϕ ϕ≈ −

+

i
                            

Particle Production Due To Elementary Theory 

We take the interaction to be  

                     
_

2 2
int ( )L f hϕψψ σϕ ϕ χ= − − +  

We need to develop the quasiperiodic evolution of the scalar field ϕ  into harmonics 

                        1

_
2 2

1

( ) cos( )

( ) cos(2 )

n
n

n
n

t n t

t n

ϕ ϕ ω

tϕ ϕ ζ ω

∞

=

∞

=

=

= +

∑

∑
 

where the value  which is slowly varying with time is 
_
2 2

0 / 2ϕ ϕ≈ 2ϕ  averaged over the 

rapid oscillations of the scalar fieldϕ . nϕ  and nζ are amplitudes which are slowly 

varying with time, and  

                     
0

2 c
T

ρπω
ϕ

= =  

is the leading frequency, also slowly varying with time, related to eh period T of the 

oscillations of the fieldϕ . Assuming that the oscillation period of ϕ  is small compared 

to the Hubble time, 

                      H ω  

We will also assume that particle masses and the coupling constant h are sufficiently 

small because we haven’t found this field in our world. The rates of particle production, 
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that is, the total number of pairs produced per unit and unit time are then given in 

first-order perturbation theory [12] 

                       

4 2

2

( )
8

( )
8

g
m

h m
ϕ

ϕ

σϕ χχ
π

ϕ ψψ
π

Γ → =

Γ → =

 

Reheating completes when the rate of expansion of the Universe given by the Hubble 

constant 28 / 3 ~PH Mπρ 1t−=  becomes smaller than the total decay 

rate ( ) ( )ϕ χχ ϕ ψψΓ = Γ → +Γ → . The reheating temperature can be estimated 

by 0.1r PT MΓ . 

Particle Production Due to Parametric Resonance 

Parametric resonance occurs when the frequency kω  of the quantum field mode is 

equal to half-integer multiples of the inflation frequency, 2 [( / 2) ]k n 2ω ω≈ . This results in 

exponentially enhanced production of particles in narrow resonance bands. 

The evolution of a particular mode kχ  of the quantum scalar field χ  in the presence of 

the quickly oscillating classical scalar field ϕ  is described by the following equation: 

                 2 2 23 ( 2 2 )k k kH k m hχχ χ σϕ ϕ χ
⋅⋅ ⋅

−
+ + + + + = 0

where /k k a=  is the physical wave number of the mode under consideration and 

2
k k=  is commoving number. 

With the transformation  

               3/ 2
k

k
Y

a
χ =  

one can get the equation of  as  kY
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..

2[ ( ) ( )] 0k k kY t g t Yω ω+ + =

where 

                       
_.

22 2 29 3( ) 2
4 2k t k m H H hχ

2ω ϕ= + − − +  

                            
_

2 2( ) 2 2 ( )g t hω σϕ ϕ ϕ= + −  

From the general theory of parametric resonance, one knows that parametric 

resonance occurs for certain values of the frequencies kω . Namely, the resonance in the 

lowest frequency resonance band occurs for those values of kω  for which  

                       2 2( ) |
2k n
n gω ω− ≡ ∆ < |n  

where n is an integer and  is  the amplitude of the nth Fourier harmonic of the 

function 

ng

( )g tω .  

Denote by resω  the resonance frequency / 2nω  and by kω∆  denote the 

difference k resω ω− . Both kω  and resω  change with time. In the small time tδ  the shift 

between these frequencies will be 0| / |
kkd dt ω tδω ω ∆ = δ= ∆ . Hence a new region in phase 

space region will be given by  and each particle will have energykN resω . Then taking 

the sum over all parametric resonance bands we can write down the equation for the 

energy density χρ  of the scalar particles produced in the following form: 

         
.

χρ (Resonance production)  = 3
2

. . 0

1 | |
2

k

k
res res

all resonance bands

dN
dt ω

ωω
π ∆ =

∆∑  

where  is the maximal value of .  for the current resonance value of k, achieved 

after the corresponding mode has passed through the resonance band and has been 

amplified.  

resN kN
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Under the condition 

                2 2 2,m m hψ χ
2ϕ ω+  

Particles produced will be ultrarelativistic and hence their contribution to the energy 

density will decrease due to the cosmological expansion. Taking this process also into 

account we are able to write down the following complete equation for the evolution of 

the energy density Pρ  of the particles produced  

             
.

( )4 ( res
P PH ϕ χ )ρ ρ ρ= − + Γ +Γ  

where  

               ( ) 3
2 2

. . 0

1 1 | |
2 2

k

res k
res res

all resonance bands

dN
dtχ

ω

ωω
π ρ π ∆ =

∆
Γ = ∑  

  The simplest case is scalar field potential like 

                    2 2 41 1( )
2 4

V m λΦ = Φ + Φ                          (11) 
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                 Fig. 1 The simplest scalar field for reheating 

 

Fig.1 shows the potential of the simplest scalar field for reheating. 

In this case the effective potential of the field φ  soon after the end of inflation at 

~ PMφ  is dominated by the term 41
4
λφ . Oscillations of the fieldφ  in this theory are not 

sinusoidal; they are given by elliptic functions, but with good accuracy one can write  

                        ( ) ~ sin( )t cφ λΦ Φdt∫  

where  

                           2 (3 / 4) / 0.85c π= Γ ≈                        

The Universe at that time expands as at the radiation-dominated stage: , 

so that =const. Using a conformal time

1( ) ( )t a t−Φ ∝

aΦ η , the exact equation for quantum 

fluctuations δφ  of the field φ  can be reduced to the Lame equation. The results remain 

essentially the same if we use an approximate equation 
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2

2 2 2 2
2

( ) [ 3 sin ( )]k
k

d k a c a
d
δφ λ λ η δ
η

0φ+ + Φ Φ =  

                               
2

( ) ( )
dt t

a t a t
η = =∫  

which leads to the Mathieu equation with 

  2 2 2 2 2 2 2 2 2/ 3 / 2 /A k c a c k c aλ λ= Φ + ≈ Φ + 2.08

2and q=1.04. We can see that the resonance occurs in the second band, for .  2 2~ 3k aλ Φ

 The maximal value of the coefficient in this band for q~1 is approximately equal to 

0.07. As long as the background of created particles is small, expansion of the Universe 

does not shift fluctuations away from the resonance band, and the number of produced 

particles grows as exp(2 ) ~ exp( / 5)k tc aµ λ η λΦ Φ . 

Reheating stops when the presence of nonzero mass mφ  23λ φ< >  though still 

small as compared to appears enough for the expansion of the Universe to drive a mode 

away from the narrow resonance. It happens when the amplitudeΦ  drops up to a value 

~ /mφ λ . 

Dark Matter  

From the observation of the cosmic microwave background (CMB), the deuterium 

abundance in the Universe and supernovae, it suggests that 0.04baryonΩ  [5] if the 

current Hubble expansion rate is 0 /100 / sec/ 0.7h H km Mpc= = . Although  is 

much larger than the observed mass in stars,

baryonΩ

0.005starsΩ , it is obviously much smaller 

than the total energy density in the universe inferred from the observed anisotropy in the 

CMB. 
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                    2

8 1.02 0.02
3

total
total

G
H

π ρ
Ω ≡ = ±                  (12) 

 

 

Fig.2 Spectrum of fluctuations in the CMB 

 

Figure 2 compares measurements of CMB fluctuations made before WMAP with the 

WMAP data themselves.[2] The position of the first acoustic peak represents to flat 

Universe with , and two more acoustic peaks gives us a determination of 

, where h~ 0.7 is the present Hubble expansion rate H, measured 

in units of 100km/s/Mpc.  

1totalΩ

2 0.0224 0.0009bhΩ = ±
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Fig.3 Cosmological Parameters obtained from the WMAP data 

 

Figure 3 shows the functions for various cosmological parameters obtained form the 

WMAP data analysis. The panels show the baryon density , the matter density , 

the Hubble expansion rate h, the strength A, the optical depth

2
bhΩ 2

mhΩ

τ , the spectral index sn  

and its rate of change d sn /lnk, respectively.[6] 

In addition, there is strong evidence to show that  

                   1/ 3, 2 / 3m DEΩ Ω
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Fig.4 The density of matter mΩ  and dark energy ΛΩ  
 

 

As seen in Fig 4, the combination of CMB data with those on high-redshift Type Ia 

supernovae and on large-scale structure shows a flat Universe with about 30% of matter 

(dark matter and matter) and 70% of vacuum (dark) energy.  

Both dark matter and dark energy are considered essential missing pieces in the cosmic 

puzzle 

                    dark world total baryonsΩ −Ω =

Though the observational evidence favoring a flat Universe with  is fairly 

recent, the nature of the ‘unseen’ component of the universe (which dominates its mass 

density), is a long-standing issue in cosmology. Indeed, the need for dark matter was 

originally pointed out by Zwichy(1933) who realized that the velocity of individual 

1totalΩ
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galaxies located within the Coma cluster were too large due to baryons mass, and that this 

cluster would be gravitationally bound only if its total mass exceeded the sum of the 

masses of its component galaxies or there is some mass unseeing. For clusters which have 

relaxed to dynamical equilibrium the mean kinetic and potential energies are related by 

the theorem 

                              0
2
UK + =                       (13) 

where is the potential energy of a cluster of radius R, 2 /U GM− R
1

2 23 rK M v〈 〉  is 

the kinetic energy and 
1

2 2
rv〈 〉  is the dispersion in the line-of-sight velocity of cluster 

galaxies. (Cluster in the Abell catalogue typically has 11.5R h Mpc− .) This relation 

allows us to infer the mean gravitational potential energy if the kinetic energy is 

accurately known. The mass-to-light ratio in clusters can be as large 

as / 300 /M L M L . However since most of the mass in clusters is in the form of 

baryons, x-ray emitting intracluster gas, the extent of dark matter in these objects is 

estimated to be , where  is the total mass in luminous matter 

including stars and gas. 

/ 20lumM M lumM

The Kepler Law says  

                                
2

2

( )
N

v MG
r r
=

r                         (14) 

The speed v should vary with r liking 

                        
1/ 2

1/ 2

[ ( )]NG M rv
r

=                            (15) 

Observations of galaxies taken at distances large enough for there to be no luminous 
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galactic component  indicate that, instead of declining at the expected rate   

true if M~ constant, the velocity curves flattened out to v~ constant implying  

1/ 2v r−∝

( )M r r∝ . 

This observation suggests that the mass of galaxies continued to grow even when there is 

no compiled for over 1000 spiral galaxies usually by measuring the 21 cm emission line 

from neutral hydrogen (HI). The results indicate that / (10 20) /M L M L= −  in spiral 

galaxies and in elliptical, while this ratio can increase to / (200 600) /M L M L= − in 

low surface brightness galaxies (LSB’s).  

         

 

Fig.5 The observed rotation curve of the dwarf spiral galaxy M33 

As shown in figure 5, there must be some matter which is non luminous, and this non 

luminous matter is called dark matter. 

A difference between the distribution of dark matter in galaxies and clusters needs to 
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be talked carefully: in galaxies, dark matter appears to increase with distance, while in 

clusters, the dark matter distribution actually decreases with distance. For example, the 

rotation curve of dwarfs(such as DD0154) has been measured to almost 15 optical length 

scales indicating that the dark matter surrounding this object is extremely spread out. On 

the other hand, acts as a gravitational leans which focuses the light from background 

objects such as galaxies and QSO’s thereby allowing us to determine the depth of the 

cluster potential well. Observations of strongly concentrated in central regions with a 

projected mass of 13 1410 10 M−  being contained within 0.2-0.3 Mpc of the central 

region 

We have discussed that only about 4% of the cosmic density is baryonic, and this 

means that the dark matter which we care observing must be non-baryonic in origin.(at 

most the weak interaction is allowed) The need for non-baryonic forms of dark matter 

also has the indirect support from small initial conditions and hence to reconcile the 

existence of a well developed comic web of filaments and clusters at the present epoch 

with the exceedingly small amplitude of density perturbations(  at z~ 1,100) 

inferred from COBE measurements and more recent CMB experiments. Indeed, it is well 

known that, linearized density perturbations in a spatially flat matter dominated universe 

grows at the rate

5/ ~ 10δρ ρ −

2/3 1(1 )tδ z −∝ ∝ + , where 0(1 ) / ( )z a a t+ =  is the cosmological red shift. 

In a baryonic universe, the large radiation pressure ensures that density perturbations in 

the baryonic component can begin growing only after hydrogen recombines at z~1,100 at 

which point of time baryons and photons decouple. Requiring 1δ >  today implies 
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310δ −>  at recombination, which contradicts Cosmic Microwave Background 

observations by over an order of magnitude. In non-baryonic models on the other hand, 

the absence of any significant coupling between dark matter and radiation allows 

structure to grow much earlier, significantly before hydrogen n the universe has 

recombined. After recombination baryons simply fall into the potential wells created for 

them by the dominant non-baryonic component. As a result, a universe with a substantial 

non-baryonic dark matter can give rise to the structure which we see today form smaller 

initial fluctuations. 

Here we discuss the two candidate of dark matter. 

Neutrinos 

Massive neutrinos can be good candidate for hot dark matter. 

We have the following direct experimental upper limits on neutrino massed. From 

measurements of the end-point in Tritium β  decay, we know that  

                       2.5em eν V≤  

And there are prospects to improve this limit down to about 0.5eV with the proposed 

KATRIN experiment. From the measurements of π µν→  decay, we know that 

                     190m K
µν

eV<  

And there are prospects to improve this limit by a factor ~ 20. From measurements of 

nτ πν→  decay, we know that  

                   18.2m M
τν
< eV

However, the most stringent laboratory limit on neutrino masses may come from 
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searches for neutrinoless double-β  decay, which constrain the sum of the neutrinos’ 

majorana masses weighted by their couplings to electrons 

                2| | 0.35e i eii
m m Uν νν
〈 〉 ≡ ≤ eV∑                   (16) 

The pioneering Super-Kamiokande and other experiments have shown that 

atmospheric neutrinos oscillate, with the following difference in squared masses and 

mixing  

                              (17) 2 3 2 2
232.4 10 ,sin 2 1.0m eVδ −× θ

θ

which is very consistent with the K2K reactor neutrino experiment, as shown the left 

panel of Figure 6. A flurry of recent solar neutrino experiments, most notably SNO, have 

established beyond any doubt that they also oscillate, with  

                                  (18) 2 5 2 2
316 10 , tan 0.5m eVδ −×

Most recently, the KamLAND experiment has reported a defict of electron 

antineutrinos from nuclear power reactors, leading to a very similar set of preferred 

parameters, as seen in the upper panel of Figure 6. 
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                     Fig.6 Parameter region for massive neutrino 
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Fig.6 Continued 

 

This figure shows the parameter region for massive neutrino, the right panel inferred 

from the K2K reactor experiment, and the left panel inferred from the solar-neutrino 

experiment.  

Using the range of 12θ  allowed by the solar and KamLAND data, one can establish 

a correlation between the relic neutrino density  and the neutrinoless double-2hνΩ β  

decay observable , as seen in Fig 7. Pre-WMAP, the experimental limit on emν〈 〉 emν〈 〉  

could be used to set the bound  
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                                       (19) 3 210 10hν
− ≤ Ω ≤ 1−

χ± ≥ _ 99
e

m GeV≥

Supersymmetric Particle as Dark Matter 

When considering the experimental, cosmological and theoretical constraints on the 

MSSM, it is common to assume that all the unseen spin-0 supersymmetric particles have 

some universal mass  at some GUT input scale, and similarly for the unseen fermion 

masses . There are two parameters of this constrained MSSM are restricted by the 

absences of supersymmetric particles at LEP: , , and at the 

Fermilab Tevatron collider.  

0m

1/ 2m

103m GeV

 

Fig.7 Correlation between vhΩ  and v e
m  

 

They are also restricted indirectly by the absence of a Higgs boson at LEP: 
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114.4hm G> eV , and by the fact that b sγ→  decay is consistent with the Standard 

Model, and potentially by the BNL measurement of 2gµ − , as seen in  Fig 7.（Ellis et 

al.,2003a; Lahanas & Nanopoulos 2003） 

As shown there, the MSSM parameter space is also restricted by cosmological 

bounds on the amount of cold dark matter, . R-parity indicates that the 

supersymmetric particle cannot decay into Standard Model particles, so the lightest 

supersymmetric particle, which cannot decay into Standard Model particles and other 

supersymmetric particles since it is the lightest one, will be the candidate of Cold Dark 

Matter. One of these candidates is neotrilino. Since neotrilino can interact with other 

supersymmetric particles by weak interaction, and its mass is around 100 GeV, it 

becomes most promising candidate of Cold Dark Matter. Figure 8 shows if neotrilino is 

the Cold Dark Matter, how it is constraint the parameter space – the netrilino has to be the 

lightest supersymmetric particle. 

2
CDM hΩ
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Fig.8 The ( ) planes for the mass of Higgs 1/ 2 0,m m
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Fig.8 Continued 

 

Figure 8 The ( ) planes show (left panel) 1/ 2 0,m m tan 10, 0β µ= > , and (right panel) 

tan 10, 0β µ= < . This figure shows allowed region for the mass of Higgs from the 

constraint of cosmology, g-2 and b sγ→ . 
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Dark Energy 

Type Ia supernovae, when treated as standardized candles, suggest that the expansion 

of the universe is speeding up rather than slowing down. The can for an accelerating 

universe also receives independent support form CMB and large scale structures. The 

simplest way to explain this accelerating expansion is by introducing a cosmological 

constant since we are free to input a constant term in Einstein equation. However, there is 

key problem that we have to explain. The value of energy density stored in the 

cosmological constant today, this value has to be of order the critical density, namely 

[7].Unfortunately, no sensible explanation exists as to why a true 

cosmological constant should be at this scale, it should naturally be much larger. Such as 

in Standard Model, the vacuum value of Higgs field should be around 100 GeV. Typically, 

since it is conventionally associated with the energy of the vacuum in quantum theory we 

expect it to have a size of order the typical scale of early Universe phase transitions. Even 

at the QCD scale it would imply a value .  

3~ 10 eVρ −
Λ

4

3 4~ 10 GeVρ −
Λ

There are some alternative ways to have an accelerating expansion universe. This 

includes: Quintessence models which invoke an evolving canonical scalar field with a 

potential and make use of the scaling properties and tracker nature of such scalar fields 

evolving in the presence of other background matter fields; scalar field models where the 

small mass of the quintessence field is protected by an approximate global symmetry by 

making the field a pseddo-Nambu-Goldstone boson; Chameleon fields in which the scalar 

field couples to the baryon energy density and is homogeneous being allowed to vary 
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across space from solar system to cosmological scales; a scalar field with a non-canonical 

kinetic tern, know as K-essence based on earlier work of K-inflation; modified gravity 

arising out of both string motivated or more generally General Relativity modified 

actions which both have the effect of introducing large length scale corrections and 

modifying the late time evolution of the  universe; the feedback of non-linearities into 

the evolution equations which can significantly change the background evolution and 

lead to acceleration at late times without introducing any new matter; Chaplygin gases 

which attempt unify dark energy and dark matter under one field by allowing for a fluid 

with an equation of state which evolves between two; tachyons arising in string theory; 

the same scalar field responsible for both inflation in the early Universe and again today, 

known as Quintessential inflation; the possibility of a network of frustrated topological 

defects forcing the universe into a period of accelerated expansion today; Phantom Dark 

Energy and Ghost Condensates in string theory; the String Landscape arising from the 

multiple numbers of vacua that exist when the string moduli are make stable as 

non-abelian fluxes are turned on; Cyclic universe; collision of two D-bran.[8]  

Observational Evidence for Dark Energy 

In 1998 the accelerated expansion of the universe was pointed out by two groups 

from the observations of Type Ia supernovae. We use a redshift to describe the evolution 

of the universe. This is related to the fact that light emitted by a stellar object becomes 

red-shifted due to the expansion of the universe. The wavelength λ  increases 

proportionally to the scale factor a, whose effect can be quantified by the redshift z, as  
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             01 az
a

0λ
λ

+ = =                                  (20) 

where the subscript zero denotes the quantities given at the present epoch.(at today a=1). 

In Minkowski space time the absolute luminosity Ls of the source and the energy flux F 

at a distance d is related through  

                                             (21) 2/(4 )F Ls dπ=

By generalizing this to an expanding universe, the luminosity distance, , is defined by  Ld

               2

4L
Lsd

Fπ
≡                                  (22) 

The Huble parameter takes the convenient form  

                3(1 )2 2 (0)
0 (1 ) iw

i
i

H H z += Ω +∑                    (23) 

where (0) (0) 2 (0) (0)
08 /(3 ) /i i iG H cπ ρ ρΩ ≡ = ρ  is the density parameter for an individual 

component at the present epoch. Hence the luminosity distance in a flat geometry is given 

by 

                  
'

3(1 )0 (0) '
0

1
(1 ) i

z

L w
ii

z dzd
H z +

+
=

Ω +
∫ ∑

            (24) 

In the figure below, we plot the luminosity distance for a two component flat universe 

satisfying . Notice that  for small values of z. The luminosity 

distance becomes larger when the cosmological constant present. 

0 0 1m ΛΩ +Ω = 0/Ld z H
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Fig.9 Luminosity distance  Ld

 

Figure 9 shows luminosity distance  in the units of Ld 1
0H −  for a two component 

flat universe with a non relativistic fluid ( 0mw = ) and a cosmological constant 

( ). 1wΛ = −

The direct evidence for the current acceleration of the universe is related to the 

observation of luminosity distances of high redshift supernovae. And the accelerated 

expansion of universe can be described by the dark energy. The observations related to 

the CMB and large scale structure independently support the ideas of a dark energy 
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dominated universe. The CMB anisotropies observed by COBE in 1992 and by WMAP 

in 2003 exhibited a nearly scale-invariant spectra of primordial perturbations, which 

agree very well with the prediction of inflationary cosmology.  

 

 

Fig.10 Confidence regions constrained form CMB and large-scale galaxy clustering 

 

In Figure 10, we plot the confidence regions coming from SN Ia, CMB and 

large-scale galaxy clustering. Clearly the flat universe without a cosmological constant is 
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ruled out. The compilation of three different cosmological data sets strongly reinforces 

the need for a dark energy dominated universe with  and . Amongst 

the matter content of the universe, baryonic matter amounts to only 4%. The rest of the 

matter (23%) is believed to be non-baryonic which is called dark matter. Dark energy is 

about 73% with its equation of state (w<-1/3). 

0 0.7ΛΩ 0 0.3mΩ

Cosmological Constant 

The Einstein tensor Gµν  and the energy momentum tensor T µν  satisfy the Bianchi 

identities  and energy momentum conservation0Gµν
ν∇ = 0T µν

ν∇ = . But since the 

metric g µν  is constant with respect to covariant derivatives ( 0g µν
ν∇ = ), we have the 

freedom to add a term g µνΛ  in Einstein equations where Λ is constant. Then the 

Einstein equation becomes 

             1 8
2

R g R g GTµν µν µν µνπ− +Λ =                     (25) 

Or we can write it as  

             18 ( )
2

R g G T Tgµν µν µν µνπ−Λ = −                    (26) 

In the FRW background given by FRW metric 

            
2

2 2 2 2 2 2 2
2( )[ ( sin )]

1
drds dt a t r d d

Kr
θ θ φ= − + + +

−
       (27) 

the modified Einstein equation give  

              2
2

8
3 3
G KH

a
π ρ Λ

= − +                           (28) 

               4 ( 3 )
3 3

a G p
a

π ρ
⋅⋅

Λ
= − + +                         (29) 

If the cosmological constant originates form a vacuum energy density, then this 
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suffers form a severe fine-tuning problem. Observationally we know that  is of order 

the present value of the Hubble parameter , that is  

Λ

0H

                                     (30) 2 42
0 (2.13 10 )H h Ge−Λ ≈ = × 2V

This corresponds to a critical density ρΛ , 

                    
2

47 410
8

plm
GeVρ

π
−

Λ

Λ
= ≈                       (31) 

Meanwhile the vacuum energy density evaluated by the sum of zero-point energies 

of quantum fields with mass m is given by 

                  
3

2
30

1
2 (2 )VAC

d k k mρ
π

∞
= ∫ 2+                     (32) 

This exhibits an ultraviolet divergence: 4
VAC kρ ∝ . However we expect that quantum field 

theory is valid up to some cut-off scale , so  maxk

                
4
max

216VAC
kρ
π

≈                                   (33) 

For the extreme case of General Relativity we expect it to be valid to just below the 

Plank scale: . Hence if we treat191.22 10plm = × GeV max plk m= , we can see that the 

vacuum energy density will be 

                                         74 410VAC GeVρ ≈

which is about  orders of magnitude larger than the observed value. If we take an 

energy scale of QCD for , we get   which is also much larger than 

12110

maxk 310VAC GeVρ −≈ 4

ρΛ . 

The cosmological constant problem has led to try a different way to the dark energy 
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issue. Many have investigated the possibility that the dark energy is caused by the 

dynamics of a light scalar field, or a few scalar field.  

Dark Energy and Reheating 

The cosmological constant corresponds to a field with a constant equation of state 

w= -1. Now, the observations which constrain the value of w today to be close to that of 

the cosmological constant, but it is doesn’t say something about how w vary with time. 

Scalar field which evolve with time, it’s equation of state will change with time, that is w 

will change with time. 

Quintessence is described by ordinary scalar fieldφ . The action for Quintessence is given 

by 

                    4 21[ ( ) ( )
2

S d x g V ]φ φ= − − ∇ −∫                    (34) 

                   2( ) g µν
µ νφ φ φ∇ = ∂ ∂                               (35) 

and ( )V φ  is the potential of the field. In a flat FRW spacetime the variation of the action 

with respect to φ  gives  

                 3 dVH
d

φ φ
φ

⋅⋅ ⋅

+ + = 0                                  (36) 

The energy momentum tensor of the field is derived by varying the action in terms of 

g µν  

                     2 ST
ggµν µν

δ
δ

= −
−

                            (37) 

Taking note that (1/ 2)g g g g µν
µνδ − = − − δ , we can get that  
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                    1[
2

T g gαβ
µν µ ν µν α β ( )]Vφ φ φ φ= ∂ ∂ − ∂ ∂ + φ              (38) 

In the flat Friedmann background we obtain the energy density and pressure density of 

the scalar field: 

00

2
ij ij

T

T a P
φ

φ

ρ

δ

=

=
                             (39) 

where  

                

.
2

.
2

1 ( )
2
1 ( )
2

V

P V

φ

φ

ρ φ φ

φ φ

= +

= −
                               (40) 

The equation of motion for the scalar field is then  

              
2

2 8 1[ (
3 2
GH π )]Vφ φ= +

i
                          (41) 

               28 [ (
3

a G V
a

π )]φ φ
⋅⋅

⋅

= − −                           (42) 

Here we study cosmological dynamics of a scalar field φ  in the presence of a 

barotropic fluid; then the equations become: 

                                           (43) 
..

'3 ( )H Vφ φ φ
⋅

+ + = 0

with       

.
2 2

.

1 1( ( )
3 2

0

n

n n

H V

nH

)φ φ ρ

ρ ρ

= + +

+ =

  

where ρn is the energy density in radiation (n=4) or non relativistic matter (n=3), H=å/a 

is the Hubble expansion rate of the universe, dots are derivative with respect to time, 

primes are derivative with respect to the field φ. 

Now consider potential of the form  
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                    0( )V V e λφφ −=                            (44) 

Models with this kind of potential have been studied in [9]. The special features of 

quintessence field φ  with this potential is the field with approach a “scaling ” solution, 

independent of initial conditions. Consider / cφ φρ ρΩ = , after an initial transient, the 

quintessence field will take a fixed value 2/nφ λΩ =  only depend on λ  and n. We can 

see this special feature of models with potential (44) in figure 1, where a is scale factor of 

universe. [a(today)=1]. 
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Fig.11  for different ( )Q aΩ λ  in the 0( )V V e λφφ −=  

            

Figure 11 shows the solution for the potential 0( )V V e λφφ −= . 

Models with potential (7) can achieve the condition ~ ( )other c cφ φ /ρ ρ ρΩ Ω = −  

naturally through the scaling behavior, but there is a problem that within these models 
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that no choice of λ  can fit all constraint. If we choose λ  small that can make universe 

accelerated expansion today, then 2/nφ λΩ =  is too large to satisfy the constraint of 

nucleosynthesis[10]. 

The tightest constraint on the energy density of dark energy during a radiation 

dominated ear comes from primarily nucleosynthesis. The introduction of an extra degree 

of freedom like a light scalar field affects the abundance of light elements in the radiation 

dominated epoch. The presence of a quintessence scalar field changes the expansion rate 

of the universe at a given temperature. This effect becomes crucial at the nucleosynthesis 

epoch with temperature around 1 MeV when the weak interactions (which keep neutrons 

and protons in equilibrium) freeze-out. 

The observationally allowed range of the expansion rate at this temperature leads to a 

bound on the energy density of the scalar field 

The observationally allowed range of the expansion rate at this temperature leads to a 

bound on the energy density of the scalar field 

          
7 / 4

( )( ~ 1 )
10.75 7 / 4

eff

eff

N
T MeV

N
φ

∆
Ω <

+ ∆
                  (45) 

where 10.75 is the effective number of standard model degrees of freedom and  is 

the additional relativistic degrees of freedom used in the literature is , 

whereas a typical one is given by 

effN∆

1.5effN∆

0.9effN∆ . Taking a conservative one, we obtain the 

following bound 

                                             (46) ( ~ 1 ) 0.2T MeVφΩ <
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Any quintessence models need to satisfy this constraint at the epoch of nucleosythesis. 

     The exponential potential 0( )V V e λφφ −=  possesses the following two attractor 

solutions in the presence of a background fluid: 

(1) 2 3λ γ> : the scalar field mimics the evolution of the barotropic fluid with 

φγ γ= , and the relation 23 /φ γ λΩ =  holds. 

(2) 2 3λ γ< : the late time attractors is the scalar field dominated solution ( ) 

with . 

1φΩ =

2 / 3φγ λ=

The case (1) corresponds to a scaling solution in which the field density mimics that 

of the background during radiation or matter dominated era, thus alleviating the problem 

of a cosmological constant. If this scaling solution exists by the epoch of nucleosynthesis 

( 4 / 3γ = ), the constrain gives 

       2
2

4 0.2 20φ λ
λ

Ω = < → >                              (47) 

In this case, however, one can not have an accelerated expansion at late times. 

To solve this problem, Andreas Albrecht and Contantinos Skordis Constructed AS 

model[3]. They considered the potential of the form  

               ( ) ( )pV V e λφφ φ −=                              (48) 

( )PV φ  is a polynomial. In AS model, they choose ( )PV φ  as a simple form 

                ( ) ( )pV B αφ φ A= − +                          (49) 
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Fig.12 A solution for potentialV V( ) ( )p e λφφ φ −= , part (a) 
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Fig.13 A solution for potentialV V( ) ( )p e λφφ φ −= , part (b) 

 

Figure 12 and figure 13 show a solution with B=34.8, α =2, A=0.01 and λ =8. In 
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this solution, φΩ  is below the nucleosynthesis bound and the university is accelerating 

today. 

AS model keeps the scaling behavior which can achieve ~ otherφΩ Ω  naturally, 

accelerates universe today and is consistent with nuclesynthesis bound, but it cannot 

include the very important stage of universe-“reheating”. We find if we choose the 

polynomial function ( )pV φ  in another way, in the new model, can have AS model’s 

feature and include the reheating stage. 

M-theory predicts field with potential of the form 

                ( ) ( )pV V e λφφ φ −=                             (50) 

Here, instead of taking ( ) ( )pV B αφ φ A= − + , we choose  

                           (51) 2 2
1 1 2( ) (( ) )(( ) )pV B A Bφ φ φ= − + − + 2A

Different from AS model which has one minimum, in this model with potential (51), 

we have two minimum at φ~B1 and φ~B2，as shown in figure 3, and reheating can 

happen at the first minimum φ ~B1 if quintessence field can interact with particle with 

small coupling constant.[11] 

According to the theory of rehearing, when a scalar field φ  oscillated near the 

minimum of its’ effective potential and interacts with particle field, parts of its field 

energy will decay into massive bosoms and fermions due to elementary theory and 

parametric resonance.  

The first minimum of (51) with ( )PV φ  as (5) is 1~ Bφ , and we expand Vφ  around 
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1~ Bφ  and only take the first two terms, we get 

2 2
0 1 0

1 ( )
2 2

V V m B V mφ
21φ ϕ= + − = +                    (52) 

               
_

2 2
int (L f h )ϕψψ σϕ ϕ χ= − − +                         (53) 

Where 
_

ψ  and ψ  describe spinor particles and χ  describes scalar particles with 

corresponding mass mψ  and mχ , f and h are dimensionless coupling constant, and σ  

is a coupling constant of dimension of mass. To potential like (1) and (2), the production 

of particles by the oscillating scalar field φ  due to elementary theory and parametric 

resonance has been given [12]. But we cannot get exactly how much scalar field becomes 

particle. In fact, because of special feature of “scaling” of exponential potential, φΩ  will 

take a fixed number 2/nφ λΩ =  which is independent of the initial condition. 
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  Fig.14 Potential V V( ) ( )p
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e λφφ φ −= 2A B Aφ φ φ= − + − + with V B  2 2
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Fig.14 Continued 

 

Figure 14 shows the two minimum in our model. 

After reheating, a few percent of matter produced, the φ  field will penetrate the 

potential barrier as shown in figure 3 at point mφ  due to quantum tunneling [13]. The 

tunneling rate  per volume element V in the semi classical approximation is  Γ

                 / BV Ae−Γ =                                   (54) 

where ( ) ( )E cl E clB S Sφ φ += −  with  being the action  ES

                4 1[ (
2 2

) ]RS dx g g Vµν
µ νφ φ= − ∂ ∂ − −∫                (55) 

To AS model with B=34.8, α =2, 8λ =  and 0.01δ =  in (48) (the reason that AS 

choose this number is to achieve the accelerated expansion of universe today, we can 

change one of the numbers above, but once we did that, we have to change the others to 

achieve that 70% of total energy is dark energy which is consistent with observations), 
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the minimum is as ~ 34.8φ , B in (54) is a bout , so the probability for a tunneling 

event per unit time, per unit volume is  which is negligible[14]. But 

to the potential (50) with 

12310

123/ exp( 10 )VΓ ≈ −

PV  as (51), if we choose 1 1B ≤ , then B~0(1) in plank unit and 

the tunneling rate is significant. For a variety of values for , ,1A 2A 1B , 2B  and λ , we 

can get solutions like the one shown in figure 4 in which reheating happened at 30~ 10a − , 

φΩ  is well below the nucleosythesis bound, the universe is accelerating today. In upper 

panel of figure 4, we show ( )aφΩ (dashed line), ( )matter aΩ (solid line), 

(dotted line), and in lower panel, we show . At a~0, w equals to (-1) 

which is needed to archive acceleration universe today. 

( )radiation aΩ ( )w aφ
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                    Fig.15 A solution for the potential of Figure 14 
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Fig.15 Continued 

 

This figure shows the solution of (50) and (51) with potential  A1=0.5, 

B1=0.005,A2=33.1,B2=0.01, and λ=8. Reheating happened at a~10^-(30), and at 

a~10^(-28) after the decay of  a few percent of scalar field  into particles, field 

penetrated the barrier and rolled down to the second minimum. a~10^(-10) at 

nucleosynthesis and the radiation-matter transition is evident at a~10^(-5). Today a=1 and 

w= -1 from the figure. 

We have discussed it is possible quintessence field which accelerate universe today 

could oscillate near minimum of its potential and produce particles at the stage of 

reheating. Here we only talked the special potential with the form (50)(51), to other 

potential with minimum, it is also possible to unify quintessence field of reheating into 

one single field. 
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Before we move to next chapter, I need to mention that AS model is not the only 

model of expedient which can satisfy the nucleosynthesis. Nucleosynthesis needs that, 

when the universe at around loga~-10, the expansion of universe cannot be too fast. If it 

did expand very fast, then no nuclear can be formed at that stage, then our universe will 

have no stars and galaxies. Nucleosynthesis is very strong constraint which requires less 

than 20% of the total energy is dark energy, and more than 80% of the total energy is 

matter like, either Standard Model particles or dark matter. But at today, we know that 

about 70% of the total energy is dark energy, and 30% of energy is matter like, so, the 

varying of dark energy and matter with time should be difference, or, possibly some 

matter will decay into dark energy. The extremely heavy dark matter decays into dark 

energy has been talked by many authors.[] In such kind of models, the authors assume the 

existence of very heavy particle, which is not in Standard Model and with mass in TeV 

and the motivation of this type of dark matter is the observation of Ultra High Cosmic 

Ray. This dark matter will decay into scalar field or dark energy. But the problem of this 

kind of model is that we haven’t enough data to support the existence of this super heavy 

dark matter, and no theory predicts this kind of particles. In fact, since there is some kind 

of resemblance between dark energy and dark matter, both of them are dark, there are 

many models trying to unify this two unknown things. The existence of dark matter and 

dark energy has been proved, but it is very hard to see what it is.   
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CHAPTER III 

STATIC BUBBLE OF REHEATING FIELD DUE TO GRAVITY 

Dark energy can be described by quintessence field which has the motion of equation  

                           ( )3 dVH
d

0φφ φ
φ

⋅⋅ ⋅

+ + =                      (56) 

where H is Hubble parameter. With the 3H φ
⋅

 term, the amplitude of φ  will decrease 

with time. But there is another possibility, that is there is no 3H φ
⋅

 term, in other words, 

the field φ  is localized in some place without expansion.  

Lets look back the equation of state for the quintessence fieldφ . 

                           

.
2

.
2

1 ( )
2
1 ( )
2

V

P V

φ

φ

ρ φ φ

φ φ

= +

= −
                         (57) 

and  

                            /w pφ φρ=  

When 21 ( )
2

Vφ φ
i

, , so it looks like dark energy. But if1w −∼ 21 ( )
2

Vφ φ
i

∼ , then w ~ 0, in 

this case the scalar field will looks like matter. 

First, we assume there is static bubble of scalar field, and then we prove that the 

bubble is static. 

In normal reheating theory, the simplest potential is 

               2 2 41 1( )
2 4

V mφ φ λ= + φ                                (58) 
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If there is a static bubble of scalar field φ , the equation of scalar field φcan be written 

as  

                                             (59) 
..

2 3 0mφ φ φ λφ− + + =

in this equation,  there is no 3H φ
⋅

 term since the bubble is static without expansion. 

Energy density of the scalar fieldφ  becomes  

                 
.
2 2 2 4 *1 1 1 1

2 2 4 2
mρ φ φ λφ φ= + + + ∇ ∇φ                  (60) 

If there is static bubble of this classical scalar field φ, and assume  

When r<R, , where c is constant intceφ =

     r=R~R+ε, int( )f r eφ = , where 
,

( ) {
0,

c r R
f r

r R ε
=

=
= +

 

     r>R+ε,    φ=0. 

At r<R, since c=constant, , the equation of scalar field (59) becomes 2 0φ∇ =

                                                   (61) 
..

2 3 0mφ φ λφ+ + =

And the solution is   withintceφ = 2 2n m c2λ= + . 

If we neglect the effect of surface r=R~R+ε which we will show is very small, then at 

r<R, 

                  
.
2 2 2 4 2 21 1 1 3 

2 2 4 4
m m c 4cρ φ φ λφ= + + = + λ              (62) 

And                
.
2 2 2 4 41 1 1 1  p 0

2 2 4 4
mφ φ λφ λ= − − = >c    with λ>0. 

So 0pw
ρ

= > , it’s matter like. 
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The classical coherently oscillating inflation field φ decays into massive bosons due 

to elementary theory and parametric resonance. When the amplitude φ drops to a valued 

~ /mφ λ  , the parametric resonance process stops, and particles production process is 

dominant by elementary theory which can be written as  

                 

4 2

2

( )
8

( )
8

g
m

h m
φ

φ

σφ χχ
π

φ ψψ
π

Γ → =

Γ → =

                               (63) 

If g and h is very small, the rate of particle production by elementary theory is very 

weak, so inside the bubble r<R,  the total amount of φ could be conserved. 

               2 3 24 tan
3

A dv R c cons tφ π≡ = ⋅ =∫                       (64) 

The total potential energy of φ field is  

                        2 2 41 1( )
2 4potentialV dv mφ φ λφ− = +∫        

                                

2 2

2 2

3

1 1
2 4
1 1 1

42 4
3

m A A

m A A
R

λ φ

λ
π

= +

= +
             (65) 

And gravity potential can be written as  

                   3 2

0

4 1 4
3

R

gravityV r G
r

r drπ ρ π= −∫ ρ  

                        
23

5
EG
R

= − ×                               (66) 

where E is total energy of the bubble 

                       3 2 2 44 3( )
3 4

E R m c cπ λ= +  
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2 2

3

2

3 1
44
3

m A A
R

m A

λ
π

= +

≈

                      (67) 

So the gravity potential becomes 

                         
4 23

5gravity
m AV G

R
≈ − ×                       (68) 

The total potential energy of φ field and gravity is then 

                   
4 2

2 2

3

1 1 1 3
42 4 5
3

total
m AV m A A G

RR
λ

π
≈ + − ×             (69) 

 

 

Fig.16 There is a minimum of potential (69) 

 

We can see from figure 16 that there is a minimum in the potential of (69). 
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The total potential has minimum when ' 0V = , 

                       
4 2

' 2
3 2

3 3 1 30
14 5

m AV A G
R R

λ
π

×
= = − +  

or                         2
4

15 1
14

R
m G

λ
π

=  

if we choose λ=1, m=100GeV, then 

                          15 10.7 10 0.1R GeV m−≈ × ≈                  (70) 

This is the radius of static bubble. 

With computer simulation, 120GeVε −<  while 15 10.7 10R GeV −≈ × , and we can 

get , so the surface effect can be neglected.  14/ 10Rε −∼

We have talked that when we chooseλ=1, m=100GeV, we have a static bubble with 

radius around 0.1 meter. And since the bubble stays in the only minimum, the bubble 

cannot decay. So the bubble is absolute stable.  

The bubble is stable because of the gravity. So, if the bubble is not with intense 

density, we cannot have such kind of bubble since in this case, the gravity can be 

neglected and we can never have minimum in the potential (69).  

If there is such kind of bubble of reheating field, how can we find it? This is relying 

on the interaction between reheating field and Standard Model particles. Since there must 

be some channels through which reheating field can decay into Standard Model particles. 

And this kind of channels would be used to test this bubble model. 

The decay rate ofφ  into Standard Model particles is  
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4 2

2

( )
8

( )
8

g
m

h m
φ

φ

σφ χχ
π

φ ψψ
π

Γ → =

Γ → =

 

And we have neglected the contribution from the parameter resonance, where g and h 

are interaction constant. We can see that the decay rate is proportional to g and h. Since 

the bubble is dark and we haven’t seen it in experiment, the interaction should be very 

weak. But it should be greater than gravity, and it is possible to test and find the bubble in 

experiment. 

Here, we only calculate that there is static bubble with radius r~ 0.1m. But this 

calculation is based on the assumption ofλ=1, m=100GeV. We have shown that  

              2
4

15 1
14

R
m G

λ
π

=  

So, if the m is very small, the stable radius will becomes very big, for example, with 

m~1eV and 0.1λ =  the radius will be ~ m, and it cannot be treated seriously.  4410

Another thing we haven’t talked here is the shape of the bubble. It seems all shapes have 

degeneracy energy. This is because we neglect the contribution from surface. Since 

surface energy usually is proportional to its surface area, to have minimum surface energy, 

the surface should take minimum number, and we know that with same volume, sphere 

has minimum area. With this consideration, we should get the conclusion that the bubble 

is sphere. 
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CHAPTER IV 

STANDARD MODEL AND DARK WORLD 

Standard Model of Particle Interactions, the basic building blocks of matter are six leptons and 

six quarks that interact by means of force-carrying particles called bosons. Every phenomenon 

observed in nature can be understood as the interplay of the fundamental particles and forces of 

the Standard Model. －FERMILAB [14] 

Figure 17 and figure 18 show the fundamental particles and forces in SM. Standard 

Model can unify the two forces into one-electroweak interaction, and also, it includes the 

strong force in this model. 

But physicists know that the Standard Model does not tell the whole story, and they 

are searching for physics beyond the Standard Model that will lead to a larger, more 

elegant "theory of everything." Such of this kind of theory is superstring. 
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Fig.17 Particles of Standard Model 
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Fig.18 Forces and symmetry of Standard Model 
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Standard Model is extremely successful in High Energy Physics, but it is failed when 

it is used to explain some cosmology phenomena, such as dark energy and dark matter, 

which has been discovered recently. 

Spontaneous Symmetry Breaking 

First let us analyze the simple example of a scalar self-interacting real field with 

Lagrangian 

             1 ( )
2

L µ
µ Vφ φ φ= ∂ ∂ −                                    (71) 

with  

             2 2 41 1( )
2 4

V mφ φ λ= + φ                         

In the theory of the phase transition of a ferromagnet, the Gibbs free energy density 

is analogous to ( )V φ  and φ  playing the role of the average spontaneous magnetization 

M. 

The vacuum can be obtained from the Hamiltonian  

                        2 2
0

1 [( ) ( ) ] ( )
2

H Vφ φ= ∂ + ∇ + φ                 (72) 

To guarantee that H is lower bounded, λ  must be positive. But there is no 

constraint that  must be positive. If >0, then the potential 2m 2m ( )V φ  looks like 
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Fig.19 2 2 41 1( )

2 4
V mφ φ λ= + φ  with >0 2m

 

Figure 19 shows the form of 2 2 41 1( )
2 4

V mφ φ λ= + φ  with >0. 2m

While if <0, the potential 2m ( )V φ  looks like figure 20. 
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Fig.20 2 2 41 1( )
2 4

V mφ φ λ= + φ  with <0 2m

 

For >0, the minimum of the potential is at zero, but when <0, figure 20 

shows there are two minimum of the potential is at 

2m 2m

2mv
λ

= −  and
2mv
λ

= − − . 

Defining vφΦ = + , then the vacuum of the new field is at 0 0Φ = , and the lagrangian 

becomes 

            2 2 3 41 1 1( 2 )
2 2 4

L m vµ
µ λ λ= ∂ Φ∂ Φ − − − Φ − Φ                  (73) 

This Lagrangian describes the scalar field Φ  with real and positive mass, 

22M mΦ = − , but it lost its symmetry due to the 3Φ  term. 

A more complicated case is that a continuous symmetry is spontaneously broken. For 

a charged self-interacting scalar field 



 

62

           * *( )L Vφ φ φ φ= ∂ ∂ −  

where  

            2 * * 21 1( ) ( )
2 4

V mφ φ φ λ φ φ= +                               (74) 

The lagrangian is invariant under the global phase transformation 

                     exp( )iφ θ φ→ −  

We define the complex field in terms of two real fields by 

                      1 2(
2
i )φ φφ +

=                                (75) 

The lagrangian becomes 

                     1 1 2 2 1 2
1 ( )
2

L Vµ µ
µ µ ( , )φ φ φ φ φ φ= ∂ ∂ + ∂ ∂ −  

which is invariant under SO(2) rotations 

                     1

2 2

cos sin
sin cos

1φ φθ θ
φ φθ θ

−⎛ ⎞ ⎛ ⎞⎛
→⎜ ⎟ ⎜ ⎟⎜

⎝ ⎠⎝ ⎠ ⎝ ⎠

⎞
⎟                     (76) 

The vacuum of this potential is at 1 2 0φ φ= =  with >0, but in the case of <0, we 

have a continuum of vacua located at 

2m 2m

              
2 2 2 2

1 22 ( )
| |

2 2
m vφ φ

φ
λ

+ −
= =

2
≡                       (77) 

as shown in the figure below. 
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Fig.21 The potential of t with 1 2( )
2
iφ φφ +

=  
 

 

Figure 21 shows the form of potential (74). 

The SO(2) symmetry of this Lagrangian will broken if we choose a particular 

vacuum. Let us choose, for example, 

                        1

2 0
vφ

φ
=
=

 

We can defined the new fields by 

                      1 1

2 2

vφ
φ

Φ = −
Φ =

 

Then the new Lagrangian becomes, 
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2 2
1 1 1

2 2

2
1 1 2 2 1 1 2

1 1 ( 2 )
2 2

1
2
1 v
4

L mµ
µ

µ
µ

λ λ

= ∂ Φ ∂ Φ − − Φ

∂ Φ ∂ Φ

Φ Φ Φ Φ Φ Φ Φ4 2 4 3

2
2

＋

－ （ ＋2 ＋ ）－ （ ＋ ）

m
＋（－ v）

4

2

            (78) 

We can see that the scalar field Φ1  with real and positive mass and field 2Φ is 

massless which is called Goldstone particle. 

Higgs Mechanism 

In experiments, we didn’t find the massless Goldstone particle which was predicted 

by Goldstone theorem with spontaneous symmetry breakdown. The Higgs mechanism 

can solve this problem by making the massless Goldstone particle massive. This is 

accomplished by requiring that the Lagrangian that exhibits the spontaneous symmetry 

breakdown is also invariant under local, rather than global, gauge transformations.  

Let us require that the Lagrangian is invariant under the local phase transformation 

                      exp[ ( )]iq xφ α φ→  

We introduce a gauge boson( Aµ ) and the covariant derivative( Dµ ) so that the 

Lagrangian becomes invariant, following the principles like 

                      
' ( )

D iqA

A A A x
µ µ µ µ

µ µ µ µα

∂ → = ∂ +

→ = −∂
                       (79) 

The spontaneous symmetry breaking occurs for <0, with the vacuum2m
2

2| |
2
vφ = . 

A convenient way to define the new field by 
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' '

' ' '2 1
1 2

( ) 1exp( ) ( )
2 2

v vi v i
v
φ φφ φ φ+

= + +
2

φ= +              (80) 

with  

             
' '

' 1 2

2
iφ φφ +

=  

The lagrangian becomes, 

               

' ' 2 '2 '
1 1 1 2

2 2
'
2

1 1 1( 2 )
2 2 2

int
1
4 2

L m

eract
q vF F A A qvA

µ µ
µ µ

µν µ µ
µν µ µ

'
2φ φ φ φ

φ

= ∂ ∂ − − + ∂ ∂

+

− + + ∂

φ

               (81) 

In this Lagrangian, it includes a scalar field '
1φ  and a massless scalar field '

2φ (goldstone 

boson) and a massive vector boson Aµ . 

However the presence of the last term in the Lagrangian which is proportional to 

'
2A µ

µ φ∂  is quite inconvenient since it mixes the propagators of Aµ  and '
2φ  particles. 

To eliminate this term, we choose  

                  '
2

1( ) ( )x x
qv

α φ= −                                 (82) 

Then the field φ  becomes, 

            '
1

1 (
2

vφ φ= + )                                          (83) 

With this choice of gauge, we can acquire 
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' ' 2 '2
1 1 1

2
' ' ' '3 '

1 1

1 1 ( 2 )
2 2

1
4

( 2 ) ( 4
2 4

L m

F F

q v A A v

µ
µ

µν
µν

µ
µ

φ φ φ

λφ φ

= ∂ ∂ − −

−

+ + − +1 )φ

                     (84) 

So we have a massive scalar field '
1φ  with freedom 1 and a massive vector field 'Aµ  

with freedom 3.  

Scalar Field in Dark World and Droplet 

In above, we have discussed the scalar field in standard model, which is especially 

important to give mass to fermions and bosons. But there is problem about this scalar 

field – till now on, we cannot find the massive scalar field, or so called Higgs particle. In 

experiment, we have searched the energy up to 114 GeV, but there is still no hint for the 

existence of this particle. 

Because of difficulties of Hierarchy Problem, which indicates that the mass of Higgs 

particle will become infinity due to the second loop correction. To cure this difficulties, 

super symmetry was introduced, and so the super gravity. But to supersymmetry, itself 

has some problems, like even in the MSSM, we need about 100 new parameters, and still 

there is no evidence for the existence of super symmetry particles. 

As we discussed in the part of Dark Energy, quintessence is described by ordinary 

scalar fieldφ , and the action for Quintessence is given by 

                    4 21[ ( ) ( )
2

S d x g V ]φ φ= − − ∇ −∫  

The merit of quintessence is that the equation of state varies with time which can 
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solve the problem of fine tunneling problem.  

Is there any relationship between the scalar field in Standard Model and the scalar 

field quintessence? 

Let us introduce a classical scalar field which has the same form as in Standard 

Model 

              2 2 41 1
2 4

L mµ
µφ φ φ λ= −∂ ∂ + + φ                           (85) 

with 

                1

2

φ
φ

φ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

     

But different with the Standard Model where <0 and is a constant, here we treat 

 as mass matrix like 

2m

2m

                                                  (86) 
2

2 1
2
2

0
0

m
m

m
⎛ ⎞

= ⎜
−⎝ ⎠

⎟

The potential ( )V φ  is then like 
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          Fig.22 2 2 41 1( )
2 4

V mφ φ λ= + φ  with  
2

2 1
2
2

0
0

m
m

m
⎛ ⎞

= ⎜ ⎟
−⎝ ⎠

 

In figure 22, we can see there are two minimums at  

                         2
2

0

mφ

λ

⎛ ⎞
⎜= ⎜±⎜ ⎟
⎝ ⎠

⎟
⎟                             (87) 

And the lagrangian haven’t SO(2) symmetry invariant. 

Let us choose the expectation value is 

                        2
2

0

mφ

λ

⎛ ⎞
⎜= ⎜
⎜ ⎟
⎝ ⎠

⎟
⎟                                (88) 
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The new fields, suitable for small perturbations, can be defined as 

                          
2

' 2
2 2

mφ φ
λ

= −                               (89) 

                              '
1 1φ φ=                                  (90) 

In terms of these new fields, the potential of '
1φ  and '

2φ  becomes,  

                      

2 '2 '4
1 1 1

2
'2 ' 2 2

1 2

2
2 ' 2 ' 3 ' 42
2 2 2 2

4
2

1 1( )
2 4

1 ( )
2

1 1(2 )
2 4
1
4

V m

m

mm

m

φ φ λφ

λφ φ
λ

φ λ φ λφ
λ

λ

= +

+ +

+ + +

−

                (91) 

or we can write it as   

                     

2 '2 '4
1 1 1

'2 2
1 2

2 2 2
2 2 32 2 2
2 2 2 2

4
2

1 1( )
2 4

1
2
1 1(2 )( ) ( ) ( )
2 4
1
4

V m

m m m mm

m

φ φ λφ

λφ φ

φ λ φ λ φ
λ λ λ

2
42

λ

λ

= +

+

+ − + − + −

−

      

(92) 

 

In normal reheating theory, the simplest reheating field is taken, i.e. 

                      2 2 4
1 1 1

1 1( )
2 4

V m 1φ φ λφ= +                        (93) 

which is similar to the first line of (92). 

While there is dark energy field, or quintessence, and usually we believe that 
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quintessence field is trapped at a minimum, so it just looks like cosmology constant today. 

We can write quintessence field potential as  

                    2 2
2 2 2

1( ) ( )
2

V m Aφ φ 0V= − +                        (94) 

where V0  is constant, and for convenient, we write it as  

                    2
2 2 2

1( ) ( )
2

V mφ φ= − 2A                           (95) 

which looks like the third line of potential (92) 

Neglect the higher order term of 2φ  in potential (92) and constant term, and 

'
1 1φ φ= ,the (92) can be written as 

                   

2 2 4
1 1 1

2 2
1 2

2
2 22
2 2

1 1( )
2 4

1
2
1 (2 )( )
2

V m

mm

φ φ λφ

λφ φ

φ
λ

= +

+

+ −

                           (96) 

The first line can be treated as the scalar field for reheating, the third line can be 

treated as quintessence field, and the interaction term can produce droplet in the 

quintessence field, which is a candidate of dark matter.  

Then a static, matter like droplet of reheating field can be formed which is a 

candidate for dark matter. 

Static droplet of binary mixtures is a very popular topic in solid state.  

Here we there is droplet of 1φ  in the background 2φ , and the formation of the droplet 

is due to the interaction between 1φ  and 2φ  with the interaction term 2 2
1 2

1
2
λφ φ  

  Assume the radius of droplet is R, and inside the dropletφ1 and φ2   are constant. 
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Inside the droplet, to 2φ , 
..
φ 2=0 and 2φ∇ 2=0, so 

                 
2

' 2
2 2 10 (2 )( )V m Aφ

2
2φ λφ φ= = − +                        (97) 

                  
2
2

2 2
2 1

2
2

m A
m

φ 2λφ
=

+
                                  (98) 

 where  

                  
2
2mA
λ

=  

And to 1φ , inside the droplet r<R 

                                      (99) 
..

2 2 2 3
1 1 1 1 2 1 1 0mφ φ φ λφ φ λφ−∇ + + + =

                   2
1 0φ∇ =

                   int
1 eφ α=

                   2 2 2
1 2n m 2λα λφ= + +  

We can treat 2
1

4
3

dv cons c R3 2
1φ π φ= = =∫  as we talked in second objective. 

So inside the bubble, the potential is 

            2 2 4 2 2 2
1 1 1 1 2 2 2

1 1 1 1( ) { (2 )( ) }
2 4 2 2

V dv m m Aφ φ λφ λφ φ φ= + + +∫ 2−  

                
2 2

2 2 4 2 2
1 1 1 1 2 2

2 1

21 1 1{ }
2 4 2 2

m Adv m
m

φ λφ λφ
λφ

= + +
+∫  

                
2

2 2 2 2
1 1 2

2 1

21 1 1
2 4 2 2

mm c c cA
m

λ φ λ 2λφ
= + +

+
                  (100) 

V can take minimum value when 

                  
2 2

2 2 2
1

2 2 2m mAφ
λ λ

×
= −  
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2
2

2 2 2
2 1

2
2

m A m
m

φ
λφ

2

λ
= =

+
                            However, 

when we calculate the 2
1φ with

2
2mA
λ

= , we found that 2
1 0φ = . That means there is no 

static droplet with the potential (92) 

The simplest form of scalar field is  

                       2 2 41 1( )
2 4

V mφ φ λ= ± + φ  

where both  and 2m λ  are positive. 

Now let us consider scalar field 1φ  and 2φ  with simplest potential form as shown 

above , and with the simplest interaction term 2 2
1 2

1
2

gφ φ      

                     

2 2 4
1 2 1 1 1 1

2 2
1 2

2 2 4
2 2 2 2

1 1( , )
2 4

1
2
1 1
2 4

V m

g

m

φ φ φ

φ φ

φ λ φ

= +

+

− +

λφ

                     (101) 

We should notice that the interaction term is symmetric, but the total form of this 

potential hasn’t the symmetry like 1 2φ φ→ . 

The potential of 2( )V φ  has the form  
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Fig.23 Two minimums in potential (101) 

 

Figure 23 shows there are two minimums in potential (101), which allows symmetry 

broken in this model. 

So it will break the 2 2φ φ→ −  with spontaneous broken. The minimum of this 

potential is  

                           
2
2

2
2

mφ
λ

= ±  

And we choose the minimum 
2
2

2
2

mvφ
λ

= =  as the vacuum of universe, and we define 

replace 

                          2 2 vφ φ→ +  
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then the potential of 1 2( , )V φ φ  becomes  

                      

2 2 4
1 1 1 1

2 2
1 2

2
2 2 3 42
2 2 2 2 2 2

2

4
2

2

1 1( )
2 4

1 ( )
2
1 (2 )
2 4

1
4

V m

g v

mm

m

φ φ λφ

φ φ

1φ λ φ λ φ
λ

λ

= +

+ +

+ + +

−

              (102) 

                            

Neglect the higher order of 2φ , then this potential becomes, 

                       

2 2 4
1 2 1 1 1 1

2 2
1 2

2 2
2 2

1 1( , )
2 4

1
2
1 (2 )( )
2

V m

g

m v

φ φ φ λ

φ φ

φ

= +

+

+ −

φ

                  (103) 

and define  

                         2 2
22M m=  

for convenience. 

First we assume there is static droplet of 1φ  in the field 2φ with interaction 2 2
1 2

1
2

gφ φ , 

and then we can see whether this droplet is static. 

Assume the radius of droplet is R, and inside the dropletφ1 and φ2   are constant. 

Inside the droplet, to 2φ , 
..

2 0φ =  and 2
2 0φ∇ = , so 

                  
2

' 2
20 ( )V M v gφ

2
1 2φ φ φ= = − +                         (104) 

                  
2

2 2
1
2

M A
M g

φ
φ

=
+

                                  (105) 
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And to 1φ , inside the droplet r<R 

                                      (106) 
..

2 2 2 3
1 1 1 1 2 1 1 0m gφ φ φ φ φ λφ−∇ + + + =

                   2
1 0φ∇ =

                   int
1 eφ α=

                   2 2 2
1 2n m g 2λα φ= + +  

We can treat 2
1

4
3

dv cons c R3 2
1φ π φ= = =∫  as we talked in second objective. 

So inside the bubble, the potential is 

                  2 2 2 2 4 2 2
1 1 1 1 1 2

1 1 1 1( (
2 2 4 2

V dv m g M vφ φ φ λφ φ= + + +∫ ) )−  

                    
2

2 2 2
1 1 2

1

1 1 1
2 4 2

Mm c c gcv 2M g
λ φ

φ
= + +

+
               (107) 

V can take minimum value when 

                  
2

2
1

1

2 MvM
g

φ
λ

= −  

                 
2

1
2 2 2

1 2
M v M

M g g
λφ

φ
= =

+
                           (108) 

If
2

2
1

1

2 0MvM
g

φ
λ

= − > . In this case the potential 1 2( , )V φ φ  looks like 
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Fig.24 There is a minimum in potential (107) 

 

Figure 24 shows the minimum in potential (107). 

The total energy E inside the droplet r<R is then 

               2 2
1 2 1,

1 1{( ) ( ) ( )}
2 2

E dv V 2φ φ φ φ= + +∫
i i

 

                 ＝ 3 2 2 2 2
1 1 2 1 1, 2

4 1{ ( ) ( )}
3 2

R m g Vπ λφ φ φ φ φ+ + +  

                 
2

2 1
1

1( 2
2 2

Mc m vM
g

λ λ= ⋅ + − 1 )                      (109) 

On the other hand, if 1φ  is in free state, that means the scalar field spreads out all of 

the universe  and , then total energy  with 
. ..

1 1 0φ φ= =
~
E 2

1dvφ =∫ constant is  

                   2 2
1 2 1,

1 1{( ) ( ) ( )}
2 2

E dv V 2φ φ φ φ= + +∫
∼ i i

                (110) 
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                     2 3 2 3 2
1 1

1 4 4 1
2 3 3 2

m R R 2
1 vπ φ π φ= ⋅ + ⋅  

                    2
1

1 1(
2 2

c m gv= ⋅ + 2 )

2

                             (111) 

With , then2
11, gA mλ << >

~
E E< , on other word, the droplet is a bound state of 1φ !.  

In this potential, there are five free parameters that we can adjust to satisfy the 

constraint. 

So we can say that the droplet is stable. 

                  3 2 2 2 2
1 1 2 1

4 1 ( )
3 2

p R m g Vπ λφ φ φ= ⋅ + + − = 0              (112)               

w=p/ρ=0, so it is matter like. 

Outside the droplet, r>R+ε, 1 20, vφ φ= = , and at surface r=R ~ R+ε, the equation 

becomes, 

                                (113) 
2 2 2 2 3

1 1 1 1 2 1 1 1
2 2 2

2 1 2 2

0

( ) 0

g g

g M v

φ β φ λα φ φ φ λφ

φ φ φ φ

∇ + + − − =

∇ − − − =

With  

                

2
2

2
2 1

2

2

2

MvM
g

M
g

α
λ

λβ

= −

=

                                 (114) 

The equations cannot be solved by hand, but could be solved by numerator (In fact, 

even numerator, this is still very hard to solve). Here, instead of solving the equations, we 

simply assume the surface is thin, in other words, we assume that 1
R
ε . In this case, we 

can neglect the effect contributed by the surface. 

From the observation, we know that the 73% of total energy is dark energy and 23% 

is dark matter, and 4% of the total energy is normal matter, as shown in the figure below. 
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Now, since we treat the vacuum of potential of scalar field 2φ  as dark energy, and 

the droplet of scalar field 1φ  as dark matter, this two scalar field must satisfy the 

constraint from experiment observation. 

First, two scalars must satisfy the constraint that 73% of energy is dark energy and 

23% is dark matter in today’s universe which has temperature of 3K. 

 

 

73%

23%

4%

Dark energy

Dark matter

Normal matter (SM
particle)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.25 Energy distribution in the universe 
 

 
 
Figure 25 shows the energy distribution in our universe. 
 
We discuss one extremely case, that is all the dark energy is contributed by the scalar 

field 2φ , and all the dark matter is droplet of scalar field 1φ . Due to the interaction term  

 

                           2 2
int 1 2

1
2

L gφ φ=  
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The dark matter droplet of scalar field 1φ  very easily decays into the dark energy, so the 

proportion of dark energy and dark matter should satisfy Boltzman distribution. Let’s 

assume that the droplet can have a series of radius, and the minimum radius is 1R (I am not 

sure whether this assumption is correct since I cannot solve the equation at surface)  

with  

                    2 3
1 1 1

4
3

C dv R 2
1φ π φ= =∫  

Then the energy of this dark matter droplet is  

                      2
1 1 1E C m≈  

If this droplet decays into scalar field 2φ , then the energy is  

                      2
1 2DEE C m≈  

So we can have  

                    
2 2

1 1 2
4

(23 0.315 exp( )
73 3 10

DM

DE

C m m
eV

ρ
ρ −

−
= = ≈ −

×
)            (115) 

Define that 

                      2 2 4
1 1 2( ) 3.47 10z C m m eV−≡ − ≈ ×

So, if the temperature of universe is T when T is ~ 3 K, then 

                 
4( ) 3.47 10exp( )

( )
DM

DE

T eV
T T

ρ
ρ

−×
≈ −                       (116) 
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Fig.26 Ratio of dark matter to dark energy ( )
( )

DM

DE

T
T

ρ
ρ

 varies with temperature 

3K 

 

Figure 26 shows when T ~ 3K, the ratio of dark matter to dark energy ( )
( )

DM

DE

T
T

ρ
ρ

 

varies with time. From the observation of Supernovae, we can testify this model. 

When the temperature of the universe much bigger than 3K, we cannot only consider the 

smallest droplet, but all of the droplet with different radius. For example, when T ~ 1Mev. 

At this temperature, we have the cosmological constraint for nucleosynthesis, which 

required that  

                        ( ~ 1 ) 0.2T MeVφΩ <

 Or we can see that  

                      (1 ) 4
(1 )

DM

DE

MeV
Mev

ρ
ρ

>                              (117) 

It’s reasonable the assume that the energy of droplet is much smaller than 1Mev, then 
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we need at least 4 different state of droplet to satisfy the constraint of nucleosynthesis. If 

there are 6 states, then  

                            ( ~ 1 ) 0.14T MeVφΩ ∼  

We have talked scalar field with potential  

                   

2 2 4
1 2 1 1 1 1

2 2
1 2

2 2 4
2 2 2 2

1 1( , )
2 4

1
2
1 1
2 4

V m

g

m

φ φ φ

φ φ

φ λ φ

= +

+

− +

λφ

                        (118) 

And we have shown that it is possible that the scalar field can act as dark energy and 

dark matter. In fact, for all kinds of scalar fields which with potential and interaction like 

                     

2 2 4
1 1 1 1

2 2
int 1 2

2
2 2

1 1( )
2 4
1
2
1( ) ( )
2

V m

L g

V M A

1φ φ λ

φ φ

φ φ

= +

= +

≈ −

φ

                        (119) 

A droplet of scalar field 1φ  can formed in the field 2φ . 

Another interesting case is scalar field with potential 

                      2 2 4
1 2 1 1 1 1

1 1( , )
2 4

V m λΦ Φ = Φ + Φ  

                                  2 2
1 2

1
2

g+ Φ Φ                      (120) 

                                  2 2 4
2 2 2 2

1 1
2 4

m λ+ Φ + Φ  

Where  is a singlet scalar field while 1Φ 2Φ  is doublet,  

                         2 0

φ
φ

+⎛ ⎞
Φ = ⎜ ⎟

⎝ ⎠
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And  are positive number,  is negative number. 2
1, 2 1, ,g mλ λ 2

2m

We can recognize that the potential of 2Φ  just looks like the scalar field in Higgs 

Mechanism. After spontaneous broken, the potential of (120) will looks like (119) which 

can act like dark energy and dark matter. 

One of the advantage of this model is it is related to Standard Model, and makes it is 

possible to unify a dark world into standard model.    

In 1985, Sidney Coleman published his paper “Q BALLS” [15], and since there is 

some kind of resemblance between “Q Balls” and Droplet, we would like to talk briefly 

about Q ball here. 

Q Balls 

In Sidney Coleman model, he discussed the Lagrange density which is the 

SO(2)-invariant theory of two real scalar fields with non derivative interactions.  

                   2 2
1 2

1 1( ) ( ) (
2 2

L µ µ )Uφ φ= ∂ + ∂ − φ                      （121） 

where 2 2
1 2φ φ φ= + . The SO(2) symmetry is 

                   1 1 2

2 2 1

cos sin
cos sin

φ φ α φ α
φ φ α φ
→ −
→ + α

1µ

                             （122） 

The associated conserved current is  

                   1 2 2jµ µφ φ φ φ= ∂ − ∂                                 （123） 

And the conserved charge is 

                    3
0Q d xj= ∫                                       （124） 

By convention,U(0)=0. If this is the absolute minimum of U (the center of interest), 
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0φ =  is the ground state of the theory and the SO(2) symmetry is unbroken. The 

perturbative particle spectrum consists of spinless mesons with 1Q = ±  and mass µ , 

where 

                  2 '' 2
0(0) [2 / ]U U φµ φ == =                             （125） 

Sidney Coleman showed in his paper that 

New particles appear in the spectrum of the theory if U is such that the minimum of 

2/U φ  is at some points of 0 0φ ≠ . In equations, 

                      2 2
0 0min[2 / ] 2 /U U 2φ φ µ≡ <                    （126） 

In this case, for sufficiently large Q, there exist nondissipative solutions of the 

classical field equations that are absolute minima of the energy for fixed  Q. Thus they 

are absolutely stable.     

For appropriate choice of the origin of space-time, these solutions are of the form 

                       1

2

( ) cos
( )sin
r t
r t

φ φ ω
φ φ ω
=
=

                           （127） 

where ( )rφ  is a monotonically decreasing function of distance form the origin, going to 

zero  at infinity, and ω  is a constant. In other words, these objects rotate with constant 

angular velocity in internal space and are spherically symmetric in position space.  

As Q goes to infinity, ω  approaches  

                    2
0 02 /U 0ω φ=                                   （128） 

In this same limit, φ  resembles a smoothed-out step function. Fro r less than a certain 

radius, R, 0φ φ=  ; outside this radius, 0φ = ; these two regions are connected by a 
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transition zone with thickness on the order of 1µ− . R can easily be computed  

                    3
0 0

4
3

Q R 2π ω φ=                                    （129） 

This is very much like the description of a ball of ordinary matter, some substance that 

has a thermodynamic limit; the values of local quantities inside a sample are independent 

of sample size for sufficiently large samples. The stability of ordinary matter depends on 

the conservation of particle number, and the radius of a ball of ordinary matter depends 

on the number of particles in it. Here, the role of particle number is played by Q.  

A sphere of ordinary matter has a rich spectrum of small vibrations about its 

equilibrium state. Some of these have minimum frequencies that go to zero as the radius 

of the sphere goes to infinity. These lead in quantum theory to extremely low-lying 

excited states. 

Q balls occur whenever we are near a first-order symmetry-breaking phase transition. 

Figure 27 is a sketch of U for such a situation.U+  , the value of U at the local 

minimum,φ+ , is positive, so the symmetry is unbroken; however, ifU  is sufficiently 

small, 

+

22 /U φ+ +  is less than 2µ  , so Q ball exist.  
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Fig.27 Symmetry-breaking phase transition 

 

Sidney Coleman assumed in his paper that there exists a solution to the equations of 

motion of the general form: Within some sphere of volume V, φ  is a constant; outside 

the sphere, it is zero. Furthermore, φ  is in stead rotation in internal space, with some 

frequencyω . And he attempted to find the relations among these quantities by minimizing 

the energy at fixed Q. (Attention that, in our droplet model, we attempt to find relations 

by minimizing the potential at fixed amount of the scalar field). 

Same as our droplet model, in Sidney Coleman’s paper, he also neglected the 
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contributions to both E and Q coming from the transition zone at the surface of the 

sphere.  

The exact expression for the energy is  

                  
2 2

3 2
1 2 1 2

1 1 1 1[ ( ) ( )
2 2 2 2

E d x Uφ φ φ φ= + + ∇ + ∇∫
i i

2 ]+          （130） 

With approximation, this becomes 

                    2 21
2

E V UVω φ= +                             （131） 

And  

                      2Q Vωφ=                       （132） 

We wish to minimize E with fixed Q, 

                     
2

2

1
2

QE
Vφ

= +UV                 （133） 

As a function of V, this has its minimum at  

                     2/ 2V Q Uφ=                   （134） 

Here, 

                       22 /E Q U φ=                  （135） 

The last step is to minimize this as a function ofφ . This gives the definition of 0φ . 

All shapes of the same volume are degenerate in energy. This is because we have 

neglected the contributed to the integral form the transition zone connecting the interior 

of the Q ball to the vacuum outside. We would expect this to make a positive contribution 

to the Q-ball energy proportional to its surface area. This lifts the degeneracy and selects 

among all shapes of the same volume the one of minimum area, to wit, the sphere. 
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The most obvious way for a Q ball to decay is by emitting charged mesons. The 

energy per unit charge, E/Q, is 2
0 02 /U φ . Thus, a Q ball is stable under meson emission 

if this number is less than the meson massµ . 

Another obvious decay mode is quantum tunneling. Q matter is much like a false 

vacuum, in that it is a homogeneous state of nonzeroφ . We know a false vacuum decay 

by quantum tunneling; quantum fluctuations produce a bubble of true vacuum similarly 

appear inside the false vacuum, which grows classically. Quantum tunneling conserves 

both Q and E, and, by the arguments, the only such state is a spherical Q ball, not a Q ball 

with a cavity. 

With sufficiently large Q, it is easy to show that the Q ball is a solution of the 

equations of motion. 

Solving the equation of motion, we find 

               
2

2 '
2

2 ( )d d U
dr r dr
φ φ ω φ= − − + φ                  （136） 

This is essentially identical to an equation that occurs in the theory of vacuum decay, and 

can be treated by methods used there. [16] 

If we interpret as a particle motion for a particle of unit mass subject to viscous 

damping(with a coefficient inversely proportional to the time) and moving in the potential 

2 21
2

Uω φ − . This potential is sketched in Fig.28. 
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Fig.28 Potential of 2 21
2

Uω φ −  

 

The sketch is drawn for 2 2
0

2ω ω µ< < ; this is the range in which we shall find 

solutions. The curve is qualitatively different outside this range: if 2ω  is greater than 2µ , 

the hill at the origin becomes a valley; if 2ω  is less than 2
0ω , the hill on the right is lower 

than the hill at the origin. We are searching the particle starts out at time zero at some 

position, (0)φ , at rest, 0d
dr
φ
= , and comes to rest at infinite time at 0φ = . 

We can now get a precise description of the surface of a large Q ball, and we can 

compute the surface tension, the surface-area-dependent term in the energy. For a large Q 

ball, in the neighborhood of the surface, we can neglect the damping term in the equation 
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of motion; also, we can approximate 2ω  by 2
0ω . Thus, near the surface we must solve 

                      
2

2 2
02

1[ ]
2

d d dU U
dr d d
φ ( )ω φ

φ φ

∧

= − + ≡ φ              （137） 

A first integral of this is  

                       
21 0

2
d U
dr
φ ∧⎛ ⎞ − =⎜ ⎟

⎝ ⎠
                               （138） 

(This integral must vanish because φ  goes to zero as r goes to infinity.) 

Thus  

                        2R r U
φ

φ
dφ

∧

− = ∫                              （139） 

Here R is the radius of the Q ball, the place whereφ φ= . Of course, we are free to define 

this radius to be anywhere we want inside the somewhat fuzzy surface, free to choose φ  

to be anywhere between 0 and 0φ . 

For purposes, it will convenient to define φ  by demanding that  

                    3 2 3 2
0

4
3

d x Rπφ φ=∫                           （140） 

It is easy to shown that this indeed defines a choice of φ  independent of R, for large R. 

The equation about can be rewritten as  

                    3 2 2
0[ ( )]d x R rφ φ θ 0− − =∫                     （141） 

If f(r) is some function that is concentrated at r near R, then for large R we can make the 

approximation 

                    3 24 (d x f R f r drπ
∞

−∞
=∫ ∫ )                       （142） 

In this approximation, we have 
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                      2 2
0[ ( )]dr R rφ φ θ

∞

−∞
0− − =∫                      （143） 

If we shift the integration variable from r to r-R, we see that this condition is independent 

of R. 

We can now compute Q and E as function of R. 

                          3 2
0 0

4
3

Q Rπ φ ω=                            （144） 

E can be written as surfaceE  and , where volumeE

                  
2

3 1[
2surface

dE d x
dr
φ ]U

∧⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ +                           （145） 

And 

                   3 2
0volumeE d x 2ω φ= ∫                                   （146） 

And it can be written as 

                   3 2 2 3
0 0 0

4 8
3 3volumeE R R Uπ πφ ω= =                        （147） 

We can use the approximation 

                   3 24 (d x f R f r drπ
∞

−∞
=∫ ∫ )                             （148） 

to calculate the surface energy 

                     
2

2 14 [
2surface

dE R dr
dr
φπ ]U

∧⎛ ⎞= +⎜ ⎟
⎝ ⎠∫  

                             
02

0
4 2R d U

φ
π φ

∧⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∫                         （149） 

The quantity in square brackets is the surface-tension coefficient. 

For sufficiently large Q, there is existence of Q balls and it is stable. 

The first theorem has to do with initial-value data, the fields and their time derivatives at 
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fixed time. In his paper, Sidney Coleman defined a set of initial-value data to be of Q-ball 

type if  and1 2 1( ), 0, 0rφ φ φ φ= = = 2 ( )rφ ωφ= , where ω is a constant and ( )rφ is a 

positive function monotone decreasing to zero as r goes to infinity. 

Theorem 1: For any theory of type（121）, with U>0, given some set of initial-value data. 

With some Q and E, there is a set of initial-value data of Q-ball type with the same Q and 

lesser or equal E.  

Definition: An interaction is “acceptable” if  

(a) U(0)=0 and U is positive everywhere else. U is twice continuously differentiable. 

' ''(0) 0, (0)U U 2µ= = . 

(b) The minimum of 2/U φ is attained at some 0 0φ ≠ . 

(c) There exist three positive numbers, a, b, and c, with c>2, such that 

                  2 21 min( , )
2

cU a bµ φ φ− ≤  

Theorem 2: If U is acceptable, there exists min 0Q ≤ , such that for any , there is 

initial value of Q-ball type that minimizes E for that value of Q. Furthermore, this is the 

initial-value data for a Q-ball solution of the equations of motion. 

minQ Q>

This theorem guarantees both the existence and the absolute stability of Q balls.  

There are small vibrations of Q-balls whose frequencies go to zero as R goes to 

infinity. Upon quantization, these become the excitation levels of lowest energy for large 

R. In the limit of infinite R, any such family of vibrations must come down to a vibration 

of zero frequency. By identifying these zero modes we know where to look for the 

desired vibrations. 
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If we consider infinite space filled with Q matter, there is an obvious zero mode 

generated by infinitesimal Q rotations. As we shall see, this is the zero wave-vector limit 

of a sound wave, which, for small wave-vector, k ，has frequency proportional to | |k . 

For a finite Q ball, | |k  takes discrete values proportional to 1/R. Thus we have a spectrum of 

excitations (phonons) with energies proportional to 1/R. 

Another way of going to the infinite-R limit is to sit, not at the center of Q ball, but at 

its surface. There is an obvious zero mode, associated with translations of the interface 

normal to itself. This is the zero wave-vector limit of a surface wave, which, for small | |k , 

has frequency proportional to 3/ 2| k |  . Thus we have a spectrum of excitations with 

energies proportional to 3/ 21/ R  . In the case of interest, R is much larger than the natural 

length scales of the theory. Thus, the surface excitations have much lower energies than 

the phonons.  

It is convenient to study small perturbations about Q matter in internally corotating 

coordinates. Defining 1δ  and 2δ  as, 

                       0 01 0

0 02 2

cos sin
sin cos

t t
t t

ω ω 1φ φ δ
ω ωφ δ

− +⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 

If we insert this into the equations of motion, and work only to first order in the 'sδ , we 

find  

                                    (150) 
2 '' 2

1 0 2 1 0 1 0 1

2 ' 2
2 0 1 2 0 2 0 0 2

2 0

2 /

U

U

δ ω δ δ δ ω δ

δ ω δ δ δ φ ω δ

+ −∇ + − =

− −∇ + − = 0

where a zero subscript denotes a quantity evaluated at 0φ φ=  . Because 0φ is a stationary 

point of /U φ . 
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The equation (150) is invariant under space-time translations. Thus the normal modes 

can be chosen to be proportional to exp (ikx), where k is a zero of the determinant  

                 
0 2 2 '' 2 0

0 0 0
0 0 2

0

( ) | | 2
2 ( )

k k U i k
i k k k

ω ω
ω

− + + −
− − 2| |+

                  (151) 

Retaining only the leading terms for small  and0k | |k , we have 

                 '' 2 2 '' 2 0 2
0 0 0 0( ) | | ( 3 )(U k U kω ω− = + )                 (152) 

This is an acoustic dispersion equation, with the velocity of sound given by 

                        
'' 2

2 0 0
'' 2
0 03s

Uv
U

ω
ω

−
=

+
                        (153) 

We need the contribution of the Q-ball surface to the energy-momentum tensor to 

calculate the vibration mode of surface. Because we are studying waves of very long 

wavelength, it is reasonable to approximate the surface as being infinitely thin. Thus, for 

example, for a surface occupying the plane 3 0x = , the energy density is approximated as  

                                              (154) 00 3( )surfaceT αδ= x

whereα  is the surface-tension coefficient  

                                      (155) 
0 2 2 1/ 2

00
[2 ]d U

φ
α φ ω φ= −∫

It is straightforward to use  

                            T             (156) g Lµν µ ν µνφ φ= ∂ ∂ −

 to compute the other components of energy momentum tensor. The only nonzero 

components are  

                     11 22 00
surface surface surfaceT T T= = −                  (157) 

And this can be written as  
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                                     (158) [ ]surface sT g n nµν µν µ να= + ( )xδ

Here nµ  is the unit space like normal vector to the surface, and ( )s xδ  is the 

delta-function concentrated on the surface. 

It will be convenient to introduce the characteristic function of the Q ball, ( )xχ  , 

defined by 1χ =  inside the Q ball and 0χ =  outside. χ is related to nµ  and ( )s xδ  by  

                      snµ µχ δ∂ =                              (159) 

In terms of these, 

                  [( ) ] [ ] sT e p u u g p g n nµν µ ν µν µν µ νχ α δ= + − + +   (160) 

Also  

                       j nuµ µχ=                             (161)     

Thus, the terms that appear on the right-band side of the conservation laws fall into two 

sides. From equation (160) and equation (161), we can find that 

                    0su nµ µδ =                                  (162) 

                       ( ) 0spn n n n nν µ ν µ ν
µ µα α δ− + ∂ + ∂ =           (163) 

If we dot nν  into this and use 1n nνν = − ， we find 

                    ( ) sp nµ
µα δ 0− + ∂ =                           （164） 

Let us consider a Q ball which occupies all points obeying 

                     3 0 1( , , )2x x x xη≤  

To first order in η  

                                                  (165) 
3

3

( )
( )

x
n xµ µ

χ θ η

η

= −

= ∂ −
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 And the fundamental surface equations becomes 

                      
3n u

pµ
µα η δ

=

∂ ∂ =
          (at 3x =0) 

 By translational invariances of the problem, we can always choose our normal modes to 

be of the form 

                       3 0 0( ) exp( )p f x ik x ik xδ ⊥ ⊥= −

0

        (166) 

From the wave equation, 

                       2 2 0 2 2
3[ ( ) | |]s sv k v k f⊥∂ + − =            (167) 

If  is greater than  , we can have damped behavior 2 | |sv k⊥
2 0 2( )k

                         
3kxf e=  

with 

                                       (168) 2 2 2 2 0 2| | ( )s sv k v k k⊥= −

These are the surface waves. Eliminating k, we find 

                  (169) 2 2 0 4 2 2 2 0 2 0 2 2 2
0 ( ) [ | | ( ) ][( ) | | ]s sv e k v k k k kα ⊥ ⊥= − −

 For small |  , we may neglect  on the right. Thus, |k⊥
0k

                   0 2 3

0

( ) | |k
e

kα
⊥=                            (170) 

Before we move on our droplet model, we need to talk some thing about the scalar 

singlet, and we found that the scalar singlet is very natural in nature. 

Scalar Singlet and Droplet 

We have talked that we need a scalar singlet to give the inflationary universe at the 

beginning of universe, and many models of physics beyond the Standard Model suggest 
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the existence of new scalar gauge singlet, e.g., in the so called next-to-minimal super 

symmetric standard model. Since the only scalar field in Standard Model is Higgs field, 

which cannot be a candidate of dark energy and dark matter, we need to modification of 

the Standard Model, and the simplest modification is introducing a single spinless species 

of new particle field, S, to those of the Standard Model, using only renormalizabel 

interactions. To keep the new particle from interacting too strongly with ordinary matter, 

it is taken to be completely neutral under the Standard Model gauge group. The model 

was first introduced by Veltman and Yndurain [17] in a different context. Its cosmology 

was later studied by Silverira and Zee [18], and (with a complex scalar) by McDonald 

[19]. It is the absolute minimal modification of the Standard Model which can explain the 

dark matter. A good review of this model has been done by C.P.Bergess.[20]. The 

lagrangian which describes this model has the following form: 

                 
2

2 4 201
2 2 4

s
SM

mL L S S S S S H Hµ
µ

λ λ += + ∂ ∂ − − −           (171) 

Where H and  respectively denote the Standard Model Higgs doublet and 

lagrangian, and S is a real scalar field which does not transform under the Standard 

Model gauge group. We assume S to be the only new degree of freedom relevant at the 

electroweak scale, permitting the neglect of nonrenormalizable coupling, which contains 

all possible renormalizable interactions consistent with the field content and symmetry 

. 

SML

S S→−

Another simple example [21] for the realization of the idea proposed in [22] of a 
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self-interacting, non-dissipative cold dark matter candidate that is based on anextra gauge 

singlet,φ , coupled to the Standard Model Higgs boson, h, with a Lagrangian density 

given by: 

            2 2 4 '1 1( )
2 2 4

gL mµ φ
2g v hφ φ φ φ= ∂ − − +  

where g is the fieldφ  self-coupling constant, mφ  is its mass, v=246GeV is the Higgs 

vacuum expectation value and  is the coupling between the singlet and h. We assume 

that the mass does not arise from spontaneous symmetry breaking since tight constraints 

from non-Newtonian forces eliminates this possibility due to the fact that, in this case, 

there is a relation among coupling constant, mass and vacuum expectation value that 

results in a tiny scalar self-coupling constant.  

'g

So, we have three reasons to have scalar singlet:  

1. We need dark matter which is cannot be in Standard Model.  

The first candidate of dark matter which has been discussed many years is massive 

neutrino. The massive neutrino comes from the discovery so called solar neutrino 

missing. There is standard model for sun which is very successful and predicts the 

amount of neutrinos which can be received at earth emitting from sun. But surprising, 

we only find 65% of neutrinos of predicted. One way to explain this phenomenon is 

add a little mass to neutrino. By this way, electrical neutrino will oscillate into other 

types of neutrino. But unfortunately, we found that neutrino can only be a candidate 

of hot dark matter, and we still need the cold dark matter. 

2. Dark energy. Dark energy is used to explain the accelerated expansion of universe. 
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The simplest way to achieve this is by introducing the so called cosmology constant. 

But cosmology constant has serious fine tunneling problem, and it seems, at least by 

cosmology constant itself, we cannot explain the expansion of universe. A more 

general way to solve this problem is by introducing a scalar field so called 

quintessence, which varies with time. But this scalar field cannot be any thing in 

Standard Model since the only scalar field in SM is Higgs field.  

3. Reheating. As we have talked, there is very important stage of universe called 

inflationary. At the end of inflationary, the inflationary field begins to oscillate at its 

minimum and produce almost all particles in this world. Inflationary field usually 

described as a scalar field, but it cannot be in Standard Model. 

4. Scalar singlet is possibly the simplest correction to Standard Model. 

We need to mention here that our droplet model, which is classical ball, has the 

exactly same lagrangian as (171). I don’t want to show some other models which also can 

give such kinds of lagrangian since there are too many such models, you can break higher 

symmetry to give both Standard Model and scalar singlet, such as 3-3-3 models. [23] 

So, it is very natural to have a scalar singlet beyond Standard Model, and our model 

with potential  



 

99

              

2 2 4
1

2 2

2 2 4
2

0

1 1( , )
2 4

1
2
1 1
2 4

V m

g

M

φ φ λ

φ

λ

φ
φ

+

Φ = +

+ Φ

− Φ + Φ

⎛ ⎞
Φ = ⎜ ⎟

⎝ ⎠

φ

                     （172） 

becomes a promising model. 

I have talked that with potential like (172), whereφ  is scalar singlet which does not 

transform under the Standard Model gauge group, andΦ  is the Standard Model Higgs 

doublet, then a stable droplet will be formed due to the interaction term 2 21
2 zg φ Φ , 

where  is positive interaction constant. But so far, we haven’t talked about the surface. 

It’s obvious that Q-balls is totally difference model with our droplet model, they deal with 

different problems and with different potential. But there is some kind of resemblance. 

They both treat the field as classical field, and have a sphere structure. Because of this we 

will deal with the contribution of surface same as Q-balls. 

zg

At surface, we have shown that the equations of motion are  

            
2 2 2 2 3

1 1 1 1 2 1 1 1
2 2 2

2 1 2 2

0

( ) 0

g g

g M v

φ β φ λα φ φ φ λφ

φ φ φ φ

∇ + + − − =

∇ − − − =
    （173）      

with  

                   

2
2

2
2 1

2

2

2

MvM
g

M
g

α
λ

λβ

= −

=

                           （174） 

We replace  



 

100

                      2 2 vφ φ→ −  

To reason that we do this transformation is to make the field go to zero as r go to infinity. 

Then the equation of (173) becomes 

                     
2 2 2 2 3

1 1 1 1 2 1 1 1
2 2 2

2 1 2 2

( )

( ) 0

g g v

g v M

φ β φ λα φ φ φ λφ

φ φ φ φ

0∇ + + − + − =

∇ − + − =
      (175) 

As we have talked, that the equations (175) cannot be solved by hand because of its 

complicated. But we can get the energy of surface when the droplet becomes truly big, 

then approximately the equation of (175) can be written as 

              

2
2 2 2 2 2 2 4

1 1 1 1 1 2 1 12
1

2
2 2 2

2 2 1 2 2 22
2

2 1 1 1 1[ ( )
2 2 2 4

2 1 1[ ( ) ]
2 2

d d d g g v
dr r dr d

d d d g v M
dr r dr d

1 ]φ φ β φ λα φ φ φ
φ

φ φ φ φ φ φ
φ

+ = − − + + +

+ = + +

λφ
 

(176) 

With big r, we can neglect the damping terms in equation (176) 

                      

2
2 2 2 2 2 2 4

1 1 1 1 2 12
1

2
2 2 2

2 1 2 2 22
2

1 1 1 1[ ( )
2 2 2 4

1 1[ ( ) ]
2 2

d d g g v
dr d

d d g v M
dr d

1 1 ]φ β φ λα φ φ φ λφ
φ

φ φ φ φ φ
φ

= − − + + +

= + +
         

(177) 

A first integral of this is  

           

2
2 2 2 2 2 2 41

1 1 1 2 1 1 1

2
2 2 22

1 2 2 2

1 1 1 1 1[ ( )
2 2 2 2 4

1 1 1[ ( ) ] 0
2 2 2

d g g v
dr

d g v M
dr

φ β φ λα φ φ φ λφ

φ φ φ φ φ

⎛ ⎞ − − − + + + =⎜ ⎟
⎝ ⎠

⎛ ⎞ − + + =⎜ ⎟
⎝ ⎠

] 0
 (178) 

We have transformed 2φ  to make both of 1φ  and 2φ go to zero as r go to zero. 

It will be convenient to define the radius of droplet R as  
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                     3 2 3
1

4
3

d x R 2πφ α=∫                            (179) 

If f(r) is some function that is concentrated at r near R, then for large R we can make  

the approximation  

                                          (180) 3 24 (d x f R f r drπ
∞

−∞
=∫ ∫ )

The energy of surface can be written as  

               3 2 2 2 2
1 2 1 2

1 1 1 1[ ( ) ( ) ]
2 2 2 2surfaceE d x Uφ φ φ φ= + + ∇ + ∇∫ +

1

   

We have calculated that  

                     1

2 0

inφ φ

φ

=

=
                                   (181) 

And with big r, the equations of motion are 

                    

2
2 21

12
1

2
2

2
2

1[ ]
2

d n U
dr

d U
dr

φ φ
φ

φ
φ

∂
= − +
∂

∂
=
∂

                     (182) 

where                   

                      2 2 2
1 2n m g 2λα φ= + +   

And  

                 

2 2 4
1 2 1 1 1 1

2 2
1 2

2 2
2 2

1 1( , )
2 4

1 ( )
2
1 (2 )
2

z

U m

g v

m

φ φ φ

φ φ

φ

= +

+ +

+

λφ

                           (183) 

A first integral of equation (282) is 
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2
2 21

1

2
2

1 1
2 2

1
2

d n U
dr

d U
dr

φ φ

φ

⎛ ⎞ = − +⎜ ⎟
⎝ ⎠

⎛ ⎞ =⎜ ⎟
⎝ ⎠

                    (184) 

So the equation (280) becomes 

                3 2 2 2 2
1 1 2

1 1 1[ ( ) ( ) ]
2 2 2surface

d dE d x n U
dr dr

φ φ φ= + +∫ +  

                     3 2
2

1[ ( ) 2 ]
2

dd x U
dr
φ= +∫  

With the approximation of (279), we can have 

                 2 2
2

14 [ ( ) 2
2surface

d ]E R dr U
dr

π φ= +∫  

                          
02

2
34
2 v

2R d U
β

π φ
−

⎡ ⎤= ⎢ ⎥⎣ ⎦∫                         (185) 

The quantity in square brackets is the surface-tension coefficient.  

I have to mention that the integral in equation (185) is still hard to deal with since U 

is a function of both 1φ  and 2φ . But at least we can calculate the upper limit of the integral 

               
02

2
34 2
2surface v

E R d U
β 2( , )π φ α φ
−

⎡ ⎤< ⎢ ⎥⎣ ⎦∫              (186) 

I have calculated the upper limit of the energy at surface. But all of our calculation is 

based on the approximation of large Droplet, if it is not, our calculation will be failed. 

The only way to solve this problem is with help of computer. But, since the equations of 

(173) are different equations, even with numerical method, we will lose a lot of 

information. In fact, if we can solve the equations of (173), possibly we can find some 

solutions with discrete radius, such as when we solve the equation in Quantum 

Mechanics, we will find discrete energy levels. Such kinds of think are expected in our 
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droplet model, but unfortunately, we cannot get such beautiful things. With very wild 

assumption, we assume that the droplet can only exist with a defined radius, zR . That 

means, when the radius of droplet less than zR  or bigger than zR  , the droplet is unstable, 

it can decay into background field, the Higgs field 2φ , by the interaction term 

                       L= 2 2
1 2

1
2 zg φ φ  

As we have talked, the droplet can be a good candidate of dark matter, since it is matter 

like, and except the interaction with 2φ , there is no future interactions with Standard 

Model particles.  

But there is another question. That is the dark matter is particle or Droplet? In most 

of models, they treat the dark matter as particles. So how can we tell the difference of 

particle and classical droplet? We cannot solve this big problem here. 

In our model, we have a lagrangian which include three parts, the lagrangian of 

Standard Model, Higgs doubletΦ  , kinetic term for scalar singletφ , and the interaction 

term between Higgs doublet and the scalar singlet  

                  

( )2 2 2 4
1

2 2

2 2 2 4
2

1 1 1
2 2 4

1
2
1 1 1( )
2 2 4

SM

z

L L M

g

m

λ

φ

φ φ λ φ

= + ∂Φ + Φ − Φ

+ Φ

+ ∂ − −

          (187) 

The last term in (187) is important to keep the droplet from shrinking.  

In this scenario, at the beginning of universe, Higgs doublet field  oscillates at its’ 

minimum, and much of the energy of the field decays into field

Φ

φ  by the interaction term 
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in equation (187), and then, it is spontaneous symmetry breaking. After that, some parts 

of field  decays into Standard Model particles, and the residue of field fail into its’ 

minimum and make the universe accelerated expand today. The scalar singlet field

Φ

φ  will 

eventually cool down form droplet, which is the dark matter. This scenario has been 

shown in figure 29.  

 

 

Fig.29 Dark world and the Standard Model 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

Recent years is called cosmology ear because the surprising discovery from the 

observation of Type Ia Supernovae, which indicated that the expansion is accelerated, and 

this has been future conformed by the measurement of CMB. We have discussed different 

aspects for the accelerated universe, dark energy, dark matter and some constraints. Since 

both reheating field and dark energy can be described by scalar field, at the first parts, we 

discussed the possibility that we can unify dark energy, dark matter and reheating field 

into one scalar field. This can be achieved by introduce a scalar potential like (120), and 

we have showed the solution for this model. At the second parts, we discussed that the 

reheating field can form a bubble with radius ~ 0.1 m due to the gravity. At third parts, we 

mainly discussed that a droplet of scalar field can be formed in the background of dark 

energy which can be a candidate of dark matter. To make things more clear, we have also 

talked about Q balls since the Q balls have the same structure of our droplet. Both of Q 

balls and our Droplet are sphere, and are stable. But to our droplet, we need to pay 

attention that the droplet is absolute stable. Just because of this extremely stable character, 

it makes the droplet become the candidate of dark matter.  It will not break under 

deforming, or under some kinds of perturbation. The most advantage of this model is that 

we introduced a way to unify the dark world into standard model. 

We leave some problems. First, we cannot solve the equations of (173),  
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2 2 2 3

1 1 1 1 2 1 1 1
2 2 2

2 1 2 2

( )

( ) 0

g g v

g v M

φ β φ λα φ φ φ λφ

φ φ φ φ

∇ + + − + − =

∇ − + − =

0

at surface since it is too complicated. And because of this difficulty, we can only deal 

with big droplet, in which we can neglect the damping term and simplify the equation. 

This problem can be possibly solved with numerical, or by some mathematics expert. 

The second is that we didn’t talk about the vibrations in droplet. Vibration is exiting state 

of droplet, and it is important because, when at the beginning of universe, the temperature 

is extremely high, and most of droplets are in exciting states. If the ground state is dark 

energy, then since there are many exciting states of droplet, at the universe stage of 

nucleosynthesis, when the temperature is about 1MeV degree, most of energy will not 

stay in ground state, the dark energy state, but most of energy will stay in dark matter 

states since there are so many states of dark matter. It can let droplet model satisfy the 

constraint of nucleosymthesis which required that more than 80% of energy should be in 

matter state. If more than 20% of energy is in the state of dark energy state, then the 

universe will expand too fast to form nuclear. In fact, this is very strong constraint which 

makes a lot of models failed. Since there is many excited states of Droplet, most of 

energy will stay in excited states of droplet. If there are more than 4 excited states of 

droplet, then 80% of energy stays in dark matter if the energy gap from the dark energy 

ground to the top excited state much smaller than 1 MeV. Today, our temperature is only 

3k degree, so most of energy will stay in dark energy ground. If the 23% energy stays in 

the lowest state of droplet, then we can predict the varying of energy in dark energy and 
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dark matter in future. 

The third question has been talked by C.P.Burgess. Since there is interaction term 

between Higgs field and scalar singlet, there is window for the decay of Higgs Boson into 

droplet. And this could be possibly used to find droplet from high energy experiment if 

we can truly find Higgs Boson in 2007. But if we cannot, we have to worry about our 

droplet model since we need Higgs field to interact with scalar singlet to form Droplet.  

The important thing about the droplet is that it is classical. It is a solution. And 

possibly it will open a door for another way of physics. 
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