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ABSTRACT

Production of Bosonic Molecules in the Nonequilibrium Dynamics of a

Degenerate Fermi Gas Across a Feshbach Resonance. (August 2006)

Bogdan E. Dobrescu, B.S., University of Bucharest, Bucharest, Romania

Chair of Advisory Committee: Dr. Valery L. Pokrovsky

In this thesis I present a nonequilibrium quantum field theory that describes the

production of molecular dimers from a two-component quantum-degenerate atomic

Fermi gas, via a linear downward sweep of a magnetic field across an s-wave Feshbach

resonance. This problem raises interest because it is presently unclear as to why

deviations from the universal Landau-Zener formula for the transition probability at

two-level crossing are observed in the experimentally measured production efficiencies.

The approach is based on evaluating real-time Green functions within the Keldysh-

Schwinger formalism. The effects of quantum statistics associated with Pauli blocking

for fermions and induced emission for bosons, characteristic of particle scattering in

a quantum-degenerate many-body medium, are fully accounted for. I show that the

molecular conversion efficiency is represented by a power series in terms of a dimen-

sionless parameter which, in the zero-temperature limit, depends solely on the initial

gas density and the Landau-Zener parameter. This result reveals a hindrance of the

canonical Landau-Zener transition probability due to many-body effects, and presents

an explanation for the experimentally observed deviations.

A second topic treated in this thesis concerns the study of non-adiabatic tran-

sitions in N -state Landau-Zener systems. In connection to this, I provide a proof of

the conjecture put forth by Brundobler and Elser, regarding the survival probability

on the diabatic levels with maximum/minimum slope.
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CHAPTER I

INTRODUCTION

The advances of last years in the experimental techniques of atomic and molec-

ular trapping and cooling, combined with the possibility of externally tuning the

inter-atomic interactions, have ushered in a series of novel applications: the study of

Bose-Einstein condensates (BEC) in the regime of negative scattering length corre-

sponding to attractive interactions and the collapse of the condensate [1, 2, 3, 4, 5], the

formation and propagation of matter-wave soliton trains in a quasi one-dimensional

BEC [6, 7], the first experimental realization of a Fermi degenerate regime in a gas

of alkali atoms [8], the production of Feshbach molecules from BEC and ultracold

thermal samples of bosonic atoms [9, 10, 11, 12, 13, 14, 15, 21] and from quantum

degenerate Fermi gases [16, 17, 18, 19, 20, 21], the emergence of a molecular BEC

from a Fermi gas [22, 23, 24], observation of coherent oscillations between an atomic

condensate and molecules [9, 11, 25], and the examination of Cooper pairing in the

BCS-BEC crossover regime [26, 27, 28, 29, 30].

At the heart of these experiments lies the unprecedented control of the magnitude

and sign of the atomic scattering length in ultracold gases via Feshbach resonances

(FR), which represent an enhancement in the scattering amplitude that appears in

coupled-channel scattering when the energy of two colliding particles in the incoming

open channel is close to the energy of a bound state in a closed channel. To first order

in the coupling between open and closed channels, the scattering is unaltered since, by

definition, there are no continuum states in the closed channel. However, second and

higher order processes are possible in which the two free particles in an open channel

The journal model is Physical Review Letters.
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can scatter, via the coupling between the channels, into an intermediate quasi-bound

state in a closed channel, which subsequently decays to give two particles in one of

the open channels; they can further scatter back in a quasi-bound state of the same

or another closed channel, which subsequently decays, and so on. Direct transitions

between two intermediate quasi-bound states of two closed channels are also possible if

there is coupling between these channels. All these possible quantum paths connecting

two given in and out scattering states have each a corresponding probability amplitude

which will contribute additively to the total probability amplitude of the process, and

their interference will ultimately determine the transition probability.

In the realm of ultracold alkali gases specific of the experiments enumerated

above, the spatial electronic degrees of freedom are virtually frozen. In their electronic

ground states, alkali atoms have several different hyperfine states arising from the

interaction between their electronic and nuclear spins. Interatomic interactions give

rise to transitions between these states and the scattering becomes a multi-channel

problem. If a closed channel can support a bound molecular state with a different spin

arrangement than that of the two free atoms in the incoming open channel, then the

energy difference between the bound state and the two-atom continuum threshold can

be experimentally tuned via the Zeeman coupling between the atomic and molecular

spins and an externally applied magnetic field.

This simple idea has far reaching consequences, since in a coupled-channel FR-

scattering the magnitude and sign of the scattering length are very sensitive to the

magnitude and sign of the energy difference between the closed-channel bound state

and the open-channel scattering state. Therefore, it has for the first time become

possible to experimentally adjust both the sign and magnitude of the effective atom-

atom interaction to virtually any desired value! A variable interaction strength is a

very exotic degree of freedom in a many-body system, and, adding to the benefits, the
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systems for which this is achievable can be very dilute (so that the interparticle sep-

aration is very large compared to the characteristic scale of atomic interactions given

by magnitude of the corresponding scattering length), and cooled to temperatures at

which quantum degeneracy sets in (i.e. the de Broglie wavelength of the particles

becomes comparable to the average distance between them). Since the simultaneous

interaction between three or more particles is extremely rare in dilute systems, these

experiments pertain to a description based only on effective two-body interactions (of

variable sign and strength), and many theories and speculative ideas from virtually

all areas of physics, developed for various coupling-strength regimes, can be finally

tested.

Building on the pioneering theoretical work on FR in alkali gases by Stwalley

[31] and Tiesinga et al. [32], the first experimental observation of low-energy FR was

realized in a dilute BEC of 23Na by Ketterle’s group at MIT [33]. This was followed

by the observation of FR in other alkalis, both bosonic [34, 35, 36, 37] and fermionic

[38, 39, 40, 41, 42, 43].

The many fascinating experiments mentioned in the beginning, all based on FR,

soon emerged. In the studies of the BEC collapse, the scattering length of the atoms

in the condensate is tuned to negative values of different magnitudes, corresponding

to attractive interactions. When the potential energy of these attractive interactions

overcomes the stabilizing kinetic energy the collapse of the BEC occurs, resulting in

the expulsion of a large fraction of atoms from the condensate.

In a different setting, a quasi one-dimensional BEC, initially tuned to a positive

scattering length (SCL) near a FR, is abruptly taken to the other side of the resonance

which corresponds to a negative SCL. The low dimensionality of the system enhances

the phase fluctuations, and the collapse of BEC is prevented by the formation of a

train of solitons that repel each other.
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In the experiments which resulted in the observation of coherent oscillations

between an atomic condensate and molecules, the off-resonant SCL was compensated

by tuning the resonant part of SCL to an equal and opposite value, such that, initially,

the effective interaction in an atomic BEC was virtually zero. This non-interacting

BEC was subsequently subjected to a trapezoidal pulse in the magnetic field directed

towards the resonance, and oscillations in the number of atoms, due to the partial

conversion of a fraction of them into molecules, were observed as a function of the

duration of the pulse.

Experiments designed towards the production of a large number of molecular

dimers from ultracold thermal and BEC samples of bosonic atoms, as well as from

quantum-degenerate two-component atomic Fermi gases soon followed. The technique

used for this purpose was a linear downward sweeping of a magnetic field across a

FR. The atomic sample, prepared as an incoherent mixture of two equally populated

hyperfine states, has initially a negative SCL, corresponding to an effective attractive

interaction between the atoms. The strength of the inter-atomic interaction is then

steadily increased by applying a linearly variable magnetic field that drives the system

towards the FR. As a result, the atoms tend to form quasi-bound molecular states

whose life-time increases as the resonance is approached. However, as previously

mentioned, these quasi-bound states belong to a closed channel and hence are only

metastable as long as the magnetic field is above the resonance. Only when the

field reaches the region below the resonance, corresponding to a positive SCL, do

these quasi-bound states turn into truly stable molecules. The molecular conversion

efficiency (MCE) is the result of a subtle interplay between sweeping rate, resonance

width, temperature, density and statistics.

The MCE in the bosonic case can be reasonably well described within a mean-

field approximation (see [44, 45] and references therein) that reduces the many-body
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physics to a two-state Landau-Zener (LZ) system [46, 47, 48, 49].

In contrast, the Fermi case requires, at the very least, the inclusion of all possible

single-particle states that can be occupied by the fermionic atoms, and the effects of

statistics need to be manifestly included in the dynamics of the molecular produc-

tion, as these gases are in a quantum-degenerate regime. This is the main subject

investigated in this thesis.

With this scope in mind, the thesis is organized as follows. In Chapter II, after a

short review of nonadiabatic transitions in N -state Landau-Zener systems, I provide a

proof for the Brundobler-Elser conjecture [50] regarding the survival probability on the

diabatic levels with maximum/minimum slope. In this proof, I reveal the connection

between the Brundobler-Elser formula for a general N -state Landau-Zener system

and the exactly solvable bow-tie model. The special importance of the diabatic levels

with an extreme slope is emphasized throughout.

Chapter III is dedicated to the analysis of atom-molecule conversion in ultra-

degenerate two-component Fermi gases subject to a linear downward sweep of a mag-

netic field across an s-wave FR, in the spirit of experiments [16, 17, 18, 21]. In

connection to this, I present a nonequilibrium quantum field theory based on evaluat-

ing real-time Green functions within the Keldysh-Schwinger formalism. The effects of

quantum statistics associated with Pauli blocking for fermions and induced emission

for bosons, characteristic of particle scattering in a quantum-degenerate many-body

medium, are fully accounted for. I show that the molecular conversion efficiency is

represented by a power series in terms of a dimensionless parameter which, in the

zero-temperature limit, depends solely on the initial gas density and the Landau-

Zener parameter. This result reveals a hindrance of the canonical Landau-Zener

transition probability due to many-body effects, and presents an explanation for the

experimentally observed deviations [16, 17, 18, 21].
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Along the way, I contrast this theory and its results with previously proposed

semi-phenomenological scenarios [51, 52] and numerical calculations [53, 54, 55]. A

summary and concluding remarks are provided in Chapter IV.
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CHAPTER II

NONADIABATIC TRANSITIONS AND LANDAU-ZENER DYNAMICS

The study of nonadiabatic transitions (NAT) in the region of diabatic potential

energy curve crossing is of fundamental importance in a wide variety of fields from

physics, chemistry [56, 57, 58] and biophysics [59, 60]. In physics, the problem is

ubiquitous, ranging from high energy physics (e.g., elementary-particle production

in strong external fields [61] and the solar-neutrino puzzle [62]) to condensed matter

and mesoscopic physics (e.g., atoms scattering off surfaces [63], nuclear magnetic

resonance [64], charge transport in nanostructures [65, 66, 67, 68, 69, 70, 71], quantum

computing [72, 73], spin transitions, relaxation and hysteresis in nanomagnets [74, 75,

76, 77, 78], Bose-Einstein condensates [79, 80, 81, 82, 83, 84], production of Feshbach

molecules from quantum degenerate Fermi gases [16, 17, 18, 19, 21, 20, 22, 23, 24]),

and atomic physics (e.g., atomic collisions [46, 47, 85, 86, 87], behavior of atoms in

laser fields [57, 88]).

The paradigm for the NAT is the famous two-state Landau-Zener (LZ) model

[46, 47, 48, 49] that dates back to 1932. The next section is a short review of its

solution. Section B is devoted to its N -level generalization and concludes with the

proof of the Brundobler-Elser conjecture.

A. 2-level Landau-Zener System

The Hamiltonian of this model reads Ĥ (t) = Ĥ0 (t) + V̂ , with

Ĥ0 (t) =
∑
j=1,2

(εj + βjt) |j〉 〈j| and V̂ = V |1〉 〈2| + h.c., (2.1)
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where h.c. stands for hermitian conjugation. Eq.(2.1) can be regarded as a linear

approximation of a general time-dependent two-state Hamiltonian

Ĥgen (t) =
∑
j=1,2

Ej (t) |j〉 〈j| + [V (t) |1〉 〈2| + h.c.] (2.2)

in the vicinity of a point of crossing, tc, of the two energy curves E1 (t) and E2 (t) (i.e.,

E1 (tc) = E2 (tc)).

The two ket vectors |1〉 and |2〉 of Eq.(2.1) describe the so-called diabatic states

whose time-dependent energies, referred to as diabatic energy curves, are slanted

straight lines with slopes βj. As the system approaches the crossing, transitions

between the two diabatic states, mediated by the interaction V̂ , can occur. The

dynamics of the system is a result of the interplay between the strength of the coupling

|V | and the rate at which the system is driven through the crossing region, determined

by |β1 − β2|. The characteristic time of transition is of the order of τLZ ≈ |V |
|β1−β2| ,

whereas the characteristic time scale for the stationary internal dynamics (i.e., in

the absence of external perturbations) of the system at crossing is of the order of

τchar ≈ �

|V | . Therefore, when τLZ � τchar the evolution of the system is adiabatic, and

the description of this case is most suitably given in terms of adiabatic states |Ψk (t)〉,
and the corresponding adiabatic energy curves Ek (t), which are the solutions of the

eigenvalue problem for the Hamiltonian Ĥ (t) at each instant t,

Ĥ (t) |Ψk (t)〉 = Ek (t) |Ψk (t)〉 . (2.3)

The crossing of the diabatic energy curves corresponds to an avoided crossing

of the adiabatic energy curves, with a splitting proportional to the strength of the

coupling |V |. The adiabatic condition 〈Ψ̇k (t) |Ψk (t)〉 = 0 allows to fix the time-

dependent phases of the diabatic states [89], and in the large time limit, |t| → ∞,
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the adiabatic energy curves will asymptotically approach the diabatic ones. This

behavior is summarized in Fig.1.

2|V|

Time

E
ne

rg
y

1

12

2

Fig. 1. Adiabatic (dotted lines) and diabatic (continuous lines) energy curves for a

two-level Landau-Zener system, with a coupling strength |V |.

The problem of calculating the transition probability between the diabatic states

requires the evaluation of the matrix elements of the time evolution operator, Û (t, t0),

in the basis provided by these states. The formal solution of the time-dependent

Schrödinger equation

i�
∂Û (t, t0)

∂t
= Ĥ (t) Û (t, t0) , (2.4)

subject to the initial condition Û (t0, t0) = 1̂, reads

Û (t, t0) = Û0 (t, t0) +
∞∑
n=1

(
1

i�

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 · · ·
∫ τ2

t0

dτ1

×Û0 (t, τn) V̂ Û0 (τn, τn−1) V̂ · · · Û0 (τ2, τ1) V̂ Û0 (τ1, t0) , (2.5)
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where

Û0 (τk, τj) = exp

[
1

i�

∫ τk

τj

Ĥ0 (τ) dτ

]
(2.6)

is the free time-evolution operator corresponding to Ĥ0.

From Eqs. (2.1) and (2.6) it follows that

〈α| Û0 (τk, τj) |β〉 = δ (α, β) exp

{(
1

i�

)[
εα (τk − τj) +

βα
2

(
τ 2
k − τ 2

j

)]}
(2.7)

for α, β = 1, 2, with δ (α, β) being the Kronecker delta. Therefore,
∣∣∣〈1| Û (+∞,−∞) |1〉

∣∣∣ =

|S11|, where

S11 = 1 +
∞∑
n=1

( |V |
i�

)2n

C2n (2.8)

and

C2n =

∫ +∞

−∞
dτ2n

∫ τ2n

−∞
dτ2n−1 · · ·

∫ τ2

−∞
dτ1

× exp

{
(β2 − β1)

2i�

[(
τ 2
2n − τ 2

2n−1

)
+ · · · + (

τ 2
4 − τ 2

3

)
+
(
τ 2
2 − τ 2

1

)]}
× exp

{
(ε2 − ε1)

i�
[(τ2n − τ2n−1) + · · ·+ (τ4 − τ3) + (τ2 − τ1)]

}
. (2.9)

The integrals C2n can be evaluated by introducing the following change of vari-

ables proposed by Kayanuma and Fukuchi in [90]:

τ1 = x1 ∈ (−∞,+∞) ,

τ2k = τ2k−1 + yk, yk ∈ [0,+∞) , for any k = 1, 2, . . . , n,

τ2k−1 = τ2k−2 + (xk − xk−1) , xk ∈ [xk−1,+∞) , for any k = 2, 3 . . . , n,
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where n = 1, 2, . . . ,∞. The Jacobian of this transformation is 1, and Eq.(2.9) becomes

C2n =

∫ ∞

0

dy1

∫ ∞

0

dy2 · · ·
∫ ∞

0

dyn exp

⎧⎨⎩(ε2 − ε1)

i�

(
n∑
k=1

yk

)
+

(β2 − β1)

2i�

(
n∑
k=1

yk

)2
⎫⎬⎭

×
∫ ∞

−∞
dx1

∫ ∞

x1

dx2

∫ ∞

x2

dx3 · · ·
∫ ∞

xn−1

dxn exp

{
(β2 − β1)

i�

(
n∑
k=1

xkyk

)}
. (2.10)

Since the integrand of (2.10) is symmetric with respect to any permutation of

pairs of integration variables (x1, y1) , (x2, y2) , . . . , (xn, yn), the limits of integration

for the x-variables can be extended from −∞ to +∞, i.e.

C2n =
1

n!

∫ ∞

0

dy1 · · ·
∫ ∞

0

dyn exp

⎧⎨⎩(ε2 − ε1)

i�

(
n∑
k=1

yk

)
+

(β2 − β1)

2i�

(
n∑
k=1

yk

)2
⎫⎬⎭

×
∫ ∞

−∞
dx1 · · ·

∫ ∞

−∞
dxn exp

{
(β2 − β1)

i�

(
n∑
k=1

xkyk

)}

=
1

n!

∫ ∞

0

dy1 · · ·
∫ ∞

0

dyn exp

⎧⎨⎩(ε2 − ε1)

i�

(
n∑
k=1

yk

)
+

(β2 − β1)

2i�

(
n∑
k=1

yk

)2
⎫⎬⎭

×
(

n∏
k=1

2π�

|β2 − β1|δ (yk)

)
=

1

n!

(
π�

|β2 − β1|
)n

, (2.11)

where the integral representation 1
2π

∫ +∞
−∞ e±ixydx = δ (y) of the Dirac delta function

was used.

From Eqs. (2.8) and (2.11) one obtains

∣∣∣〈1| Û (+∞,−∞) |1〉
∣∣∣ = |S11| = 1+

∞∑
n=1

1

n!

(
−π |V |2

� |β2 − β1|

)n

= exp

(
−π |V |2

� |β2 − β1|

)
.

(2.12)

If, at t0 = −∞, the system is prepared in the state |1〉, then the famous LZ
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transition probabilities at t = +∞ are given by

P11 =
∣∣∣〈1| Û (+∞,−∞) |1〉

∣∣∣2 = exp

(
−2π

|V |2
� |β2 − β1|

)
, (2.13)

P12 =
∣∣∣〈2| Û (+∞,−∞) |1〉

∣∣∣2 = 1 − P11. (2.14)

The proof outlined above, based on the evaluation of of the whole series expan-

sion of the time evolution operator, is complementary to the original solutions given

by Landau [46] in terms of analytic continuation in the complex time domain of the

asymptotic solution of the differential equation satisfied by the time-dependent prob-

ability amplitudes of the diabatic states for large t, and by Zener [47] by analyzing

the large t asymptotics of the Weber functions, which are the exact solutions for these

probability amplitudes. The main advantage of this approach resides in its versatil-

ity, being readily applicable in multi-level systems, where analytic continuation of an

asymptotic solution (when known) usually has to cope with a very intricate Stokes

phenomenon.

B. N-level Landau-Zener System. Proof of the Brundobler-Elser Conjecture.

The generalization of (2.1) to an N -state system reads

Ĥ (t) =

N∑
k=1

(εk + βkt) |k〉 〈k| +
N∑

j,k=1

Vjk |j〉 〈k| , (2.15)

where Vjj = 0, and Vjk = V ∗
kj. The solution for the transition probabilities, Pjk,

among the diabatic states is presently known only for some special cases of (2.15),

and the general problem is still the object of active research.

The first N -level system analyzed was a spin s = (N − 1) /2 in a time-dependent

magnetic field [48, 91], and in this case the problem can be reduced exactly to a
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two-level one, based on the expression of the elements of any Wigner rotation matrix

for a spin s in terms of the elements of the corresponding two-dimensional matrix for

a spin 1/2.

The next special-case model in which one diabatic energy curve crosses and in-

teracts with a band of parallel ones was solved by Demkov and Osherov [92] using a

Laplace transformation (see also the recent solution [93] based on a Fourier transfor-

mation method).

Building on the work of Brundobler and Elser [50], Ostrovsky and Nakamura

[94] have solved the so-called bow-tie model by analyzing the asymptotic form of the

exact analytical solutions expressed in terms of contour integrals given in [50]. In this

model, all diabatic levels cross simultaneously at the same point, and the coupling

is provided only by the interaction of one special level, say of slope β1, with all the

others. For this particular case, the expression of Eq.(2.15) reduces to

Ĥbow−tie (t) =

N∑
k=1

βkt |k〉 〈k| +
N∑
k=2

(V1k |1〉 〈k| + h.c.) . (2.16)

Demkov and Ostrovsky have subsequently considered a generalized bow-tie model

[95] described by the Hamiltonian

Ĥgen−bow−tie (t) =
ε

2

∣∣0+
〉 〈

0+
∣∣− ε

2

∣∣0−〉 〈0−∣∣+
N∑
k=1

Vk√
2

(∣∣0+
〉 〈k| + ∣∣0−〉 〈k| + h.c.

)
.

Whereas the complete solution of the general Hamiltonian (2.15) is still elusive,

based on the exactly solvable special cases known at the time and numerical testing,

Brundobler and Elser [50] have conjectured the form of the survival probability for the

diabatic states corresponding to energy levels of maximal or minimal slope, namely

P11 =
∣∣∣〈1| Û (+∞,−∞) |1〉

∣∣∣2 = exp

(
−2π

N∑
k=2

|V1k|2
� |β1 − βk|

)
, (2.17)
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if β1 = maxk βk or β1 = mink βk. After its proposal in 1993, this conjecture was

validated by all the special cases solved since then [67, 94, 95]. The physical picture

behind (2.17) amounts to an independent crossing approximation in which the system,

initially populated in the diabatic state |1〉, propagates only in the positive direction

of time and survives each crossing with a probability equal to that of a canonical

2-level LZ-model.

Following the original approach of Landau, Shytov [96] proposed a proof of the

Brundobler-Elser formula (BEF) (2.17) based on the analytic continuation in the

complex time domain of the asymptotic solution for large t. While the arguments

presented are pertinent, a rigorous analysis of the Stokes phenomenon is missing,

the author simply assuming (without proof) that when matching the asymptotic

expansions of the exact wave function many of its components corresponding to the

probability amplitudes of diabatic states have a vanishing contribution.

Volkov and Ostrovsky [97] have attempted a proof of the BEF based on time-

dependent perturbation theory, but their arguments are erroneous.

Dobrescu and Sinitsyn [98] have subsequently revealed the shortcomings of [97]

and proved the BEF by reducing the general problem to the special case of the bow-tie

model. This proof is presented below.

From Eqs. (2.5), (2.6), (2.7) and (2.15) it follows that
∣∣∣〈1| Û (+∞,−∞) |1〉

∣∣∣ =

|S11|, where

S11 = 1+
∞∑
n=2

(
1

i�

)n N∑
k1=1

N∑
k2=1

· · ·
N∑

kn−1=1

(
V1kn−1Vkn−1kn−2 · · ·Vk2k1Vk11

)
Cn (k1, . . . , kn−1) ,

(2.18)
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and

Cn (k1, . . . , kn−1) =

∫ +∞

−∞
dτn

∫ τn

−∞
dτn−1 · · ·

∫ τ2

−∞
dτ1

× exp

[(
1

i�

)
εk1 (τ2 − τ1) +

(
1

i�

)
βk1
2

(
τ 2
2 − τ 2

1

)]
× exp

[(
1

i�

)
εk2 (τ3 − τ2) +

(
1

i�

)
βk2
2

(
τ 2
3 − τ 2

2

)]
...

× exp

[(
1

i�

)
εkn−1 (τn − τn−1) +

(
1

i�

)
βkn−1

2

(
τ 2
n − τ 2

n−1

)]
× exp

[
−
(

1

i�

)
ε1 (τn − τ1) −

(
1

i�

)
β1

2

(
τ 2
n − τ 2

1

)]
, (2.19)

with Vjk = 0 for j = k.

Upon introducing the change of variables

τ1 = x1 ∈ (−∞,+∞) ,

τj+1 = τj + xj+1, xj+1 ∈ [0,+∞) , for any j = 1, 2, . . . , (n− 1) ,

the integral (2.19) becomes

Cn (k1, . . . , kn−1) =

∫ ∞

−∞
dx1

∫ ∞

0

dx2 · · ·
∫ ∞

0

dxn F (x1, . . . , xn) , (2.20)

where

F (x1, . . . , xn) = exp [ix1 {B (k1)x2 +B (k2) x3 + · · ·+B (kn−1)xn}]

× exp

[(
i

2

){
B (k1) x

2
2 +B (k2) x

2
3 + · · ·+B (kn−1)x

2
n

}]
× exp

[
i

{
B (k2) (x3x2) + · · ·+B (kn−1)

(
xn

n−1∑
l=2

xl

)}]
× exp [i {E (k1) x2 + E (k2) x3 + · · ·+ E (kn−1)xn}] , (2.21)
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and

E (kj) =
ε1 − εkj

�
, and B (kj) =

β1 − βkj

�
. (2.22)

The integrals in (2.20) exist only in the sense of distributions (i.e., generalized

functions) and their behavior at ±∞ needs to be regularized. This amounts to

Cn = lim
η→0+

{∫ 0

−∞
dx1

∫ ∞

0

dx2 · · ·
∫ ∞

0

dxn F (x1, x2, . . . , xn) e
−η(−x1+x2+...+xn)

+

∫ ∞

0

dx1

∫ ∞

0

dx2 · · ·
∫ ∞

0

dxn F (x1, x2, . . . , xn) e
−η(x1+x2+...+xn)

}
. (2.23)

Upon integrating over x1 in (2.23) one obtains

Cn = lim
η→0+

J (η) , (2.24)

where

J (η) =

∫ ∞

0

dx2

∫ ∞

0

dx3 · · ·
∫ ∞

0

dxn g (x2, x3, . . . , xn; η) exp [iϕ (x2, x3, . . . , xn; η)] ,

(2.25)

g (x2, x3, . . . , xn; η) =
2η exp [−η (x2 + x3 + · · ·+ xn)]

[B (k1) x2 +B (k2)x3 + · · · +B (kn−1) xn]
2 + η2

, (2.26)

ϕ (x2, x3, . . . , xn; η) = E (k1)x2 + E (k2)x3 + · · · + E (kn−1) xn

+
1

2

[
B (k1) x

2
2 +B (k2)x

2
3 + · · · +B (kn−1) x

2
n

]
+B (k2) (x3x2) + · · ·+B (kn−1)

(
xn

n−1∑
l=2

xl

)
. (2.27)

From Eqs. (2.25), (2.26) and (2.27) it follows that

|J (η)| ≤
∫ ∞

0

dx2 · · ·
∫ ∞

0

dxn |g (x2, x3, . . . , xn; η)|

=

∫ ∞

0

dx2 · · ·
∫ ∞

0

dxn
2η exp [−η (x2 + · · ·+ xn)]

[B (k1)x2 + · · · +B (kn−1) xn]
2 + η2

. (2.28)

The results obtained so far hold for any slope β1, and the coefficients B (kj) are
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arbitrary real numbers.

In the following I will specialize to the case when β1 is a maximal/minimal slope,

and analyze the conditions under which the right-hand side of Eq.(2.28) becomes

zero. This in turn will provide the quantum paths

1 → k1 → k2 → . . .→ kn−1 → 1

of order n that can have a nonvanishing contribution to the series (2.18).

If β1 is an extremum, then all B (kj) ≥ 0 (if β1 = maxk βk) or all B (kj) ≤ 0 (if

β1 = mink βk). Let ν be the number of coefficients B (kj) whose value is zero (i.e. for

which kj = 1). If B (kj) = 0, then one can integrate over xj+1 in (2.28)∫ ∞

0

dxj+1 exp [−ηxj+1] =
1

η
,

and, after integrating over all ν variables xj+1 whose coefficients B (kj) = 0, one

obtains

lim
η→0+

|J (η)| ≤ lim
η→0+

2

ην

∫ ∞

0

dy1

∫ ∞

0

dy2 · · ·
∫ ∞

0

dyn−ν−1

× η exp [−η (y1 + y2 + · · · + yn−ν−1)][
B̃1y1 + B̃2y2 + · · ·+ B̃n−ν−1yn−ν−1

]2

+ η2

= lim
η→0+

2

ην

∫ η

0

dy1

∫ η

0

dy2 · · ·
∫ η

0

dyn−ν−1

× η exp [−η (y1 + y2 + · · · + yn−ν−1)][
B̃1y1 + B̃2y2 + · · ·+ B̃n−ν−1yn−ν−1

]2

+ η2

, (2.29)

where the remaining (n− ν − 1) dummy integration x-variables whose coefficients

B (kl) �= 0 have been renamed yl, and their corresponding coefficients have been

renamed B̃l in order to simplify the notation.

For any continuous function f defined on a compact interval [a, b] the relation
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∫ b
a
f (x) dx = f (ξ) (b− a) holds, for some ξ ∈ [a, b]. Therefore,∫ η

0

dy1

∫ η

0

dy2 · · ·
∫ η

0

dyn−ν−1
exp [−η (y1 + y2 + · · ·+ yn−ν−1)][

B̃1y1 + B̃2y2 + · · ·+ B̃n−ν−1yn−ν−1

]2

+ η2

= ηn−ν−3 exp [−η2 (ξ1 + ξ2 + · · ·+ ξn−ν−1)][
B̃1ξ1 + B̃2ξ2 + · · · + B̃n−ν−1ξn−ν−1

]2

+ 1
, (2.30)

where ξj ∈ [0, 1], for any j = 1, 2, . . . , (n− ν − 1).

From Eqs. (2.29) and (2.30) one obtains

lim
η→0+

|J (η)| ≤ lim
η→0+

ηn−2ν−2 2 exp [−η2 (ξ1 + ξ2 + · · ·+ ξn−ν−1)][
B̃1ξ1 + B̃2ξ2 + · · ·+ B̃n−ν−1ξn−ν−1

]2

+ 1
. (2.31)

Since Cn = limη→0+ J (η), from Eq.(2.31) it follows that, at each order n, the

only possible non-zero contributions to the series (2.18) can come from quantum

paths 1 → k1 → k2 → . . . → kn−1 → 1 in which the number ν of intermediate

diabatic states with kj = 1 (i.e. for which B (kj) = 0) satisfies the inequality

ν ≥ n− 2

2
. (2.32)

However, since Vjk = 0 for j = k, the maximum possible number of intermediate

states with kj = 1 in a quantum path 1 → k1 → k2 → . . .→ kn−1 → 1 is n−3
2

for odd

n, and n−2
2

for even n. Therefore, Eq.(2.32) implies that only quantum paths of even

order and with the very special structure

1 → k1 → 1 → k2 → 1 → . . .→ 1 → kn
2
→ 1,

where kl �= 1 for any l = 1, 2, . . . , n
2
, can have a nonvanishing contribution to the

survival probability on the diabatic level 1 of maximal/minimal slope.
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Therefore, Eq.(2.18) reduces to

S11 = 1 +

∞∑
m=1

(
1

i�

)2m N∑
k1=2

N∑
k2=2

· · ·
N∑

km=2

|V1k1 |2 |V1k2 |2 · · · |V1km |2

×
∫ ∞

−∞
dτ1

∫ τ1

−∞
dτ2 · · ·

∫ τ2m−1

−∞
dτ2m

× exp

[
i
B (k1)

2

(
τ 2
1 − τ 2

2

)
+ · · ·+ i

B (km)

2

(
τ 2
2m−1 − τ 2

2m

)]
× exp [iE (k1) (τ1 − τ2) + · · ·+ iE (km) (τ2m−1 − τ2m)] . (2.33)

Following a complicated procedure based on the mathematical induction method,

Volkov and Ostrovsky [97] have actually only shown that the contribution to the

transition probability from the particular class of quantum paths 1 → k1 → k2 →
. . . → kn−1 → 1 in which all kj �= 1 is zero (see Eqs. (A.1) through (A.5) of

[97]). However, as explicitly proven above, there are many other possible paths with

vanishing probability amplitude: all paths 1 → k1 → k2 → . . . → kn−1 → 1 in which

some of the intermediate diabatic states kj are equal to 1 have zero contribution if

their number of states with kj = 1 is less than n−2
2

. This large class of possible

quantum paths is completely overlooked in [97].

From this point on, Volkov and Ostrovsky [97] no longer use the property of

β1 being maximal/minimal and their proof is obviously erroneous since the BEF

holds only for an extreme slope. A detailed account of their mathematical errors is

contained in [98].

In the next step I will prove that if β1 is maximal/minimal, then S11 does not

depend on E (lj), for any lj = 2, 3, . . . , N and any j = 1, 2, . . . , m.
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From Eq.(2.33) it follows that

∂S11

∂E (lj)
=

∞∑
m=1

(
1

i�

)2m N∑
k1=2

N∑
k2=2

· · ·
N∑

km=2

|V1k1 |2 |V1k2 |2 · · · |V1km |2

×
∫ ∞

−∞
dτ1

∫ τ1

−∞
dτ2 · · ·

∫ τ2m−1

−∞
dτ2m

×i [δ (lj, k1) (τ1 − τ2) + δ (lj, k2) (τ3 − τ4) + · · ·+ δ (lj, km) (τ2m−1 − τ2m)]

× exp

[
i
B (k1)

2

(
τ 2
1 − τ 2

2

)
+ · · ·+ i

B (km)

2

(
τ 2
2m−1 − τ 2

2m

)]
× exp [iE (k1) (τ1 − τ2) + · · ·+ iE (km) (τ2m−1 − τ2m)] , (2.34)

where δ (lj , kp) is the Kronecker delta.

Next, I introduce the well-known change of variables

τ1 = x1 ∈ (−∞,∞) ,

τj+1 = τj − xj+1, with xj+1 ∈ [0,∞) , j = 1, 2, . . . , 2m− 1. (2.35)

From Eqs. (2.34) and (2.35) it follows that

∂S11

∂E (lj)
=

∞∑
m=1

(
1

i�

)m N∑
k1=2

N∑
k2=2

· · ·
N∑

km=2

|V1k1|2 |V1k2|2 · · · |V1km|2

×
∫ ∞

−∞
dx1

∫ ∞

0

dx2

∫ ∞

0

dx3 · · ·
∫ ∞

0

dx2m

×i [δ (lj, k1) x2 + δ (lj , k2)x4 + · · · + δ (lj , km)x2m]

×F (x1, x2, . . . , x2m) , (2.36)
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where

F (x1, x2, . . . , x2m) = exp

[
− i

2
G (x2, x4, . . . , x2m−2, x2m)

]
× exp [i {B (k1) x2 +B (k2) x4 + · · ·+B (km) x2m} x1]

× exp [−i {B (k2)x4 +B (k3)x6 + · · · +B (km)x2m}x3]

× exp [−i {B (k3)x6 +B (k4)x8 + · · · +B (km)x2m}x5]

...

× exp [−i {B (km)x2m} x2m−1] , (2.37)

and

G (x2, x4, . . . , x2m−2, x2m) = B (k1)
(
x2

2

)
+B (k2)

(
2x4x2 + x2

4

)
+B (k3)

(
2x6x2 + 2x6x4 + x2

6

)
...

+B (km)
(
2x2mx2 + · · · + 2x2mx2m−2 + x2

2m

)
−2 [E (k1)x2 + · · · + E (km)x2m] . (2.38)
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Upon integrating over x1 in Eq.(2.36) one obtains

∂S11

∂E (lj)
=

∞∑
m=1

(
1

i�

)m N∑
k1=2

N∑
k2=2

· · ·
N∑

km=2

|V1k1 |2 |V1k2 |2 · · · |V1km|2

×
∫ ∞

0

dx2

∫ ∞

0

dx3 · · ·
∫ ∞

0

dx2m

×i [δ (lj, k1) x2 + δ (lj , k2)x4 + · · · + δ (lj , km)x2m]

× exp

[
− i

2
G (x2, x4, . . . , x2m−2, x2m)

]
×2πδ (B (k1) x2 +B (k2)x4 + · · · +B (km)x2m)

× exp [−i {B (k2)x4 +B (k3) x6 + · · ·+B (km) x2m}x3]

× exp [−i {B (k3)x6 +B (k4) x8 + · · ·+B (km) x2m}x5]

...

× exp [−i {B (km)x2m}x2m−1] . (2.39)

If β1 is an extremum, then all B (kj) > 0 (if β1 = maxk βk) or all B (kj) < 0

(if β1 = mink βk). Therefore, δ (B (k1)x2 +B (k2) x4 + · · ·+B (km)x2m) = 0 unless

x2 = x4 = · · · = x2m = 0. The presence of the term

[δ (lj, k1) x2 + δ (lj , k2)x4 + · · · + δ (lj , km)x2m] (2.40)

in the integrands of Eq.(2.39) ensures that each of the integrals is zero.

This argument can be made rigorous by regularizing the behavior of integrals at
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±∞, as follows

Iq ≡
∫ ∞

−∞
dx1

∫ ∞

0

dx2

∫ ∞

0

dx3 · · ·
∫ ∞

0

dx2m F (x1, . . . , x2m)x2q

= lim
η→0+

{ ∫ ∞

0

dx2

∫ ∞

0

dx4 · · ·
∫ ∞

0

dx2m

∫ ∞

0

dx1

∫ ∞

0

dx3 · · ·
∫ ∞

0

dx2m−1

×x2qF (x1, . . . , x2m) exp [−η (x1 + x3 + · · ·+ x2m−1)]

+

∫ ∞

0

dx2

∫ ∞

0

dx4 · · ·
∫ ∞

0

dx2m

∫ 0

−∞
dx1

∫ ∞

0

dx3 · · ·
∫ ∞

0

dx2m−1

× x2qF (x1, . . . , x2m) exp [−η (−x1 + x3 + · · ·+ x2m−1)] } , (2.41)

for any q = 1, 2, . . . , m. Upon integrating over the xj with odd j in Eq.(2.41), one

obtains

Iq = lim
η→0+

∫ ∞

0

dx2

∫ ∞

0

dx4 · · ·
∫ ∞

0

dx2m W (x2, x4, . . . , x2m; η) , (2.42)

where

W (x2, x4, . . . , x2m; η) = exp

[
− i

2
G (x2, x4, . . . , x2m)

]
× 2ηx2q

[B (k1)x2 +B (k2) x4 + · · ·+B (km)x2m]2 + η2

× 1

i [B (k2) x4 +B (k3)x6 + · · · +B (km)x2m] + η
...

× 1

i [B (km)x2m] + η
. (2.43)

Since either B (kj) > 0 or B (kj) < 0 for any kj, from Eqs. (2.42) and (2.43) it
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follows that

|Iq| ≤ lim
η→0+

∫ ∞

0

dx2

∫ ∞

0

dx4 · · ·
∫ ∞

0

dx2m |W (x2, x4, . . . , x2m; η)|

= lim
η→0+

∫ η/|B(k1)|

0

dx2

∫ η/|B(k2)|

0

dx4 · · ·
∫ η/|B(km)|

0

dx2m

× 2ηx2q

[B (k1)x2 +B (k2) x4 + · · ·+B (km) x2m]2 + η2

× 1√
[B (k2)x4 +B (k3) x6 + · · ·+B (km)x2m]2 + η2

...

× 1√
[B (km)x2m]2 + η2

, (2.44)

and hence, Eq.(2.44) reduces to

|Iq| ≤ 1

|B (k1)B (k2) · · ·B (km)| lim
η→0+

2η
ξq

|B (kq)|
1

(ξ1 + ξ2 + · · ·+ ξm)2 + 1

× 1√
(ξ2 + ξ3 + · · ·+ ξm)2 + 1

· · · 1√
ξ2
m + 1

= 0, (2.45)

where ξj ∈ [0, 1], for any j = 1, 2, . . . , m. Eq.(2.45) shows that Iq = 0 for any

q = 1, 2, . . . , m, and consequently ∂S11

∂E(lj)
= 0 for any E (lj).

The fact that β1 is maximal/minimal has played a key role in the arguments

above. These arguments fail to hold if β1 is not an extremum, since then the argu-

ment of δ (B (k1)x2 +B (k2) x4 + · · ·+B (km) x2m) would have other zeros, besides

the obvious x2 = x4 = · · · = x2m = 0.

In the last step, I reveal the connection between the BEF for a general N -level

LZ-system and the exactly solvable bow-tie model [94], in which all levels interact

with only one special level (SL). Indeed, since S11 does not depend on E (lj) if β1 is

maximal/minimal, I can safely set E (lj) = 0 for any lj = 2, 3, . . . , N . The form for

S11 (Eq.(2.33)) with all E (lj) = 0 is exactly what one obtains for a bow-tie model if
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the SL has slope β1 (see Eq.(2.16)), and a perturbation expansion is being developed

for it.

The integrals of the series expansion for S11 in the bow-tie model can be rather

easily evaluated in any order. However, since the BEF holds for the bow-tie model,

as shown by contour integration in [94], I only cite the statement from page 6947 of

[94]: “This hypothesis is confirmed within the present model.”, and refer to it for

further details.

This concludes the proof of the Brundobler-Elser conjecture for a general N -level

LZ-system.
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CHAPTER III

NONEQUILIBRIUM DYNAMICS ACROSS A FESHBACH RESONANCE IN A

DEGENERATE FERMI GAS

In this Chapter I study the atom-molecule conversion in ultra-degenerate two-

component Fermi gases subject to a linear downward sweep of a magnetic field across

an s-wave Feshbach resonance (FR), in the spirit of experiments [16, 17, 18, 21].

Notwithstanding the differences in the details of these experiments, they all show a

growth of the molecular conversion efficiency (MCE) with the inverse sweeping rate

of the magnetic field, Ḃ−1, that saturates at values less than 100% in the adiabatic

regime.

The attempts aimed at explaining the dependence of MCE on Ḃ, resonance

width, initial atomic density and temperature for two-component Fermi systems can

be broadly classified into two classes: i) semi-phenomenological scenarios [51, 52]

that reduce the many-body physics to a two-atom description modeled as a two-state

Landau-Zener (LZ) system [46, 47] corresponding, respectively, to the free two-atom

scattering state and the bound molecular state, and ii) numerical calculations in which

many-body effects are only partially taken into account [53, 54, 55], and based on an

effective Hamiltonian first proposed by Timmermans et al. [99].

Class i) is appealing by its use of simple and intuitive physical pictures, but

their predicted (temperature independent) upper MCE limit of 50% contradicts the

experimentally observed far greater values [18, 21]. The recent experimental work by

Hodby et al. [21] also shows a pronounced T -dependence of this upper limit. The

breakdown of the simple two-level LZ picture can be corrected only by introducing

supplementary ad hoc assumptions in these semi-phenomenological scenarios, whereas
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it emerges naturally from a bona fide many-body analysis (see below). The work in

Class ii) has shown, albeit under some simplifying assumptions, the potential of the

Hamiltonian [99] in analyzing the temperature dependence of the MCE saturation

in the adiabatic regime. The disagreement between the results of these numerical

calculations and experiment are mainly due to their use of a mean-field approximation

for the bosonic degrees of freedom, in which only the zero-momentum bosonic-mode

of the Hamiltonian [99] is retained.

Recently, Dobrescu and Pokrovsky [100] have developed a nonequilibrium theory,

pertinent to both weak and strong atom-molecule coupling (measured in Fermi energy

units), which allows for a full account of the effects of quantum statistics. The MCE

is calculated in terms of real-time Green functions (GF), and represented as a power

series in terms of a dimensionless parameter that depends only on the initial gas

density and the LZ parameter. An exact evaluation of Feynman-Keldysh diagrams

for second and fourth order processes reveals a clear deviation from the LZ transition

probability at two-level crossing. This deviation, whose origins reside solely in many-

body effects, signals a suppression of the LZ-predicted MCE even for moderately small

values of Ḃ−1, as observed experimentally in [16, 17, 18, 21]. Equally important, the

MCE result does not display an a priori upper limit of 50% at T = 0 as suggested in

[51, 52]. This theory [100] is presented below.

The starting point of my analysis is the Hamiltonian [99, 101] describing a system

of fermionic atoms FR-coupled to bosonic molecules, Ĥ(t) = Ĥ0(t) + V̂ , with

Ĥ0(t) =
∑

ψ=a,b,f

∑

p

εψ(�p, t)ψ̂†(�p)ψ̂(�p), (3.1)

V̂ =
g√V

∑

p,
q

[
f̂ † (�p+ �q) b̂(�q)â(�p) + h.c.

]
, (3.2)

where â†(�p), â(�p) and b̂†(�p), b̂(�p) are fermionic creation and annihilation operators
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describing atoms of momentum �p and “spins” ↑ (a) and ↓ (b), respectively, and

f̂ †(�p), f̂(�p) play the same role for the bosonic molecules. Other quantities entering

Ĥ are εψ(�p, t) = ε̃ψ(�p) − µψB(t), with ψ = a, b, f , where µψ is the projection of the

magnetic moment along the direction of the magnetic field B(t) with which interacts

via Zeeman coupling, and ε̃ψ(�p) is the dispersion relation which accounts for the single-

particle energy renormalization due to nonresonant collisions, and simply reduces

to the kinetic energy p2/2mψ in a collisionless regime1; g is the two-atom-molecule

coupling2 which controls the FR width and V is the volume of system.

The free two-atom scattering state and the molecular state (MS) have different

spin configurations and their coupling is mediated via the intra-atomic hyperfine

interaction [102] which flips the electronic and nuclear spins of one of the colliding

atoms. Depending on the magnetically tuned energy difference between the two

states, the MS is quasi-bound (virtual) and belongs to a closed scattering channel if

its energy exceeds that of the two-atom channel, becomes resonant with the latter

when their energies are equal, and turns truly bound when its energy is the lesser of

the two. This process is illustrated in Fig.2.

In order to probe the MCE dependence on Ḃ, I evaluate real-time GF within

the Keldysh-Schwinger formalism (KSF) [103]. The method is based on the use of a

closed contour for time ordering, which runs from −∞ to +∞ and then back to −∞.

Both branches of the contour propagate along the real time axis and any point along

them can be characterized by two parameters, written compactly as τγ , with τ being

the time variable and γ a bookkeeping index that distinguishes between the forward

1The term collision refers here to scattering processes that cannot alter the number
of atoms/molecules.

2g ∼ εhfa
3/2, where εhf is the strength of the hyperfine interaction responsible for

the coupling between the electronic and nuclear spins, and a is the characteristic size
of the molecule.
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Fig. 2. A schematic two-atom scattering via a Feshbach resonance is shown. (A) A

bound state in a closed channel can be brought in resonance with the scattering

threshold of the open channel by adjusting the detuning δ. (B) A two-state

Landau-Zener model corresponding, respectively, to the two-atom scattering

state and the closed-channel molecular state.
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(γ = +) and reverse (γ = −) time directions. The basic quantities of KSF are the

contour-ordered real-time GF:

iGαβ (�p1, τ1; �p2, τ2) =
〈
Tc

[
ψ̂H (�p1, τ

α
1 ) ψ̂†

H

(
�p2, τ

β
2

)]〉
, (3.3)

with G ≡ A, B, F for ψ = a, b, f , respectively, α, β = ± and 〈(· · · )〉 ≡ Tr[ρ̂(t0) (· · · )].
ρ̂(t0) is the initial density operator at t0 = −∞, ψ̂H are the Heisenberg-picture (HP)

operators relative to t0, and Tc is a contour-ordering operator. The corresponding

free GF read

iGαβ0 (�p1, τ1; �p2, τ2) =
〈
Tc

[
ψ̂I (�p1, τ

α
1 ) ψ̂†

I

(
�p2, τ

β
2

)]〉
, (3.4)

where ψ̂I are the interaction-picture (IP) operators relative to t0.

Upon expressing the ψ̂H operators in terms of their IP form ψ̂I ,

ψ̂H (t) = Û †
I (t, t0)ψ̂I (t) ÛI(t, t0), (3.5)

and expanding the IP time-evolution operator, ÛI(t, t0), as a formal series in the

coupling constant g, the following systematic expansion of the exact GF ensues:

iGαβ
(
�k1, t1;�k2, t2

)
= iGαβ0

(
�k1, t1;�k2, t2

)
+

∞∑
n=1

(
1

i�

)n
1

n!

∑
{γ}=±

(γ1 · · · γn)
∫ +∞

−∞
dτ1 · · ·

∫ +∞

−∞
dτn

×
〈
Tc

[
V̂I (τγ11 ) · · · V̂I (τγn

n ) ψ̂I

(
�k1, t

α
1

)
ψ̂†
I

(
�k2, t

β
2

)]〉
,(3.6)

where V̂I is the IP form of V̂ , and the sum
∑

{γ}=± runs over all n-tuples (γ1, . . . , γn)

with γj = ±.

In the experiments [16, 17, 18, 21] an ultracold Fermi gas is prepared as an

incoherent mixture of equal populations in each of two hyperfine states, and extreme

quantum-degeneracy, at temperatures as low as T ∼ 0.05TF , has been reached [21],
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where TF is the Fermi temperature. In this regime the fall-off of the Fermi distribution

from 1 to 0 takes place in an extremely narrow energy interval ∼ 0.05εF , where

εF is the Fermi energy, and the fuzziness of the Fermi surface becomes virtually

unimportant. In this vein, I take ρ̂(t0) = |Φ0〉 〈Φ0|, with

|Φ0〉 =

<∏

p

â†(�p)b̂†(�p)|VAC〉, (3.7)

where |VAC〉 is the vacuum state, and
<∏

represents a product over momenta �p,

subject to restriction 0 ≤ ε̃(�p) ≤ εF . Since the two equally populated components of

the Fermi gas correspond to two different internal states of the same atom species, I

consider the same dispersion for them, i.e. ε̃a(�p) = ε̃b(�p) ≡ ε̃(�p).

Due to the form of |Φ0〉, the free GF Gαβ0 (�p1, τ1; �p2, τ2) ∝ δ (�p1, �p2), where δ (�p1, �p2)

is the Kronecker delta, and their expressions are

iG+−
0 (�p; τ1, τ2) = −θ (εF − ε̃ψ(�p)) exp

[
i

�

∫ τ2

τ1

εψ(�p, τ)dτ

]
, (3.8)

iG−+
0 (�p; τ1, τ2) = θ (ε̃ψ(�p) − εF ) exp

[
i

�

∫ τ2

τ1

εψ(�p, τ)dτ

]
, (3.9)

with G ≡ A, B for ψ = a, b, respectively, and

iF+−
0 (�p; τ1, τ2) = 0, (3.10)

iF−+
0 (�p; τ1, τ2) = exp

[
i

�

∫ τ2

τ1

εf(�p, τ)dτ

]
, (3.11)

and finally

G++ (�p; τ1, τ2) = θ (x)G−+ (�p; τ1, τ2) + θ (−x)G+− (�p; τ1, τ2) , (3.12)

G−− (�p; τ1, τ2) = θ (x)G+− (�p; τ1, τ2) + θ (−x)G−+ (�p; τ1, τ2) , (3.13)

for any G ≡ A, B, F , where x = τ1 − τ2 and θ (x) is the Heaviside function.
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= + Σ = + Σ∗

Σ = Σ∗ +

Σ∗

Σ∗

+

Σ∗

Σ∗

Σ∗ + · · ·

Fig. 3. Schematic representation of Dyson’s equation. The double and simple wig-

gly lines represent, respectively, the exact and free GF.
∑

and
∑∗ are the

self-energy and proper self-energy, respectively.
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Each average corresponding to the terms in Eq.(3.6) can be performed by means

of a generalized version of Wick’s theorem in which the contractions are defined with

respect to the contour-ordering operator Tc, and a Feynman diagram is associated

with each way of contracting the field operators into pairs [103]. These diagrams have

the same topology as those occurring in the ordinary quantum field theory (OQFT) for

systems in equilibrium [104, 105], the only difference being an additional label γ = ±
that has to be attached to each interaction vertex. As in OQFT, the disconnected

diagrams corresponding to vacuum polarization vanish [103], and only topologically

distinct diagrams need to be considered. The exact GF consists of the free GF plus

all connected terms with a free GF at each end, i.e.

Gαβ
(
�k1, t1;�k2, t2

)
= Gαβ0

(
�k1, t1;�k2, t2

)
+
∑

p1,
p2

∑
γ1,γ2=±

γ1γ2

∫ +∞

−∞
dτ1

∫ +∞

−∞
dτ2

×Gαγ10

(
�k1, t1; �p1, τ1

)(∑)γ1γ2
(�p1, τ1; �p2, τ2)

×Gγ2β0

(
�p2, τ2;�k2, t2

)
,

where (
∑

)γ1γ2 (�p1, τ1; �p2, τ2) is the self-energy, and

(∑)γ1γ2
(�p1, τ1; �p2, τ2) =

(∑∗)γ1γ2
(�p1, τ1; �p2, τ2)

+
∑

q1,
q2

∑
λ1,λ2=±

λ1λ2

∫ +∞

−∞
dσ1

∫ +∞

−∞
dσ2

×
(∑∗)γ1λ1

(�p1, τ1; �q1, σ1)Gλ1λ2
0 (�q1, σ1; �q2, σ2)

×
(∑∗)λ2γ2

(�q2, σ2; �p2, τ2) + · · ·

The proper self-energy (
∑∗)γ1γ2 (�p1, τ1; �p2, τ2) is the sum of all proper self-energy

insertions,
∑∗ =

∑∗
(1) +

∑∗
(2) + · · · , where each

∑∗
(j) cannot be further separated

into two connected pieces by cutting a single free GF line. All these relations are

summarized in Fig.3. Finally, Dyson’s equation which connects the exact and free
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Σ∗
(2) =

Σ∗
(4) = +

Σ∗
(6) = + + +

+ + + +

Fig. 4. Bosonic proper self-energy insertions up to the 6-th order.
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(D1)

�p + �q

�p

�q

�p + �q

∞+ ∞−τγ22τγ11

(D2)

�p1 + �q1

�p2

�q2

�p1 + �q1

�p1

�q1

�p1 + �q1

∞+ ∞−τγ44τγ33τγ22τγ11

(D3)

�p1 + �q1�p1

�q1

�p1 + �q2�p1

�q2

�p1 + �q1

∞+ ∞−τγ44τγ33τγ22τγ11

(D4)

�p1 + �q1�q1

�p1

�p2 + �q1�q1

�p2

�p1 + �q1

∞+ ∞−τγ44τγ33τγ22τγ11

Fig. 5. Feynman-Keldysh diagrams for second (D1) and fourth order (D2 - D4) pro-

cesses. The free Green functions are represented by continuous lines for

a-fermions (Aγiγj

0 ), by dashed lines for b-fermions (Bγiγj

0 ), and by wiggly lines

for bosons (Fγiγj

0 ).
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GF via the proper self-energy reads

Gαβ
(
�k1, t1;�k2, t2

)
= Gαβ0

(
�k1, t1;�k2, t2

)
+
∑

p1,
p2

∑
γ1,γ2=±

γ1γ2

∫ +∞

−∞
dτ1

∫ +∞

−∞
dτ2

×Gαγ10

(
�k1, t1; �p1, τ1

)(∑∗)γ1γ2
(�p1, τ1; �p2, τ2)

×Gγ2β
(
�p2, τ2;�k2, t2

)
.

Since f̂I (�p, t) |Φ0〉 = 0 for any �p and t, and V̂I ∼ f̂I + f̂ †
I , it follows that all the

proper self-energy insertions can have only an even number of vertices, i.e.
∑∗ =∑∗

(2) +
∑∗

(4) +
∑∗

(6) + · · · . The contributions to the bosonic
∑∗, up to the 6-th order,

are shown in Fig.4.

The average number of molecules at time t is given by

〈
N̂f

〉
(t) = i

∑

k

F+−
(
�k, t;�k, t

)
. (3.14)

In the experiments [16, 17, 18, 21] the magnetic field is being linearly swept from

well above its FR value, B0, where the molecular channel is closed, to far below B0

into a region where bound molecules exist. Since the main interest lies in analyzing

the dependence of MCE on Ḃ−1, and not the behavior of the average number of

molecules in time, I set the initial time of atomic gas preparation at t0 = −∞,

and the molecule-counting time at tm = ∞. The Feynman diagrams representing the

contribution from second and fourth order processes to
〈
N̂f

〉
(∞) are shown in Fig.5.
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The (D1) diagrams contribute as(
g

�
√V

)2 ∑

p,
q

∫ +∞

−∞
dτ1

∫ +∞

−∞
dτ2

×iF−+
0 (�p+ �q;∞, τ1) iF−+

0 (�p+ �q; τ2,∞) iA+−
0 (�p; τ1, τ2) iB+−

0 (�q; τ1, τ2)

=

(
g

�
√V

)2 <∑

p,
q

∫ +∞

−∞
dτ1

∫ +∞

−∞
dτ2

× exp

[
−iΩ̇

2

(
τ1 +

�(�p, �q)

Ω̇

)2
]

exp

[
i
Ω̇

2

(
τ2 +

�(�p, �q)

Ω̇

)2
]

=
N0

2
×
(

2π
g2

�2Ω̇

n0

2

)
, (3.15)

where �Ω̇ ≡ (µf − µa − µb)Ḃ > 0, N0 is the total number of atoms present in the

system before the magnetic field is applied, and n0 = N0/V is the initial density. The

rest of notations are as follows

�ω(�p, �q; τ) ≡ εa(�p, τ) + εb(�q, τ) − εf (�p+ �q, τ) ≡ ��(�p, �q) + �Ω̇τ ,
<∑

p

≡
∑

p

ε̃(
p)≤εF

,
>∑

p

≡
∑

p

ε̃(
p)>εF

.

The contribution from the (D2) diagrams is

A ≡
(

g

�
√V

)4 ∑
γ2,γ3=±

(−γ2γ3)
∑

p1,
q1

∑

p2,
q2

δ (�p1 + �q1, �p2 + �q2)

×
∫ +∞

−∞
dτ1 · · ·

∫ +∞

−∞
dτ4

×iF++
0 (�p1 + �q1;∞, τ1) iFγ2γ3

0 (�p1 + �q1; τ2, τ3) iF−−
0 (�p1 + �q1; τ4,∞)

×iA+γ2
0 (�p1; τ1, τ2) iB+γ2

0 (�q1; τ1, τ2)

×iAγ3−
0 (�p2; τ3, τ4) iBγ3−0 (�q2; τ3, τ4) =

5∑
j=1

Aj .
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The term A1 is given by

A1 ≡ (−)

(
g

�
√V

)4 ∑

p1,
q1

∑

p2,
q2

δ (�p1 + �q1, �p2 + �q2)

∫ +∞

−∞
dτ1 · · ·

∫ +∞

−∞
dτ4

×θ (τ1 − τ2) θ (τ2 − τ3) iF−+
0 (�p1 + �q1; τ4, τ1) iF−+

0 (�p1 + �q1; τ2, τ3)

×iA−+
0 (�p1; τ1, τ2) iB−+

0 (�q1; τ1, τ2) iA+−
0 (�p2; τ3, τ4) iB+−

0 (�q2; τ3, τ4)

= (−)

(
g

�
√V

)4 >∑

p1,
q1

<∑

p2,
q2

δ (�p1 + �q1, �p2 + �q2)

×
∫ +∞

−∞
dτ1 · · ·

∫ +∞

−∞
dτ4 θ (τ1 − τ2) θ (τ2 − τ3)

× exp

[
i
Ω̇

2

(
τ2 +

�(�p1, �q1)

Ω̇

)2
]

exp

[
−iΩ̇

2

(
τ1 +

�(�p1, �q1)

Ω̇

)2
]

× exp

[
i
Ω̇

2

(
τ4 +

�(�p2, �q2)

Ω̇

)2
]

exp

[
−iΩ̇

2

(
τ3 +

�(�p2, �q2)

Ω̇

)2
]

= (−)

(
g

�
√V

)4 √
2π

−iΩ̇
>∑


p1,
q1

<∑

p2,
q2

δ (�p1 + �q1, �p2 + �q2)

∫ +∞

−∞
dτ1

∫ τ1

−∞
dτ2

∫ τ2

−∞
dτ3

× exp

[
−iΩ̇

2

[(
τ1 +

�(�p1, �q1)

Ω̇

)2

−
(
τ2 +

�(�p1, �q1)

Ω̇

)2

+

(
τ3 +

�(�p2, �q2)

Ω̇

)2
]]

= (−)

(
g

�
√V

)4 √
2π

−iΩ̇
>∑


p1,
q1

<∑

p2,
q2

δ (�p1 + �q1, �p2 + �q2)

∫ +∞

−∞
dx

∫ ∞

0

dy

∫ ∞

0

dz

× exp

[
−iΩ̇

2

(
x− z +

�(�p2, �q2)

Ω̇

)2
]

exp

[
−iΩ̇y

(
z +

�(�p1, �q1) −�(�p2, �q2)

Ω̇

)]

= (−)

(
g

�
√V

)4 (
2π

Ω̇

) >∑

p1,
q1

<∑

p2,
q2

δ (�p1 + �q1, �p2 + �q2)

∫ ∞

0

dy

∫ ∞

0

dz

× exp

[
−iΩ̇y

(
z +

�(�p1, �q1) −�(�p2, �q2)

Ω̇

)]
,
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where the change of variables used is

τ1 = x ∈ (−∞,∞) ,

τ2 = x− y, y ∈ [0,∞) ,

τ3 = x− y − z, z ∈ [0,∞) .

The term A2 is given by

A2 ≡ (−)

(
g

�
√V

)4 ∑

p1,
q1

∑

p2,
q2

δ (�p1 + �q1, �p2 + �q2)

∫ +∞

−∞
dτ1 · · ·

∫ +∞

−∞
dτ4

×θ (τ4 − τ3) θ (τ3 − τ2) iF−+
0 (�p1 + �q1; τ4, τ1) iF−+

0 (�p1 + �q1; τ2, τ3)

×iA+−
0 (�p1; τ1, τ2) iB+−

0 (�q1; τ1, τ2) iA−+
0 (�p2; τ3, τ4) iB−+

0 (�q2; τ3, τ4)

= (−)

(
g

�
√V

)4 ∑

p1,
q1

∑

p2,
q2

δ (�p1 + �q1, �p2 + �q2)

∫ +∞

−∞
dτ1 · · ·

∫ +∞

−∞
dτ4

×θ (τ1 − τ2) θ (τ2 − τ3)
(
iF−+

0 (�p1 + �q1; τ4, τ1)
)∗ (

iF−+
0 (�p1 + �q1; τ2, τ3)

)∗
× (

iA−+
0 (�p1; τ1, τ2)

)∗ (
iB−+

0 (�q1; τ1, τ2)
)∗ (

iA+−
0 (�p2; τ3, τ4)

)∗ (
iB+−

0 (�q2; τ3, τ4)
)∗

.

The sum A1 + A2 becomes

A1 + A2 = (−)

(
g

�
√V

)4 (
2π

Ω̇

) >∑

p1,
q1

<∑

p2,
q2

δ (�p1 + �q1, �p2 + �q2)

×
∫ ∞

−∞
dy

∫ ∞

0

dz exp

[
−iΩ̇y

(
z +

�(�p1, �q1) −�(�p2, �q2)

Ω̇

)]
= (−)

(
g

�
√V

)4 (
2π

Ω̇

) >∑

p1,
q1

<∑

p2,
q2

δ (�p1 + �q1, �p2 + �q2)

×2π

Ω̇

∫ ∞

0

δ

(
z +

�(�p1, �q1) −�(�p2, �q2)

Ω̇

)
dz = 0,

since Ω̇ > 0 and δ (�p1 + �q1, �p2 + �q2)
(
p1,
q1)−(
p2,
q2)

Ω̇
> 0 in the sum above.
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The term A3 is given by

A3 ≡ (−)

(
g

�
√V

)4 <∑

p1,
q1

<∑

p2,
q2

δ (�p1 + �q1, �p2 + �q2)

×
∫ +∞

−∞
dτ1 · · ·

∫ +∞

−∞
dτ4 θ (τ2 − τ3) θ (τ2 − τ1)

× exp

[
i

�

∫ τ2

τ1

[εa(�p1, τ) + εb(�q1, τ) − εf(�p1 + �q1, τ)] dτ

]
× exp

[
i

�

∫ τ4

τ3

[εa(�p2, τ) + εb(�q2, τ) − εf(�p2 + �q2, τ)] dτ

]

= (−)

(
g

�
√V

)4 √
2π

−iΩ̇
<∑


p1,
q1

<∑

p2,
q2

δ (�p1 + �q1, �p2 + �q2)

∫ +∞

−∞
dτ2

∫ τ2

−∞
dτ1

∫ τ2

−∞
dτ3

× exp

[
−iΩ̇

2

[(
τ1 +

�(�p1, �q1)

Ω̇

)2

−
(
τ2 +

�(�p1, �q1)

Ω̇

)2

+

(
τ3 +

�(�p2, �q2)

Ω̇

)2
]]

= (−)

(
g

�
√V

)4 √
2π

−iΩ̇
<∑


p1,
q1

<∑

p2,
q2

δ (�p1 + �q1, �p2 + �q2)

∫ +∞

−∞
dx

∫ ∞

0

dy

∫ ∞

0

dz

× exp

[
−iΩ̇

2

(
x− y − z +

�(�p2, �q2)

Ω̇

)2
]

exp

[
iΩ̇

(
z +

�(�p1, �q1) −�(�p2, �q2)

Ω̇

)
y

]

= (−)

(
g

�
√V

)4 (
2π

Ω̇

) <∑

p1,
q1

<∑

p2,
q2

δ (�p1 + �q1, �p2 + �q2)

×
∫ ∞

0

dy

∫ ∞

0

dz exp

[
iΩ̇

(
z +

�(�p1, �q1) −�(�p2, �q2)

Ω̇

)
y

]
,

where the change of variables used is

τ2 = x ∈ (−∞,∞) ,

τ1 = x− y, y ∈ [0,∞) ,

τ3 = x− z, z ∈ [0,∞) .
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The term A4 is given by

A4 ≡ (−)

(
g

�
√V

)4 ∑

p1,
q1

∑

p2,
q2

δ (�p1 + �q1, �p2 + �q2)

∫ +∞

−∞
dτ1 · · ·

∫ +∞

−∞
dτ4

×θ (τ2 − τ3) θ (τ2 − τ1)
(
iF−+

0 (�p1 + �q1; τ4, τ1)
)∗ (

iF−+
0 (�p1 + �q1; τ2, τ3)

)∗
× (

iA+−
0 (�p1; τ1, τ2)

)∗ (
iB+−

0 (�q1; τ1, τ2)
)∗

× (
iA+−

0 (�p2; τ3, τ4)
)∗ (

iB+−
0 (�q2; τ3, τ4)

)∗
.

The sum A3 + A4 becomes

A3 + A4 = (−)

(
g

�
√V

)4 (
2π

Ω̇

) <∑

p1,
q1

<∑

p2,
q2

δ (�p1 + �q1, �p2 + �q2)

×
∫ ∞

−∞
dy

∫ ∞

0

dz exp

[
−iΩ̇

(
z +

�(�p1, �q1) −�(�p2, �q2)

Ω̇

)
y

]
= (−)

(
g

�
√V

)4 (
2π

Ω̇

)2 <∑

p1,
q1

<∑

p2,
q2

δ (�p1 + �q1, �p2 + �q2)

×
∫ ∞

0

δ

(
z +

�(�p1, �q1) −�(�p2, �q2)

Ω̇

)
dz

= (−)
1

2

(
g

�
√V

)4 (
2π

Ω̇

)2 <∑

p1,
q1

<∑

p2,
q2

δ (�p1 + �q1, �p2 + �q2) .

The term A5 is given by

A5 ≡
(

g

�
√V

)4 <∑

p1,
q1

<∑

p2,
q2

δ (�p1 + �q1, �p2 + �q2)

∫ +∞

−∞
dτ1 · · ·

∫ +∞

−∞
dτ4

× exp

[
−iΩ̇

2

(
τ1 +

�(�p1, �q1)

Ω̇

)2
]

exp

[
i
Ω̇

2

(
τ2 +

�(�p1, �q1)

Ω̇

)2
]

× exp

[
−iΩ̇

2

(
τ3 +

�(�p2, �q2)

Ω̇

)2
]

exp

[
i
Ω̇

2

(
τ4 +

�(�p2, �q2)

Ω̇

)2
]

=

(
g

�
√V

)4 (
2π

Ω̇

)2 <∑

p1,
q1

<∑

p2,
q2

δ (�p1 + �q1, �p2 + �q2) .

Upon collecting the results above, the contribution from the (D2) diagrams is
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given by

A =

5∑
j=1

Aj =
1

2

(
g

�
√V

)4 (
2π

Ω̇

)2 <∑

p1,
q1

<∑

p2,
q2

δ (�p1 + �q1, �p2 + �q2)

=
N0

2
× 17

105

(
2π

g2

�2Ω̇

n0

2

)2

. (3.16)

Each of the diagrams (D3) and (D4) contributes equally as

B ≡
(

g

�
√V

)4 ∑
γ2,γ3=±

(γ2γ3)
∑

p1,
q1

∑

p2

∫ +∞

−∞
dτ1 · · ·

∫ +∞

−∞
dτ4

×iF++
0 (�p1 + �q1;∞, τ1) iFγ2γ3

0 (�p2 + �q1; τ2, τ3) iF−−
0 (�p1 + �q1; τ4,∞)

×iB+γ2
0 (�q1; τ1, τ2) iBγ3−0 (�q1; τ3, τ4)

×iA+−
0 (�p1; τ1, τ4) iAγ3γ2

0 (�p2; τ3, τ2) =
5∑
j=1

Bj.

The term B1 is given by

B1 ≡
(

g

�
√V

)4 ∑

p1,
q1

∑

p2

∫ +∞

−∞
dτ1 · · ·

∫ +∞

−∞
dτ4 θ (τ2 − τ3) θ (τ1 − τ2)

×iF−+
0 (�p1 + �q1; τ4, τ1) iF−+

0 (�p2 + �q1; τ2, τ3)

×iB−+
0 (�q1; τ1, τ2) iB+−

0 (�q1; τ3, τ4)

×iA+−
0 (�p1; τ1, τ4) iA+−

0 (�p2; τ3, τ2) = 0,

since
∑


q1
B−+

0 (�q1; τ1, τ2)B+−
0 (�q1; τ3, τ4) = 0.

The term B2 is given by

B2 ≡
(

g

�
√V

)4 ∑

p1,
q1

∑

p2

∫ +∞

−∞
dτ1 · · ·

∫ +∞

−∞
dτ4 θ (τ3 − τ2) θ (τ4 − τ3)

×iF−+
0 (�p1 + �q1; τ4, τ1) iF−+

0 (�p2 + �q1; τ2, τ3)

×iB+−
0 (�q1; τ1, τ2) iB−+

0 (�q1; τ3, τ4)

×iA+−
0 (�p1; τ1, τ4) iA+−

0 (�p2; τ3, τ2) = 0,
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since
∑


q1
B+−

0 (�q1; τ1, τ2)B−+
0 (�q1; τ3, τ4) = 0.

The term B3 is given by

B3 ≡
(

g

�
√V

)4 <∑

p1,
q1

<∑

p2

∫ +∞

−∞
dτ1 · · ·

∫ +∞

−∞
dτ4 θ (τ2 − τ3) θ (τ2 − τ1)

× exp

[
i

�

∫ τ2

τ3

[εa(�p2, τ) + εb(�q1, τ) − εf(�p2 + �q1, τ)] dτ

]
× exp

[
i

�

∫ τ4

τ1

[εa(�p1, τ) + εb(�q1, τ) − εf(�p1 + �q1, τ)] dτ

]

=

(
g

�
√V

)4 √
2π

−iΩ̇
<∑


p1,
q1

<∑

p2

∫ +∞

−∞
dτ2

∫ τ2

−∞
dτ1

∫ τ2

−∞
dτ3

× exp

[
−iΩ̇

2

[(
τ1 +

�(�p1, �q1)

Ω̇

)2

−
(
τ2 +

�(�p2, �q1)

Ω̇

)2

+

(
τ3 +

�(�p2, �q1)

Ω̇

)2
]]

=

(
g

�
√V

)4 √
2π

−iΩ̇
<∑


p1,
q1

<∑

p2

∫ +∞

−∞
dx

∫ ∞

0

dy

∫ ∞

0

dz

× exp

[
−iΩ̇

2

(
x− y − z +

�(�p1, �q1)

Ω̇

)2
]

exp

[
iΩ̇

(
y − �(�p1, �q1) −�(�p2, �q1)

Ω̇

)
z

]

=

(
g

�
√V

)4 (
2π

Ω̇

) <∑

p1,
q1

<∑

p2

∫ ∞

0

dy

∫ ∞

0

dz exp

[
iΩ̇

(
y − �(�p1, �q1) −�(�p2, �q1)

Ω̇

)
z

]
,

where the change of variables used is

τ2 = x ∈ (−∞,∞) ,

τ1 = x− y, y ∈ [0,∞) ,

τ3 = x− z, z ∈ [0,∞) .
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The term B4 is given by

B4 ≡
(

g

�
√V

)4 ∑

p1,
q1

∑

p2

∫ +∞

−∞
dτ1 · · ·

∫ +∞

−∞
dτ4 θ (τ3 − τ2) θ (τ3 − τ4)

×iF−+
0 (�p1 + �q1; τ4, τ1) iF−+

0 (�p2 + �q1; τ2, τ3)

×iB+−
0 (�q1; τ1, τ2) iB+−

0 (�q1; τ3, τ4)

×iA+−
0 (�p1; τ1, τ4) iA+−

0 (�p2; τ3, τ2)

=

(
g

�
√V

)4 ∑

p1,
q1

∑

p2

∫ +∞

−∞
dτ1 · · ·

∫ +∞

−∞
dτ4 θ (τ2 − τ3) θ (τ2 − τ1)

× (
iF−+

0 (�p1 + �q1; τ4, τ1)
)∗ (

iF−+
0 (�p2 + �q1; τ2, τ3)

)∗
× (

iB+−
0 (�q1; τ1, τ2)

)∗ (
iB+−

0 (�q1; τ3, τ4)
)∗

× (
iA+−

0 (�p1; τ1, τ4)
)∗ (

iA+−
0 (�p2; τ3, τ2)

)∗
.

The sum B3 +B4 becomes

B3 +B4 =

(
g

�
√V

)4 (
2π

Ω̇

) <∑

p1,
q1

<∑

p2

×
∫ ∞

0

dy

∫ ∞

−∞
dz exp

[
−iΩ̇

(
y − �(�p1, �q1) −�(�p2, �q1)

Ω̇

)
z

]

=
1

2

(
g

�
√V

)4 (
2π

Ω̇

)2 <∑

p1,
q1

<∑

p2

×
∫ ∞

0

[
δ

(
y − �(�p1, �q1) −�(�p2, �q1)

Ω̇

)
+ δ

(
y − �(�p2, �q1) −�(�p1, �q1)

Ω̇

)]
dy

=
1

2

(
g

�
√V

)4 (
2π

Ω̇

)2 (
N0

2

)3

.
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The term B5 is given by

B5 ≡ (−)

(
g

�
√V

)4 <∑

p1,
q1

<∑

p2

∫ +∞

−∞
dτ1 · · ·

∫ +∞

−∞
dτ4

× exp

[
−iΩ̇

2

(
τ1 +

�(�p1, �q1)

Ω̇

)2
]

exp

[
i
Ω̇

2

(
τ4 +

�(�p1, �q1)

Ω̇

)2
]

× exp

[
i
Ω̇

2

(
τ2 +

�(�p2, �q1)

Ω̇

)2
]

exp

[
−iΩ̇

2

(
τ3 +

�(�p2, �q1)

Ω̇

)2
]

= (−)

(
g

�
√V

)4 (
2π

Ω̇

)2 (
N0

2

)3

.

Upon collecting the results above, it is found that each of the diagrams (D3) and

(D4) contributes equally as

B =
5∑
j=1

Bj = −N0

2
× 1

2

(
2π

g2

�2Ω̇

n0

2

)2

. (3.17)

Using the results of Eqs. (3.15), (3.16) and (3.17), and introducing the notation

Γ ≡ 2πξLZ
(V n0

2

)
, where ξLZ = g2

V�2Ω̇
is the canonical LZ parameter [46, 47], one

obtains

MCE =
2
〈
N̂f

〉
(∞)

N0
= Γ − 88

105
Γ2 + O (

Γ3
)
, (3.18)

where the n-th term of this series is represented by the set of Feynman-Keldysh

diagrams containing 2n vertices.

Eq.(3.18) reveals deviations from the universal two-level LZ formula (see Eq.(2.14)

of Chapter II), and also from the phenomenological correction proposed in [51, 52] as

η
(
1 − e−Γ

)
= η

(
Γ − 1

2
Γ2 + O (

Γ3
))

, (3.19)

where η ≤ 50% is a constant that depends only on the initial population of each of

the two hyperfine states in the Fermi gas.

Since 88
105

> 1
2
, Eq.(3.18) shows that, as Ḃ−1 increases, the MCE grows slower
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then predicted by the LZ formula, and this behavior is experimentally supported

[16, 17, 18, 21]. The approach towards saturation is not due to a mere contraction

of the LZ formula by a multiplicative factor determined solely by the initial state

preparation, as proposed in the LZ scenarios [51, 52], but has a rather dynamical

nature as the atom-molecule conversion takes place in a many-body medium in which

the effects of quantum statistics play a crucial role.

Examination of higher order diagrams indicates that MCE is a function depend-

ing solely on the parameter Γ. Therefore, in the extreme adiabatic regime, corre-

sponding to Γ → ∞, MCE must have a universal limit at T = 0 which, unlike in

the phenomenological result (3.19), is not a priori bounded by 50%. In practice, as

the experiments are carried out at finite T and Γ, the smearing of the Fermi surface

when T approaches TF , and the quantum degeneracy reaches its lower limit, must be

taken into account for analyzing the T -dependence of the MCE saturation [21].
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CHAPTER IV

SUMMARY AND CONCLUSIONS

In Chapter II, I have given a complete and rigorous proof of the conjecture

put forth by Brundobler and Elser [S. Brundobler and V. Elser, J. Phys. A 26,

1211 (1993)], regarding the survival probability on the diabatic levels with maxi-

mum/minimum slope in a general N -state Landau-Zener (LZ) system.

In Chapter III, I have analyzed the molecular conversion efficiency (MCE) for a

hyperfine-induced s-wave Feshbach resonance in an ultra-degenerate two-component

atomic Fermi gas. In connection to this, I developed a consistent many-body nonequi-

librium theory, based on the real-time Green function approach, in which all atomic

and molecular states are included, and the effects of quantum statistics are fully ac-

counted for. This theory can be readily generalized to include temperature effects

and BCS-type correlations.

I demonstrated, by analytically evaluating the MCE up to fourth order in the

hyperfine coupling constant, that the canonical LZ formula at two-level crossing is

violated in this system due to many-body effects which systematically decrease the LZ

transition probability, even for moderately small values of the inverse sweeping rate

of the magnetic field. This result indicates that in degenerate Fermi gases the effects

of quantum statistics near a Feshbach resonance play a crucial role, and the singling

out of independent two-atom pairs from an ensemble of delocalized indistinguishable

particles, as proposed in the LZ scenarios [51, 52], is untenable.
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