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ABSTRACT

Analysis of Smart Functionally Graded Materials

Using an Improved Third Order Shear Deformation Theory. (August 2006)

James Wilson Aliaga Salazar, B.S., Universidad Nacional de Ingenieria, Lima, Peru;

M.S., Pontificia Universidade Catolica do Rio de Janeiro, Rio de Janeiro, Brazil

Chair of Advisory Committee: Dr. J.N Reddy

Smart materials are very important because of their potential applications in the

biomedical, petroleum and aerospace industries. They can be used to build systems

and structures that self-monitor to function and adapt to new operating conditions.

In this study, we are mainly interested in developing a computational framework for

the analysis of plate structures comprised of composite or functionally graded materi-

als (FGM) with embedded or surface mounted piezoelectric sensors/actuators. These

systems are characterized by thermo-electro-mechanical coupling, and therefore their

understanding through theoretical models, numerical simulations, and physical ex-

periments is fundamental for the design of such systems. Thus, the objective of this

study was to perform a numerical study of smart material plate structures using

a refined plate theory that is both accurate and computationally economical. To

achieve this objective, an improved version of the Reddy third-order shear deforma-

tion theory of plates was formulated and its finite element model was developed. The

theory and finite element model was evaluated in the context of static and dynamic

responses without and with actuators. In the static part, the performance of the

developed finite element model is compared with that of the existing models in de-

termining the displacement and stress fields for composite laminates and FGM plates

under mechanical and/or thermal loads. In the dynamic case, coupled and uncoupled
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electro-thermo-mechanical analysis were performed to see the difference in the evolu-

tion of the mechanical, electrical and thermal fields with time. Finally, to test how

well the developed theory and finite element model simulates the smart structural

system, two different control strategies were employed: the negative velocity feed-

back control and the Least Quadratic Regulator (LQR) control. It is found that the

refined plate theory provides results that are in good agreement with the those of the

3-D layerwise theory of Reddy. The present theory and finite element model enables

one to obtain very accurate response of most composite and FGM plate structures

with considerably less computational resources.
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CHAPTER I

INTRODUCTION

A. Overview

A smart structure is comprised of a basic structural part, which can be made

of a composite or FGM material, and distributed sensors and actuators and a mi-

croprocessor. The microprocessor (electronic system) reads and analyzes the signal

captured by the sensors and sends a feedback signal, based on an integrated control

algorithm, to the actuators. The actuators apply localized strains to the structure in

order to modify its current response. The sensors and actuators are normally surface

mounted or embedded into the structure. The most common materials that are used

as sensors or actuators are piezoelectric and electrostrictive materials, shape memory

alloys, magnetostrictive materials, electro and magneto rheological fluids and optical

fibers. A review of the characteristics of various commercially available piezoelectric,

electrostrictive, and magnetostrictive materials can be found in [1]. A comparison in

terms of the output energy density can be made as follows:

Smart structures have a wide range of applications such as vibration and noise

control, aeroelastic stability, damping, shape change and stress-strain distribution.

For these reasons, they have been widely used in automotive and aerospace systems,

machine tools, and medical devices. Practical examples can be found in embedded or

surface-bonded smart actuators in the fixed-wing of an airplane or rotary wing craft

of a helicopter. Moreover, shape control of large flexible space structures, precision

manufacturing machines and computer systems are also examples of smart structures.

In this research, we mainly focus on the computational modelling of smart plate

The journal model is Transactions of the ASME Journal of Applied Mechanics.



2

structures with piezoelectric sensors and actuators. These materials undergo defor-

mation after applying an electric field across the plate thickness (direct effect). This

deformation involves a very small strains but cover a wide range of actuation fre-

quency. Conversely, piezoelectric materials produce voltage as an output when they

are mechanically deformed (converse effect). These materials behave linearly at low

fields and are bipolar, but exhibit hysteresis.

The piezoelectric actuators make use of the direct effect of the piezoelectricity. In

other words, they convert the input voltage into a strain/displacement actuation, and

then transmits this actuation to the main structure in order to modify its mechanical

state. Consequently, an actuator has a good performance when we can get more stroke

or strain for a specific voltage. In some cases, when we cannot reach the necessary

actuation levels, hybrid configurations, which consist of adding viscoelastic layers to

the structure, are employed. Other desirable characteristics for an actuator are high

stiffness, wide bandwidth frequency range, linear behavior and compactness. Several

materials with these properties are employed, among them, piezoceramics are widely

used in practical applications.

Piezoceramics do not have piezoelectric effect in its original state; however, this

effect is induced through the application of a high DC electric field. This process is

called polarization. Among all the piezoceramics the most common one is the PZT,

which is a solid solution mainly comprised of lead zirconate and lead titanate mixed

with other components in order to obtain specific properties. The PZT in the form

of sheets are attached or embedded in the base part of the smart structure. PZTs are

considered isotropic.

The converse effect of the piezoelectricity is the principle that governs piezoelec-

tric sensors. They convert a strain or displacement into an electrical field. In this

case, a sensor possesses a good performance when it has high sensitivity to strain or



3

displacement. Similar to actuators, bandwidth, compactness, temperature sensitiv-

ity and linearity are important characteristics that determine the performance of a

sensor. In the case of piezoelectric sensors, they have a superior signal-to-noise ratio

and high-frequency noise rejection compared to other kind of sensors. Moreover, they

generate signals with broad spectrum frequency. Other advantages are their com-

pactness and sensitivity over a large strain bandwidth and ease of embedability. The

most common material employed for sensors is piezofilm PVDF because of its low

stiffness. Sometimes piezoceramic (PZT) sensors are used for specific applications

such as in [2], [3], [4] [5] and [6].

There are two main fields to consider for piezoelectric sensors or actuators: the

elastic and the electrical field. Adequate mechanical and electrical inputs along with

suitable configurations will produce the desired global and local effects for the struc-

tural system. Moreover, thermal effects are present in almost all applications of smart

structures and make enormous contributions as well. As a result, modelling smart

structures is a challenging task. Among them, we mention the following.

• The configuration of piezoelectric sensors and actuators over a host structure

are very diverse. In mechanical structures such as beams, plates and shells they

can be located anywhere in the plane domain whether or not we want to increase

the damping, stiffness or sense the behavior of the structure. Moreover, across

the thickness, they can be either embedded in the structure or attached to the

top and/or the bottom of its surface. Therefore, a flexible analysis, able to take

account all the possible configurations should be implemented.

• Only some regions of the total analysis domain contain piezoelectric and in the

case of hybrid configurations viscoelastic characteristics, too needs to be consid-

ered. Therefore, those are the regions where we have to study the electrical field



4

and all its possible couplings with the elastic, thermal and viscoelastic fields.

For the rest of the structure only a thermo-elastic analysis must be performed.

Hence, a convenient approach to tailor these problems is to carry out a sophis-

ticated analysis in the regions where piezoelectric and viscoeleastic materials

are present. In other words, in these regions, we should employ sophisticated

models that are able to capture all the physical mechanisms. Meanwhile, in the

rest of the domain, simple models could be employed.

• The transverse shear effects are very important in smart structures, and, when

we analyze smart materials, there are three important cases to be considered.

The first one is when a plate or beam gets thicker. In this case, the deformation

energy due to the shear effect is considerable. Second, in the analysis of the

debonding process that might occur in the region between the piezoelectric

material and the host structure. Consequently, an adequate stress analysis for

this region is strongly required in order to preserve the integrity of the smart

structure. The final case is when viscoelastic layers are attached to the main

core of the structure. The main purpose of this is to increase the structural

damping of the system. In this situation, the energy dissipated by the system is

a consequence of the shear effects and a good description of these effects should

be included in the mathematical model for smart structures.

• Vibration control in environments with high temperature gradients is one of the

main applications of smart structures that have recently called the attention

of researchers. Hence, an appropriate model for these kinds of problems has

two important issues that must be addressed. The first one is the dynamical

analysis since the elastic, electrical and thermal fields do change with time. The

second one is the couplings between the elastic, electrical and thermal effect.
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For instance, FGMs normally works at high temperatures and when they are

combined with piezoelectric sheets to form a smart structure, the couplings of

the thermal field with the elastic and electrical ones should not be neglected.

• To implement a feasible control algorithm for any kind of system, we must

have a model that describes most of its effects with very few uncertainties and

with the minimum number of parameters. In the case of smart structures,

a suitable model must consider all the coupling between its different physical

effects. Moreover, the shear effects must be included in the elastic field and also

the nonlinearity caused by the large thermal gradients that the structure might

undergo.

B. Literature Review

The first practical application for piezoelectric materials was during the World

War II in the 1940s when they were employed as ultrasonic detectors for submarines.

Later, a great variety of acoustical transducers were developed using these materials.

However, only in the 1970s researchers started carrying out numerical analysis of the

electrical and mechanical effects associated with the applications previously described.

In [7] the authors implemented a tetrahedral element with 4 nodes, using a linear

theory for both displacement and electric field. The nodal dofs are the displacements

and the electric potential. This work represented a starting point for the use of solid

finite elements in the analysis of smart structures. Another work in the same line

was presented in [8] were the application focuses on the response of sonar transducer.

One of the most important recent works using solid finite elements can be found in

[9] where Hexahedral with 8 nodes, linear displacement plus quadratic incompatible

modes and linear electric field was used. The main problem with this approach is that
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use of a full 3-D strategy to solve problems related to 3-D elasticity theory requires

a great number of dofs, and, hence it results in an expensive element for numerical

analysis purposes. Therefore, some assumptions or different strategies to simplify the

problem without sacrificing the accuracy of the result are expected.

A layerwise theory (LWT) is an interesting simplification of the 3-D elasticity

theory . Moreover any finite element formulated using a LWT is more computational

tractable than the ones originated from a fully 3-D elasticity approach. Several lay-

erwise theories have been proposed in the literature; however among them, the one

proposed by [10] expresses the displacement field in such manner that most of the

3-D elasticity features are included. In addition, this approach can be easily extended

to describe the electrical field present in smart structures. This idea was successfully

implemented in [11]. In [12], the authors have also developed some others interesting

works using LWT where static condensation of the electrical dofs is included to reduce

the number of equations to be solved.

Most of the mechanical structures have some of its dimensions comparatively

smaller than its other ones, and depending of the loading condition, we can make some

assumption that will simplify the 3-D elasticity equations. For example, in the case of

beams, we neglect the width effects and the length to thickness ratio is relatively big.

Researchers have devoted many efforts to study smart structures using beam models

because of its simplicity and practical applicability. For instance, in [13], the authors

used an Euler-Bernoulli model for a beam with surface-bonded or embedded induced

strain actuators (symmetric actuation), considering that the mechanical and electrical

field are uncoupled. After that, the made comparisons with others approaches such as

uniform-strain model, a finite element model, and an experiment. This work is valid

when the host structure is comprised of an isotropic material. However, in cases where

the base structure is an anisotropic material, it requires a more detailed analysis. In
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[14], the authors carried out a refined Finite Element Analysis for an anisotropic

beam with embedded piezoelectric actuators. After that, they successfully compared

their results with a three-dimensional beam model. These two previous works mostly

neglects the shear effect on the structure; however, this effect should be considered.

In works like [15], the first order shear deformation theory is employed (FSDT). This

theory violates the traction-free boundary condition on the top and bottom surfaces.

To compensate this anomaly, a shear correction factor is used. More refined theories

to capture the nonlinear distribution of transverse shear strain across the thickness

can be used. These theories, however, are unable to capture accurately a drastic

change of properties at ply level. For this reason, works like [16] and [12] present a

coupled layer-wise analysis of composite beams with embedded piezoelectric actuators

and sensors. The main advantage of this theory is its capability to obtain consistent

and more detailed stress distribution, especially near the end of the actuator. Until

this point, all works have been devoted to explore beams with piezoelectric materials

that use extensional actuation mechanism. Nevertheless, the shear mechanism mode

has also been recently explored.

In [17], the authors proposed a unified beam finite element model for extension

and shear piezoelectric actuation mechanism. This is especially suitable for sand-

wiched beams. The model used Euler-Bernoulli theory for the surface layers and

Timoshenko beam theory for the core. It was shown that the predicted induced de-

formation was lower with the shear-actuated beam theory. In this case the shear forces

are very important and they become the main part of the analysis when viscoelastic

layers along with piezoelectric are attached to the structure to create a hybrid active

and passive system for control of vibration. Works of [18], [19], [20] and [21] show

advantages of this beam configuration, such as an efficient damping increase in the

structure. Moreover, several beam and viscoelastic models were employed to analyze
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this problem.

In the cases where the length and width of the structure have to be consid-

ered as the analysis domain and the thickness is small compared to them, the plate

models have proved to be successful in representing the elastic field of the smart struc-

tures. For instance, [22], developed a plate formulation based on CLPT and analyzed

anisotropic plates using the Ritz method. The authors validated their result with ex-

perimental data obtained by testing a cantilevered aluminum and a composite plate

with surface-bonded piezoceramic actuators, attached to the whole top and bottom

surfaces. Moreover, in [23] and [24], we can observe the bending analysis of composite

plates using CLPT plate theory and linear actuation characteristics of piezoelectric

laminas whose electrical degrees of freedom were condensed. In these two previous

works, the shear effect over the thickness was neglected; however, similar to beams,

this effect must be considered in order to perform an accurate analysis for smart

structures. With this observation in mind, [25] and [26] have developed finite element

formulation based on the first-order shear deformation plate theory (FSDT) assum-

ing linear variation of the voltage through the thickness of the piezoelectric materials

attached to the structure. Moreover, in [27] developed a shear locking-free quadran-

gular finite element using the FSDT. Using this element, the authors analyzed a plate

with surface-bonded thin piezo-electric actuator for vibration-control purposes. Even

though the models mentioned above yield satisfactory results, their accuracy tends

to decrease when the plate gets thicker. To address this problem, Reddy [28, 29]

developed a higher-order shear deformation plate theory to reproduce the quadratic

variation of the shear strain through the plate thickness. Even though this variation

satisfies the traction-free boundary condition on top and bottom surfaces, it cannot

accurately represent layer-wise variation of shear strain caused by different material

properties of laminae (all equivalent single-layer theories will have this limitation).
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To overcome this problem, layerwise theories (LWT) for laminated plates have been

developed and applied to smart structures (see [29], [30], [31] and [32]). In these

works, different LWT were employed to address the problem.

In recent times, the study of smart plates was focused on analyzing the fully cou-

pled, thermal, electrical and mechanical effects, in composite and functionally graded

material (FGM) structures. A fully coupled static 3-D elastic analysis of smart func-

tionally graded material can be found in [33]. In this work, an asymptotic expansion

technique was used for the numerical computations. This paper can be considered

as an interesting benchmark for future work comparisons in smart FGMs. More-

over, a finite element method has been recently used to deal with the dynamic fully

coupled analysis of smart structures where thermal, electrical and mechanical effects

take place. Different plate theories were tested as well as more refined electrical field

representations. For instance, [34], the authors used a higher order shear deformation

theory to describe the elastic field of composite laminates with embedded piezoelec-

tric patches. For the electrical field, a quadratic variation through thickness was

employed and the thermal field was not considered; the thermal field was included

in a more recent work [35]. [36] used a layerwise theory to calculate the static and

dynamic response of composite plates with surface-mounted piezoelectric actuators

using a completely coupled thermo-piezoelectric-mechanical model. In this work, the

authors showed the importance of the transverse shear forces in modelling smart plate

structures.

C. Objectives

Even though many researchers have been working in the analysis of smart struc-

tures, until now there is no general methodology that allows us to study these struc-
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tures realistically. This means an approach that considers most important features

associated with the elastic, electrical, and thermal fields in a smart structure is needed.

Each of these fields requires their own suitable representation that depends on the

application. In a slender composite beam with actuators and sensors, the elastic

field can be modelled using the Euler-Bernoulli beam theory, and the electrical field

using a layer wise theory. Moreover, some regions of the beam undergoes electrical

and elastic effects at the same time; however, other parts may only contain elastic

effect. An efficient mathematical model and associated computational model should

account for all significant features of the structural response. Thus, the objectives of

the present study were as follows.

• Develop a refined kinematic model and associated finite element model with

various capabilities to solve problems that have both 2-D and 3-D fields.

• Use this element to investigate different issues related to smart structures such

as

Diverse configuration of their components

Accurate stress-strain analysis

Analysis several physical effects

• Perform a fully coupled thermo-piezo-elastic analysis of smart structures not

only for static response but also for dynamic response.

• Analysis of vibration control of structural elements, especially plates, using

active strategies.

• Develop accurate models to facilitate the design of controllers while using LQG,

LQR, negative feedback velocity and robust control algorithms.
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D. Description of the Work

As discussed in the previous paragraphs, the main problem that arises in the mod-

elling of smart materials is accurate representation of their physical effects. Along

with the development of the smart structure field, new and more complicated config-

urations have appeared to satisfy the functional requirements of new and emerging

engineering applications. Moreover, in order to accurately describe the physical effects

involved in practical applications, we need a mathematical model that accounts for

the coupling between various fields. As a result, a large number of coupled equations

must be solved and diverse analytical and numerical techniques must be employed.

Among them, the finite element method has proved to be a very efficient and system-

atic computational technique to solve complicated problems with complex geometries

and multiphysics because of its relative simplicity and easy computer implementation

(see [37, 38]).

In this research, an improved structural theory and associated finite element

model that accounts for most important features of a smart structural system are

developed. In the first part of this work, we present a new formulation to describe

the displacement field which results in an improved version of the third-order shear

deformation theory of Reddy [28]. To take account the electrical field, the layerwise

formulation is improved and adapted in combination with the elastic field. Finally,

the layerwise representation for the thermal field was used; however, for some cases,

as indicated in the sequel, an equivalent single-layer representation was used. After

these earlier developments, a finite element formulation is presented for a fully coupled

thermo-electro-mechanical dynamic system using concepts of continuum mechanics

but assuming linear strains and constitutive behavior.

In the second part of this study, we focus on static problems only. The theory
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developed in the first part is verified in two parts. Firstly, using composite and

functionally graded material (FGM) plates, we were able to test the ability of the

element to handle elastic problems. Numerical results showing the displacement and

stress fields over the plate are presented. Then using a functionally graded material

plate, the thermo-mechanical analysis is performed and the results are compared with

other theories currently available. The applicability and potential of the proposed

theory is amply demosntrated. Finally, the same analysis is applied for a FGM plate

with a piezoelectric layer mounted in its bottom part (smart FGM plate). Here, an

improvement of the theory was utilized to obtain good results for the thermo-piezo-

mechanical analysis.

In the third part, a dynamical analysis was carried out. Like in the static analysis

part, the verifications were carried out using a FGM plate and a smart FGM plate.

Several cases of importance were explored, such as, thermal and electrical shocks.

However, the main issue of this part is to show the difference in the response of the

structure if coupled and uncoupled analysis are performed.

Finally, a chapter devoted to the vibration control of structures is added to this

work. Two main strategies were presented: the negative velocity feedback and the

least squares quadratic regulator. The first one is a very simple technique that is

based on the proportionality between the sensor and actuator voltage. The second

one is based on an optimization principle. Some graphics are presented in order to

show the suitability of those control algorithms.
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CHAPTER II

GENERAL FORMULATION

A. Multiple Assumed Displacement Fields

In general, any physical field such as elastic, thermal or electrical can be rep-

resented as the combination of several representations. We can apply this idea in

the case of elastic plates, by writing the displacements as the sum of the equivalent

single-layer representation (ESL) and the layerwise representation (LWT), as shown

in Fig. 1; it is called the approach of multiple assumed displacement fields. The

multiple assumed displacement fields can be expressed as

u(x, y, z, t) = uESL(x, y, x, t) + uLWT (x, y, x, t)

v(x, y, z, t) = vESL(x, y, x, t) + vLWT (x, y, x, t)

w(x, y, z, t) = wESL(x, y, x, t) + wLWT (x, y, x, t) (2.1)

where u and v are the displacements in the x and y directions, respectively, and w is

the transverse displacement.

The most important ESL theories are the classical plate theory (CLPT), the

first order shear deformation theory (FSDT) and the third-order shear deformation

theory (TSDT) (see [39]). In CLPT, we assume that the Kirchhoff hypothesis holds:

the straight lines perpendicular to the midsurface before deformation remain perpen-

dicular (εxz = εyz = 0) to the midsurface and straight after deformation. Moreover,

the transverse normals do not experience elongation (ε33 = 0). In the FSDT, the

transverse normals do not remain perpendicular to the midsurface after deformation;

therefore the shear strains εxz and εyz are different from zero. Finally, in the case of

TSDT, we make the same assumptions as FSDT, but the straightness of a transverse
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Fig. 1. Multiple assumed displacement mechanism for the case where ESL is FSDT

normal after deformation is relaxed. A graphical idea of the kinematics of the defor-

mation of a transverse normal on any edge of the plate is shown in Fig. 2. The three

theories can be compactly represented using the following set of equations

u(x, y, z, t) = u0 − c0zw0,x + (z − c1z
3)ϕx

v(x, y, z, t) = v0 − c0zw0,y + (z − c1z
3)ϕy

w(x, y, z, t) = w0(x, y, z, t) (2.2)

where c0 and c1 are the tracers, and ϕx and ϕy are the rotations. The values of the

tracers, ϕx and ϕy for the different theories are

CLPT:

c0 = 1, c1 = 0, ϕx = ϕy = 0 (2.3)

FSDT:

c0 = 0, c1 = 0, (2.4)

TSDT:

c0 = 1, c1 =
4

3h2
(2.5)
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Using matrix representation for Eq. 2.2

uESL
u = Nu(ESL)(z)u

ESL
uxy (2.6)

where

uESL
u =

[
uESL vESL wESL

]T

uESL
uxy =

[
u0 v0 w0 w0,x w0,y ϕx ϕy

]T
(2.7)

Nu(ESL)(z) =




1 0 0 −c0z 0 z − c1z
3 0

0 1 0 0 −c0z 0 z − c1z
3

0 0 1 0 0 0 0




(2.8)

the finite element representation of the vector uESL
uxy is

ue(ESL)
uxy = N e

u(ESL)(x, y)u
e
u(ESL) (2.9)

where

N e
u(ESL)(x, y) =

[
N

e(1)
u(ESL)(x, y) . . N

e(j)
u(ESL)(x, y) . . N

e(n)
u(ESL)(x, y)

]
(2.10)

ue
u(ESL) =

[
u

e(1)
u(ESL) . . u

e(j)
u(ESL) . . u

e(n)
u(ESL)

]
(2.11)

and

N
e(j)
u(ESL)(x, y) =




lju0
0 0 0 0 0 0 0

0 ljv0
0 0 0 0 0 0

0 0 hj
1 hj

2 hj
3 hj

4 0 0

0 0 hj
1,x hj

2,x hj
3,x hj

4,x 0 0

0 0 hj
1,y hj

2,y hj
3,y hj

4,y 0 0

0 0 0 0 0 0 ljϕx
0

0 0 0 0 0 0 0 ljϕy




(2.12)
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where lj and hj are the Lagrangian and Hermite interpolation functions, respectively.

u
e(j)
u(ESL) =

[
uj

0 vj
0 wj

0 wj
0,x wj

0,y wj
0,xy ϕj

x ϕj
y

]T
(2.13)

As we can see above, all the equivalent layer theories are based on assumptions that

do not necessarily hold when 3D effects take place in the structure. For this reason,

several layerwise theories have been developed as explained in [39]. However for this

work, we are going to employ the layerwise theory of Reddy due to its simplicity and

versatility. The only disadvantage of this theory is that a large number of degrees of

freedom (dofs) are used to describe the elastic effect over the plate.

For the layerwise representation using Reddy’s theory (see [10]), the total dis-

placement field can be expressed as

uLWT (x, y, z, t) =
NU∑

I=1

UI(x, y, t)Φ
I
U(z)

vLWT (x, y, z, t) =
NV∑

I=1

VI (x, y, t)Φ
I
V (z)

wLWT (x, y, z, t) =
NW∑

I=1

WI(x, y, t)Φ
I
W (z) (2.14)

where (UI , VI ,WI) denote the nodal values through the thickness, NU , NV and NW

is the number of levels through the thickness or discretization in the z coordinate,

and ΦI
U ,Φ

I
V ,Φ

I
W (z) are the global interpolation functions over the z coordinate, see

Fig. 3 for details. Therefore, using a matrix representation for Eq. 2.14, we have

uLWT
u = Nu(LWT )(z)u

LWT
uxy (2.15)

where

uLWT
u =

[
uLWT vLWT wLWT

]T
(2.16)

Nu(LWT )(z) =
[
N1

u(LWT )(z) . . N I
u(LWT )(z) . . NN

u(LWT )(z)

]T
(2.17)
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uLWT
uxy =

[
uLWT (1)

uxy . . uLWT (I)
uxy . . uLWT (N)

uxy

]T
(2.18)

where N = max{NU,NV,NW}

uLWT (I)
uxy =

[
UI VI WI

]
; Nu(LWT )(z) =




ΦI
U 0 0

0 ΦI
V 0

0 0 ΦI
W




(2.19)

the finite element representation of the vector uLWT
uxy is

ue(LWT )
uxy = N e

u(LWT )(x, y)u
e
u(LWT ) (2.20)

where

N e
u(LWT )(x, y) = diag

[
N

e(1)
u(LWT )(x, y) .. N

e(I)
u(LWT )(x, y) .. N

e(N)
u(LWT )(x, y)

]

(2.21)

ue
u(LWT )(x, y) =

[
u

e(1)
u(LWT )(x, y) . . u

e(I)
u(LWT )(x, y) . . u

e(N)
u(LWT )(x, y)

]T
(2.22)

and

N
e(I)
u(LWT )(x, y) =

[
N

e(I)1
u(LWT )(x, y) . . N

e(I)j
u(LWT )(x, y) . . N

e(I)n
u(LWT )(x, y)

]
(2.23)

u
e(I)
u(LWT ) =

[
u

e(I)1
u(LWT ) . . u

e(I)j
u(LWT ) . . u

e(I)n
u(LWT )

]
(2.24)

with

N
e(I)j
u(LWT )(x, y) =




ljUI
0 0

0 ljVI
0

0 0 ljWI




; u
e(I)j
u(LWT ) =

[
U j

I V j
I W j

I

]T
(2.25)
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1. Strain Field

In this work, we are going to make two assumptions related to the strain and

displacement fields. The first one is that the structure experiences small strain and

displacement fields; therefore, material and spatial coordinates can be used indistinc-

tively. The same will apply between the finite Green strain tensor and infinitesimal

strain tensor, and between the second Piola-Kirchhoff stress tensor and the Cauchy

stress tensor. The other assumption is that the rotations of the transverse normals

are small. Based on these assumptions, the strains associated with the displacement

field represented by Eq. 2.1 are

εxx = u,x = εESL
xx + εLWT

xx

εyy = v,x = εESL
yy + εLWT

yy

εzz = w,z = εESL
zz + εLWT

zz

γyz = v,z + w,y = γESL
yz + γLWT

yz

γxz = u,z + w,x = γESL
xz + γLWT

xz

γxy = u,y + v,x = γESL
xy + γLWT

xy (2.26)

where

εESL
xx = u0,x − c0zw0,xx + (z − c1z

3)ϕx,x

εESL
yy = v0,y − c0zw0,yy + (z − c1z

3)ϕy,y

εESL
zz = 0

γESL
yz = (1 − c0)w,y + (1 − 3c1z

2)ϕy

γESL
xz = (1 − c0)w,x + (1 − 3c1z

2)ϕx

γESL
xy = u0,y + v0,x − 2c0zw0,xy + (z − c1z

3)ϕx,y + (z − c1z
3)ϕy,x (2.27)
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whose matrix representation is

εESL = Bu(ESL)(z)ε
ESL
xy (2.28)

εESL =
[
εESL

xx εESL
yy εESL

zz γESL
yz γESL

xz γESL
xy

]T
(2.29)

εESL
xy =

[
εESL

u εESL
v εESL

w εESL
ϕx

εESL
ϕy

]
(2.30)

εESL
u =

[
u0,x u0,y

]
εESL

u =
[
v0,x v0,y

]
(2.31)

εESL
w =

[
w0,x w0,y w0,xx w0,yy w0,xy

]
(2.32)

εESL
ϕx

=
[
ϕx ϕx,x ϕx,y

]
εESL

ϕy
=
[
ϕy ϕy,x ϕy,y

]
(2.33)

Bu(ESL)(z) =
[
B

(u)
u(ESL) B

(v)
u(ESL) B

(w)
u(ESL) B

(ϕx)
u(ESL) B

(ϕy)
u(ESL)

]
(2.34)

B
(u)
u(ESL) =




1 0

0 0

0 0

0 0

0 0

0 1




B
(v)
u(ESL) =




0 0

0 1

0 0

0 0

0 0

1 0




(2.35)
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B
(w)
u(ESL) =




0 0 −c0z 0 0

0 0 0 −c0z 0

0 0 0 0 0

0 1 − c0 0 0 0

1 − c0 0 0 0 0

0 0 0 −2c0z 0




(2.36)

B
(ϕx)
u(ESL) =




0 z − c1z
3 0

0 0 0

0 0 0

0 0 0

1 − 3c1z
2 0 0

0 0 z − c1z
3




(2.37)

B
(ϕy)
u(ESL) =




0 0 0

0 0 z − c1z
3

0 0 0

1 − 3c1z
2 0 0

0 0 0

0 z − c1z
3 0




(2.38)

The finite element representation of εESL
xy

εe(ESL)
xy = Be

u(ESL)(x, y)u
e
u(ESL) (2.39)
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where

Be
u(ESL)(x, y) =

[
B

e(1)
u(ESL)(x, y) . . B

e(j)
u(ESL)(x, y) . . B

e(n)
u(ESL)(x, y)

]
(2.40)

ue
u(ESL) =

[
u

e(1)
u(ESL) . . . u

e(j)
u(ESL) . . . u

e(n)
u(ESL)

]T
(2.41)

with

B
e(j)
u(ESL)(x, y) =




lju0,x 0 0 0 0 0 0 0

lju0 ,y 0 0 0 0 0 0 0

0 ljv0,x 0 0 0 0 0 0

0 ljv0,y 0 0 0 0 0 0

0 0 hj
1,x hj

2,x hj
3,x hj

4,x 0 0

0 0 hj
1,y hj

2,y hj
3,y hj

4,y 0 0

0 0 hj
1,xx hj

2,xx hj
3,xx hj

4,xx 0 0

0 0 hj
1,yy hj

2,yy hj
3,yy hj

4,yy 0 0

0 0 hj
1,xy hj

2,xy hj
3,xy hj

4,xy 0 0

0 0 0 0 0 0 ljϕx
0

0 0 0 0 0 0 ljϕx,x 0

0 0 0 0 0 0 ljϕx,y 0

0 0 0 0 0 0 0 ljϕy

0 0 0 0 0 0 0 ljϕy,x

0 0 0 0 0 0 0 ljϕy,y




(2.42)

u
e(j)
u(ESL) =

[
uj

0 vj
0 wj

0 wj
0,x wj

0,y wj
0,xy ϕj

x ϕj
y

]T
(2.43)

The contribution of the layerwise representation to the strain field is

εLWT
xx =

NU∑

I=1

UI,xΦ
I
U (z)
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εLWT
yy =

NV∑

I=1

VI,yΦ
I
V (z)

εLWT
zz =

NW∑

I=1

WIΦ
I
W,z(z)

γLWT
yz =

NV∑

I=1

VIΦ
I
V,z(z) +

NW∑

I=1

WI,yΦ
I
W (z)

γLWT
xz =

NV∑

I=1

UIΦ
I
U,z(z) +

NW∑

I=1

WI,xΦ
I
W (z)

γLWT
xy =

NU∑

I=1

UI,yΦ
I
U (z) +

NV∑

I=1

VI,xΦ
I
V (z) (2.44)

whose matrix representation is

εLWT = Bu(LWT )(z)ε
LWT
xy (2.45)

where

εLWT =
[
εLWT

xx εLWT
yy εLWT

zz γLWT
yz γLWT

xz γLWT
xy

]T
(2.46)

Bu(LWT )(z) =
[
B1

u(LWT )(z) . . BI
u(LWT )(z) . . BN

u(LWT )(z)

]
(2.47)

εLWT
xy =

[
εLWT (1)

xy . . εLWT (I)
xy . . εLWT (N)

xy

]T
(2.48)

BI
u(LWT )(z) =




0 ΦI
U 0 0 0 0 0 0 0

0 0 0 0 0 ΦI
V 0 0 0

0 0 0 0 0 0 ΦI
W,z 0 0

0 0 0 ΦI
V,z 0 0 0 0 ΦI

W

ΦI
U,z 0 0 0 0 0 0 ΦI

W 0

0 0 ΦI
U 0 ΦI

V 0 0 0 0




(2.49)

εLWT (I)
xy =

[
UI UI,x UI,y VI VI,x VI,y WI WI,x WI,y

]T
(2.50)
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The finite element representation of εLWT
xy

εe(LWT )
xy = Be

u(LWT )(x, y)u
e
u(LWT ) (2.51)

where

ue
u(LWT )(x, y) = diag

[
u

e(1)
u(LWT )(x, y) . . u

e(I)
u(LWT )(x, y) . . u

e(N)
u(LWT )(x, y)

]

(2.52)

Be
u(LWT )(x, y) = diag

[
B

e(1)
u(LWT )(x, y) . . B

e(I)
u(LWT )(x, y) . . B

e(N)
u(LWT )(x, y)

]

(2.53)

with

B
e(I)
u(LWT )(x, y) =

[
B

e(I)1
u(LWT )(x, y) . . B

e(I)j
u(LWT )(x, y) . . B

e(I)n
u(LWT )(x, y)

]
(2.54)

and

Bj
u(LWT )(x, y) =




B
j(UI)
u(LWT ) 0 0

0 B
j(VI)
u(LWT ) 0

0 0 B
j(WI)
u(LWT )




(2.55)

B
j(κ)
u(LWT )(x, y) =

[
lκ lκ,x lκ,y

]T
(2.56)

ue
u(LWT ) =

[
u

e(1)
u(LWT ) . . u

e(j)
u(LWT ) . . u

e(n)
u(LWT )

]T
(2.57)

u
e(j)
u(LWT ) =

[
U j

I V j
I W j

I

]T
(2.58)

B. Improved ESL Deformation Theory

As we noticed in the previous section, the multiple assumed displacement field

formulation provides the capability of doing a realistic analysis of the mechanical

structures since most of the 3D elasticity features are considered. However, by adding
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layerwise dofs dramatically increases the total number of dofs. Moreover, combining

two representation makes the computer implementation cumbersome. Consequently,

it will be interesting to consider a ESL formulation that contains the characteristics

of the combined two theories.

In this section, we are going to describe a novel formulation that results from

improvement of the ESL theories. First, as we did in the previous sections, let us

consider the displacement field represented by the Eq. 2.1. Then, continuing with the

process of Multiple Assumed Displacement Field, the thickness of the plate should

be divided in several mathematical layers to take into account the layerwise part

of the formulation. In this case, we are going to use only one mathematical layer,

but the interpolation functions used for the z coordinates are going to be Hermite

instead of Lagrangian. As a consequence, each of the two levels that comprises the

mathematical layer will have 6 variables, the three displacements (U , V and W ) and

their derivatives with respect to the z coordinate (U
′
, V

′
ana W

′
). Since the layerwise

field can model any of the deformation modes that the ESL can, there will be five

redundant variables that must be set to zero, otherwise, ill-conditioned matrices will

appear in our analysis. Hence,

U1 = U2 = 0, V1 = V2 = 0,W1 = 0 (2.59)

Finally, the set of equations that describe an improved equivalent single-layer field

are

u(x, y, z, t) = uESL + h3(z)U
′

1 + h4(z)U
′

2

v(x, y, z, t) = vESL + h3(z)V
′

1 + h4(z)V
′

2

w(x, y, z, t) = wESL + h2(z)W2 + h3(z)W
′

1 + h4(z)W
′

2 (2.60)
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where the matrix representation for the improvement is

uIESL
u = Nu(IESL)(z)u

IESL
uxy (2.61)

where

Nu(IESL)(z) =




h3(z) h4(z) 0 0 0 0 0

0 0 h3(z) h4(z) 0 0 0

0 0 0 0 h2(z) h3(z) h4(z)




(2.62)

with hi as Hermite interpolation functions

uIESL
uxy =

[
U

′
1 U

′
2 V

′
1 V

′
2 W2 W

′
1 W

′
2

]T
(2.63)

the finite element representation of the vector uIESL
uxy is

ue(IESL)
uxy = N e

u(IESL)(x, y)u
e
u(IESL) (2.64)

where

N e
u(IESL)(x, y) =

[
N

e(1)
u(IESL)(x, y) .. N

e(j)
u(IESL)(x, y) .. N

e(n)
u(IESL)(x, y)

]
(2.65)

ue
u(IESL) =

[
u

e(1)
u(IESL) . . u

e(j)
u(IESL) . . u

e(n)
u(IESL)

]
(2.66)

with

N
e(j)
u(IESL)(x, y) =




lj
U

′
1

0 0 0 0 0 0

0 lj
U

′
2

0 0 0 0 0

0 0 lj
V

′
1

0 0 0 0

0 0 0 lj
V

′
2

0 0 0

0 0 0 0 ljW2
0 0

0 0 0 0 0 lj
W

′
1

0

0 0 0 0 0 0 lj
W

′
2




(2.67)
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and lj is a Lagrange interpolation function

ue
u(IESL) =

[
U

′
1

j
U

′
2

j
V

′
1

j
V

′
2

j
W2

j W
′
1

j
W

′
2

j
]T

(2.68)

1. Strain Field

The strains associated with the displacement field represented by Eq. 2.60 are

εxx = εESL
xx + h3(z)U

′

1,x + h4(z)U
′

2,x

εyy = εESL
yy + h3(z)V

′

1,y + h4(z)V
′

2,y

εzz = εESL
zz + h2,z(z)W2 + h3,z(z)W

′

1 + h4,z(z)W
′

2

γyz = γESL
yz + h2(z)W2,y + h3(z)W

′

1,y + h4(z)W
′

2,y + h3,z(z)V
′

1 + h4,z(z)V
′

2

γxz = γESL
xz + h2(z)W2,x + h3(z)W

′

1,x + h4(z)W
′

2,x + h3,z(z)U
′

1 + h4,z(z)U
′

2

γxy = γESL
xy + h3(z)V

′

1,x + h4(z)V
′

2,x + h3(z)U
′

1,y + h4(z)U
′

2,y (2.69)

where the matrix representation for the improvement is

εIESL = Bu(IESL)(z)ε
IESL
uxy (2.70)

εIESL =
[
εIESL

xx εIESL
yy εIESL

zz γIESL
yz γIESL

xz γIESL
xy

]T
(2.71)

Bu(IESL)(z) =
[
BU

u(IESL)(z) BV
u(IESL)(z) BW

u(IESL)(z)

]
(2.72)

BU
u(IESL)(z) =




0 h3 0 0 h4 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

h3,z 0 0 h4,z 0 0

0 0 h3 0 0 h4




(2.73)
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BV
u(IESL)(z) =




0 0 0 0 0 0

0 0 h3 0 0 h4

0 0 0 0 0 0

h3,z 0 0 h4,z 0 0

0 0 0 0 0 0

0 h3 0 0 h4 0




(2.74)

BW
u(IESL)(z) =




0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

h2,z 0 0 h3,z 0 0 h4,z 0 0

0 0 h2 0 0 h3 0 0 h4

0 h2 0 0 h3 0 0 h4 0

0 0 0 0 0 0 0 0 0




(2.75)

εIESL
uxy =

[
εU(IESL)

uxy εV (IESL)
uxy εW (IESL)

uxy

]T
(2.76)

εU(IESL)
uxy =

[
U

′

1 U
′

1,x U
′

1,y U
′

2 U
′

2,x U
′

2,y

]T
(2.77)

εV (IESL)
uxy =

[
V

′
1 V

′
1,x V

′
1,y V

′
2 V

′
2,x V

′
2,y

]T
(2.78)

εU(IESL)
uxy =

[
W2 W2,x W2,y W

′

1 W
′

1,x W
′

1,y W
′

2 W
′

2,x W
′

2,y

]T
(2.79)

the finite element representation of the vector εIESL
uxy is

εe(IESL)
uxy = Be

u(IESL)(x, y)u
e
u(IESL) (2.80)
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Bj
u(IESL)(x, y) = diag




B
j(U

′
1)

u(IESL)

B
j(U

′
2)

u(IESL)

B
j(V

′
1 )

u(IESL)

B
j(V

′
2 )

u(IESL)

B
j(W2)
u(IESL)

B
j(W

′
1)

u(IESL)

B
j(W

′
2)

u(IESL)




(2.81)

B
j(κ)
u(IESL)(x, y) =

[
lκ lκ,x lκ,y

]T
(2.82)

ue
u(IESL) =

[
U

′j
1 U

′j
2 V

′j
1 V

′j
2 W j

2 W
′j
1 W

′j
2

]T
(2.83)

C. Electrical Field

In this section, a brief description of the electrical field for piezoelectric materials

will be given according to Tiersten [40]. The electromagnetic field can be described

using Maxwell equations

∇×H =
1

c

∂D

∂t
+

4π

c
J (2.84)

∇× E = −1

c

∂B

∂t
(2.85)

where H is the magnetic field intensity, D is the electric displacement vector, E is

the electric field intensity, and B is the magnetic flux vector. These vector fields are

related by the following equations:

D = E + 4πP (2.86)

B = H + 4πM (2.87)
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where P and M are the polarization and magnetization vector, respectively. The

auxiliary equations of Eq. 2.86 and 2.87

∇ ·B = 0 (2.88)

∇ ·D = 4π%e (2.89)

in Eq. 2.89, %e makes that the equation of the conservation of electric charge

∂%e

∂t
+ ∇ · J = 0 (2.90)

satisfy; Eq. 2.85 can be reformulated in terms of the vector and scalar potential A

and ϕ

B = ∇×A

∇×
(
E +

1

c
Ȧ
)

= 0

E +
1

c
Ȧ = −∇ϕ (2.91)

In the case of piezoelectric, we will consider polarizable (but not magnetizable) di-

electrics only. As a consequence, we may set

%e = 0 ; J = M = 0 (2.92)

Then Eqs. 2.17 becomes

H = B (2.93)

∇×H =
1

c

∂D

∂t

H = ∇×A

E = −∇ϕ− 1

c
Ȧ

∇ ·D = 0 (2.94)
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the assumption made for piezoelectric materials is

∣∣∣∣
1

c
Ȧi

∣∣∣∣� |ϕi| (2.95)

and if we polarize the material in just one direction and with constant value, we

obtain

E = −∇φ⇒ ∇ · ∇φ = 0 (2.96)

This assumption is valid when the electromagnetic and the elastic waves are uncou-

pled.

In smart materials the piezoelectric configurations are very diverse; therefore

geometrical flexibility of the discretization becomes an important issue if a numeri-

cal analysis is to be carried out. For this reason, the electrical field is going to be

approximated using a layerwise representation as it was proposed in reference [12]

uφ(x, y, z, t) = φLWT (x, y, z, t) =
N∑

I=1

ΦI(z)φI(x, y, t) (2.97)

whose matrix representation

uLWT
φ = Nφ(LWT )(z)u

LWT
φ(xy) (2.98)

where

Nφ(LWT )(z) =
[
N1

φ(LWT )(z) . . N I
φ(LWT )(z) . . NN

φ(LWT )(z)

]
(2.99)

uLWT
φ(xy) =

[
u

(LWT )1
φ(xy) . . u

(LWT )I
φ(xy) . . u

(LWT )N
φ(xy)

]T
(2.100)

N I
φ(LWT )(z) =

[
ΦI

]
; u

(LWT )I
φ(xy) =

[
φI

]
(2.101)
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Then, the finite element representation of uLWT
φ(xy)

u
e(LWT )
φ(xy) = N e

φ(LWT )(x, y)u
e
φ(LWT ) (2.102)

where

N e
φ(LWT )(x, y) = diag

[
N

e(1)
φ(LWT )(x, y) . . N

e(2)
φ(LWT )(x, y) . . N

e(N)
φ(LWT )(x, y)

]

(2.103)

ue
φ(xy)(x, y) =

[
u

e(1)
φ(xy)(x, y) . . u

e(2)
φ(xy)(x, y) . . u

e(N)
φ(xy)(x, y)

]T
(2.104)

N
e(I)
φ(LWT )(x, y) =

[
N

e(I)1
φ(LWT ) . . N

e(I)j
φ(LWT ) . . N

e(I)n
φ(LWT )

]
(2.105)

u
e(I)
φ(LWT ) =

[
u

e(I)1
φ(LWT ) . . u

e(I)j
φ(LWT ) . . u

e(I)n
φ(LWT )

]T
(2.106)

u
e(I)j
φ(LWT ) =

[
φj

I

]
;N

e(I)j
φ(LWT ) =

[
ljφI

]
(2.107)

Similarly, the electrical field intensity

E =




Ex

Ey

Ez




= −




φ,x

φ,y

φ,z




(2.108)

can be approached

Ex = −
Nφ∑

I=1

φI,xΦ
I(z) Ey = −∑Nφ

I=1 φI,yΦ
I (z) Ez = −

Nφ∑

I=1

φIΦ
I
,z(z) (2.109)

ELWT = Bφ(LWT )(z)E
LWT
φ(xy) (2.110)

Bφ(LWT )(z) =
[
B1

φ(LWT )(z) . . BI
φ(LWT )(z) . . BN

φ(LWT )(z)

]
(2.111)

ELWT
φ(xy) =

[
E

(LWT )1
φ(xy) . . E

(LWT )I
φ(xy) . . E

(LWT )N
φ(xy)

]T
(2.112)
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BI
φ(LWT )(z) =




0 ΦI 0

0 0 ΦI

ΦI
,z 0 0




; E
(LWT )I
φ(xy) =

[
φI φI,x φI,y

]T
(2.113)

Then, the finite element representation of E
e(LWT )
φ(xy)

E
e(LWT )
φ(xy) = Be

φ(LWT )(x, y)E
e
φ(LWT ) (2.114)

where

Be
φ(LWT )(x, y) =

[
B

e(1)
φ(LWT )(x, y) . . B

e(I)
φ(LWT )(x, y) . . B

e(N)
φ(LWT )(x, y)

]

(2.115)

Ee
φ(LWT )(x, y) =

[
E

e(1)
φ(LWT )(x, y) . . E

e(I)
φ(LWT )(x, y) . . E

e(N)
φ(LWT )(x, y)

]

(2.116)

with

B
e(I)
φ(xy)(x, y) =

[
B

e(I)1
φ(LWT ) . . B

e(I)j
φ(LWT ) . . B

e(I)n
φ(LWT )

]
(2.117)

E
e(I)
φ(LWT ) =

[
E

e(I)1
φ(LWT ) . . E

e(I)j
φ(LWT ) . . E

e(I)n
φ(LWT )

]T
(2.118)

B
e(I)j
φ(LWT ) =

[
ljφI

ljφI ,x ljφI ,y

]T
; E

e(I)j
φ(LWT ) =

[
φj

I

]
(2.119)

D. Thermal Field

The thermal analysis is an inherently three dimensional problem. Unlike the

elastic and electrical fields, when thermal effects are present in a structure, simpli-

fications are only possible for a very specific cases such as for imposed sinusoidal

thermal fields [33], or when the heat conductivity coefficient in the z direction is

constant [34]. These simplifications allow us to tailor the problem using a kind of

equivalent single layer theory for the thermal field. In general, a numerical analysis
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of the this field demands a strategy with fully 3-D capabilities. Hence, a layerwise

representation is proposed in this work and it can be expressed as

T = uθ =
N∑

I=1

ΦI(z)TI (2.120)

whose matrix representation

uLWT
θ = Nθ(LWT )(z)u

LWT
θ(xy) (2.121)

where

Nθ(LWT )(z) =
[
N1

θ(LWT )(z) . . N I
θ(LWT )(z) . . N I

θ(LWT )(z)

]
(2.122)

uLWT
θ(xy) =

[
u

(LWT )1
θ(xy) . . u

(LWT )I
θ(xy) . . u

(LWT )N
θ(xy)

]T
(2.123)

and

N I
θ(LWT )(z) =

[
ΦI(z)

]
; u

(LWT )I
θ(xy) =

[
TI

]
(2.124)

The finite element representation of uLWT
θ(xy)

u
e(LWT )
θ(xy) = N e

θ(LWT )(x, y)u
eue

θ(LWT ) (2.125)

where

N e
θ(LWT )(x, y) = diag

[
N

e(1)
θ(LWT )(x, y) . . N

e(I)
θ(LWT )(x, y) . . N

e(N)
θ(LWT )(x, y)

]

(2.126)

ue
θ(LWT )(x, y) =

[
u

e(1)
θ(LWT )(x, y) . . u

e(I)
θ(LWT )(x, y) . . u

e(N)
θ(LWT )(x, y)

]T
(2.127)

with

N
e(I)
θ(LWT )(x, y) =

[
N

e(I)1
θ(LWT )(x, y) . . N

e(I)j
θ(LWT )(x, y) . . N

e(I)n
θ(LWT )(x, y)

]
(2.128)
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u
e(I)
θ(LWT )(x, y) =

[
u

e(I)1
θ(LWT )(x, y) . . u

e(I)j
θ(LWT )(x, y) . . u

e(I)n
θ(LWT )(x, y)

]
(2.129)

and

N
e(I)j
θ(LWT )(x, y) =

[
ljTI

]
; u

e(I)j
θ(LWT )(x, y) =

[
TI

]
(2.130)

The derivatives of the temperature with respect to its Cartesian coordinates

T,x =
N∑

I=1

ΦI (z)TI,x T,y =
∑N

I=1 ΦI(z)TI,y T,z =
N∑

I=1

ΦI
,z(z)TI (2.131)

whose matrix representation is

ΘLWT = Bθ(LWT )(z)Θ
LWT
θ(xy) (2.132)

and

Bθ(LWT )(z) =
[
B1

θ(LWT )(z) . . BI
θ(LWT )(z) . . BN

θ(LWT )(z)

]
(2.133)

ΘLWT
θ(xy) =

[
Θ

(LWT )1
θ(xy) . . Θ

(LWT )I
θ(xy) . . Θ

(LWT )N
θ(xy)

]T
(2.134)

with

BI
θ(LWT )(x, y) =




ΦI(z) 0 0

0 ΦI(z) 0

0 0 ΦI
,z(z)




; ΘLWT
θ(xy) =

[
T I

,x T I
,y T I

]T
(2.135)

The finite element representation of ΘLWT
θ(xy)

Θ
e(LWT )
θ(xy) = Be

θ(LWT )Θ
e(
θ(LWT ) (2.136)

where

Be
θ(LWT ) = diag

[
B

e(1)
θ(LWT ) . . B

e(I)
θ(LWT ) . .B

e(N)
θ(LWT )

]
(2.137)

Θe
θ(LWT ) = diag

[
Θ

e(1)
θ(LWT ) . . Θ

e(I)
θ(LWT ) . .Θ

e(N)
θ(LWT )

]
(2.138)
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with

B
e(I)
θ(LWT ) =

[
B

e(I)1
θ(LWT ) . . B

e(I)j
θ(LWT ) . . B

e(I)j
θ(LWT )

]
(2.139)

Θ
e(I)
θ(LWT ) =

[
Θ

e(I)1
θ(LWT ) . . Θ

e(I)j
θ(LWT ) . . Θ

e(I)n
θ(LWT )

]
(2.140)

and

B
e(I)j
θ(LWT ) =

[
lj,x lj,y lj

]T
; Θ

e(I)j
φ(LWT ) =

[
T j

I

]
(2.141)

As we mentioned before, the thermal field can be simplified under certain conditions.

For instance, in [33] we can see a plate with the following boundary conditions

−T,z + h1T = h1T
− ; T− = T (x, y, 0)

T,z + h2T = h2T
+ ; T+ = T (x, y, h)

T (0, y, z) = 0 ; T (x, 0, z) = 0

T (a, y, z) = 0 ; T (x, b, z) = 0 (2.142)

where

T± = T̂±sin(
π

a
x)sin(

π

b
y) (2.143)

For a composite or FGM plate, we can divide its thickness into several layers in such

a way that For a layer ”k”, the heat conduction equation

κ(k)
xx T

(k)
,xx + κ(k)

yy T
(k)
,yy + κ(k)

zz T
(k)
,zz = 0 (2.144)

must hold. For the boundary conditions specified above, T (k) can be assumed as

T± = T̂±sin(
π

a
x)sin(

π

b
y) (2.145)
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Since the temperature and heat flux functions must be continuous in the interlaminar

surface between the layer k and k + 1, we have the following expressions

T (k)(zk+1) = T (k+1)(zk+1) T̂ (k)(zk+1) = T̂ (k+1)(zk+1)

κ(k)
zz T

(k)
,z (zk+1) = κ(k+1)

zz T (k+1)
,z (zk+1) κ(k)

zz T̂
(k)
,z (zk+1) = κ(k)

zz T̂
(k+1)
,z (zk+1) (2.146)

replacing Eq. 2.145 into Eq. 2.144

T̂ (k)
,zz −

κ(k)
xx

(
π
a

)2
+ κ(k)

yy

(
π
b

)2

κ
(k)
zz

T̂ k = 0 (2.147)

if we make

µ2
k =

κ(k)
xx

(
π
a

)2
+ κ(k)

yy

(
π
b

)2

κ
(k)
zz

(2.148)

Then

T̂ (k)
,zz − µ2

kT̂
(k) = 0 (2.149)

Assuming that the solution has the following form

T̂ (k) = Aeλz (2.150)

λ2 − µ2 = 0; (2.151)

and then λ = ±µ, which means that the complete solution form of the equation is

T̂ k = A(k)eµkz +B(k)e−µkz (2.152)

Therefore

T̂ k (z) =
Tk+1 sinh [µk(z − zk)] − Tk sinh [µk(z − zk+1)]

sinh(µkhk)
(2.153)
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Using the principle of energy conservation through the layer interfaces (Eq. 2.146),

we have

−Tk+2 +

[
βk

βk+1
cosh(µkhk) + cosh(µk+1hk+1)

]
Tk+1 −

βk

βk+1
Tk = 0 (2.154)

where

βk =
κ(k)

zz µk

sinh(µkhk)
(2.155)

Using Eq. 2.154 for the bottom-most and top-most surfaces of the plate

− µ1

ĥ1 sinh(µ1h1)
T2 +

[
1 − µ1 coth(µ1h1)

ĥ1

]
T1 = T̂− (2.156)

[
1 +

µn coth(µnhn)

ĥ2

]
Tn+1 −

µn

ĥ2 sinh(µnhn)
Tn = T̂+ (2.157)

Using expressions 2.154, 2.156 and Eq. 2.157, we obtain a system of equations that

after been solved can give us the temperature thickness distribution as a function of

the top and bottom temperature; therefore the thermal analysis can be performed

using an equivalent single layer representation and the temperature can be represented

as

T (x, y, z) = uESL
θ = h(z)T̂− + g(z)T̂+ (2.158)

whose matrix representation is

uESL
θ = Nθ(ESL)(z)u

ESL
θ(xy) (2.159)

where

Nθ(LWT )(z) =
[
h(z) g(z)

]
;uESL

θ(xy) =
[
T̂− T̂+

]T
(2.160)

The finite element representation of uESL
θ(xy)

u
e(ESL)
θ(xy) = N e

θ(ESL)u
e
θ(ESL); (2.161)
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with

N e
θ(ESL) =

[
N

e(1)
θ(ESL) . . N

e(j)
θ(ESL) . . N

e(n)
θ(ESL)

]
(2.162)

ue
θ(ESL) =

[
u

e(1)
θ(ESL) . . u

e(j)
θ(ESL) . . u

e(n)
θ(ESL)

]
(2.163)

N
e(j)
θ(ESL) =



lj
T̂− 0

0 lj
T̂+


 ;u

e(j)
θ(ESL) =

[
T̂−(j) T̂+(j)

]T
(2.164)

The derivative of the temperature with respect to its Cartesian coordinates is

ΘESL =
[
T,x T,y T,z

]
(2.165)

whose matrix representation is

ΘESL = Bθ(ESL)(z)Θ
ESL
θ(xy) (2.166)

where

Bθ(ESL)(z) =




0 g(z) 0 0 h(z) 0

0 0 g(z) 0 0 h(z)

g,z(z) 0 0 h,z(z) 0 0




(2.167)

ΘESL
θ(xy) =

[
T̂− T̂−

,x T̂−
,y T̂+ T̂+

,x T̂+
,y

]T
(2.168)

The finite element representation of ΘESL
θ(xy)

Θ
e(ESL)
θ(xy) = Be

θ(ESL)(x, y)Θ
e
θ(ESL) (2.169)

where

Be
θ(ESL)(x, y) =

[
B

e(1)
θ(ESL)(x, y) . . B

e(j)
θ(ESL)(x, y) . . B

e(n)
θ(ESL)(x, y)

]
(2.170)

Θe
θ(ESL) =

[
Θ

e(1)
θ(ESL)(x, y) . . Θ

e(j)
θ(ESL)(x, y) . . Θ

e(n)
θ(ESL)(x, y)

]
(2.171)
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and

B
e(j)
θ(ESL)(x, y) =




lj
T̂− 0

lj
T̂−,x

0

lj
T̂−,y

0

0 lj
T̂+

0 lj
T̂+,x

0 lj
T̂+,y




; Θe
θ(ESL) =



T̂−(j)

T̂+(j)


 (2.172)

E. Fundamental Laws of Continuum Mechanics

In this section, a brief description of fundamental laws of continuum mechanics

will be provided according to Malvern [41].

1. Conservation of Mass

The total mass m at time t of a continuous medium of density ρ, inside an

arbitrary volume V which is fixed in the space, and bounded by surface S, Fig. 4 is

m =
∫

V
ρ(x, y, z, t)dV (2.173)

If there is no creation or destruction of mass inside V , then the rate of increase

of the total mass in the volume V must be equal to the rate of inflow of mass through

the surface. According to this, we obtain

dm

dt
=
∫

V

[
dρ

dt
+ ρ∇ · v

]
dV (2.174)

The Eq. 2.174 is known as continuity equation
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V

S

dS

P
n

Fig. 4. Fixed volume V , bounded by the surface S

2. Linear Momentum Principle

This principle states that the rate of change of the total momentum of a given

mass that occupies a volume V bounded by surface S is equal to the summation of

external surface forces t per unit area and the body forces b per unit mass, Fig. 5.

∫

S
tdS +

∫

V
ρbdV =

d

dt

∫

V
ρvdV (2.175)

If we substitute for each Cartesian term of t, the expression ti = σjinj , being

n the normal vector to the surface S, transform the surface integral by using the

divergence problem, and after some manipulations, we have the equation of motion

σji,j + ρbi = ρv̇i;∇ · σ + ρb = ρ
dv

dt
(2.176)
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b dV

dV
V

dS

S

t dS

Fig. 5. Linear momentum balance

3. Angular Momentum Principle

In absence of distributed couples the rate of change of the angular momentum

for a continuum medium of mass m is equal to the vector sum of the moment caused

by external forces acting on medium.

∫

S
(r × t)dS +

∫

V
(r × ρb)dV =

d

dt

∫

V
(r × ρv)dV (2.177)

or in indicial notation

∫

S
εijkxjt

n̂
kdS +

∫

V
εijkxjρbkdV =

d

dt

∫

V
εijkxjρvkdV (2.178)

The main consequence of this principle is the symmetry of the stress tensor σij = σji

4. First Law of Thermodynamics

This law states that the time rate of change of the total energy of the system is

equal to the summation of the power and heat input into the system

Ėtotal = Pinput +Qinput (2.179)
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The heat input Qinput is comprised of the heat conduction through the surface

S, and the internal heat source, then

Qinput = −
∫

S
qṅdS +

∫

V
ρrdV (2.180)

Since we are analyzing piezoelectric materials, the power input Pinput can be

divided in two parts. The first one related to the mechanical power (Pmec) is the rate

at which the external surface t and body b forces do work. The second part is the

work generated by the electrical field (Pele). Then, we have the following equations

Pinput = Pmec + Pele (2.181)

Pmec =
∫

S
t · vdS +

∫

V
ρb · vdV (2.182)

Pele = −
∫

S
ϕḊ · ndS (2.183)

Using the relation t = σ · n and transforming the surfaces integral by using the

divergence theorem

Qinput =
∫

V
[−∇ · q + ρr] dV (2.184)

and

Pinput =
∫

V

[
∇ · (σ · v) + ρb · v + ∇ · (ϕḊ)

]
dV (2.185)

Therefore, using equation of motion and the relations for the electrical field into the

previous expression, we have the energy equation

ρ
du

dt
= σij ε̇ij + ḊjEj + ρr − ∂qj

∂xj
(2.186)
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5. Second Law of Thermodynamics

This law states that when a system evolves from one state to other, the rate of

entropy increase in the system is greater or equal that the entropy input rate. The

equality holds if and only if the process is reversible. The equation that describes the

previous statement is the Clausius-Duhem inequality

ds

dt
− r

θ
+

1

ρθ
qi,i −

qi

ρθ2
θ,i ≥ 0 (2.187)

Moreover, for reversible process, the conditions

ds

dt
− r

θ
+

1

ρθ
qi,i = 0 (2.188)

− qi

ρθ2
θ,i = 0 (2.189)

must be satisfied

F. Constitutive Equation

As it was defined in [40] the electric enthalpy h is

h = U − EiDi (2.190)

where U is the internal energy function. Then, the free enthalpy or Gibbs function

Ψ is

Ψ = U − EiDi − sθ (2.191)

Ψ̇ = U̇ − EiḊi − ĖiDi − ṡθ − sθ̇ (2.192)

After using the energy equation and the Classius-Duhem inequality for reversible

process in Eq. 2.192

Ψ̇ = σij ε̇ij −DiĖi − sθ̇ (2.193)
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or

Ψ̇ = σ : ε−DĖ − sθ̇ (2.194)

Ψ = Ψ(εij, Ei, θ) (2.195)

it is also true that

Ψ̇ =
∂Ψ

∂εij
ε̇+

∂Ψ

∂Ei
Ėi +

∂Ψ

∂θ
θ̇ (2.196)

(
∂Ψ

∂εij
− σij

)
ε̇ij +

(
∂Ψ

∂Ei
+Di

)
Ėi +

(
∂Ψ

∂θ
+ η

)
θ̇ = 0 (2.197)

∂Ψ

∂εij
= σij,

∂Ψ

∂Ei
= −Di,

∂Ψ

∂θ
= −η (2.198)

If we define Ψ as an extension of Helmholtz potential [42]

Ψ (εij, Ei, θ) =
1

2
Qijklεijεkl − eijkEiεjk −

1

2
εijEiEj

−λijθεij − βiEiθ − cT log
(
T

T0

)
(2.199)

Then, from Eq. 2.198

σ = Qε− eE − λθ

D = eTε + εE + βθ

η = λT ε+ βTE + c
[
log

(
T

T0

)
+ T0

]
(2.200)

where T0 is the reference temperature. For small thermal changes about T0, we

can make the first order approximation for the pure thermal term in the augmented

Helmholtz potential as

c
[
log

(
T

T0

)
+ T0

]
=

1

2

ρc

T0
θ2 (2.201)
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where θ = T − T0. As a result, the constitutive equation for η is

η = λT ε+ βTE + cθ (2.202)

G. Fully Coupled Finite Element Formulation

The dynamic version of the principle of virtual work is

0 =
∫ T

0
(δU + δV − δK)dt (2.203)

where δU is the virtual strain energy, δV is the virtual work done by the applied forces

over the structure, and δK the virtual kinetic energy. For structures that contains

piezoelectric materials, elastic and electrical field are present; therefore, the principle

of virtual work for these materials can be expressed as

∫

V
(ρüiδui + σijδεij −DiδEi) dV =

∫

S
(quiδui + qφδφ) dS (2.204)

The coupled heat transfer equation is

T η̇ + qi,i = γ (2.205)

where the relation between qi and T is provided by the Fourier’s heat conduction law

qi = −κijT,j (2.206)

Then, applying a variational principle

∫

V
T η̇δTdV +

∫

V
qi,iδTdV =

∫

V
γδTdV (2.207)

and integrating by parts

∫

V
T η̇δTdV +

∫

S
qin̂iδTdS −

∫

V
qiδT,idV =

∫

V
γδθdV (2.208)
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Eq.(2.204) can be split as

∫

V
(ρüiδui + σijδεij) dV =

∫

S
quiδuidS

−
∫

V
DiδEidV =

∫

S
qφδφdS (2.209)

Replacing Eq. (2.206) in Eq. (2.205)

∫

V
T η̇δTdV +

∫

V
κijT,jδT,idV =

∫

V
γδTdV −

∫

S
qin̂iδTdS (2.210)

Writing the previous equations in a vector form

∫

V

[
δuT

uρüu + δεTσ
]
dV =

∫

S
δuT

u qudS

−
∫

V
δETDdV =

∫

S
δφqφdS

∫

V
T η̇δTdV +

∫

V
δΘKΘdV =

∫

V
γδTdV −

∫

S
qθn̂δTdS (2.211)

In the sequel, we are going to show the finite element formulation of each of the

integral terms that comprises the equations in (2.211)

1. Equation Terms

a.
∫
V δu

T
uρüudV

As it was shown in the previous sections, the finite element representation of the

displacement field at the element level can be written as

uu =
[
N e

u(ESL) N e
u(LWT )

]


ue

u(ESL)

ue
u(LWT )


 (2.212)

where any N e
u(i) can be expressed as the product of two matrices, one a function of

the z and the other one a function of x and y

N e
u(i) = N e

u(i)(z)N
e
u(i)(x, y) (2.213)
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and, with the objective of simplification, i can take the values of 1 or 2 whether it is

representing the ESL or the LWT representation, respectively. Therefore, we obtain

∫

V
δuT

uρüudV =
#elem∑

e

{δue
u}

T [M e
uu] {üe

u} (2.214)

with

M e
uu =

∫

V e




N eT

u(1)(x, y)ρ̄11N
e
u(1)(x, y) N eT

u(1)(x, y)ρ̄12N
e
u(2)(x, y)

N eT

u(2)(x, y)ρ̄21N
e
u(1)(x, y) N eT

u(2)(x, y)ρ̄22N
e
u(2)(x, y)



dV e (2.215)

and

ρ̄ij =
∫

z
N eT

u(i)(z)ρN
e
u(j)(z)dz (2.216)

b.
∫
V δε

TσdV

Using the constitutive equation (2.200) related to the stress vector σ

σ = Qε− eE − λθ

θ = T − T0 (2.217)

the finite element representation of the strain ε, electrical potential E and thermal

field θ at the element level can be written as

ε =
[
Be

u(ESL) Be
u(LWT )

]


ue

u(ESL)

ue
u(LWT )


 ;E = −

[
Be

φ(LWT )

] [
ue

φ(LWT )

]
(2.218)

θ = Nθ(ESL)u
e
θ − T0 (2.219)

∫

V e
δεTσdV e = {δue

u}
T
[
[Ke

uu]u
e
u −

[
Ke

uφ

]
ue

φ − [Ke
uθ ]u

e
θ + F e

uθ

]
(2.220)
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where

[Ke
uu] =



Ke

uu(11) Ke
uu(12)

Ke
uu(21) Ke

uu(22)


 (2.221)

with

Ke
uu(ij) =

∫

Se

[
BeT

u(i)(x, y)Q̄ijB
e
u(j)(x, y)

]
dSe; Q̄ij =

∫

z
BeT

u(i)(z)QB
e
u(j)(z)dz (2.222)

and

[
Ke

uφ

]
=



Ke

uφ(12)

Ke
uφ(22)


 (2.223)

with

Ke
uφ(i2) =

∫

Se

[
BeT

u(i)(x, y)ēij

[
−Be

φ(2)(x, y)
] ]

dSe (2.224)

ēi2 =
∫

z
BeT

u(i)(z)eB
e
φ(2)(z)dz (2.225)

and

[Ke
uθ ] =



Ke

uθ(11)

Ke
uθ(21)


 (2.226)

with

Ke
uθ(i1) =

∫

Se

[
BeT

u(i)(x, y)λ̄i1N
e
θ(1)(x, y)

]
dSe; λ̄i1 =

∫

z
BeT

u(i)(z)λN
e
θ(1)(z)dz (2.227)

and

F e
uθ =



F e

uθ(1)

F e
uθ(2)


 (2.228)

with

F e
uθ(i) =

∫

S

[
BeT

u(i)(x, y)λ̃i

]
T0dS; λ̃i =

∫

z
BeT

u(i)(z)λdz (2.229)
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c.
∫
S δu

T q̄u

We define z0 as the z coordinate where the force is supposed to be applied. In

case of ESL z0 will be the z coordinate of the midplane; however for LWT, it can

usually be the top or the bottom of the plate. Then, at the element level we have

∫

Se
δuT

u q̄udS
e = {δue

u}
T F e

u = (2.230)

{δue
u}

T
∫

S



N eT

u(1)(x, y)N
eT

u(1)(z0)

N eT

u(2)(x, y)N
eT

u(2)(z0)


 diag




f1(x, y)

f2(x, y)

f3(x, y)



dS





q1TFq1

q2TFq2

q3TFq3





(2.231)

where fi(x, y) and TFqi are the functions that describe how the force qi is applied

over the plane and evolves with time, respectively. Therefore the expression

∫

V
[ρüiδui + σijεij] dV =

∫

S
quiδuidS (2.232)

can be expressed as

[M e
uu] {üe

u}+ [Ke
uu] {ue

u} −
[
Ke

uφ

] {
ue

φ

}
− [Ke

uθ ] {ue
θ} = {F e

u} − {F e
uθ} (2.233)

d. −
∫
V δE

TDdV

Using the constitutive equation (2.200) related to the electrical displacement D

D = eTε+ εE + βθ (2.234)

Then

−
∫

V e
δETDdV e = −

{
δue

φ

}T [[
Ke

φu

]
ue

u −
[
Ke

φφ

]
ue

φ −
[
Ke

φθ

]
ue

θ − F e
φθ

]
(2.235)

where
[
Ke

φu

]
=
[
Ke

φu(21) Ke
φu(22)

]
(2.236)
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and

Ke
uφ(2i) =

∫

V e

[ [
−BeT

φ(2)(x, y)
]
ēT
2iB

e
u(i)(x, y)

]
dV e (2.237)

ēT
2i =

∫

z
BeT

φ(2)(z)eB
e
u(i)(z)dz (2.238)

where
[
Ke

φφ

]
=
[
Ke

φφ(22)

]
(2.239)

and

Ke
φφ(22) =

∫

V e

[ [
−BeT

φ(2)(x, y)
]
ε̄22

[
−BeT

φ(2)(x, y)
] ]

dV e (2.240)

ε̄22 =
∫

z
BeT

φ(2)(z)εB
e
φ(2)(z)dz (2.241)

where
[
Ke

φθ

]
=
[
Ke

φθ(21)

]
(2.242)

and

Ke
φθ(21) =

∫

V e

[
BeT

φ(2)(x, y)β̄21N
e
θ(1)(x, y)

]
dV e; β̄21 =

∫

z
BeT

φ(2)(z)βN
e
θ(1)(z)dz (2.243)

where

F e
φθ =

[
F e

φθ(1)

]
(2.244)

and

F e
φθ(i) =

∫

Se

[ [
−BeT

φ(2)(x, y)
]
β̃2

]
T0dS

e; β̃2 =
∫

z
BeT

φ(2)(z)βdz (2.245)

e.
∫
S δφqφdS

In the case of smart materials, voltages are normally imposed or calculated from

other variables or from a control strategy, and electrical flux input is rarely applied.
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Hence, the term Fφ can be set to zero.

∫

Se
δφqφdS

e = δφF e
φ = 0 (2.246)

Therefore the expression

−
∫

V e
δETDdV e =

∫

Se
δφqφdS

e (2.247)

can be written as

−
[
Ke

φu

]
{ue

u} −
[
Ke

φφ

] {
ue

φ

}
−
[
Ke

φθ

]
{ue

θ} =
{
F e

φ

}
−
{
F e

φθ

}
(2.248)

f.
∫
V T η̇δTdV

Using the constitutive equation (2.200) related to the entropy η

η̇ = λT ε̇+ βT Ė + c
Ṫ

T
(2.249)

Then
∫

V e
δue

θ
TT η̇dV e = {δue

θ}
T
[
[Ce

θu] u̇
e
u +

[
Ce

θφ

]
u̇e

φ + [Ce
θθ] u̇

e
θ

]
(2.250)

The finite element representation of the time rate for the strain ε̇, electric potential

Ė and thermal field θ̇ at element level can be written as

ε̇ =
[
BeT

u(ESL) BeT

u(LWT )

]


u̇e

u(ESL)

u̇e
u(LWT )


 ; Ė = −

[
Be

φ(LWT )

] [
u̇e

φ(LWT )

]
(2.251)

θ̇ = Nθ(ESL)u̇
e
θ (2.252)

where
[
Ce

θu

]
=
[
Ce

θu(11) Ce
θu(12)

]
(2.253)
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and

Cθu(1i) =
∫

V e
N eT

θ(1)(x, y)λ̄
T
1i(x, y)B

e
u(i)(x, y)dV

e (2.254)

λ̄T
1i(x, y) =

∫

z
NT

θ(1)(z)
[
TλT

]
Bu(i)(z)dz (2.255)

where
[
Ce

θφ

]
=
[
Ce

θφ(12)

]
(2.256)

and

Cθφ(12) =
∫

V e
N eT

θ(1)(x, y)β̄
T
12(x, y)B

e
φ(2)(x, y)dV

e (2.257)

β̄T
12(x, y) =

∫

z
NT

θ(1)(z)
[
TβT

]
Bφ(2)(z)dz (2.258)

where
[
Ce

θθ

]
=
[
Ce

θθ(11)

]
(2.259)

and

Cθθ(11) =
∫

V e
N eT

θ(1)(x, y)c̄11(x, y)N
e
θ(1)(x, y)dV

e (2.260)

c̄11(x, y) =
∫

z
NT

θ(1)(z)cN
T
θ(1)(z)dz (2.261)

g.
∫
V δΘ

TKΘdV

∫

V e
δΘTKΘdV e = {δue

θ}
T [Ke

θθ ] {ue
θ} (2.262)

The finite element representation of the temperature gradient Θ is

Θ = Bθ(1)u
e
θ (2.263)
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where

[Ke
θθ ] =

[
Ke

θθ(11)

]
(2.264)

[
Kθθ(11)

]
=
∫

V e
BeT

θ(1)K̄
e
11Bθ(1)dV

e; K̄e
11 =

∫

z
BT

θ(1)(z)KBθ(1)(z)dz (2.265)

h. −
∫
S {δue

θ}
T q̄θ.n̂dS

F e
θ =

∫

Se
{δue

θ}
T q̄θ.n̂dS

e (2.266)

Therefore, the equation

∫

V e
T η̇δTdV e +

∫

V e
δΘKΘdV e = −

∫

Se
{δue

θ}
T q̄θ.n̂dS

e (2.267)

can be written as

[
Ce

θu

]
{u̇e

u} +
[
Ce

θφ

] {
u̇e

φ

}
+
[
Ce

θθ

]
{u̇e

θ} +
[
Ke

θθ

]
{ue

θ} = −F e
θ (2.268)

Finally, using Eq. (2.233), Eq. (2.248) and Eq. (2.268) and splitting the piezoelectric

effect into a sensor an actuator effects, we have




[M e
uu] 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0








üe
u

üe
φs

üe
φa

üe
θ





+




[Ce
uu] 0 0 0

0 0 0 0

0 0 0 0

[Ce
θu]

[
Ce

θφs

] [
Ce

θφa

]
[Ce

θθ]






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u̇e
u

u̇e
φs

u̇e
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u̇e
θ
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


+




[Ke
uu]

[
Ke

uφs

] [
Ke

uφa

]
[Ke

uθ]
[
Ke

φsu

] [
Ke

φsφs

]
0

[
Ke

φsθ

]

[
Ke

φau

]
0

[
Ke

φaφa

] [
Ke

φaθ

]

0 0 0 [Kθθ ]








ue
u

ue
φs

ue
φa

ue
θ





=





F e
u

F e
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F e
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F e
θ





−





F e
uθ

F e
φsθ

F e
φaθ

0




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(2.269)

which is the finite element formulation of a fully coupled elastic, electrical and thermal

dynamical system, which is normally present in smart materials.
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CHAPTER III

STATIC ANALYSIS

In the previous chapter, we developed the general formulation for a dynamical

system with mechanical, thermal and electrical fields. In this chapter, we will focus

our attention on the static part of the equation 2.78. Then,




[Ke
uu]

[
Ke

uφs

] [
Ke

uφa

]
[Ke

uθ]
[
Ke

φsu

] [
Ke

φsφs

]
0

[
Ke

φsθ

]

[
Ke

φau

]
0

[
Ke

φaφa

] [
Ke

φaθ

]

0 0 0 [Kθθ ]








ue
u

ue
φs

ue
φa

ue
θ


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

=





F e
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F e
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F e
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F e
θ


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−





F e
uθ

F e
φsθ

F e
φaθ

0





(3.1)

Since TSDT is the most accurate theory and has shown superiority over CLPT and

FSDT (see Reddy [29]), the IESL theory developed in Chapter I is used for TSDT.

Therefore, in the sequel, the improved third-order shear deformation theory (ITSDT)

represents the IESL version of the TSDT.

The ITSDT is applied to composite and FGM plates in order to study its per-

formance in thermoelastic problems, then, comparisons with the LWT and TSDT

models are made. In the case of the electrical field, we add a piezoelectric layer to the

FGM plate and we use not only the ITSDT model but also ITSDT + LWT, which is

the multiple assumed displacement field version for ITSDT.

A. Symmetric Composite Laminates

The first case to be analyzed is a simply supported S (SS1 in [29, 39]) cross-

ply square laminate under sinusoidally distributed transverse load. The laminate is

comprised of 4 plies (0/90/90/0) of equal thickness. As a comparison, we use the 3D

elasticity solution developed in [43] and [44]. The material properties used here are
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typical of the graphite-epoxy material with properties

E1 = 25E2, G12 = G13 = 0.5E2, G23 = 0.2E2, ν12 = 0.25 (3.2)

Using the symmetry of the problem, a quarter plate with a mesh of 4 × 4 elements

is considered as the computational domain. In the case of LWT the thickness is

discretized using 4 layers. Accordingly, the corresponding sinusoidal load

q(x, y) = q0cos(
πx

a
)cos(

πy

b
) (3.3)

Table I. Comparison of several formulations with the analytical solution proposed by

Pagano

b/h Theory Element w̄ σ̄xx σ̄yy σ̄xy σ̄xz σ̄yz

ESL 0.7370 0.5590 0.4010 0.0276 0.3010 0.1960

LWT 4×4Q9 0.7342 0.5524 0.3982 0.0273 0.2988 0.1826

10 ITSDT 4×4C4 0.7179 0.5554 0.3881 0.0271 0.4957 0.1586

TSDT 4×4C4 0.7146 0.5412 0.3861 0.0266 0.4915 0.1520

ESL 0.5128 0.5430 0.3080 0.0230 0.3280 0.1560

LWT 4×4Q9 0.5120 0.5384 0.3063 0.0229 0.3252 0.1446

20 ITSDT 4×4C4 0.5074 0.5396 0.3032 0.0228 0.5329 0.1271

TSDT 4×4C4 0.5060 0.5354 0.3022 0.0227 0.5260 0.1226

ESL 0.4347 0.5390 0.2710 0.0214 0.3390 0.1390

LWT 4×4Q9 0.4329 0.5317 0.2669 0.0211 0.3370 0.1307

100 ITSDT 4×4C4 0.4344 0.5352 0.2690 0.0212 0.5476 0.1144

TSDT 4×4C4 0.4343 0.5350 0.2690 0.0212 0.5396 0.1109

Moreover, we are going to use the following nondimensionalized quantities in the
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analysis

w̄ = w0(0, 0)
E2h

3

b4q0
, σ̄xx = σxx(0, 0,

h

2
)
h2

b2q0

σ̄yy = σyy(0, 0,
h

4
)
h2

b2q0
, σ̄xy = σxy(

a

2
,
a

2
,−h

2
)
h2

b2q0

σ̄xz = σxz(
a

2
, 0, 0)

h

bq0
, σ̄yz = σyz(0,

b

2
, 0)

h

bq0
(3.4)

where a, b and h are the length, width and thickness of the plate. The origin of the

coordinate is taken in the center point of the thickness of the bottom left corner. In

other words, 0 ≤ x ≤ a/2, 0 ≤ y ≤ b/2 and −h/2 ≤ z ≤ h/2. Additionally, the

stresses that results from the Finite Element Analysis were evaluated at the reduced

Gauss points. In our analysis, three kinds of elements are employed. Firstly, a 9 node

LWT element with quadratic Lagrange interpolation in the plane and a quadratic

Lagrange interpolation function over the thickness for each layer is used. Secondly, a

4 node TSDT element is used with Hermite and Lagrangian interpolation functions.

Finally, a 4 node ITSDT with similar interpolation functions as in TSDT (see Chapter

I).

Observing the numerical results from Table I, LWT shows acceptable agreement

with the 3-D elasticity model for different values of span-thickness ratios. ITSDT

shows little improvement with respect of TSDT and that can be clearly noticed when

b/h is 10. Another important aspect is that ITSDT does not experience shear locking

effect as we can see when b/h = 100.

Since little improvement of ITSDT is observed when we need to analyze thick

plates. Figures 6 to 11 show the behavior of this theory in comparison to LWT and

TSDT for a very thick plate b/h = 4. Likewise the case when b/h = 10, ITSDT results

are very similar to the ones obtained by TSDT; however there are some differences

that are worthy to point out. First, the ITSDT predicts a vertical displacements
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Fig. 6. w̄ through thickness for a composite plate under mechanical load

profile over the thickness similar to that predicted by LWT (see Fig. 6). Secondly,

the profile of the vertical displacement along the plate length are better described by

ITSDT when compared with TSDT (see Fig. 11).

B. Composite Plate Laminates with Different Boundary Conditions

Using the same mechanical load and material properties, we can study how

ITSDT behaves for different laminate, low span to thickness ratios and different

boundary conditions. In this case, the plate is simply supported in two opposite sides

and the other two sides can be either simply supported (S), clamped (C) or free edges

(F). When all the edges are simple supported the computational domain is a quarter

plate with a mesh of 8 × 8 elements ; however for other cases a half plate model is

considered with a mesh of 12 × 6 elements. LWT will be employed as a reference

to study the performance of ITSDT. Moreover, the two stack plies are going to be
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Fig. 9. σ̄xz through thickness for a composite plate under mechanical load
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(0/90)1, 2 layers and (0/90)5, 10 layers.

In Tables II and III, we can see that for boundary conditions different from

SS the ITSDT provides results that are in good agreement with LWT, specially for

the vertical displacements. In this case the improvement can be noticed when the

number of layers and the span to thickness ratio are small. In other words, ITSDT

performs better when the plate is thick and has few material properties changes (less

inhomogeneous).
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Table II. w and σxx of cross-ply square plates with various boundary conditions

# Lay b/h Theory SS SC CC FF FS FC

LWT 1.6614 1.8012 1.1636 2.6620 2.6424 1.7926

w̄ 2 5 ITSDT 1.6781 1.7996 1.1467 2.6842 2.6648 1.7910

TSDT 1.6647 1.7253 1.0689 2.6174 2.5940 1.7184

LWT 1.2146 1.2026 0.6313 2.0018 1.9778 1.1961

w̄ 2 10 ITSDT 1.2172 1.1948 0.6189 2.0017 1.9780 1.1884

TSDT 1.2141 1.1802 0.6048 1.9854 1.9607 1.1742

LWT 1.2890 1.4368 1.0759 1.8915 1.8851 1.4324

w̄ 10 5 ITSDT 1.1319 1.2364 0.9005 1.6636 1.6569 1.2320

TSDT 1.1292 1.2115 0.8677 1.6509 1.6434 1.2075

LWT 0.6575 0.6677 0.4287 0.9774 0.9680 0.6641

w̄ 10 10 ITSDT 0.6171 0.6109 0.3746 0.9187 0.9091 0.6074

TSDT 0.6159 0.6069 0.3698 0.9154 0.9054 0.6035

LWT 7.2889 2.9223 4.0652 2.4318 2.1013 2.5709

σ̄xx 2 5 ITSDT 7.4836 3.0880 4.3487 2.5240 2.2128 2.7957

TSDT 8.3562 4.1084 5.6534 3.1268 2.7870 3.7661

LWT 7.2036 3.1900 4.4988 2.4366 2.0798 2.9110

σ̄xx 2 10 ITSDT 7.2443 3.1792 4.5595 2.4452 2.1047 2.9927

TSDT 7.4426 3.4592 4.9198 2.5880 2.2442 3.2506

LWT 5.9627 2.4353 3.3424 2.1716 1.9830 2.1729

σ̄xx 10 5 ITSDT 5.7861 2.3837 3.2786 2.0692 1.8731 2.0624

TSDT 6.3279 3.0031 4.0442 2.4615 2.2479 2.5944

LWT 5.2804 2.0989 2.9969 1.8686 1.6045 1.8882

σ̄xx 10 10 ITSDT 5.2310 2.1191 3.0258 1.8405 1.5696 1.8727

TSDT 5.3385 2.2589 3.2095 1.9128 1.6375 1.9924
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Table III. σyz and σxy of cross-ply square plates with various boundary conditions

# Lay b/h Theory SS SC CC FF FS FC

LWT 2.9223 2.9397 2.0637 4.2892 4.2469 3.0359

σ̄yz 2 5 ITSDT 2.8596 2.8045 1.9798 4.1134 4.0726 2.8974

TSDT 3.1484 2.9859 2.0611 4.4467 4.3893 3.0933

LWT 2.9767 2.6517 1.6204 4.3293 4.2559 2.7705

σ̄yz 2 10 ITSDT 2.9107 2.5230 1.5880 4.1286 4.0580 2.6364

TSDT 3.1844 2.7466 1.6974 4.4783 4.3948 2.8689

LWT 2.2936 2.4671 1.9054 3.2688 3.2538 2.5335

σ̄yz 10 5 ITSDT 3.3929 3.5687 2.6859 4.8426 4.8164 3.6736

TSDT 3.3559 3.4619 2.5604 4.7728 4.7433 3.5716

LWT 2.3545 2.2580 1.5341 3.3335 3.2919 2.3425

σ̄yz 10 10 ITSDT 3.4621 3.2290 2.1091 4.9017 4.8348 3.3604

TSDT 3.4021 3.1524 2.0471 4.8042 4.7360 3.2829

LWT 0.5475 0.3381 0.2692 0.0285 0.0309 -0.0201

σ̄xy 2 5 ITSDT 0.5591 0.2155 0.1639 0.0434 0.0476 -0.0444

TSDT 0.5570 0.1548 0.1164 0.0682 0.0735 -0.0420

LWT 0.5305 0.1811 0.1384 0.0467 0.0481 -0.0385

σ̄xy 2 10 ITSDT 0.5327 0.1258 0.0920 0.0724 0.0743 -0.0652

TSDT 0.5316 0.1086 0.0792 0.0837 0.0858 -0.0691

LWT 0.2898 0.1636 0.1412 0.0206 0.0251 -0.0059

σ̄xy 10 5 ITSDT 0.2767 0.0555 0.0448 0.0261 0.0342 -0.0226

TSDT 0.2758 0.0363 0.0274 0.0353 0.0440 -0.0187

LWT 0.2374 0.0897 0.0751 0.0250 0.0286 -0.0168

σ̄xy 10 10 ITSDT 0.2340 0.0424 0.0335 0.0373 0.0425 -0.0311

TSDT 0.2324 0.0386 0.0297 0.0384 0.0435 -0.0308
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C. Functionally Graded Plates (FGM)

In the previous section, the numerical performance of ITSDT to analyze typical

composite material plates was studied. The inhomogeneity of the material is repre-

sented by a function that is piece-wise continuous along the thickness. Unlike the

classical composite materials, the FGMs are inhomogeneous composites in which ma-

terial properties change continuously according to a specific function that depends on

the spatial coordinates. For this reason, FGMs can be considered as spatial compos-

ites. Since this work is related to plates, the function that governs how the material

varies will be dependent of the z coordinate only, meanwhile homogeneity over the

plane is implicitly assumed. In this section, we are going to study two cases. In the

first case, the elastic and thermal field for a FGM plate are going to be explored using

several finite element theories, as it was done in the previous section. In the second

case, a piezoelectric layer is going to be added to the bottom part of the FGM plate;

therefore a thermal, elastic and electric analysis can be carried out.

1. FGM Plate

Here only the FGM part of the plate in [33] will be employed. Similarly to this

work, we consider a composite plate comprised of a matrix phase denoted by 1 and a

particulate phase denoted by 2. The composite contains spherical particles, which act

as reinforcement, randomly distributed in the plane of the plate. As a consequence,

the locally effective bulk modulus K,the shear modulus G are given by the Mori-

Tanaka formulas (Appendix A). The expressions for the effective heat conductivity κ

and the thermal expansion coefficient α can be found in Appendix A, too. For our

case, nickel-based alloy, Monel (70Ni-30Cu), represents the matrix phase and Zirconia
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the particulate one. Their material properties are

K1 = 227.24 × 109N/m2, K2 = 125.83 × 109N/m2

G1 = 65.55 × 109N/m2, G2 = 58.077 × 109N/m2

α1 = 15.00 × 10−6/K, α2 = 10.00 × 10−6/K

κ1 = 25.00W/mK, κ2 = 2.09W/mK (3.5)

The volume fraction function of the particulate phase V2 is

V2 =
(
z

h

)n

(3.6)

In order to generate numerical results to be compared with ITSDT and the other finite

element theories, the matrix transfer formulation in combination with asymptotic

expansion presented in [33] (Asymt) was implemented and applied to this problem.

For the finite element analysis, a quarter plate is selected as the computational domain

with a mesh of 4 × 4 elements. The nonzero applied loads are

[
q̂+ T̂+

]
=
[
q̂+
0 T̂+

0

]
cos(

πx

a
)cos(

πy

b
) (3.7)

and the plate is simple supported and the temperature in its bottom part and edges

is equal to zero. Moreover, the peak of the physical quantities are nondimensionalized

by

[
ū w̄

]
=

[
ū0(a, 0) w̄(0, 0)

]
1

Pa[
σ̄xx σ̄xy σ̄xz σ̄zz

]
=

[
σ̄xx(0, 0, z) σ̄xy(a, b, z) σ̄xz(a, 0, z) σ̄zz(0, 0, z)

]
1

Pc∗

(3.8)
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Table IV. ū and w̄ for a FGM plate under a sinusoidal mechanical load

b/h Theory z = 0 z = 0.10 z = 0.55 z = 1

Asymt -0.0464 -0.0357 0.0036 0.0467

LWT -0.0464 -0.0357 0.0036 0.0467

4 ITSDT -0.0463 -0.0356 0.0036 0.0465

TSDT -0.0416 -0.0311 0.0053 0.0446

Asymt -0.2821 -0.2227 0.0352 0.2953

LWT -0.2826 -0.2229 0.0352 0.2958

ū 10 ITSDT -0.2819 -0.2225 0.0353 0.2952

TSDT -0.2475 -0.1941 0.0350 0.2665

Asymt -7.0084 -5.5627 0.9337 7.4121

LWT -7.0391 -5.5839 0.9369 7.4454

50 ITSDT -7.0053 -5.5596 0.9367 7.4154

TSDT -6.1291 -4.8521 0.8834 6.6042

Asymt 0.1443 0.1467 0.1522 0.1521

LWT 0.1442 0.1466 0.1521 0.1520

4 ITSDT 0.1442 0.1466 0.1524 0.1522

TSDT 0.1421 0.1421 0.1421 0.1421

Asymt 1.9093 1.9152 1.9253 1.9126

LWT 1.9080 1.9138 1.9240 1.9113

w̄ 10 ITSDT 1.9093 1.9153 1.9256 1.9127

TSDT 1.7190 1.7190 1.7190 1.7190

Asymt 230.1858 230.2149 230.2625 230.1873

LWT 229.0032 229.0313 229.0771 229.0052

50 ITSDT 230.1849 230.2151 230.2628 230.1870

TSDT 203.3351 203.3351 203.3351 203.3351
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Table V. σ̄xx and σ̄xy for a FGM plate under a mechanical sinusoidal load

b/h Theory z = 0 z = 0.10 z = 0.55 z = 1

Asymt -3.3160 -2.5356 0.4480 3.0261

LWT -3.3083 -2.5130 0.4433 3.0053

4 ITSDT -3.3461 -2.5221 0.4346 3.0369

TSDT -3.6993 -2.7671 0.4240 3.0077

Asymt -20.1785 -15.8909 2.5802 17.5444

LWT -19.9982 -15.7511 2.5543 17.3528

σ̄xx 10 ITSDT -20.0257 -15.7892 2.5339 17.3880

TSDT -21.9654 -17.1980 2.7978 17.9215

Asymt -501.3377 -397.1274 63.1239 433.1855

LWT -491.0855 -389.2815 61.7737 423.8000

50 ITSDT -495.9296 -394.5071 62.1434 428.1819

TSDT -543.8268 -429.5075 70.6240 444.0081

Asymt 1.9092 1.4676 -0.1435 -1.7035

LWT 1.8966 1.4589 -0.1419 -1.6902

4 ITSDT 1.9002 1.4612 -0.1433 -1.6935

TSDT 1.7131 1.2837 -0.2067 -1.6244

Asymt 11.6179 9.1627 -1.3994 -10.7763

LWT 11.5313 9.0951 -1.3872 -10.6937

σ̄xy 10 ITSDT 11.5468 9.1077 -1.3783 -10.6989

TSDT 10.1431 7.9537 -1.3607 -9.6530

Asymt 288.6490 228.8283 -37.0743 -270.5195

LWT 285.2624 226.1397 -36.6048 -267.3381

50 ITSDT 286.7806 227.3817 -36.4581 -268.4743

TSDT 250.9844 198.5238 -34.3347 -239.0282
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where P = α∗T̂+
0 , with α∗ = 10−6 1/K for the applied thermal load T̂+ and P = q̂+

0 /c
∗,

with c∗ = 1010 N/m2 for the applied mechanical load q̂+.

a. Mechanical Load

Tables IV, V and VI show the results of the non-dimensionalized quantities given

by Eq. 3.8, obtained for the FGM plate under the sinusoidal mechanical load specified

in Eq. 3.7. For LWT, we employed a 9 node Lagrangian element and for TSDT and

ITSDT a 4 node element with Hermite and Lagrangian interpolation functions, as

specified in the previous chapter. As we can observe in Table IV and V, ITSDT

provides results that are in good agreement with LWT and the asymptotic approach

used in [33] (Asysmt). This fact represents an important improvement with respect

to TSDT, specially for displacements and the in-plane stresses.

It is important to point out that in the case where b/h is equal to 10 (thick

plate) or 50 (thin plate) the difference between the solution obtained with TSDT and

the one obtained with LWT or Asymt is greater than 10%. Unlike the composite

laminates, where the Poisson’s effect is very small over the thickness, in the case of

FGM the isotropy of the material causes the displacement field to vary freely in the z

direction. Accordingly, the ITSDT which is proposed in this work has the advantage

of describing this mode of deformation and, therefore, better results can be obtained.

Even though in-plane stresses are accurately calculated using ITSDT, the numer-

ical approximation of the out of plane stresses does not present the same behavior. As

we can observe in Table VI, values of σyz do not experience any significant improve-

ment with respect to TSDT and values of σzz are poorly computed using ITSDT.



71

Table VI. σ̄yz and σ̄zz for a FGM plate under a sinusoidal mechanical load

b/h Theory z = 0 z = 0.10 z = 0.55 z = 1

Asymt -0.0059 -0.3669 -0.9344 0.0000

LWT -0.0441 -0.3441 -0.9290 -0.0430

4 ITSDT -0.0108 -0.3589 -0.9187 -0.0234

TSDT -0.0025 -0.3535 -0.9234 -0.0022

Asymt -0.0143 -0.9057 -2.3535 0.0000

LWT -0.0960 -0.8521 -2.3400 -0.0906

σ̄yz 10 ITSDT -0.0038 -0.8887 -2.3129 -0.0233

TSDT -0.0062 -0.8875 -2.3187 -0.0056

Asymt -0.0709 -4.5128 -11.7847 0.0000

LWT -0.3373 -4.1819 -11.7795 -0.3252

50 ITSDT 0.0080 -4.4304 -11.5799 -0.0913

TSDT -0.0309 -4.4413 -11.6030 -0.0281

Asymt 0.0000 0.0310 0.5866 1.0000

LWT -0.0447 0.0509 0.5814 1.0091

4 ITSDT -0.1459 0.0205 0.5560 1.1115

TSDT 0.0000 0.0000 0.0000 0.0000

Asymt 0.0000 0.0304 0.5887 1.0000

LWT -0.0156 0.0564 0.5789 0.9055

σ̄zz 10 ITSDT 0.0619 0.0336 0.5864 0.9112

TSDT 0.0000 0.0000 0.0000 0.0000

Asymt 0.0000 0.0303 0.5888 1.0000

LWT 2.3464 1.5803 0.2311 -3.0687

50 ITSDT 5.9971 0.4328 1.4017 -4.8561

TSDT 0.0000 0.0000 0.0000 0.0000
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Fig. 12. w̄ through thickness for a FGM plate under mechanical load
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Fig. 13. σ̄xx through thickness for a FGM plate under mechanical load
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Fig. 14. σ̄yz through thickness for a FGM plate under mechanical load
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Fig. 16. Central deflection along FGM plate length under mechanical load

A graphical comparison between LWT, ITSDT and TSDT is shown in Figures

12 to 16 for the case where b/h = 4. Here it is important to point out that for vertical

displacements in FGM plates the ITSDT represents a substantial improvement with

respect to TSDT. For instance, by examining Fig. 16, we can easily observe that the

ITSDT accurately predicts the profile of the FGM plate along its length under an

applied sinusoidal mechanical load.

b. Thermal Load

Tables VII, VIII and IX show the results of the non-dimensionalized quantities

(Eq. 3.8) obtained for the FGM plate under the thermal load specified in Eq. 3.7. In

this case, all the FEM elements to be compared are going to be 9 node elements. In

the case of LWT, displacement and thermal variables in all the nodes are presented.

Therefore, quadratic Lagrange interpolation functions can be used for the elastic and
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thermal field. In addition to this, the thickness coordinate is discretized using four

layers with quadratic interpolation functions. In the case of TSDT and ITSDT only

4 nodes (the one on the corners) contain elastic variables; meanwhile, the thermal

field is presented in all the 9 nodes. Consequently, quadratic Lagrange interpolation

functions are used to approximate the thermal field . An important remark is that the

equivalent single layer theory for the temperature described in the previous chapter

was employed. In this case, ITSDT gives good results for the vertical displacement

w̄ only, and for ū the results are better than provided by TSDT; however this results

are not as good when a mechanical load is applied. For this reason, the results of the

non-dimensional stresses presents the same problem. It is important to point out that

for a refined mesh (8× 8 elements) the approximations are better, which means that

in the case of thermal field a better discretization in the plane domain is required to

take into account all the deformation mechanisms produced by this field.

Figures 17 to 21 represent comparisons of the non-dimensionalized values given

in Eq. 3.8 in the case where b/h = 4. Fig. 21 clearly shows that TSDT underpredicts

the variation of the vertical displacement along the plate length. Conversely, ITSDT

provides results that are in a very good agreement with LWT.
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Table VII. ū and w̄ for a FGM plate under a sinusoidal thermal field

b/h Theory z = 0 z = 0.10 z = 0.55 z = 1

Asymt -0.0826 0.0579 0.7213 1.5819

LWT -0.0832 0.0577 0.7226 1.5827

4 ITSDT -0.0736 0.0685 0.7333 1.5992

TSDT -0.1242 0.0482 0.8218 1.5936

Asymt -0.0856 0.0783 0.8221 1.5986

LWT -0.0870 0.0780 0.8222 1.6002

ū 10 ITSDT -0.0740 0.0901 0.8344 1.6120

TSDT -0.0803 0.0974 0.8969 1.6940

Asymt -0.0861 0.0828 0.8431 1.6025

LWT -0.0896 0.0804 0.8435 1.6063

50 ITSDT -0.0740 0.0949 0.8554 1.6150

TSDT -0.0709 0.1079 0.9127 1.7149

Asymt 1.7996 1.8122 2.0730 2.8706

LWT 1.8010 1.8135 2.0765 2.8692

4 ITSDT 1.8029 1.8235 2.0746 2.9018

TSDT 2.1929 2.1929 2.1929 2.1929

Asymt 5.2223 5.2281 5.3500 5.6905

LWT 5.2195 5.2252 5.3478 5.6858

w̄ 10 ITSDT 5.2176 5.2262 5.3462 5.6985

TSDT 5.6500 5.6500 5.6500 5.6500

Asymt 26.8826 26.8838 26.9089 26.9779

LWT 26.7424 26.7434 26.7684 26.8372

50 ITSDT 26.8509 26.8526 26.8775 26.9489

TSDT 28.4229 28.4229 28.4229 28.4229
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Table VIII. σ̄xx and σ̄xy for a FGM plate under a sinusoidal thermal field

b/h Theory z = 0 z = 0.10 z = 0.55 z = 1

Asymt -5.9945 -8.0400 -21.8798 -92.8964

LWT -6.0075 -7.9532 -21.8060 -98.2330

4 ITSDT -3.0586 -8.2351 -22.8373 -102.9315

TSDT -13.1914 -12.9434 -20.8879 -108.3721

Asymt -6.2290 -9.1183 -25.6057 -91.9860

LWT -6.0789 -8.9640 -25.4924 -96.6905

σ̄xx 10 ITSDT -3.8157 -9.4432 -26.6411 -100.9413

TSDT -9.5341 -11.9193 -27.3909 -101.8455

Asymt -6.2662 -9.3405 -26.4026 -91.7765

LWT -5.4771 -8.6616 -26.3668 -96.8538

50 ITSDT -3.9772 -9.6895 -27.4601 -100.5130

TSDT -8.7431 -11.6983 -28.7703 -100.4870

Asymt 3.4017 -2.3809 -28.6435 -57.7352

LWT 3.3827 -2.3584 -28.4413 -57.3277

4 ITSDT 3.9075 -1.9011 -27.9890 -56.8496

TSDT 6.0700 -0.9676 -31.3734 -56.8001

Asymt 3.5263 -3.2212 -32.6431 -58.3462

LWT 3.4814 -3.2138 -32.4088 -57.9187

σ̄xy 10 ITSDT 4.0370 -2.6630 -31.8457 -57.3956

TSDT 4.3742 -2.8810 -34.2322 -60.3420

Asymt 3.5455 -3.4068 -33.4797 -58.4857

LWT 3.3570 -3.5120 -33.2207 -57.9241

50 ITSDT 4.0626 -2.8336 -32.6495 -57.5245

TSDT 4.0075 -3.2922 -34.8330 -61.0792
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Table IX. σ̄yz and σ̄zz for a FGM plate under a sinusoidal thermal field

b/h Theory z = 0 z = 0.10 z = 0.55 z = 1

Asymt 0.0105 0.5982 0.1115 0.0000

LWT -0.3127 -0.4622 -0.1297 0.2385

4 ITSDT 0.4569 -0.4974 -0.0759 1.3002

TSDT -0.0004 -0.0593 -0.1549 -0.0004

Asymt -0.0044 0.2492 0.0318 0.0000

LWT -0.1330 -0.1837 -0.0395 0.1019

σ̄yz 10 ITSDT 0.0821 -0.2222 -0.0222 0.5741

TSDT -0.0001 -0.0197 -0.0513 -0.0001

Asymt 0.0009 0.0501 0.0058 0.0000

LWT -0.0115 -0.0284 -0.0147 0.0336

50 ITSDT 0.0122 -0.0453 -0.0041 0.1169

TSDT -0.0000 -0.0038 -0.0098 -0.0000

Asymt 0.0000 0.0523 0.5658 0.0000

LWT -0.2033 0.1604 0.4037 -19.3543

4 ITSDT 10.3987 1.5912 0.1162 -32.3557

TSDT 0.0000 0.0000 0.0000 0.0000

Asymt 0.0000 0.0087 0.0925 0.0000

LWT -0.0667 0.0899 -0.0379 -17.0183

σ̄zz 10 ITSDT 8.8328 1.3794 -0.3428 -28.3272

TSDT 0.0000 0.0000 0.0000 0.0000

Asymt 0.0000 0.0004 0.0037 0.0000

LWT 0.1418 0.2336 -0.1481 -16.6697

50 ITSDT 8.4886 1.3354 -0.4328 -27.5219

TSDT 0.0000 0.0000 0.0000 0.0000
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Fig. 18. σ̄xx through thickness for a FGM plate under thermal load
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Fig. 19. σ̄yz through thickness for a FGM plate under thermal load
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Fig. 21. Central deflection along the FGM plate length under thermal load

2. Smart FGM Plate

In this section, we are going to analyze the benchmark proposed in [33] that

consists of an FGM plate with a piezoelectric layer mounted in its bottom surface.

Here 90% of the thickness corresponds to the FGM and the 10% to the piezoelectric.

The applied mechanical and thermal loads are the same as in the case of pure FGM

plate; however due to the presence of the piezoelectric layer, a case where an electrical

field is also imposed over the structure needs to be included in the analysis. Then,

considering again the quarter plate as the computational domain
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V − = V̂ −cos(
πx

a
)cos(

πy

b
) (3.9)

where V − is the voltage applied to the bottom part of the piezoelectric layer. More-

over, the voltage between the metal surface of the FGM and the piezoelectric is zero.

Therefore, the same nondimensionalization applies but in the case of an applied volt-

age P = V̂ −(e∗/ac∗) where e∗ = 10 C/m2.

a. Mechanical Load

Tables X, XI and XII show the results using of the smart plate under a sinusoidal

mechanical load, specified in Eq. 3.7. As it can be observed the ITSDT provides

numerical results that are in good agreement with the ones provided by the LWT and

Asymt in the case of displacements and σxy. For σxx the results are not as good as

we expected, but they are better than the ones provided by TSDT.

The previous observations can be easily confirmed in Figures 22 to 25. Moreover,

if we want to make a comparison about the global behavior between ITSDT and

LWT, we should notice that Fig 26 clearly shows that for a smart FGM plate, ITSDT

represents a good alternative to LWT.
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Table X. ū and w̄ for a FGM plate under a sinusoidal mechanical load

b/h Theory z = 0 z = 0.10− z = 0.10+ z = 0.55 z = 1

Asymt -0.0582 -0.0466 -0.0463 0.0017 0.0521

LWT -0.0583 -0.0466 -0.0463 0.0018 0.0521

4 ITSDT -0.0581 -0.0457 -0.0455 0.0018 0.0517

TSDT -0.0516 -0.0394 -0.0392 0.0043 0.0476

Asymt -0.3551 -0.2871 -0.2855 0.0221 0.3296

LWT -0.3557 -0.2874 -0.2858 0.0221 0.3302

ū 10 ITSDT -0.3531 -0.2846 -0.2830 0.0227 0.3289

TSDT -0.3010 -0.2406 -0.2392 0.0262 0.2904

Asymt -8.8257 -7.1536 -7.1129 0.5982 8.2722

LWT -8.8629 -7.1811 -7.1414 0.6010 8.3105

50 ITSDT -8.7701 -7.1037 -7.0644 0.6164 8.2615

TSDT -7.4239 -5.9894 -5.9556 0.6524 7.2281

Asymt 0.1642 0.1689 0.1690 0.1758 0.1752

LWT 0.1641 0.1688 0.1689 0.1757 0.1751

4 ITSDT 0.1639 0.1674 0.1675 0.1752 0.1744

TSDT 0.1588 0.1588 0.1588 0.1588 0.1588

Asymt 2.2476 2.2591 2.2593 2.2732 2.2594

LWT 2.2459 2.2575 2.2577 2.2719 2.2580

w̄ 10 ITSDT 2.2391 2.2482 2.2484 2.2641 2.2498

TSDT 1.9671 1.9671 1.9671 1.9671 1.9671

Asymt 273.0874 273.1445 273.1453 273.2124 273.1322

LWT 271.6263 271.6814 271.6823 271.7478 271.6706

50 ITSDT 271.9821 272.0282 272.0292 272.1044 272.0215

TSDT 234.0888 234.0888 234.0888 234.0888 234.0888
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Table XI. σ̄xx and σ̄xy for a FGM plate under a sinusoidal mechanical load

b/h Theory z = 0 z = 0.10− z = 0.10+ z = 0.55 z = 1

Asymt -1.7730 -1.3089 -3.3053 0.3123 3.3436

LWT -1.7075 -1.3582 -3.3038 0.3136 3.3191

4 ITSDT -1.9811 -1.5540 -3.0849 0.2674 3.3748

TSDT -2.4775 -1.8972 -3.4935 0.3439 3.2014

Asymt -10.7825 -8.1427 -20.4145 1.6974 19.5563

LWT -10.3641 -8.3784 -20.2511 1.7003 19.3215

σ̄xx 10 ITSDT -11.6796 -9.5971 -19.0977 1.4648 19.5786

TSDT -14.4239 -11.5450 -21.2787 2.0965 19.4955

Asymt -267.8764 -203.2225 -508.8082 40.9274 483.5281

LWT -254.1364 -206.0629 -498.4310 40.4350 472.2888

50 ITSDT -288.4157 -239.1834 -476.1835 35.3327 483.2222

TSDT -355.7228 -287.1892 -529.4160 52.1706 485.0286

Asymt 0.8265 0.6613 1.9064 -0.0693 -1.9017

LWT 0.8212 0.6565 1.8939 -0.0701 -1.8860

4 ITSDT 0.8232 0.6487 1.8708 -0.0681 -1.8779

TSDT 0.7330 0.5615 1.6180 -0.1649 -1.7282

Asymt 5.0401 4.0759 11.7571 -0.8819 -12.0324

LWT 5.0022 4.0446 11.6697 -0.8757 -11.9397

σ̄xy 10 ITSDT 4.9900 4.0250 11.6127 -0.8718 -11.8983

TSDT 4.2565 3.4070 9.8277 -1.0052 -10.5000

Asymt 125.2830 101.5479 292.9534 -23.9041 -301.9500

LWT 123.7726 100.3203 289.4638 -23.5985 -298.3409

50 ITSDT 123.8836 100.3996 289.6907 -23.6363 -298.6252

TSDT 104.9205 84.7067 244.3836 -25.0122 -261.1148
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Table XII. σ̄yz and σ̄zz for a FGM plate under a sinusoidal mechanical load

b/h Theory z = 0 z = 0.10− z = 0.10+ z = 0.55 z = 1

Asymt -0.0051 -0.1791 -0.1883 -0.9961 0.0000

LWT -0.0054 -0.1787 -0.2482 -0.9600 -0.0704

4 ITSDT 0.0388 -0.0865 -0.2767 -0.9651 -0.0690

TSDT 0.0652 -0.0591 -0.1918 -0.9603 -0.1700

Asymt –0.0124 -0.4403 -0.4631 -2.5087 0.0000

LWT -0.0114 -0.4397 -0.5989 -2.4194 -0.1539

σ̄yz 10 ITSDT 0.1083 -0.2103 -0.6739 -2.4299 -0.1386

TSDT 0.1636 -0.1485 -0.4815 -2.4115 -0.4269

Asymt -0.0618 -2.1926 -2.3059 -12.5609 0.0000

LWT -0.0047 -2.1822 -2.8771 -12.1747 -0.6257

50 ITSDT 0.5541 -1.0443 -3.3466 -12.1656 -0.6673

TSDT 0.8188 -0.7430 -2.4096 -12.0672 -2.1362

Asymt 0.0000 0.0151 0.0157 0.5516 1.0000

LWT -0.0052 0.0083 -0.0430 0.5517 1.0096

4 ITSDT -0.4702 -0.3587 0.4269 0.4301 1.2503

TSDT 0.0000 0.0000 0.0000 0.0000 0.0000

Asymt 0.0000 -0.0148 -0.0154 -0.5531 -1.0000

LWT 0.0123 0.0191 -0.0234 0.5934 0.8327

σ̄zz 10 ITSDT -2.2577 -2.1225 2.8865 -0.0580 1.8142

TSDT 0.0000 0.0000 0.0000 0.0000 0.0000

Asymt 0.0000 0.0147 0.0154 0.5531 1.0000

LWT 1.8348 1.4469 2.2559 1.5495 -5.3799

50 ITSDT -53.2568 -52.4687 73.1037 -14.0228 17.8514

TSDT 0.0000 0.0000 0.0000 0.0000 0.0000
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Fig. 23. σ̄xx through thickness for a smart FGM plate under mechanical load
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Fig. 24. σ̄yz through thickness for a smart FGM plate under mechanical load
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Fig. 26. Central deflection along the smart FGM plate length under mechanical load

b. Thermal Load

Tables XIII to XVIII show the results of the non-dimensionalized quantities (Eq.

3.8) obtained for the smart FGM plate under the sinusoidal thermal load (Eq. 3.7).

Here in all the elements the electrical field is included in the 9 nodes using quadratic

Lagrangian interpolation for the layerwise electrical model presented in Chapter I.

Here we assume one mathematical layer with a quadratic Lagrangian interpolation

function for the piezoelectric layer.
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Table XIII. ū for a FGM plate under a sinusoidal thermal field

b/h Theory z = 0 z = 0.10− z = 0.10+ z = 0.55 z = 1

Asymt 0.5315 0.6163 0.6182 1.0600 1.7655

LWT 0.5315 0.6159 0.6179 1.0603 1.7660

4 RITSDT 0.5480 0.6318 0.6338 1.0773 1.7912

ITSDT 0.5073 0.6000 0.6022 1.0714 1.8108

TSDT 0.4807 0.6094 0.6124 1.2002 1.7852

Asymt 0.8731 0.9664 0.9687 1.4108 1.9051

LWT 0.8725 0.9660 0.9682 1.4108 1.9060

ū 10 RITSDT 0.8945 0.9877 0.9899 1.4336 1.9309

ITSDT 0.8455 0.9460 0.9484 1.4245 1.9537

TSDT 0.9212 1.0313 1.0339 1.5403 2.0443

Asymt 0.9682 1.0632 1.0655 1.5046 1.9439

LWT 0.9661 1.0617 1.0639 1.5047 1.9459

50 RITSDT 0.9906 1.0859 1.0882 1.5289 1.9699

ITSDT 0.9391 1.0418 1.0442 1.5188 1.9935

TSDT 1.0425 1.1471 1.1496 1.6322 2.1125
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As we can observe, the ITSDT proposed in this work does not give as good

results as it did in the previous cases. This means that ITSDT does not have the

capability to represent all the deformation modes presented on the smart FGM plate

when a thermal load is applied. In order to obtain better numerical approximation,

Table XIV. w̄ for a FGM plate under a sinusoidal thermal field

b/h Theory z = 0 z = 0.10− z = 0.10+ z = 0.55 z = 1

Asymt 0.9784 0.9380 0.9408 1.5866 2.5383

LWT 0.9829 0.9423 0.9431 1.5883 2.5375

4 RITSDT 0.9755 0.9343 0.9353 1.5911 2.5755

ITSDT 0.9847 1.0537 1.0556 1.6555 2.6526

TSDT 1.6691 1.6691 1.6691 1.6691 1.6691

Asymt 2.9618 2.9354 2.9371 3.3129 3.7651

LWT 2.9623 2.9356 2.9361 3.3109 3.7618

w̄ 10 RITSDT 2.9405 2.9139 2.9145 3.2991 3.7661

ITSDT 3.1312 3.1682 3.1692 3.5223 3.9966

TSDT 3.5594 3.5594 3.5594 3.5594 3.5594

Asymt 15.4949 15.4891 15.4895 15.5711 15.6653

LWT 15.4088 15.4028 15.4028 15.4839 15.5780

50 RITSDT 15.3815 15.3756 15.3757 15.4593 15.5567

ITSDT 16.5727 16.5806 16.5809 16.6577 16.7566

TSDT 16.8913 16.8913 16.8913 16.8913 16.8913

we improve the ITSDT using the multiple assumed displacement field. In other words,

ITSDT plus LWT are going to be used together and as a matter of simplification, we

will call this combination RITSDT. For our case, two mathematical layers are going

to define the LWT representation. The first one includes only the piezoelectric layer
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and the second one the FGM. This strategy represents a very simple improvement to

ITSDT model. As a consequence, we can see in Tables from XIII to XVIII, that the

RITSDT produces much better results than ITSDT. It is important to point out that

the performance of TSDT is poor in this case. Therefore, several physical fields are

required to be analyzed, an enhancement of the ITSDT through the use of a multiple

assumed displacement representation can be considered as a good alternative.

Table XV. σ̄xx for a FGM plate under a sinusoidal thermal field

b/h Theory z = 0 z = 0.10− z = 0.10+ z = 0.55 z = 1

Asymt 23.5636 6.6870 -40.4570 -42.0761 -82.0121

LWT 23.4371 6.6777 -40.3525 -41.5123 -87.4762

4 RITSDT 20.7680 7.9268 -38.6207 -43.9788 -90.4650

ITSDT 38.5499 31.0401 -57.9065 -40.9614 -93.9901

TSDT 25.1560 15.5195 -53.6431 -42.8874 -96.6527

Asymt 37.7171 11.2643 -57.6124 -59.8947 -74.1416

LWT 37.4955 11.2128 -56.8820 -59.4867 -77.6610

σ̄xx 10 RITSDT 32.9166 14.1826 -56.6791 -61.9819 -80.7597

ITSDT 58.9114 47.6475 -84.0623 -57.6041 -86.2699

TSDT 47.7404 29.1542 -69.5235 -66.4396 -80.3779

Asymt 41.6410 12.5411 -62.2834 -64.7537 -71.9510

LWT 41.5770 12.6261 -61.0617 -64.4223 -75.2473

50 RITSDT 36.2870 15.9043 -61.5870 -66.8959 -78.1236

ITSDT 64.5426 52.2434 -91.1896 -62.1431 -84.1927

TSDT 53.9628 32.8982 -73.8904 -72.8049 -76.0998
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Table XVI. σ̄xy for a FGM plate under a sinusoidal thermal field

b/h Theory z = 0 z = 0.10− z = 0.10+ z = 0.55 z = 1

Asymt -7.5443 -8.7488 -25.4627 -42.3551 -64.4453

LWT -7.4949 -8.6854 -25.2825 -42.0676 -63.9894

4 RITSDT -7.2702 -8.4453 -24.5830 -41.2695 -63.0823

ITSDT -6.7114 -8.0072 -23.3202 -41.0431 -63.7829

TSDT -6.2555 -8.0577 -23.5014 -45.9863 -63.0837

Asymt -12.3945 -13.7188 -39.8957 -56.3744 -69.5407

LWT -12.3153 -13.6281 -39.6306 -55.9806 -69.0404

σ̄xy 10 RITSDT -11.9918 -13.2937 -38.6592 -54.9269 -67.9629

ITSDT -11.3078 -12.7119 -36.9783 -54.5758 -68.7981

TSDT -12.3179 -13.8553 -40.3046 -59.0158 -72.0105

Asymt -13.7432 -15.0923 -43.8842 -60.1237 -70.9556

LWT -13.6856 -15.0182 -43.6648 -59.6964 -70.3707

50 RITSDT -13.3014 -14.6316 -42.5430 -58.5792 -69.3234

ITSDT -12.5796 -14.0135 -40.7568 -58.1918 -70.1922

TSDT -13.9886 -15.4478 -44.9199 -62.5366 -74.3568
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Table XVII. σ̄yz for a FGM plate under a sinusoidal thermal field

b/h Theory z = 0 z = 0.10− z = 0.10+ z = 0.55 z = 1

Asymt 0.0611 1.8244 1.7979 -0.8831 0.0000

LWT 0.0502 1.8173 1.4963 -0.6810 0.0445

4 RITSDT 0.6681 1.1361 2.2972 -0.7462 0.7311

ITSDT 1.5336 0.9500 2.8887 -1.2882 2.0048

TSDT 0.0356 -0.0224 -0.0888 -0.4445 -0.0787

Asymt 0.0394 1.1792 1.1667 -0.4858 0.0000

LWT 0.0462 1.1844 1.0584 -0.4088 -0.0253

σ̄yz 10 RITSDT 0.3807 0.7853 1.2900 -0.3976 0.2552

ITSDT 0.8039 0.5797 1.7722 -0.7458 1.0503

TSDT 0.0238 -0.0151 -0.0596 -0.2984 -0.0528

Asymt 0.0087 0.2608 0.2582 -0.1045 0.0000

LWT 0.0139 0.2631 0.2434 -0.0928 -0.0012

50 RITSDT 0.0827 0.1755 0.2793 -0.0851 0.0485

ITSDT 0.1716 0.1272 0.3893 -0.1620 0.2233

TSDT 0.0053 -0.0034 -0.0133 -0.0664 -0.0118
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Table XVIII. σ̄zz for a FGM plate under a sinusoidal thermal field

b/h Theory z = 0 z = 0.10− z = 0.10+ z = 0.55 z = 1

Asymt -0.0002 -0.1634 -0.1697 -0.1666 -0.0004

LWT 0.0691 -0.0895 -0.6744 0.5545 -19.4763

4 RITSDT -5.0001 4.1314 7.1908 -2.5995 -24.4099

ITSDT 25.8594 46.7911 -39.1529 7.0664 -39.9322

TSDT 0.0000 0.0000 0.0000 0.0000 0.0000

Asymt -0.0001 -0.0422 -0.0439 -0.0908 -0.0001

LWT 0.0366 -0.0117 0.6767 -0.1341 -12.8232

σ̄zz 10 RITSDT -9.2093 8.5501 5.3130 -2.1380 -16.9366

ITSDT 35.4588 70.0983 -61.0740 11.9986 -39.7650

TSDT 0.0000 0.0000 0.0000 0.0000 0.0000

Asymt 0.0000 -0.0019 -0.0019 -0.0044 0.0000

LWT 0.1004 0.0760 1.1669 -0.2787 -11.1993

50 RITSDT -10.3488 9.7440 4.8633 -1.9657 -15.0973

ITSDT 38.1283 76.5251 -67.0596 13.4122 -39.9601

TSDT 0.0000 0.0000 0.0000 0.0000 0.0000
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Fig. 27. w̄ through thickness for a smart FGM plate under thermal load
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Fig. 28. σ̄xx through thickness for a smart FGM plate under thermal load
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Fig. 29. σ̄yz through thickness for a smart FGM plate under thermal load
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Fig. 30. σ̄zz through thickness for a smart FGM plate under thermal load
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Fig. 31. Central deflection along the smart FGM plate length under thermal load

Figures 27 to 31 represent a graphical comparison among LWT, RITSDT, ITSDT

and TSDT. As we can observe, for w̄ and σ̄xx, the results provided by RITSDT are

close to those provided by LWT. From Fig. 31, we verify that TSDT does underpre-

dict the values of the vertical displacements along the plate length given by LWT.

Conversely, ITSDT slightly overpredicts the results, but RITSDT provides excellent

results in the case of vertical displacement when a sinusoidal thermal field is imposed

on the smart FGM plate.

c. Electrical Load

Tables XIX to XXIV contains the numerical values of the nondimensionalized

quantities defined in Eq. 3.8 when the voltage V − is applied to the bottom surface

of the piezoelectric layer. Likewise the thermal case, RITSDT is used to describe

the displacement and the stresses over the smart FGM Plate. These results are
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compared with those obtained employing LWT and Asymt and we can conclude that

they represent a very reasonable approximation as in the previous case where the

effects caused by the thermal field were tested.

Table XIX. ū for a FGM plate under a sinusoidal electrical field

b/h Theory z = 0 z = 0.10− z = 0.10+ z = 0.55 z = 1

Asymt 0.3178 0.2405 0.2393 0.0417 -0.1250

LWT 0.3144 0.2416 0.2401 0.0417 -0.1249

4 RITSDT 0.3179 0.2429 0.2414 0.0421 -0.1247

ITSDT 0.2679 0.2165 0.2153 0.0347 -0.1053

TSDT 0.1040 0.0881 0.0877 0.0186 -0.0503

Asymt 0.6993 0.5854 0.5829 0.1212 -0.3262

LWT 0.6998 0.5860 0.5834 0.1212 -0.3269

ū 10 RITSDT 0.7016 0.5877 0.5851 0.1231 -0.3242

ITSDT 0.6106 0.5169 0.5147 0.1062 -0.2842

TSDT 0.2572 0.2195 0.2186 0.0465 -0.1247

Asymt 3.4088 2.9123 2.9003 0.6217 -1.6430

LWT 3.4194 2.9202 2.9084 0.6209 -1.6540

50 RITSDT 3.4173 2.9210 2.9093 0.6319 -1.6319

ITSDT 2.9961 2.5613 2.5511 0.5492 -1.4396

TSDT 1.2833 1.0969 1.0925 0.2327 -0.6228
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Table XX. w̄ for a FGM plate under a sinusoidal electrical field

b/h Theory z = 0 z = 0.10− z = 0.10+ z = 0.55 z = 1

Asymt -0.3125 -0.5069 -0.5072 -0.5367 -0.5259

LWT -0.3090 -0.5038 -0.5063 -0.5360 -0.5252

4 RITSDT -0.3104 -0.5094 -0.5120 -0.5422 -0.5306

ITSDT -0.3046 -0.3903 -0.3920 -0.4796 -0.4550

TSDT -0.2078 -0.2078 -0.2078 -0.2078 -0.2078

Asymt -3.0163 -3.2090 -3.2093 -3.2444 -3.2350

LWT -3.0106 -3.2034 -3.2059 -3.2414 -3.2320

w̄ 10 RITSDT -3.0150 -3.2126 -3.2152 -3.2511 -3.2415

ITSDT -2.6812 -2.7663 -2.7680 -2.8598 -2.8373

TSDT -1.2303 -1.2303 -1.2303 -1.2303 -1.2303

Asymt -80.3362 -80.5285 -80.5288 -80.5649 -80.5559

LWT -79.8921 -80.0839 -80.0864 -80.1222 -80.1143

50 RITSDT -80.3746 -80.5719 -80.5745 -80.6114 -80.6023

ITSDT -70.6601 -70.7451 -70.7467 -70.8393 -70.8173

TSDT -30.4440 -30.4440 -30.4440 -30.4440 -30.4440
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Table XXI. σxx for a FGM plate under a sinusoidal electrical field

b/h Theory z = 0 z = 0.10− z = 0.10+ z = 0.55 z = 1

Asymt -54.8304 -57.0406 17.2404 3.1287 -7.3023

LWT -54.4515 -56.6094 17.2361 3.0787 -7.2286

4 RITSDT -54.0295 -56.9420 17.2012 3.0574 -7.4326

ITSDT -36.2229 -32.8598 -2.0938 6.0924 -11.1949

TSDT -23.7552 -24.3741 7.7315 1.4847 -3.4379

Asymt -139.4800 -143.5705 41.7452 8.3715 -19.0525

LWT -138.5564 -142.5830 41.4256 8.2887 -18.7735

σxx 10 RITSDT -138.3935 -142.7755 41.2498 8.1459 -19.0613

ITSDT -92.5422 -83.3348 -7.0343 15.8731 -28.8865

TSDT -59.3474 -61.1603 19.2537 3.7188 -8.5254

Asymt -699.6198 -718.7498 207.4769 42.3580 -95.9768

LWT -695.9785 -714.6814 203.9491 42.1427 -93.0107

50 RITSDT -695.0320 -714.2683 204.6223 41.1732 -95.7079

ITSDT -464.5558 -417.7721 -36.8378 79.9417 -145.2344

TSDT -296.6993 -306.0083 96.1998 18.6007 -42.5634
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Table XXII. σxy for a FGM plate under a sinusoidal electrical field

b/h Theory z = 0 z = 0.10− z = 0.10+ z = 0.55 z = 1

Asymt -4.5119 -3.4145 -9.8544 -1.6679 4.5631

LWT -4.4565 -3.4016 -9.8038 -1.6523 4.5252

4 RITSDT -4.4203 -3.3742 -9.7300 -1.6118 4.5432

ITSDT -3.7282 -3.0117 -8.6920 -1.3288 3.8518

TSDT -1.4590 -1.2348 -3.5674 -0.7116 1.8497

Asymt -9.9272 -8.3097 -24.0057 -4.8421 11.9052

LWT -9.8499 -8.2501 -23.8301 -4.8091 11.8071

σxy 10 RITSDT -9.8147 -8.2164 -23.7346 -4.7138 11.9030

ITSDT -8.5451 -7.2280 -20.8822 -4.0677 10.4386

TSDT -3.6050 -3.0738 -8.8820 -1.7823 4.5852

Asymt -48.3883 -41.3408 -119.4505 -24.8437 59.9721

LWT -47.8584 -40.8964 -118.1804 -24.7128 59.0990

50 RITSDT -47.8927 -40.8928 -118.1677 -24.2033 60.0175

ITSDT -41.9925 -35.8592 -103.6219 -21.0376 52.9327

TSDT -17.9853 -15.3566 -44.3754 -8.9146 22.8892
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Table XXIII. σyz for a FGM plate under a sinusoidal electrical field

b/h Theory z = 0 z = 0.10− z = 0.10+ z = 0.55 z = 1

Asymt -0.0988 -4.0737 -4.0258 1.3475 0.0000

LWT 0.1843 -3.8111 -3.7823 1.2365 0.2095

4 RITSDT -0.8771 -2.7932 -3.9134 1.2795 0.0251

ITSDT 1.1592 -1.5695 -4.9228 1.0685 0.7393

TSDT 3.7646 0.0583 0.0635 0.3179 0.0563

Asymt -0.1018 -4.1583 -4.1119 1.4021 0.0000

LWT -0.0006 -4.0268 -3.8769 1.2807 0.2109

σyz 10 RITSDT -1.0710 -2.9869 -4.0425 1.3119 0.0333

ITSDT 1.0810 -1.6281 -5.1319 1.1126 0.7251

TSDT 3.7710 0.0645 0.0640 0.3202 0.0567

Asymt -0.1023 -4.1740 -4.1278 1.4123 0.0000

LWT -0.0567 -4.0822 -3.9233 1.3070 0.1734

50 RITSDT -1.1170 -3.0327 -4.0686 1.3195 0.0342

ITSDT 1.0627 -1.6414 -5.1790 1.1236 0.7200

TSDT 3.7723 0.0658 0.0641 0.3207 0.0568
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Table XXIV. σzz for a FGM plate under a sinusoidal electrical field

b/h Theory z = 0 z = 0.10− z = 0.10+ z = 0.55 z = 1

Asymt 0.0004 0.3245 0.3387 0.8141 0.0008

LWT -0.0981 0.2089 0.6478 0.7427 0.0037

4 RITSDT 0.9287 -0.5438 0.7425 0.8828 -0.4254

ITSDT 32.2528 43.5794 -46.8140 10.8902 -16.6512

TSDT 0.0000 0.0000 0.0000 0.0000 0.0000

Asymt 0.0002 0.1329 0.1388 0.3425 0.0003

LWT -0.0678 0.0680 0.2103 0.2648 0.2345

σzz 10 RITSDT 0.3475 -0.3080 -0.0555 0.3227 0.0874

ITSDT 79.3183 108.8708 -117.6503 25.4049 -40.4829

TSDT 0.0000 0.0000 0.0000 0.0000 0.0000

Asymt 0.0000 0.0267 0.0279 0.0691 0.0001

LWT -0.5546 -0.4108 -0.7519 -0.1716 1.7492

50 RITSDT -0.0832 -0.5744 -2.0755 -0.1997 1.5312

ITSDT 395.3747 544.2737 -588.8404 125.2653 -201.3328

TSDT 0.0000 0.0000 0.0000 0.0000 0.0000
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Fig. 32. w̄ through thickness for a smart FGM plate under an applied voltage
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Fig. 33. σ̄xx through thickness for a smart FGM plate under an applied voltage
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Fig. 34. σ̄yz through thickness for a smart FGM plate under an applied voltage
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Fig. 36. Central deflection along the smart FGM plate length under an applied voltage

Figures 32 to 36 depict the graphical comparison among LWT, RITSDT, TSDT

+ LWT and ITSDT. It is very important to remark that in this case, we decided to

present an improved version of TSDT, to study its behavior in comparison to ITSDT

and RITSDT. The LWT added to TSDT has the same characteristics as the one used

to generate the RITSDT. As we can observe in Fig. 32 TSDT+LWT performs better

than ITSDT but does not generate values close to those produced by LWT. On the

other hand, RITSDT provides very good results. The same observation can be made

from Fig. 36, where the vertical displacement profile along the smart FGM plate is

very well predicted using RITSDT when it is compared to LWT.
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CHAPTER IV

DYNAMIC ANALYSIS

Dynamical systems, systems with physical effects that change with time, are

very important in engineering applications. Among them, smart materials are good

examples of dynamical systems since they undergo elastic, electrical and thermal

fields that are time dependent. Hence, to appropriately describe the response of

these systems, we shall employ Eq. 2.269 that allows us to carry out a fully coupled

piezo-thermo-elastic analysis.

In order to make Eq. 2.269 more tractable, we will condense the electrical dofs

of the piezoelectric part that acts as a sensor. Therefore, the two resultant equations

are

Muuüu + Cuuu̇u + K̄uuuu +Kuφa ūφa + K̄uθuθ = Fu

C̄θuu̇u + C̄θθu̇θ +Kθθuθ = Fθ (4.1)

where

K̄uu = Kuu −Kuφs [Kuφs ]
−1
Kφsu ; K̄uθ = Kuθ −Kuφs [Kuφs ]

−1
Kφsθ

C̄θu = Cθu − Cuφs [Kuφs ]
−1
Kφsu ; C̄θθ = Cθθ −Cuφs [Kuφs ]

−1
Kφsθ (4.2)

and ūφa is the imposed electrical field over the piezoelectric that acts as an actuator

As we can observe in Eq.4.1 the coupling between the elastic and thermal field

can be found in the damping matrix. An uncoupled effect can be performed just

neglecting the matrix C̄θu. Therefore, the heat equation can be solved independently

from the elastic one.

Even though Eq.4.1 represents a quite general expression for smart materials,

some particular cases becomes relevant for practical purposes. For instance, in the
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absence of thermal field this equation can be simplified as

Muuüu + Cuuu̇u + K̄uuuu = F̄u (4.3)

where

F̄u = Fu −Kuφa ūφa (4.4)

which typically represents an isothermal process for a sensing-actuation structural

system.

Another interesting situation that allows some simplification of the Eq.4.1 is

represented by a thermal shock . In this case, a static thermal field is suddenly

applied to the whole domain of the smart material. Then

Muuüu + Cuuu̇u + K̄uuuu = F̄u −Kuθ ūθ (4.5)

with

ūθ = [Kθθ ]
−1 Fθ (4.6)

On the other hand, since the temperature over the whole domain evolves at much

slower rate than the displacements, the assumption of a dynamical thermal and static

elastic field seems to be reasonable. Then Eq. 4.1 takes the form

K̄uuuu + K̄uθuθ = F̄u

C̄θuu̇θ + C̄θθu̇θ +Kθθuθ = Fθ (4.7)

If we condensed the elastic dofs, we obtain

C̃θθu̇θ +Kθθuθ = F̃θ (4.8)
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where

C̃θθ = C̄θθ − C̄θu

[
K̄uu

]−1
K̄uθ

F̃θ = Fθ −
[
K̄uu

]−1
F̄u (4.9)

A. Applications

In this section, the FGM and Smart FGM plate used in Chapter III (n=2.0)

will be employed again. However, in this case, the quasi-static assumption will be

relaxed and consequently a dynamical analysis will be carried out. The mechanical,

thermal and electrical loads applied to the structure are going to be the same as the

ones applied in the static case. In the sequel, for all the applications, the plate will

be simply supported in all its edges. Unless specified, the computational domain will

be a quarter plate and the mesh will be comprised by 4× 4 elements. Moreover, it is

assumed Rayleigh structural damping with α = β = 10−5

1. FGM Plate

As it was shown in the previous chapter, ITSDT provides excellent results in

the calculation of vertical displacements. Here we are going to use the same ITSDT

elements as the ones used in the previous chapter to compute the mechanical field.

For the thermal field, the theory used will change according to the characteristic of

the problem.

a. Mechanical Load

In this part, a free vibration problem will be presented to test the performance

of ITSDT to handle dynamical problems. A 4 node element with ITSDT will be

employed. For the FGM plate specified above, we are going to generate our initial
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Fig. 37. Time response of the center of the FGM plate for a/h=4

conditions applying the mechanical load specified in Eq. 3.7. When the equilibrium

is attained, we remove the force and allow the plate to oscillate freely. Figures 37, 38

and 39 show the evolution of the non-dimensionalized vertical displacement w̄ (given

by Eq. 3.8) at the top of the plate, for the cases where the plate has span to thickness

ratio (b/h) equal to to 4, 10 and 50. Even though this is a very simple example, it is

interesting to verify that the plate with higher (b/h = 50) span-thickness ratio is the

more flexible structure. In other words, that plate has smaller frequencies compared

to the other plates, and therefore, its period is the greatest as it can be observed in

the figures.

b. Thermal Load

If the thermal field produced by the temperature profile specified in Eq. 3.7 is

suddenly imposed in the whole domain of the FGM plate, we are in the case of the



111

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time [s]

V
er

tic
al

 D
is

pl
ac

em
en

t W

Time response at top part of the center of the plate

Dyn a/h=10

Fig. 38. Time response of the center of the FGM plate for a/h=10
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Fig. 39. Time response of the center of the FGM plate for a/h=50
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Fig. 40. Time response of the center of the FGM plate when a thermal shock is imposed

thermal shock described by Eq. 4.5. Since no time temperature evolution is necessary

to be calculated, the equivalent single layer for temperature will be used. As we did

in Chapter III, 9 node element will be employed, where 4 of the nodes - the ones in

the corners - contain mechanical dofs, and all 9 nodes contains thermal dofs. Fig. 40

depicts the time response of the structure w̄ (Eq. 3.8) for two different span-thickness

ratio and they are compared with the static values calculated in the previous section.

As we can observe, the static values represent the equilibrium point around which

the structures oscillates.

On the other hand, if we consider a more realistic case, where the thermal field

evolves with time until it reaches its equilibrium, the LWT model to represent tem-

perature is more convienient. Moreover, the two cases considered above where the

dynamic heat equation can be solved independently from the elastic field (uncoupled)

and the one where this field can be condensed (coupled) (Eq. 4.7) deserve special
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Fig. 41. Time response of the center of the FGM plate for an imposed thermal bound-

ary condition

attention. According to this, Figures 41 and 42 represent the history of w̄ and the

temperature increase and significantly differences can be easily observed. First, if we

perform a coupled analysis, the stabilization point will be reached faster than if we

use an uncoupled analysis. This makes perfect sense since the coupling between the

elastic and thermal field in the heat equation is given by a damping term. This term

will slow down the temperature change because the conductive heat over the struc-

ture affects both the thermal and elastic field; meanwhile, in the uncoupled analysis

the thermal field is the only one affected by the heat transfer process.

An important remark is that the uncoupled analysis demands a lot of computa-

tional resources. Because of this, we have employed a very course mesh (2 × 2) only

for this analysis. This is the reason why in Fig 41 the final vertical displacement w̄

obtained from the uncoupled analysis is higher than the one obtained performing the

coupled analysis.
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Fig. 42. Temperature increase evolution on the center point of the middle plane of the

plate for an imposed thermal boundary condition

2. Smart FGM Plate

Here the elements to be used are similar to the ones used for FGM plate; however,

there are two important differences. The first one is that in all the cases the electrical

field is expressed using LWT representation and all the 9 nodes of the element should

contain electrical variables, too. And the second difference is that for the mechanical

field we are going to use RITSDT for the cases where electrical and thermal load is

applied. For the mechanical load ITSDT is enough.

a. Mechanical Load

Likewise the FGM plate, the Smart FGM plate is submitted to an initial displace-

ment and allowed to vibrate freely. Figures 43, 44 and 45 depict the time evolution

of w̄ for the cases when the span-thickness ratio is 4, 10 and 20, respectively. As we
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Fig. 43. Time response of the center of the smart FGM plate for a/h=4

can observe, the profiles obtained are pretty similar to the ones obtained in the ab-

sence of the piezoelectric layer. This fact means that the electrical field adapts to the

mechanical one, reproducing its behavior proportionally. This is the main fact why

piezoelectric materials can be used as a sensor. This assertion can be easily verified

in Figures 46, 47 and 48 where we can notice the history voltage in the middle plane

of the piezoelectric layer for different span-thickness ratios.

b. Thermal Load

Here we are going to apply a similar thermal shock as was applied in the case of

FMG plate. The mechanical and electrical response of the system can be observed

in Figures 49 and 50, respectively. Since under a thermal shock the smart structure

behaves similarly to a mechanical impact, we can expect that the electrical field

proportionally reproduces the dynamic of the smart plate as we can see in Fig. 50.
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Fig. 44. Time response of the center of the smart FGM plate for a/h=10
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Fig. 45. Time response of the center of the smart FGM plate for a/h=50
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Fig. 46. Voltage evolution in the middle plane of the sensor for a/h=4
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Fig. 47. Voltage evolution in the middle plane of the sensor for a/h=10
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Fig. 48. Voltage evolution in the middle plane of the sensor for a/h=50
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Fig. 49. Time response of the center of the smart FGM plate when a thermal shock is

imposed
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Fig. 50. Voltage evolution in the middle plane of the sensor when a thermal shock is

imposed

On the other hand, the results of performing a coupled and uncoupled analysis

can be compared in Fig. 51 when b/h = 4. Comparing figures 41 and 51, we can

notice a difference that is worthy to comment. Either for the coupled or uncoupled

analysis, the time history of w̄ of the pure FGM plate reaches the equilibrium point

only once at the end of the process. However, in the Smart FGM plate this phenomena

happens twice, the first one at a relatively early stage and the second time after a long

period of time. This means that the electrical field provides an initial boost to the

structure due to its capacity to react faster compared to the mechanical and thermal

field; in other words, this effect is like an small impact. After some time, the other

fields start combining with the electrical one, causing a deceleration process until a

maximum point is reached. This is the point where all the effects are present and

able to interact, and after this, the process of reaching the equilibrium point starts

taking place. In the coupled analysis, since the energy due to the heat conduction
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boundary condition

over the plate is used to produce an evolution in three different fields, the system will

take a while to reach the equilibrium point. This period of time will be bigger than

the time in the pure FGM plate.

c. Electrical Load

Finally, the case where a sinusoidal voltage (Eq. 3.9) imposed over the bottom

part of the piezoelectric layer of the plate will be analyzed. Fig 52 shows the evolution

of w̄ for two different span-thickness ratios. As we can see, the oscillation for the

two cases takes place around their corresponding equilibrium point. This kind of

load allows us to realize that the structure with greater span-thickness ratio is more

flexible.
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CHAPTER V

ACTIVE VIBRATION CONTROL OF SMART FGM PLATES

A. Negative Velocity Feedback

Recalling the Eq. 2.269 and considering and isothermal process, we obtain

Muuüu + Cuuu̇+Kuuuu +Kuφsuφs +Kuφauφa = Fu

Kφsuuu +Kφsφsuφs = 0

Kφauuu +Kφaφauφa = Fφa (5.1)

Then, condensing the electrical dofs yields

Muuüu + Cuuu̇u +
(
Kuu −Kuφs [Kφsφs]

−1
Kφsu −Kuφa [Kφaφa]

−1
Kφau

)
uu

= Fu −Kuφa [Kφaφa]
−1 Fφa (5.2)

When the structures is vibrating, the piezoelectric sensor generates an output voltage.

This voltage can be amplified and is fed back to the actuators. From the actuator

equation (third expression in Eq. 5.1), we can say that the force induced in the

actuator is a linear combination of its voltage and the elastic field

Fφa = f(uu, uφa) (5.3)

The negative velocity feedback control strategy is based on the assumption of pro-

portionality between the actuator and time derivative sensor voltages, φa α φ̇s. Using

the previous assumption and the actuator equation, we can conclude that Fφa is also

proportional to φ̇s, so

Fφa = f(uu, φ̇s) (5.4)
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From the sensor equation, we see u̇u α φ̇s, then

Fφa = f(uu, u̇u) (5.5)

Therefore, the electrical flux applied to the actuator should be

Fφa = G1Kφauuu +G2Kφauu̇u (5.6)

in this case G1 = 1 according to the actuator equation. Replacing Eq. 5.6 into Eq.

5.2

Muuüu + Cuuu̇u +Kuuuu −Kuφs [Kφsφs]
−1Kφsuuu −Kuφa [Kφaφa]

−1Kφauuu

= Fu −Kuφa [Kφaφa]
−1 (Kφauuu +G2Kφauu̇u) (5.7)

Therefore, the vibration of a plate with a negative velocity feedback control loop can

be expressed as

Muuüu + C̄uuu̇u + K̄uuuu = Fu (5.8)

where

C̄uu = Cuu +G2Kuφa [Kφaφa]
−1
Kφau

K̄uu = Kuu −Kuφs [Kφsφs]
−1
Kφsu (5.9)

1. Application

To illustrate the negative feedback control strategy, we will apply an initial dis-

placement (using the sinusoidal load of Eq. 3.7)to a Smart FGM plate of span-

thickness ratio of 10. This plate will have a core of FGM with n = 2.0, which

represents 90% of the thickness, and in its bottom part, it will be attached to a piezo-

electric layer that will act as a sensor (5% of the thickness). Similarly, in its top part

another piezoelectric layer will be mounted to act as an actuator. The Smart FGM
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Fig. 53. Time responses at the top part of the center of the plate for different gain

values G

plate will be simple supported, and due to the symmetry of the problem, a quarter

plate will be used as a computational domain. A mesh of 4 × 4 elements will be

employed and the non dimensionalized displacement w̄ represented by Eq. 3.8 will

be considered. Moreover, the element to be employed will have 9 nodes, where all of

them have LWT for electrical (sensor and actuator) degrees of freedom (dofs), and

three levels for each mathematical layer, and only 4 nodes (the one in the corners)

will contain ITSDT for mechanical dofs. In order to simplify the electrical dofs, for

both sensor and actuator layers will be taken as one mathematical layer for each case.

Fig. 53 shows the w̄ time response for different values of G. As it is expected

when G grows the damping of the structure increases. It is remarkable that in the

case where G = 0, the structure only has an structural Rayleigh damping whose

coefficients are α = 10−5 and β = 10−5.
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B. Optimal Control

Let’s consider the system of first-order ordinary differential equation

ẋ = f(x, u, t) (5.10)

where x is the state variable vector and u the control vector. The optimization

problem consists of finding the vector u that minimize the functional

J (t0) =
∫ t1

t0
L (x, u) dt (5.11)

To minimize J with the constraint represented by 5.10, we define the augmented

functional J∗

J∗ =
∫ t1

t0

{
L(x, u) + rT [f(x, u, t)− ẋ]

}
dt (5.12)
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if we define the Hamiltonian

H(x, u, r, t) = L(x, u) + rTf(x, u, t) (5.13)

J∗ can be expressed as

J∗ =
∫ t1

t0

[
H(x, u, r, t)− rT ẋ

]
dt (5.14)

the solution of the expression dJ∗ = 0 determines the minimum of J provided d2J > 0,

then

dJ∗ =
[
(H − rT ẋ)δt

]t1
t0

+
∫ t1

t0


∂H

T

∂x
δx+

∂HT

∂u
δu− rTδẋ+

(
∂H

∂r
− ẋ

)T

δr


 dt

(5.15)

after integrating by parts and performing some algebraic manipulation, Eq. 5.15

yields

dJ∗ =

[(
∂HT

∂r
ẋ

)
δt− rT δx

]t1

t0

+
∫ t1

t0

[(
∂HT

∂x
+ ṙ

)
δx+

∂HT

∂u
δu

]
dt

+
∫ t1

t0



(
∂H

∂r
− ẋ

)T

δr


dt (5.16)

Since dJ∗ = 0 must hold for any δr, δx and δu, we obtain the following equations

∂H

∂x
+ ṙ = 0 (5.17)

∂H

∂u
= 0 (5.18)

∂H

∂r
= ẋ (5.19)
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C. Linear Quadratic Regulator (LQR)

Since the quadratic expression xTQx measures the distance form the equilibrium

x = 0 and represent the energy of the system, and uTRu the control energy, we can

write J as

J =
1

2

∫ t1

t0
(x̂TQx̂+ uTRu)dt (5.20)

where Q and R are semi positive definite weighting matrices. Due to asymptotic

stability, the quadratic integral J must converge and x → 0 and u → 0 as t → ∞.

Moreover, if we define the Hamiltonian as

H =
1

2
(x̂TQx̂+ uTRu) + rT (Âx̂+ B̂u) (5.21)

and using Eqs. 5.17, 5.18 and 5.19 yields

Qx̂+ ÂTr + ṙ = 0 (5.22)

Ru + B̂Tr = 0 ⇒ u = −R−1B̂Tr (5.23)

˙̂x = Âx̂+ B̂u (5.24)

If we assume that the Lagrangian multiplier is proportional to the state vector r = P x̂,

the matrix P can be calculated using the Ricatti equation

−Ṗ = ÂTP + PÂ+Q− PB̂R−1B̂TP (5.25)

and the Kalman Filter can be calculated as

K∗
g (t) = R−1B̂TP (t) (5.26)

Therefore, the close loop system behaves according to

˙̂x = (Â− B̂Kg)x̂+ p
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y = Ĉx̂ (5.27)

1. Choice of the Weighted State Matrix

The main purpose of using Optimal control is to minimize the energy due to

vibration of the structure. Since the term associated with this energy is (1/2)xTQx,

the weighted matrix Q plays an important role in the optimization process.

We know that the state vector is composed of the modal displacement (χ) and

the velocities (χ̇) of the structure

x̂ =





χ

χ̇





(5.28)

according to this, the matrix Q can be splitted as

Q =



Qχχ Qχχ̇

Qχ̇χ Qχ̇χ̇


 (5.29)

As a matter of simplification, let’s assume that Qχχ̇ = Qχ̇χ = 0. Then, some impor-

tant cases can be considered to determine Qχχ and Qχ̇χ̇.

The first important case is the uniform control of all the modes. Here, we achieved

our objective by setting Qχχ = Qχ̇χ̇ = I, where I is the identity matrix. Another

important situation is the control of ”n” modes of the system. Likewise the first case

Qχχ = Qχ̇χ̇, but Qχχ take the following form

Qχχ =



Qn 0

0 0


 (5.30)

If the objective is to control this n modes uniformly Qn = In; however if some modes

are to be suppressed more than others, Qn will be a diagonal matrix whose values are

the weights of each mode.
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A similar case from the previous one can be

Qn =




ω2
1

.

.

.

ω2
n




; Qχ̇χ̇ =



I 0

0 0


 (5.31)

here Qχχ
∼= Qχ̇χ̇.

2. Application

In this case, we will apply the LQR control to the same Smart FGM plate

described in the Negative Velocity Feedback section. The loads, boundary conditions,

and mesh to be employed are also the same. The matrix Q chosen for this application

has the following form Q = γI. Fig. 54 shows the comparison between w̄ when the

structure is vibrating freely and under the influence of the LQR control strategy. In

this situation γ = 10−5

It is very important to point out that in Negative Velocity Feedback algorithm, we

modify the structural damping of the plate through the assumption of proportionality

between the sensor reading and the actuator voltages, without giving any additional

constraint. However, when applying LQR, the energy of the system is to be minimized

over a period of time, and as a consequence a electrical input is applied to the structure

according to sensor readings and specific requires such as equally control for all the

modes and so on. As a consequence, the decay of the w̄ time respose is greater when

LQR is employed as we can notice in Figures 53 and 55.
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Fig. 55. Time responses at the top part of the center of the plate when LQR is used
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CHAPTER VI

SUMMARY AND CONCLUSIONS

The primary objective of this study was to develop an improved third-order plate

theory and associated finite element model to solve plate problems with actuators and

sensors that have both 2-D and 3-D fields as well as thermo-piezo-mechanical coupling

in the problem. In particular, the following tasks were carried out:

• Used the refined finite element to investigate different issues related to smart

structures such as

Diverse configuration of their components

Accurate stress-strain analysis

Analysis several physical effects

• Performed a fully coupled thermo-piezo-elastic analysis of smart structures for

static as well as dynamic response.

• Studied vibration control of plates using active control strategies.

The following conclusions are drawn from this study:

• The improved third-order shear deformation theory (ITSDT) developed in this

work yield very accurate results compared to any existing single-layer plate the-

ories and yet computationally economical. The Hermite interpolation functions

used to generate ITSDT represent a important improvement through the thick-

ness of the displacement field. Consequently, the finite element based on ITSDT

has less sensitivity to shear locking as we can see in the examples where the

span-to-thickness ratio is equal to 50.
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• The fact of using interpolation functions that are continuous along with their

derivatives with respect to z allow us to handle the continuous inhomogeneity

of the FGM plates. Therefore, we can predict deformation profiles that are in

good agreement with LWT.

• In the case of composite plates, the lack of improvement in the w̄ values comes

from the fact that ITSDT does not have C0 functions over the thickness; hence

the discontinuities of stresses such as σxx and σyy can not be fully represented,

and in this case the ITSDT’s behavior is very similar to TSDT.

• Likewise in composite, the sudden change between materials when a piezoelec-

tric layer is attached to a FGM plate, causes a poor performance of ITSDT.

However, after a very simple refinement over the thickness, accurate results were

obtained.

• Since the temperature is mainly a 3D effect and its coupling with the elastic field

is 3D too, ITSDT clearly yields better thermo-elastic responses than TSDT.

• In the thermo-elastic analysis, the coupling term between the thermal and elas-

tic fields in the heat equation slows down the structure to reach its equilibrium

point. In other words, the coupled analysis considers that the energy due to

heat conduction are two parts: one that causes the evolution of the thermal

field and the other one that produces the changes in the elastic field.

• When a dynamical thermo-piezo-mechanical system is studied, we can notice

that the electrical field acts faster than the other fields either for the coupled

or uncoupled analysis.

• Using ITSDT , some active vibration control strategies were tested, such as the

negative velocity feedback and LQR. As expected, increase in the damping of
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the structure is achieved. Moreover, we verified that LQR performs better since

it is based in optimization principles.
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wich/Multicouches Intelligentes, Conservatoire National des Arts et Métiers,

Paris, France.

Supplementary References

– Bisegna, P., and Caruasa, G., 2000, “Mindlin-Type Finite Elements for Piezo-

electric Sandwich Plates,” Journal of Intelligent Material Systems and Structures,

11, pp. 14–25.

– Lam, M.J., Inmanm D.J., and Saunders, W.R., 1997, “Vibration Control through

Passive Constrained Layer Damping and Active Control,” Journal of Intelligent

Material Systems and Structures, 8, pp. 663–677.



140

– Robbins D.H., and Reddy, J.N., 1996, “An Efficient Computational Model for the

Stress Analysis of Smart Plate Structures,” Smart Materials and Structures, 5,

pp. 353–360.

– Shen, M.H., 1994, “Analysis of Beams Containing Piezoelectric Sensors and Ac-

tuators,” Smart Materials and Structures, 3, 439–447.

– Shen, M.H., 1995, “A New Modeling Technique for the Piezoelectric Actuated

Beams,” Computers and Structures, 57, pp. 361–366.

– Varadan, V.V., Lim, Y.-H.,and Varadan, V.K., 1996, “Closed Loop Finite-

Element Modeling of Active/Passive Damping in Structural Vibration Control,”

Smart Materials and Structures, 5, pp. 685–694.



141

APPENDIX A

MATERIAL PROPERTY RELATIONS

For a two-phase composite plate, matrix (1) and particulate (2) phase, reinforced

by a random distribution of spherical particles in the plane of the plate, the locally

effective Bulk Modulus can be calculated as

K −K1

K2 −K1

=
V2

(
K1 + 4

3
µ1

)

(K1 + 4
3
µ1) + (1 − V2)(K2 −K1)

(A.1)

and the Shear Modulus

µ− µ1

µ2 − µ1
=

V2(µ1 + π1)

(µ1 + π1) + (1 − V2)(µ2 − µ1)
(A.2)

where

π1 =
µ1(9K1 + 8µ1)

6(K1 + 2µ1)
(A.3)

and V2 is the volume fraction of the particular phase. Eqs. A.1 and A.2 are very well-

known as Mori-Tanaka estimates. Moreover, the locally effective heat conductivity

coefficient κ can be obtained from

κ− κ1

κ2 − κ1
=

3V2κ1

3κ1 + (1 − V2) (κ2 − κ1)
(A.4)

and the coefficient of thermal expansion is given by

α− α1

α2 − α1
=

1/K − 1/K1

1/K2 − 1/K1
(A.5)
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APPENDIX B

MODEL REDUCTION

Modal Analysis is a very popular technique in vibration problems. According

to this, the dynamic of a structure can be expressed as the sumation of fundamental

modes which are orthogonal among them. It is important to point out that in many

cases, some modes are more relevant that the other ones. For instance, if the system

is excited in a determined fequency range, the modes corresponding to frequencies

outside this range are not going to contribute significatly to the structure dynamics;

therefore, they can be neglected. In other words, we are performing a system reduction

which makes the system more computationally tractable. Here, we are going to use

the approach used in [45].

For a linear system represented by Eq. 5.24, the right and the left eigenectors of

the system matrix A holds the following condition

ATr = ΛTr ; ATTl = ΛTr (B.1)

with T T
r Tl = I. Let’s express Λ as

Λ =




Λr 0

0 Λn


 (B.2)

this is similar to decompose the matrices Tr and Tl

Tr =
[
Trr Trn

]
; Tl =

[
Tlr Tln

]
(B.3)

Then, if x ≈ Trrxr

ẋr = Λrxr + T T
l rBu+ T T

l rp
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y = CTrrxr (B.4)

Assuming that the retained modes are underdamped, all the elements in the matrices

are going to appear in complex conjugates.

Λr =




.

.

.

λj

λ̄j

.

.

.




; TlrB =




.

.

.

ψj

ψ̄j

.

.

.




(B.5)

Tlrp =




.

.

.

ϕj

ϕ̄j

.

.

.




; CTrr =
[
. . . φj φ̄j . . .

]
(B.6)

Eq. B.4 contains complex matrices, something that makes the analysis and the control

of the structure a cumbersome task. However, we can transform the whole system
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into the real one using the following transformation x̂ = Tcxr, where

Tc =




.

.

. .

. −1
2

j
Im(λj)

1
2

j
Im(λj)

. .

1
2
− 1

2

jRe(λj)

Im(λj)
1
2

+ 1
2

jRe(λj)

Im(λj)
.

. .

.

.




(B.7)

Therefore, the system can be expressed as

˙̂x = Âx̂+ B̂u+ p̂

y = Ĉx̂ (B.8)

where

Â = TcΛrT
−1
c =




0 I

. .

. .

. .

−|λj|2 2Re(λj )

. .

. .

. .




(B.9)
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B̂ = TcT
T
l rB =




.

.

.

Im(ψj)/Im(λj)

.

.

.

Re(ψj) + Im(ψj) (Re(λj/Im(λj)))

.

.

.




(B.10)

p̂ = TcT
T
l rp =




.

.

.

Im(ϕj)/Im(λj)

.

.

.

Re(ϕj) + Im(ϕj) (Re(λj/Im(λj)))

.

.

.




(B.11)

Ĉ = CTrrT
−1
c =

[
. . −2 [Re(φj)Re(λj) + Im(φj)Im(λj)] . . 2Re(φj) . .

]

(B.12)
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