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ABSTRACT

Modeling, Analysis and Control

of Quantum Electronic Devices. (August 2006)

Zhigang Zhang, B.S., University of Science and Technology of China;

M.S., University of Science and Technology of China

Chair of Advisory Committee: Dr. Goong Chen

This dissertation focuses on two connected areas: quantum computation and quantum

control. Two proposals to construct a quantum computer, using nuclear magnetic

resonance (NMR) and superconductivity, are introduced. We give details about the

modeling, qubit realization, one and two qubit gates and measurement in the language

that mathematicians can understand and fill gaps in the original literatures. Two

experimental examples using liquid NMR are also presented. Then we proceed to

investigate an example of quantum control, that of a magnetometer using quantum

feedback. Previous research has shown that feedback makes the measurement robust

to an unknown parameter, the number of atoms involved, with the assumption that

the feedback is noise free. To evaluate the effect of the feedback noise, we extend the

original model by an input noise term. We then compute the steady state performance

of the Kalman filter for both the closed-loop and open-loop cases and retrieve the

estimation error variances. The results are compared and criteria for evaluating the

effects of input noise are obtained. Computations and simulations show that the

level of input noise affects the measurement by changing the region where closed loop

feedback is beneficial.
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CHAPTER I

INTRODUCTION

In the past two decades, the research on quantum computer and quantum information

has undergone rapid development and attracted great attention. One reason is the

expected end of the famous Moore’s law which has been driving the IT industry for

a long time. When more and more transistors are integrated in one chip, the size of

a transistor becomes smaller and smaller and will finally reach the limit of hundreds

of atoms. The quantum effect then appears and naturally raises the question what

we can do in such a dimension of several atoms. Another reason is the development

of quantum algorithms [1, 2, 3, 4]. It provides us with a scenario that a quantum

computer has the potential to solve problems that a classical computer can not,

making it superior to its classical counterpart.

A suitable quantum system for the purpose of quantum computation must sat-

isfy several conditions. It normally consists of many two-level subsystems and each

subsystem constitutes a qubit (quantum bit), an elementary information unit anal-

ogous to a bit in a classical computer. First, the system is initialized to a certain

state before computation. During the computation, the system needs to be isolated

from its environment to reduce unwanted decoherence. Evolution of every subsys-

tem is controlled by its time varying Hamiltonian, and coupling between qubits is

necessary. In an ideal situation, the coupling can be switched on or off. Finally,

after the computation, experimental methods are needed to retrieve the result, which

means to couple the system with its environment and apply a measurement. Many

quantum computing devices have been developed, based on AMO (atomic, molecular

This dissertation follows the style of Phys. Rev. A.



2

and optical) or semiconductor physics and technologies. Experiments on different

systems with different algorithms also have been reported. Currently, liquid NMR is

still the most successful through which a 7-qubit Shor’s algorithm has been tested in

laboratory conditions [4, 5]. A great obstacle facing scientists and engineers today

is decoherence. Most literature of quantum computer is written by physicists and is

not easy to read for mathematicians. In the first part of my dissertation, I will give

the models and description in more mathematical terms for two types of quantum

computers: NMR and superconductivity.

A closely related area to quantum computation is quantum control which is

essential in the realization of a quantum computer [8, 9, 10, 11, 12, 13, 14]. Inspired

by the goal to build a fast and realistic quantum computer, many control problems

have arisen. Some of those problems have been widely studied already in classical

control theory, but others are new in need of further investigation. For example,

bilinear model appears in the pulse design of the operation of qubits and optimal

control theory is used to find the shortest time path. To deal with decoherence and

uncertainties, robust designs of pulses are desired in order to achieve high fidelity.

Although quantum control has potential applications and is essential to quan-

tum computation, it is still a long-term goal and needs much work. A short term

application is in a field called “quantum metrology” [15, 16, 17], which has a similar

setting and theoretical background to quantum computation. In the second part of

my dissertation, I will introduce a setup of magnetometry by a Caltech group to test

the effect of closed-loop feedback. Initial results show that the feedback makes the

measurement robust versus the uncertainty in the number of spins involved. We ex-

tend the model to include input noise, and we will attempt to find conditions under

which the input noise will overwhelm the benefit brought on by feedback control.
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CHAPTER II

NMR QUANTUM COMPUTING

One can never overstate the importance of computers in today’s information society.

Computers come in various types, ranging from the antique gigantic ENIAC to the

modern portable laptop, and supercomputers such as “Deep Blue”. But there is a

universal model that applies to all known physical computers, the Turing machine [18].

The Turing machine is initially defined to address Hilbert’s Entscheidungsprob-

lem, or to model a formalist mathematical reasoning. The whole procedure is sim-

plified by Alan Turing in several steps: representing the symbols with sequence of

1s and 0s; using a 1-dimensional tape as a writing pad; inventing a read/write head

which moves back and forth over the tape; and allowing the head to exist in different

states which define where to read or write. The computation begins with the “pro-

gram” and the initial data written on the tape. The head is put in a state to read

the program. The program is read and interpreted, i.e., the head uses this instruc-

tion from the program to define its movement, either moving backward/foreward, or

reading/writing on the tape. It turns out that the Turing machine is universal. The

Church-Turing thesis states: All algorithmic process can be simulated efficiently using

a Turing machine.

The Turing machine originally designed by Turing is deterministic. The move-

ment of the head and its states are totally defined by the program and data initially

saved on the tape. That is how the electronic computer works where the memory

serves as a tape and the CPU interprets the saved program and decides where to

read and where and what to write. In contrast, a quantum system is indetermi-

nate and for many years quantum effects had never been considered in the theory

of computation until the early 1980’s. Benioff [19] first coined the term of quantum
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Turing machine (QTM). Motivated by the problem that classical computers can not

simulate quantum systems efficiently, Feynman [20] posed the quantum computer as

a solution. Now we know that, in terms of computability, quantum computers and

classical computers possess exactly the same computational power. But in terms of

computational complexity, which measures the efficiency of computation, there are

many exciting examples confirming that quantum computers do solve certain prob-

lems faster. The two most significant ones are Shor’s factorization algorithm [4] and

Grover’s search algorithm [3], among others such as the Deutsch-Jozsa problem [1],

the Bernstein-Vazirani problem [21], and Simon’s problem [22].

In contrast to a classical system, a quantum system can exist in different states

at the same time, an interesting phenomenon called superposition. Superposition

enables quantum computers to encode many inputs for a problem simultaneously

and process all the data at the same time, called quantum parallelism. That is why a

quantum computer can solve certain problems faster than a classical computer.

In this dissertation, we will give a detail explanation of quantum computation

and examples to physically realize a quantum computer using the nuclear magnetic

resonance (NMR) and superconductivity (SQUID). This, Chapter II, is divided into

several parts: in Section A, we will give a short introduction of quantum computa-

tion; in Section B, we will show some basic quantum mechanics tools, including the

Schröding equation and the evolution of a two level quantum system; in Section C, the

NMR realization will be explained in detail; in Section D and Section E, experiments

of Shor’s algorithm and lattice gas algorithm are introduced, respectively.
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A. Quantum computation

In a classical electronic computer, the information is encoded in multi-bits binary

states (0 or 1) and saved in registers. The computation is accomplished by processing

the information with logic gates in concatenation. The transformation after the pro-

cessing, and thus that after every gate, can be presented as a table that maps every

input state to a designed output state, called a “truth table.” Fig. 2.1 illustrates the

logic circuit of half-adder and its truth table. It has two input binary bits and two

output binary bits. It is composed of two NOR gates and one AND gate and in turn

it can be used in more complicated logic circuit as a brick. A logic gate in classical

computer may not be revertable. Assume it has m input binary bits and n output

binary bits, it can be viewed as a mapping from group 2m to 2n.

A

B

Bit sum

Carry

A B Bit sumCarry

0

0

1

1

0

1

0

1

0

1

1

0

0

0

0

1

a) b)

Fig. 2.1. a) . The logic circuit of a half adder which has two input binary digits, called

two bits, and two output binary bits. It is composed of two NOR gates and

one AND gate. The output “bit sum” is in fact the exclusion OR of input

A and input B. Thus it is zero whenever A and B are the same, otherwise it

is set to 1. The “carry” output is set to 1 only when both A and B are 1.

b). The truth table of the half-adder. It is not invertable since there are two

states are mapped into the same output state.

Current physical realization of quantum computers follows the quantum circuit

model [23], much like the logic circuit in Fig. 2.1, instead of the QTM model. Quan-
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tum circuit model is another fundamental model of computation, which is equivalent

to the QTM model [24], but easier to implement. This model shares many common

features of the classical computers. In a quantum computer, information is repre-

sented by the quantum states of the qubits, and manipulated by various quantum

control mechanisms. Those control mechanisms trigger quantum operation to pro-

cess information in a way resembling the gates in a classical computer. Such quantum

operations are called quantum gates and a series of quantum gates in concatenation

constitute a quantum circuit [25]. However, because of the special effects of quantum

mechanics, major distinctions exist.

In contrast to a classical system, a quantum system can exist in different states

at the same time, an interesting phenomenon called superposition. Superposition

enables quantum computers to process data in parallel. That is why a quantum

computer can solve certain problems faster than a classical computer. From now on,

we will use the Dirac bra-ket notation. In this notation a pure one-qubit quantum

state can be written as |φ〉 = a|0〉 + b|1〉. Here |0〉 and |1〉 are the two basis states

of the qubit, e.g., in NMR, the spin-up and spin-down states, and a, b ∈ C with

|a|2 + |b|2 = 1. When we make a measurement of a qubit, the result might be either

|0〉 or |1〉, with probabilities |a|2 and |b|2 respectively. More generally, a string of n

qubits can exist in any state of the form |ψ〉 =
∑11...1

x=00...0 ψx|x〉, where ψx ∈ C and

∑
|ψx|2 = 1. When we make a measurement on |ψ〉, it collapses to |x〉, one of the 2n

basis states, with probability |ψx|2. This indeterministic nature makes the design of

efficient quantum algorithms highly non-trivial.

Another distinctive feature of the quantum circuit is that the operations per-

formed by quantum gates must be unitary (U †U = I). It is the natural consequence

of the unobserved quantum systems evolving according to the Schrödinger equation.

A quantum gate may operate on any number of qubits. Here are some examples (see
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Fig. 2.2 for the circuit diagrams) [18]:

phase gate

CNOT gate

NOT gate Hadamard gate

controlled-phase gate

H Rθ

Rθ

Fig. 2.2. Circuit diagrams of the NOT/Hadamard/phase/CNOT/controlled-phase

gate.

1. NOT gate Λ0: Λ0|0〉 = |1〉, Λ0|1〉 = |0〉, or Λ0 =




0 1

1 0



 .

2. The Hadamard gate H : H|0〉 = 1√
2
(|0〉 + |1〉), H|1〉 = 1√

2
(|0〉 − |1〉), or

H =
1√
2




1 1

1 −1



 .

3. One-qubit phase gate Rθ: Rθ|0〉 = |0〉, Rθ|1〉 = eiθ|1〉, or

Rθ =




1 0

0 eiθ



 .
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4. Two-qubit controlled-NOT (CNOT) gate Λ1: Λ1|00〉 = |00〉, Λ1|01〉 = |01〉,

Λ1|10〉 = |11〉, Λ1|11〉 = |10〉, or,

Λ1 =





1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0





.

5. Two-bit controlled-phase gate Λ1(Rθ), where Rθ is the one-bit phase gate:

Λ1(Rθ)|00〉 = |00〉, Λ1(Rθ)|01〉 = |01〉, Λ1(Rθ)|10〉 = |10〉, Λ1(Rθ)|11〉 = eiθ|11〉,

or,

Λ1(Rθ) =





1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 eiθ





.

The one-qubit and two-qubit quantum gates are of particular importance to the

construction of a quantum computer, because of the following universality result.

Theorem A.1. (D. DiVincenzo [26, 27]) The collection of all the one-qubit gates and

the two-qubit CNOT gate suffice to generate any unitary operations on any number

of qubits.

Fig. 2.3 illustrates, as an example, how to generate the two-qubit controlled-

phase gate using 2 CNOT gates and 3 one-qubit phase gates. The controlled-phase

gate is an important building block for the quantum Fourier transform.

B. A short introduction to quantum mechanics

Quantum mechanics is the greatest discovery in the 20th century. When Einstein

first envisioned that the light propagates like particles in his paper about the pho-
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R θ

2

Rθ R θ

2

R− θ

2

Fig. 2.3. Construction of the controlled-phase gate with CNOT gates and phase gates.

toelectric effect after Planck’s description of black body radiation, the perception

and understanding of the physical world was changed. Then de Broglie extended the

wavefunction of light to particles, such as electrons. Erwin Schrödinger took the de

Broglie “matt waves” further and postulated the famous Schrödinger equation. As-

suming that the wavefunction is ψ(r, t), where r is the coordinate vector and t is time,

he argued that the partial derivative operator of time corresponds to “quantized” en-

ergy, i~
∂

∂t
= Ê, and the gradient operator corresponds to momentum: −i~ ∂

∂r
= p̂.

Here we use hat to mean it is an operator. Recall that the energy of a particle consists

of its kinetic energy and potential energy, E =
p2

2m
+V . By replacing the energy and

momentum with the corresponding operators, he derived the following:

i~
∂ψ(r, t)

∂t
= Êψ(r, t)

= − ~
2

2m
∆2ψ(r, t) + V (r, t)ψ(r, t).

(2.1)

Interpretation of ψ(r, t) was given late and not satisfied by many physicists. A

concrete interpretation, which is what we will use, is that |ψ(r, t)|2 is the probability

density that one can find a particle such as an electron at position r and time t. This

means that ψ(r, t) may be complex and it lives in L2 since
∫
|ψ(r, t)|2dr = 1. In

general, wavefunctions are not necessary a function of r and in the simple form like

that of an electron, but they still satisfies the Schrödinger equation:

i~
∂

∂t
|ψ(t)〉 = H|ψ(t)〉, (2.2)
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where H is an operator called Hamiltonian, corresponding to the system energy. We

put ψ(t) in a half bracket like |〉 in the Dirac notation and the symbol |〉 is called

a “ket”. If H does not depend on time, the Schrd̈inger equation can be formally

represented as an “exponential” time evolution operator solution:

|ψ(t)〉 = e−iHt/~|ψ(0)〉. (2.3)

If we regard |ψ〉 as a vector in Hilbert space L2, we can denote its dual as 〈ψ|. If

|ψ〉 and |φ〉 are two states(say, respectively, two wavefunctions), then we denote their

inner product as 〈φ|ψ〉. In the case of an electron where |ψ〉 is a function of r,

〈φ|ψ〉 =

∫
φ(r)∗ψ(r)dr. (2.4)

Thus the unitarity of |ψ〉 can now be simply expressed as 〈ψ|ψ〉 = 1, and we know all

the possible wavefunctions form a unit sphere in L2. Let {|ψi〉}i∈N be an orthonormal

bais of L2, then the following identity holds:

I =
∑

i∈N

|ψi〉〈ψi|, (2.5)

where I is the identity operator. A direct result of (2.5) is the matrix representation

of the system Halmtonian:

H =
∑

i∈N |ψi〉〈ψi|H
∑

j∈N |ψj〉〈ψj|

=
∑

i,j∈N〈ψi|H|ψj〉|ψi〉〈ψj|,
(2.6)

and 〈ψi|H|ψj〉 is called the matrix coefficent of the Hamiltonian. Although in most

cases, we prefer to choose the eigenstates of the system Hamiltonian as the basis,

which corresponds to the energy levels with real eigenvalues, other basis is sometimes

more convenient.
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1. Two level system and Bloch sphere

In practice, the possible states of a quantum system form an infinite dimensional

space. But, in some cases, we can constrain it to a finite dimensional subspace. One

such example is when the system is in the low temperature, where only the states

of several lowest energy levels are active, and transition probabilities to other higher

levels are too small to have any observable effect, such as superconductivity. Another

situation is when there is a proper subspace which has minimum probability for the

system to jump out the subspace, or all the other states are kept off resonance. An

ideal qubit has two orthonormal eigenstates as basis, which simplify the space into a

two dimensional linear space C2, and the quantum state corresponds to a unit vector

in C2. Taking the two orthonormal states as |0〉 and |1〉, we can write a wavefunction

|φ〉 as the linear combination of |0〉 and |1〉: |φ〉 = a|0〉+b|1〉. With the normalization

condition, |a|2 + |b|2 = 1. We can also assume that a is real since only the relative

phase is important. Thus this state can be represented using two angles θ and ψ:

|φ〉 = cos
θ

2
|0〉 + eiψ sin

θ

2
|1〉, (2.7)

where θ ∈ [0, π] and ψ ∈ [0, 2π).

For the study of NMR spectroscopy with many nuclei, density matrices are pre-

ferred and are often written as the linear combination of product operators [28]:

ρ = |φ〉〈φ|

=




cos2 θ

2
e−iψ

sin θ

2

eiψ
sin θ

2
sin2 θ

2





= I0 + sin θ cosψIx + sin θ sinψIy + cos θIz, (2.8)
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where the product operators are defined as

I0 =
1

2




1 0

0 1



 , Ix =
1

2




0 1

1 0



 , Iy =
1

2




0 −i

i 0



 , Iz =
1

2




1 0

0 −1



 .

(2.9)

They are different from the Pauli matrices1 only by a constant factor and share the

similar commutative law. Upon collecting all the coefficients of Ix, Iy, and Iz together,

we obtain a vector

v = [sin θ cosψ sin θ sinψ cos θ]T ,

which is called a Bloch vector . In essence, we have defined a mapping from the set

of unit vectors |φ〉 ∈ C2 to the set of unit vectors v ∈ R3. We have good reasons

to ignore the coefficient of I0, since it has no effect on the spectroscopy and remains

unchanged under any unitary transformation. Each Bloch vector determines a point

on the unit sphere, called the Bloch sphere, which is displayed in Fig. 2.4 [29, 28].

Bloch vectors have proven to be a very good tool for NMR quantum operations.

The mapping defined above is surjective, because every point on the Bloch sphere

gives rise to a unit vector v = [sin θ cosψ sin θ sinψ cos θ]T for some pair of (θ, ψ).

Conversely, if v(θ′, ψ′) = v(θ, ψ), we get






cos θ = cos θ′,

sin θ cosψ = sin θ′ cosψ′,

sin θ sinψ = sin θ′ cosψ′,

(2.10)

which can be used to show that the mapping is also injective if we identify all pairs

of (0, ψ) with one point and all pairs of (π, ψ) with another point. In fact, these two

sets correspond to two states |0〉 and |1〉, respectively.

1The Pauli matrices are σx = [ 0 1
1 0 ], σy = [ 0 −i

i 0 ], and σz = [ 1 0
0 −1 ].
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1

ψ

θ

Z
0

X
Y

Fig. 2.4. The Bloch sphere representation of a quantum state.

2. Transformation of quantum states: SU(2) and SO(3)

When a quantum operation is applied to a quantum system, it may change the quan-

tum state of the system from one to another. The representation of the operation

depends on how the quantum state is represented. For example, (2.7) leads to an

operator or matrix U which connects the new and old states of a single spin quantum

system:

|φ′〉 = U |φ〉,

where |φ′〉 and |φ〉 are the quantum state after and before the operation, respectively.

The fact that both states are unit vectors implies that U is a 2×2 unimodular complex

matrix. More than that, U is also unitary, i.e., U ∈ SU(2)2, a Lie group endowed

with a certain topology.

If the quantum state is represented by a three-dimensional Bloch vector, the effect

2SU(n) is the special unitary group of n×n matrices. An n×n matrix A ∈ SU(n)
if and only if A is unitary, i.e., A · A† = In, where A† is the Hermitian adjoint of A,
and detA = 1.
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of a unitary operation can be viewed as that of a rotation which rotates the Bloch

sphere, and the operator is represented by a 3×3 real matrix S. If the quantum system

has states v and v′ in Bloch vector form before and after the operation, respectively,

then

v′ = Sv.

The matrix S is a proper rotation matrix, i.e., S ∈ SO(3)3. It is isometric and

preserves the three-fold product.

If both S and U represent the same physical operation, such as a transformation

induced by a series of pulses in NMR, there must be a connection between them.

One can show that there is a mapping R from SU(2) to SO(3) such that S = R(U),

for any U ∈ SU(2) and its corresponding Bloch-sphere representation S [30]. Simple

computation shows that the entry of matrix S = R(U) at the kth row and ith column

is given as

Ski = Tr(σk U Ii U
†), (2.11)

where σk are the Pauli matrices, and Tr is the trace operator. It can also be

shown that R is a two-to-one homomorphism between SU(2) and SO(3) with kernel

ker(R) = {I,−I}. It coincides with the fact that U and −U in SU(2) represent the

same operation because only the relative phase matters. This mapping is also surjec-

tive, so it defines an isomorphism from the quotient group SU(2)/ker(R) to SO(3).

We provide a more detailed discussion about this isomorphism in the Appendix.

It is known that any U ∈ SU(2) can be written into an exponential form param-

3SO(3) denotes the special orthogonal group of 3 × 3 matrices. An n× n matrix
A ∈ SO(n) if and only if A is real, AAT = In and detA = 1.
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eterized by a angle θ ∈ [0, 2π) and a unit vector n such that

U(θ,n) = e−i
θ
2
n·σ

=




cos

θ

2
− in3 sin

θ

2
− sin

θ

2
(n2 + in1)

sin
θ

2
(n2 − in1) cos

θ

2
+ in3 sin

θ

2





= cos
θ

2
I − i sin

θ

2
n · σ,

(2.12)

where σ = [σx, σy, σz]. With this parameterization of SU(2), entries of S = R(U)

can be computed using (2.11) as

Sij = R(U)ij = cos θ δij + (1 − cos θ)ninj +
3∑

k=1

sin θ ǫikjnk. (2.13)

It should be noted now that S coincides with a rotation about the axis along n

with an angle θ in the three dimensional Euclidean space after comparing Sij with

the standard formula of a rotation matrix. This interpretation is important in under-

standing the terminologies used in NMR. For example, the rotations around x, y, and

z axes (x/y/z-rotations) with an arbitrary angle θ define the following three unitary

operators in SU(2), respectively:

Xθ = e−iθσx/2 =




cos

θ

2
−i sin θ

2

−i sin θ
2

cos
θ

2



 , (2.14)

Yθ = e−iθσy/2 =




cos

θ

2
− sin

θ

2

sin
θ

2
cos

θ

2



 , (2.15)

Zθ = e−iθσz/2 =




e−iθ/2 0

0 eiθ/2



 . (2.16)
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C. NMR quantum computer

NMR is an important tool in chemistry which has been in use for the determination

of molecular structure and composition of solids, liquid and gases since the mid 1940s,

by research groups in Stanford and MIT independently, led by F. Bloch and E.M.

Purcell, both of whom shared the Nobel prize in physics in 1952 for the discovery.

There are many excellent monographs on NMR [31, 32, 33]. There are also many

other nice internet website resources offering concise but highly useful information

about NMR; e.g., [34, 35, 36]. Let us briefly explain the physics of NMR by following

Edwards [34]. The NMR phenomenon is based on the fact that the spin of nuclei of

atoms have magnetic properties that can be utilized to yield chemical, physical, and

biological information. Through the famous Stern-Gerlach experiment in the earlier

development of quantum mechanics, it is known that subatomic particles (protons,

neutrons and electrons) have spins. Nuclei with spins behave like a bar magnet in a

magnetic field. In some atoms, e.g., 12C(carbon-12), 16O (oxygen-16), 32S(sulphur-

32), these spins are paired and cancel each other out so that the nucleus of the atom

has no overall spin. However, in many atoms (1H ,13C, 31P , 15N , 19F etc.) the nucleus

does possess an overall spin. To determine the spin of a given nucleus one can use

the following rules:

1. If the number of neutrons and the number of protons are both even, the nucleus

has no spin.

2. If the number of neutrons plus the number of protons is odd, then the nucleus

has a half-integer spin (i.e., 1/2, 3/2, 5/2).

3. If the number of neutrons and the number of protons are both odd, then the

nucleus has an integer spin (i.e., 1, 2, 3).
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In quantum mechanical terms, the nuclear magnetic moment of a nucleus can

align with an externally applied magnetic field of strength B0 in only 2I + 1 ways,

either with or against the applied field B0, where I is the nuclear spin given in (i), (ii)

and (iii) above. For example, for a single nucleus with I = 1/2, only one transition

is possible between the two energy levels. The energetically preferred orientation

has the magnetic moment aligned parallel with the applied field (spin m = +1/2)

and is often denoted as α, whereas the higher energy anti-parallel orientation (spin

m = −1/2) is denoted as β. See Fig. 2.5. In NMR quantum computing, these spin-up

and spin-down quantum states resemble the two binary states 0 and 1 in a classical

computer. Such a nuclear spin can serve as a quantum bit, or qubit . The rotational

axis of the spinning nucleus cannot be orientated exactly parallel (or anti-parallel)

with the direction of the applied field B0 (aligned along the z axis) but must precess

(motion similar to a gyroscope) about this field at an angle, with an angular velocity,

ω0, given by the expression ω0 = γB0. The precession rate ω0 is called the Larmor

frequency, see Fig. 2.6. See more discussion of ω0 below. The constant γ is called

the magnetogyric ratio. This precession process generates an magnetic field with

frequency ω0. If we irradiate the sample with radio waves (MHz), then the proton

can absorb the energy and be promoted to the higher energy state. This absorption

is called resonance because the frequencies of the applied radiation and the precession

coincide at that frequency, leading to resonance.

1. More about the Hamiltonian of NMR

A classical way to explain NMR is to regard it as a rotating charged particle that acts

like a current circulating in a loop ([37, 31]), which creates a magnet with magnetic

moment µ, µ = qvr/2, where q is the electronic charge. The particle is rotating at

v/2πr revolutions per second.
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magnetic field
is applied

m=1/2 (α: spin up)

m=-1/2 (β: spin down)no magnetic
field is applied

Energy

Fig. 2.5. Splitting of energy levels of a nucleus with spin quantum number 1/2.

Spinning nucleus with
angular momentum µ

B0Z

Fig. 2.6. A magnetic field B0 is applied along the z-axis, causing the spinning nucleus

to precess around the applied magnetic field.

Converting µ to electromagnetic units by dividing it by the velocity of light, and

using angular momentum of the particle rather than the velocity of the particle, we

obtain

µ = (q/2Mc)p,

where p is the angular momentum oriented along the rotating axis. The ratio µ/p is

called the magnetogyric ratio, denoted by γ. A static magnetic field with strength B

will apply a torque, which is equal to µ × B, on this particle. Newton’s law states

that the angular momentum will change according to a differential equation

dp

dt
= µ × B =

q

2Mc
p × B.
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Computation shows that p will rotate around the direction of B with frequency

ω0 defined by

ω0 =
q

2Mc
B.

The above is called the Larmor equation, and the frequency ω0 is called the Lar-

mor frequency, the precession frequency, or the resonance frequency as mentioned

previously in Fig. 2.6.

The above classical considerations are now modified by quantization to incorpo-

rate the quantum-mechanical behaviors of the nuclear spin. The vector variable p

is quantized with quantum number (I(I + 1))1/2, and its projection to z axis (the

direction of the magnetic field) is m~. In total, there are 2I + 1 valid values of m

evenly distributed from −I to I, i.e., m = −I,−I + 1, · · · , I − 1, I. A factor g is in-

troduced to include both the spin and orbital motion in the total angular momentum,

called the Landé or spectroscopic splitting factor. For a free electron and proton, the

magnetic momenta can be given as

µe =
ge
2

(
he

4πMec

)
=
geβ

2
,

µn = gnI

(
he

4πMNc

)
= gn I βN ,

where ge = 2.0023, gn = 5.58490. Numbers β and βN are called, respectively, the

Bohr and the nucleus magneton where β = 9.27 × 10−21erg gauss−1 and βN =

5.09 × 10−24erg gauss−1. These values vary for different particles. In NMR, it is

convenient to use the resonance frequency ω0:

~ω0 = geβB0,

~ω0 = gNI βNB0.
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Now we can write the Hamiltonian of a free nucleus as

H = −µ · B = −~γI · B, (2.17)

where γ is the magnetogyric ratio defined by γ =
µ

I~
just as in the classical case.

It is a characteristic constant for every type of nuclei; different nuclei have different

magnetogyric ratios. Vector I after quantization, becomes the operator of angular

momentum. The eigenvalues of this system, or the energy levels are

E = γ~mB, m = −I,−I + 1, · · · , I − 1, I. (2.18)

The difference between two neighboring energy levels is γ~B, which defines the reso-

nance frequency depending on the magnetic field B and the particle.

There are other factors to be considered. The resonance frequency changes with

the chemical environment of the nucleus. An example is the fluorine resonance spec-

trum of perfluorioisopropyl iodide. Two resonance lines of fluorine are observed in

the spectrum, and the intensities ratio 6:1 agrees with the population ratio of the two

groups of fluorine atoms. This phenomenon, called the chemical shift, is proportional

to the strength of the magnetic field applied. This effect comes up because electrons

close to the nucleus change the magnetic field around it; in other words, they create

a diamagnetic shielding surrounding the nucleus. If the static field applied is B0,

then the electrons precessing around the magnetic field direction produce an induced

magnetic field opposing B0. The total effective magnetic field around the nucleus is

then

B = B0 − B′ = (1 − σ)B0,

where the parameter σ is called shielding coefficient. In some cases σ is dependent

on the temperature.
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High resolution NMR spectroscopy has found that the chemical shifted peaks are

also composed of several lines, a result of the spin-spin coupling, which is the second

term in the NMR Hamiltonian:

HII =
∑

i>j

Ii · Jij · Ij.

2. Realization of a qubit

As mentioned previously, NMR quantum computing is accomplished by using the

spin-up and spin-down states of a spin-
1

2
nucleus. A molecule with several nuclear

spins may work as a quantum computer where each spin constitutes a qubit . In fact,

NMR has a long history in information science. Back in the 1950s, nuclear spins were

already used for information storage in computers.

Liquid NMR receives more interest due to its mature technology and readiness

for application. For now, spin-
1

2
nuclei such as proton and 13C are preferred be-

cause they naturally represent a qubit, but multi-level qubits formed by spin-n nuclei,

n = 1, 2, · · · , may provide more freedom in the future. Through careful design, the

potential qubits or nuclei are configured with different resonance frequencies and can

be distinguished from each other. In a low viscosity liquid, dipolar coupling between

nuclei is averaged away by the random motion of the molecules. The J-coupling

(scalar coupling) dominates the spin-spin interaction, which is an indirect through-

bond electronic interaction. Previously, a very difficult part of the system operation

was to set the quantum system to a special state (or to initialize it). Now a very

complicated technology has been developed to solve this problem [18].

Fig. 2.7 shows the structure of a trichloroethylene (TCE) molecule and a chlo-

roform molecule used in NMR quantum computers. The hydrogen nucleus (proton)

and two 13C nuclei in a TCE molecule form three qubits which can be manipulated,
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Cl Cl Cl

ClH

13C 13C Cl Cl
13C

H

Fig. 2.7. The molecule structure of a candidate 3-qubit quantum system, trichloroethy-

lene (left), and a candidate 2-qubit quantum system, chloroform.

The trichloroethylene molecule has two labelled 13C and a proton,

all having one-half-spin nuclei. By considering the static magnetic

field and spin-spin interaction, its Hamiltonian can be written as

H = −
∑3

i=1 gniβniIi · B +
∑2

i=1

∑3
j=i+1 Ii · Ji,j · Ij. The chloroform has

one labelled 13C and one proton.

while the chloroform molecule provides two qubits. The sample used by an NMR

quantum computer has a large number (∼ 1023) of such molecules. This is also called

a bulk quantum computer. Although most molecules are in a totally random state at

room temperature, there are still a small amount of spins standing out and serving

our purpose. Theoretically, we use a statistical spin state called a pseudo-pure state,

which has the same transformation property as that of a pure quantum state.

3. Construction of quantum gates

From Theorem A.1, we know that the collection of all the one-qubit gates and the

two-qubit CNOT gate are universal. In addition, the following fact [38, p. 175] holds

for one-qubit quantum gates:

Theorem C.1. Suppose U is a unitary operation on a single qubit. Then there exist
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real numbers α, β, γ, and δ such that

U = eiαZβYγZδ.

For example, the Hadamard gate H can be decomposed as H = e
i
π

2 Yπ/2Zπ.

Clearly, the x/y/z rotation gates provide building blocks sufficient to construct any

one qubit unitary gate. In this subsection, we will show how to realize these one-qubit

rotation gates and the two-qubit CNOT gate using NMR. We will also show how to

decouple the interaction between two spins, a process called refocusing [18, 38].

a. One-qubit gates

A single spin system has Hamiltonian H = −µ ·B, where µ is the magnetic moment,

and

B = B0ez +B1(ex cos(ωt) + ey sin(ωt)) (2.19)

is the magnetic field applied. B0, a large constant, is the amplitude of the static

magnetic field, and B1 is the amplitude of the oscillating magnetic field in the x-y

plane. When B1 = 0, the Hamiltonian and Schrödinger equation can be obtained as

([38])

H =
ω0

2
σz (2.20)

and

i∂t|ψ(t)〉 = H|ψ(t)〉, (2.21)

respectively, where ~ has been divided from both sides in the second equation and

we take ~ away from H in the first one just for simplicity. The Larmor frequency

ω0 = −B0γ is defined by the nuclei and the magnetic field, see (2.18). Assume that

the initial state is |ψ0〉 = a0|0〉 + b0|1〉. Then the evolution of the quantum state of
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the spin and the density matrix can be solved directly and given as

|ψ(t)〉 = e−iω0σzt/2|ψ0〉

=




e−iω0t/2 0

0 eiω0t/2








a0

b0





= e−iω0t/2




1 0

0 eiω0t



 |ψ0〉,

ρ(t) = e−itHρ(0)eitH .

This evolution is also called a chemical shift evolution, resembling the precessing

of a magnet in a static field. Recall the Bloch vector on the Bloch sphere. It is exactly

Zθ, the rotation operator around the z axis with θ = ω0t.

To achieve an x-rotation operator, we need a small magnetic field transverse to

the z direction to control the evolution of the quantum state. The Hamiltonian is

given as in (2.19) by choosing B1 different from zero:

H = −µ · B =
ω0

2
σz +

ω1

2
(σx cos(ωt) + σy sin(ωt)) ,

where ω1 depends on the x-y plane component B1 of the magnetic field, ω1 = −B1γ.

To solve the Schrödinger equation, we put |ψ(t)〉 in a “frame” rotating with the

magnetic field around the z axis at frequency ω, |φ(t)〉 = eiωtσz/2|ψ(t)〉. With this

substitution, the Schrödinger equation (2.21) becomes

i∂t|φ(t)〉 = (eiωσzt/2He−iωσzt/2 − ω

2
σz)|φ(t)〉. (2.22)
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Using properties

eiωσzt/2σze
−iωσzt/2 = σz,

eiωσzt/2σxe
−iωσzt/2 = σx cos(ωt) − σy sin(ωt),

eiωσzt/2σye
−iωσzt/2 = σx sin(ωt) + σy cos(ωt),

(2.23)

we obtain

i∂t|φ(t)〉 =

(
ω0 − ω

2
σz +

ω1

2
σx

)
|φ(t)〉,

|φ(t)〉 = e−i((ω0−ω)σz/2+ω1σx/2)t|φ(0)〉. (2.24)

We know from (2.12) that this is a rotation around the axis

n =
1√

1 + (
ω1

ω0 − ω
)2

(
z +

ω1

ω0 − ω
x

)
. (2.25)

An important case is ω0 = ω, also called the resonance case where its name

came from the zero denomination in (2.25). By (2.24), we see that a relatively weak

transverse magnetic field causes a rotation around the x axis:

|ψ(t)〉 = e−iω0σzt/2|φ(t)〉 = e−iω0tσz/2e−iω1tσx/2|φ(0)〉 = ZθXβ|ψ(0)〉, (2.26)

where Xβ = e−iω1tσx/2, β = ω1t. By applying another Z−θ, we obtain a rotation Xβ

as desired. Since the frequency of the precession is in radio frequency band, the field

applied is called an RF pulse.

When |ω0 − ω| ≫ ω1, the rotation axis direction is almost along z and the RF

pulse has no effect on it:

|ψ(t)〉 = e−iωσzt/2|φ(t)〉 ≈ e−iω0tσz/2|ψ(0)〉 = Zω0t|ψ(0)〉,

thus we can tell one qubit from another because their resonance frequencies are de-
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signed to be different. There are still cases where the difference of resonance frequen-

cies between spins is not large enough. The RF pulse may cause similar rotations on

all those spins. To avoid or at least minimize it, a soft pulse is applied instead of the

so called hard pulse. It is a pulse with longer time span and weaker magnetic field,

in other word, a smaller ω1. This strategy makes these “close” qubits fall into the

|ω0 − ω| ≫ ω1 case.

If we change the magnetic field to

B = B0ez +B1(ex cos(ω0t+ α) + ey sin(ω0t+ α)), (2.27)

the Hamiltonian will become

H =
ω0

2
σz +

ω1

2
(σx cos(ω0t+ α) + σy sin(ω0 + α)) (2.28)

where ω1 is defined as before. The RF field is almost the same as (2.19) in the

resonance case except a phase shift. Using the same rotation frame as before with

ω = ω0, we obtain

i∂t|φ(t)〉 =
ω1

2
(σx cos(α) + σy sin(α))|φ(t)〉, (2.29)

after simplification. After time duration t, the new system state is given as

|φ(t)〉 = e−i
ω1
2

(σx cos(α)+σy sin(α))t|φ(0)〉, (2.30)

and the evolution operator can be computed using (2.12) as

Uθ/2,α = e
−i
ω1

2
(σx cos(α)+σy sin(α))t

=




cos(

θ

2
) −i sin(

θ

2
)e−iα

−i sin(
θ

2
)eiα cos(

θ

2
)



 ,
(2.31)

where θ = ω1t. This is a one-qubit rotation operator, and sometimes is called a Rabi
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rotation gate. When α = π/2,

Uθ/2,π/2 =




cos(

θ

2
) − sin(

θ

2
)

sin(
θ

2
) cos(

θ

2
)





= Yθ.

(2.32)

We have achieved a y-rotation operator just by adding a phase shift to the RF field.

b. Two-qubit gates

The construction of a two-qubit gate requires the coupling of two spins. In a liquid

sample of NMR, J-coupling is the dominating coupling between spins. Under the

assumption that the resonance frequency difference between the coupled spins is much

larger than the strength of the coupling (a so-called weak coupling regime), the total

Hamiltonian of a two spin system without transverse field may be given as

H =
1

2
ω1σ

1
z +

1

2
ω2σ

2
z +

1

2
Jσ1

zσ
2
z , (2.33)

where ωi is the frequency corresponding to spin i, σiz is the z projection operator of

spin i, for i = 1, 2, and J is the coupling coefficient. Take the chloroform in Fig. 2.7

for example [39, 29]. In a 11.7T magnetic field, the precession frequency of 13C is

about 2π × 500MHz and the precession frequency of proton is about 2π × 125MHz.

The coupling constant J is about 2π × 100Hz. Here we set B1 = 0, which means no

transverse magnetic field is applied and those terms such as σx, σy do not appear.

The remaining terms in the Hamiltonian only contains operators σ1
z or σ2

z , which are

commutative. Thus, we can obtain the eigenstates and eigenvalues of this two-spin

system and we map the set of eigenstates to the standard basis of C4, as follows:
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|00〉 =





1

0

0

0





, |01〉 =





0

1

0

0





, |10〉 =





0

0

1

0





, |00〉 =





0

0

0

1





; (2.34)

H|00〉 = k00|00〉, k00 =
1

2
ω1 +

1

2
ω2 +

1

2
J ;

H|01〉 = k01|01〉, k01 =
1

2
ω1 −

1

2
ω2 −

1

2
J ;

H|10〉 = k10|10〉, k10 = −1

2
ω1 +

1

2
ω2 −

1

2
J ;

H|11〉 = k11|11〉, k11 = −1

2
ω1 −

1

2
ω2 +

1

2
J.

(2.35)

Since the matrix is diagonal, the evolution of this two-spin system can be easily

derived as

|ψ(t)〉 = e−iHt|ψ(0)〉 =





e−ik00t

e−ik01t

e−ik10t

e−ik11t





|ψ(0)〉. (2.36)

We can also rewrite the one qubit rotation operators for this two
1

2
-spin system

in matrix form with respect to the same basis:

Z1
π/2 =





e−iπ/4

e−iπ/4

eiπ/4

eiπ/4





, (2.37)



29

Z2
−π/2 =





eiπ/4

e−iπ/4

eiπ/4

e−iπ/4





, (2.38)

Y 2
π/2 =

√
2

2





1 −1

1 1

1 −1

1 1





, (2.39)

Y 2
−π/2 =

√
2

2





1 1

−1 1

1 1

−1 1





, (2.40)

where Z i
θ is the rotation operator for spin i with angle θ around the z axis while

keeping another spin unchanged, and all Y i
θ are similarly defined operators about the

y axis; see (2.15). A careful reader may raise issues about the one-qubit gate we have

obtained in subsection a because the coupling between two qubits always exists and

has not been considered. We need to turn off the coupling when we only want to

operate one spin but the coupling is non-negligible. This is in fact one of the major

characteristic difficulties associated with the NMR quantum computing technology.

A special technology called refocusing is useful. It works as follows. We apply a

soft π pulse on the spare spin that we don’t want to change at the middle point of

the operation time duration while we are working on the target spin. The effect is

that the coupling before the pulse cancels the one after the pulse, so the result of

no-coupling is achieved. Another π pulse will be needed to turn the spin back. All

pulses are soft.
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This technology is so important that we now state it here as a theorem.

Theorem C.2. Let H =
ω1

2
σ1
z +

J

2
σ1
zσ

2
z + A be a given Hamiltonian, where A is a

Hamiltonian that does not act on spin 1 and commutes with σ2
z . Then the evolution

operators of A and H satisfy

e−iAt = −X1
πe

−iHt/2X1
πe

−iHt/2, (2.41)

i.e., the collective evolution of the quantum system with Hamiltonian H and additional

two X1
π-pulses at the middle and the end of the time duration, equals that of a system

with Hamiltonian A (up to a global phase shift π, or a factor −1).

Proof. Assume that the time duration is t and denote U for

U = X1
πe

−iHt/2X1
πe

−iHt/2. (2.42)

Note that X1
π = e

−i
π

2
σ1

x
and it commutes with A which contains no operators acting

on spin 1, thus

U = X1
πe

−i(ω1
2
σ1

z+ J
2
σ1

zσ
2
z) t

2X1
πe

−i(ω1
2
σ1

z+ J
2
σ1

zσ
2
z ) t

2 e−iAt. (2.43)

It suffices to prove that the part before e−iAt satisfies

B = X1
πe

−i(ω1
2
σ1

z+ J
2
σ1

zσ
2
z) t

2X1
πe

−i(ω1
2
σ1

z+ J
2
σ1

zσ
2
z) t

2 = −I. (2.44)
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We first check the effect of B on the four basis vector. We have

B|11〉 = X1
πe

−i(ω1
2
σ1

z+ J
2
σ1

zσ
2
z ) t

2X1
πe

−i(ω1
2
σ1

z+ J
2
σ1

zσ
2
z) t

2 |11〉

= e
−i
−ω1 + J

4
t
(−i)X1

πe
−i(ω1

2
σ1

z+ J
2
σ1

zσ
2
z) t

2 |01〉

= (−i)e−i−ω1+J
4

tX1
πe

−iω1−J
4

t|01〉

= (−i)2|11〉

= −|11〉,

(2.45)

B|01〉 = X1
πe

−i(ω1
2
σ1

z+ J
2
σ1

zσ
2
z ) t

2X1
πe

−i(ω1
2
σ1

z+ J
2
σ1

zσ
2
z) t

2 |01〉

= e
−i
ω1 − J

4
t
(−i)X1

πe
−i(ω1

2
σ1

z+ J
2
σ1

zσ
2
z) t

2 |11〉

= (−i)e−i−ω1+J
4

tX1
πe

−i−ω1+J
4

t|11〉

= (−i)2|01〉

= −|01〉,

(2.46)

and similarly,

B|10〉 = −|10〉,

B|00〉 = −|00〉.
(2.47)

In the computation above, we have used the fact that X1
π has no effect on the

second spin and the four basis vectors |00〉, |01〉, |10〉 and |11〉 are the eigenstates of

the operator
ω1

2
σ1
z +

J

2
σ2
zσ

1
z . The result shows that B = −I, and we are done. �

When the Hamiltonian is given in the form as (2.33), the above theorem tells us

that both the chemical shift evolution (precession) and the J-coupling effect on spin 1

are removed and only the term
ω2

2
σ2
z remains. We obtain a z-rotation of spin 2 while

freezing spin 1. By combining it with several hard pulses, we can also achieve any

arbitrary rotation on spin 2 with the motion of spin 1 frozen [40]. Similar computation

shows that a hard π pulse applied at the middle point of the time duration cancels
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the chemical shift evolution of both spins. This can be seen by checking the identity

e−iHt/2X1
πX

2
πe

−iHt/2 =





e−iJt/2

eiJt/2

eiJt/2

e−iJt/2





. (2.48)

Another hard π pulse can rotate two spins back, so we have achieved an evolution

which has only the J-coupling effect, denoted by Zθ:

Zθ =





e−iθ/2

eiθ/2

eiθ/2

e−iθ/2





,

and when θ = π/2,

Zπ/2 =





e−iπ/4

eiπ/4

eiπ/4

e−iπ/4





. (2.49)

Although we give only an example of the 2-qubit system in the above, the reader

should note that a general method is available to reserve only the couplings wanted

while keeping all the others cancelled for multi-qubit systems [40, 41, 42]. Combining

operators in (2.37) through (2.40) and (2.49), we can now construct a CNOT gate as

in Fig. 2.8 which includes four one-qubit π/2 rotations around y or z axes and one
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two-qubit π/2 rotation. The total operator, denoted by CN , can be computed as

CN = Z1
π/2Y

2
−π/2Z

2
−π/2Zπ/2Y

2
π/2 = e−

π
4
i





1

1

0 1

1 0





, (2.50)

which is a CNOT gate up to a phase of −π/4 [29].

Yπ/2

Zπ/2

Zπ/2

Z−π/2 Y−π/2

Fig. 2.8. The quantum circuit used to realize a quantum controlled-not gate.

We have shown how to construct one-qubit gates and the two-qubit CNOT gate

using the NMR technology. The simple pulse design works fine in ideal situations. In

practice, errors arise from various factors. Decoherence causes the lost of quantum

information with time. Thus, all operations should be completed within a short time,

roughly constrained by the energy relaxation time T1 and the phase randomization

time T2. Again, take the chloroform for an example. For protons, T1 ≈ 7sec and

T2 ≈ 2sec; for carbons, T1 ≈ 16sec and T2 ≈ 0.2sec [29, 39]. The pulses have to

be short enough so that all the pulses can be jammed in the time window. Ideally,

a pulse can be completed quite fast, but this may incur undesirable rotations in
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other qubits because the frequency band width is inversely proportional to the time

length of the pulse. A shorter and stronger pulse will have a wider frequency band

that may cover the resonance frequency of another spin, called cross-talking . It

should also be noted that both T1 and T2 are defined and measured in simplified

situation, and they can only be used as an approximation of the decoherence rate for

the quantum computation. Coupling is also a problem which makes the pulse design

much more complicated. Finally, any experimental facility is not perfect, which may

introduce more errors. Typical error resources include inhomogeneities in the static

and RF field, pulse length calibration errors, frequency offsets, and pulse timing/phase

imperfections.

If the quantum circuit can be simplified and the number of gates needed is re-

duced, the requirements on the pulses can be alleviated. Mathematicians are looking

for methods to find time-optimal pulse sequences [43, 44, 45, 46], with the goal of

finding the shortest path between the identity and a point in the space of SU(n)

allowed by the system and the control Hamiltonians. Besides that, NMR spec-

troscopists have already developed advanced pulse techniques to deal with system

errors such as cross-talking and coupling. They turn out to work well and are now

widely used in NMR quantum computation. Such techniques include composite pulses

[47, 48, 49, 50, 51, 53] and pulse shaping. The latter consists mainly of two methods:

phase profiles [54] and amplitude profiles [55, 56].

c. Initialization

An NMR sample eventually will go into its equilibrium state when no RF pulse is

applied for a long time. Then the density matrix is proportional to e−H/kT , according

to the Boltzmann distribution, where k = 1.381 × 10−23J/K and T is the absolute

temperature. Normally, the environment temperature is far larger than the energy
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difference between the up and down states of the spin, and H/kT is very small,

about 10−4. We also make the assumption that the coupling terms are small enough

compared with the resonant frequency, thus we can make a reasonable approximation

of the equilibrium state density matrix of a system with n spins:

ρeq =
e−H/kT

tr(e−H/kT )
≈ I − 1

kT
(ǫ1σ

1
z + ǫ2σ

2
z + · · ·+ ǫnσ

n
z ). (2.51)

In the four operators appearing in the density matrix (2.8), only those with zero

traces can be observed in NMR. The operator I0 is invisible, and moreover, it remains

invariant under any unitary similarity transformation. Therefor, we only need to take

care of the zero-trace part of the initial density matrix, noting that only that part

(called deviation) is effective. Most algorithms prefer an initial state such as

ρ0 =
1 − ǫ

2n
I + ǫ|00 · · · 0〉〈0 · · ·00|,

which is an example of the so called pseudo-pure states, corresponding to the pure

state |00 · · ·0〉.

To initialize the system to a pseudo-pure state as above, we may use a scheme

called averaging. Let us explain this for a 2-spin system. Suppose we have three

2-spin subsystems with density matrices

ρ1 =





a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d





, ρ2 =





a 0 0 0

0 c 0 0

0 0 d 0

0 0 0 b





, ρ3 =





a 0 0 0

0 d 0 0

0 0 b 0

0 0 0 c





, (2.52)

respectively, where a, b, c, and d are nonnegative, and a + b + c + d = 1. These are

three diagonal matrices with three of their diagonal elements in cyclic permutation.

Now, we mix these three subsystems together (for n-qubit system, we may have
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2n−1 subsystems) and assume that the three subsystems have the same signal scale.

Because the readout is linear with respect to the initial state, we are in fact working

on a system with an effective initial density matrix

1

3

3∑

i=1

ρi =
1

3





3a

b+ c+ d

b+ c+ d

b+ c+ d





=
b+ c+ d

3
I +

1

3





4a− 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0





, (2.53)

which is a pseudo-pure state corresponding to |00 · · ·0〉.

Various methods have been developed to achieve this effect of averaging. Because

ρ1, ρ2, and ρ3 differ only by a permutation of the diagonal elements, a sequence of

CNOT pulses can be used to transform one to another. In most cases, we only have

one sample, the same algorithm can be repeated on the very sample three times but

with different initial states ρ1, ρ2, and ρ3, respectively. At last, after all the three

outputs are obtained and added together (average), we achieve the same result as

what we will get when the algorithm is employed on a system with the expected

initial state |00 · · ·0〉. This is called “temporal averaging” [57]. Gradient fields can

also be used to divide the sample into different slices in space which are prepared

into different initial states, and the averaging is realized spatially, called “spatial

averaging” [58]. The number of the experiments and pulses needed grows very large

when the number of qubits increases. For example, 9 experiments are combined in

order to prepare one pseudo-pure state for a 5-qubit system and 48 pulses are used
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to form one pseudo-pure state in a 7-qubit system [59] after modifications such as

logical labeling [60, 61] and selective saturation [62].

d. Measurement

An NMR computer differs from other quantum computers in that it works on an

ensemble of spins instead of just a single one. It produces an observable macroscopic

signal which can be picked up by a set of coils positioned on the x-y plane. The

signal measures the change rate of the magnetic field created by a large number of

spins in the sample rotating around the z-axis, called free induction decay (FID). Due

to relaxation, peaks of the Fourier transform of the signal, or spectra, have width.

However, we do not need to worry about that since it will not make any substantial

difference in our discussion here. One disadvantage is that the readout from NMR is

an average of all the possible states, in contrast to most existing quantum algorithms

that ask for the occurrence of only a single state. But it is possible for one to modify

ordinary quantum algorithms to make NMR results usable [18].

The magnetization detected by the coil is proportional to the trace of the product

of the density matrix with σ+ = σx + iσy:

Mx + iMy = nV 〈µx + iµy〉 = nV γ~Tr(ρ(σx + iσy)), (2.54)

where γ is the magnetogyric ratio as in (2.18) and ρ is the density matrix. When

the external RF magnetic field is removed, the density matrix will change according

to the system’s Hamiltonian as we discussed earlier. If we decompose the density

matrix into a sum of product operators as in (2.8), only Ix and Iy contribute to the

readout. We can not “see” the coefficients of I0 and Iz. Recall (2.23): if a one-spin

system begins from density matrix ρ0 = I0 + sin θ cosψIx + sin θ sinψIy + cos θIz, the
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magnetization will rotate with the resonant frequency as

Mz + iMy = C Tr(e−iHtρ0e
iHtσ+)

= C Tr(e−iHt(I0 + sin(θ) cos(ψ)Ix+

sin(θ) sin(ψ)Iy + cos(θ)Iz)e
iHtσ+)

= C Tr((sin θ cosψ(cos(ωt)Ix + sin(ωt)Iy)+

sinθ sinψ(cos(ωt)Iy − sin(ωt)Ix))σ+)

= C sin θ ei(ωt+ψ),

(2.55)

where C = nV γ~. This rotating magnetization will introduce an oscillating electric

potential in the receiver coils, which will be processed by a computer to generate the

spectra. Note that the signal is proportional to sin θ. If an x rotation with angle π/2

is applied on the spin before the measurement, the magnetization will become

Mz + iMy =

√
2

2
C(sin θ − i cos θ)eiωt.

For simplicity, we have chosen ψ = 0. The imaginary part is proportional to the

population difference:

cos θ = cos2 θ

2
− sin2 θ

2
.

Computation of a two-spin system is complicated, so we will only give some

partial results here. The purpose is to point out what methodology is used. We will

still use the basis given by (2.34) and the Hamiltonian in (2.33). The system begins

from a density matrix as

ρ0 =





ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44





. (2.56)
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The operator σ+ is a summation of operators from the two subsystems:

σ+ = σ1
+ + σ2

+

=





0 2 2 0

0 0 0 2

0 0 0 2

0 0 0 0





.
(2.57)

The magnetization in the x-y plane is composed of four frequencies:

Mx + iMy = C Tr(e−iHtρ0e
iHtσ+)

= C (ρ31e
i(ω1+J)t + ρ42e

i(ω1−J)t + ρ43e
i(ω2−J)t + ρ21e

i(ω2+J)t). (2.58)

The spectrum has two pairs of peaks, one pair around the precession frequency

ω1, another pair around ω2. See Fig. 2.9. The splitting is a result of coupling. If the

system have more than two spins, the coupling will split up a peak into up to 2n−1

peaks where n is the number of spins. We also combine all the constants in C to

make the formula concise. Only four of the elements out of the density matrix appear

in this spectrum, so we need to design certain control pulses to move the expected

information to these four positions where numbers can be shown via free induction

signal. If multi-tests are allowed, theoretically, all the elements of the density matrix

can be retrieved [63, 64]. It is also possible to transport the desired information

(computational results) to the four positions where the observer can see.

A typical pulse used in reading out is a hard Xπ/2 pulse which rotate all the spins

about the x-axis with angle π/2. Let us still use two-spin systems as an example. The

operation is the tensor product of two x-rotation operators, i.e., Xπ/2 = X1
π/2X

2
π/2.

The imaginary part of the four effective elements of the density matrix ρ′ after the
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J J J J

ω1 ω2

Fig. 2.9. Simplified stick spectra of a two-qubit molecule. The two dotted lines show

two peaks at ω1 and ω2, respectively, when no coupling is applied (J = 0).

After coupling, every peak is split into two small peaks with the intensities

reduced to half.

operation, utilizing the fact that the density matrix is Hermitian, are

Im(ρ′31) =
1

4
(ρ33 + ρ44 − ρ11 − ρ22 − 2Im(ρ21) − 2Im(ρ34)),

Im(ρ′42) =
1

4
(ρ33 + ρ44 − ρ11 − ρ22 + 2Im(ρ21) + 2Im(ρ34)),

Im(ρ′43) =
1

4
(ρ22 + ρ44 − ρ11 − ρ33 + 2Im(ρ31) + 2Im(ρ24)),

Im(ρ′21) =
1

4
(ρ22 + ρ44 − ρ11 − ρ33 − 2Im(ρ31) − 2Im(ρ24)).

(2.59)

Find the sum of Im(ρ′31) and Im(ρ′42) and that of Im(ρ′43) and Im(ρ′21):

Im(ρ′31 + ρ′42) = −1

2
(ρ11 + ρ22 − ρ33 − ρ44),

Im(ρ′43 + ρ′21) = −1

2
(ρ11 − ρ22 + ρ33 − ρ44).

(2.60)

Because what the coils pick up is the change rate of the magnetic field rather than the

magnetic field itself, the imaginary part we have listed above is reflected in the real

part of the spectra. The computation above shows that the sum of the real parts of

each pair of peaks in the spectra is proportional to the population difference between

the spin-up and the spin-down states of the corresponding spin.
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D. Shor’s algorithm and its experimental realization

Through the rest of the paper, we will describe two applications of the NMR quan-

tum computer: the Shor’s algorithm and a lattice algorithm [18]. Entangled states

are extremely important in quantum computation. Entanglement, together with

superposition, gives a quantum computer the power to perform massively parallel

computation and thus makes it particularly suitable for computing certain complex

problems. Shor’s algorithm for the factorization of integers aimed at decryption is a

special example of a “killer ap” of quantum computing [2, 4]. Recently, a successful

experiment has shown the potential capability of the implementation of Shor’s algo-

rithm, although it is still very simple and tentative. In [5], Vandersypen et al. factor

15 into 3 times 5. That work has demonstrated the liquid NMR quantum computer

to be the most successful quantum computer so far.

1. Shor’s algorithm

It is not difficult to factor a composite integer (i.e., non-prime) into prime numbers

when that integer is small, but the computation burden grows rapidly when the

number increases. The currently most efficient algorithm, the number field sieve,

requires an exponential running time ec(logn)1/3(log logn)2/3

, where n is the number to

be factored and clearly log n is proportional to the number of the bits needed to

store this number. This makes it practically impossible to factor a large number

using a classical computer. This difficulty is used to construct several cryptosystems,

such as the RSA public key cryptosystem [6]. Peter W. Shor has shown that this

problem can be solved in polynomial running time instead of exponential time by

using the quantum computer. A more accessible account of Shor’s algorithm is given

by Lomonaco [7].
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Let n be an odd integer to be factored, and choose another random integer x

less than n. We require x to be coprime with n; otherwise, we find a factor of n

immediately by the Euclidean method. It is then known that function f(s) = xs

mod n is periodic. The period of f (and also of x) is the smallest integer r such that

xr = 1 mod n. For example, when n = 15 and x = 3, the moduli of xs, with s being

1, 2, 3, . . ., are 3, 9, 12, 6, 3, 9, 12, 6, . . ., and the period is 4.

Now we check the period r. If r is even, r = 2t, then x2t− 1 = (xt +1)(xt− 1) =

0 mod n, so either xt− 1 or xt + 1 has a common factor with n. A classical computer

can use the Euclidean algorithm to compute the greatest common divisors, denoted

as gcd(xt + 1, n) and gcd(xt − 1, n), in polynomial time. It is possible that we only

obtain the trivial factors 1 or n using the x we choose. This happens only when

xt = −1 mod n, since xt − 1 = 0 mod n can not happen with r being already the

smallest integer such that xr = 1 mod n. Fortunately it has been proved that the

probability to meet such a bad x is at most 1/2k, where k is the number of distinct

prime factors of n. Since k is at least 2, the probability is still large enough for us to

find a good x, which has an even period r and xt 6= −1 mod n.

A quantum computer can find the period r because of the speedup afforded by

quantum Fourier transform (QFT). Let us have two b-qubit registers. We select b

large enough such that we can observe many periods. At the beginning, we set the

two registers to state |0〉. Then we randomize the first register to a new state

|ψ1〉 =
1√
S

S−1∑

k=0

|k〉|0〉, (2.61)

where S = 2b, the number of the total b-qubit states of the first register, with b large

enough such that 2n2 > S > n2.

We now design a certain series of pulses to compute f(k) = xk mod n, and
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change the quantum state to

|ψ2〉 =
1√
S

S−1∑

k=0

|k〉|f(k)〉. (2.62)

Now, apply QFT [65] to the first register in (2.62), which is a unitary transform

mapping every |k〉 to another state:

|k〉 → 1√
S

S−1∑

k=0

e2πiuk/S|u〉. (2.63)

Then the quantum state of the system changes to

|ψ3〉 =
1

S

S−1∑

u=0

|u〉
S−1∑

k=0

e2πiuk/S|f(k)〉. (2.64)

Assume that f(k) has period r, and we write k = d + jr such that 0 ≤ d < r,

where d is the remainder of k after it is divided by r and j ranges from 0 to A, the

largest integer such that Ar < S. This way, we can write |ψ3〉 as

|ψ3〉 =
1

S

S−1∑

u=0

|u〉
r−1∑

d=0

|f(d)〉e2πiud/S
A∑

j=0

e2πiurj/SI(d+rj<S),

where I(d+rj<S) = 1 when d+ rj < S, and 0 otherwise. If S = (A+ 1)r, I(d+rj<S) = 1

for every d and j. If S 6= (A + 1)r, it is still reasonable to ignore the difference and

let I(d+rj<S) = 1 everywhere because we have chosen S large enough. In this case, we

let

bu =
1

S

A∑

j=0

e2πiurj/S =
1

S

(
1 − e2πiur(A+1)/S

1 − e2πiur/S

)
, (2.65)

thus our quantum state is now

|ψ3〉 =
1

S

S−1∑

u=0

r−1∑

d=0

bue
2πiud/S |u〉|f(d)〉.

We can now measure the first register, and we want to find such a u, for which
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there is an l satisfying ∣∣∣∣
u

S
− l

r

∣∣∣∣ ≤
1

2S
. (2.66)

There are about r such u’s, and it has been estimated that the probability to find such

a u is at least 0.4 [65]. Because
1

2S
<

1

2n2
, and we know that r < n, there is at most

one fraction
k

r
satisfying the condition and we can use continued fraction expansions

to find the fraction. If k and r are coprime, we obtain r as the denominator of the

fraction. If not, we only find a factor of r. If r is odd or xr/2 does not give us a useful

result, choose another x and try again. It may be necessary to try several (of the

order O(log log n)) times until r is successfully found, but the overall running time is

still reasonable.

2. Circuit design for Shor’s algorithm

Before we introduce the experiment by Vandersypen, et al. [5], we extend the above

discussion a little further to the case when r divides S. Now S/r becomes an integer

and (2.65) always holds so that S doesn’t have to be very large. Moreover, (2.66)

becomes an identity

u =
l · S
r
, (2.67)

i.e., r is the denominator of the fraction
u

S
after cancelling the common factor between

u and S if l and r are coprime. The integer 15 falls into this situation. The possible

x can be 2, 4, 7, 8, 11, or 13. When we choose x to be 2, 7, 8 or 13, the period r is

4. In other cases, r is 2. The period r divides S = 2b in both cases. Only 2 qubits at

most are required to compute one period of f . In the experiment, 3 qubits are used

to obtain more periods.

Vandersypen et al. used liquid NMR to realize Shor’s algorithm in factorizing 15.

The sample in the experiment is a custom-synthesized material whose molecules have
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five 19F and two 13C, so it has seven qubits ready for use. Those seven qubits are

divided into two registers, 3 to store the number k (the first register, represented by

|k2k1k0〉) and 4 to store the modular exponentiation y (the second register, represented

by |y3y2y1y0〉), see Fig. 2.10 and Fig. 2.11. The total Hamiltonian is

H =

7∑

i=1

1

2
ωiσ

i
z +

∑

i<j

2πJijσ
i
zσ

j
z .

Each run of the experiment consists of 4 steps. In the first step, the sample

is initialized to a certain pseudo-pure state; in the second step, a series of specially

designed pulses are applied to realize the computation of modular exponentiation; in

the third step, QFT is applied to the first register; finally, the period was obtained

through the reading of the spectrum. The system begins from thermal equilibrium,

where the density matrix is given by ρ0 = e−H/kT ≈ I − H

kT
. A suitable initial

pseudo-pure state |ψ1〉 = |0000001〉 is obtained by the temporal averaging method.

Although it is difficult to design a general circuit for the modular exponentiation,

it is easy to “hard-wire” for this special case in consideration. As the exponent k can

be written as k = k0 + 2k1 + 4k2, we can change the modular exponential xk mod 15

into successive operations of modular multiplications by x2iki, with i = 0, 1, 2, applied

to the second register y beginning from y = 1.

When i = 0, y ·x = x = 1+(x−1), so the multiplication is actually a controlled-

addition with (x− 1) in case k0 = 1. For x = 7 = (0111)2, it is equal to flip the state

of y1 and y2 (y = (0001)2 before the multiplication). For x = 11 = (1011)2, the same

reasoning shows that we only have to flip the state of y3 and y1, depending on k0.

Gates A and B in Figs. 2.10 and 2.11 accomplish the modular multiplication xk0 .

The situation is a little more complicated for i = 1. We only discuss the situation

when k1 = 1, since y will not change when k1 = 0. Different strategies are needed for
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x = 7 and x = 11. When x = 11, since 112 = 121 = 15× 8+1, y× 112 = y (mod 15).

We need to do nothing and the same result holds for the third qubit k2. When x = 7,

we can design the circuit by first investigating the following identity

y · 72 = y · 4 mod 15

= (y0 + 2y1 + 4y2 + 8y3) · 4 mod 15

= (4y0 + 8y1 + 16y2 + 32y3) mod 15

= (y2 + 2y3 + 4y0 + 8y1) mod 15

= (y2 · 20 + y3 · 21 + y0 · 22 + y1 · 23) mod 15.

It shows that the modular multiplication can be achieved by exchanging the first

qubit y0 with the third qubit y2, and the second qubit y1 with the fourth qubit y3. In

Fig. 2.10, gates C, D, and E are used to accomplish the former, and gates F, G, and

H the latter. Further simplification of the circuit can be made. Since the control bit

y3 is |0〉 before gate C, that gate can just be omitted. Gates H and E have no effect

on the period; they can be omitted, too.

The circuit design for the quantum Fourier transform is just a standard design;

see, e.g., [2, Fig. 5]. It has 3 Hadamard gates and 3 controlled-phase gates. Figs. 2.10

and 2.11 show the circuit designs for y = 7 and y = 11. Totally about 300 pulses are

used in the experiment and it takes about 700ms to accomplish all steps in the case

of x = 7.

3. Experimental result

Readout of the experiment needs a careful interpretation of the data. Because an

NMR sample consists of many molecules, the readout is the average value of u from

all molecules instead of the reading from a single molecule.
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Fig. 2.10. The quantum circuit for the (hard) case for the realization of Shor’s Algo-

rithm (x = 7). From top to bottom, the qubits are k2, k1, k0, y3, y2, y1 and

y0, respectively, in sequential order.

Both qubits k0 and k1 are found to be in state |0〉 after the extraction of the

spectra [5] for the easy case of x = 11, while qubit k2 is in a equally mixture state

of |0〉 and |1〉. Thus the possible u can be 0 and 4, i.e., 000 and 100 in binary form.

From (2.67), r can be obtained as r = 8/4 = 2, and the greatest common divisors are

computed as gcd(112/2 + 1, 15) = 3 and gcd(112/2 − 1, 15) = 5.

In the case of x = 7, the spectra in [5] indicate that only qubit k0 is in state |0〉,

and both qubits k1 and k2 are in equal mixture of states |0〉 and |1〉. Thus u is in

a mixture of states |0〉, |2〉, |4〉 and |6〉. We can see that the period of u is 2, thus

the period of the modular exponent r is 8/2 = 4. The factors of 15 can finally be

obtained as gcd(74/2 − 1, 15) = 3 and gcd(74/2 + 1, 15) = 5.

E. Quantum algorithm for lattice-gas systems

In the previous sections, we have explained how to construct a quantum computer

using liquid NMR and illustrated a successful experiment. We have taken it for

granted that the coherence can be maintained long enough and different qubits can

be entangled even they are separated far apart in space. Unfortunately, these assump-
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Fig. 2.11. The quantum circuit for the (easy) case for realization of Shor’s Algorithm

(x = 11). From top to bottom, the qubits are k2, k1, k0, y3, y2, y1 and y0,

respectively, in sequential order.

tions are not always practical and in fact they constitute great obstacles to overcome.

The problem becomes more serious when more qubits are involved. Type-II quantum

computers are proposed to alleviate this problem. A type-II quantum computer is

composed of a network or array of small quantum computers interconnected by classi-

cal communication channels [66]. In stead of the global coherence and entanglement,

only local coherence and entanglement within every small quantum computer, called

a node, are required, and the difficulty faced by the centralized quantum computer is

dramatically eased.

The wave function of the whole type-II quantum computer system is a tensor

product over all the nodes:

|ψ(t)〉 = |ψ(x1, t)〉 ⊗ · · · ⊗ |ψ(xN , t)〉, (2.68)

where N is the number of nodes. The lattice gas algorithm (LGA) is specially suited

for this structure. Every computation cycle can be broken up into three steps with
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two intermediate states |ψ′〉 and |ψ′′〉:

|ψ′〉 = Ĉ|ψ(t)〉,

|ψ′′〉 = Γ|ψ′〉,

|ψ(t+ 1)〉 = T |ψ′′〉,

(2.69)

where Ĉ is a unitary operator acting locally on every node, while Γ is a projection

operator, such as a measurement, and T is the streaming operator which exchanges

information among nodes. The type-II quantum computer takes advantage of par-

allelism in two ways: one classical, all the nodes work simultaneously; the other

quantum, quantum entanglement is still kept inside every node. Because measure-

ment is applied and the system is reset at the end of every computation cycle, the

coherence only needs to be maintained for a short time.

1. Quantum algorithm for a lattice-gas model

Consider a one-dimensional diffusion equation without boundary condition

∂ρ

∂t
=
∂2ρ

∂x2
, (2.70)

where ρ is the mass density or temperature function along the x-axis. Using the finite

difference method, we can write a finite difference approximation to solve the above

partial differential equation numerically:

ρ(x, t+ τ) − ρ(x, t)

τ
=
ρ(x+ l, t) − 2ρ(x, t) + ρ(x− l, t)

l2
, (2.71)

where τ is the time step size and l is the space step size. From physics, we know

that the above equation may be studied by a lattice gas algorithm. Without loss of

generality, we assume that τ and l are normalized so that the difference equation can
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be written as

ρ(xi, k + 1) − ρ(xi, k) =
1

2
(ρ(xi+1, k) − 2ρ(xi, k) + ρ(xi−1, k)).

Points xi are evenly distributed along the x-axis, also called nodes . To study the

above equation, two functions, f1(xi, k) and f2(xi, k), called channels , are defined for

each node xi at time k. The set of values of these two functions are called the state of

node xi. Any physical observable, such as the density function ρ(xi, k), is a function of

the state at the node. The evolution of the lattice, or the state of all nodes, consists of

two operations: collision and propagation. A collision is a local operator only defined

by the state of the node itself. The propagation operator transfers information from

one node to another and the state at one node changes according to the state of other

nodes. This is completed by defining a velocity vector for every channel which gives

the information flow a direction. In our special example here, information in the two

channels flows in opposite directions. After propagation, one channel gets its new

value from its left neighbor, while the other from its right neighbor. This LGA is

completed with a Type II quantum computer by J. Yepez of the Air Force Research

Laboratory and M.A. Pravia, et al. of the Department of Nuclear Engineering at

MIT [67, 68, 69, 66]. The actual result is not as good as desired, but improvement is

still possible.

To store a floating point number, a classical computer uses a register with 32

or 64 bits, depending on the machine. Quantum computers presently have difficulty

to do it the same way as classical computers because there is not yet the technology

for 32 or 64 qubits. In this quantum lattice-gas algorithm, a two qubit system is

proposed for every node. The two qubits are represented by |q1(xi, k)〉 and |q2(xi, k)〉,
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respectively, and

|q1(xi, k)〉 =
√
f1(xi, k)|0〉 +

√
1 − f1(xi, k)|1〉,

|q2(xi, k)〉 =
√
f2(xi, k)|0〉 +

√
1 − f2(xi, k)|1〉.

The state of the whole system |ψ(xi, k)〉 at node xi and time k is a tensor product:

|ψ(xi, k)〉 = |q1(xi, k)〉|q2(xi, k)〉

=
√
f1(xi, k)f2(xi, k)|00〉 +

√
(1 − f1(xi, k))f2(xi, k)|10〉

+
√
f1(xi, k)(1 − f2(xi, k))|01〉

+
√

(1 − f1(xi, k))(1 − f2(xi, k))|11〉.

Quantities f1(xi, k) and f2(xi, k) are the probabilities of occurrence of the state |0〉

for qubit 1 and 2, respectively, corresponding to the two channels, and 1− f1,2(xi, k)

are the occurrence probabilities of the state |1〉. Since the states are normalized,

0 ≤ f1,2(xi, k) ≤ 1, and we let ρ(xi, k) = f1(xi, k) + f2(xi, k). It is noted that our

Type-II quantum computer assigns ρ a continuous value (a function of the occurrence

probabilities) rather than a discrete value as a digital computer does. An array of

two qubit systems are used in the computation, corresponding to a series of nodes.

The quantum LGA here has three steps in every cycle that complete a step of the

finite difference algorithm computation: collision, measurement, and re-initialization.

The last two composed are equal to one propagation operation in a normal lattice

gas algorithm. Because the propagation needs information exchange among differ-

ent nodes, measurement and classical communication are needed to accomplish one

operation. We map the quantum state to a vector in C4 as that given in (2.34).

In the collision step, a unitary operator is applied simultaneously to all nodes:

|ψ(xi, k)〉 = U |ψ(xi, k)〉,
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where

U =





1 0 0 0

0
1

2
− i

2

1

2
+
i

2
0

0
1

2
+
i

2

1

2
− i

2
0

0 0 0 1





. (2.72)

The new occurrence probabilities of the sate |0〉 of the two qubits after the

operation, f 1 and f2, can be computed using

f1 = 〈ψ|n1|ψ〉, n1 =





1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0





,

f2 = 〈ψ|n2|ψ〉, n2 =





1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0





,

(2.73)

leading to

f 1(xi, k) =
1

2
(f1(xi, k) + f2(xi, k)),

f 2(xi, k) =
1

2
(f1(xi, k) + f2(xi, k)).

The collision operator is actually doing a job of averaging. The state after the collision

is also called the local equilibrium.

In the second step, a measurement is applied at every node and f 1,2(xi, k) of all

the nodes are retrieved for future use.

In the third step, using information from the measurement from the previous
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step, the state of all the nodes are re-initialized to a separable state

|q1(xi, k + 1)〉 =
√
f1(xi+1, k)|0〉 +

√
1 − f1(xi+1, k)|1〉,

|q2(xi, k + 1)〉 =
√
f2(xi−1, k)|0〉 +

√
1 − f2(xi−1, k)|1〉.

(2.74)

It can be seen that the second and third steps have accomplished the propagation

operation. At node xi, the new state of channel one is acquired from the same

channel of its right neighbor node xi+1, and channel two acquires its state from its

left neighbor. It is complicated here only because the communication between two

quantum systems is difficult.

To see how this LGA works, let us begin from a local equilibrium state, f1(xi, k) =

f2(xi, k) = ρ(xi, k)/2, where the states come off a collision operation (step 2). We list

the f1,2 around position xi before the third step in two rows

f1 : · · · ρ(xi−2, k)

2

ρ(xi−1, k)

2

ρ(xi, k)

2

ρ(xi+1, k)

2
· · ·

f2 : · · · ρ(xi−2, k)

2

ρ(xi−1, k)

2

ρ(xi, k)

2

ρ(xi+1, k)

2
· · ·

and after the third step

f1 : · · · ρ(xi−1, k)

2

ρ(xi, k)

2

ρ(xi+1, k)

2

ρ(xi+2, k)

2
· · ·

f2 : · · · ρ(xi−3, k)

2

ρ(xi−2, k)

2

ρ(xi−1, k)

2

ρ(xi, k)

2
· · ·

We can see that the row of f1 (channel one) moves left and the row of f2 (channel two)

moves right. According to our definition, the new value of ρ is the sum of f1(xi, k+1)

and f2(xi, k+1), i.e., ρ(xi, k+1) =
1

2
(ρ(xi+1, k)+ ρ(xi−1, k)). It is easy to check that

ρ(xi, k + 1) − ρ(xi, k) =
1

2
(ρ(xi+1, k) − 2ρ(xi, k) + ρ(xi−1, k)),

as desired.

Applications of the Type-II quantum computer with quantum LGA also have

been reported in the simulation of the time-dependent evolution of a many-body
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quantum mechanical system [70], solution of a one-dimensional magnetohydrody-

namic turbulence [71], representation of solitons [72] and other equations.

2. Physical realization and result

The experiment in Subsection 1 uses a two-qubit molecule, chloroform, whose struc-

ture is shown in Fig. 2.7. The hydrogen and carbon nuclei serve as qubit 1 and 2,

respectively.

The actual results obtained from the experiment are compared with simulation

results [68]. After 12 steps, the error becomes very large. Imperfection in the decou-

pling sequences is blamed and it is believed that the problem can be mitigated when

the technology is improved in the future. Extreme requirement of high accuracy in

the control pulse and readout is a disadvantage of this Type-II quantum computer,

because it uses a continuous representation (the probability of occurrence) instead of

a discrete one. Thus, it is more vulnerable to the inaccuracy in the NMR operation.

Small errors in every step accumulate and finally become intolerable. Repeated mea-

surement and re-initialization ease the requirement for coherence time, but place a

high requirement on the fidelity at the same time.

F. Conclusion

In this article, we present the basic technology used to construct a quantum computer

with liquid state NMR. The successful experiments for many algorithms have shown

that liquid state NMR is capable of simulating a quantum computer and forms a test

bed for quantum algorithms. It is so far the only technology available to realize a

7 qubit algorithm in laboratory. One reason for its success is the robustness of the

spin system which only interacts with the external magnetic field, and it is possible
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to maintain the coherence for a long time (from seconds to hours). Besides, over the

60 years history of NMR spectroscopy, analytic tools have been developed for the

purpose of chemical and medical applications, and exact description and dedicated

coherence control of the dynamics of the quantum spin system is now available to

achieve high accuracy in the pulse design and application. In fact, the experimental

techniques established in NMR, especially the coherence control technology, can be

easily transferred to other quantum systems if they have a similar Hamiltonian, and

the research in NMR is therefor helpful for the development of other more complicated

and powerful quantum computers.

Liquid NMR has played a pioneering role in the quantum computer technology

development. But its lack of scalability has constitute a severe obstacle to its future

applicability. However, new technology of solid state NMR have the potential to

overcome liquid NMR’s difficulties. For solid state NMR, under low temperature, the

relaxation times of spins are typically very long, and the coupling between qubits is

strong so that the control can be fast and easy. The small ratio of the gate time and

the decoherence time makes more gates available, and more complicated algorithm

can be tested. The nuclei can be cooled down easily and the spin system is highly

polarized. The signal is much stronger so that fewer nuclei are needed. Even without

the help of gradient field and the silicon technology, as we have mentioned, a quantum

computer with 30 to 40 qubits is envisioned with designed molecules similar to that

of the liquid state NMR computer except that the ensemble is in a solid crystal state.

This is already a quantum system that reaches the limit a classical computer can

simulate. Although it is still not scalable and not a standard quantum computer,

these small and medium scale quantum computers will help in the building of a

scalable and working quantum computer.



56

CHAPTER III

SUPERCONDUCTING QUANTUM COMPUTING DEVICES

Even though quantum effects are mostly observed in microscopic scales, they also

manifest macroscopically. A particular case of such is superconductivity. Supercon-

ducting devices composed of Josephson junctions (JJ), Cooper-pair boxes and SQUID

(superconducting quantum interference devices) have been developed since the 1980s

as magnetometers, gradiometers, gyroscopes, sensors, transistors, voltmeters, etc., to

perform measurements on small magnetic fields, and to demonstrate the quantum

effects of tunneling, resonance and coherence [73, 74, 75, 76, 77, 78]. Many industrial

and medical applications have also resulted: maglev trains, superconducting power

generator, cables and transformers, MRI and NMR for medical scans,to mention a

few. With the advances in solid-state lithography and thin-film technology, super-

conducting devices have the great advantage of being easily scalable and engineering-

designable. For a bulk superconductor, if its size is reduced smaller and smaller, then

the quasi-continuous electron conduction band therein turns into discrete energy lev-

els. In principle, such energy levels can be used to constitute a qubit. The first

demonstration of quantum-coherent oscillations of a Josephson “charge qubit” in a

superposition of eigenstates was made by Nakamura et al. [79] in 1999. Ever since,

theoretically and experimentally there has been steady progress. New proposals for

qubits based on charges, flux, phase and charge-flux have been made, with observa-

tions of microwave-induced Rabi oscillations of two-level populations in those qubit

systems [80, 81, 82, 83].

In this chapter, we will first introduce superconductivity in Section A, the Joseph-

son junction in Section B, and the elementary superconducting circuits in Section C.

Superconducting quantum circuits and gates are studied in Sections D and E, and
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conclude with measurements in Section F.

A. Superconductivity

Superconductivity was discovered in 1911 by the Dutch physicist Heike Kamerlingh

Onnes (1853–1926), who dedicated his career to the exploration of extremely cold

refrigeration. In 1908, he successfully liquefied helium by cooling it to −452◦ F (4 K).

In 1911, he began the investigation of the electrical properties of metals in extremely

cold temperatures, using liquid helium. He noticed that for solid mercury at cryogenic

temperature of 4.2 K, its electric resistivity abruptly disappeared (as if there were

a jump discontinuity). This is the discovery of superconductivity, and Onnes was

awarded the Nobel Prize of Physics in 1913.

The theory of superconductivity was further advanced in 1957 by three Amer-

ican physicists (then at the University of Illinois), J. Bardeen, L. Cooper, and J.

Schrieffer, called the BCS Theory [84]. The BCS theory explains superconductivity

at temperatures close to absolute zero. Cooper theorized that atomic lattice vibra-

tions were directly responsible for unifying and moderating the entire current. Such

vibrations force the electrons to pair up into partners that enable them to pass all of

the obstacles which cause resistance in the conductor. These partners of electrons are

known as Cooper pairs. This electron coupling is viewed as an exchange of phonons,

with phonons being the quanta of lattice vibration energy. The electron Cooper pairs

are coupled over a range of hundreds of nanometers, three orders of magnitude larger

than the lattice spacing. The effective net attraction between the normally repulsive

electrons produces a pair binding energy on the order of milli-electron volts, enough to

keep them paired at extremely low temperatures. Experimental corroboration of an

interaction with the lattice was provided by the isotope effect on the superconducting
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transition temperature Tc. More on Cooper pairs in the next section.

Interested readers may find more information in superconductivity textbooks

[85, 86, 87, 88], for example.

B. More on Cooper pairs and Josephson junctions

In the preceding section, we briefly introduced Cooper pairs. For electrons in a metal

at low temperature, despite the fact that the electrons Coulomb force repel each

other, the lattice of positive ions in the metal can have phonon vibration energy that

mediates the coupling or pairing of eletrons to overcome the repelling force. It works

as follows [89]: When one of the electrons that make up a Cooper pair and passes

close to an ion in the crystal lattice, the attraction between the negative electron

and the positive ion cause a vibration (i.e., phonon) to pass from ion to ion until the

other electron of the pair absorbs the vibration. The net effect is that the electron has

emitted a phonon and the other electron has absorbed the phonon. It is this exchange

that keeps the Cooper pairs together. It is important to understand, however, that the

pairs are constantly breaking and re-forming. Because electrons are indistinguishable

particles, it is easier to think of them as permanently paired. The composite entity,

the Cooper pair, thus behaves as a single particle. These coupled electrons can take

the character of a boson with charge twice that of an electron and zero spin. The first

excited state of Cooper pairs has a minimum energy of 2 ∆, where ∆ is what we had

referred to earlier as the superconducting gap. See also ∆ in (3.1) and (3.2) below.

Cooper pairs carry the current in a superconductor.

Now, consider two superconductors with currents. If they are kept apart and

totally isolated from each other, then the phases of their wavefunctions will be in-

dependent. Bring them close together but separate by a thin non-conducting oxide
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barrier of tens of angströms thickness. Then Cooper pairs begin to tunnel stronger

across the barrier as the separation decreases. This current is called the Josephson

current. The “sandwich-like” arrangement is called the Josephson junction, see Fig.

3.1. Both were named after the British physicist B.D. Josephson (Nobel laureate in

physics 1973).

The basic equations governing the dynamics of the Josephson tunneling are

V (t) =
~

2e

∂φ(t)

∂t
, I(t) = Ic sin(φ(t)), (3.1)

where V (t) and I(t) are, respectively, the voltage and current across the JJ, φ(t) is

the phase difference of the superconductors across the JJ, and Ic, a constant, is the

critical current. In the microscopic theory of superconductivity [88], it is known that

Ic =
π∆

2eRN

tanh
∆

2T
, (3.2)

where ∆ is the superconducting order parameter energy gap, T is the temperature,

and RN is a constant.

A superconducting quantum interference device (SQUID) consists of two super-

conductors separated by thin insulating layers of JJ. SQUID are usually made of

either a lead alloy (with 10% gold or indium) and/or niobium, often consisting of the

tunnel barrier sandwiched between a base electrode of niobium and the top electrode

of lead alloy.

There are two types of SQUID:

(1) dc-SQUID: It was invented by R. Jaklevic, J. Lambe, A. Silver, and J. Mercereau

of Ford Research Labs in 1964. It consists of two JJ placed in parallel such

that electrons tunneling through the junctions manifest quantum interference,

depending upon the strength of the magnetic field within a loop.
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(2) rf-(or ac-) SQUID: It was invented by J. E. Zimmerman and A. Silver at Ford

in 1965. It is made up of one Josephson junction, which is mounted on a

superconducting ring. An oscillating current is applied to an external circuit,

whose voltage changes as an effect of the interaction between it and the ring.

The magnetic flux can then be measured.

DC-SQUID are more difficult and expensive to fabricate, but they are much more

sensitive. A SQUID can detect a change of energy as much as 100 billion times weaker

than the electromagnetic energy that moves a compass needle. We will study dc and

rf SQUID in more technical detail in the following sections.

Tunnel barrier (about 10~20 Angstroms)

base: Superconductor

top: Superconductor

Fig. 3.1. Schematic of a simple Josephson junction. It has a “sandwich” structure. The

base is an electrode made of a very thin niobium layer, formed by deposition.

The midlayer, the tunnel barrier, is oxidized onto the niobium surface. The

top layer, also an electrode, made of lead alloy (with about 10% gold or

indium) is then deposited on top of the other two.

C. Superconducting circuits: Classical

There are about a half dozen major proposals for superconducting qubits. We will

introduce some of them in this section. First, classical superconducting circuits char-

acterized by their Lagrangians will be presented. Then we advance to their quantum

versions through the canonical quantization procedure when only a few electrons are

present on such circuits. Our discussions mainly follow the tutorial paper by Wendin

and Shumeiko [90].
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In superconducting quantum computing applications, four basic types of circuits

with JJ are commonly used as building blocks :

(1) single current-biased JJ;

(2) single Cooper-pair box (SCB);

(3) rf-SQUID;

(4) dc-SQUID.

We address each of them separately in the following subsection.

1. Current-biased JJ

This is the simplest superconducting circuit, consisting of a tunnel Josephson junction

with superconducting electrodes connected to a current source. A schematic is given

in Fig. 3.2.

tunnel JJ
E  , φJ

current
source

(a) (b)

C

R

E  , φJ

I

superconducting

leads

Fig. 3.2. (a) A current biased Josephson junction; (b) An equivalent lumped circuit,

where × signifies the barrier of the JJ. (Adapted from [90]).

Let φ(t) be the phase difference between the wavefunctions in the two super-

conductors across the junction. Let V (t) denote the voltage difference across the

junction. Then by the first equation in (3.1),

φ(t) =
2e

~

∫ t

t0

V (τ)dτ + φ0. (3.3)
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(The superconducting phase φ(t) is also related to magnetic flux Φ(t) as

φ(t) =
2e

~
Φ(t) = 2π

Φ(t)

Φ0
, (3.4)

where Φ0 = h/(2e) is the magnetic flux quantum.) As noted in the second equation

of (3.1) in Section B, the JJ current is proportional to the sine of φ(t) across the

insulator:

IJ = Ic sin φ, Ic ≡ the critical Josephson current, (cf. (3.1)). (3.5)

Differentiating (3.3), we have

φ̇(t) =
2e

~
V (t). (3.6)

Refer to Fig. 3.2 (b). The current-voltage relations for the junction capacitance C

and resistance R are given by the standard formulas

IC = C
dV

dt
, IR = V/R. (3.7)

From (3.6) and (3.7), by the Kirchhoff law of the circuit (see Fig. 3.2 (b)), we now

have

~

2e
Cφ̈+

~

2eR
φ̇+ Ic sinφ = Ie, (3.8)

where Ie is the bias current. Eq. (3.8) takes the form of a damped forced pendulum.

The damping term ~

2eR
φ̇ in (3.8) determines the lifetime of the (future super-

conducting quantum circuit) qubit. Thus, the dissipation must be extremely small.

Ideally, we assume that it is zero. So we consider an undamped Eq. (3.8):

~

2e
Cφ̈+ Ic sin φ = Ie. (3.9)

Remark C.1. It is necessary to emphasize that dropping the damping term ~φ̇/(2eR)

in (3.8) constitutes a reasonable approximation only under the following conditions
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of superconductivity:

(i) low temperature, i.e., T is small;

(ii) |φ̇| is very small;

(iii) T, ~ω ≪ ∆, where ∆ is the energy gap in (3.2). �

For the undamped Eq. (3.9), Lagrangian and Hamiltonian variational forms can

now be obtained by kinetic and potential energies:

kinetic energy K = K(φ̇) =

(
~

2e

)2
C

2
φ̇2, (3.10)

potential energy U = U(φ) =
~

2e

∫
[Ic sinφ− Ie]dφ

=
~

2e
Ic(1 − cos φ) − ~

2e
Ieφ, (3.11)

where the kinetic energy is proportional to the electrostatic energy of the junction

capacitor (corresponding to the first term in (3.9)), while the potential energy consists

of the energy of the Josephson current and the magnetic energy of the bias current

(corresponding to the last two terms in (3.9)).

For future quantum superconducting circuit applications, we introduce several

useful constants. The first is the charging energy of the junction capacitor charged

with a single Cooper pair (of electrons)

EC ≡ (2e)2

2C
. (3.12)

The second,

EJ ≡ ~

2e
Ic (3.13)

is called the Josephson energy. The third constant,

ωJ ≡
√

2eIc
~C

, (3.14)
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is called the plasma frequency of the JJ. This is the frequency of the small-amplitude

oscillation of the unforced pendulum (i.e., Eq. (3.9) with Ie = 0). With (3.12) and

(3.13), we can write (3.10) and (3.11) as

K =
~

2φ̇2

4EC
, U = EJ(1 − cosφ) − ~

2e
Ieφ.

Thus, we obtain the Lagrangian

L(φ, φ̇) = K − U =
~

2φ̇2

4EC
− EJ(1 − cosφ) +

~

2e
Ieφ,

whose Lagrangian variational equation

d

dt

∂L

∂φ̇
− ∂L

∂φ
= 0

is exactly (3.9).

The Hamiltonian H is related to the Lagrangian L through

H(p, φ) = pφ̇− L, where p =
∂L

∂φ̇
=

~
2

2EC
φ̇, (3.15)

with p being the canonical momentum operator conjugate to φ. Then

H(p, φ) =
EC
~2
p2 + EJ (1 − cosφ) − ~

2e
Ieφ, (3.16)

and the Hamiltonian equations of motion

φ̇ =
∂H

∂p
, ṗ = −∂H

∂φ
(3.17)

are again equivalent to (3.9).

2. Single Cooper-pair box (SCB)

An SCB is driven by an applied voltage V g through capacitance Cg to induce an

offset charge. The circuit consists of a small superconducting “island” connected via
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a Josephson tunnel junction to a large superconducting reservoir. See a schematic in

Fig. 3.3.

Vg

Cg

island (b)(a)

C
E J

Cg

box

Vg

Fig. 3.3. (a) A single Cooper-pair box. (b) An equivalent lumped circuit, where ×
signifies the barrier of JJ. (Adapted from [90] and [94].)

The electrostatic energy of the SCB is the sum

K =
CV 2

2
+
Cg(V g − V )2

2
,

which, after using (3.6) and completing the square, gives

K =
(C + Cg)

2

(
~

2e
φ̇− Cg

C + Cg
V g

)2

+
1

2

(
Cg − Cg2

C + Cg

)
V g2. (3.18)

Dropping the (last) constant term in (3.18) and denoting CΣ ≡ C + Cg, we have

K = K(φ̇) =
CΣ

2

(
~

2e
φ̇− Cg

CΣ
V g

)2

.

The potential energy U from (3.11) (by dropping the bias current Ie as it is no longer

present) is

U = U(φ) = EJ(1 − cosφ).

Therefore, we obtain the Lagrangian

L(φ, φ̇) =
CΣ

2

(
~

2e
φ̇− Cg

CΣ
V g

)2

− EJ(1 − cos φ). (3.19)
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The Hamiltonian, according to (3.15), is

H(φ, p) =
1

2CΣ

(
2e

~

)2

p2 + EJ(1 − cosφ). (3.20)

3. rf- or ac-SQUID

The rf-SQUID, also called an ac-SQUID or a magnetic-flux box, is depicted in Fig. 3.4.

It is the magnetic analogue of the (electrostatic) SCB discussed in Subsection 2. It

consists of a tunnel JJ inserted in a superconducting loop.

magnetic flux

tunnel JJ

superconducting
loop

 R

C

φ

E
J

(b)(a)
Φe

Fig. 3.4. (a) An rf-SQUID. (b) An equivalent lumped circuit. (Adapted from [90,

Fig. 8].)

Let IL denote the current associated with the inductance L of the superconduct-

ing leads. Then by (3.4),

IL =
~

2eL
(φ− φe), φe =

2e

~
Φe,

where Φe is the external magnetic flux piercing the rf-SQUID loop. Using the same

arguments as in Subsection 1, by the Kirchhoff circuit law we arrive at

~

2e
Cφ̈+

~

2eR
φ̇+ Ic sin φ+

~

2eL
(φ− φe) = 0, (3.21)

where in (3.8) the bias current Ie is replaced by −IL.

If the damping is very small, then the term containing φ̇ can again be dropped
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and the Lagrangian of the rf-SQUID is

L(φ, φ̇) =
~

2φ̇2

4EC
− EJ(1 − cosφ) − EL

(φ− φe)
2

2
,

(
EL ≡ ~

2

(2e)2L

)
. (3.22)

The Hamiltonian is then obtained as

H(φ, p) =
EC
~2
p2 + EJ(1 − cosφ) + EL

(φ− φe)
2

2
. (3.23)

4. dc-SQUID

A dc-SQUID consists of two JJ in parallel coupling to a current source. It has some

similarity to the current-biased single junction (Fig. 3.2), except that there is an

additional magnetic flux piercing the SQUID loop, which serves as a control on the

effective Josephson energy of the double JJ. See Fig. 3.5 for a schematic of a dc-

SQUID.

   IΦφ φ
21(a) (b)

Φ
I

e

Φ  : magnetic fluxe

e

I: current source

Fig. 3.5. (a) Schematic of a dc-SQUID. (b) An equivalent (nominal) lumped circuit.

Let φ1 and φ2 be superconducting phase differences across the JJ 1 and 2, respec-

tively. Assume that the inductance of the SQUID loop is small so that the magnetic

energy of the circulating currents can be neglected. Then the total voltage drop over

the two JJ is zero:

V1 + V2 = 0.
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From (3.6),

φ̇1 + φ̇2 = 0,

and, thus φ1 + φ2 is a constant, and

φ1 + φ2 = φe, (3.24)

where φe is the biasing superconducting phase related to the biasing magnetic flux.

Define

φ± =
φ1 ± φ2

2
.

Then

φ+ =
φ1 + φ2

2
=

1

2
φe, φ− =

φ1 − φ2

2
,

which leads to

φ1 = φ− +
φe
2
, φ2 =

φe
2

− φ−. (3.25)

For the symmetric case, the two JJ have the same EJ , C and Ic. Assume that

there is no dissipation, thus we can neglect the φ̇ term. The equation (3.24) can be

rewritten using φ+ as

2φ+ − φe = 0.

The Kirchhoff circuit law requires

~

2e
Cφ̈1 + Ic sin φ1 −

~

2e
Cφ̈2 − Ic sinφ2 − Ie = 0,

or

~

e
Cφ̈− + 2Ic cosφ+ sinφ− − Ie = 0,

by using trigonometric identities. Thus the dynamic equation for the system of φ+
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and φ− can be obtained as






~

e
Cφ̈− + 2Ic cosφ+ sinφ− − Ie = 0

~

eL
(2φ+ − φe) = 0.

(3.26)

The system has in fact only one degree of freedom since 2φ+ = φe. By substituting

φ+ by φe/2 and comparing (3.26) with

d

dt

∂L

∂φ̇−
− ∂L

∂φ−
= 0, (3.27)

we can obtain the Lagrangian of the dc-SQUID as

L =

(
~

2e

)2

Cφ̇2
− +

~

2e
2Ic cos φ+ cosφ− +

~

2e
Ieφ−,

Its Hamiltonian, in turn, is

H =

(
~

2e

)2

Cφ̇2
− − ~

2e
2Ic cos φ+ cosφ− − ~

2e
Ieφ−.

The kinetic energy of the dc-SQUID can be obtained from the Lagrangian as

K(φ−) =

(
~

2e

)2

2C
φ̇2
−
2
. (3.28)

It has a simple interpretation as the charging energy of the two junction capacitances

(see Fig. 3.5 (b)) by looking at identity:

2C
~

2e
φ̇− = C

~

2e
(φ̇1 − φ̇2)

= C(V1 − V2)

= q.

By setting EC ≡ (2e)2

2 · 2C and define EJ and EL as before, we can rewrite the Hamil-

tonian as

H =
~

2

4EC
φ̇2
− − 2EJ cos

φe
2

cosφ− − ~

2e
Ieφ−,
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and in terms of p =
~

2

2EC
φ̇−,

H =
EC
~2
p2 − 2EJ cos

φe
2

cos φ− − ~

2e
Ieφ−. (3.29)

D. Superconducting circuits: quantum

We know that the quantization of the electromagnetic field gives a simple harmonic

oscillator. A classical superconducting circuit may be viewed as an antenna. It can

thus radiate electromagnetic waves. From this analogue, we see that superconducting

circuits can be quantized as well when the JJ becomes microscopically small, and the

continuous electric current becomes discretely charged.

We now formalize the above argument by following the standard approach of

canonical quantization. From the classical Lagrangian L, and then p = ∂L/∂φ̇ we

have the Hamiltonian H just as in (3.15). Now consider the simplest case of a single

junction (Subsection 1, in particular Fig. 3.2). From (3.15),

p =
∂L

∂φ̇
=

~
2

2EC
φ̇, (see (3.12) for EC). (3.30)

From the first equation in (3.1),

V =
1

2e

h

2π
φ̇ =

~

2e
φ̇. (3.31)

Thus,

p =
~

2

2EC
φ̇ =

(
~

2e

)2

Cφ̇

=

(
~

2e

)2

C

(
2e

~

)
V =

~

2e
CV

=
~

2e
q (q = CV on the junction capacitor)

= ~
q

2e
= ~n, (3.32)
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where q/(2e) is n, the number of Cooper pairs. Therefore, the momentum p has

a simple interpretation that it is proportional to the number of Cooper pairs n on

the junction capacitor. Substituting (3.32) into (3.16), we obtain the (quantum)

Hamiltonian for the current-biased JJ:

H = ECn
2 − EJ cos φ− ~

2e
Ieφ, (3.33)

where the constant EJ in (3.16) has been dropped.

For the SCB, from (3.19) we have the conjugated momentum

p =
∂L

∂φ̇
=

~CΣ

2e

(
~

2e
φ̇− Cg

CΣ
V g

)
, (3.34)

and by using (3.32) and (3.34) in (3.20), we have

H = Ec(n− ng)
2 − EJ cosφ, (3.35)

where

Ec ≡ (2e)2/(2CΣ), ng = CgVg/(2e), (3.36)

and ng is the number of Cooper pairs on the gate capacitor. This ng is tunable

through different designs of Cg and V g.

For the dc-SQUID, according to the derivations of (3.29), we obtain the Hamil-

tonian

H = ECn
2
− − 2EJ cos

φe
2

cosφ− − ~

2e
Ieφ−, (3.37)

where EC =
(2e)2

4C
and n− = 2C

~

(2e)2
φ̇−.

In quantization, the classical momentum p in (3.30) becomes the differential

operator

p̂ = −i~ ∂

∂φ
, (3.38)

where using φ we mean φ− for the dc-SQUID. From (3.32), we thus also have the
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operator of the pair number

n̂ = −i ∂
∂φ
, (3.39)

and the commutator relation

[φ, n̂] = i. (3.40)

The time evolution of the wave function ψ = ψ(φ, t) satisfies the Schrödinger equation

i~
∂

∂t
ψ(φ, t) = Ĥψ(φ, t) = H

(
φ,

~

i

∂

∂φ

)
ψ(φ, t), (3.41)

where H = H(φ, p) = H(φ, ~n) is the Hamiltonian derived in (3.33) through (3.37).

E. Quantum gates

We begin the discussion by using CPB as a major reference model for this section.

Recall from (3.36), that the Hamiltonian for a CPB is given by

H = EC(n̂− ng)
2 −EJ cosφ. (3.42)

Here we assume that

EC ≫ EJ . (3.43)

The pair-number operator n̂ is defined by

n̂|n〉 = n|n〉, n = an integer, (3.44)

where |n〉 is called the number state. From (3.39), we see that the wave function

ψ = ψ(φ) of |n〉 satisfies the differential equation

−i ∂
∂φ
ψ = nψ. (3.45)



73

To allow only integer n in (3.45) for consideration in solving ψ, a periodic constraint

must be imposed:

ψ(φ+ 2π) = ψ(φ). (3.46)

(Without such a constraint, the number of electrons on the island may be odd, or n

could be a real value number. But here the electrode is miniaturized small enough

that such cases would not happen as only a finite number of Cooper pairs can exist

on the island.) Therefore, from (3.45) and (3.46), we obtain

ψ(φ) =
1√
2π
einφ, for n = 0,±1,±2, · · · , (3.47)

where 1/
√

2π is the normalization factor with respect to the L2(0, 2π)-norm. From

(3.42), we see that for the lowest energy eigenstate |0〉 and |1〉 of n̂, when (3.43) holds,

the states |0〉 and |1〉 are nearly degenerate when ng = 0.5:

H|0〉 = [EC(0 − 0.5)2 − EJ cos φ]|0〉 ≈ 1

4
EC |0〉,

H|1〉 = [EC(1 − 0.5)2 − EJ cos φ]|1〉 ≈ 1

4
EC |1〉.

(3.48)

This is a favorable situation. (Normally, if two states |0〉 and |1〉 differ much in energy

levels, then even though they discriminate better, the higher lying state |1〉 is less

stable, and the system tends to decohere and lie more often in |0〉 than in |1〉, an

unbalanced situation in quantum computing to be avoided.)

Similarly, if ng = n+1/2, then the two states |n〉 and |n+1〉 are nearly degenerate

for any integer n. For simplicity, let us just consider ng ≈ 0.5.

Theorem E.1. Assume that (3.43) holds, and that ng ≈ 0.5. Let

V = span{|0〉, |1〉}. (3.49)

Then the projection of the Hamiltonian H in (3.42) with respect to the ordered basis
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in (3.49) satisfies

PH =




EC [

1

4
+ (ng − 0.5)] −1

2
EJ

−1

2
EJ EC [

1

4
− (ng − 0.5)]



 + O(|ng − 0.5|2). (3.50)

Proof. The projection matrix PH of H on V is easily evaluated as

PH =




a0 b

c a1



 , (3.51)

where

aj = 〈j|H|j〉 for j = 0, 1, (3.52)

and

b = 〈0|H|1〉, c = 〈1|H|0〉. (3.53)

Using (3.47) for |0〉 and |1〉, we compute, e.g.,

a1 = 〈1|H|1〉

=

∫ 2π

0

(
1√
2π
e−iφ

) (
EC(−i ∂

∂φ
− ng)

2 − EJ cos φ

)(
1√
2π
eiφ

)
dφ

=
1

2π

∫ 2π

0

{EC(1 − ng)
2 − EJ cosφ}dφ

=
EC
2π

· 2π [(1 − 0.5) + (0.5 − ng)]
2

= EC
[
0.52 + 2(0.5)(0.5 − ng) + (0.5 − ng)

2
]

= EC

[
1

4
− (ng − 0.5)

]
+ O(|ng − 0.5|2). (3.54)

Similarly, the entries a0, b and c can be computed. We obtain (3.50).
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As

PH =
1

4
EC




1 0

0 1



 +




EC(ng − 0.5) −1

2
EJ

−1

2
EJ −EC(ng − 0.5)





+ O(|ng − 0.5|2), (3.55)

we can just use the effective Hamiltonian

P̄H =




EC(ng − 0.5) −1

2
EJ

−1

2
EJ −EC(ng − 0.5)





= EC(ng − 0.5)σz −
1

2
EJσx, (3.56)

as an approximate Hamiltonian in the subsequent discussion. The state |0〉 and |1〉

constitute a charge-qubit system. In addition, a probe gate may be coupled to the

box through a junction to perform measurement, shown in Fig. 3.6.

Box

EJ , CJ Cg

Vg Vb

Fig. 3.6. Schematic of a charge qubit constructed with a Cooper pair box. The box is

denoted by a black dot and the two Josephson junctions are denoted by two

crosses. The pulse gate voltage Vg can change the offset charge of the junction.

The other junction is connected to a voltage Vb used for measurement, and

the gate is called the probe gate.
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1. One qubit operation: charge-qubit

There are various methods to manipulate the information encoded in the CPB system,

and the essence is to know how to control the time-varying Hamiltonian. In the

constrained linear subspace V (see (3.49)) spanned by number states |0〉 and |1〉, the

system Hamiltonian has been obtained in Eq. (3.56). We assume that ng is nearly

equal to 0.5 and EC is far less than the superconducting gap ∆. The evolution matrix

of this system in time duration τ can be easily computed using results from NMR:

e−iP̄Hτ/~ = e
−i(EC(ng−0.5)σz−

1

2
EJσx)τ/~

, (3.57)

which is a rotation around the following axis:

1√
E2
J/4 + E2

C(ng − 0.5)2

(
−1

2
EJex + EC(ng − 0.5)ez

)

with angle τ
√
E2
J/4 + E2

C(ng − 0.5)2/~.

In this section, our main objective is to show that we can derive the Rabi (1-

qubit) rotation gate

Uθ,α =




cos(θ) −i sin(θ)e−iα

−i sin(θ)eiα cos(θ)



 , (3.58)

by using the evolution matrix (3.57) with different choices of the parameter ng and

time duration τ . Note that the only tunable parameter is ng. So we signify the

dependence of P̄H on ng from (3.56) as

P̄H = P̄H(ng). (3.59)
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Lemma E.2. We have the x-rotation matrix

Rx,ψ = e−iP̄H(n̄g)τ/~ =




cos(ψ/2) −i sin(ψ/2)

−i sin(ψ/2) cos(ψ/2)



 (3.60)

where n̄g = 0.5 and ψ = −EJτ/~. In particular,

Rx,π =




0 −i

−i 0



 = −iσx. (3.61)

Proof. When n̄g = 0.5, we have from (3.56)

P̄H(n̄g) =




0 −1

2
EJ

−1

2
EJ 0



 . (3.62)

The rest follow immediately from taking the exponential matrix e−iP̄H(n̄g)τ/~.

Remark E.1. The operation in Lemma E.2 is achieved through several steps. First,

the offset charge ng = CgVg/(2e) as controlled by Vg is abruptly switched to the

degeneration point ng = 0.5, kept for duration τ , and then abruptly switched back.

Time duration τ is in the order of 10−10s, and the switching must be fast enough to

avoid any adiabatic transition. �

Lemma E.3. Define

R+,θ = e−iP̄H(n̄1
g)τ/~, R−,φ = e−iP̄H(n̄2

g)τ/~, (3.63)

where n̄1
g and n̄2

g satisfy, respectively,

EC(n̄1
g − 0.5) = −1

2
EJ ≡ −δ, EC(n̄2

g − 0.5) =
1

2
EJ = δ, (3.64)

and

θ = φ = 2
√

2τδ/~. (3.65)
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Then we obtain the y-rotation and z-rotation matrices as

Ry,θ =




cos

θ

2
− sin

θ

2

sin
θ

2
cos

θ

2



 = −R−,3π/2R+,θR−,π/2, (3.66)

Rz,φ =




e−iφ/2 0

0 eiφ/2



 = −Rx,π/2Ry,φRx,3π/2. (3.67)

Proof. With the choice of n̄1
g, n̄

2
g, δ and τ given in (3.64) and (3.65), we have

R+,θ = e
i θ
2
√

2
(σx+σz)

, R−,φ = e
i φ

2
√

2
(σx−σz)

. (3.68)

Note that R+,θ and R−,θ are rotations with respect to axes − 1√
2
(ex+ez), −

1√
2
(−ex+

ez), respectively. According to the properties of matrices in SU(2), we have

R−,π/2R+,−θR−,3π/2 = −Ry,θ

= −




cos

θ

2
− sin

θ

2

sin
θ

2
cos

θ

2



 ,

Rx,π/2Ry,φRx,3π/2 = −Rz,φ

= −




e−iφ/2 0

0 eiφ/2



 .

(3.69)

The negative sign comes from the fact that Rn,2π = −I2 for any unit vector n.

Corollary E.4. We have the Rabi rotation gate

Uθ/2,α = e−i
θ
2
(cosασx+sinασy)

= −Rx,π/2Ry,−αRx,θRy,αRx,3π/2,
(3.70)

through the cascading of quantum operations e−iP̄H(ng)τ/~ by tuning the parameter ng

and time duration τ .

Next, we construct the Rabi rotation gate Uθ,φ in an alternative approach which
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is perhaps easier to implement. From (3.56), if we let the voltage Vg be oscillating

(called a phase gate [79]) such that

EC(ng − 0.5) = ǫ cos(ωt+ α), (3.71)

where ǫ is the amplitude, then (3.56) gives (an approximate Hamiltonian)

H = ǫ cos(ωt+ α)σz −
1

2
EJσx. (3.72)

The above Hamiltonian is with reference to the ordered basis {|0〉, |1〉}. Now define

a new basis

| ↑〉 ≡ 1√
2
(|0〉 + |1〉), | ↓〉 ≡ 1√

2
(|0〉 − |1〉). (3.73)

Then, with respect to the above ordered basis, the Hamiltonian (1) becomes

H̃ = ǫ cos(ωt+ α)σx +
1

2
EJσz, (3.74)

where we rename EJ to −EJ just for simplicity.

We now utilize a standard procedure in NMR by transforming the system into a

rotating frame, namely, for the original wave function |χ(t)〉 with Hamiltonian (3.74),

let

|ψ(t)〉 = eiωtσz/2|χ(t)〉, (3.75)

leading to a revolution matrix of |ψ(t)〉 as

Uθ/2,α = e−i
ǫt
2~

(cosασx+sinασy)

=




cos(

θ

2
) −i sin(

θ

2
)e−iα

−i sin(
θ

2
)eiα cos(

θ

2
)



 ,
(3.76)

where θ = ǫt/~. This is a Rabi rotation with respect to the ordered basis {| ↑〉, | ↓〉}.

A Rabi rotation with respect to the ordered basis {|0〉, |1〉} can be obtained by using
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a similarity transformation using the Walsh-Hadamard gate.

The density matrix of the system, according to the Boltzmann distribution, is

given by

e
−H
kBT ,

where kB = 1.381 × 10−23J/K is the Boltzman constant and T is the absolute tem-

perature. When kBT ≪ EC , and ng 6= 0.5, the Coulomb energy dominates the

Hamiltonian and the system is initialized to its ground state, and this initializes the

system.

2. Flux-qubit, charge-flux qubit and phase qubit

In this subsection, we briefly describe three other ways of setting up qubits in a

superconducting circuit.

In an rf-SQUID, the magnetic flux Φ through the loop is quantized and must

satisfy

(Φ0/2π)φ+ Φext + Φind = mΦ0, (3.77)

where Φ0 = 2.07× 10−15Wb; as before, m is an integer, Φext is the external magnetic

field and Φind is induced by a current through the loop as in Fig. 3.7. That surface

current through the loop is induced to compensate Φext and its direction can be either

clockwise or counterclockwise. If we denote the two surface current states as | ↑〉 and

| ↓〉, they form a basis and the qubit is called a flux qubit. The main references for

this qubit setup are [92, 93, 91]. When Φext is near one half of Φ0, the current can

be either clockwise or counterclockwise and the system behaves like a Cooper pair

box when ng is near 0.5. Recall the Hamiltonian of an rf-SQUID in (3.23). When

the self-inductance L is large enough such that β0 = EJ4π
2L/Φ2

0 = EJ/EL > 1 and

Φext is near Φ0/2 (this means φext = 2πΦext/Φ0 is near π), the Hamiltonian has a
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shape of a double-well near Φ = Φ0/2 (φ = 2πΦ/Φ0 = π), see Fig. 3.8. The two

lowest states at the bottom of each well are well separated from other excited levels

in low temperature and suitable for quantum computation. When Φext = Φ0/2, the

two states are degenerate and they are maximum superpositions of | ↑〉 and | ↓〉 [91].

When Φext is away from Φ0/2, they approach | ↑〉 and | ↓〉. The Hamiltonian of this

two level system has a simplified form as

H = −1

2
Bzσz −

1

2
Bxσx,

where Bz can be tuned by Φext and Bx is a function of EJ which is also tunable if

the junction is replaced by a dc-SQUID. Thus, any 1-qubit operation can be realized

through combinations of different choices of Φext and EJ . When Φext = Φ0/2, Bz =

0.

Iext

L

φ
M

Φ = Φext + Φind

Fig. 3.7. Schematic of a flux qubit constructed with a Josephson junction in a loop.

A shortcoming of the simple rf-SQUID design is that its size is large in order

to obtain high self-inductance and that makes it very susceptible to external noise.

A better design uses more junctions in the loop and makes the size smaller. A

three junction flux-qubit is shown in Fig. 3.9. Two of the junctions are designed

to be the same while the third is different. The quantum constraint (3.77) applies

and φ1 + φ2 + φ3 = φext = 2πΦext/Φ0. By neglecting the magnetic energy and the
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−0.5 0 0.5 1 1.5 2 2.5
φ/π

Fig. 3.8. The double-well shape potential of a flux qubit with Hamiltonian (3.23). We

take Φext = Φ0/2 and plot the potential curve near φ = π.

Coulomb term, we obtain the potential of the Hamiltonian which is dominated by

the Josephson terms:

U(φ1, φ2) = −EJ cosφ1 − EJ cosφ2 − αEJ cos(φext − φ1 − φ2).

A similar two-well potential appears in the 2-D plane of φ1 and φ2 when α > 0.5. The

setup has been used to observe the transitions between the two states when irradiated

by an rf-photon field, and demonstrate superpositions of | ↑〉 and | ↓〉 in spectroscopic

experiments.

For a flux qubit, EJ is much larger than EC . When EJ is almost equal to

EC , both the Coulomb and JJ terms are important, and the qubit is called the

charge-flux qubit [95, 96]. Neither φ nor n is a good quantum number and the lowest

energy states are superpositions of several charge states. A typical design is shown

in Fig. 3.10, which is developed from that of a Cooper pair box with a dc-SQUID. A

larger junction is inserted in the loop for measurement, which is shunted by capacitors

to reduce phase fluctuations. An external flux Φext is also imposed as in the dc-SQUID

case. Normally, the qubit works near ng = 1/2, and the two lowest eigenstates

are superpositions of number states |0〉 and |1〉. Denoted by |+〉 and |−〉, the two
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EJ , φ2

αEJ , φ3

EJ , φ1

Φext

Fig. 3.9. A three junction superconducting loop serving as a flux qubit. Compared

with the simple design of rf-SQUID in Fig. 3.7, it has a smaller size and

better coherence performance.

states have an energy difference EJ and the system Hamiltonian can be written as

H =
1

2
EJσz when ng = 0.5 exactly. Control signal with resonant frequency can be

applied on the gate to manipulate the system. After putting the system in a “rotating

frame” as before, the system Hamiltonian changes to

H = hν(σx cosα+ σy sinα),

when the control signal is ∆ng cos(ωt+α), while ν = 2EC∆ng〈+|n̂|−〉/h. The system

behaves like an NMR spin and all technologies, such as composite pulses can be used

to increase the accuracy and robustness of the operation [95]. Charge-flux qubit shows

better decoherence than charge- or flux- qubit in experiments.

Readout of the charge-flux qubit is realized through the current in the loop

instead of the charge on the island. When a biased current Ib slightly below the

critical current Ic of the large junction is applied, the large junction is switched into

a finite voltage state depending on the qubit state. In theory, the measurement

efficiency p+ − p− = 0.95 holds, where pi is the probability to obtain a voltage in the
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δ

Φext

EJ0
Cg

Vg

EJ

EJ 2C

2C

Ib

Vout

Fig. 3.10. Circuit of a charge-flux qubit, with two small junctions and one large junc-

tion in a loop. An external flux Φext penetrates the loop and a voltage Vg is

applied through capacitor Cg to control the bias charge ng. A bias current

Ib is used for measurement.

read out when the qubit is in state |i〉.

Lastly, we address the phase-qubit setup, which is a current-biased Josephson

junction. Its special feature is that the junction energy EJ is much larger than the

Coulomb energy EC . See Fig. 3.2. Here, our references are [97, 98, 99]. For such, the

Coulomb term is neglected, so its Hamiltonian can be obtained from (3.33) as

H = −EJ cosφ− ~

2e
Ieφ,

and the potential is a periodic function of φ offset by Ieφ, with shape appearing

like a “washboard”, see Fig. 3.11. Normally, the JJ is undamped and we choose

Ie not too large so that there are a series wells on the potential curve. In every

well formed by cosφ, it is well-known that the energy is quantized and has different

levels. Besides the lowest two states serving as qubit states |0〉 and |1〉, sometimes

there are one or more other states in the well. The extra level or levels may be used

for measurement. Transitions between |0〉 and |1〉, in the form of Rabi rotation, is

realized by applying a resonant electromagnetic field with ω = E10/~, where E10 is
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the energy difference between |0〉 and |1〉. Measurement is accomplished by inspecting

the tunneling probability of states through the well. There are two methods. One

is to use a microwave field resonant with E21 (i.e. the energy difference between |1〉

and |2〉) to pump |1〉 to the second excited state |2〉, which has a higher tunneling

probability. The other is to tilt the washboard by increasing Ie so that |1〉 can tunnel

through the barrier with high probability.

0 1 2 3 4 5 6
φ/π

po
te

nt
ia

l e
ne

rg
y

Fig. 3.11. A “washboard” shape potential energy curve of a phase qubit. It is obtained

by tilting the cosine function of φ by − ~

2e
Ieφ. When Ie >

2e

~
EJ , there will

be no well on the curve.

3. Two qubit operations

Various proposals have been suggested to couple two qubits for different kinds of

superconducting qubits. Capacitors, for example, can be used to couple two charge

qubits. Experiments have shown two-qubit oscillations using this scheme [100], and

a conditional gate operation has also been demonstrated using the same device [52].

One disadvantage of the capacitor coupling is that it is not switchable, which makes

the pulse design inflexible. It is also difficult to couple two qubits far away from each

other because only the neighboring qubit coupling is convenient.

Inductance, instead, seems more promising. The simplest design is to construct
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E0
J

C C

C0
J

C0
J . . .

E0
J

V 2
g

L

V 1
g

Fig. 3.12. A simple design to couple charge qubits with inductance. The inductance

and the effective capacitance of the charge qubits configured in parallel form

a weak coupling among the qubits.

a weak coupling between the qubits through the CL (capacitance-inductance) os-

cillation, see Fig 3.12 [101]. But the coupling is still not switchable and thus lacks

engineering flexibility. An improved design embeds a dc-SQUID into the qubit circuit

with the advantage that the Josephson energy can be controlled [102]. The junction

in Fig. 3.12 is replaced by a dc-SQUID. See Fig. 3.13. An external magnetic field

Φi
e penetrates the SQUID and changes the term of the Josephson Hamiltonian to

−2E0
J cos(πΦe/Φ0) cosφ, where the effective phase difference φ equals half of the dif-

ference of the two phase drops at the two junctions and
2πΦe

Φ0
= φe, cf. Section 4.

This means that we replace EJ in equation (3.42) by a tunable EJ(Φe):

EJ(Φe) = 2E0
J cos(πΦe/Φ0).

In this configuration, the additional effective interaction Hamiltonian induced by the

oscillation in the LC-circuit can be given in the form of Pauli-matrices as

Hint = −
∑

i<j

EJ(Φ
i
e)EJ(Φ

j
e)

EL
σiyσ

j
y,

where EL = [Φ2
0/(π

2L)](CJ/Cqb)
2, while Cqb is the capacitor of the qubit defined by
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C−1
qb = C−1

J + C−1.

E0
J

C

V j
g

C0
J

E0
J

C0
J

C

Φj
e

V i
g

Φi
e

. . . . . .
L

. . .

Fig. 3.13. A design for coupling charge qubits with inductance where the junctions

in the charge qubits are replaced by a dc-SQUID. All qubits are cou-

pled through an inductor L, and an external field Φi
e penetrates every

dc-SQUID. This changes the effective Josephson term in the Hamiltonian

to −2E0
J cos(πΦe/Φ0) cosφ and makes EJ tunable by Φi

e.

Assume that we can still constrain every qubit in the projected subspace spanned

by |0〉 and |1〉, see V in (3.49), and note that the whole Hamiltonian of the n-qubit

system can be written as

H =
n∑

i=1

(ǫ(V i
g )σ

i
z −

1

2
EJ(Φ

i
e)σ

i
x) −

∑

i<j

EJ(Φ
i
e)EJ(Φ

j
e)

EL
σiyσ

j
y, (3.78)

where we collect all parameters before σz in ǫ(V i
g ) for simplicity. If we let all Φj

e = Φ0/2

and njg = 0.5 when j 6= i, the whole system Hamiltonian changes to

H = ǫ(V i
g )σ

i
z −

1

2
EJ(Φ

i
e)σ

i
x,

and all the other terms are turned off. We can perform any single qubit operation

through the approximation offered by (3.56).

Similarly, a two qubit operation between qubits i and j can be performed by turn-

ing off all Ek
J(Φ

k
e) and nkg except qubits i and j. By doing this, now the Hamiltonian
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becomes

H = ǫ(V i
g )σ

i
z + ǫ(V j

g )σjz −
1

2
EJ (Φ

i
e)σ

i
x −

1

2
EJ(Φ

j
e)σ

j
x + Πijσ

i
yσ

j
y.

If we also move the two qubits to their degenerate state, i.e., nig = njg = 0.5, the

Hamiltonian is simplified to

H = −1

2
EJ(Φ

i
e)σ

i
x −

1

2
EJ(Φ

j
e)σ

j
x + Πijσ

i
yσ

j
y.

Because σx does not commute with σy, the computation of the evolution matrix is

tedious and the design of the CNOT gate and conditional phase change gate is com-

plicated. Although it provides a mechanism to realize any qubit gates in combination

with one qubit gates, more simplification is helpful.

E0
J

C0
J

C

E0
J

C
L

V i
g

C0
J

V j
g

Φi
e

ΦL

. . .. . .

Φj
e

Φi
e Φj

e

. . .

Fig. 3.14. An improved design to couple charge qubits with inductance. The top and

bottom magnetic fluxes piercing through each of the two SQUID are de-

signed to have the same amplitude but different directions. Similar to the

design in Fig.3.13, the JJ term is tunable through the magnetic fluxes, and

the interaction term now has the form of σixσ
j
x, which is more preferable.

You, et al. [103] improved this design further and obtained a simpler pulse se-

quence for two qubit operations. In fact, the conditional phase gate can be achieved
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with just one 2-qubit pulse combined with several 1-qubit operations, leading to a

much more efficient scheme. The improved design has two dc-SQUID instead of one,

see Fig. 3.14. Similar to the previous design, the JJ term is tunable through the

magnetic field:

H i
J = −Ei

J (Φ
i
e)(cos(φiA) + cos(φiB)),

where φiA and φiB are the effective phase drops of the top and bottom SQUID, respec-

tively, in Fig. 3.14. The new effective junction energy is given by

Ei
J(Φ

i
e) = 2E0

J cos(πΦi
e/Φ0)

as previously. The inductance couples all qubits and the whole system Hamiltonian

of n qubits now is

H =

n∑

k=1

Hk +
1

2
LI2,

where Hk = Ek
C(n̂k − ngk)

2 −Ek
J (Φ

k
e)(cos(φiA) + cos(φiB)), Ek

C is the Coulomb energy

of qubit k, and I is the persistent current through the superconducting inductance.

Written in Pauli matrices form, the new overall Hamiltonian is

H =
∑

k=i,j

[ǫk(V
k
g )σkz − Ēk

J(Φ
k
e ,ΦL, L)σkx] + Πijσ

i
xσ

j
x. (3.79)

The σixσ
j
x forms the interaction term which brings the advantage that it commutes

with the Josephson term, and we will show later that it make the 2-qubit gate design

much more straightforward and simple. Also, note that the effective junction energy

Ēk
J in (3.79) is not the same as the EJ in (3.78) and also depends on the inductance

L and its magnetic flux ΦL, although it is still tunable through Φk
e . Similarly, the

interaction coefficients Πij are also functions of ΦL, Φi
e and Φj

e. Thus all terms are

switchable.

By setting Φk
e =

1

2
Φ0 and nkg = 0.5 for all qubits, we can let all terms vanish and
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obtain H = 0. The system state will not change. If we need to perform an operation

on qubit i, we change the corresponding Φi
e from

1

2
Φ0 and nig from 0.5, and then the

Hamiltonian becomes

H = ǫi(V
i
g )σ

i
z − Ēi

J(Φ
i
e,ΦL, L)σix.

Because both nig and Φi
e can be tuned separately, the 1-qubit operators eiασ

i
z and eiβσ

i
x

can be obtained easily by choosing Ēi
J = 0 or ǫi(V

i
g ) = 0, with an appropriate time

duration. Any other 1-qubit operations can be constructed by combining these two

operators.

Two-qubit operations can now be performed by tuning Φi
e and Φj

e away from

Φ0/2. Then the Hamiltonian becomes

H = −Ēi
Jσ

i
x − Ēj

Jσ
j
x + Πijσ

i
xσ

j
x. (3.80)

Theorem E.5. For the Hamiltonian (3.80) with tunable coefficients Ēi
J , Ē

j
J and Πij,

we can construct the 2-bit quantum phase gate Qπ and the CNOT gate UCNOT in

conjunction with 1-bit Rabi gate Uθ,φ (cf. (3.58), as warranted by Corollary E.4),

where

Qπ =





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1





, UCNOT =





1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0





. (3.81)

Proof. We choose the control parameters such that Ēi
J = Ēj

J = Πij = δ. Then the

evolution matrix for the Hamiltonian (3.80) becomes

U = e−iHτ/~ = e−(iδτ/~)(−σi
x−σ

j
x+σi

xσ
j
x). (3.82)



91

It is easy to check that the eigenvalue equations for H now are:

H| + +〉 = −δ| + +〉, H| + −〉 = −δ| + −〉,

H| − +〉 = −δ| − +〉, H| − −〉 = 3δ| − −〉,

(|±〉 =
1√
2
(|0〉 ± |1〉))

(3.83)

By choosing δτ/~ = π/4 in (3.82), we see that (3.82) gives the evolution matrix

Ũ = eiπ/4





1

1

1

−1





(3.84)

with respect to the ordered basis {|+ +〉, |+−〉, | −+〉, | − −〉}. We can convert the

matrix representation (3.84) to a representation with respect to the standard ordered

basis {|00〉, |01〉, |10〉, |11〉} by

Qπ = H†
iH

†
j ŨHiHj ,

where Hi and Hj are, respectively, the Walsh-Hadamard gate for the i-th and j-th

qubit. Since the Walsh-Hadamard gate satisfies

Hi = Hj =
1√
2




1 1

1 −1



 = e−iπ/2Ry,π/2Rz,π, (3.85)

we have obtained Qπ as promised.

From Qπ, we have

UCNOT = U2
π/4,π/2ŨU

2
π/4,−π/2, (3.86)

we also have the CNOT-gate.

Corollary 6.5 Superconducting 1-bit gates Uθ,φ obtained in Corollary E.4 together
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with 2-bit gates Qπ or UCNOT obtained in Theorem E.5 are universal.

Proof. This is a consequence of a result of J. Brylinski and R. Brylinski [104].

F. Measurement of charge qubit

The energy level of the first excited state |1〉 changes with the offset charge; when it is

higher than the superconducting gap, the Cooper pair is broken apart into two quasi-

particles. In Fig. 3.6, a read pulse applied on the probe gate will break the pair and

let them tunnel through the junction. Repeating the experiment and measurement

at frequency ν and assuming that the probability of observing the qubit at state |1〉

is P1, we can obtain a classical current through the probe gate which is proportional

to P1:

I = 2eP1ν.

This measurement is destructive. Although state |0〉 is kept unchanged, state |1〉

is destroyed after measurement. Nakamura has used this method to observe the

coherence in a SCB and quantum oscillation in two coupled charge qubits [100, 105,

106].

The above method is easy to apply, but it requires many repeated experiments

and measurements. A single shot measurement requires only one measurement and

would save much time. One example is realized by a group in Japan [107] using

single electron transistor (SET), a sensitive electrometer, and similar setups is also

investigated by other groups. See Fig. 3.15. When an appropriate pulse Vp is applied

to the probe gate, such as mentioned in the preceding paragraph, the extra Cooper

pair in the box is broken into two quasi-particles and tunnels into the trap. If the box

is originally in state |0〉, no electron will tunnel through the junction. Then the extra

charge in the trap may be detected by the SET. This completes the measurement.
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Vg Vp

Fig. 3.15. Schematic of a circuit for measuring a charge qubit using low frequency

SET. The charge qubit is coupled capacitively to an SET through a charge

trap which is connected to the Cooper pair box with a tunnel junction. To

reduce dissipation, the junction has high resistance. The SET is in Coulomb

blockade state and there is no current through the junctions when there is no

charge in the trap. When a read pulse moves extra charges from the charge

qubit to the trap, the SET is biased and a current is observed through the

SET.

During normal operations, the trap junction is kept unbiased and the charge qubit is

isolated from the trap and SET.

The qubit may be coupled to the SET directly through a capacitor without the

trap and junction, but this may induce more decoherence to the qubit. The above

low frequency SET can be replaced by an rf-SET [108, 109], a more sensitive and

fast electrometer, see Fig. 3.16. Different from the low frequency SET where it is

the current from the source to the drain to be measured, the rf-SET measures the

conductance.

There is a worrisome aspect of measurement due to the effects of noise in hight

Tc superconductors as Kish and Svedlindh [110] and others have reported excessively

strong magnetic and conductance noise on such superconductors.
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Vg Vb

AmplifierCoupler

Fig. 3.16. Schematic of circuit for measuring a charge qubit using rf-SET. Different

from the low frequency SET where it is the current from the source to the

drain to be measured, the rf-SET measures the conductance and this makes

it faster and more sensitive. A radio frequency (rf) signal resonant to the

SET, referred to as “carrier” but not shown in this figure , is launched toward

the SET though the coupler. Then a conductance change of the SET due

to the extra charge in the charge qubit results in the change of the damping

of the SET circuit, and it is reflected in the output of the amplifier.
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CHAPTER IV

FEEDBACK IN COHERENT MAGNETOMETRY

A. Kalman filter and LQG controller

Before we introduce the problem formulation and analyze feedback control in magne-

tometry, it is proper to first give a short introduction about the LQG controller and

the Kalman filter.

A linear deterministic continuous system is described by a differential equation:

d

dt
x = Ax +Bu, (4.1)

where x is an n-dimensional vector which uniquely defines the system state, u is

called the control vector (with dimension m), and A and B are two matrices with

appropriate dimensions. When A and B do not depend on time, it is called a linear

time-invariant system. A controller defines the control vector u according to the

current state x or the history of x to satisfy a certain goal or to optimize a functional

of x and u. If u(t) only depends on x(t) at time t, it can be expressed as

u = U(x(t), t), (4.2)

which is general and covers the time variant case. A constant linear feedback controller

has the simplest form:

u(t) = Kx(t), (4.3)

where K ∈ Rm×n. Thus the design of a controller falls into the search of K. An

elegant example is the linear quadratic Gaussian (LQG) controller, which finds a

linear controller in the forms of:

u(t) = −K(t)x(t),
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and minimizes a quadratic cost function given by [111]

J =
∫ tf
0

(xT (s)Qx(s) + uT (s)Ru(s))dt+ x(tf )
TPfx(tf),

Q ≥ 0, R > 0, Pf ≥ 0.

By R > 0 and Q ≥ 0, we mean that R is positive definite and Q is positive semidefi-

nite. The optimal feedback gain K(t) is given by

K(t) = R−1BTP (t), (4.4)

where P (t) ≥ 0 and satisfies a matrix Riccati equation:

− d

dt
P (t) = Q+ ATP (t) + P (t)A− P (t)BR−1BTP (t), P (tf) = Pf . (4.5)

When tf → ∞, P (t) → P∞ and K(t) becomes constant in our case.

Different combinations of {A,B,C} give different systems, and lead to different

designs. Controllability and observability are among the important characteristics

which must be considered carefully.

We will not bring up more details and we will just list the main results below for

future reference. Readers are referred to standard control text books.

In (4.3), the whole state x(t) is needed to define u(t), which implies that the

controller knows x(t) completely. In practice, not every state can be obtained directly

and instead must be retrieved from the measurement history y, which is connected to

x and called output. For a linear time-invariant system, y is just a linear combination

of x:

y(t) = Cx(t), (4.6)

where y ∈ Rl and C ∈ Rl×n. The system needs to be observable so that an estimator

can be constructed to obtain the system state [112].

The combination of (4.1) and (4.6) forms a deterministic system. The measure-
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ment is accurate and x(t) is driven by u(t) exclusively, which is also applied exactly.

To incorporate uncertainties into the system, we use a stochastic differential equation

(SDE) to replace (4.1):

dx(t) = Ax(t)dt+Bu(t)dt+ σdW , (4.7)

where W is an r-dimensional Brownian motion and σ ∈ Rn×r. Itô form is implied for

all the SDEs in this dissertation. The above equation corresponds to (4.1) by adding

a “noise” term to the right side and multiplying both sides with dt. Similarly, the Itô

process of the measurement with noise corresponding to (4.6) can be given as

y(t)dt = Cx(t)dt+ σydW y, (4.8)

where W y is another s-dimensional Brownian motion independent of W and σy ∈

Rl×s. The estimation of x through the observation, or the filtering problem, is to

find another n-dimensional stochastic process x̂(t), which is “close” to x, based on

the history of y. The best estimation x̂(t) is defined by [113]

∫

Ω

|x(t) − x̂(t)|2dP = E[|x(t) − x̂(t)|2] = inf{E[|x(t) − x̂(t)|2] : Y ∈ K}, (4.9)

where (Ω,F , P ) is the probability space corresponding to the (r + s) dimensional

Brownian motion (W ,W y) starting at 0, and K is the set of all stochastic variables

which is measurable to the σ-algebra Gt and has limited second norm, i.e.,

K = {Y : Ω → Rn;Y ∈ L2(P ) and Y is Gt measurable}, (4.10)

while Gt is the σ-algebra generated by {ys, s ≤ t}.

The first elegant result about the estimation is that the best estimation coincides

with the conditional expectation of x(t) with respect to the measurement history.
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Theorem A.1.

x̂(t) = E[x(t)|Gt]. (4.11)

The result is not very useful for us in most cases because the conditional ex-

pectation is not easy to compute either. In the following, we will list the result of a

special case, where we do have an explicit solution in terms of a SDE for x̂(t) [113].

Theorem A.2. The solution x̂(t) = E[x(t)|Gt] of a linear system described by (4.7)

and (4.8) satisfies the stochastic differential equation

dx̂(t) = (A−ΣCT (σyσ
T
y )−1C)x̂(t)dt+ΣCT (σyσ

T
y )−1y(t)dt, x̂(0) = E[x(0)], (4.12)

where Σ(t) = E[(x(t) − x̂(t))(x(t) − x̂(t))T ] ∈ Rn×n satisfies the matrix Ricatti

equation

d

dt
Σ(t) = AΣ + ΣAT − ΣCT (σyσ

T
y )CΣ + σσT (4.13)

with initial condition:

Σ(0) = E[(x(0) − x̂(0))(x(0) − x̂(0))T ].

The condition on σy is that σyσ
T
y is invertible.

The SDE (4.12) can be reorganized as

dx̂(t) = Ax̂(t)dt+ ΣCT (σyσ
T
y )−1(y(t)dt− Cx̂(t)dt). (4.14)

The stochastic process Nt defined by dNt = y(t)dt − Cx̂dt is called the innovation

process, and Ko(t) = ΣCT (σyσ
T
y )−1 is called the observer gain vector. The stochastic

process
Nt

σy
is also a Brownian motion. When t → ∞, both S and Ko converge to

their steady states satisfying

AΣ + ΣAT − ΣCT (σyσ
T
y )CΣ + σσT = 0, (4.15)
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and

Ko = ΣCT (σyσ
T
y )−1. (4.16)

B. System setup and its model

In this section, we will set up a magnetometor using a cloud of spins and construct its

model. A stochastic master equation (SME) model is first presented using quantum

mechanical terminologies. The model is accurate but not suitable for the design of

estimator and controller. Then a reduced linear stochastic differential equation (SDE)

model is derived which is equivalent to the original model under proper assumptions

for the purpose of the magnetic measurement. Wiseman has given a more rigorous

derivation connecting SME and SDE [14]. But it requires a lot of knowledge of

stochastic quantum mechanics and quantum optics, which is beyond the scope of this

dissertation and not necessary for our purpose. The derivation here follows the work

of the Caltech group [11, 16].

The system is set up as in Fig. 4.1. To measure an unknown and possibly

fluctuating magnetic field oriented along the y-axis, a linearly polarized off-resonant

light is introduced to travel through a cloud of nuclei with non-zero spin initialized

along the x-axis. Because the light experiences a Faraday rotation proportional to the

magnetic field along its propagation direction, the polarization difference measures

the z-component of the collective spin. Without another magnetic field to compensate

the external field, the spin will rotate within the x − z plane and the z-component

will oscillate with the spin’s Larmor frequency.

A natural way to describe a quantum system interacting with its environment

(bath) is the SME. For the spin system (the nuclear cloud) monitored continuously by

an off-resonant light beam, an accurate model of the system has been derived using
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Z

y

X

J

z(t)

b(t)

y(t)

Estimator

Controller

(a) (b)

b(t)

u(t)

Fig. 4.1. The set up of a magnetometor by the Caltech group. The external magnetic

field b(t) is directed along the y-axis which is unknown and possibly fluctu-

ating. To measure it, an ensemble of nuclei with non-zero spin are put in

the field and initially polarized along the x-axis. A linearly polarized light

beam travels through the nuclei cloud along the z-axis. The signal of the

polarization difference is picked up at the end by a pair of photodetectors.

A spin ensemble is shown in (a) with spins polarized among a small angle of

x-axis. The Kalman filter (estimator) and controller are shown in (b). The

picture is excerpted from [16].

a density matrix [114, 13, 14] in the form of SME:

dρ(t) = −idt[H(t), ρ(t)] + D[
√
MJz]ρ(t)dt+

√
ηH[

√
MJz]ρ(t)dW̄ (t), (4.17)

y(t)dt = 〈Jz〉(t)dt+
√
σmdW̄ (t), (4.18)

where H = γhJz, γ is the gyromagnetic ratio, h = b(t) + u(t) is the total magnetic

field, Jz is the z-component of the spin, ρ is the density matrix conditioned on the

history of y, M is the measurement rate and η is the quantum efficiency of the
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detection. Operators H and D are two super operators defined by

D(c)ρ = cρc† − (c†cρ+ ρc†c)/2,

H(c)ρ = cρ+ ρc† − Tr[(c+ c†)ρ]ρ,
(4.19)

while dW̄ (t) is a stochastic quantity representing the shot noise in the photodetection

process.

The model of (4.17) and (4.18) is accurate but not very useful, especially when

the number of spins J is huge. An observer can not see the inside of the system.

He can only obtain information about the system through some measurements, or

expectations of operators, and the Heisenburg uncertainty law forbids him to measure

exactly two conjugate variables at the same time. In fact, a model connecting the

magnetic field and the photo current through the photodectors will satisfy all our

needs and only the expectation of the spin angular momentum Jz is necessary. Using

< Jz >= Tr(Jzρ), (4.20)

we have the SDE of < Jz > and its second moment < ∆J2
z > [16]:

d〈Jz〉(t) = γ〈Jx〉(t)h(t)dt+
〈∆J2

z 〉(t)√
σm

dW̄ (t),

d〈∆J2
z 〉(t) = −〈∆J2

z 〉2
σm

dt− iγ〈[∆J2
z , Jy]〉(t)h(t)dt+

〈∆J3
z 〉(t)√
σm

dW̄ (t).
(4.21)

The scalar 〈Jz〉 is a stochastic process driven by dW̄ , and according to (4.20), it is

actually the conditional expectation of Jz based on the measurement history, and thus

the best estimation. More than that, we can find a one-dimensional linear stochastic

system whose optimal estimator is equivalent to (4.21) under some assumption.
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Theorem B.1. Assume that 〈Jz〉 is Gaussian. A linear stochastic process






dz(t) = γJh(t)dt

y(t)dt = z(t)dt+
√
σmdW (t)

(4.22)

where W (t) is a Brownian motion, is equivalent to the system described by (4.17) and

(4.18) under the small angle assumption. The equivalence is in the meaning that its

optimal estimator (Kalman filter) is same to (4.21) by replacing 〈Jz〉 by the optimal

estimation of z(t) and dW̄ by a multiple of the innovation process. Specifically, the

best estimation of z(t) and 〈Jz〉 satisfy the same SDE when dW̄ is replaced by
Nt√
σm

,

where Nt is the innovation process of the Kalman filter.

Proof. Assume that the system is Gaussian. Then both 〈∆J3
z 〉 and 〈[∆J2

z , Jy]〉 vanish.

If the spin angle 〈Jz〉/〈Jx〉 is kept small, 〈Jx〉(t) ∼= Je−Mt/2 ∼= J when t≪ 1/M . The

differential equation (4.21) can be simplified to

d〈Jz〉(t) = γJh(t)dt+
〈∆J2

z 〉(t)√
σm

dW̄ (t)

d〈∆J2
z 〉(t) = −〈∆J2

z 〉2(t)
σm

dt.

(4.23)

The last differential equation can be solved analytically:

〈∆J2
z 〉(t) =

∆〈J2
z 〉2(0)σm

σm + 〈∆J2
z 〉(0)t

,

where 〈∆J2
z 〉(0) = J/2 for an initially coherent spin state.

Now, if we think 〈Jz〉 is the optimal estimation of Jz and W̄ (t) is a multiple of

the innovation process, (4.23) has the structure of an optimal estimator. More than

that, we can find a linear system corresponding to it.

Using (4.13) and (4.14), we can obtain the SDE of the optimal estimation ẑ(t)
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of the linear system described by (4.22):

dẑ(t) = γJh(t)dt+
Σ

σm
(y(t)dt− ẑ(t)dt)

d

dt
Σ(t) = −Σ2

σm
.

(4.24)

Comparing (4.24) and (4.23), we obtain what we want.

• Since J is large the Gaussian assumption is practical. Term 〈[∆J2
z , Jz]〉h(t)

can be ignored also because that h(t) is close to zero when feedback control is

applied.

• The equivalence of these two models is based on the fact that we are only

interested in 〈Jz〉, which connects h(t) and y(t).

A direct result of the above theorem is that we can work on a simpler linear SDE

model instead of the terrible SME in (4.17) and (4.18).

The magnetic field is classical and we assume that b(t) is fluctuating and can be

described by a stochastic process:

db(t) = −rbb(t)dt+
√
σbfdw1, (4.25)

where dw1 is another Wiener process and rb defines the bandwidth of b(t). Both

b(t) and u(t) are classical. If u(t) has infinite accuracy, we obtain a two-dimensional

process by combining (4.22) and (4.25) and treating b(t) as an internal state:

dx(t) = Ax(t)dt+Bu(t)dt+




0

√
σbf



 dw1, (4.26)

y(t)dt = Cx(t)dt+
√
σmdw2, (4.27)
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where we use x to denote the state:

x =




z(t)

b(t)



 ,

while z(t) is the small z component, b(t) is the magnetic field along the y-axis, and y

is the output or measurement.

The matrices can be given as

A =




0 γJ

0 −rb



 , B =




γJ

0



 , (4.28)

C = [1, 0]. (4.29)

The initial variances of the state is

Σ0 =




σz0 0

0 σb0



 . (4.30)

The initial field variant is σbf , from which we define

Σ1 =




0 0

0 σbf



 ,

Σ2 = σm =
1

4
Mη.

(4.31)

C. Results by the Caltech group

When the control loop is open, the spin will rotate around the y-axis. If the mag-

netic field is strong compared with the damping speed, an oscillating signal can be

obtained before the spin damps significantly. Since the oscillation frequency (Larmor

frequency) is proportional to the magnetic field, the amplitude of the field can be

found by computing the Fourier transform of the signal. But if the field is weak, only
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a noisy sloped line of a small angle rotation can be recorded. By fitting the curve

with a line, we can find an estimation of its slope, denoted as s. If we know J , the

field can be retrieved through identity b̃ = s/γJ .

The first problem that the above slope method meets is an unknown J . Suppose

we use J ′ instead of J . Since b̃ = s/γJ ′ = (J/J ′)b, the variance of the estimation

error depends on J ′,

E[(b− b̃)2] = (1 − 1

f
)E[b2], (4.32)

and the expectation depends on J ′ too,

E[b− b̃] = (1 − J

J ′ )E[b] = (1 − 1

f
)E[b], (4.33)

where f = J ′/J . If the magnetic field is constant, the error is systematic and can be

calibrated away. If both b and J are random, the error is no more systematic and the

slope does not make any sense.

The linear model in the previous section builds a suitable platform to study the

estimation of b(t) under the small angle assumption and with noise-free input. That

is what the Caltech group used. Here we first list their results for future comparison.

Define Θ(t) as the total state variance:

Θ(t) = E[θ(t)θ(t)T ] =





σzz σzb σzz̃ σzb̃

σbz σbb σbz̃ σbb̃

σz̃z σz̃b σz̃z̃ σz̃b̃

σb̃z σb̃b σb̃z̃ σb̃b̃





. (4.34)

We can derive its dynamic equation as

dΘ(t)

dt
= α(t)Θ(t) + Θ(t)α(t)T + β(t)β(t)T , (4.35)
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with initial condition

Θ0 =





σz0 0 0 0

0 σb0 0 0

0 0 0 0

0 0 0 0





. (4.36)

The matrices α and β are defined as bellow:

α =




A −BKc

KoC A′ − BKc −KoC



 , β =





0 0 0 0

0
√
σbf 0 0

0 0
√
σmKz 0

0 0
√
σmKb 0





, (4.37)

where Kc and Ko are the controller gain and observer gain vector, Kz and Kb are two

entries of Ko. The matrix A′ is used in the computation of Kc and Ko, while A is the

“real” matrix.

The matrix Θ has all the information about the estimation error variance of b(t)

and z(t):

σbe = E[(b(t) − b̃(t))2] = σbb + σb̃b̃ − 2σbb̃,

σze = E[(z(t) − z(t))2] = σzz + σz̃z̃ − 2σzz̃.
(4.38)

If every parameter is known exactly, it does not matter whether the system is

closed or open. The only necessity of the closed control is to keep the small angle

assumption. The steady state performance can be approximated by

σzs =
√

2γJσ
3/4
m σ

1/4
bf ,

σbs =

√
2

γJ
σ

1/4
m σ

3/4
bf .

(4.39)

It is interesting to note that this is a squeezed state with Heisenberg limit σzsσbs ≥

2σbfσm.
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The complicated case happens when J is unknown. If the control loop is closed,

σbs(J, J
′) =

(
1 + f

2

)
σbs(J

′), (4.40)

where σbs(J
′) is the variance in (4.39) when J = J ′. The large λ assumption (

λ2 ≫
√√

σbf/σm/(2J)) and large J assumption (r2
b ≪ J

√
σbf/σm ) hold in all the

computations.

Using (4.40) and noting that
1 + f

2
is a increasing function when f > 0 , the

Caltech group chose a robust choice of J ′ as the minimum of J . Then we will do no

worse than σbs(J
′) (f < 1), and no better than 1/2σbs(J

′). In the following section,

we will only work on the steady solution and replace σbs by σb and σzs by σz without

confusion.

D. Steady performance with noised feedback

The setup of the system by the Caltech group is inspirational, but the robust design

is too simple and not persuasive. A simple explanation of the robustness is that the

precise control maintains a magnetic field u(t) that compensates the external field.

The smaller J ′ we choose, the stronger control we obtain. The result is heavily rested

on the assumption that the control is noise free. This is not practical. In our work,

we try to answer the following concerns:

• There is always noise accompanying the control signal. When the noise is suf-

ficient small, it will not affect the result. We want to find out how small it has

to be before the closed loop control is not worth the robustness.

• The robust choice of J ′ by the Caltech group is still too ad hoc. A more accurate

discussion will be given.
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In this section, we will first extend the previous system with an input noise and

compute the static Kalman filter gain Ko and controller gain Kc. Then the steady

performance of the magnetometor, i.e., the covariance of the estimation errors will

be derived. To do that, the system dimension is reduced to three and a six-variable

linear equation set is solved. Simplifications are used in the computation based on

the large λ and large J assumption.

We introduce a input noise σufdw3 in the process, and this changes the original

system described by (4.26) and (4.25) to

dx(t) = Ax(t)dt+Bu(t)dt+




√
σuf 0

0
√
σbf








dw3

dw1



 ,

y(t)dt = Cx(t)dt+
√
σmdw2(t),

(4.41)

where dw3 is a Wiener process. A constant feed back is chosen in our model since we

are only interested in the steady performance:

u(t)dt = −Kcx̃(t)dt. (4.42)

The matrices are listed as bellow:

A =




0 J

0 −rb



 , B =




J

0



 , (4.43)

C = [1, 0]. (4.44)

For simplicity, we replace γJ by J and γJ ′ by J ′ in this section, because only the

products, γJ and γJ ′, appear in the computation.

Lemma D.1. The static solution of the Kalman filter gain vector Ko of the linear
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system defined by (4.41) is

Kz = −rb +
√
r2
b + σufσ−1

m + 2
√
J ′2σbfσ−1

m + r2
bσufσ

−1
m ,

Kb =
1

2J ′ (−σufσ
−1
m +K2

z ),
(4.45)

when J ′ instead of J is used in the design of the Kalman filter. Under the large J

and λ assumption, the LQG controller gain vector Kc can be approximated by:

Kc ≈ [λ, 1], (4.46)

where λ = r/q for cost function:

J =

∫ ∞

0

(qz(t)2 + ru(t)2)dt.

Proof. We first compute Kc. According to (4.4),

Kc ≡ R−1BTV,

where V is the solution of

P + ATV + V A− V BR−1BTV = 0,

leading to

Kc = [λ,
J ′λ

rb + J ′λ
]. (4.47)

Since rb is far less than J ′λ, the above equation can be simplified to

Kc ≈ [λ, 1], (4.48)

as we wanted.

Using the formulae of the Kalman filter, we obtain

Ko = Σ(t)CTΣ−1
2 ,
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and

d

dt
Σ(t) = Σ1 + A′Σ(t) + Σ(t)A′T − Σ(t)CTΣ−1

2 CΣ(t),

where A′ is the same as A except that J is replaced by J ′, Σ2 is defined in (4.31),

and Σ1 is given by

Σ1 =




σuf 0

0 σbf



 .

Other matrices are defined as before. Let Σ(t) be constant and denoted as

Σ(t) =




σzs σcs

σcs σbs



 ,

and put in all the numbers, we find a set of equations:






σuf + 2J ′σcs − σ2
zsσ

−1
m = 0

J ′σbs − rbσcs − σcsσzsσ
−1
m = 0

σbf − 2rbσbs − σ2
csσ

−1
m = 0

(4.49)

Among the three unknown entries, we only need σzs and σcs,

σzs = −rbσm + σm

√
r2
b + σufσ−1

m + 2
√
J ′2σbfσ−1

m + r2
bσufσ

−1
m ,

σcs =
1

2J ′ (−σuf + σ2
zsσ

−1
m ),

(4.50)

and the entries of Ko are obtained from σzs and σcs:

Kz =
σzs
σm

= −rb +
√
r2
b + σufσ−1

m + 2
√
J ′2σbfσ−1

m + r2
bσufσ

−1
m ,

Kb =
σcs
σm

=
1

2J ′ (−σufσ
−1
m +K2

z ).
(4.51)

There are several useful identities about Kz and Kb, and we list them in the

following lemmas.
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Lemma D.2. 1.

σuf = K2
zσm − 2J ′Kbσm, (4.52)

2.

J ′σbf = (J ′K2
b + 2r2

bKb + 2rbKbKz)σm, (4.53)

3.

Kzrb +KbJ
′ =

√
J ′2σbfσ−1

m + r2
bσufσ

−1
m . (4.54)

Proof. The first one is just the first equation in (4.49) in terms of Kz and Kb. We

only need to prove the last two. Using (4.52) and (4.51), we have

Kzrb +KbJ
′ =

1

2
(2Kzrb +K2

z − σufσ
−1
m )

=
1

2
((Kz + rb)

2 − r2
b − σufσ

−1
m )

=
√
J ′2σbfσ−1

m + r2
bσufσ

−1
m ,

(4.55)

and this proves the last one. For the second, look into identity:

σbf = σ2
csσ

−1
m + 2rbσbs

= σ2
csσ

−1
m + 2rb

1

J ′ (rbσcs + σcsσzsσ
−1
m )

(4.56)

which is equal to

J ′σbf = J ′K2
b σm + 2r2

bKbσm + 2rbKbKzσm.

Lemma D.3.

(K2
b σm + σbf )(rbKz + J ′Kb) +K2

bσuf +K2
zσbf

2(Kzrb +KbJ ′)(Kz + rb)
=
Kb(Kz + rb)σm

J ′ . (4.57)
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Proof. Using lemma D.2, we have

2(Kzrb +KbJ
′)(Kz + rb)

2Kbσm − J ′(σmK
2
b + σbf )(rbKz + J ′Kb)

= (Kzrb + J ′Kb)(2Kb(Kz + rb)
2σm − J ′(K2

bσm + σbf ))

= (Kzrb + J ′Kb)(2Kb(Kz + rb)
2 − 2(J ′K2

b + r2
bKb + rbKbKz))σm

= 2(Kzrb + J ′Kb)(Kb(K
2
z +Kzrb −KbJ

′))σm

= 2Kb(rbK
3
z + r2

bK
2
z + J ′KbK

2
z − J ′2K2

b )σm,

(4.58)

and

K2
b J

′σuf +K2
zJ

′σbf

= σm(K2
b J

′(K2
z − 2J ′Kb) +K2

z (K
2
bJ

′ + 2r2
bKb + 2rbKbKz))

= σm(J ′K2
zK

2
b − 2J ′2K3

b + J ′K2
zK

2
b + 2r2

bKbK
2
z + 2rbKbK

3
z )

= 2Kb(rbK
3
z + r2

bK
2
z + J ′KbK

2
z − J ′2K2

b )σm.

(4.59)

Thus

2(Kzrb +KbJ
′)(Kz + rb)

2Kbσm − J ′(σmK
2
b + σbf )(rbKz + J ′Kb)

= K2
b J

′σuf +K2
zJ

′σbf ,
(4.60)

and that is equal to (4.57).

Lemma D.4. If J ≫ r2
b

√
σm
σbf

(large J assumption), Kz ≫ rb.

Proof. If β ≫ α > 0, then

√
α + β −

√
α =

√
α(

√
1 + β/α− 1) ≈

√
β ≫

√
α.

Let α = r2
b and β = 2

√
J ′2σbf/σm + r2

bσuf/σm + σuf/σm, and we obtain what we

want.
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The large J assumption implies that r2
b ≪

√
J ′σbfσ−1

m + r2
bσufσ

−1
m , leading to an

approximation of Kz,

Kz ≈
√
σufσm + 2

√
J ′2σbfσ3

m + r2
bσufσ

3
m

1

σm
, (4.61)

and an approximation of Kb,

Kb ≈
√
σbfσm + r2

bJ
′−2σufσm

1

σm
. (4.62)

Now we can write the whole system model with the estimator and controller:

d





z(t)

b(t)

z̃(t)

b̃(t)





=





0 J −Jλ −J

0 −rb 0 0

Kz 0 −J ′λ−Kz 0

Kb 0 −Kb rb









z(t)

b(t)

z̃(t)

b̃(t)





dt

+





√
σuf

√
σbf

Kz
√
σm

Kb
√
σm









dw3

dw2

dw1




,

(4.63)

where Kz and Kb are the two entries of the estimator gain vector. This four dimen-

sional system in (4.63) is not necessary for our purpose. To reduce its size, we define

∆z = z − z̃ and ∆b = b− b̃, and a three dimensional system is obtained as

d





∆z

∆b

z̃




=





−Kz J λ(J ′ − J)

−Kb −rb 0

Kz 0 −λJ ′









∆zdt

∆bdt

z̃dt





+





√
σuf 0 −Kz

√
σm

0
√
σbf −Kb

√
σm

0 0 Kz
√
σm









dw3

dw1

dw2




.

(4.64)
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We denote the vector and matrices as bellow:

θ =





∆z

∆b

z̃




, α =





−Kz J λ(J ′ − J)

−Kb −rb 0

Kz 0 −λJ ′




,

β =





√
σuf 0 −Kz

√
σm

0
√
σbf −Kb

√
σm

0 0 Kz
√
σm




.

(4.65)

The dynamic equation of the whole system state covariance can be derived as we did

before:

dΘ

dt
= αΘ + ΘαT + ββT , (4.66)

where Θ = E[θθT ]. The steady solution can be found by solving the algebraic equation

0 = αΘ + ΘαT + ββT . (4.67)

Because Θ is symmetric, we can assume

Θ =





θ11 θ12 θ13

θ12 θ22 θ23

θ13 θ23 θ33




,

and (4.67) can be transformed to six linear equations:






−Kzθ11 + Jθ12 + λ(J ′ − J)θ13 = −(σuf +K2
zσm)/2

−Kzθ12 + Jθ22 + λ(J ′ − J)θ23 −Kbθ11 − rbθ12 = −KzKbσm

−Kzθ13 + Jθ23 + λ(J ′ − J)θ33 +Kzθ11 − λJ ′θ13 = K2
zσm

Kbθ12 + rbθ22 = (σbf +K2
bσm)/2

−Kbθ13 − rbθ23 +Kzθ12 − λJ ′θ23 = KzKbσm

Kzθ13 − λJ ′θ33 = −K2
zσm/2

(4.68)
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Note that we only need σb = E[(∆b)2] = θ22 and σz = E[(∆z)2] = θ11. The solution

of θ22 can be found as

θ22 =
PolyN
PolyD

, (4.69)

where

PolyD = 2J(rbKz + J ′Kb)((J
′Kb + (Kz + λJ ′)(rb + λJ ′))(Kz + rb)

+(J − J ′)(λKz(λJ
′ +Kz) +Kb(rb +Kz))),

(4.70)

and

PolyN = J((σmK
2
b + σbf )(rbKz + J ′Kb) +K2

b σuf +K2
zσbf )

(J ′Kb + (Kz + λJ ′)(rb + λJ ′))

+(J − J ′)(λJσbfK
3
z + λJσmrbK

2
zK

2
b + λ2JJ ′σbfK

2
z

+rbJσmKzK
3
b + λJJ ′σmKzK

3
b − λJ ′σufKzK

2
b

+rbJσbfKzKb − λJJ ′σbfKzKb + JJ ′σmK
4
b + JJ ′σbfK

2
b

−λJ ′σufrbK
2
b − λ2J ′2σufK

2
b )

= J(· · · )

+(J − J ′)(J(K2
bσm + σbf )Kb(rbKz + J ′Kb)

−2λ
J

J ′KzKbrb(Kz + rb)(rbKz + J ′Kb)σm

+λ(Kz + rb + λJ ′)(JK2
zσbf − J ′K2

bσuf )).

(4.71)

Observing that

αA + βB
α + βC = A +

β(B −AC)

α + βC ,

comparing it with (4.69) through (4.71) and using lemma D.3, we find

θ22 =
Kb(Kz + rb)

J ′ σm +
(J − J ′)Poly2

N

PolyD
, (4.72)
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where

Poly2
N = J(K2

b σm + σbf )Kb(rbKz + J ′Kb)

−2λ
J

J ′KzKbrb(Kz + rb)(rbKz +KbJ
′)σm

+λ(Kz + rb + λJ ′)(JK2
zσbf − J ′K2

b σuf )

−Kb(Kz + rb)

J ′ σm(Kbrb +KbKz + λ2J ′Kz + λK2
z )2J(Kzrb + J ′Kb).

(4.73)

Since

J(K2
b σm + σbf ) =

J

J ′ (K
2
b J

′σm + J ′σbf )

=
2J

J ′ (K
2
bJ

′ + r2
bKb + rbKbKz)σm,

(4.74)

the numerator Poly2
N can be rewritten as

Poly2
N = 2

J

J ′σmKb(rbKz + J ′Kb)(λ(Kz + rb)Kz(−rb −Kz − λJ ′)

+K2
bJ

′ −KbK
2
z −KbKzrb)

+
J

J ′ (Kz + rb + λJ ′)λ(J ′K2
zσbf −

J ′2

J
K2
bσuf ).

(4.75)

By using lemma D.2, we can further write Poly2
N as a multiple of σm,

Poly2
N

σm
= λK2

b (Kz + rb + λJ ′)(2J ′2Kb − J ′K2
z − 2rbJKz − JK2

z )

+2
J

J ′Kb(KbJ
′ + rbKz)(K

2
bJ

′ −KbK
2
z − rbKzKb),

(4.76)

and we write (4.72) in a multiple of σm too:

θ22
σm

=
Kb(Kz + rb)

J ′ +
(J − J ′)Poly2

N

PolyDσm
. (4.77)
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Before we use the large λ and large J assumption to simplify (4.77), we first look

into two identities:

2J ′2Kb − J ′K2
z − JK2

z − 2rbJKz

= J ′(2J ′Kb −K2
z ) − JKz(Kz + 2rb)

= −J ′σufσ
−1
m − JKz(Kz + 2rb)

= −(J + J ′)σufσ
−1
M − 2J

√
T ,

(4.78)

and

K2
b J

′ −KbK
2
z − rbKzKb

= Kb(J
′Kb −K2

z − rbKz)

= Kb(
1

2
(K2

z − σufσ
−1
m ) −K2

z − rbKz)

= Kb(−
1

2
(K2

z + 2rbKz + r2
b ) +

r2
b

2
− σuf

2σm
)

=
Kb

2
(−2

σuf
σm

− 2
√
T ),

(4.79)

where T = J ′2σbfσ
−1
m + r2

bσufσ
−1
m . Now (4.76) can be rewritten as:

Poly2
N

σm
= −(λK2

b J((1 +
J ′

J
)
σuf
σm

+ 2
√
T )(Kz + rb + λJ ′)

+
J

J ′K
2
b (rbKz +KbJ

′)(2
σuf
σm

+ 2
√
T ))

= −2K2
b (
σuf
σm

+
√
T )(

1

f

√
T + λJ(Kz + rb + λJ ′))

+(1 − f)λK2
bJ(Kz + rb + λJ ′)

σuf
σm

,

(4.80)

where f = J ′/J .
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An approximation of PolyD can be obtained by reorganizing its terms:

PolyD = 2J(Kzrb + J ′Kb)((Kz + rb)(Kzrb + J ′Kb)

+λJ ′(Kz + rb + λJ ′)(Kz + rb)

+(J − J ′)(λKz(λJ
′ +Kz) +Kb(rb +Kz)))

= 2J
√
T ((Kz + rb)

√
T + λJ ′(Kz + rb)

2 + λ2J ′2(Kz + rb)

+(J − J ′)(λKz(λJ
′ +Kz) +Kb(rb +Kz)))

= 2J
√
T ((Kz + rb)(

√
T + (J − J ′)Kb)

+λ(JK2
z + λJ ′(JKz + J ′rb) + J ′r2

b + 2J ′rbKz))

≈ 2J
√
T (Kz(

√
T + (

1

f
− 1)

√
T ) + λJKz(Kz + λJ ′))

≈ 2J
√
TKz(

J

J ′

√
T + λJ(Kz + λJ ′)).

(4.81)

We have used the large λ and large J assumption in above approximation.

Combining (4.80) and (4.81), we obtain:

Poly2
N

PolyD
= −K

2
b (σuf + σm

√
T )

J
√
TKz

+ (f − 1)
λK2

b (Kz + rb + λJ ′)σuf

2J
√
TKz(

√
T

J ′ + λ(Kz + λJ ′))

. (4.82)

The second term in the above equation can be simpler if λ(Kz + λJ ′) ≫
√
T

J ′ :

λK2
b (Kz + rb + λJ ′)σuf

2J
√
TKz(

√
T

J ′ + λ(Kz + λJ ′))

≈ K2
bσuf

2J
√
TKz

, (4.83)

and σb can be computed by substituting (4.82) and (4.83) back to (4.73). We state

this in our first theorem.

Theorem D.5. When J ′ is used in the design of the estimator (Kalman filter) and

the controller, the steady estimation error variance σb obtained for the linear system
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(4.63) is given by

σb/σm =
(Kz + rb)Kb

J ′ − (1 − f)
K2
b

Kz
+
K2
b σufσ

−1
m

2
√
TKz

(f 2 − 1). (4.84)

The large λ and large J assumption are supposed to hold as in the Theorem E.2 and

λ(Kz + λJ ′) ≫
√
T

J ′ . Entries Kz and Kb are defined as before.

• The result is based on the large λ and large J assumption.

• The inequality λ(Kz +λJ ′) ≫
√
T

J ′ is reasonable, since λ2 is far larger than J−1

and
√
T is in the order of J .

E. Steady performance with open control loop

In this section, we will find the steady performance of the Kalman filter when J 6= J ′

and the control loop is open. The result will be used for comparison in the future.

The dynamic function of the system with an open control loop can be given as






dz(t) = Jb(t)dt

db(t) = −rbb(t)dt+
√
σbfdw1

dz̃(t) = J ′b̃(t)dt+Kz(y(t) − z(t))dt

db̃(t) = −rbb̃(t)dt+Kb(y(t) − z(t))dt

(4.85)

and

y(t)dt = z(t)dt+
√
σmdw2, (4.86)

where all the variables are defined as before. As in the last section, we still replace

γJ and γJ ′ by J and J ′, respectively. Similarly, a reduced three-dimensional model

can be obtained as:

dθ = Gθdt+ β




dw1

dw2



 . (4.87)
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The matrices are defined as:

θ =





∆z

∆b

b




, G =





−Kz J ′ J − J ′

−Kb −rb 0

0 0 −rb




,

β =





0 −Kz
√
σm

√
σbf −K − b

√
σm

√
σbf 0




.

(4.88)

We also define

Θ = E[θθT ] =





θ11 θ12 θ13

θ12 θ22 θ23

θ13 θ23 θ33




,

and this leads to the algebraic Riccati equation:

GΘ + ΘGT + ββT = 0. (4.89)

It is linear and can be solved. Let us ignore the tedious derivation and just list the

results. First note that Kz and Kb are different from the closed loop case:

Kz ≈
√

2J ′σ
1/4
bf σ

−1/4
m ,

Kb ≈
K2
z

2J ′ = σ
1/2
bf σ

−1/2
m .

(4.90)

The solution of (4.89) gives us the steady performance of the estimator,

σz = E[(z − z̃)2] = θ11

=
1

4

4σbfJ
2 +K2

z (3K
2
z + 8Kz + 4r2

b )σm
Kz(Kz + rb)(Kz + 2rb)

,
(4.91)

and

σb = E[(b− b̃)2] = θ22

=
1

8

K4
zσm

(Kz + rb)J ′2 +
1

2
σbf (

Kz(Kz(J − J ′) − rbJ
′)2

(Kz + rb)(Kz + 2rb)2rbJ ′2 +
3Kz + 4rb

(Kz + 2rb)2
).

(4.92)
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We have used the fact that Kb =
1

2J ′K
2
z .

The large J assumption still implies that Kz ≫ rb, and this leads to an approx-

imation of σz:

σz =
1

4

4σmK
2
z (Kz + rb)

2 − σmK
3
z + 4σ2

bfJ
2

Kz(Kz + 2rb)(Kz + rb)

≈ 3

4
Kzσm + σbf

J2

K3
z

= σ
3/4
m σ

1/4
bf (

3

4

√
2J ′ +

J2

2J ′
√

2J ′
).

(4.93)

Theorem E.1. The variance σz in (4.93) reaches its minimum when J = J ′.

Proof. Let v =
√

2J ′ and define g(v) =
3

4
v +

J2

v3
. The first two derivatives of g can

be computed as

g′(x) =
3

4
− 3J2

v4
,

g′′(x) =
12J2

v5
> 0.

(4.94)

Equation g′(v) = 0 has two solutions: v =
√

2J and v = −
√

2J . The last one can

be discarded since v > 0 according to it definition. Thus f obtains its minimum

when v =
√

2J since g′′(v) is always positive. Identity v =
√

2J implies J = J ′ and

σz =
√

2Jσ
3/4
m σ

1/4
bf .

Approximation of σb can also benefit from the large J assumption:

σb ≈
K3
z

8J ′2σm +
1

2
σbf (

3

Kz
+

(Kz(J − J ′) − rbJ
′)2

K2
zJ

′2rb
). (4.95)

By substituting Kz in terms of σbf and σm, we can further write σb as

σb ≈
√

2

J ′σ
3/4
bf σ

1/4
m +

σbf
2rb

(
1 − f

f
)2 −

σ
3/4
bf σ

1/4
m√

2J ′
(
1 − f

f
) +

σbfrb
2K2

z

.

The last term can be discarded as Kz ≫ rb, and the above expression becomes

σb ≈
σ

3/4
bf σ

1/4
m√

2J
(

3√
f
− 1

f 3/2
) +

σbf
2rb

(
1 − f

f
)2. (4.96)
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Theorem E.2. When J ′ is used in the design of the estimator (Kalman filter) and

the control loop is open, the steady estimation error variance σb obtained for the linear

system (4.26) is approximated under the large J assumption by

σb =
1√
2J
σ

3/4
bf σ

1/4
m (

3√
f
− 1

f 3/2
) +

σbf
2rb

(
1 − f

f

)2

, (4.97)

where f = J ′/J . Specifically, when J = J ′,

σz =
√

2Jσ
1/4
bf σ

3/4
m ,

σb =

√
2

J
σ

3/4
bf σ

1/4
m .

(4.98)

Proof. We have already shown most of the theorem. For the specific case of σb when

J = J ′, replacing f by 1 in (4.96), we obtain

σb =

√
2

J
σ

3/4
bf σ

1/4
m .

We have several remarks on the above theorem:

• Note that we use f = J ′/J , which is different from what the Caltech group used

in their paper.

• The result is an extension of the Caltech group result and more accurate when

f is near 1.

• Because of the large J assumption, r2
b ≪ J

√
σbf/σm, the second term in (4.97)

quickly dominates the first one when f is away from 1, which is the result of

the Caltech group. It vanishes only when f = 1, so σb obtains its minimum

near f = 1.
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F. Effect of the input noise

The Caltech group has shown that feedback increases the robustness of magnetometry

when the spin number is unknown. It is true when the input is noise free or the

noise is very weak. When the control variable, the compensate field u(t), is not

exact, additional uncertainty is brought into the system. It will influence and finally

damage the measurement. That leaves us the questions of how large its effect is and

how strong a noise the system can tolerate.

An example is useful and can show us some idea. Fig. 4.2 through Fig. 4.5 show

σb curves with respect to f for different σuf . Numbers are chosen as below:






σm = σbf = 10−4

J = 1010

λ = 0.5

rb = 103

(4.99)

Fig. 4.6 shows the 3D mesh of σb with respect to f and σuf . For most σuf , σb obtains

its minimum near f = 1. But when σuf is too large, for example, σuf = 1010, σb

increases with f = J ′/J .

A comparison between the open loop and closed loop results is shown in Fig.4.7

through Fig.4.12 by drawing the ratio σb/σbo where σbo is the estimation variance

from Theorem E.2 when no feedback is applied. When σuf is small, σb/σbo ≤ 1 for

most J ′. When σuf increases, σb/σbo first becomes larger than 1 near f = 1 and then

the range of J ′ where σb/σbo > 1 expends to the whole scope of J ′. Note that the

figures are not accurate near f = 1 because of simplifications in the computation and

round-off errors.
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Fig. 4.2. Curve of σb with respect to f , when σuf = 10−4. Parameters are chosen as

(4.99).
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Fig. 4.3. Curve of σb with respect to f , when σuf = 1.0. Parameters are chosen as

(4.99).
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Fig. 4.4. Curve of σb with respect to f , when σuf = 2.0 × 104. Parameters are chosen

as (4.99).

0.5 1 1.5 2
2

3

4

5

6

7

8

9
x 10

−8

J’/J

σ b

Fig. 4.5. Curve of σb with respect to f , when σuf = 1010. Parameters are chosen as

(4.99).
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Fig. 4.6. 3D mesh of σb with respect to f and σuf . Parameters are chosen as (4.99).
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Fig. 4.7. Curve of σb/σbo with respect to f , when σuf = 10−4. Parameters are chosen

as (4.99).
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Fig. 4.8. Curve of σb/σbo with respect to f , when σuf = 1.0. Parameters are chosen as

(4.99).
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Fig. 4.9. Curve of σb/σbo with respect to f , when σuf = 2.0 × 104. Parameters are

chosen as (4.99).



128

0.5 1 1.5 2
0

5

10

15

20

25

30

J’/J

σ b/σ
bo

Fig. 4.10. Curve of σb/σbo with respect to f , when σuf = 10.010. Parameters are chosen

as (4.99).
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Fig. 4.11. Curve of σb/σbo with respect to f , when σuf = 1.4 × 107. Parameters are

chosen as (4.99).
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Fig. 4.12. 3D mesh of σb/σbo with respect to f and σuf . Parameters are chosen as

(4.99).

Now let us come back to the formulae in Theorem D.5. If we can assume that

σuf
σm

≪
√
T , (4.100)

Kz and Kb have a simpler form:

Kz ≈
√

2
√
T ,

Kb =
1

2J ′ (K
2
z −

σuf
σm

)

≈ 1

J ′

√
T .

(4.101)

Substitute (4.101) back to (4.84), and we find an approximation of σb:

σb
σm

≈ KzKb

J ′ +
K2
b

Kz
(f − 1)

≈
√

2T 3/4

J ′2 +
T 3/4

J ′2
√

2
(f − 1)

= (
σbf
σm

+
r2
bσuf
J ′2σm

)3/4

√
2

2
(

1√
J ′

+

√
J ′

J
).

(4.102)

The last term in (4.84) is discarded because
σuf
σm

≪
√
T .

The above approximation explains the change of σb curves with part of the σuf .
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When
r2
bσuf
J ′2σm

≪ σbf
σm

, or σuf ≪
J ′2σbf
r2
b

, the σuf term can be further discarded and

σb
σm

≈ (
σbf
σm

)3/4

√
2

2
(

1√
J ′

+

√
J ′

J
), (4.103)

which is the same as the noise-free case. Thus σb obtains its minimum near J = J ′.

In our example,
J ′2σbf
r2
b

= 1010 and σm
√
J ′2σbfσ−1

m = 106, which is a good approxi-

mation of σm
√
T . Thus when σuf ≪ 106, the input will not have much effect on the

measurement. This can be seen from in Fig. 4.6 and 4.12, where 105 is a point below

which σuf have no large effect.

Theorem F.1. Under the assumption of theorem D.5, and if σuf is not too large

such that (4.102) holds, σb is larger than σbo in a range enclosing point f = 1, and

bounded by two zero points of the function

g(f) = α(f 2 + β)3/4 1 + f

(1 − f)2
− 1, (4.104)

where

α =
2rb√
2J

(
σm
σbf

)1/4,

β =
r2
bσuf
J2σbf

.
(4.105)

If the above equation has no zero point, σb > σbo everywhere. If it has only one

zero point, σb > σbo on the same side of the zero point as the point 1. In the above

statements, we constrain f in the interval (0, 6].

Proof. We only need to show that σb ≥ σbo at f = 1, and σb/σbo increases on the left

side of 1 and decreases on the right side of 1.

When J = J ′, from Theorem E.2 and D.5, we find

σb = σ1/4
m (σbf +

r2
b

J ′2σuf)
3/4

√
2

J
, (4.106)



131

and

σbo = σ1/4
m σ

3/4
bf

√
2

J
. (4.107)

Clearly, σb ≥ σbo when J = J ′, and the closed loop control is necessary only because

it keeps the small angle assumption. Its behavior is not better than the that of the

open loop when we know J exactly. It is also interesting to notice that the same

result is obtained when σbf is amplified to σbf +
r2
b

J ′2σuf .

When J ′ is away from J , according to our previous discussion, the second term

in (4.97) dominates quickly and the ratio σb/σbo can be well approximated by

σb
σbo

=

(1 +
r2
bσuf
J ′2σbf

)3/4 1√
2J

(
σm
σbf

)1/4(
1√
f

+
√
f)

1

2rb
(
1 − f

f
)2

=
2rb√
2J

(
σm
σbf

)1/4(f 2 +
r2
bσuf
J2σbf

)3/4 1 + f

(1 − f)2

= α(f 2 + β)3/4 1 + f

(1 − f)2
,

(4.108)

where

α =
2rb√
2J

(
σm
σbf

)1/4,

β =
r2
bσuf
J2σbf

.

Define h(f) = α(f 2 + β)3/4 1 + f

(1 − f)2
, and we compute its first order derivative:

d

df
h = α(f 2 + β)−1/4 1

(1 − f)3
(3β + f(

3

2
+ β) + f 2(3 − f

2
)).

When f ≤ 6, the derivative is positive on the left of 1 and negative on the right of 1

and that is what we want.

We conclude from the above theorem:

• When J ′ = J , the closed loop behaves not better than the open loop. But if

σuf is small, this make little difference.
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• The range of f where the closed loop behaves better depends on σuf , and that

is defined by the two zero points of the function g(f).

• We have found two criteria to check if σuf can be ignored: σuf ≪ σm
√
T and

σuf ≪
J ′2σb
r2
b

.

G. Robust and optimal choice of J ′

In this section, besides giving an explanation of the robust choice of J ′ by the Caltech

group, we will further dicuss its optimal choice when J is treated as a random number.

We assume that σuf is not too large so that we can use (4.102).

When σuf is small enough so that it can be neglected, let J = aJ0 and J ′ = bJ0,

0.5 ≤ a ≤ 2.0 where J0 is some constant, we can rewrite (4.46) as:

σbσ
−1
m = c(

1√
b

+

√
b

a
), (4.109)

where c = (
σbf
σm

)3/4 ·
√

2

2
· 1√

J0

. Denote the minimum of a as min(a), we can find the

worst result for a fixed b:

σbσ
−1
m ≤ c(

1√
b

+

√
b

min(a)
). (4.110)

The minimum of the right side is obtained when b = min(a) or J ′ = min(a) · J0,

corresponding to the result by the Caltech group. Thus the Caltech design is robust

in the maximum-minimum meaning.

An optimal design can be found by choosing the optimal objective function as

J = E[σb],

where the expectation is taken with respect to the random variable J . From (4.109),
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we have

E[σb] = σmc(
1√
b

+
√
bE[

1

a
]) ≥ 2cσm

√
E[

1

a
], (4.111)

and the identity is only obtained when J ′ =
1

E[1/J ]
.

When σuf can not be ignored, c = (
σbf
σm

+
r2
bσuf
σmJ ′2 )3/4 ·

√
2

2
· 1√

J0

and the optimal

choice drifts away from what we obtained above.
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CHAPTER V

CONCLUSIONS

At present, several types of elementary quantum computing devices have been devel-

oped, based on AMO (atomic, molecular and optical) or semiconductor physics and

technologies. We may roughly classify them into the following:

atomic — ion and atom traps, cavity QED;

molecular — NMR;

semiconductor — coupled quantum dots, silicon (Kane);

crystal structure — nitrogen-vacancy (NV) diamond;

superconductivity — SQUID.

The above classification is not totally rigorous as new types of devices, such as quan-

tum dots, or ion traps imbedded in cavity-QED, have emerged which are of the

hybrid nature. Also, laser pulse control, which is of the optical nature, seems to be

omnipresent.

We still do not know which proposal will win the race to build a reliable and

useful quantum computer. Liquid NMR is so far the most successful and the only

technology to realize a seven qubit algorithm in laboratory. It forms a test bed for

quantum algorithms and the techniques developed with it can be easily used in the

control of other quantum devices. The severe obstacle to its future applicability is its

lack of scalability. Solid state NMR may solve the problem, but more improvements

are still needed. Superconducting quantum computer utilizes the quantum effects in

superconducting. The devices are composed of Josephson junction and CPB (Cooper

Pair Box). Coherence oscillations have been observed and two qubit CNOT gate has
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been realized. Technologies used for the superconducting quantum devices are those

well developed in semiconductor industry, but to manufacture a superconducting

quantum computer with several qubits still has a long way to go.

In Chapter IV, we move to an example of “quantum metrology”. We have in-

vestigated an extended model of a magnetometer to evaluate the effect of input noise

on the measurement, which is originally ignored by earlier researches. Our computa-

tion shows the benchmark under which the input noise has a negligible effect. Besides

keeping the small angle assumption, the closed-loop feedback makes the measurement

robust to an unknown parameter. If we only look into the steady performances of

the closed-loop and open-loop cases, the input noise decides when the closed-loop is

better than the open-loop. When the input noise is small, the closed-loop always

behaves better. But when the input noise is large, there is a range including f = 1

where the closed-loop behaves worse. The open-loop estimation is preferred when we

have a good estimation of the parameter J and the spins do not rotate too much. A

simulation is given to support our results. The input noise also influences the robust

and optimal choices of J ′. The optimal choice drifts away when the noise increases.
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