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ABSTRACT

Spherical Radon Transforms and

Mathematical Problems of Thermoacoustic Tomography. (August 2006)

Gaik Ambartsoumian, Dipl., Obninsk Institute of Nuclear Power Engineering,

Russia

Chair of Advisory Committee: Dr. Peter Kuchment

The spherical Radon transform (SRT) integrates a function over the set of all

spheres with a given set of centers. Such transforms play an important role in some

newly developing types of tomography as well as in several areas of mathematics

including approximation theory, integral geometry, inverse problems for PDEs, etc.

In Chapter I we give a brief description of thermoacoustic tomography (TAT or

TCT) and introduce the SRT.

In Chapter II we consider the injectivity problem for SRT. A major breakthrough

in the 2D case was made several years ago by M. Agranovsky and E. T. Quinto. Their

techniques involved microlocal analysis and known geometric properties of zeros of

harmonic polynomials in the plane. Since then there has been an active search for

alternative methods, which would be less restrictive in more general situations. We

provide some new results obtained by PDE techniques that essentially involve only

the finite speed of propagation and domain dependence for the wave equation.

In Chapter III we consider the transform that integrates a function supported

in the unit disk on the plane over circles centered at the boundary of this disk. As

is common for transforms of the Radon type, its range has an infinite co-dimension

in standard function spaces. Range descriptions for such transforms are known to be

very important for computed tomography, for instance when dealing with incomplete

data, error correction, and other issues. A complete range description for the circular
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Radon transform is obtained.

In Chapter IV we investigate implementation of the recently discovered exact

backprojection type inversion formulas for the case of spherical acquisition in 3D and

approximate inversion formulas in 2D. A numerical simulation of the data acquisition

with subsequent reconstructions is made for the Defrise phantom as well as for some

other phantoms. Both full and partial scan situations are considered.
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CHAPTER I

INTRODUCTION

A. Thermoacoustic tomography

Most tomographic methods of medical imaging (as well as industrial non-destructive

evaluation, geological imaging, sonar, and radar) are based on the following proce-

dure: one sends towards a non-transparent body some kind of a signal (acoustic or

electromagnetic wave, X-ray or visual light photons, etc.) and measures the wave

after it passes through or reflects back from the body. Then the problem becomes

to use the measured information to recover the internal structure of the object of

study. The common feature of most traditional methods of tomography is that the

sent and received signals have the same physical nature. Although the development

of tomography during past several decades has brought many remarkable successes

[55, 57], each of the methods has its own shortfalls. For instance, when imaging bio-

logical tissues, microwaves and optical imaging often provide good contrasts between

different types of tissues, but are inferior in terms of resolution in comparison with

ultrasound or X-rays. This, in particular, is responsible for practical impossibility of

getting any good resolution in optical or electrical impedance tomography, unless one

wants to image only skin-deep areas. On the other hand, ultrasound, while giving

good resolution, does not do a good job in terms of contrast. It is amazing that

the idea of combining different types of radiation for triggering the signal and for

the measured signal had to wait for such a long time to appear. By now, thermoa-

coustic tomography and its sibling photoacoustic tomography (PAT) have already

made significant advances (e.g., [37]-[40], [79]-[82]), while some others are still in a

This dissertation follows the style of Inverse Problems.
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RF pulse 

transducer 

r=vt 

Fig. 1. Sketch of a TAT system

development stage. Since PAT in terms of the relevant mathematics is identical to

TAT, we will describe briefly only the latter. In TAT, a short radiofrequency (RF)

electromagnetic pulse is sent through the biological object (see Fig. 1). At each in-

ternal location x certain energy f(x) will be absorbed. It is known (see [36] and the

references above), that cancerous cells absorb several times more RF energy than the

normal ones, which means that significant increases of the values of f(x) are expected

at tumorous locations. It is believed that this contrast is due to the increased water

and sodium content in tumors, which is partly due to extra blood vessel growth there.

The absorbed energy, due to resulting heating, causes thermoelastic expansion, which

in turn creates a pressure wave. This wave can be detected by ultrasound transducers

placed outside the object. Since the delivered pulses are very short, the thermal diffu-

sion during the experiment can be neglected. Now the former weakness of ultrasound

(low contrast) becomes an advantage. Indeed, due to that low contrast in many cases

(e.g., for mammography) one can assume the sound speed v to be constant. Hence,

the sound waves detected at any moment t of time are coming from the locations
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at a constant distance (depending on time and sound speed) from the transducer.

The strength of the signal coming from a location x reflects the energy absorption

f(x). Thus, one effectively measures the integrals of f(x) over all spheres centered

at the transducers’ locations. In other words, to recover the internal structure of the

object one needs to invert a generalized Radon transform of f (“generalized,” since

integration is done over spheres). Exact implementation of this idea involves simple

handling of the wave equation ([38], [79]-[82]).

This method combines advantages of two types of radiation used (contrast for

microwaves and resolution for ultrasound), while avoiding their deficiencies.

B. Spherical Radon transform

The transform integrating a function over the set of all spheres with a given set of

centers is usually called spherical mean or circular Radon transform. We will use the

two terms interchangeably throughout the text. Let f(x) be a continuous function

on Rn, n ≥ 2.

Definition 1. The circular Radon transform of f is defined as

Rf(p, r) =

∫

|y−p|=r

f(y)dσ(y),

where dσ(y) is the surface area on the sphere |y − p| = r centered at p ∈ Rn.

In this definition we do not restrict the set of centers p or radii r. It is clear, how-

ever, that this mapping is overdetermined, since the dimension of pairs (p, r) is n+1,

while the function f depends on n variables only. This and the tomographic consid-

eration above suggest to restrict the set of centers to a set (hypersurface) S ⊂ Rn,

while not imposing any restrictions on the radii. We denote this restricted transform
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by RS:

RSf(p, r) = Rf(p, r)|p∈S.

The most popular geometries of these surfaces (curves) that have been implemented

in TAT are spheres (circles), planes (lines), and cylinders [79]-[81].

Such transforms have been studied over the years in relation to many problems of

approximation theory, integral geometry, PDEs, sonar and radar imaging, and other

applications (e.g., [2, 3, 17, 20, 35, 43, 49, 50, 51, 59, 62, 63]). The central problems

that arise in these studies are:

• Uniqueness of reconstruction: is the information collected sufficient for the

unique determination of the energy deposition function f?

• Reconstruction formulas and algorithms, and stability of the reconstruction.

• Description of the range of the transform: what conditions should ideal data

satisfy?

• Incomplete data problems: what happens to the reconstruction if only a part

of transducers’ locations can be (or are) used?

All these questions have been essentially answered for the classical Radon transform

that arises in X-ray CT, Positron Emission Tomography (PET), and Magnetic Res-

onance Imaging (MRI) [55, 57]. However, they are much more complex and not that

well understood for the circular Radon transform that arises in TAT. Although sig-

nificant progress has been achieved, some related analytic problems have proven to

be rather hard and remain unresolved till now.
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CHAPTER II

UNIQUENESS OF RECONSTRUCTION1

A. Formulation of the problem

The main problem addressed in this chapter is motivated by the question whether the

information collected in a TAT procedure is sufficient for the unique determination

of the energy deposition function f . However, the mathematical formulation can be

more general and involve questions of unique reconstruction of functions in much

larger spaces than those arising in medical imaging (e.g. non-compactly supported

functions).

Definition 2. The transform R is said to be injective on a set S (S is a set of

injectivity) if for any f ∈ Cc(Rn) the condition Rf(p, r) = 0 for all r ∈ R and all

p ∈ S implies f ≡ 0.

In other words, S is a set of injectivity, if the mapping RS is injective on Cc(Rn).

Here we use the standard notation Cc(Rn) for the space of compactly supported

continuous functions on Rn. The situation can be significantly different and harder

to study without compactness of support (or at least some decay) condition [2, 3].

Fortunately, tomographic problems usually yield compactly supported functions.

One now arrives to the

Problem 3. Describe all sets of injectivity for the circular Radon transform R on

Cc(Rn).

1 Part of this chapter is reprinted with permission from “On the injectivity of
the circular Radon transform arising in thermoacoustic tomography”, by G. Ambart-
soumian and P. Kuchment, Inverse Problems 21 (2005), 473–485. Copyright c©2005
by IOP Publishing LTD and individual contributors.
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This problem has been around in different guises for quite a while [3, 20, 49, 50].

The paper [3] contains a survey of some other problems that lead to the injectivity

question for RS.

B. Algebraicity of non-injectivity hypersurfaces

The first important observations concerning non-injectivity sets were made by V. Lin

and A. Pincus [49, 50] and by N. Zobin [83]. For the completeness of exposition

we repeat some of their results in this section. Even though the statements be-

low are proved for compactly supported functions, the results remain valid also for

non-compactly supported functions decaying sufficiently fast (e.g. exponentially) at

infinity.

For every f ∈ Cc(Rn) define

S[f ] = {x ∈ Rn | Rf(x, r) = 0 ∀r ∈ R+}.

For some functions, e.g. if the integral of f over the whole space is not zero, S[f ] = ∅.

Let k = 0, 1, . . .. Then

Qk(x) = Qk[f ](x) = r2k ∗ f (x) =

∫

Rn

|x− ξ|2k f(ξ) dξ, (2.1)

where r = x2
1 + . . . + x2

n, is a polynomial of degree deg Qk ≤ 2k.

With each polynomial Q let us associate the algebraic variety

V [Q] = {x ∈ Rn | Q(x) = 0}.

Then we have the following statements.

Lemma 4. S[f ] =
⋂∞

k=0 V [Qk].
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Proof. The following conditions are equivalent:

(1) Rf(x, r) = 0 for all r ∈ R+

(2)
∫
Rn α(|x− ξ|2)f(ξ) dξ = 0 for every α ∈ Cc([0,∞))

Indeed, (1)⇒(2) simply by passing to polar coordinates centered at x in the integral in

(2). For (2)⇒(1) take a sequence of functions αn(t) converging to the Dirac δ-function

δ(t− r).

Consider now x ∈ S[f ]. Then Rf(x, r) = 0 for all r ∈ R+, and by equivalence

proved above
∫
Rn α(|x − ξ|2)f(ξ) dξ = 0 for every α ∈ Cc([0,∞)). This means in

particular, Qk(x) = 0 for every k, hence x ∈ ⋂∞
k=0 V [Qk]. We can conclude now that

S[f ] ⊂ ⋂∞
k=0 V [Qk].

Suppose now that x ∈ ⋂∞
k=0 V [Qk]. Then Qk(x) = 0 for every k. By Weier-

strass’ theorem about the denseness of polynomials and equation (2.1) we obtain
∫
Rn α(|x − ξ|2)f(ξ) dξ = 0 for every α ∈ Cc([0,∞)). From the equivalence shown

above Rf(x, r) = 0 for all r ∈ R+, i.e. x ∈ S[f ]. Hence
⋂∞

k=0 V [Qk] ⊂ S[f ]. But we

know that S[f ] ⊂ ⋂∞
k=0 V [Qk]. So S[f ] =

⋂∞
k=0 V [Qk]. ¥

Proposition 5.

1. f ≡ 0 if and only if Qk[f ] ≡ 0 for every k = 0, 1, . . ..

2. For f 6≡ 0 let Qk0 [f ] be the smallest degree non-zero polynomial among Qk’s.

Then Qk0 is harmonic.

Proof. 1. The condition Qk[f ] ≡ 0 for every k = 0, 1, . . . means
⋂∞

k=0 V [Qk] = Rn.

From Lemma 4 it follows, that S[f ] = Rn, in other words all integrals of f over all

spheres in Rn are vanishing, i.e. f ≡ 0.

2. Applying Laplacian to the convolution in (2.1) and using the easily verifiable

identity

4|x|2k = 2k(2k + n− 2)|x|2k−2



8

one arrives to the following relation

4Qk = 2k(2k + n− 2)Qk−1.

If Qk0 [f ] is the nontrivial polynomial of minimal degree, then Qk0−1[f ] ≡ 0. Hence

4Qk0 ≡ 0 ¥.

Lemma 4 and Proposition 5 imply that, if R is not injective on S, then S is

contained in the zero set of a harmonic polynomial. Therefore we get a sufficient

condition for injectivity:

Corollary 6. Any set S ⊂ Rn of uniqueness for harmonic polynomials is a set of

injectivity for the transform R.

In particular, this implies

Corollary 7. If U ⊂ Rn is a bounded domain, then S = ∂U is an injectivity set

for R.

Proof. Indeed, if f(x) is a harmonic function on U s.t. f |∂U = 0, then the maximum

principle for harmonic functions implies that f ≡ 0. Now Corollary 6 completes the

proof. ¥

We will see later a different proof of this fact that does not use harmonicity.

C. Solution in the plane and conjecture for higher dimensions

So, what are possible non-injectivity sets? Any hyperplane S is such a set. Indeed,

for any function f that is odd with respect to S, one gets RSf ≡ 0. There are other

options as well. In order to describe them in 2D, let us first introduce the following

definition.
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L

L

LL

L
1

2n

n−1

Coxeter system of n lines

0

Fig. 2. Coxeter set

Definition 8. For any N ∈ N denote by ΣN the Coxeter system of N lines L0, . . . , Ln−1

in the plane2(see Fig. 2):

Lk = {teiπk/n| −∞ < t < ∞}.

In other words, ΣN is a “cross” of N lines passing through the origin and forming

equal angles π/N . It is rather easy to construct a non-zero compactly supported

function that is simultaneously odd with respect to all lines of a given Coxeter set

(e.g., f(ρ, φ) = h(ρ) sin(2nφ) for arbitrary h(ρ) ∈ C∞
0 [0,∞], where (ρ, φ) are polar

coordinates). Hence, ΣN is a non-injectivity set as well. Applying any rigid motion

ω, one preserves non-injectivity property. It has been also discovered (e.g., [3]) that

one can add any finite set F preserving non-injectivity. Thus, all sets ωΣN ∪ F are

non-injectivity sets. It was conjectured by V. Lin and A. Pincus that these are the

only non-injectivity sets for compactly supported functions on the plane. Proving

this conjecture, M. Agranovsky and E. Quinto established the following result:

2 In the formula below we identify the plane with the complex plane C.
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Theorem 9. [3] The following condition is necessary and sufficient for a set S ⊂ R2

to be a set of injectivity for the circular Radon transform on Cc(R2):

S is not contained in any set of the form ω(ΣN)
⋃

F , where ω is a rigid motion

in the plane and F is a finite set.

The (unproven) conjecture below describes non-injectivity sets in higher dimen-

sions.

Conjecture 10. [3] The following condition is necessary and sufficient for S to be a

set of injectivity for the circular Radon transform on Cc(Rn):

S is not contained in any set of the form ω(Σ)
⋃

F , where ω is a rigid motion of

Rn, Σ is the zero set of a homogeneous harmonic polynomial, and F is an algebraic

subset in Rn of co-dimension at least 2.

For n = 2 this boils down to Theorem 9. Indeed, let un(x, y) be a harmonic

homogenous polynomial of order n. Then it is the real (or imaginary) part of the

complex valued function g(z) = z0z
n, where z0 = Ceinδ is some constant. Using the

polar representation of complex numbers, we get un(r, θ) = Crn cos(n(θ − δ)) (or

in case of imaginary part un(r, θ) = Crn sin(n(θ − δ))). Thus un = 0 on the lines

θ = δ + π/2n + kπ/n (or on the rays θ = δ + kπ/n), for 0 ≤ k ≤ 2n − 1. In both

cases the zeros set of un is a Coxeter set.

D. Alternative approach

The beautiful proof of Theorem 9 by M. Agranovsky and E. Quinto is built upon

the following tools: microlocal analysis (Fourier Integral Operators technique) that

guarantees existence of certain analytic wave front sets at the boundary of the sup-

port of a function located on one side of a smooth surface (Theorem 8.5.6 in [34]),
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and known geometric structure of level sets of harmonic polynomials in 2D (e.g.,

[24]). These methods, unfortunately, restrict wider applicability of the proof. The

microlocal tool works at an edge of the support and hence is not applicable for non-

compactly-supported functions. On the other hand, the geometry of level sets of

harmonic polynomials does not work well in dimensions higher than 2 or on more

general Riemannian manifolds (e.g., on the hyperbolic plane). Thus, the quest has

been active for alternative approaches since [3] has appeared.

It is instructive to look at alternative reformulations of the problem (which there

are plenty [3]). There is a revealing reformulation [3, 41] that stems from known

relations between spherical integrals and the wave equation (e.g., [17, 35]). Namely,

consider the initial value problem for the wave equation in Rn:

utt −4u = 0, x ∈ Rn, t ∈ R (2.2)

u|t=0 = 0, ut|t=0 = f. (2.3)

Then

u(x, t) =
1

(n− 2)!

∂n−2

∂tn−2

∫ t

0

r(t2 − r2)(n−3)/2(Rf)(x, r)dr, t ≥ 0.

Hence, it is not hard to show [3] that the original problem is equivalent to the problem

of recovering ut(x, 0) from the value of u(x, t) on subsets of S × (−∞,∞).

Lemma 11. [3, 41] A set S is a non-injectivity set for Cc(Rn) if and only if there

exists a non-zero compactly supported continuous function f such that the solution

u(x, t) of the problem (2.2)-(2.3) vanishes for any x ∈ S and any t.

Hence, non-injectivity sets are exactly the nodal sets of oscillating free infinite

membranes. In other words, injectivity sets are those that observing the motion

of the membrane over S gives complete information about the motion of the whole

membrane.
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One can now try to understand the geometry of non-injectivity sets in terms

of wave propagation. The first example of such a consideration was the original

proof [41] of Corollary 7 that did not use harmonicity (not known at the time). Let

S = ∂U be a non-injectivity (and hence nodal for wave equation) set, where U is

a bounded domain. Then on one hand, the membrane is free and hence the energy

of the initial compactly supported perturbation must move away. Thus, its portion

inside U should decay to zero. On the other hand, one can think that S is a fixed

boundary and hence the energy inside must stay constant. This contradiction allows

one to conclude that in fact f = 0. The same PDE idea, with many more technical

details, was implemented in [2] to prove the following statement:

Theorem 12. [2] If U is a bounded domain in Rn, then S = ∂U is an injectivity set

for R in the space Lq(Rn) if q ≤ 2n/(n−1). This statement fails when q > 2n/(n−1),

in which case spheres fail to be injectivity sets.

In spite of these limited results, it still had remained unclear what distinguishes

in terms of wave propagation the “bad” flat lines S in Theorem 9 that can be nodal for

all times, from any truly curved S that according to this theorem cannot stay nodal.

An approach to this question was found in the recent paper [23] by D. Finch, Rakesh,

and S. Patch, where in particular some parts of the injectivity results due to [3] were

re-proven by simple PDE means without using microlocal tools and harmonicity of

non-injectivity hypersurfaces:

Theorem 13. [23] Let D be a bounded, open, subset of Rn, n ≥ 2, with a strictly

convex smooth boundary S. Let Γ be any relatively open subset of S. If f is a smooth

function on Rn supported in D̄, u is the solution of the initial value problem (1), (2)

and u(p, t) = 0 for all t and p ∈ Γ, then f = 0.
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Fig. 3. Cones of unique continuation

Although this theorem follows from microlocal results in [3]3, its significance

lies in the proof provided in [23] (that paper contains important results concerning

inversion as well, which we do not touch here).

The following two standard statements concerning the unique continuation and

finite speed of propagation for the wave equation were the basis of the proof of the

Theorem 13 in [23]. They will be relevant for our purpose as well.

Proposition 14. [23] Let Bε(p) = {x ∈ Rn | |x − p| < ε}. If u is a distribution and

satisfies (2.2) and u is zero on Bε(p) × (−T, T ) for some ε > 0, and p ∈ Rn, then u

is zero on

{(x, t) : |x− p|+ |t| < T},

and in particular on

{(x, 0) : |x− p| < T}

(see Fig. 3).

3 Results of [3] make the situation described in Theorem 13 impossible, since the
support of f lies on one side of a tangent plane to Γ. See also Theorem 21 and [51].
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Let now D be a bounded, open subset of Rn with the boundary S. For points

p, q outside D, let d(p, q) denote the infimum of the lengths of all the piecewise C1

paths in Rn \D joining p to q. Then d(p, q) is a metric on Rn \D (see Fig. 4). For

any point p in Rn \D and any positive number r, define Er(p) to be the ball of radius

r and center at p in Rn \D with respect to this metric, i.e.

Er(p) = {x ∈ Rn \D : d(x, p) < r}.

Proposition 15. [23] Suppose D is a bounded, open, connected subset of Rn, with a

smooth boundary S. Let u be a smooth solution of the exterior problem

utt −4u = 0, x ∈ Rn \D, t ∈ R

u = h on S ×R.

Suppose p is not in D, and t0 < t1 are real numbers. If u(., t0) and ut(., t0) are zero
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Fig. 5. ”Curvy-distance” cone

on Et1−t0(p) and h is zero on

{(x, t) : x ∈ S, t0 ≤ t ≤ t1, d(x, p) ≤ t1 − t},

then u(p, t) and ut(p, t) are zero for all t ∈ [t0, t1) (see Fig. 5).

E. Further injectivity results by PDE means

We will show now how simple tools similar to the Propositions 14 and 15, namely

finite speed of propagation and domain of dependence for the wave equation allow

one to obtain more results concerning geometry of non-injectivity sets, as well as to

re-prove some known results with much simpler means. Our final goals with this

approach were to recover the full result of [3] in 2D and to prove its analogs in higher

dimensions and for other geometries (e.g., hyperbolic one) using these simple means.

Albeit this goal has not been completely achieved yet, we can report some progress

in all these directions.
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Let us start with some initial remarks that will narrow the cases we need to

consider. First of all, one can assume functions f are as smooth as we wish, since

convolution with smooth radial mollifiers does not change the fact that RSf = 0 (e.g.,

[3]). Secondly, according to the results mentioned before, any non-injectivity set S

in the class of compactly supported functions is contained in an algebraic surface

that is also a non-injectivity set. It is rather straightforward to show that the same is

true for functions that decay exponentially. Thus, considering only exponentially

decaying functions, one does not restrict generality by assuming from the

start algebraicity of S. It is known [1] that algebraic surfaces of co-dimension higher

than 1 are automatically non-injectivity sets. Thus, we can restrict our attention to

algebraic hypersurfaces S of Rn only. Any set that is not algebraic (or rather, is not a

part of such an algebraic surface) is automatically an injectivity set. So, when trying

to obtain necessary conditions for non-injectivity, confining ourselves to the case of

algebraic hypersurfaces solely we do not lose any generality. One can also assume

irreducibility of that surface, if this helps. When needed, one can also exclude the

case of closed hypersurfaces, since according to Corollary 7 those are all injectivity

sets.

Our goal now is to exclude some pairs (S, f), where S is an algebraic surface

and f is a non-zero function as possible candidates for satisfying the non-injectivity

condition RSf = 0. We will do this in terms of geometry of the support of function

f . Notice that Theorem 13 does exactly that when S contains an open part of the

boundary of a smooth strictly convex domain where f is supported. Theorem 9,

on the other hand excludes all compactly supported f ’s in R2, unless S = ωΣN .

Similarly, Theorem 12 excludes boundaries S of bounded domains when f is in an

appropriate space Lp(Rn).

Let S be an algebraic hypersurface (which can be assumed to be irreducible if
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needed) that splits Rn into connected parts Hj, j = 1, ...,m. One can define the

interior metric in Hj as follows:

dj(p, q) = inf{length of γ}, (2.4)

where the infimum is taken over all C1-curves γ in Hj joining points p, q ∈ Hj.

Theorem 16. Let S and Hj be as above and f ∈ C(Rn) be such that RSf = 0. Let

also x ∈ H̄j, where H̄j is the closure of Hj. Then

dist(x, supp f ∩Hj) = distj(x, supp f ∩Hj)

≤ dist(x, supp f ∩Hk), k 6= j,
(2.5)

where distances distj are computed with respect to the metrics dj, while dist is com-

puted with respect to the Euclidean metric in Rn.

In particular, for x ∈ S and any j

dist(x, supp f ∩Hj) = distj(x, supp f ∩Hj) = dist(x, supp f). (2.6)

Thus, the expressions in (2.6) in fact do not depend on j = 1, ..., m.

Remark 17. Notice that under the condition of algebraicity of S the theorem does

not require the function f to be compactly supported and in fact imposes no condition

on behavior of f at infinity. On the other hand, as it has been mentioned before, if f

decays exponentially, then the algebraicity assumption does not restrict the generality

of consideration.

Proof of the theorem. Notice first of all, that the function dj(p, x) has gradient

|∇xd
j(p, x)| ≤ 1 a.e.4

4 In order to justify legality of the calculation presented below, one can either
use geometric measure theory tools, as in [23], or just notice that due to algebraicity
of S, the function dj(p, x) is piece-wise analytic.
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Let us prove now the equality

dist(x, supp f ∩Hj) = distj(x, supp f ∩Hj). (2.7)

Since dj(p, q) ≥ |p − q|, it is sufficient to prove that the left hand side expression

cannot be strictly smaller than the one on the right. Assume the opposite, that

dist(x, supp f ∩Hj) = d1 < d2 = distj(x, supp f ∩Hj). (2.8)

Pick a smaller segment [d3, d4] ⊂ (d1, d2). Then, by continuity, for any point p in a

small ball B ⊂ Hj near x (not necessarily containing x, for instance when x ∈ S) one

has

dist(p, supp f ∩Hj) ≤ d3 < d4 ≤ distj(p, supp f ∩Hj). (2.9)

For such a point p, consider the volume V in the space-time region Hj×R bounded by

the space-like surfaces Σ1 given by t = 0 and Σ2 described as t = φ(x) = τ − dj(p, x),

and the “vertical” boundary S × R. Here τ ≤ (d3 + d4)/2. Consider the solution

u(x, t) of the wave equation problem (2.2)–(2.3) with the initial velocity f . Then,

by construction, this solution and its time derivative are equal to zero at the lower

boundary t = 0 and on the lateral boundary S × R. Hence, by the standard energy

computation (integrating the equality u2u = 0, see, e.g., Section 2.7, Ch. 1 in [14])

we conclude that u = 0 in V . For the reader’s convenience, let us provide brief details

of the corresponding calculations from [14]: Since 2u = 0, u = ut = 0 on Σ1, and

u|S = 0 for all times, we get by integration by parts

0 =
∫
V

ut2udxdt =
∫

t=φ(x)

1
2
(|∇u|2 + u2

t + 2ut∇φ · ∇u) dx

= 1
2

∫
φ(x)≥0

(|∇(u(x, φ(x))|2 + (1− |∇φ|2)ut(x, φ(x))2) dx.
(2.10)
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Since |∇φ| ≤ 1, we conclude that

∫

φ(x)≥0

(|∇(u(x, φ(x))|2) dx = 0

and hence u is constant on Σ2. Taking into the account the zero conditions on S and

Σ1, one concludes that u = 0 on Σ2, and hence in V .

In particular, u(p, t) = 0 for all p ∈ B and |t| ≤ (d3 + d4)/2. Notice that

(d3 + d4)/2 > d3. Now applying Proposition 14 to the wave equation in the whole

space, we conclude that

dist(p, supp f) > d3, (2.11)

and hence

dist(p, supp f ∩Hj) > d3, (2.12)

which is a contradiction. This proves (2.7).

It is now sufficient to prove

dist(x, supp f ∩Hj) ≤ dist(x, supp f ∩Hk) (2.13)

for k 6= j. This in fact is an immediate consequence of (2.11). Alternatively, we can

repeat the same consideration as above in a simplified version. Namely, suppose that

dist(x, supp f ∩Hj) > d2 > d1 > dist(x, supp f ∩Hk) (2.14)

for a point x ∈ Hj ∩ S, and hence for all points p in a small ball in Hj. Consider the

volume V in the space-time region Hj × R bounded by the space-like surfaces t = 0

and t = d2 − |x − p| (p fixed in the small ball) and the boundary S × R. Consider

the solution u(x, t) of the wave equation problem (2.2)-(2.3) with the initial velocity

f . Then, by construction, this solution and its time derivative are equal to zero at

the lower boundary t = 0 and on the lateral boundary S × R. Hence, by the same
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standard domain of dependence argument (see, e.g., Section 2.7, Ch. 1 in [14]) we

conclude that u = 0 in V . In particular, u(p, t) = 0 for all p ∈ B and |t| ≤ d2. Now

applying Proposition 14 to the wave equation in the whole space, we conclude that

dist(p, supp f) > d2,

and hence

dist(p, supp f ∩Hk) > d2, (2.15)

which is a contradiction. ¥

We will now show several corollaries that can be extracted from Theorem 16.

Corollary 18. Let f be continuous and S ⊂ Rn be an algebraic hypersurface such

that RSf = 0. Let L be any hyperplane such that L ∩ supp f 6= ∅ and such that

supp f lies on one side of L. Let x ∈ L ∩ supp f and rx be the open ray starting at

x, perpendicular to L, and going into the direction opposite to the support of f . Then

either rx ⊂ S (and hence, the whole line containing rx belongs to S), or rx does not

intersect S.

Proof. Assuming otherwise, let p ∈ rx∩S and Hj be the connected components

of Rn\S such that p belongs to their closures. Since x is the only closest point to p

in the support of f , Theorem 16 implies that for any j there exist paths tε joining x

and p through Hj and such that the length of tε tends to |x − p| when ε → 0. This

means that these paths converge to the linear segment [x, p]. Hence, this segment

belongs to Hj for any j, and thus to ∩
j
Hj, which is a part of S. We conclude that

the segment [x, p], and then, due to algebraicity of S, the whole its line belongs to S.

This proves the statement of the corollary. ¥

One notices that a similar proof establishes the following
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Corollary 19. Let f be continuous and S ⊂ Rn be an algebraic hypersurface such

that RSf = 0. Suppose p ∈ S is such that p does not belong to supp f and there exists

unique point x in supp f closest to p. Then S contains the whole line passing through

the points x and p.

Let S ⊂ Rn. For any points p, q ∈ Rn − S we define the distance dS(p, q)

as the infimum of lengths of C1 paths in Rn − S connecting these points. Clearly

dS(p, q) ≥ |p− q|. Using this metric, we can define the corresponding distances distS

from points to sets.

Theorem 20. Let a set S ⊂ Rn and a non-zero function f ∈ C(Rn) exponentially

decaying at infinity be such that RSf = 0. Then for any point p ∈ Rn − S

distS(p, suppf) = dist(p, suppf). (2.16)

The same conclusion holds for any continuous function, if one assumes that S is an

algebraic hypersurface.

Proof. Assume that (2.16) does not hold, i.e.

distS(p, suppf) > dist(p, suppf).

As it has been mentioned before, under the conditions of the theorem, we can assume

S to be a part of an algebraic surface Σ for which RΣf = 0. Let Σ divide the space

into parts Hj. Then, in notations of the previous theorem, we have

distj(p, supp f ∩Hj) ≥ distS(p, suppf) (2.17)

and hence

distj(p, supp f ∩Hj) > dist(p, suppf). (2.18)

This, however, contradicts Theorem 16. ¥
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Let us formulate another example of a geometric constraint on pairs S, f such

that RSf = 0.5

Theorem 21. Let S ⊂ Rn be a relatively open piece of a C1-hypersurface and f ∈
Cc(Rn) be such that RSf = 0. If there is a point p0 ∈ S such that the support of f

lies strictly on one side of the tangent plane Tp0S to S at p0, then f = 0.6

Proof of the theorem. Let us denote by Kp(supp f) the convex cone with the

vertex p consisting of all the rays starting at p and passing through the convex hull of

the support of f . Then Kp0(supp f), due to the condition of the theorem, lies on one

side of Tp0S, touching it only at the point p0. Let us pull the point p0 to the other side

of the tangent plane along the normal to a nearby position p. Then it is easy to see

that for p sufficiently close to p0, all rays of the cone Kp(supp f) will intersect S. This

means in particular, that for this point p we have distS(p, supp f) > dist(p, supp f).

According to Theorem 20, this implies that f = 0. ¥

Corollary 22. Let S ⊂ Rn be an algebraic hypersurface and f ∈ Cc(Rn). If RSf = 0,

then every tangent plane to S intersects the convex hull of the support of f .

The above results present significant restrictions on the geometry of the non-

injectivity sets S and of the supports of functions f in the kernel of RS. One can

draw more specific conclusions about these sets. The statement below was proven in

[3] by using the geometry of zeros of harmonic polynomials, which we avoid.

Proposition 23. Let S ⊂ R2 be an algebraic curve such that RSf = 0 for some non-

zero compactly supported continuous function f . Then S has no compact components,

and each its component has asymptotes at infinity.

5 A similar statement in the case of analytic surfaces S was announced in [51]
for distributions f . The proof is claimed to be based upon microlocal analysis.

6 This implies, in particular, Theorem 13.
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Proof. Corollary 7 excludes bounded components. So, we can think that S is

an irreducible unbounded algebraic curve. Existence of its asymptotes can be shown

as follows. Let us take a point p ∈ S and send it to one of the infinite ends of S.

According to Corollary 22, every tangent line TpS intersects the convex hull of the

support of f , which is a fixed compact in R2. This makes this set of lines on the

plane compact. Hence, we can choose a sequence of points pj such that the lines

Tpj
S converge to a line T in the natural topology of the space of lines (e.g., one can

use normal coordinates of lines to introduce such topology). This line T is in fact

the required asymptote. Indeed, let us choose the coordinate system where T is the

x-axis. Then the slopes of the sequence Tpj
S converge to zero. Due to algebraicity,

for a tail of this sequence, the convergence is monotonic, and in particular holds

for all p ∈ S far in the tail of S. Let us for instance assume that these slopes are

negative. Then the tail of S is the graph of a monotonically decreasing positive

function. This means that S has a horizontal asymptote. This asymptote must be

the x-axis T , otherwise the y-intercepts of Tpj
S would not converge to zero, which

would contradict the convergence of Tpj
S to T . ¥

The next statement proves the Agranovsky-Quinto Theorem 9 in some particular

cases. In order to formulate it, we need to introduce the following condition:

Condition A. Let K be a compact subset of Rn. We will say that the boundary

of K satisfies condition A7, if there exists a positive number r0 such that for any

r < r0 and any point x in the infinite connected component of Rn \ K such that

dist (x,K) = r there exists a unique point k on K such that |x− k| = r.

Examples of such sets are convex sets (where r0 > 0 can be chosen arbitrarily)

and sets with a C2 boundary (where r0 should be sufficiently small).

7 This condition essentially restricts the curvature of the boundary from below.



24

Theorem 24. Let S ⊂ R2 and f(6= 0) ∈ Cc(R2) be such that RSf = 0. If the external

boundary of the support of f (i.e., the boundary of the infinite component of the

complement of the support) is connected and satisfies Condition A, then S ⊂ ωΣN∪F

in notations of Theorem 9.

The conditions of the theorem are satisfied for instance when the support of f

contains the boundary of its convex hull, or when the support’s external boundary is

connected and of the class C2.

Proof. First of all, up to a finite set, we can assume that S is an algebraic curve.

Since the external boundary of the support is assumed to be connected, Theorem 16

implies that any irreducible component of S must meet any neighborhood of the

support of f . If we take the neighborhood of radius r < r0, then each point on

S in this neighborhood will have a unique closest point on supp f . Applying now

Corollary 19, we conclude that S consists of straight lines Lj intersecting the support.

It is known that any straight line L is a non-injectivity set, but the only functions

annihilated by RL are the ones odd with respect to L (e.g., [3, 17, 35]). Hence, f is

odd with respect to all lines Lj. In particular, every of these lines passes through the

center of mass of the support of f . Hence, lines Lj form a “cross”8. It remains now

to show that the angles between the lines are commensurate with π. This can also be

shown in several different ways. For instance, this follows immediately from existence

of a harmonic polynomial vanishing on S. Another simple option is to notice that

if this is not the case, then there is no non-zero function that is odd simultaneously

with respect to all the lines. ¥

8 One can prove that all these lines pass through a joint point also in a different
manner. Indeed, due to oddness of f , each line is a symmetry axis for the support of
f . Then, considering the group generated by reflections through these lines, one can
easily conclude that if they did not pass through a joint point, then the support of f
must have been non-compact.
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Exactly the same consideration as above shows that in higher dimensions the

following statement holds:

Proposition 25. Let S ⊂ Rn and f(6= 0) ∈ Cc(Rn) be such that RSf = 0. If the

external boundary of the support of f (i.e., the boundary of the infinite component

of the complement of the support) is connected and satisfies Condition A, then S is

ruled 9.

The conditions of the theorem are satisfied for instance when the support of f

contains the boundary of its convex hull, or when the support’s external boundary is

connected and of the class C2.

Remark 26. If we could also show that all these lines pass through the same point,

then this would immediately imply, as in the previous proof, the validity of Conjecture

10 for this particular case.

F. Remarks

1. M. Agranovsky and E. T. Quinto have written besides [3], several other papers

devoted to the problem considered here. They consider some partial cases (e.g.,

distributions f supported on a finite set) and variations of the problem (e.g., in

bounded domains rather than the whole space). See [1, 4, 5, 6] for details.

2. One of our goals was to obtain the complete Theorem 9, the main result of

[3] by simple PDE tools, avoiding using the geometry of zeros of harmonic

polynomials and microlocal analysis (or at least one of those), as well as to prove

9 A ruled surface is a union of a family of lines (e.g., [77])
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its analogs in higher dimensions and for other geometries (e.g., hyperbolic one).

Although we have not completely succeeded in this yet, the results presented

(e.g., Propositions 23 and 25 and Theorem 24) are moving in this direction.

3. The PDE methods presented here in principle bear a potential for considering

non-compactly-supported functions. In order to achieve this, one needs to have

qualitative versions of statements like Proposition 15 and Theorem 20, where

instead of just noticing whether a wave has come to certain point at a certain

moment (which was our only tool), one controls the amount of energy it carries.

4. One of the motivations for studying the injectivity problem was the thermoa-

coustic tomography. One wonders then if considerations of 2D problems (rather

than 3D ones) bear any relevance for TAT. In fact, they do. If either the scanned

sample is very thin, or the transducers are collimated in such a way that they

register the signals only coming parallel to a given plane, one arrives to a 2D

problem.

5. A closer inspection of the results of the previous section shows that most of them

have their local versions, where it is not required that the whole transform RS

of a function vanishes, but rather only for radii up to a certain value. One can

see an example of a local uniqueness theorem for the circular transform in [51].

6. As J. Boman notified us during the April 2004 AMS meeting in Lawrenceville,

he jointly with J. Sjostrand, being unaware of our work, had recently indepen-

dently obtained some results analogous to some of those presented here (e.g.,

to Theorem 20).

7. We have not touched the problem of finding explicit inversion formulas for the

circular transforms. Such formulas are known for the spherical, planar, and
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cylindrical sets of centers [12, 19, 21, 23, 58, 65, 79, 80, 81]. They come in

two kinds: the ones involving expansions into special functions, and the ones

of backprojection type. We use an expansion type inversion formula in Chap-

ter III to derive range conditions in spherical geometry. Exact backprojection

type formulas are known for the planar geometry [19, 65] and recently for the

spherical geometry in odd dimensions [23] if the function to be reconstructed is

supported inside the sphere of transducers. The latter are used in Chapter IV

for some numerical reconstructions.
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CHAPTER III

RANGE CONDITIONS1

A. Introduction

As it is common for transforms of Radon type, the range of the circular Radon trans-

form has infinite co-dimension in standard function spaces. Range descriptions for

such transforms are known to be very important for computed tomography, for in-

stance when dealing with incomplete data, error correction, and other issues. In this

chapter we will give the complete range description for the circular Radon transform

and will be dealing with the planar case only. Due to tomographic applications,

where S is the set of locations of transducers [38, 79, 80, 82], we will be from now on

looking at the specific case when S is the unit circle |x| = 1 in the plane. Moreover,

we will be dealing with functions supported inside the circle S only. The properties

of the operator RS (e.g., stability of the inversion, its FIO properties, etc.) deterio-

rate on functions with supports extending outside S (e.g., [3, 23, 82]). However, in

tomographic applications one normally deals with functions supported inside S only

[38, 68, 79, 82].

As it has already been mentioned, the range of RS has infinite co-dimension

(e.g., in spaces of smooth functions, see details below) and thus infinitely many range

conditions appear. It seems to be a rather standard situation for various types of

Radon transforms that range conditions split into two types, one of which is usually

easier to discover, while another “half” is harder to come by. For instance, it took

1 Part of this chapter is reprinted with permission from “A range description for
the planar circular Radon transform”, by G. Ambartsoumian and P. Kuchment, to
appear in the SIAM Journal on Mathematical Analysis. Copyright c©2006 by Society
for Industrial and Applied Mathematics.



29

about a decade to find the complete range description for the so called exponential

Radon transform arising in SPECT (single photon emission computed tomography)

[7, 8, 45, 46, 78]. For a more general attenuated transform arising in SPECT, it took

twice as much time to move from a partial set of range conditions [55, 56] to the

complete set [64]. In the circular case, a partial set of such conditions was discovered

recently [68]. It happens to be incomplete, and the goal of this chapter is to find the

complete one.

One might ask why is it important to know the range conditions. These con-

ditions have been used extensively in tomography (as well as in radiation therapy

planning, e.g. [15, 16, 42, 71]) for various purposes: completing incomplete data,

detecting and correcting measurement errors and hardware imperfections, recovering

unknown attenuation, etc. [33, 52, 53, 54, 55, 60, 61, 69, 75, 76]. Thus, as soon as a

new Radon type transform arises in an application, a quest for the range description

begins.

In order to explain our approach, we start in the next section with treating a toy

example of the standard Radon transform on the plane, where the range conditions are

well known (e.g., [20, 25, 26, 27, 32, 55, 57]). Our approach, however, is different from

the standard ones and naturally leads to the considerations of the circular transform

in the rest of the paper.

B. The case of the planar Radon transform

In this section we will approach in a somewhat non-standard way the issue of the range

description for the standard Radon transform on the plane. Consider a compactly
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supported smooth function f(x) on the plane and its Radon transform

(Rf)(ω, s) = g(ω, s) :=

∫

x·ω=s

f(x)dl, (3.1)

where s ∈ R, ω ∈ S1 is a unit vector in R2, and dl is the arc length measure on the

line x · ω = s. We want to describe the range of this transform, say on the space

C∞
0 (R2). Such a description is well known (e.g., [20, 25, 26, 27, 32, 55, 57], or any

other book or survey on Radon transforms or computed tomography):

Theorem 27. A function g belongs to the range of the Radon transform on C∞
0 if

and only if the following conditions are satisfied:

1. g ∈ C∞
0 (S1 × R),

2. for any k ∈ Z+ the k-th moment Gk(ω) =
∞∫
−∞

skg(ω, s)ds is the restriction to

the unit circle S1 of a homogeneous polynomial of ω of degree k,

3. g(ω, s) = g(−ω,−s).

We would like to look at this result from a little bit different prospective, which

will allow us to do a similar thing in the case of the circular Radon transform.

In order to do so, let us expand g(ω, s) into the Fourier series with respect to the

polar angle ψ (i.e., ω = (cos ψ, sin ψ))

g(ω, s) =
∞∑

n=−∞
gn(s)einψ. (3.2)

We can now reformulate the last theorem in the following a little bit strange way:

Theorem 28. A function g belongs to the range of the Radon transform on C∞
0 if

and only if the following conditions are satisfied:

1. g ∈ C∞
0 (S1 × R),
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2. for any n, the Mellin transform Mgn(σ) =
∞∫
0

sσ−1gn(s)ds of the n-th Fourier

coefficient gn of g vanishes at any pole σ of the function Γ(σ+1−|n|
2

),

3. g(ω, s) = g(−ω,−s).

Since the only difference in the statements of these two theorems is in the condi-

tions 2, let us check that these conditions mean the same thing in both cases. Indeed,

let us expand g(ω, s) into Fourier series (3.2) with respect to ψ. Representing einψ as

the homogeneous polynomial (ω1+i(sign n)ω2)
|n| of ω of degree |n|, and noticing that

ω2
1 + ω2

2 = 1 on the unit circle, one easily concludes that the condition 2 in Theorem

27 is equivalent to the following: the k-th moment
∫
R

skgn(s)ds of the n-th Fourier

coefficient vanishes for integers 0 ≤ k < |n| such that k − n is even.

Let us now look at the condition 2 in Theorem 28, still using the same Fourier

expansion. Notice that when k− |n| is a negative even integer, Mgn(σ) is one-half of

the moment of order k = σ−1 of gn. Taking into account that Γ(σ+1−|n|
2

) = Γ(k+2−|n|
2

)

has poles exactly when k − |n| is a negative even integer, we see that conditions 2 in

both theorems are in fact saying the same thing.

One can now ask the question, why should one disguise in the statement of The-

orem 28 negative integers as poles of Gamma-function and usual moments as values

of Mellin transforms? The answer is that in the less invariant and thus more complex

situation of the circular Radon transform, one can formulate a range description in

the spirit of Theorem 28, albeit it is unclear how to get an analog of the version given

in Theorem 27.

As a warm-up, let is derive the condition 2 in Theorem 28 directly, without

relying on the version given in the preceding theorem. This is in fact an easy by-

product of the A. Cormack’s inversion procedure, see e.g. [57, Section II.2]. Indeed,

if we write down the original function f(x) in polar coordinates r(cos φ, sin φ) and
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expand into the Fourier series with respect to the polar angle φ

f(r(cos φ, sin φ)) =
∞∑

n=−∞
fn(r)einφ, (3.3)

then the Fourier coefficients fn and gn of the original and of its Radon transform are

related as follows [55, formula (2.17) and further]:

M(rfn(r))(s) =
(Mgn)(s)

Bn(s)
, (3.4)

where

Bn(s) = const
Γ(s)2−s

Γ((s + 1 + |n|)/2)Γ((s + 1− |n|)/2)
(3.5)

Thus, condition 2 of Theorem 28 guarantees that the function M(rfn(r))(s) does not

develop singularities (which it cannot do for a C∞
0 -function f) at zeros of Bn(s). It

is not that hard now to prove also sufficiency in the theorem, applying Cormack’s

inversion procedure to g satisfying conditions 1 - 3. However, we are not going to do

so, since in the next sections we will devote ourselves to doing similar thing in the

more complicated situation of the circular Radon transform.

C. The circular Radon transform. Formulation of the main result

Let us recall the notion of Hankel transform (e.g., [18]). For a function h(r) on R+,

one defines its Hankel transform of an integer order n as follows:

(Hnh)(σ) =

∞∫

0

Jn(σr)h(r)r dr, (3.6)

where the standard notation Jn is used for Bessel functions.

Let, as in the Introduction, RS be the circular Radon transform on the plane

that integrates functions compactly supported inside the unit disk D over all circles
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|x − p| = ρ with centers p located on the unit circle S = {p | |p| = 1). Since this

transform commutes with rotations about the origin, the Fourier series expansion

with respect to the polar angle partially diagonalizes the operator, and thus the n-

th Fourier coefficient gn(ρ) of g = RSf will depend on the n-th coefficient fn of

the original f only. It was shown in [62] that the following relation between these

coefficients holds:

gn(ρ) = 2πρH0{JnHn{fn}}. (3.7)

For the reader’s convenience, we will provide the brief derivation from [62]. Consid-

ering a single harmonic f = fn(r)einφ and using polar coordinates, one obtains

gn(ρ) =

∞∫

0

rfn(r)dr

2π∫

0

δ
[
(r2 + 1− 2r cos φ)1/2 − ρ

]
e−inφdφ. (3.8)

Thus, the computation boils down to evaluating the integral

I =

2π∫

0

δ
[
(r2 + 1− 2r cos φ)1/2 − ρ

]
e−inφdφ.

Using the standard identity

δ(ρ′ − ρ) = ρ

∞∫

0

J0(ρ
′z)J0(ρz)zdz

and

2πJn(az)Jn(bz) =

2π∫

0

J0[z(a2 + b2 − 2ab cos φ)1/2]e−inφdφ,

one arrives from (3.8) to (3.7).

Since Hankel transforms are involutive, it is easy to invert (3.7) and get Norton’s

inversion formulae [62]

fn =
1

2π
Hn{H0{gn(ρ)/ρ}

Jn

}. (3.9)
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Now one can clearly see analogies with the case of the Radon transform, where zeros

of Bessel functions should probably introduce some range conditions. This happens

to be correct and leads to the main result of this article:

Theorem 29. In order for the function g(p, ρ) on S1 × R to be representable as

RSf with f ∈ C∞
0 (D), it is necessary and sufficient that the following conditions are

satisfied:

1. g ∈ C∞
0 (S1 × (0, 2)).

2. For any n, the 2k-th moment
∞∫
0

ρ2kgn(ρ)dρ of the n-th Fourier coefficient of g

vanishes for integers 0 ≤ k < |n|. (Equivalently, the 2k-th moment
∞∫
0

ρ2kg(p, ρ)dρ

is the restriction to the unit circle S of a (non-homogeneous) polynomial of p

of degree at most k.)

3. For any n ∈ Z, function H0{gn(ρ)/ρ}(σ) =
∞∫
0

J0(σρ)gn(ρ)dρ vanishes at any

zero σ 6= 0 of Bessel function Jn. (Equivalently, the nth Fourier coefficient with

respect to p ∈ S1 of the “Bessel moment” Gσ(p) =
∞∫
0

J0(σρ)g(p, ρ)dρ vanishes

if σ 6= 0 is a zero of Bessel function Jn.)

D. Proof of the main result

Let us start with proving necessity, which is rather straightforward. Indeed, the

necessity of condition 1 is obvious. Let us prove the second condition. In fact, it has

already been established in [68]. Let us repeat for completeness its simple proof. Let

k be an integer. Consider the moment of order 2k of g:

∞∫

0

ρ2kg(p, ρ)dρ =

∫

R2

|x− p|2kf(x)dx =

∫

R2

(|x|2 − 2x · p + 1)kf(x)dx (3.10)
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(we have taken into account that |p| = 1). We see that the resulting expression is

the restriction to S1 of a (non-homogeneous) polynomial of degree k in variable p.

Expanding into Fourier series with respect to the polar angle of p, we see that the

nth harmonic gn contributes the following homogeneous polynomial of degree |n| in

the variable p: 


∞∫

0

ρ2kgn(ρ)dρ


 einφ.

Here as before p = (cos φ, sin φ). Thus, for |n| > k, this term must vanish, which

gives necessity of condition 2. We will return to a discussion of this condition below

to add a new twist to it.

Necessity of condition 3 follows immediately from Norton’s formula (3.9), which

implies in particular that

H0{gn(ρ)/ρ} = 2πJnHn{fn}.

Since both functions Jn and Hn{fn} are entire, H0{gn(ρ)/ρ} vanishes whenever Jn

does.

Remark 30. The reader might ask why in the third condition of the Theorem we do

not take into account the zero root of Jn, which in fact has order n, while non-zero

roots are all simple. The reason is that the condition 2 already guarantees that σ = 0

is zero of order 2n of H0{gn(ρ)/ρ} (twice higher than that of Jn). Indeed, due to

evenness of J0, function H0{gn(ρ)/ρ}(σ) is also even. Thus, all odd order derivatives

at σ = 0 vanish. The known Taylor expansion of J0 at zero leads to the formula

H0{gn(ρ)/ρ}(σ) =
∑
m

(−1)m

(m!)2

(σ

2

)2m
∞∫

0

r2mgn(r)dr.

We see now that the moment condition 2 guarantees that σ = 0 is zero of order 2n of

H0{gn/ρ}(σ).
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Let us move to the harder part, proving sufficiency. Assume a function g satisfies

conditions of the theorem and is supported in S × (ε, 2− ε) for some positive ε. We

will show that then g = RSf for some f ∈ C∞
0 (Dε), where Dε is the disk |x| < 1− ε

in the plane.

Due to Norton’s formulas, it is natural to expect the proof to go along the

following lines: expand g into the Fourier series g =
∑
m

gm(ρ)eimψ with respect to the

angle variable ψ, then use inversion formula (3.9) to construct a function f and then

show that f is of an appropriate function class and that its circular Radon transform

is equal to g. This is what we are going to do, with a small caveat that instead of

constructing f itself, we will construct its two-dimensional Fourier transform. Besides,

we will start considering the partial sums of the series hn =
∑
|m|≤n

gm(ρ)eimφ. But first,

we need to get some simple estimates from below for the Bessel function of the first

kind Jn.

Lemma 31. On the entire complex plane except for a disk S0 centered at the origin

and a countable number of disks Sk of radii π/6 centered at points π(k + 2n+3
4

), one

has

|Jn(z)| ≥ Ce|Im z|
√
|z| , C > 0 (3.11)

Proof: Let us split the complex plane into three parts by a circle S0 of a radius

R (to be chosen later) centered at the origin and a planar strip {σ = x + iy| |y| < a},
as shown in Fig. 6 below. We will prove the estimate (3.11) separately outside and

inside the strip (i.e., in the first and second parts shown in the picture). Using the

parity property of function Jn, it is sufficient to consider only the right half plane

Re z ≥ 0.

The Bessel function of the first kind Jn(z) has the following known asymptotic
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Fig. 6. Bessel estimate

representation in the sector | arg z| ≤ π−δ (e.g., [13, formula (4.8.5)] and [48, formula

(5.11.6)]):

Jn(z) =

√
2

πz
cos(z − πn

2
− π

4
)(1 + O(|z|−2))

−
√

2

πz
sin(z − πn

2
− π

4
)

(
4n2 − 1

8z
+ O(|z|−3)

) (3.12)

Let us start estimating in the first part of the complex plane, i.e. where |Im z| > a

and |z| > R for sufficiently large a and R (and, as we have agreed, Re z ≥ 0). There,

due to boundedness of tan z in this region, one concludes that
sin z

z
= cos z (O(|z|−1)),

and thus (3.12) implies

Jn(z) =

√
2

πz
cos(z − πn

2
− π

4
)(1 + O(|z|−1)),

which in turn for sufficiently large a,R leads to

|Jn(z)| ≥ Ce|Im z|
√
|z| (3.13)

In the second part of the plane (right half of the strip), due to boundedness of
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sin z we have

Jn(z) =

√
2

πz

[
cos(z − πn

2
− π

4
)(1 + O(|z|−2)) + O(|z|−1)

]
.

Consider the system of non-intersecting circles Sk with centers at zk = π
2
+kπ+ πn

2
+ π

4

and radii equal to π
6
. Then outside these circles | cos(z − πn

2
− π

4
)| ≥ C and

|Jn(z)| ≥ C√
|z|(1 + O(|z|−1)).

This implies that for a suitably chosen and sufficiently large R, inside of the strip and

outside the circles Sk, we have

|Jn(z)| ≥ Ce|Im z|
√
|z| (3.14)

for |z| > R. This proves the statement of the lemma. ¥

Let us now return to our task: consider the function g and the partial sums hn

of its Fourier series.

Lemma 32. 1. If g(φ, ρ) =
∑

m gm(ρ)eimψ satisfies conditions of Theorem 29 and

is supported in S× (ε, 2− ε), then each partial sum hn =
∑

|m|<n gm(ρ)eimψ does

so.

2. For any n, hn is representable as RSfn for a function fn ∈ C∞
0 (Dε).

Proof of the lemma. The first statement of the lemma is obvious.

Due to 1), it is sufficient to prove the second statement for a single term g =

gn(ρ)einψ. As it was just mentioned, we will reconstruct the Fourier transform F of

the function f . In order to do this, we will use the standard relation between Fourier

and Hankel transforms. Let as before f(x) = fn(r)einφ, where r = |x| and φ are

polar coordinates on R2. Then the Fourier transform F (ξ) of f at points of the form

ξ = σω, where σ ∈ C and ω = (cos ψ, sin ψ) ∈ R2 can be written up to a constant
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factor as follows:

F (σω) = Hn(fn)(σ)einψ. (3.15)

If we knew that f = RSg, the according to (3.7) this would mean that

F (σω) = F (σ)einψ =
1

2π

H0(gn(ρ)/ρ)(σ)

Jn(σ)
einψ. (3.16)

Let us now take this formula (3.16) as the definition of F (σω). Due to the standard

parity property of Bessel functions, such F is a correctly defined function of σω for

σ 6= 0 (i.e., F (σω) = F ((−σ)(−ω))). We would like to show that it is the Fourier

transform of a function f ∈ C∞
0 (Dε). Let us prove first that F belongs to the Schwartz

space S(R2). In order to do so, we need to show its smoothness with respect to

the angular variable ψ, smoothness and fast decay with all derivatives in the radial

variable σ, as well as that no singularity arises at the origin, which in principle could,

due to usage of polar coordinates. Smoothness with respect to the angular variable

is obvious, due to (3.16). Let us deal with the more complex issue of smoothness

and decay with respect to σ. First of all, taking into account that gn(ρ) is supported

inside (0, 2), and due to the standard 2D Paley-Wiener theorem, we conclude that

u(σ) = H0(gn(ρ)/ρ) is an entire function that satisfies for any N the estimate

|u(σ)| ≤ CN(1 + |σ|)−Ne(2−ε)|Im σ|. (3.17)

According to the range conditions 2 and 3 of the Theorem, this function vanishes at

all zeros of Bessel function Jn(σ) at least to the order of the corresponding zero. This

means, that function F (σ) =
u(σ)

2πJn(σ)
is entire. Let us show that it belongs to a

Paley-Wiener class.

Indeed, H(gn(ρ)/ρ) is an entire function with Paley-Wiener estimate (3.17). Due

to the estimate from below for Jn (3.11) given in Lemma 31, we conclude that F (σω)
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is an entire function of Paley-Wiener class in the radial directions, uniformly with

respect to the polar angle. Namely,

|F (σ)| ≤ CN(1 + |σ|)−Ne(1−ε)|Im σ|. (3.18)

Indeed, outside the family of circles Sk the estimate (3.11) together with (3.17)

give the Paley-Wiener estimate we need. Inside these circles, application of the maxi-

mum principle finishes the job. Smoothness with respect to the polar angle is obvious.

Thus, the only thing one needs to establish to verify that F belongs to the Schwartz

class is that F is smooth at the origin. This, however, is the standard question in the

Radon transform theory, the answer to which is well known [25, 26, 27, 32]. Namely,

one needs to establish that for any non-negative integer k, the kth radial (i.e., with

respect to σ) derivative of F (σω) at the origin is a homogeneous polynomial of order

k with respect to ω. So, let us check that this condition is satisfied in our situation.

First of all, the parity of the function F is he same as of n. Thus, we do not need to

worry about the derivatives F
(k)
σ |σ=0 with k−n odd, since they are zero automatically.

Due to the special single-harmonic form of F , we only need to check that F
(k)
σ |σ=0 = 0

for k < |n| with k − n even.This, however, as we have discussed already in Remark

30, follows from the moment conditions 2 of the Theorem.

Due to the smoothness that we have just established and Paley-Wiener estimates,

F ∈ S(R2). Thus, F = f̂ for some f ∈ S(R2). It remains to show that f is supported

inside the disk Dε. Consider the usual Radon transform Rf(s, φ) of f . According

to the standard Fourier-slice theorem [20, 25, 26, 27, 32, 55], the one-dimensional

Fourier transform (denoted by a “hat”) from the variable s to σ gives (up to a fixed

constant factor) the values R̂f(σ, ψ) = F (σω), if as before ω = (cos ψ, sin ψ). Here R,

as before, denotes the standard Radon transform in the plane. Since functions F (σω)
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of σ, as we have just discussed, are uniformly with respect to ω of a Paley-Wiener

class, this implies that Rf(s, ω) has uniformly with respect to ω bounded support in

|s| < 1− ε. Now the “hole theorem” [32, 55] (which is applicable to functions of the

Schwartz class), implies that f has compact support.

The last step is to show that RSf = g = gn(r)einφ. This, however, immediately

follows from comparing formulas (3.16) and (3.7), which finishes the proof of the main

Lemma 32. ¥

Let us now return to the proof of Theorem 29. We have proven so far that any

partial sum hn of the Fourier series for g belongs to the range of the operator RS

acting on smooth functions supported inside the disk Dε. The function g itself is the

limit of hn in C∞
0 (S× (ε, 2− ε)). The only thing that remains to be proven is that the

range is closed in an appropriate topology. Microlocal analysis can help with this.

Consider RS as an operator acting from functions defined on the open unit disk

D to functions defined on the open cylinder Ω = S × (0, 2). As such, it is a Fourier

integral operator [28, 29, 70]. If Rt
S is the dual operator, then E = Rt

SRS is an elliptic

pseudo-differential operator of order −1 [28, Theorem 1]2.

Lemma 33. The continuous linear operator E : H2
0 (Dε) 7→ H3

loc(D) has zero kernel

and closed image.

Proof of the lemma. Since E = Rt
SRS, the kernel of this operator coincides

with the kernel of RS acting on H2
0 (Dε). Since S is closed, it is known that RS has

no compactly supported functions in its kernel [2, 3] (this also follows from analytic

ellipticity of E and Theorem 8.5.6 of [34], see also Lemma 4.4 in [3]). Thus, the

statement about the kernel is proven and we only need to prove the range closedness.

2Bolker’s injective immersion condition [28] is satisfied here, as shown in the proof
of Lemma 4.3 in [3].
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Let P be a properly supported pseudo-differential parametrix of order 1 for E

[74]. Then PE = I + B, where B is an infinitely smoothing operator on D. Consider

the operator Π that acts as the composition of restriction to Dε and then orthogonal

projection onto H2
0 (Dε) in H2(Dε). On H2

0 (Dε) one has ΠPE = I + K, where K

is a compact operator on H2
0 (Dε). Notice that the operator ΠP is continuous from

the Frechet space H3
loc(D) to H2

0 (Dε). Due to the Fredholm structure of the operator

ΠPE = I + K acting on H2
0 (Dε), its kernel is finite-dimensional. Let M ⊂ H2

0 (Dε)

be a closed subspace of finite codimension complementary to the kernel, so I + K is

injective on M and has closed range. Then one can find a bounded operator A in

H2
0 (Dε) such that A(I +K) acts as identity on M . Thus, the operator AΠP provides

a continuous left inverse to E : M 7→ H3
loc(D). This shows that the range of E on M

is closed in H3
loc(D). On the other hand, the total range of E differs only by a finite

dimension from the one on M . Thus, it is also closed. ¥

We can now finish the proof of the theorem. Indeed, the last lemma shows that

the function Rt
Sg, being in the closure of the range, is in fact in the range, and thus

can be represented as Ef with some f ∈ H2
0 (Dε). In other words, Rt

S(RSf − g) = 0.

Since the kernel of Rt
S on compactly supported functions is orthogonal to the range

of RS, we conclude that RSf − g = 0. Since Ef = Rt
Sg is smooth, due to ellipticity

of E we conclude that f is smooth as well. This finishes the proof. ¥

E. Remarks

We would like to finish with some remarks.

• It should be possible to prove that the operator RS in the situation considered

in the text is semi-Fredholm between appropriate Sobolev spaces (analogously
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to the properties of the standard and of the attenuated Radon transform, e.g.

[31, 55]). This would eliminate the necessity of the closedness of the range

discussion provided in the end of the proof of Theorem 29.

• We considered the important for tomographic imaging situation when the func-

tions to reconstruct are supported inside the aperture S. What happens when

the supports of functions extend outside the circle S? It is known that com-

pactly supported (or even belonging to Lp with sufficiently small p) functions

can still be uniquely reconstructed [2, 3]. However, due to standard microlocal

reasons [44, 47, 51, 72, 82], then some parts of the wave front set of the function

outside S will not be stably recoverable. For instance, nice backprojection type

inversion formulas available in odd dimensions [23] fail for such functions.

• Our result is stated and proven in 2D only. D. Finch and Rakesh have recently

obtained by different methods some range descriptions in odd dimensions [22].

Their method does not apply to even dimensions though.
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CHAPTER IV

NUMERICAL RECONSTRUCTIONS

A. Introduction

It is a known fact in tomography that the existence of inversion formulae does not

guarantee the stable reconstruction in practice. That is why numerical validation is

required for any new inversion formula or algorithm when it becomes available.

In this chapter we will deal only with the case of spherical geometry (i.e. the

transducers are located on a unit sphere) and from now on we will assume that |p| = 1.

Two different approaches have been used to derive exact inversion formulae for

this case. Fourier-Bessel and spherical harmonic expansions result in solutions written

as infinite series for two and three dimensions respectively [62, 63]. For 3D the TCT

analog of ρ-filtered backprojection inversion was derived in [23]

f(x) = − 1

8π2
4x

(∫

|p|=1

1

|x− p| Rf(p, |x− p|)dp

)
(4.1)

as well as a filtered backprojection (FBP) type version

f(x) = − 1

8π2

(∫

|p|=1

1

|x− p|
∂2

∂r2
Rf(p, |x− p|)dp

)
(4.2)

Both formulas can be generalized to higher odd dimensions [23]. Notice that, as one

can expect for a codimension 1 Radon transform in 3D, the formulas are local.

In Section B we describe the numerical simulation of the data acquisition in 3D.

The reconstruction algorithms based on the ρ-filtered backprojection formula (4.1)

and the filtered backprojection one (4.2) are discussed in Section C.

Unfortunately backprojection type formulas are not known for spherical acquisi-

tion geometry in even dimensions. However different approximations of such formulas
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can be used. They happen to work well under most circumstances and can be im-

proved in conjunction with post-processing by iterative methods. In Section D we

present reconstructions in limited view 2D TAT using approximate backprojection

type formulas. The comparison of reconstructions using approximate and exact for-

mulas in 3D is discussed in Subsection 3 of Section C.

B. Data simulation in 3D

The region of reconstruction is the unit ball centered at the origin (see Fig. 7). All

phantoms considered here are sums of indicator functions supported in ellipsoids

completely contained inside the unit ball. The transducers are located on the surface

of the unit sphere.

We parameterize the transducer location by two angles (φT , θT ), where φT ∈
[0, 2π) is the the azimuthal angle in the xy-plane and θT ∈ [0, π] is the polar angle

measured from the z-axis.
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Since the spherical Radon transform is linear, it is enough to create projections

for phantoms with a single ellipsoid and then superimpose the projections. For a

single ellipsoid the data measured at a fixed transducer location at a given moment

(i.e. for fixed (φT , θT , r)) is the surface area of a part of the sphere of integration cut

by the intersecting ellipsoid. It can be expressed as a finite sum with terms of the

form ∫ 2π

0

∫ θ2(φ)

θ1(φ)

sin θ dθ dφ =

∫ 2π

0

[cos θ1(φ)− cos θ2(φ)] dφ (4.3)

where each such term corresponds to a connected component of the intersection. Here

φ and θ parameterize the sphere of integration and are independent of φT and θT ,

which parameterize the transducer location. The angles θ1(φ) and θ2(φ) are defined

by the intersection of the integration sphere and the phantom’s ellipsoid. The cosines

of these angles can be found from the solution of a quartic equation describing that

intersection.

In the numerical results presented below, the quartic equation is solved using

the MATLAB built-in function “roots”. By adding up these roots in an appropriate

way, we obtain the inner integral with respect to the polar angle θ in equation (4.3).

The result is a function of azimuthal angle φ, which we will denote F (φ). Depending

on the location and parameters of the ellipsoid, F (φ) might be either a smooth π-

periodic function of φ, or a piecewise smooth one (see Fig. 8). In the first case we

compute its values at uniformly discretized locations on the interval [0, π] and use the

trapezoidal rule to compute the integral. For F (φ) ∈ C2, numerical integration using

the trapezoidal rule is accurate to O(h4). If, however, F (φ) is only piecewise smooth

on [0, π], then we locate the pieces of supp F (φ) where it is smooth and use Gaussian

quadrature to integrate over each piece.
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Fig. 8. F (φ) for two different locations of an ellipsoid

C. Reconstruction in 3D

Once we have generated the projection data, we reconstruct the original indicator

functions of the phantoms. The reconstruction algorithms are based on the ρ-filtered

backprojection (4.1) or the filtered backprojection (4.2).

The integrals over the unit sphere in (4.1) and (4.2) are computed as double inte-

grals with respect to the azimuthal angle φT and the polar angle θT . The function to

be integrated is periodic with respect to φT , making the trapezoidal rule an appealing

quadrature choice. Integration with respect to θT is done by Gaussian quadrature.

The Laplace operator is implemented through the Matlab built-in function “del2”.

The reconstructions were generated using Matlab 5.0.

In the results below, the resolution is 256× 256× 256 over a 2× 2× 2 volume,

resulting in isotropic pixel dimension of 1/128.

The algorithm is tested on the Defrise phantom which consists of five thin ellip-

soids symmetrically centered along the z-axis (see Fig. 9). We numerate them from

1 to 5 starting with the lowest.
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Fig. 9. The Defrise phantom slice along the plane y=0

Table I. Ellipsoids in the Defrise phantom

ellipse number center = (x0, y0, z0) semiaxes lengths = (ex, ey, ez)

1 (0, 0,−0.64) (0.65, 0.65, 0.08)

2 (0, 0,−0.32) (0.85, 0.85, 0.08)

3 (0, 0, 0) (0.9, 0.9, 0.08)

4 (0, 0, 0.32) (0.85, 0.85, 0.08)

5 (0, 0, 0.64) (0.65, 0.65, 0.08)
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Fig. 10. Reconstructions and profiles of the Defrise phantom along the center x = 0

slice. Dashed lines correspond to the center x = 0 = y profile; solid lines

correspond to x = 0, y = 0.4

1. Full scan data

The data was acquired from the transducers located discretely over the sphere in

the following way. The azimuthal angles of the transducer locations were uniformly
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discretized to Nφ = 400 points between 0 and 2π. The polar angles of the transducer

locations corresponded to Nθ = 200 Gaussian nodes on the interval form 0 to π, as

described in the previous section. The radii of the integration spheres were uniformly

discretized to Nr = 200 points from 0 to 2. The reconstruction was done by both

methods: filtered backprojection and ρ-filtered backprojection.

The obtained results validate reconstruction formulas (4.1) and (4.2) (see Fig. 10).

In both cases the Defrise phantom has a good reconstruction everywhere except along

the z-axis (x = y = 0), where some noise is present, which, while not always notice-

able on reconstructions, is visible on the graphs. The reason for appearance of that

noise is the correlation of numerical errors along that axis of phantom’s symmetry

and is discussed in Subsection 4.

2. Partial scan data

Half-scan reconstructions were done using data from only the eastern hemisphere

(Nφ = 200, Nθ = 200) or the southern hemisphere (Nφ = 400, Nθ = 100). These

hemispheres are highlighted in Figure 11. The rest of the data has been zero-filled.

It is known [72, 44, 51, 65, 66, 82] that in case of incomplete data one can expect

to recover stably only certain parts of the image the rest of it being blurred out.

Namely, some parts of the wavefront set of the image will be lost. For our phantom,

the singularities are jump discontinuities (edges) of imaged value f across an interface

I (a surface of an ellipsoid in 3D). The wavefront WF (f) of f in this situation is the

set of pairs (x, n), where x is a point on I, and n is a vector conormal to I at x. As

it was shown in [51, 82] using microlocal analysis, a point (x, n) ∈ WF (f) can be

stably detected from the Radon data, if and only if Rf includes data obtained from

a sphere passing through x and conormal to n.
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Fig. 11. Partial scan reconstructions of the Defrise phantom

In other words, one can see only those parts of an interface, that can be tan-

gentially touched by spheres of integration centered at available transducer locations.

The rest of the interface will be blurred.

Edges in the Defrise phantom were reconstructed (see Fig. 11) as expected. When

the data is collected from the eastern hemisphere, there are enough spheres to touch

tangentially all edges in the eastern hemisphere (see Fig. 9), but none to do it in the
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western hemisphere. That is why the locations of the edges in the eastern hemisphere

were correctly reconstructed, while those in the western part were blurred. When the

data is collected from the southern hemisphere, there are enough spheres to touch

tangentially all edges in the Defrise phantom, hence all of them were resolved.

From the geometric description above, it is not hard to see that there may exist

certain regions of reconstruction (locations of x, sometimes called audible zones)

where any possible pair (x, n) belonging to WF (f) is recognizable from Rf . In our

examples, when the data is collected from the eastern or southern hemisphere, these

regions are the eastern and southern half of the unit ball correspondingly.

Notice that the image values were not reconstructed correctly, since part of the

data was missing. However, certain iterative techniques allow one to improve sub-

stantially the image values in the audible zone [66, 82, 67].

3. Comparison with an approximate backprojection

In early experimental work on thermoacoustic tomography, an approximate backpro-

jection formula was used. It was written in analogy with the backprojection of regular

Radon transform and looked similar to equation (4.1), except the missing weight fac-

tor 1
|x−p| . The composition of this operator with the direct Radon transform is an

elliptic pseudo-differential operator of order zero (see, e.g., [51, 28, 44].) Thus the lo-

cations and “strengths” of image singularities should be recovered correctly. However

the values of the image function will not be accurate. The obtained reconstructions

(see Fig. 12) validate the predictions correctly recovering locations of edges. The val-

ues of image functions are accurate near the center where r ∼ 1, but degrade slowly

with distance from the origin, as expected.
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Fig. 13. FBP errors along the axis of symmetry

4. Errors in reconstruction

As it was mentioned before, the reconstructions of Defrise phantom have some noise

along the axis of phantom’s symmetry x = y = 0 (see Figs. 10, 11, 13). To discuss

the reasons of appearance of that noise we consider reconstructions of some simpler

phantoms consisting of indicator functions of a perfect ball. This allows us to compute

the Radon transform analytically, hence to exclude the errors in the data simulation.

For every fixed p0, the function Rf(p0, r) is a third order polynomial with respect to r

for 0 < r1 ≤ r ≤ r2 < 1 and is zero for every other r. Filtered backprojection requires

differentiating with respect to the radial variable r. We used centered finite differences

to estimate the second order derivative d2/dr2Rf(p, r), which is exact on the third
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Fig. 14. The spheres C3 and C4 contain the phantom ball, while C1 and C2 do not

degree polynomials. Therefore, we compute d2/dr2Rf(p, r) exactly for all radii r, at

least 2∆r away from r1 and r2. Hence the only errors in numerical differentiation

that spread into the backprojection come with the data from spheres close to the

ones touching tangentially the phantom ball. None of these spheres passes inside the

phantom ball, hence backprojection at those points is free of errors from numerical

differentiation (see Fig. 13).

Now let us consider a point p1 on the axis of symmetry of the ball phantoms (the

line connecting the center of the phantom ball and the origin). There are two sets of

spheres that pass through that point and touch the phantom ball tangentially. The

spheres in the first set contain the phantom ball, while the spheres in the second set

do not. A 2D slice of this scenario is presented in Fig. 14.

Notice that all spheres in the same set have the same radius. So the errors from

the numerical differentiation that they will bring into the backprojection algorithm

are absolutely the same. The axis of symmetry is the only location in the reconstruc-
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Fig. 15. An ellipsoidal phantom with center at (0, 0.2, -0.1) and semiaxes lengths equal

to (0.4, 0.3, 0.5)

tion region where these errors are perfectly correlated. This resonance increases the

magnitude of errors resulting in the noise along the symmetry axis on reconstructed

images (see Fig. 13).

In case of ellipsoids in the Defrise phantom everything said above holds. In fact,

the magnitude of errors is five times bigger since there are five ellipsoids with the

same axis of symmetry there. At the same time, the reconstruction of an ellipsoidal

phantom without any rotational symmetry has no axis of emphasized errors (see

Fig. 15). (By rotational symmetry here we mean symmetry with respect to rotations

around an axis passing through the origin.)

Another important observation is that the artifacts due to numerical errors are

more severe in FBP than ρ-filtered images. However they might be reduced by mol-

lification techniques [30].
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D. Reconstructions in 2D limited view TAT1

In many applications of TAT, the signals cannot be collected from all directions.

For example, in mammography the solid angle of detection is at most 2π steradians

for a breast (π radians for a 2D scan). So, one faces here an incomplete data problem.

Although (as we discussed in Chapter II) theoretically an arbitrarily small scanning

arc (i.e., the arc of a circle over which the detectors move) suffices for the uniqueness

of recovery, in practical implementations the limited-view problems usually lead to

losing some parts of the high-frequency information and hence blurring of some sharp

details. This is due to the fact that solving incomplete data problems usually leads

to operations like Fourier filtrations with fast growing filters (e.g., Sect. 2.5.3 in

[57]), which implies high sensitivity to errors in data. This in turn requires cutting

off high frequencies and hence blurring the images. Sacrifices in high frequencies

naturally lead to destroying sharp details (interfaces between different tissues) in the

reconstruction.

The question of what parts of the singularities of the image can be stably recon-

structed depending on the scanning geometry was already addressed in Subsection 2

of Section C. In short, the discussion there showed that in TAT one can see without

blurring only those parts of the interfaces that can be touched tangentially by circles

(spheres) centered at available detector positions.

As it has already been mentioned before, exact inversion procedures are known

for circular and spherical Radon transforms in some special detection configura-

tions. However, for the circular trajectories of detectors in 2D only special-function-

1 Part of this section is reprinted with permission from “Reconstructions in lim-
ited view thermoacoustic tomography”, by Y. Xu, L. Wang, G. Ambartsoumian and
P. Kuchment, Medical Physics 31(4) April 2004, 724-733. Copyright c©2004, by
American Association of Physicists in Medicine.
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expansion methods are known. Our approach is to use an approximate FBP formula,

which happens to work well under most circumstances and can be improved in con-

junction with post-processing by an iterative method. Namely, for objects not too

close to the detectors, one can think of projection lines as close to straight lines, and

hence the circular Radon transform as being close to the standard Radon transform.

In this approach, the center p of the projection circle and its radius r (which is

proportional to time) are analogs of the normal coordinates (ω, s) of a line x · ω = s

in the standard Radon transform, where ω is a unit vector normal to the line. FBP

inversion of the standard Radon transform on the plane consists (up to a constant

factor) in applying the first derivative with respect to s, then Hilbert transform with

respect to s, and finally the backprojection operator, which averages over lines passing

through a given point(see formula (2.4), Sect. II.2, [55]):

f(x) =
1

4π
R] H

d

ds
Rf(ω, s),

where R] is the dual Radon transform or backprojection:

(R]g)(x) =

∫

S1

g(ω, x · ω) dω,

and the Hilbert transform is defined through its Fourier transform as

(Hh)∧(σ) = −i sgn(σ) ĥ(σ).

We implement a similar procedure in the circular Radon transform. This amounts

to a differentiation with respect to the radius, a Hilbert transform with respect to

the radius, and then a circular backprojection, i.e., averaging over the circles passing

through a given point. One should also make sure that during the backprojection the

tangent lines (or the normal vectors) to the projection curves at the given point rather

than the centers of the projection curves (which coincide with detector positions),
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rotate at a constant speed. In the case of incomplete data, one just replaces the

missing data with zeros (possibly gradually phasing off the existing data closely to

the missing data region to reduce the artifacts caused by the missing data) and

then applies the formula. Although this is not an exact inversion, one can show

using microlocal analysis that it preserves all “visible” singularities the numerical

and experimental results presented below agree with this conclusion).

Another reconstruction method is to apply an additional (second) differentiation

with respect to time (the radius) without applying a Hilbert transform. This leads to a

local tomography type formula. The result of this procedure produces an expression

of the form Λf where Λ is a pseudo-differential operator of positive order, which

means that all the “visible” interfaces and other sharp details not only have correct

locations, but also are emphasized (e.g., [44, 51]). This effect is well known in image

processing, where for instance the Laplace operator is sometimes used to emphasize

the edges.

In Fig.16 we present the numerical reconstructions of several phantoms for dif-

ferent partial scan situations using the approximate formula with Hilbert transform

and local tomography formula emphasizing the edges.

Fig. 17 depicts the results of experimental measurements conducted by L. Wang

and Y. Xu on physical phantoms. They applied the reconstruction methods described

above to the obtained data and then iteratively improved the reconstruction using a

truncated conjugate gradient method. The experimental data, due to the shape of

the transducers impulse response function and electromagnetic pulse shape, already

carries a filtration that makes the reconstruction similar to the local one. Then,

unless an appropriate deconvolution is applied to the data during pre-processing, the

interfaces are accentuated in the reconstruction. One can notice this in the actual

reconstructions from experimental data.
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Fig. 16. (1a) A square phantom inside a circular detection curve. (1b) The diagram

showing the detection curve (solid part of the outer circle), the “visible” (solid)

and “invisible” (dashed) boundaries of the object predicted by theory, and

the audible zone (shaded). (1c) FBP reconstruction. (1d) Local tomography

reconstruction, where the boundary is emphasized. (2a-2d) A disk phantom

outside the audible zone. (3a-3d) A disk phantom inside the audible zone.

(4a-4d) An off-center disk phantom and a detection curve consisting of three

arcs. (5a-5d) A centered disk phantom and a detection curve consisting of

three arcs.
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Fig. 17. (a) A photograph of the experimental sample. (b)-(d) TAT reconstructions

using detection arcs of 92 degrees (from 50◦ to 142◦), 202 degrees (from -18◦

to 184◦), and 360 degrees, respectively. The blurred parts of the boundaries

in (b) due to the limited view agree with the theoretical predictions. In (c)

all the boundaries are resolved, since the object fits into the audible zone.
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CHAPTER V

SUMMARY

The spherical Radon transform puts into correspondence to a given function its in-

tegrals over the set of all spheres with a given set of centers. SRT arises in several

contemporary imaging techniques, including the newly developing thermoacoustic to-

mography and its sibling optoacoustic tomography, as well as radar, sonar and other

applications. It has also been considered in relation to some problems of approxima-

tion theory, mathematical physics, and other areas of mathematics.

An important question arising in the study of these kinds of transforms is the

uniqueness of reconstruction of an unknown function from its transform, or the prob-

lem of the transform’s injectivity. A major result in this area is due to M. Agranovsky

and E. T. Quinto who answered the question in dimension 2 for the class of compactly

supported functions. However, the techniques used in their proof do not alow simple

generalizations to higher dimensions or to the classes of non-compactly supported

but rapidly decreasing functions. We have provided some new results concerning

geometry of non-injectivity sets, as well as re-proved some known results with much

simpler means. Most of these results hold in any dimension. The main theorem,

which significantly restricts the geometry of the non-injectivity sets, does not require

the unknown function to be compactly supported and in fact imposes no condition

on its behavior at infinity.

Another important question is the description of the range for SRT. The range

conditions are used extensively in tomography for various purposes: completing in-

complete data, detecting and correcting measurement errors and hardware imper-

fections, recovering unknown attenuation, etc. Thus, as soon as a new Radon type
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transform arises in an application, a quest for the range description begins. We have

obtained a complete range description for the circular Radon transform in 2D with

spherical acquisition geometry.

As in other types of tomography, the existence of exact or approximate inversion

formulae and algorithms in TAT does not ensure the possibility of stable reconstruc-

tion in practice. A careful numerical validation is required for any new inversion

formula or algorithm when it becomes available. We numerically validated recently

discovered FBP and ρ-filtered BP inversion formulae for TAT data in 3D spherical

geometry on the high-frequency Defrise phantom and some other ellipsoidal phan-

toms. Artifacts due to numerical errors were analyzed. We have also implemented

partial scan reconstructions which agreed with the theoretical predictions of the types

and locations of singularities that can be stably recovered. Similar work has been done

for some approximate inversion algorithms in 2D spherical geometry.
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