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ABSTRACT 
 

An Analysis of Muscle Fatigue due to Complex Tasks 

and Its Relation to the Strain Index.  (August 2006) 

John-Paul Stephens, B.S., Texas A&M University; 

M.S., Texas A&M University 

Chair of Advisory Committee:  Dr. J. Steven Moore 
 
 
 

 The Strain Index was originally designed to analyze mono-task jobs.  An 

experiment using a grip dynamometer was used to simulate six multiple task jobs to study 

the effect of complex tasks on localized muscle fatigue and to evaluate six different 

models used to calcula te a Complex Strain Index score.  These models included average 

Strain Index score, unadjusted summation, duration adjusted summation, complex 

equation, minimum intensity, and peak intensity.  Two methods of calculating a 

continuous Strain Index score were also analyzed.  Ratings of perceived exertion, hand 

and forearm fatigue and discomfort, Difficulty Rating, maximum voluntary contraction 

(MVC), and percent strength loss were recorded for each of the six treatments.  

Electromyography (EMG) was also recorded for the 24 subjects (12 males and females) 

who completed the experiment.  The EMG signal was analyzed using root mean square 

(RMS), initial mean power frequency (IMnPF), and slope of the mean power frequency 

(MnPF). 

 Each treatment, lasting one hour each, contained a primary exertion (Task 1) of 

either 10% or 40% MVC for three seconds and a secondary exertion (Task 2) of either 

10% or 40% MVC for one or three seconds.   
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 Subjective variables linearly increased (R2 > 0.88) over the duration of the 

treatments and significantly differed between treatments (p < 0.05).  Percent strength loss 

was the only variable with a gender effect (p < 0.05).  RMS values did not indicate 

fatigue and were constant over each treatment, but were highly correlated with percent 

MVC.  A significant difference was not found in IMnPF between pre and post treatment 

values or between treatments (p > 0.05).  A significant difference was found for MnPF 

slope pre and post treatment, but no treatment effect was found (p > 0.05).   

 The complex equation method of calculating a Strain Index score was the only 

model of the six evaluated that met all criteria for being an acceptable method of 

calculating a Complex Strain Index score.  The two continuous methods presented for 

calculating a Strain Index score should not be used for job analysis until further research 

evaluates their reliability, validity, and critical scores for Hazard Classification.       
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NOMENCLATURE 

 

ACGIH  American Conference of Governmental Industrial Hygienists 

APL    Abductor Pollicis Longus 

BEI   Biological Exposure Limit 

DUE   Distal Upper Extremity  

ECRB    Extensor Carpi Radialis Brevis 

ECRL    Extensor Carpi Radialis Longus 

ECU    Extensor Carpi Ulnaris 

EDC    Extensor Digitorum Communis 

EDM    Extensor Digiti Minimi  

EIP   Extensor Indicis Proprius 

EMG   Electromyography  

EPB    Extensor Pollicis Brevis 

EPL    Extensor Pollicis Longus 

FCR    Flexor Carpi Radialis 

FCU    Flexor Carpi Ulnaris 

FDP   Flexor Digitorum Profundus 

FDS   Flexor Digitorum Surperficialis 

HLR   Hight to Low Ratio 

IMnPF   Initial Mean Power Frequency 

LMF    Localized Muscle Fatigue 

MPF   Median Power Frequency 
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MnPF   Mean Power Frequency  

MU   Motor Unit 

MUAP     Motor Unit Action Potential  

MVC   Maximum Voluntary Contraction 

NIOSH  National Institute for Occupational Safety and Health 

RMS   Root Mean Square 

RMSA   RMS All Contractions 

RMSP   RMS Primary Contractions 

RMSR   RMS Resting Contractions 

RMSS   RMS Secondary Contractions 

RPE   Ratings of Perceived Exertion 

sEMG   Surface Electromyography  

SIA   Strain Index Method “A” 

SIB   Strain Index Method “B” 

SIC   Categorical Strain Index 

STEL    Short-Term Exposure Limit  

TLV    Threshold Limit Values 

TWA   Time Weighted Average 

VAS   Visual Analog Scale 
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INTRODUCTION 
 
 

The Strain Index is a job analysis tool that uses both qualitative and quantitative 

methods to identify jobs that do and do not expose workers to an increased risk of 

developing distal upper extremity (DUE) disorders (Moore and Garg, 1995).  The DUE is 

defined as the elbow, forearm, wrist, and hand and includes all tissue structures therein 

such as the skin, blood vessels, nerves, muscle-tendon units, and even the bones 

themselves (Moore and Garg, 1995).  Most work related DUE disorders, other than bone 

fractures, involve the nerves and muscle-tendon units and include conditions such as 

medial and lateral epicondylitis, tendon entrapment at the dorsal wrist and digits, 

peritendinitis, and carpal tunnel syndrome (Moore and Garg, 1995; Moore, 1992a; 

Moore, 1992b; Moore and Garg, 1992).   

One theory of DUE disorders states that activity-related DUE disorders are caused 

by the exertional demands that are placed on the muscle-tendon.  The Strain Index, 

derived from principles related to the physiology, biomechanics, and the epidemiology of 

DUE disorders (Moore and Garg, 1995), uses six task variables (Intensity of Exertion, 

Duration of Exertion per Cycle, Efforts per Minute, Hand/Wrist Posture, Speed of Work, 

and Duration of Task per Day) to describe these exertional demands of a job (Moore and 

Garg, 1995).   

The Strain Index is currently designed to evaluate mono-task jobs where the 

worker does not rotate between different jobs and whose job consists of performing only 

one task (Moore and Garg, 1995).   

 

This dissertation follows the style of Applied Ergonomics. 
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More often than not, jobs contain multiple tasks of varying durations and intensities or 

workers rotate between completely different jobs.  These situations are called complex 

tasks and job rotation, respectively.  When two tasks or jobs have one or more Strain 

Index task variables that are different from each other, then the tasks or jobs are different.    

If these tasks have different Strain Index scores, then the combined Strain Index score 

must be equal to or greater than the highest of the Strain Index scores because of the 

additional strain the additional work places on the DUE.   

 

Job Rotation 

 

 Job rotation is where a worker rotates between two or more different jobs 

sequentially throughout the ir shift.  As mentioned above, if these jobs have different 

Strain Index scores, than the combined Strain Index score must be greater then the 

highest of the two independent Strain Index scores.  One exception to this rule is when 

the additional tasks or jobs have the same Strain Index score.  If a worker’s first four-

hour job has a Strain Index score of three and the worker’s second four-hour job has a 

Strain Index score of three, then it is assumed that the combined Strain Index score would 

be the same is if the worker did either one of the two jobs for eight hours.  This scenario 

does not mean that there is the same amount of stress placed on the DUE in performing 

the first job for four hours as performing both four-hour jobs sequentially.  If each four-

hour job has a Strain Index score of three, then the combined Strain Index score, or 

Cumulative Strain Index score would be four (the Duration of Task per Day increases 

from the four hour multiplier of 0.75 to the eight hour of 1.0).  This example shows how 
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similar job rotation tasks can be combined and also demonstrates the increase in Strain 

Index score reflecting the additional work.   

 The issue of calculating the Cumulative Strain Index score for job rotation has 

two main problems:  (1) how to combine Strain Index scores of different magnitude and 

(2) does the order of rotation effect the outcome of the Cumulative Strain Index score?  

Research outside the scope of the current study will be needed to answer these questions.      

 

Complex Task Analysis 

 

 Complex Tasks are jobs that have several tasks with different Task Variable 

ratings, such as intensity or duration levels within the same job cycle.  The Strain Index is 

robust enough to handle variations in Duration of Exertions as long as the different tasks 

have relatively the same intensities (no change in task variable ratings).  This is due to the 

fact that the Duration of Exertion task variable is based on the percentage of the job cycle 

where exertions are being applied and not the individual durations themselves.  The 

Efforts per Minute Task Variable is similar to Duration of Exertion in the fact that the 

Strain Index can simply be recalculated.  For example, a job contains a task requiring five 

efforts per minute (multiplier of 1.0), each effort lasting for three seconds (25 percent 

duration, equaling a multiplier of 1.0), a light intensity level (a multiplier of 1.0), and the 

other task multipliers all equal to one has a Strain Index score of one.  If a second task, 

identical Task Variables as the first, is added to the job cycle, then the new job has ten 

efforts per minute (multiplier of 1.5), lasting for three seconds each (50 percent duration 

equaling a multiplier of 2.0), a light intensity level (a multiplier of 1.0), and the other task 
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multipliers equal to one, the Complex Strain Index score is equal to three.  The Complex 

Strain Index score has accounted for the additional stress applied to the DUE by the 

additional work by increasing the Strain Index score by three times its initial value.  As 

with Job Rotation, the Complex Strain Index must be greater than the highest Strain 

Index score of the individual tasks to represent the collective demands of the additional 

stress.   

As shown with the previous example, the published Strain Index score calculation 

method can be used for jobs where a task is added that has a similar intensity level (same 

rating category).  The problem occurs when the task that is being added is of a different 

intensity level.  The current mono-task method of calculating the Strain Index score does 

not account for the additional stress added when intensity levels change.  It should be 

noted that if any task individually exceeds the Strain Index threshold of being a 

hazardous job (Strain Index score greater than five), then no matter how light or 

strenuous the additional job or task is, the Complex Strain Index score could only 

increase and would still be hazardous.   

 

Possible Methods for Calculating a Complex Strain Index Score 

 

 When evaluating workplace stressors on the human body, many different methods 

are used to combine levels of exposure throughout the workday.  Some of the most 

common methods of combining industrial exposures are averaging, time-weighted 

averaging (TWA), or using an extreme value (maximum or minimum).   
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TWA Method 

The ACGIH’s Threshold Limit Values (TLVs) for Chemical Substances and 

Physical Agents are guidelines used to aide in the identification and prevention of 

exposure to workplace hazards.  Throughout a workday, a worker may be exposed to 

different concentrations of hazardous chemicals for varying durations of time.  The TLV 

is listed as a Short-Term Exposure Limit (STEL), which is a 15 minute exposure limit, a 

ceiling value, which should never be exceeded for any length of time, or as a daily 

exposure limit, which is an eight hour time-weighted average that is simply called the 

TLV-TWA.  As the name TLV-TWA implies, ACGIH recommends using the TWA 

method for assessing the exposure of a worker to different levels of hazardous substances 

for a period of a workday or workweek (ACGIH, 1998).  The ACGIH’s TLV’s and BEIs 

handbook states “TWAs permit excursions above the TLV provided they are 

compensated by equivalent excursions below the TLV-TWA during the workday” 

(ACGIH, 1998).  The TWA method is used not only for TLVs, but also by OSHA for air 

contaminants (29 CFR 1910.1000), noise exposure, and much more.  

A worker is not always limited to just chemical exposures, but may also be 

exposed to other work-related hazards such as musculoskeletal stressors to the DUE.  

Throughout a workday, the tasks a worker performs vary in intensity and duration, much 

as the pre-mentioned chemical exposures.  Using this line of logic, the TWA method 

could be used for calculating a Strain Index score that takes into account all the different 

tasks that a worker performs throughout the day.        

One of the criticisms of using the TWA method for analyzing workplace exposure 

is that the TWA method places significance on short durations of very high levels of 
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exposures as long as the exposures are accompanied by a sufficient periods of lower level 

exposures (Scott, 1997).  ACGIH does add that some chemicals and physical agents 

cannot be assessed by this approach because there are levels of these agents at which 

workers should never be exposed for any duration of time.  These levels are known as 

ceiling limits (ACGIH, 1998).             

 Most likely, the Strain Index would fall into this ceiling limit caveat because once 

a job exceeds the Strain Index score for being a hazardous job, no amount of additional 

light activity throughout the day would make the hazardous job safe again.  As mentioned 

above, if two tasks, during either a job rotation cycle or a complex task, have different 

Strain Index scores, then the combined Strain Index score must be equal to or greater than 

the highest of the two Strain Index scores because of the additional strain the work places 

on the DUE.  If the first task’s Strain Index score is considered “hazardous” then the 

“ceiling limit” has been reached and no additional work, no matter the duration, can make 

the combined job safe.  This scenario shows the difficulty in using the TWA method for 

calculating a composite Strain Index score for a complex job.  Despite the 

aforementioned problems, the TWA method will be used for comparison of different 

methods of calculating a Complex Strain Index score in this study because of its 

widespread use and familiarity among occupational safety and health practitioners.           

 

Extreme Values (Maximum and Minimum Values) 

 Using extreme values is another method to evaluate exposure to workplace 

stressors.  The extreme value method uses either the maximum value (peak value) or the 

minimum value to simplify a complex task down to a mono-task job.  The TLV for Hand 
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Activity Level (HAL) is a similar tool to the Strain Index, but uses only the peak value of 

hand force to evaluate the intensity of the workers’ exertions and average hand activity to 

evaluate the frequency of activity (ACGIH, 2002).  One problem with employing peak 

force is that by using the maximum intensity of the worker’s exertions to represent all 

exertions will tend to overestimate the potential risk to the DUE.  To utilize this method 

when calculating the Composite Strain Index score would mean that all Intensity of 

Exertion ratings would be set to the value of the highest rating for any exertion in the job 

and thus the job could be analyzed as a mono-task job under the currently published 

methods.  Similarly, the minimum method would use the minimum intensity of the task 

to represent all tasks.   

 

Complex Task Equation and the Continuous Strain Index 

 

 The authors of the Strain Index have long discussed moving from the Strain Index 

calculations from a five factor categorical system to continuous multipliers.  Two 

different methods for calculating a continuous Strain Index score will be discussed in 

greater detail under the section titled Comparison Calculations and Complex Strain Index 

Methodology.  This section will also detail an equation to calculate a Complex Strain 

Index score designed by one of the Strain Index authors.  This method will be evaluated 

along with the methods mentioned above.     
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Localized Muscle Fatigue  

  

One of the problems with studying muscle fatigue is there is no universal 

definition and there are many types of fatigue (NIOSH, 1992).  The two most mentioned 

types of fatigue are a general full-body feeling of exhaustion or tiredness known as 

central fatigue and a more location-specific muscle fatigue caused by activity known as 

Localized Muscle Fatigue (LMF).  The current study is focused on LMF and defines it as 

the inability of a muscle to maintain a required or desired force even in the presence of 

increased effort due to previous muscle exertions (Blackwell et al, 1999; Dugan and 

Frontera, 2000; Jurell, 1998).    

As mentioned before, the methodology behind the Strain Index was derived from 

epidemiological, biomechanical, and physiological models and “for the DUE, the primary 

physiological endpoint of interest is localized muscle fatigue” (Moore and Garg, 1995). 

The reason that LMF is an important endpoint is that it shows the physiological 

manifestation of strain in the DUE caused by the task or job’s biological stressors.  

Exhaustion, discomfort (including soreness, aching, tingling, pain, and stiffness), 

increased perceived exertion, decreased strength, or losses of neuromuscular control are 

some of the symptoms associated with LMF (Kuorinka, 1983; Moore and Garg, 1995; 

Radwin and Ruffalo, 1999).  It has also been suggested that fatigue may be a “safety 

factor” to protect muscles from damage due to overexertion (Dugan and Frontera, 2000).  
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EMG and Muscle Fatigue 

 

 The EMG signal is an electrical summation or representation of the motor unit 

action potentials (MUAPs) (Jurell, 1998; Petrofsky, 1981).  One of electromyography’s 

(EMG) most popular uses in ergonomics is to study LMF (Blackwell et al, 1999; 

Esposito et al, 1998; Krivickas et al, 1998; Lowery et al, 2002; Moritani et al, 1986b; 

NIOSH, 1992; Radwin and Ruffalo, 1999).    EMG’s role in quantifying LMF is focused 

on the electrical changes that affect the motor unit (MU), such as action potential firing 

rates, firing synchronization, and MU recruitment (Esposito et al, 1998).  To compensate 

for fatigue, muscles can increase the number of firing motor units as well as their firing 

frequency (Jurell, 1998).  The two most popular methods of evaluating LMF are through 

monitoring changes in the frequency spectrum characteristics and RMS amplitude 

(Blackwell et al, 1999; Krivickas et al, 1998; Lowery et al, 2002; Radwin and Ruffalo, 

1999).   

For constant isometric contractions of at least 10% MVC, the EMG measures of 

LMF appear to be reliable and are considered a reasonable measure of the physiological 

changes due to LMF (NIOSH, 1992).  Studies also show that under experimental 

situations (static and consistent postures), RMS strongly correlates with grip force (Grant 

et al, 1994).   

An EMG signal can be obtained from either fine wires inserted into the muscle of 

interest (indwelling intramuscular electrodes) or surface electrodes, which are Ag-AgCl 

electrodes placed on the skin’s surface above the muscle of interest (Pease and Elinski, 

2003).  One of the benefits of using intramuscular electrodes is that it allows the 
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investigator to target specific muscles while minimizing signals from surrounding 

muscles, also known as crosstalk (NIOSH, 1992; Pease and Elinski, 2003).  Besides 

being less reliable, intramuscular electrodes can also break during intensive muscle 

activity and are uncomfortable to subjects, especially during insertion, which usually 

involves a hypodermic needle (Pease and Elinski, 2003).  Surface EMG (sEMG)  

electrodes have shown better reliability than intramuscular electrodes (NIOSH, 1992; 

Pease and Elinski, 2003).     As with many other EMG studies, disposable bipolar Ag-

AgCl electrodes will be used to recover the EMG signal (Bilodeau et al, 2003; Blackwell 

et al, 1999; Mogk and Keir, 2003; Moritani et al, 1986a; Petrofsky, 1981; Radwin and 

Ruffalo, 1999; West et al, 1995).   

RMS amplitude is commonly used to characterize the EMG signal.  The 

amplitude is a reflection of the number of active MUs and the frequency of their firing 

(Esposito et al, 1998; NIOSH, 1992; Petrofsky, 1981).   One of the benefits of using RMS 

is that the amplitude increases progressively with increasing force for submaximal 

contractions (Bilodeau et al, 2003; Dimitrova and Dimitrov, 2003; Esposito et al, 1998; 

Jurell, 1998; Lowery et al, 2002; Moritani et al, 1986a; Praagman et al, 2003; Petrofsky, 

1981; Rainoldi et al, 1999).  The RMS increase is caused by decreases in conduction 

velocity, recruitment of additional MUs, synchronization, and increasing firing frequency 

(Esposito et al, 1998; NIOSH, 1992).  At sustained maximum exertions the RMS 

amplitude will increase as MUs are being recruited, but will begin to decrease in both 

frequency of firing and amplitude as MUs fatigue and drop out, especially the fast twitch 

muscles (Jurell, 1998).  This may be due to lack of further recruiting capability or 
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switching from high frequency to low frequency stimulation to “ensure the optimal force 

output” (Jurell, 1998; Moritani et al, 1986a; Moritani et al, 1986b). 

 

Subjective Measures 

 

The use of EMG to quantify LMF has been shown to be reliable (Krivickas et al, 

1998), but other subjective factors such as pain tolerance, motivation, and synergistic 

accommodation have been argued to be important (NIOSH, 1992) because these 

subjective measures can effect a subject or worker’s perception of being fatigued and 

thus reduce his or her time until “fatigued” (West et al, 1995).  Because of their effect on 

a subject’s perception of fatigue, these subjective factors need to be incorporated into 

fatigue studies.   

Localized discomfort surveys and ratings of perceived exertions (RPE) are two 

different types of subjective measures that are used in handgrip fatigue studies.  Grant et 

al showed that predictive models were able to explain 51.7% to 74.2% grip force 

variation when both RPEs and EMGs were used (Grant et al, 1994).  The Borg CR-10 

and visual analog scale (VAS) are two scales that are used to rate perceived exertions, 

discomfort, and fatigue.  Both scales are considered useful psychophysical estimation of 

exertions, but the CR-10 scale is more efficient than the VAS (Neely et al, 1992).   

RPEs are used in ergonomic studies because they have been found to be highly 

reproducible (Flaherty, 1996; Stamford, 1976), representative of physical strain (Borg, 

1982), and strongly correlated with grip force (Grant et al, 1994).  Localized discomfort 
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surveys are used in experimental studies because they coincide with muscle loading and 

are associated with fatigue (Kuorinka, 1983; Radwin and Ruffalo, 1999).      

 

Muscles of Interest 

 

 The proposed experiment relies on hand grip exertions to simulate job tasks in 

order to induce fatigue in muscles of the DUE.  The muscles that are involved in hand 

gripping tasks are the flexor digitorum surperficialis (FDS), flexor digitorum profundus 

(FDP), flexor carpi ulnaris (FCU), flexor carpi radialis (FCR), extensor carpi radialis 

longus (ECRL), extensor carpi radialis brevis (ECRB), extensor carpi ulnaris (ECU), 

extensor digiti minimi (EDM), extensor digitorum communis (EDC), abductor pollicis 

longus (APL), extensor pollicis brevis (EPB), extensor indicis proprius (EIP) and 

extensor pollicis longus (EPL).  The extrinsic finger flexors, FDS and FDP, account for 

68% of the moment-generating capacity of the fingers (Gonzalez et al, 1997).    

Even though the finger flexors are the primary muscles involved during a gripping 

exertion, workers have more complaints and injuries on the extensor side of the wrist 

(Byström and Kilbom, 1991; Hägg et al, 1997; Mogk and Keir, 2003; Ranney et al, 

1995).    In a study of 146 female workers in highly repetitive jobs, Ranney et al (1995) 

found that 44 workers had disorders in the extensors and 27 had disorders in the flexors 

with the ECRB and ECRL being the most often affected.  As a special interest to this 

study, not only do extensors have more injuries than the flexors, but they also fatigue 

faster during gripping exertions (Hägg et al, 1997; Mogk and Keir, 2003).  The primary 

role of the extensors during a grasping or gripping exertion is to stabilize the wrist and 
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control wrist posture (Mogk and Keir, 2003; Ranney et al, 1995).  The extension moment 

potential, about the wrist, is broken up between the finger/wrist extensors (EDC, EDM, 

EPL, and EIP) providing 45% of the moment potential and the dedicated wrist extensors 

(ECU, ECRB, ECRL) providing 55% (Gonzalez et al, 1997), though the ECU is 

considered more of a wrist deviator than a wrist extensor (Mogk and Keir, 2003).    Due 

to postural, gravitational, and stabilizing exertions of the extensors, they are more subject 

to static loading and typically get less recovery time than do the flexors (Hägg et al, 

1997).  The extensors are considered a sensitive indicator of fatigue for gripping 

exertions (Byström and Kilbom, 1991). 

 

Purpose of Research 

 

 The purpose of this research is to investigate the effects of complex tasks on 

physiological and subjective measures of fatigue.  Proposed methods used to create a 

Complex Strain Index score will be evaluated and compared to physiological indicators 

of LMF as well as subjective responses for subjects completing a handgrip experiment 

designed to model jobs of varying intensity and duration.        

 

Application of Research 

 

Being able to calculate a Complex Strain Index score has many uses in industry.  

The first use is simply to be able to calculate the Complex Strain Index score for jobs that 

contain two or more tasks of different intensity levels.  Another important use of the 
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Complex Strain Index score is in line balancing or setting up lean manufacturing cells.  

This would allow industrial engineers and managers to evaluate the effects of altering the 

current line or cell balance, from an ergonomic perspective, before implementing 

changes.  Jobs that have high incident rates of DUE disorders could be evaluated to see 

how changing the job would affect the Strain Index score and ultimately reduce the risk 

to workers performing that job.     
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METHODS:  PART I – TREATMENT EFFECTS 

 

Recruitment of Subjects  

 

Twenty-four subjects participated in the current study.  The 12 male and 12 

females were recruited from Texas A&M University and the Texas A&M University 

System Health Science Center.  People with current DUE disorders or symptoms such as 

chronic pain, numbness, and tingling were excluded from participating in the study.       

Several studies have focused on the fatigue times of women and men with mixed 

results.  In two trials, women displayed longer times to fatigue (or time to task failure) 

than men (Hicks et al, 2001; West et al, 1995), but another trial shows that men and 

women have similar times to fatigue (Hunter et al, 2004).  EMG activity variations are 

one of the consistent differences between men and women (Hunter et al, 2004; Krivickas 

et al, 1998).  Women, on average, have larger amounts of subcutaneous tissue that acts as 

a low pass filter on the EMG signal.  This low pass filtering removes some of the high 

frequencies from the women’s power spectrum and decreases their initial median 

frequency (IMPF) (Krivickas et al, 1998).   

Even though absolute strength is not being evaluated, on average, women can 

produce 60-65% the hand grip strength and require 5-10% more extensor activation to 

maintain the same relative force as a man (Mogk and Keir, 2003).  By using 12 male and 

12 female subjects for this study, the differences between the genders mentioned above  

can be further examined.   
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Treatments 

 

 Each subject completed six different treatments that simulated a complex task job 

by squeezing a hand dynamometer.  Treatments were administered to subjects randomly 

with a minimum of 48 hours and a maximum of seven days between treatments.  Each 

subject only saw each treatment once.   

Out of the six Strain Index task variables, only intensity and duration were 

independent variables during this experiment. The other four Task Variables were fixed 

at the following values:  frequency at 12 exertions per minute, a slow speed of work, 

good (or neutral) hand/wrist posture, and duration of task per day is governed by the 

length of the experiment, which is one hour.    

Each treatment consisted of two intensity levels and two durations of exertions, 

which may or may not differ depending on the given treatment.  The two different 

intensity levels that were used were 10% (light) and 40% (hard) of the subject’s 

maximum voluntary contraction (MVC), which correlates to a task va riable rating of one  

and three respectively.  Preliminary experiments have shown that subjects could not 

perform treatments with an intensity task variable rating of four (very hard, 60% MVC) 

for more than 35 minutes at a Duration of Exertion of 40%.  Since the experiment calls 

for subjects to perform the treatment tasks at duration percentages at or greater than 40%, 

intensity levels greater than 60% could not be used.  Duration of Exertions was limited to 

a one second hand grasp and a three second hand grasp.  With each intensity being 

exerted six times a minute, the duration of exertion for each intensity level was either 

10% (one second exertion) or 30% duration (three second exertion).  These combined 
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durations are either 40% (one 10% and one 30%) or 60% (two 30%).  The Strain Index 

score can be calculated for treatments where both intensities are the same, but there is not 

a validated method to calculate the Strain Index score when the two intensities differ.  

The treatments listed in Table 1 were chosen to be representative of a broad range of 

Strain Index scores, while staying within the “safe” Hazard Classification.  Three 

treatments have constant intensities so that the Strain Index score could be calculated.  

The treatments are graphed in figures 1 through 6.     

 

Table 1 Treatments and their respective Strain Index Classifications 
Level/MVC Intensity Rating Duration Strain Index Hazard Class 
Light 10% 1/1 30%/10% 0.56 Safe 
Light 10% 1/1 30%/30% 0.75 Safe 

Light/Hard 1/3 30%/10% Complex ? 
Light/Hard 1/3 10%/30% Complex ? 
Light/Hard 1/3 30%/30% Complex ? 

Hard 40% 3/3 30%/10% 3.38 Safe 
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MVC and Percent Strength Loss 

 

 The maximum voluntary contraction is the maximum amount of force that a 

subject will voluntarily produce and is measured before and after each experimental 

session to determine if force-producing capability has been lost.  The MVC was acquired 

by using the maximum value of three maximal isometric contractions, as long as the 

maximum value is within 10% of the other two contractions (Esposito et al, 1998; 

Krivickas et al, 1998; Lowery et al, 2002; Petrofsky, 1981; Rainoldi et al, 1999; West et 

al, 1995).  Percent strength loss will be calculated by subtracting the post treatment MVC 

from the pre treatment MVC and dividing the delta by the pre treatment MVC.   

 Studies have shown no significant differences in intra-subject MVC between 

testing periods (West et al, 1995).  One of the problems with MVC is that it is not only 

affected by fatigue, but is also affected by subject motivation and comfort (West et al, 

1995).  Subjects will be encouraged during MVC recordings to minimize variability in 

subject motivation.     

 

Subjective Measures 

 

The subjective measures that were recorded during this study were RPE, localized 

discomfort and fatigue (Corlett and Bishop, 1976) in the hand and forearm, and a 

measure of the subjects’ perceived difficulty at the end of the experimental session 

(Difficulty Rating).  The Borg CR-10 scale was the chosen method of recording the RPE 

and difficulty rating subjective measures because it is more efficient than the VAS (Neely 
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et al, 1992) and it is easier to administer to the subjects.  Since the subjects will be 

positioned such that their right arm will be immobilized, they would have to mark the 10 

cm VAS with their left hands as well as trying to focus on the ongoing tasks presented by 

the treatments.  The CR-10 allows the observer or researcher to ask the subjects to 

verbally rate their perceived exertion without diverting attention away from the treatment.  

For fatigue, subjects used a discomfort survey based on Corlett and Bishop’s study 

(1976).  In the current study, the survey was limited to the DUE.   

 All subjective variables, except Difficulty Rate, were recorded every five minutes 

throughout each treatment.  Locations of fatigue and discomfort were also recorded with 

the subjective variables.            

 

EMG Measures 

 

Subject Positioning and Equipment 

When designing a handgrip experiment using EMGs as an outcome indicator, 

many factors such as grip size, wrist position, and muscle length must be taken into 

consideration.  Grip size does not affect the EMG frequency shifts of the FDS, but it does 

affect the absolute grip strength (Blackwell et al, 1999).  Wrist posture (degree of flexion, 

extension, supination, pronation or deviation) can also affect the absolute grip strength.  

Maximum gripping force is reduced up to 50% by flexing the wrist and continues to 

decrease as the wrist is pronated (Mogk and Keir, 2003).  When the wrist is flexed or 

extended, the muscle lengths change and affect the EMG amplitude as well as the 

characteristics of the frequency spectrum (Jurell, 1998; Krivickas et al, 1998; Mogk and 
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Keir, 2003; NIOSH, 1992).  In order to get reliable results from EMG characteristics, the 

grip width was set to the middle of a subject’s grip width, the arm was kept from moving 

to limit muscle length changes, and the wrist posture was fixed (Blackwell et al, 1999; 

Jurell, 1998; Krivickas et al, 1998; Mogk and Keir, 2003; NIOSH, 1992).  Figure 7 is a 

picture of the experimental setup.     

Comfort was considered in designing experiment because pain and discomfort can 

demotivate subjects and give a false sensation that is often interpreted by the subject as 

fatigue (West et al, 1995).  Discomfort and pain can also reduce endurance times and 

lower MVC (Ciubotariu et al, 2004).  Preliminary testing showed that subjects report pain 

and discomfort in the thenar region of the hand when performing intensive sustained 

gripping tasks with the JAMAR dynamometer.  A cushioning wrap, similar to those used 

to wrap tennis rackets, was added to the dynamometer/hand interface to help reduce the 

pressure on the thenar.  Discomfort was also one of the variables monitored in the current  

study.      

 

Target Muscles for EMG 

 EMG signals were collected from one extensor muscle group and one flexor 

muscle group.   The flexor group selected for the current study was the extrinsic finger 

flexors, FDS and FDP.   These two muscles account for 68% of the force-generating 

capacity of the fingers (Gonzalez et al, 1997).  The FDS is the primary flexor muscle of 

focus, but because the FDP is directly beneath the FDS, surface electrodes cannot 

distinguish between them.  For the purpose of this study, any further references to the 

flexors will mean both the FDS and FDP muscles.    
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Figure 7  The experimental dynamometer and subject interface 

 

Ranney et al (1995) found that disorders in the extensors most often affected the 

ECRB and ECRL.  These two muscles, in addition to the ECU, provided 55% of the 

extensor force potential through the wrist (Gonzalez et al, 1997).  The ECU was removed 

from consideration for use in this study because it is considered more of a wrist deviator 

than a wrist extensor (Mogk and Keir, 2003).  For the purpose of this study, the ECRL 

and ECRB will be the extensor muscles of focus.     

 

 Electrodes and Skin Preparation  

 Disposable Ag-AgCl surface electrodes were used to collect the EMG signal.  In 

order to use surface electrodes, the skin must be prepared properly to reduce its electrical 

resistance and thus provide a cleaner signal to the applied surface electrodes.  The skin 

was abraded with fine steel wool and then scrubbed with rubbing alcohol above the 
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electrode sites for the finger flexors and finger extensors. (Bilodeau et al, 2003; 

Blackwell et al, 1999; Ciubotariu et al, 2004; Esposito et al, 1998; Lowery et al, 2002; 

Rainoldi et al, 1999; West et al, 1995).   

 

Equipment 

 Grip hand force was measured on a JAMAR hand dynamometer and then 

amplified using a BIOPAC Systems, Inc.’s General Purpose Transducer Amplifier (DA 

100) before being sent to a BIOPAC MP100 Workstation system (channel one).  Two 

channels of EMG (one flexor and one extensors) were amplified by Electromyogram 

Amplifiers (EMG 100C) before also being sent to the BIOPAC MP100 Workstation 

system.  The three channels were filtered before being amplified or digitized.  A National 

Instruments Data Acquisition Board PCI-6023E was used to digitize the signals for 

recording and processing using National Instruments’ LabVIEW software (V7.0, 

Austin, TX, USA).  Once recorded, the signals for each subject were burned to DVD and 

analyzed using DaDiSP software.    

 

Signal Processing 

 The EMG signal was sampled at 1000 samples per second.  To prevent aliasing, 

each EMG signal was low-pass filtered before it was digitized.  The low-pass filter was 

set to the Nyquist cut-off frequency of 500 Hz for the current sampling rate (Jurell, 

1998).  Because of low frequency noise, such as skin, electrode, and cable movements, 

the signals were also high-pass filtered (Jurell, 1998; NIOSH, 1992).  The high-pass filter 

for this experiment was set at 10 Hz creating a band-pass frequency range of 10 to 500 
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Hz, similar to many studies found in literature (Esposito et al, 1998; Lowery et al, 2002; 

Mogk and Keir, 2003; Pease and Elinski, 2003).  Several preliminary experiments 

demonstrated that 60-cycle noise was not present in the EMG channels.  The channels 

were continuously monitored for 60-cycle noise.    

 

EMG Signal Analysis    

 

As mentioned earlier, the two most popular methods of analyzing EMG are 

through monitoring changes in the frequency spectrum characteristics and RMS 

amplitude (Blackwell et al, 1999; Krivickas et al, 1998; Lowery et al, 2002; Radwin and 

Ruffalo, 1999).  The frequency spectrum, also known as the spectral density function or 

power spectrum is an estimate of the power distribution in the frequencies of the signal.  

Before the power spectrum can be calculated, the signal must be independent and 

stationary (statistical properties are time invariant) because the method of estimating the 

power spectrum is parametric.  The RUNS test, a nonparametric test, was used to 

determine if the EMG signals were ergodic (time averages completely represent the full 

ensemble) and thus could be assumed to be stationary and independent.  If a signal is not 

stationary for a given window, either the signal is not stationary or the viewing window 

(time) needs to be increased to show any underlying trends.  The expected viewing 

window for this experiment was one second.  If the EMG signals were not stationary 

during for this window size, the window would be increased a second at a time until 

either an appropriate window size was found or the signal was deemed non-stationary.  

Once the signals were shown to be ergodic, the power spectrum was calculated.            
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Spectral Analysis Methods 

The frequency spectrum of the EMG can be analyzed through the ratio of high to 

low frequencies (HLR), median (MPF) and mean power frequency (MnPF), peak 

frequency, and zero crossings.  When fatiguing activities are performed by a muscle, the  

amplitude of the high frequency components of the power spectrum start to decrease and 

the low frequency components increase (Blackwell et al, 1999; Dimitrova and Dimitrov, 

2003; Elfving et al, 1999; Esposito et al, 1998; Hummel et al, 2005; Jurell, 1998; Lowery 

et al, 2002; Moritani et al, 1986a; Moritani et al, 1986b; NIOSH, 1992; Petrofsky, 1981).   

HLR is a ratio of the high frequencies to the low frequencies and is sensitive to 

power shifts, but is also too sensitive to the shape of the spectrum curve.  Another 

problem with HLR is that the high and low bands are arbitrary, chosen by the 

investigator, which make the ratios difficult to generalize between studies (NIOSH, 

1992).  HLR was not used in the current study. 

Zero crossings and peak frequency are two methods that analyze the raw EMG 

signal.  Zero crossings is a measure of how many times the raw EMG signal crosses 0 

volts.  Peak Frequency or spike counting is a method of counting the number of positive 

and negative spikes within the raw EMG signal.  Peak frequency and zero crossings 

increase with muscle activity, but then plateau at about 70% and 60% MVC respectively 

(NIOSH, 1992).  Neither zero crossings nor peak frequency will be used in the current 

study.       

The power spectrum measures most often used are MPF and MnPF (Krivickas et 

al, 1998; NIOSH, 1992).  The MnPF is the average of all frequencies within the power 

spectrum and the MPF is the frequency at which 50% of the frequencies are distributed 
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on either side.  Because the MPF is not an average, but the middle frequency, it is less 

sensitive to noise compared to MnPF (Jurell, 1998; NIOSH 1992) and is usually smaller 

in magnitude (Krivickas et al, 1998).  MnPF is considered by some studies to be more 

reliable than MPF (Hary et al, 1982).  As the high frequency components are reduced in 

the power spectrum, the MnPF and MPF shift towards the lower end of the spectrum and 

can be graphed over time to measure fatigue (Bilodeau et al, 2003; Elfving et al, 1999).  

The slope of the graph shift is usually linear (Pease and Elinski, 2003) with intensity of 

exertion being the dominant factor for the rate of change (Lowery et al, 2002; NIOSH, 

1992) and thus more intense exertions have a stepper slope than less intensive exertions.     

The intrasubject reliability for MPF has been called “excellent,” but the 

intersubject reliability contains more variability (Krivickas et al, 1998).  Inter subject 

variability may be in part caused by different muscle fiber type contents.  Muscles with 

more type II (fast twitch) muscle fibers have a higher initial median power frequency and 

decrease more rapidly than type I (slow twitch) muscle fibers (Bilodeau et al, 2003).  

Even though spectrum analysis allows investigators to study LMF, the recovery of the 

spectrum does not coincide with the physiological recovery of the muscle (NIOSH, 

1992).     

MnPF slope values were calculated immediately following each treatment during 

a final sustained 100% MVC contraction.   MnPF was graphed against time to calculate 

the slope of the fatiguing exertions.   

The initial mean power frequency (IMnPF) will be calculated as the y- intercept of 

the regression line used to calculate the slope of the MnPF during the normalization 

session immediately preceding each treatment (Krivickas et al, 1998).  It should be noted 
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that IMnPF is an estimation of the starting MnPF value and thus would not be affected by 

the treatments.  Comparing pre treatment IMnPF provides an internal validity check 

because there should not be a significant difference between IMnPF values for different 

treatments.  IMnPF values calculated at the beginning of each treatment were also 

compared to IMnPF values calculated immediately following the treatments to compare 

any significant loss in IMnPF value.   

 

RMS 

Each experimental treatment (see Treatment section for a further description) 

contained two different contractions of varying intensity and duration.  Treatments 1 

through 3 have a primary exertion of 10% MVC (textured exertion in Figures 1 through 

3) held for three seconds once during every ten second cycle.  Treatments 4 through 6 

have a primary exertion of 40% MVC (textured exertion in Figures 4 through 6) held for 

three seconds once during every ten second cycle.  For each treatment, RMS values will 

be calculated for all contractions (RMSa) and also individually for the primary (RMSp) 

and secondary (RMSs) contractions, as well as the resting periods (RMSr).   
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METHODS:  PART I I – STRAIN INDEX METHODS 

 

Comparison Calculations and Complex Strain Index Methodology   

 

Peak and Minimum Values 

The calculations for the Complex Strain Index score using the extreme values 

method are straightforward.  The Strain Index score for the peak method was calculated 

using the peak hand force as the intensity for all task exertions making the complex task a 

mono-task job.   

The Strain Index score was also calculated using the minimum hand force for all 

exertions.  Again, the intensity transformation makes the complex task job into a mono-

task job that could be analyzed by the traditional method.   

 

Average and Time-Weighted Averages  

A Complex Strain Index score will be calculated by using an average of the 

individual mono-task Strain Index scores.  Because the treatments consist of two different 

tasks, the two individual Strain Index scores were calculated independent of each other.  

The two scores were added together and divided by two (two tasks in the complex job) to 

give a Complex Strain Index score.        

For the TWA method, a Strain Index score was calculated for each task and then 

weighted for the duration of time that the worker performs the tasks.  As will be 

demonstrated below, time weighting presents a problem for Complex tasks analysis.  

With a complex tasked job, a worker performs several different tasks for the duration of 
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the workday.  A worker will perform task A for eight hours and also perform task B and 

C during those same eight hours.  In this case, the total time (τT) is equal to eight hours, 

but so are the total exertion times of task 1 (τ1), task 2 (τ2), and task 3 (τ3) because each 

task is performed for the whole eight hours.  Equation 1 shows the method of calculating 

the TWA Complex Strain Index score. 

 

Equation 1 TWA Complex Strain Index score Calculation 

T

NN

TT
TWA

SISISISI
τ

τ
τ

τ
τ

τ *...** 2211 +++=  

Since τT  = τ1 = τ2 = … = τN  

Then 

NTWA SISISISI +++= ...21  

 

 Because the task times are all equal to each other as well as to the total time, the 

“time weighting” actually drops out of the equation and the TWA method is reduced to a 

simple summation.  Because the time weighting is removed from the equation, the 

current method will be referred to as the unadjusted sum.  

 

Duration Adjusted Sum 

The unadjusted sum does not take into account the loss of recovery time from the 

first task and is removed when the second task is added to the job.  Suppose a worker’s 

job contains two tasks, A and B.  Task A is performed once every ten seconds and lasts 

for three seconds (30 percent duration).  Task B is also performed once every ten 
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seconds, but lasts for two seconds (20 percent duration).  If these two tasks were 

combined, then the Duration of Exertion task variable would be equal to 50 percent.  

Since the Duration of Exertion task variable relies on recovery time (the amount of time 

the worker is not performing any tasks) to help the worker recover from the previous 

exertion, any additional work performed reduces recovery time.  By introducing task B 

into a job containing task A, the recovery time for task A has been reduced by 20 percent.  

This example does not grant task B any recovery time, which normally would have to be 

considered.  The Duration of Exertion task variable can be adjusted to take into account 

the loss of recovery time to task A, as well as to task B.  The standard method of 

calculating an unadjusted sum also does not account for the increased frequency of 

adding additional tasks.  There are numerous ways to incorporate the loss of recovery 

time and frequency into the Strain Index calculation, but the following method was used 

in calculation of the Complex Strain Index score and will be referenced as the duration 

adjusted sum.  If the job in the current example were a mono task job, the calculation for 

Duration of Exertions would be (tA + tB) / tT where tA is the total time of the exertions in 

Task A, tB is the total time of the exertions in Task B, and tT  is the total amount of time in 

the job cycle.  In order to integrate the loss of recovery time into the individual Strain 

Index score, each task’s Strain Index score was calculated using a reduced total time.  It 

was assumed that each task receives an equal amount of recovery time, so the total time, 

tT , was divided by the number of tasks within the job.  The individual or mono-task 

Duration of Exertions were calculated using the reduced time (tR).  The proposed method 

of calculating the Duration of Exertion Task Variable would be tA / tR and tB / τR.  Using 

the example job above, the Duration of Exertion for task A would be 60 percent (three 
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seconds divided by five seconds (τR = 10 seconds divided by two tasks)) and the Duration 

of Exertion for task B would be 40 percent (two seconds divided by five seconds).  The 

modified Duration of Exertions was used to calculate the individual Strain Index scores 

for both task A and task B.  Equation 1 was then used to calculate the adjusted sum 

Complex Strain Index score.  

 

Complex Strain Index Equations  

  In order to calculate a Complex Strain Index score, new equations are needed to 

account for the additional stress placed on the DUE by the additional work.  Not only 

must the equations reflect this additional stress, but they must be internally consistent.  If 

the Complex Strain Index equations calculate a score for a job containing two different 

tasks that can be combined into a single mono-task job, the score for the combined mono-

task job should be the same as the complex job.  A method for calculating a Complex 

Strain Index score was developed by one of the original Strain Index authors that meet 

these criteria (referenced as the Complex method), but the equations have never been 

published or validated.  It should be pointed out that the Complex method was based on 

the Composite Lifting Index in the Revised NIOSH Lifting Equation.  The variables for 

the equation are defined as the following:         

SIj = Strain Index score for jth task 

SIR = Complex Strain Index Redundancy 

Dj  = Percent Duration of Exertion for the jth task 

Fj  =  Frequency of Exertion for the jth task 

MIj  =  Intensity of Exertion Multiplier for the jth task 



32 

MDj  = Duration of Exertion Multiplier for the jth task 

MFj:  =  Frequency of Exertion Multiplier for the jth task 

MPj   = Hand/Wrist Posture Multiplier for the jth task 

MSj  = Speed of Exertion Multiplier for the jth task 

MH = Duration of Job (hours/day) Multiplier 

 

The preliminary Complex Strain Index method uses several steps to calculate the 

score.  The first step involves calculating the Strain Index scores for each task separately 

and independently of any other tasks in the job using the original published method or 

one of the above mentioned continuous methods.  Once calculated the Strain Index scores 

are rank ordered by highest score.  The highest Strain Index score is the base score.  The 

Complex Strain Index score must be greater than the base score because any additional 

tasks only add to the strain of the DUE.  Once the base score has been established, the 

additional strain must be calculated.  The second Strain Index score in the rank order (the 

second largest Strain Index score) is recalculated using Equation 2.    

 

Equation 2 

22222 ***** MHMSMPMFMDMISI ccC =  

Where:  

 MDC = Multiplier for (D1 + D2) 

 MFC = Multiplier for (F1 + F2) 

 

 The second step involves calculating the Strain Index Redundancy (SIR).  The 

new calculation for the second Strain Index score counts some of the stain applied to the 
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DUE twice and must be removed from the Composite Strain Index score.  SIR is 

calculated by Equation 3. 

 

Equation 3 

111112 ***** MHMSMPMFMDMISI R =   

 The third and final step involves calculating the Complex Strain Index score, 

which is calculated by Equation 4. 

 

Equation 4 

RCC SISISISI −+= 21   

  

Continuous Strain Index   

 

 As with all good tools, the Strain Index is continuously evolving to become a 

better analysis tool.  The current project is an example of this evolution.  Another project 

that will aide in the evolution of the Strain Index is finding a way to calculate the Strain 

Index using continuous variables as opposed to the current categorical variables.  Under 

the current method of calculating the Strain Index, if a worker performs a task with a 

Duration of Exertion of 12 percent, then that worker has the same Strain Index score as a 

person who does the identical job, but performs the task with a Duration of Exertion of 

25 percent.  Physiologically and biomechanically, these two tasks apply different levels 

of stress to the DUE and the Strain Index should reflect the difference in the Strain Index 

score.  The original authors of the Strain Index have hypothesized several different 

methods of calculating a continuous Strain Index score, but no method has been officially 

adopted, published, or validated.  For the purpose of the current experiment, two different 
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methods will be used to calculate a continuous Strain Index score and then used to 

calculate a Complex Strain Index score.  The first formula, called SIA, was calculated by 

Equations 5 through Equation 9.  The task variables Speed of Work and Hand/Wrist 

Posture will remain categorical and calculated according to the published guidelines 

(Moore and Garg, 1995). 

 

Equation 5 Intensity of Exertion calculation for SIA      

IA= 0.0006 * (%MVC)2 + 0.092 * (%MVC) + 0.2582 

Equation 6 Duration of Exertion calculation for SIA      

DA = 0.029 * (% Duration) + 0.41 

Equation 7 Frequency of Exertion calculation for SIA      

FA = 0.1 * (Efforts per minute) + 0.3 

Equation 8 Duration of Task per Day calculation for SIA 

DTA = 0.0014 (hours worked)3 – 0.033 (hours worked)2 + 0.3 (hours worked) 

Equation 9 Continuous Strain Index score calculation for SIA   

SIA =  IA * DA * FA * DTA * Posture Multiplier * Speed of Work Multiplier 

  

The second method that was used to calculate a continuous Strain Index score, 

SIB, is listed in Equations 10 through Equations 14.  Once again, Hand/Wrist Posture and 

Speed of Work were calculated according to the published guidelines (Moore and Garg, 

1995).    
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Equation 10 Intensity of Exertion calculation for SIB      

IB = (%MVC / 20)1.6  

Equation 11 Duration of Exertion calculation for SIB      

DB = 0.033 * (% Duration)  

Equation 12 Frequency of Exertion calculation for SIB      

FB = (Efforts per minute) / 8 

Equation 13 Duration of Task per Day calculation for SIB 

DTB = 0.361 * LN (2 * hours worked) 

Equation 14 Continuous Strain Index score calculation for SIB   

SIB = IB * DB * FB * DTB * Posture Multiplier * Speed of Work Multiplier 

 

Variable Selection 

 

Once the treatments were administered and the results calculated, variables must 

be selected for inclusion in Part II of the study that would help evaluate the method of 

calculating a Complex Strain Index.  Variables included showed a treatment effect and 

made rational sense.  For example, IMnPF could show a treatment effect by random 

chance, but since IMnPF was recorded before the treatments were administered, they 

could not be influenced by the treatments and thus would not make sense for inclusion.  

If variables are highly correlated with each other, only one was selected to compare with 

the Strain Index models.    
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Comparison of Methods 

 

Table 2 lists each method of calculating the Complex Strain Index score and the 

expected score for each experimental treatment.  To calculate the Strain Index score, 

Table 2 uses the categorical method the Strain Index, which involves using the 

multipliers outlined in the original Strain Index article (Moore and Garg, 1995).  Table 3 

and Table 4 use the SIA and SIB methods, respectively, to calculate the continuous Strain 

Index score.  The Strain Index methods were correlated with the subject variables to 

determine how well each method fit the data.   

For a Complex Strain Index method to be considered an acceptable fit:  (1) the 

method must have a high correlation with the subject variables (R2 above a 0.7), (2) the 

Complex Strain Index score for a job with several tasks of varying intensity must not 

exceed the Strain Index score of the same job if it were calculated as a mono-task job 

with the intensities for each task were set to the peak values, (3) a Complex Strain Index 

score can not be lower than the highest mono-task Strain Index Score calculated 

independent of the other tasks in the job, and (4) the Complex Strain Index score must be 

equal to the mono-task Strain Index score for mono-task jobs.    
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Table 2 Experimental treatments and the expected value of the Complex Strain Index 
score using the categorical method  

 

 

 
Table 3 Experimental treatments and the expected value of the Complex Strain Index 
score using the SIA continuous method  

Treatment 

Method T1 T2 T3 T4 T5 T6 
SI Average 0.30 0.38 0.61 0.86 0.95 1.17 
Unadjusted Sum 0.59 0.64 1.21 1.72 1.89 2.34 
Adjusted Sum 0.94 1.28 1.81 2.84 3.18 3.71 
SI Peak 0.78 1.07 3.10 3.10 4.24 3.10 
SI Minimum 0.78 1.07 0.78 0.78 1.07 3.10 
SIA Complex 0.78 1.07 1.40 1.91 2.20 3.10 

 

 
Table 4 Experimental treatments and the expected value of the Complex Strain Index 
score using the SIB continuous method  

Treatment 

Method T1 T2 T3 T4 T5 T6 
SI Average 0.04 0.06 0.13 0.29 0.31 0.38 
Unadjusted Sum 0.08 0.12 0.25 0.75 0.62 0.75 
Adjusted Sum 0.16 0.24 0.50 1.17 1.26 1.51 
SI Peak 0.16 0.25 1.50 1.50 2.25 1.50 
SI Min 0.16 0.25 0.16 0.16 0.25 1.50 
SIB Complex 0.16 0.25 0.33 0.66 0.75 1.50 

 

 

 

 

Treatment 

Method T1 T2 T3 T4 T5 T6 
SI Average 0.32 0.38 0.94 1.25 1.32 1.88 
Unadjusted Sum  0.63 0.76 1.88 2.5 2.63 3.75 
Adjusted Sum 0.75 1.00 2.00 3.25 3.50 4.50 
SI Peak 0.56 0.75 3.38 3.38 4.50 3.38 
SI Minimum 0.56 0.75 0.56 0.56 0.75 3.38 
SIc Complex 0.56 0.75 1.06 2.43 2.62 3.38 
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STATISTICS 

 

 The first phase of the study was to collect data on subjects’ responses to DUE 

stress caused by hand gripping tasks.  By varying the duration and intensity of exertions, 

the treatments simulate complex jobs and the data obtained can be used to examine how 

increasing the stress on the DUE affects the measured and subjective variables.  The 

effects will be used during the second phase of the experiment to evaluate previously 

mentioned methods of incorporating complex tasks into the Strain Index score 

calculation.   

By interlacing mono-task jobs and complex task jobs into the treatment scheme, 

the baseline subjective and measured variable values can be established for Strain Index 

scores that are known (mono-tasks) and then compare them to the data results from 

complex task jobs.  Once the difference between the data in the complex jobs and mono-

task jobs is known, the impact of the addition stress to the DUE can be established and 

used to evaluate different methods of incorporating the additional stress of the complex 

task into the Strain Index score.            

 

Descriptive Statistics and Data Testing 

 

The independent variables are Treatment (derived from Duration of Exertion and 

Intensity of Exertion) and Gender.  The dependent variables MVC, percent strength loss, 

subjective measures (RPEs, fatigue, discomfort, and difficulty ratings), and EMG 
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measures (MnPF slopes, RMS, and IMnPF).  To test if MVC varied by treatment session, 

an intra-subject ICC(2, 1) absolute agreement was performed. 

Descriptive statistics on the raw data will be calculated including the mean, 

median, and mode values, and the standard deviation.  This information can be used to 

inspect intrasubject variability and consistency, but most data, including MVC, RPE, and 

all EMG data will have to be normalized before it can be used for intersubject analysis.  

Calibration measurements will be taken at the beginning of each treatment session and 

used in the normalization process.  For RPE, the subjects will perform a random series of 

exertions as a percentage of their MVC and asked to report the RPE for the random 

exertion.  With the subject blind to the real MVC value, the RPE calibration measurement 

could be evaluated for inter-subject and intra-subject reliability using ICC(2,1) absolute 

agreement.  If the ICC reliability coefficient was above 0.80 for both inter-subject and 

intra-subject reliability, it was assumed that the raw RPEs did not need to be normalized 

and could be used in the analysis phase of this experiment.  For subjective data, 

descriptive statistics as well as linear trend lines and R2 values were calculated.          

 

EMG Statistics 

  

The EMG signals was checked for ergodicity using the Runs Test to determine 

the appropriate window size (the time span for each observation) for the spectral analysis.  

Spectral analysis of the EMG signal was used to calculate the MnPF.  Once the MPF was 

calculated, it was plotted against time and a least-squares regression was used to calculate 

the slope and y- intercept (Krivickas et al.  1998; Rainoldi et al, 1999).  The y- intercept of 
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the MnPF represents the IMnPF and the slope of the MnPF represents the rate of decline, 

also known as the fatigue rate measured in hertz per second.  A paired t-test was used to 

determine if there is a significant difference between pre and post treatment MnPF 

signifying if subjects fatigued during all treatments.   

 

Experimental Design 

 

The experiment used MANOVA to analyze gender, treatment and their 

interaction, with the null hypothesis of mean equivalence.  The null hypothesis for gender 

was expected to be accepted, while rejected for treatment.  Post hoc testing (Fisher’s 

LSD) was used to determine treatment differences and these differences were then used 

to determine which model best describes the strain caused by the Complex Tasks.  

Contrast testing will be used to evaluate the two extreme calculation methods.   

Each of the Complex Strain Index model correlated with the dependent variables.  

Each model was then evaluated on how it fits each dependent variable.  The experimental 

design, with a significance difference level of alpha equal to 0.05, has a row effect Power 

of 1, a column effect Power of 1, and an interaction effect power of 1 based on the Root 

Mean Sum of Squares Estimate calculated using data collected in a previous experiment. 
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PRELIMINARY DATA 

 

In order to insure that the proposed experiment provided the results needed to 

answer the research questions, preliminary data was gathered.  The first question that was 

answered was “is the equipment working correctly?”  This includes proper calibration of 

the hand dynamometer and the EMG leads, stability of the acquisition software, checking 

the data storage, as well as verifying that the data analysis programs are providing 

accurate and precise results. 

 

Hand Dynamometer 

 

The first step was to calibrate the hand dynamometer.  A work bench was 

constructed to hold the hand dynamometer such that calibrated weights could be hung 

from the gripping handle.  The analog pressure gauge was adjusted to reflect the correct 

amount of pressure corresponding to the weights added to the handle (i.e. if 20 pounds of 

weight was added to the dynamometer, then the gauge read 20 pounds of pressure).  Once 

the analog pressure gauge was calibrated, the voltage created by the pressure transducer 

was measured and graphed against the weight applied to the dynamometer.  Figure 8 

shows a graph of the calibration curves of the dynamometer over several days.   
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Figure 8  Dynamometer voltage calibration curves measured two times daily for three  
days over a period of 11 days 

            

All of the sampled calibration curves are linear with R-squared values above 0.99.  

The graph is scaled to 10 volts because the National Instruments (NI) data acquisition 

card (daq) has a resolution of plus or minus 10 volts.  Because negative pressure cannot 

exist on the dynamometer, the graph is only scaled in the positive direction.  The gain 

cannot be increased to take advantage of a larger percentage of the scale because of 

saturation problems (the voltage exceeds the maximum of ten volts).   

Even though the dynamometer has shown stability over 11 days, the 

dynamometer was recalibrated before each subject to ensure accuracy.  In a previous 

experiment, years prior, the dynamometer developed a slow leak due to improper 

maintenance.  This leak was not discovered for several days.  Two subject sessions had to 
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be repeated due to the error introduced by the leak in pressure.  The leak previously 

experienced is an example of reasons why the dynamometer was calibrated before each 

subject session.   

 

EMG Gain Settings 

 

The EMG signals were tested to determine the proper gain settings as well as the 

proper filter settings.  Several different gain settings were tested Figure 9 and Figure 10 

show gain settings of “1000” and “2000” respectively.  The gain settings are in 

quotations because, at the moment, the equipment to verify the accuracy of the labeled 

gain states on the amplifiers has not been found.  It is believed, due to previous research 

that the gain states listed above are overestimating the true value of the gain states they 

represent.   
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Figure 9  A 100 percent MVC hold for three seconds using 1000 times gain of the  

extensors. 
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Gain of 2000  
Figure 10  A 100 percent MVC hold for three seconds using 2000 times gain of the  
extensors. 
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Figures 9 and 10 are scaled between +/- 4000 because a 12-bit daq card is being 

used to acquire the data.  This means that the resolution of the card is +/- 212 or +/- 4096.  

To get meaning out of what the y-axis means (the correct voltage), the proper scaling 

factor must be known.  For the moment, the y-axis is primarily being used for magnitude 

of change and not to gather the precise muscle voltage changes.  The difference between 

Figure 9 and 10 is the gain setting.  Figure 10 uses much more of the y-axis with no 

points of saturation.  Other options for gain settings are 5000, which has major saturation 

issues and 500, which has a smaller resolution than the gain of 1000 (Figure 9).  As seen 

in Figure 10, a gain state of 2000 was selected for this experiment.   

  

Expected Results 

  

A test subject performed a 100% MVC exertion for ten seconds.  The results were 

analyzed using the DaDiSP software.  Figure 11 shows the graphed spectral shift from 

the first second of the hold to the tenth second. 
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Spectral Shift of the Extensors
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Figure 11  The spectral shift from the first second of a 100% MVC hold to the tenth  

second. 

 

As can be seen in Figure 11, the tenth second shows an increased amount of 

energy in the lower frequency bands compared to the first second, which is what is 

expected from literature (Bilodeau et al, 2003; Elfving et al, 1999).  Literature also states 

that the MnPF can be graphed over time and the slope should be close to linear (Lowery 

et al, 2002; Moritani et al, 1986a; NIOSH,  1992; Pease and Elinski, 2003).  As Figure 12 

shows, this is the case in the current study. 
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Figure 12  The MnPF for extensors and flexors are graphed for a ten second 100% MVC  
hold.   

 

The testing protocol calls for subjects to use intermittent holds for durations of 

one or three seconds with a testing period of an hour.  A preliminary test was performed 

with a subject performing a one second 60% MVC hold, four second rest, three second 

60% MVC hold, and rest for two seconds.  The subject could only perform this task for 

thirty minutes.  Another subject was asked to perform a one second 60% MVC hold, four 

second rest, three second 40% MVC hold, and two second rest.  The test was completed 

by repeating the hold and rest cycle for an hour.  The MnPF data from the first test was 

compared to the second test.  Since the first test could not be completed (run the complete 
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60 minutes), the second test was truncated down to thirty minutes.  Figure 13 shows a 

comparison between the MnPF of the flexors in test one and test two.   
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   Figure 13  A comparison between the flexor MnPF of test one and test two. 

 

As one would expect, the slope of the harder test (test one) is steeper than the 

slope of the easier test (test two).   
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RESULTS:  PART I 

 

Subject Data   

 

All 24 subjects (12 men and 12 women) completed each of the six treatments for 

a total of 144 treatment sessions.  Subjective data for all 144 treatment sessions were 

recorded and analyzed.  Due to unexpected noise and filter problems, three EMG 

treatment records could not be completely analyzed.  Some EMG data was available for 

each of these three records and was included in the analysis.   

The mean age of male subjects was 26.8 (22 – 37) years and 24.6 (23 – 28) for 

females.  Table 5 further describes the study population.  

 
Table 5  Information on study population 

  Male Female     
  Number Percent Number Percent Total Total Percent 

Subjects 12 100% 12 100% 24 100% 
Minority 4 33% 3 25% 7 29% 

Left Handed 2 17% 1 8% 3 13% 
College Graduates 10 83% 12 100% 22 92% 

 
 
 
MVCs and Percent Strength Loss 

 

Pre treatment MVCs are shown in Table 6 by gender.  Intra-subject pre treatment 

MVC had a correlation coefficient of 0.94.  Percent strength loss by gender and treatment 

can be seen in Figure 14 and is further broken out in Table 7.  Treatment 1 had a negative 

average percent strength loss for males.  This means that the male subjects gained 

strength (had a higher 100% MVC) at the end of the treatment as compared to the start of 
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the treatment.  Percent strength loss was the only variable that saw an interaction effect 

between gender and treatment (p < 0.05).  Because no other variable had a significant 

gender effect, gender was dropped as a factor from the analyses of all other dependent 

variables.     

 

Table 6  Descriptive statistics of pre and post treatment MVCs. 

  Male 
  Mean Median Mode Max  Min Stdev 

Pre MVC (kg) 43.2 42.1 40.6 66.6 32.6 7.5 
  Female 
  Mean Median Mode Max  Min Stdev 
Pre MVC (kg) 26.2 24.8 22.3 48.5 14.6 8.2 
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Figure 14  Strength loss by gender and treatment. 
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Table 7  Percent strength loss by treatment separated by gender 
  Male 

  Average Max Min  CI 95% 
Treatment 1 -6.10% 7.90% -16.10% (-13.7%, 1.4%) 
Treatment 2 4.30% 21.00% -11.80% (-3.2%, 11.8%) 
Treatment 3 3.80% 21.40% -18.30% (-3.7%, 11.3%) 
Treatment 4 23.40% 53.90% 0.30% (15.9%, 30.9%) 
Treatment 5 33.80% 53.00% 8.80% (26.3%, 41.3%) 
Treatment 6 27.60% 48.50% 6.20% (20.1%, 35.1) 

  Female 

  Average Max Min  CI 95% 
Treatment 1 5.40% 27.10% -18.90% (-2.2%, 12.9%) 
Treatment 2 7.10% 38.90% -16.50% (-0.4%, 14.6%) 
Treatment 3 15.90% 36.40% -8.20% (8.4%, 23.4%) 
Treatment 4 13.00% 31.10% -0.40% (5.5%, 20.5%) 
Treatment 5 26.50% 45.50% 4.20% (19.0%, 34.0%) 
Treatment 6 31.60% 50.70% 7.20% (24.1%, 39.2%) 

 

 
Subjective Measures 

 

 Figures 15 - 19 show the average RPE, hand and forearm fatigue, and hand and 

forearm discomfort for each five minute interval by treatment.   

R2 values of the RPEs show a linear increase for RPE throughout the hour of each 

treatment.  Treatments 1 – 3 have very similar slopes as do treatments 4 – 6.  These 

grouping are important because treatments 1 – 3 and 4 – 6 have the same primary 

exertion and vary due to their secondary exertion. 

Table 8 presents the results from the RPE inter and intra-subject normalization 

ICCs.  Because the results show a correlation coefficient above 0.80 for both inter and 

intra-subject variability, it is assumed that the raw RPE scores recorded are representative 

of the actual RPE scores and do not need to be normalized.   
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Figure 15  Average RPE in five minute intervals by treatment.  
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Table 8  ICC scores for inter and intra-subject variability in RPEs. 
  ICC Lower CI Upper CI 

Inter Subject    

 Consistency 0.92 0.90 0.94 

 Absolute Agreement 0.88 0.84 0.91 

     

Intra-subject    

 Consistency 0.93 0.92 0.94 

  Absolute Agreement 0.93 0.92 0.94 
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Figure 16  Average hand fatigue in five minute intervals by treatment  
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Figure 17  Average forearm fatigue in five minute intervals by treatment. 
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Figure 18  Average hand discomfort in five minute intervals by treatment. 
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Figure 19  Average forearm discomfort in five minute intervals by treatment. 
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Fatigue and discomfort subjective measures also show a linear increase over time.  

Hand fatigue and hand discomfort parallel RPE’s slope grouping of the primary 

exertions.  Significant differences between treatments were found for all subjective 

measures (p < 0.01). 

Figures 20 - 24 show the average maximum and minimum RPE, hand and 

forearm fatigue, and hand and forearm discomfort values by treatment.  The max and min 

average values are displayed on the graphs so the average change for each treatment can 

be seen.  Solid lines mark the Fisher’s LSD homogeneous subsets for maximum values.  

The minimum value Fisher’s LSD homogeneous subsets are designated by dotted lines.   

During each hour-long treatment, if a subject reported fatigue/discomfort at any 

time interval, it was counted as a response for that time interval for that subjective 

variable (hand fatigue, forearm fatigue, hand discomfort, or forearm discomfort).  The 

maximum number of intervals was 288 per-treatment per-variable (24 Subjects x 12 five-

minute intervals).   Subjects could report several locations of fatigue or discomfort within 

the same interval, so the total number of reports per treatment could be greater than the 

maximum number of intervals.  Tables 9 and 10 show the frequency and location of 

fatigue in the hand and forearm respectively, as reported by subjects.  Tables 11 and 12 

show the frequency and location of discomfort in the hand and forearm respectively, as 

reported by subjects.     



 

 

8.35

2.83
3.85

2.80

8.22

7.29

2.21

4.06

1.201.24

3.50

4.22

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

Treatment 1 Treatment 2 Treatment 3 Treatment 4 Treatment 5 Treatment 6

Minutes

R
P

E

RPE Max RPE Min
 

Figure 20  Max and Min RPEs averaged by treatment.  Fisher’s LSD homogeneous subgroups also displayed. 
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Figure 21  Max and Min hand fatigue averaged by treatment.  Fisher’s LSD homogeneous subgroups also displayed. 
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Figure 22  Max and Min forearm fatigue averaged by treatment.  Fisher’s LSD homogeneous subgroups also displayed. 
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Figure 23  Max and Min hand discomfort averaged by treatment.  Fisher’s LSD homogeneous subgroups also displayed. 
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Figure 24  Max and Min forearm discomfort averaged by treatment.  Fisher’s LSD homogeneous subgroups also displayed. 
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Table 9  Subject reported hand fatigue by location 
Location of Response 

Treatment 
Total Number 

of Intervals with 
a Response a 

Whole 
Hand Palm  Thumb & 

Thenar Fingers  Extensor 
Side 

Total 
Number of 
Responses 

1 149 25 63 25 35 21 169 
2 168 34 76 28 58 20 216 
3 175 28 72 59 76 8 243 
4 241 20 120 62 129 5 336 
5 276 51 124 53 139 24 391 
6 248 34 115 65 140 41 395 

a Each treatment contains 12 intervals per subject for a maximum of 288 per  
treatment.   

 

Table 10  Subject reported forearm fatigue by location 
Location of Response 

Treatment 
Total Number of 
Intervals with a 

Response Flexors Extensors 

Total number of 
Responses 

1 108 87 52 139 
2 157 85 72 157 
3 129 100 83 183 
4 181 133 132 265 
5 217 177 125 302 
6 241 166 162 328 

 
 

 
Table 11  Subject reported hand discomfort by location 

Location of Respons e 
Treatment 

Total Number 
of Intervals with 

Responses  
Whole 
Hand Palm  Thumb & 

Thenar Fingers  Extensors 
Side 

Total 
Number of 
Responses 

1 138 2 68 39 73 22 204 
2 140 0 45 55 106 29 235 
3 210 18 48 82 87 41 276 
4 241 18 87 75 182 51 413 
5 260 24 73 97 158 37 389 
6 262 8 108 134 185 21 456 
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Table 12  Subject reported forearm discomfort by location 
Location of Responses 

Treatment 
Total Number of 
Intervals with a 

Response Flexors Extensors 

Total number of 
Responses 

1 90 54 53 107 
2 78 44 61 105 
3 111 75 84 159 
4 140 98 95 193 
5 165 113 108 221 
6 160 81 123 204 

 

 
The average Difficulty Rating and its confidence interval (95%) for each 

treatment is shown in Figure 25 along with Fisher’s LSD homogeneous subsets.  Figure 

26 shows average RPE, Difficulty Rating and maximum RPE per treatment.   
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Figure 25  Average Difficulty Rating for each treatment with Fisher’s LSD 
homogeneous subsets.   
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Figure 26  Difficulty Rating and RPEs averaged over each treatment 

 

EMG Measures 

 

 Table 13 shows the results from the Runs Test.  Because the observed values do 

not significantly differ from the expected values, a one second window was used.  The 

Runs Test demonstrates ergodicity and thus the EMG signals were assumed to be 

independent and stationary.  Figure 27 shows the MnPF slope and 95% confidence 

intervals for the pre treatment  normalization session.  For the pre treatment session, 

MnPF slope was not significantly different between treatments (p > 0.05) for either the 

flexors or extensors, which was expected since the treatments had not been administered 

at this point.  Figure 28 shows the MnPF slopes and 95% confidence intervals for the post 
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treatment session for each treatment.  Differences in MnPF were not significant between 

treatments (p > 0.05) for either the flexors or extensors during the post treatment sessions, 

but a paired t-test showed a significant different between pre and post MnPF slope (p < 

0.01) demonstrating fatigue had occurred. 

 

Table 13  Runs Test results from a random sample of treatments 
One Second Window 

Number of Runs in 
Treatment a Subject # Sample n n/2  α = 0.975 

T1 T2 T3 T4 T5 T6 
α = 0.025 

2 10 5 2 5 5 4 5 7 5 9 
7 10 5 2 5 4 5 5 5 5 9 

12 10 5 2 3 5 5 5 5 5 9 
16 10 5 2 5 6 5 5 5 5 9 
20 10 5 2 5 7 7 5 5 5 9 
24 10 5 2 5 4 5 5 5 5 9 

a  Number of runs for all samples for all treatments are between the values for  
α0.975 and α0.025.  Results demonstrate ergodicity for a one second window. 
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Figure 28  Post treatment MnPF slopes and confidence intervals for the flexors and 
extensors. 
 

 IMnPF values recorded in the pre and post treatment normalization 

sessions are shown in Figures 29 and 30 for the flexors and extensors respectively.  The 

IMnPF values are not significantly different between treatments (p > 0.05) for either the 

pre or post treatment sessions.  Figure 31 shows an example of the average post and pre 

treatment IMnPF values for Treatments 2 and 6 with their respective MnPF slopes.  The 

graph visually demonstrates the lack of significant difference in treatment, but shows the 

increase in slope due to fatigue.  
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Figure 29  IMnPF pre and post treatment values for the flexors 
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Figure 30  IMnPF pre and post treatment values for the extensors 
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 Figure 31  The IMnPF and MnPF slopes of Treatments 2 and 6 
 

Normalized RMS values were calculated for all contractions (mixed primary and 

secondary), primary and secondary contractions (independently), and during the rest 

period for the flexors and extensors.  No RMS values significantly differed (p > 0.05) 

over time indicating that RMS did not show fatigue.  RMSa flexor and extensor values for 

the fifth and sixtieth minutes are shown in Figures 32 and 33 respectively.  Treatment 4 is 

higher than Treatment 5 which shows the drawback of using RMSa.  Treatment 5 has a 

10% MVC intensity exertion every seven seconds that lasts for three seconds where 

Treatment 4 only has a 10% MVC intensity exertion every nine seconds that lasts for one 

second.  The extra two seconds per ten second cycle heavily skews Treatment 5’s average 

because contraction time is equal for the greater intensity primary exertion and the lighter 

intensity secondary exertion.  Treatment 4’s average sees a 3 to 1 ratio of high intensity 
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contractions (40% MVC) to light exertions (10%), which is one reason the primary and 

secondary exertions are analyzed separately in the following pages.  This same problem 

is not seen in Treatments 1 and 2 because the primary and secondary exertions are of the 

same intensity.   

RMSP flexor and extensor values by treatment are shown in Figures 34 and 35 

respectively.  Figures 36 and 37 show flexor and extensor values by treatment for RMSS. 

Figure 38 shows the average RMSR values.   
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Figure 32  RMSa flexor values for the fifth and sixtieth minutes 
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Figure 33  RMSa extensor values for the fifth and sixtieth minutes 
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Figure 34  RMS primary contraction for the fifth and sixtieth minute for the flexors by 
treatment 
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Figure 35  RMS primary extensor contractions for the fifth and sixtieth minute by 
treatment 
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Figure 36  RMSs flexor contractions for the fifth and sixtieth minute by treatment 
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Figure 37  RMSs extensors contractions for the fifth and sixtieth minute by treatment 
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Figure 38  Average normalized RMS values for the Rest periods for the flexors and 
extensors.
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RESULTS:  PART II 

 

Variable Selection 

  

Table 14 shows the correlation matrix of the subjective variables and percent 

strength loss.  As evident in the correlation significance, all subjective variables and 

percent strength loss are significantly correlated.  Figure 39 further demonstrates the 

correlation of the subjective variables by plotting Difficulty Rating, max RPE, hand and 

forearm fatigue, and hand discomfort by treatment.  Because of the high correlation 

values and the desire not to duplicate results, only Difficulty Rating was used in the 

comparisons of the Strain Index Methods.  Difficulty Rating was chosen because it 

represents the whole hour of the treatment and instead of a single point.     

MnPF and IMnPF for the post treatment sessions did not show statistically 

significant differences (p > 0.05) between treatments and were not used to evaluate the 

proposed Strain Index Methods.  The RMS varied between treatments, but not over time, 

signifying fatigue.  Force differences were expected between treatments because the 

percent MVCs changed between treatments.  Because the RMS values did not show a 

change in fatigue levels between treatments, RMS was not used to evaluate the Complex 

Strain Index methods.   

 

 

 



 

 

Table 14  The Correlation matrix of subjective variables and percent strength loss 

Variable 
Strength 

Loss 
Difficulty 
Rating 

Hand 
Discomfort 

Hand 
Fatigue 

Forearm 
Discomfort 

Forearm 
Fatigue 

Max 
RPE 

Strength Loss 1 0.637 0.617 0.526 0.274 0.608 0.660 
Sig - <.01 <.01 <.01 <.01 <.01 <.01 

Difficulty Rating 0.637 1 0.696 0.592 0.397 0.708 0.912 
Sig .000 - <.01 <.01 <.01 <.01 <.01 

Hand Discomfort 0.617 0.696 1 0.677 0.537 0.956 0.739 
Sig <.01 <.01 - <.01 <.01 <.01 <.01 

Hand Fatigue 0.526 0.592 0.677 1 0.560 0.655 0.595 
Sig <.01 <.01 <.01 - <.01 <.01 <.01 

Forearm 
Discomfort 0.274 0.397 0.537 0.560 1 0.543 0.356 

Sig <.01 <.01 <.01 <.01 - <.01 <.01 

Forearm Fatigue 0.608 0.708 0.956 0.655 0.543 1 0.724 
Sig <.01 <.01 <.01 <.01 <.01 - <.01 

Max RPE 0.660 0.912 0.739 0.595 0.356 0.724 1 
Sig <.01 <.01 <.01 <.01 <.01 <.01 - 
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Figure 39  Difficulty Rating, max RPE, hand and forearm fatigue, hand discomfort by 
treatment       
 
 
   
Comparison of Complex Strain Index Methodology   

  
Categorical Method 

 Figure 40 shows the Difficulty Rating graphed against the Complex Strain Index 

Score of the treatments using the average method.  For Figure 40 and the following 

graphs, the x-axis has been set to five, which is the critical value for the Strain Index 

Hazard Classification.  Values below five are considered safe and hazardous above five.  

The reported correlation value for the average method is high, but the average method 

does not have a good distribution of Strain Index Scores.  With RPE exertions above 

seven or “very strong” on the CR-10, a Strain Index score above three is expected.  A 
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majority of subjects stated they did not think they could complete Treatments 5 and 6 for 

a two hour period.  Using the average method, Treatment 5 and 6 are considered safe 

even though subjects could not physically complete the tasks.  The average method also 

violates the requirement that a Complex Strain Index score for a mono-task job must be 

equal the Strain Index score calculated as a mono-task (as published in Moore and Garg, 

1995).  For the reasons listed above, the average method proved inadequate as a possible 

method for calculating a Complex Strain Index score.          

 

3.67

7.487.27

6.12

2.50

2.03

y = 4.57x
R2 = 0.85

Average SIc

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

Average SIc Linear (Average SIc)
 

Figure 40  Difficulty Rating correlated with the categorical Complex Strain Index score 
using the average method 
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 Figure 41 shows the Difficulty Rating graphed against the Complex Strain Index 

Score of the treatments using the minimum method.  The minimum method has many of 

the same problems as the average method.  The Strain Index score for Treatment 5 is 

0.75.  Under the minimum method, a worker could perform a job with the same attributes 

as Treatment 5 all day, every day, and the job would be considered safe.  As mentioned 

above, performing this task for two hours is not possible (given subjective responses), let 

alone for eight hours.  The minimum method has the same Strain Index score for 

Treatments 1, 3, and 4, which have very different Difficulty Ratings.  For the 

aforementioned reasons, plus a negative correlation value, the minimum method was 

dropped from further analysis of Strain Index methods.            
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Figure 41  Difficulty Rating correlated with the categorical Complex Strain Index score 
using the minimum method 
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Figure 42 shows the Difficulty Rating graphed against the Complex Strain Index 

Score of the treatments using the peak method.    The Peak method has the same Strain 

Index score for Treatments 3, 4, and 6, which have very different Difficulty Ratings.  The 

correlation value of 0.65 does not meet the criteria of 0.70.  For previously mentioned 

reasons, the peak method was dropped from further analysis.    
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Figure 42  Difficulty Rating correlated with the categorical Complex Strain Index score 
using the peak method 
 
 
 

Figure 43 shows the Difficulty Rating graphed against the Complex Strain Index 

Score of the treatments using the unadjusted sum method.    The unadjusted method has a 

high correlation value and a good variation in Strain Index Scores.  The unadjusted sum 

method violates two of the necessary criteria previously set forth for an acceptable  
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Complex Strain Index method.  The unadjusted sum method’s Strain Index score exceeds 

the peak value (when the highest intensity of all tasks is used as intensity for all tasks) 

and the unadjusted sum method does not equal the mono-task method for mono-task jobs. 

For previously mentioned reasons, the peak method was dropped from further analysis.    
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Figure 43  Difficulty Rating correlated with the categorical Complex Strain Index score 
using the unadjusted sum method 
 
 
 
 Figure 44 shows the Difficulty Rating graphed against the Complex Strain 

Index Score of the treatments using the adjusted sum method.    The adjusted method has 

a high correlation value and good variation in Strain Index scores.  As with the 

unadjusted sum method, the adjusted sum method violates the same criteria previously 
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set forth for being an acceptable Complex Strain Index method.  For previously 

mentioned reasons, the peak method was dropped from further analysis.    
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Figure 44  Difficulty Rating correlated with the categorical Complex Strain Index score 
using the adjusted sum method 

 
 
 
Figure 45 shows the Difficulty Rating graphed against the Complex Strain Index 

score of the treatments using the complex equation method.  The complex method has a 

high correlation value and good variation in Strain Index scores.  The complex method 

also meets all the criteria previously set forth.  The complex method is accepted as a 

possible method of calculating a Complex Strain Index score and will be used to evaluate 

the SIA and SIB methods.           

 



83 

 

 

3.67

7.487.27

6.12

2.50

2.03

y = 2.52x

R2 = 0.89
Complex SIc

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

Complex Equations Linear (Complex Equations)
  

Figure 45  Difficulty Rating correlated with the categorical Complex Strain Index score 
using the Complex method 
 
 
 

Continuous Strain Index Methods 

Figure 46 shows the Difficulty Rating graphed against the Complex Strain Index 

Scores of the treatments using the complex equation method and the two proposed 

methods for calculating a continuous Strain Index score.  Unlike the previous methods 

which use the categorical method, the continuous Strain Index scores are not necessarily 

bound by the critical value of five for the Hazard Classification.  Since neither continuous 

calculation methods have been validated and are both still theoretical, the appropriate 

critical value is unknown.  For this reason, the fact that SIB does not have a wide 

variation of Strain Index Score values does not immediately dismiss SIA as a suitable 



84 

 

method for calculating a continuous Strain Index score.  SIA has a higher correlation 

value than does SIB and thus seems to fit the data better than does SIB.             
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Figure 46  SIA and SIB compared by correlating Strain Index values with the Difficulty 
Rating
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DISCUSSION 

 

 Part I 

 

Subjects 

One of the strengths of this study was the subject size.  The 12 male and 12 

female subjects provided good statistical power for mean effects as well as testing for 

gender interaction.  A drawback of the study population was the narrow age distribution, 

especially for females.  A broader range in age would help in the generalizability of the 

results.    

 

Signal Analysis 

Of the 144 EMG records, only two were corrupted with noise and one 

normalization record was physically lost.  The two records that were corrupted contained 

large amounts of low frequency noise (below 30 Hz) as well as a very large 60-cycle 

spike.  The pre-amp analog filters should have removed much of this noise, but did not 

for these two records.  No other records contained 60-cycle noise, but a few contained 

low frequency noise (possibly noise artifacts) less than 10 Hz.  These signals were 

refiltered using a digital high-pass filter with a frequency cutoff of 10 Hz.   

The bipolar surface electrodes were consistently placed a fixed distance of 2 cm 

apart, but the physical placement of the surface electrodes varied a little between 

treatments and subjects.  Other studies have commented on increased variability between 

day studies due to the reapplication of electrodes (Elfving et al, 1999).  Blackwell et al’s 



86 

 

(1999) method for finding the FDS was used, along with signal verification, but this 

method might have been one of the sources of variance in the EMG signal variables.  

Temporary marks (inks or dyes) to indicate electrode placement could have been used to 

reduce variance between treatments where electrodes are removed.     

 

Measured Outcomes 

  As reported in the results section, the intra-subject MVC’s had an ICC(2,1) 

absolute agreement  coefficient of 0.94.  This agrees with the 1995 West et al study 

findings that found there is not a significant difference in intra-subject MVC between 

testing periods.  The correlation between percent MVC and RPE during the normalization 

sessions were also very high (0.88 for inter and 0.93 for intra-subject).  Subjects seem, 

initially, able to report accurately the force they are exerting for a hang gripping task.  As 

seen by the linear increase in RPEs, this discernment may be lost once fatigue and 

discomfort start to occur.       

Some studies have shown decreased MVC, as a measure of fatigue, in intermittent 

contractions as low at 10% exertion (Søgaard et al, 2003).  In the current study, males 

actually gained strength during Treatment 1.  This particular treatment might have served 

as a “warm up” for the muscles, which could account for the higher post treatment MVC.  

Both males and females showed a decrease between pre and post MVC measurements for 

Treatment 2, which is also an intermittent 10% intensity contraction.  The difference 

between Treatment 1 and 2 was the duration of recovery time (or rest time) and inversely, 

the duration of exertion.  Either one may impact the fatigue rate of a muscle.  It should be 

noted that the confidence interval for the male’s percent strength loss for the treatments 
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containing a primary contraction of 10% MVC (Treatments 1 – 3) all included negative 

values (MVC increased from pre to post treatment values).  Females also had negative 

values in their percent strength loss confidence intervals for Treatments 1 – 2, which have 

a maximum intensity of 10%.  When gender is not considered a factor, as seen in Graph 

30, there is not a significant difference (as seen in the Fisher’s LSD homogeneous 

subsets) in percent strength loss between the treatments whose primary exertion is 10% 

MVC.        

 

Subjective Outcomes 

As seen with percent strength loss, there was not a significant difference between 

Treatments 1 and 2 for any of the subjective measures (RPE, hand and forearm fatigue, 

hand and forearm discomfort, and Difficulty Rating).  The results raise a question of how 

much impact low intensity exertions have on fatigue and the overall stress placed on the 

DUE.   

In the calculation of the Strain Index (Moore and Garg, 1995), the Intensity of 

Exertion task variable drives the Strain Index score and is the only Task Variable where 

the multiplier value is a power increase between rating categories.  Treatments 5 and 6 

have different secondary exertions that differ in intensity and duration.  The results of this 

study show that there is not a significant difference between the two treatments for most 

variables analyzed.  The secondary exertion of Treatment 5 is 10% MVC for three 

seconds compared to the one second exertion of 40% MVC of Treatment 6.  Many of the 

calculation methods evaluated considered the percent change between Treatments 4 and 5 

to be smaller than the percent change between Treatments 5 and 6, which is contrary to 
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what the study variables reported (Table 22).  Rest and recovery time (absent from 

Treatment 5) may be a larger factor in the strain placed on the DUE than is accounted for 

using current Strain Index methods.      

One of the most interesting findings in the current study is the linearity of the 

subjective outcome variables, especially RPE.  Figure 14 seems to indicate a relationship 

between the primary exertion and slope.  It was expected that all subjective variables 

would plateau over time, but they remained linear.  If longer treatments had been used, a 

plateau might have occurred.  At least for RPE and the hand variables, a deviation from 

linearity would be expected in a second hour (if administered) as to the fact subjects 

would hit the maximum values of the rating scales.  Several subjects did achieve the 

maximum scale values for RPE and hand discomfort for Treatments 5 and 6.     

 

EMG Outcomes 

 Since gender was not found to be a significant factor, it was dropped in the 

analysis of EMG parameters in the current study.  Literature is mixed on a gender effect 

with some studies showing an effect (Hunter et al, 2004) and others that do not (Elfving 

et al, 1999; Krivickas et al, 1998).    

It was expected that the MnPF slope would differ between treatments, but this 

was not the result.  However, a difference was found between the pre and post treatments, 

just not between the treatments themselves.   This shows that fatigue occurred, but there 

was not a significant difference in the amount of fatigue that occurred between treatments 

according to the MnPF slope.  The method used to collect the MnPF during the pre and 

post treatment sessions might have also affected the results.  Both pre and post treatment 
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sessions used a 100% MVC exertion to measure MnPF.  It was assumed that each 

treatment would contribute a level of fatigue that would alter the fatigue rate seen in the 

end of session 100% MVC according to the intensity level of the treatment.  The 

expected results did not occur and no treatment effect could be seen in the end of session 

fatigue rate.              

 Several differences exist between the majority of the EMG fatigue studies in 

literature and the current study.  One difference was the built in rest within each 

treatment.  The majority of fatigue studies reviewed consisted of treatments comprised of 

a single intensity exertion that was held for a given duration or until a requirement was 

met.  For example subjects exert a given grip force for as long as they can maintain the 

force within 10% of the desired value.  Once the requirement is met, the study ends.  The 

current study was comprised of a series of exertions of different intensities and durations 

with built in rest periods.  These rest periods provide time for the muscle to recover from 

fatigue.  During these rest periods, blood flow removes cellular metabolism byproducts 

and re-oxygenates the muscle tissue.  One question that arises is the impact of rest on the 

recovery rate of EMG parameters.   

The treatments with a primary exertion of 10% MVC are below the intramuscular 

pressure threshold that causes ischemia.  Rainoldi et al (1999) demonstrated EMG 

parameter fatigue at 10% MVC exertion, but other studies have not (Søgaard et al, 2003).  

Even though the muscles are active, the blood flow may be adequate to prevent the 

buildup of metabolism byproducts and to replenish energy supplies, which are two 

physiological factors in muscle fatigue (Dugan and Frontera, 2000).  Duration of the 

treatment exertions may have contributed to the deviation of the findings of this study 
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from expected results.  The longest contraction was three seconds for any exertion 

followed by a two second rest.  Muscles have enough ATP to sustain a maximal 

contraction for a few seconds (Dugan and Frontera, 2000, Sherwood, 1993).  If blood 

flow can provide enough O2, the muscle fibers can rely on oxidative phosphorylation to 

supply the fuel requirement (aerobic activity) and may never have to convert to 

glycolysis and a buildup of lactic acid can be avoided.   

MnPF recovery rate may also have been a factor in why significantly different 

spectral shifts were not seen in this study.  One study of isometric sustained handgrip 

contractions (testing endurance times) showed that subjects returned to pre treatment  

values of MnPF before the end two minutes (Petrofsky, 1981).  If MnPF recovers in less 

than two minutes for a sustained 40% MVC contraction lasting longer than 100 seconds, 

than how long does it take for MnPF to recover from a three second 40% MVC 

contraction?  The Petrofsky study had two main similarities with the current study.  

Neither study showed a significant difference between MnPF and treatments, but did 

show a different in pre verses post treatment strength.          

 Many studies have shown an increase in RMS due to fatigue that was not seen in 

the current study (Blackwell et al, 1999; Dimitrova and Dimitrov, 2003; Elfving et al, 

1999; Esposito et al, 1998; Jurell, 1998; Lowery et al, 2002; Moritani et al, 1986a; 

Moritani et al, 1986b; NIOSH, 1992; Petrofsky, 1981).  Preliminary testing showed an 

increasing RMS values for 50% and 100% MVC sustained contractions (about ten 

seconds).  Neither the primary (RMSp) nor the secondary (RMSs) contractions during any 

of the treatments adhered to this fatigue pattern.  Subjects in the current study reported 

increased RPE and subjective fatigue values, but the increase was not reflected in the 
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RMS values.  As with the MPF slope, this may have to do with the rest and recovery 

periods built into each treatment.   

The RMS values were consistent with percent MVC or grip force, which also has 

been seen in other studies (Grant et al, 1994).  At least in intermittent activities like the 

current study or similar industrial settings, RMS may be a valuable tool in determining 

how much force is being applied by a subject, but may have limited use in determining 

levels of fatigue.   

The IMnPF values for the FDS are similar to the IMPF values shown by 

Blackwell et al.  IMnPF tends to be a little higher than IMPF (Krivickas et al, 1998), as 

they are in this case.  There was not a significant difference between treatments and pre 

treatment IMnPF, which is consistent with what was expected and other studies of IMPF 

and IMnPF have found (Elfving et al, 1999).   

   

Part II - Strain Index Models  

  

The adjusted sum method and the complex equations are the only two methods 

that account for recover time.  Recovery time is accounted for in the published Strain 

Index score as a byproduct of the Duration of Exertion task variable.  As in the original 

score, it was considered important for the Complex Strain Index models to account for 

recovery time lost due to additional exertions that were not accounted for in the 

individual Strain Index calculations.   

Even though the peak and minimum methods were rejected, both methods are still 

useful in estimating Strain Index scores.  By using the peak and minimum values, 
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estimation limits can be set to determine if further analysis needs to be performed.  If the 

peak method is used and the job or task is determined to be safe, then since the peak 

method overestimates the actual stress, the task can be considered safe.  If the minimum 

value method is used and the job Strain Index score is hazardous (above 5), then the job 

can be considered hazardous.  If a job is deemed hazardous by the peak method and safe 

by the minimum method, further analysis is needed to determine if the job is actually safe 

or hazardous.     

 Of the three Strain Index calculation methods (SIc, SIA, and SIB), only the 

categorical method (SIc or original method) has ever been published (Moore and Garg, 

1995) or tested for reliability and validity (Moore et al, 2001; Rucker and Moore, 2002; 

Stephens et al, 2006; Stevens et al, 2004).  Before either of the continuous calculation 

methods can be used, they must first be validated.  As can be seen in a comparison of 

Tables 2 – 4, SIB seems to be smaller in magnitude than either of the other two methods 

of calculating the Strain Index score.  For SIB to be used properly, either a scaling factor 

needs to be used (which has not yet been determined) or possibly a different critical value 

for the Hazard Classification.  Currently a Strain Index score above five is hazardous, but 

since SIB’s scores are smaller in magnitude, the critical value may also have to decrease 

to keep the same predictive validity as the published version (SIc).  Further research is 

needed to determine the appropriate critical value for SIB.        
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Future Research 

 

 One of the weaknesses of the study is the total duration of the treatments.  Since a 

large number of jobs are performed for an eight hour day, a longer treatment cycle should 

be used to improve generalizability.  Also only two Strain Index Task Variables were 

manipulated in the current study, Intensity of Exertion and Duration of Exertion.  Further 

research is needed to determine the effects of changing other Strain Index Task Variables, 

such as frequency.  Only two different intensities and durations were used in the current 

study.  Further study is needed to examine the impact of different intensities and 

durations on the subjective measures of fatigue then those used in the current study.   

 The linear trends found in RPE should be examined in further detail to determine 

if plateaus exist beyond the limits of the current study.  The linear trends can also be 

tested by using different intensities and duration than were used in the current study.   

 Additionally, more research needs to be conducted on the effects of rest breaks on 

EMG parameters.  Are EMG fatigue parameters useful in an intermittent work 

environment?  In such cases, would subjective measures more accurately describe the 

levels of localized muscle fatigue experienced?   

As seen in the results of the current study, RMS highly correlates with percent 

MVC.  RMS values were higher than their respective percent MVC values, but this could 

have been caused by the secondary exertion.  If the correlation holds true for other 

percentage values of MVC, then RMS may be able to be used in industrial settings to 

gauge force applied by a worker without having to use a pressure gauge or other tool that 

can alter the way the worker performs the task.  RMS may also be useful in determining 
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the force applied by specific muscles or muscle groups to perform a given task.  To take 

full advantage of these findings, a non- intrusive portable EMG recording device that is 

economical needs to be developed.   

Of the few methods proposed to calculate a Complex Strain Index score, only the 

complex equations met all the required criteria.  This method needs to be further 

examined to determine its predictive validity and reliability using field data.  Other 

methods may exist that have not been evaluated or considered by the current study.                  
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CONCLUSION 

 

 The results of this study show that the Treatments can be separated by subjective 

reports of fatigue and strength loss.  Fatigue was found using EMG parameters of MnPF 

slope, but no differences were found between treatments.  This may be an indication that 

EMG parameters are not as sensitive to fatigue or certain types of fatiguing actives as 

subjective measures and physical strength loss. 

According to the results shown in section II, the complex equations method (as 

calculated in the methods section) is effective for calculating a Complex Strain Index.  

Currently, the categorical calculation method is the best choice for calculating a Complex 

Strain Index score.  There are two main reasons for this recommendation.  The first is SIc 

complex equation’s correlation to the data as seen in Table 45.  The second reason for 

this recommendation is the published reliability and validity of the categorical Strain 

Index calculation method (Knox and Moore, 2001; Moore et al, 2001; Rucker and Moore, 

2002; Stephens et al, 2006; Stevens et al 2004).  The SIA and the SIB have not been 

published nor have they been validated.       
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