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ABSTRACT

Physical Layer Model Design for Wireless Networks. (August 2006)

Yi Yu, B.S., Southeast University;

M.S., Southeast University

Chair of Advisory Committee: Dr. Scott L. Miller

Wireless network analysis and simulations rely on accurate physical layer models.

The increased interest in wireless network design and cross-layer design require an

accurate and efficient physical layer model especially when a large number of nodes

are to be studied and building the real network is not possible. For analysis of upper

layer characteristics, a simplified physical layer model has to be chosen to model the

physical layer.

In this dissertation, the widely used two-state Markov model is examined and

shown to be deficient for low to moderate signal-to-noise ratios. The physical layer

statistics are investigated, and the run length distributions of the good and bad

frames are demonstrated to be the key statistics for accurate physical layer model-

ing. A four-state Markov model is proposed for the flat Rayleigh fading channel by

approximating the run length distributions with a mixture of exponential distribu-

tions. The transition probabilities in the four-state Markov model can be established

analytically without having to run extensive physical layer simulations, which are

required for the two-state Markov model. Physical layer good and bad run length

distributions are compared and it is shown that the four-state Markov model reason-

ably approximates the run length distributions. Ns2 simulations are performed and

the four-state Markov model provides a much more realistic approximation compared

to the popular two-state Markov model.
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Achieving good results with the flat Rayleigh fading channel, the proposed four-

state Markov model is applied to a few diversity channels. A coded orthogonal fre-

quency division multiplexing (OFDM) system with a frequency selective channel and

the Alamouti multiple-input multiple-output system are chosen to verify the accu-

racy of the four-state Markov model. The network simulation results show that the

four-state Markov model approximates the physical layer with diversity channel well

whereas the traditional two-state Markov model estimates the network throughput

poorly. The success of adapting the four-state Markov model to the diversity channel

also shows the flexibility of adapting the four-state Markov model to various channel

conditions.
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CHAPTER I

INTRODUCTION

Wireless network protocol design has been a very interesting topic for various re-

searchers especially since wireless LANs (Local Area Networks) have emerged as a

prevailing technology for broadband mobile wireless access. Also the demand of

high speed packet data service for the third generation mobile communication sys-

tem brings the need of protocol design over wireless links to provide better service.

The increased interests in wireless network protocol designs require an accurate and

efficient physical layer model for simulation when a large number of nodes are to be

studied and building the real network is not possible. In this chapter, the wireless

network architecture will be presented. The principle of the TCP/IP (Transmission

Control Protocol/Internet Protocol) and how the protocol affects network throughput

will be discussed. This chapter will also give a brief introduction of current commonly

used physical layer models. Finally, an overview of the dissertation will conclude this

chapter.

A. Network Architecture

To understand the relationship between wireless protocol design and physical layer

models, it is necessary to first comprehend the network architecture, which groups

the communication functions into related and manageable layers.

The journal model is IEEE Transactions on Automatic Control.
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Fig. 1. The OSI reference model

1. The OSI Reference Model

The OSI(Open Systems Interconnection) reference model was developed to serve as

a framework to facilitate the development of standards [1] [2]. It partitions the com-

munication process into the seven layers shown in Fig. 1. Each layer is connected

with a certain process that talks with a peer process on the other machine. Different

layers communicate by exchanging protocol data units(PDU), which contain protocol

control information and user information. The behavior of each layer is controlled by

the layer protocol.

It is important to notice that there is no direct communication link between each
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peer. For communication to take place, each layer attaches a header to the service

data unit (SDU) transferred from the adjacent upper layer, forms the PDU and passes

it to the next lower layer. In the mean time, each layer of the peer process extracts

the SDU from the PDU delivered from the adjacent lower layer and passes the SDU

to the adjacent upper layer. Each layer is supposed to function independently and

the details of implementation of the layers are irrelevant to the other layers. The

performance of each layer function relies on the correct execution of the tasks of

other layers function.

The application layer supports application and end-user processes. This layer

provides application services for file transfers,remote login, emails and other network

software service. The presentation layer transforms application data to the network

format and vice versa. It is intended to provide independence from different represen-

tations of application layer data. The session layer deals with sessions and connections

between applications. It manages conversations between the applications at each end.

The transport layer is responsible for end to end transfer of data between systems. In

the transport layer, error recovery schemes and flow control are available to maintain

a certain quality of service. Segmentation and reassembly can also be implemented to

match the data size of the session layer to the size of the network layer data. These

top four layers are end to end across the network while the lower three layers are

involved with peer to peer processes across a single hop.

The network layer provides functions of switching, routing, addressing, inter-

networking, congestion control and packet sequencing. The data link layer involves

transmission of frames across two nodes. It is divided into two sublayers: the Me-

dia Access Control (MAC) layer and the Logical Link Control (LLC) layer. The

MAC sublayer coordinates the transmissions from a machine on the network into the

medium. The LLC layer is responsible for transmission error recovery, flow control
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and frame synchronization. The physical layer transfers the bit stream over a com-

munication channel. The channel could be cable, copper wire, radio or optical fiber.

The physical layer also deals with the hardware required to send and receive data on

the carrier.

As we can see from Fig. 1, control is passed from one layer to the next. Each

layer works independently from one another and all will have an influence on the final

network throughput performance.

2. TCP/IP over Wireless Link

TCP/IP protocol suites refer to a set of protocols that support network administration

and maintenance. It not only includes the Transmission Control Protocol (TCP) and

the Internet Protocol (IP) but also includes other related protocols such as the User

Datagram Protocol (UDP), the Internet Control Message Protocol (ICMP), etc. The

IP component performs network layer functions and provides routing between systems

based on a four byte destination address. The IP layer is connectionless because every

packet is routed independently and it does not guarantee the packet will be delivered

to the destination or the packet will be received in sequence. The transport layer

protocols, TCP and UDP perform transport layer functions based on the best-effort

IP service.

TCP provides a connection-oriented,reliable, in-sequence and byte-stream ser-

vice between applications [3] [4]. The Internet services such as the World Wide

Web(WWW), terminal login, file transfer and mail transfer depend on the implemen-

tation of TCP and IP to supply solid application-to-application data connections.

TCP employs sequence numbering and acknowledgment (ACK) to ensure reliable

data transfer. Random intial sequence numbers are selected at the beginning of the

connection. A selective Repeat ARQ mechanism is used in TCP to perform end-to-
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end error control across a network. For each transmitted data sequence, the receiver

is expected to send an ACK after receiving it. If an ACK does not arrive within a

certain time interval, retransmission will be employed. In the TCP header, there is a

window size field which specifies the number of bytes the sender is willing to accept.

It is called the advertised window. The sender must stay within this limit. TCP uses

this field to control the flow of data and congestion.

To avoid network overloading, TCP employs a congestion control algorithm to

dynamically adjusts the congestion window according to the network state. By de-

tecting the rate at which segments are sent and not acknowledged, a TCP device can

infer the network congestion state and increase or decrease the congestion window

size correspondingly. The maximum amount of data the sender can transmit is the

minimum of the advertised window and the congestion window.

There are three phases of the congestion control algorithm during the TCP op-

eration. Fig. 2 illustrates the dynamics of the TCP congestion window during a

connection. The first phase is slow start, which is called when the algorithm starts

or restarts. In slow start, the congestion window size grows exponentially upon the

receiving of corresponding ACKs until the preset congestion threshold is met. After

the congestion window size reaches to the value of congestion threshold, a congestion

avoidance phase takes over. In this phase, the congestion window increases linearly

rather than exponentially. When TCP detects network congestion, the algorithm

enters the third phase, in which the congestion threshold is set to half of the cur-

rent window size and the congestion window is set to one. After that, the algorithm

restarts and enters the slow start phase again.

TCP assumes network congestion when an acknowledgement is not received be-

fore the time-out expires. Every time TCP detects congestion, the network through-

put is cut due to the transmission window size being decreased to one. The assumption
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of the algorithm is that the packet loss is caused by network congestion rather than

transmission errors. However, the assumption is not valid for wireless environments.

In wireless links, fading and noise become the major cause of packet loss. Trans-

mission errors can be relatively high and physical layer packet losses are more often

than in a wired network. If a packet is lost, TCP assumes it is dropped because of

congestion and slows transmission drastically. In this case, the network throughput is

reduced and the bandwidth is not used efficiently [5] [6] [7]. As a result, the statistics

of packet errors in the physical layer can affect the TCP activities and thereby affect

the network throughput.

To enhance the network performance, several improvements at the TCP layer

are proposed such as the Split-TCP approach [8] [9], Snoop TCP [10] and Fast Re-

transmission and Recovery [11] [12]. In order to design an appropriate TCP protocol

or compare the performance of different protocols for wireless environments, accurate

modeling of wireless link characteristics has to be assured in the simulations.
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3. Overview of Wireless Lan MAC Layer

The Wireless Local Area Network(WLAN) technology is defined by the IEEE 802.11

family of specifications. There are several specifications in the family: 802.11b,

802.11a, 802.11g, 802.11n, etc. The relationship of 802.11 and the OSI Model is

shown in Fig. 3. The Ethernet protocol and CSMA/CA (Carrier Sense Multiple Ac-

cess with Collision Avoidance) are used in the specifications. In addition to providing

the standard MAC layer functions to coordinate multiple accesses, the 802.11 MAC

also performs other functions to enhance communications over a wireless medium,

such as fragmentation, packet retransmission and acknowledgements. Those func-

tions are typically related to upper layer protocols.

Because on a radio link, the transceiver can not listen while transmitting as in a

wired link, CSMA/CA is used by wireless LANs. In the Ethernet, CSMA/CD(Carrier

Sense Multiple Access with Collision Detection) is used. In CSMA/CA, a station
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listens to the channel before transmitting. If the channel is found to be idle, it starts

to transmit. If the channel is busy, it waits for a random amount of time before trying

to send it again. After a packet is transmitted, the receiving station will check the

cyclic redundancy check (CRC) of the received packet and send an acknowledgment

(ACK). If the sender does not get the acknowledgment it will have to retransmit the

packet.

In a wireless LAN, MAC level retransmission is employed to detect and recover

wireless link errors so that it appears to be a reliable channel to TCP. As we know,

TCP slows down very quick by packet losses in radio links. Each time a station

receives a packet, it sends back an ACK to the transmitter. If no ACK is received,

the sender will assume the packet is lost and try to retransmit the packet (using the

normal CSMA/CA procedures). Note that the ACKs are different from TCP acks,

which belongs to a different layer function. In 802.11, typically the station transmits

the next packet only when the previous packet has been acknowledged. There is no

sliding window mechanism like in TCP to keep the protocol simple. If there is no

ACK after the preset entry of retransmission, the operation will be abandoned and

an error will be passed to the upper layers.

To decrease the probability of a packet being corrupted in a radio link, smaller

packets are used in wireless LAN protocols. Because of the relatively high bit er-

ror rate, the smaller the packet size the less probability of packet error caused by

the radio link. Since the Ethernet packets are usually longer, a fragmentation and

reassembling mechanism is added at the MAC layer. Each fragment is individually

checked and retransmitted. The transmission station is not allowed to transmit a new

fragment until it receives an ACK for the previous fragment or if the fragment has

been retransmitted too many times, the whole packet will be dropped.

Due to the retransmission and fragmentation scheme utilized in 802.11 MAC,
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the pattern of radio link errors can make distinct upper layer activities. Continuous

packet losses less than the threshold can be recovered locally without passing up to

the TCP layer. On the other hand, continuous packet losses more than the threshold

will be reported to the upper layer as an error, which will be considered as network

congestion by TCP and slows down the transmission rapidly. Even with the same

error rate, different distributions of radio link errors will result in varied network

performance. For example, suppose the MAC retransmission threshold is 4 and the

sender tries to send 100 frames to the receiver. The frame error rate is 0.1 so there

will be approximately 10 frames in error . If the 10 error frames are distributed with a

pattern of 3 frame error runs of length 3 and 1 single frame error runs of length 1, the

loss of physical layer can be fully recovered by the MAC layer retransmission scheme

and there will be no frame loss reported to the upper layer. The network throughput

will be maximized in this case. However, if the 10 error frames are distributed with

2 frame error runs of length 5, the MAC layer can not recover from the physical

layer frame error loss. The TCP layer will be informed of the packet loss and cut

down the window size or TCP congestion threshold which will cause a significant loss

of network throughput. Thus with a different distribution of the frame errors the

network performance could completely differ.

4. Physical Layer Models

The performance of a wireless network is sensitive to the operation of the physical

layer channel, where the statistics of the frame error process are intimately tied to

higher layer network performance. Setting up a real environment simulation is found

to be impractical most of the time especially when a large number of nodes are to be

studied. Also it is difficult to adjust the physical layer parameters in a real physical

environment simulation. Although simulating the equivalent baseband physical layer
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channel with the actual modulation, coding and fading would be the optimum method

to get the exact physical layer interactions, the complexity and particularly the run-

ning time consumption make this unbearable for researchers who are interested in

network performance. Physical layer models come in handy in these situations and

are adopted extensively in various research. The ease of using a physical layer model

and the flexibility to adjust it make simulations which are unfeasible in a real physical

environment possible. However, an inaccurate physical layer model could lead to mis-

judgement of upper layer protocol performance. Opportunities of designing protocols

with a better knowledge of physical layer frame process statistics will be wasted with

an inappropriate physical layer model.

Of all the current physical layer models, the two-state Markov Model (2SMM)

is the most popular and widely used for network protocol research by all kinds of

network simulators [13]. The model is particularly popular in wireless applications

where the physical channel is of the flat Rayleigh fading type. It is frequently used for

modeling the packet loss process associated with network congestion as well[14]. The

memoryless two-state Markov process is illustrated in Fig. 4. In the good state, the

transmission will be successful which means no error. Whereas in the bad state, the

transmitted frame will be in error. The transition probabilities p and q are acquired

from the physical layer frame error rate (FER) and the average frame error run length

(AFEL). For the two-state Markov Model, the current frame state is dependent on

the previous frame state and the corresponding transition probability while it has

nothing to do with the frame states before the previous state.

Previous research shows that the two-state Markov Model is incapable of produc-

ing statistically accurate frame error processes for the case of low to moderate signal

to noise ratios and hence inaccurate network simulation results are often encountered

with the two-state Markov Model [15]. In most cases, we evaluate network protocols
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Fig. 4. Two-state Markov model

based on network simulation results. Failing to generate accurate network simulation

results greatly affects the ability to execute correct protocol assessment.

An extended Gilbert model was proposed in [16] to characterize the queueing

related packet losses in networks, in which the states of the model are described by

the packet loss or reception run length. It could be used to model the packet loss in

a wireless physical layer with fading. However, setting up the transition probabilities

of the extended Gilbert model would not be an easy task. Moreover, there probably

will be a large amount of states in the extended Gilbert model and thus will add a

great deal of complexity in the model.

The finite-state Markov Model (FSMM) is proposed to improve the accuracy of

two-state Markov Model [17] [18]. However, the finite-state Markov Model has limited

application due of the complexity of setting up the model parameters. The diagram of

the FSMM is show in Fig. 5. The main difference between the FSMM and the 2SMM

is that the FSMM has several states which are partitioned by the received signal noise

ratio. The principle of partitioning the states is to keep the average time duration in

each state constant. As the normalized doppler rate decreases, the number of states

needed increases. For a slow varying channel, with a large number of states, the

complexity of implementing the FSMM and solving for the model parameters makes

this model unfavorable for simulations.

Hidden Markov Models (HMMs) are used to model the fading processes as well
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[19] [20]. In [19], the HMM was fit to a fading process by either using the method of

moments or approximating the multidimensional probability densities. Distributions

of the fade duration and level crossing rates were computed analytically based on the

extracted HMM. However, the complexity of generating the HMMs and the difficulty

of computing the model parameters limit the application the the hidden Markov

models.

Other channel models have been proposed recently for the purpose of accurate

network layer performance, based on the statistics of the physical layer frame error

process [21] [22]. With these newly proposed models, the network simulation accuracy

is greatly improved, while the complexity of setting the model parameters is increased.

A great deal of information has to be acquired in order to set model parameters, which

means initial physical layer simulations are required for most cases. The complexity

required to initialize the current physical layer channel models prompted us to develop

an improved channel model where parameters can be set analytically.

All the physical layer models mentioned before are all designed for flat Rayleigh

fading channels. For broadband wireless systems, those models do not apply anymore

since the channel usually becomes frequency selective. With proper signal process-

ing, frequency diversity can be achieved and the wireless link bit error rate will drop

significantly. Appropriate approaches to design physical layer models for frequency se-

lective channels are necessary in order to simulate a wideband communication system.
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In [23], the two state Markov model was used to model the physical layer transmis-

sion success/failure of MIMO systems. The instantaneous mutual information was

compared with the information rate to define the states of the Markov model. If the

instantaneous mutual information was greater than the information rate, the channel

was in a good state and otherwise the channel was in a bad state. The transition

probabilities of the 2SMM were obtained by doing Monte-Carlo simulations. There

was no validation of the 2SMM by comparing the frame error rate or average er-

ror frame run length with a simulated physical channel in this paper. For different

Doppler rate, one has to rerun the Monte-Carlo simulations in order to set the tran-

sition probabilities. Especially for lower doppler rate, to obtain accurate transition

probabilities from the simulation, the simulation time are significantly longer in order

to capture the dynamics of the fading process.

B. Overview of the Dissertation

The focus of the dissertation will be designing accurate, efficient and relatively simple

physical layer models for wireless network simulations. The materials can be divided

into three parts. First, the motivation and idea of designing a new physical layer

model will be discussed in Chapter III. The structure of the proposed Four-State

Markov model will also be introduced in this Chapter. Second, physical layer mod-

eling for wireless systems with flat Rayleigh fading will be investigated thoroughly

in Chapter IV. Chapter V will address the problem of physical layer modeling for a

frequency selective channel and an Alamouti multiple-input multiple-output (MIMO)

system.

In chapter II, the reader is introduced to the background of fading channels.

The concepts of flat and frequency selective fading channels as well as the amplitude
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distribution and correlation properties are described. The principles of Orthogonal

Frequency Division Multiplexing (OFDM) and the Alamouti MIMO systems will also

be presented.

Chapter III presents a new design of a four-state Markov Model (4SMM). First,

the ns2 network simulator is introduced. The modifications of ns2 in order to em-

bed an equivalent physical layer baseband and proposed physical layer models are

described. Current physical layer models are investigated in detail. The popular

two-state Markov Model is shown to be unable to capture the frame error run length

distribution and provides poor network simulation results. The important character-

istics of the frame error process are identified in order to provide accurate network

results. It is found by the presented run length model that the run length distribu-

tions of physical layer frame process influences the network throughput in addition

to the frame error rate. Finally, utilizing the properties of the frame error process, a

simple four-state Markov Model is presented which captures the physical layer char-

acteristics.

Chapter IV discusses the procedures to set up the four-state Markov Model for

flat fading channels. The four-state Markov Model is built to match the good and

bad frame run length distributions of the physical layer. By analyzing the underlying

fading process, the parameters of four-state Markov Model can be set up analytically.

With the model parameters analytically set up, the process of building the four-state

Markov Model is very simple. Network Performance of the four-state Markov Model

is presented and compared with other currently used models.

Chapter V presents the procedures to set up the four-state Markov Model for

frequency selective channels and the Alamouti MIMO system. For both cases, certain

diversity orders can be achieved and the four-state Markov Model is designed to match

the physical layer statistics with diversity. The network performance of the four-state
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Markov Model designed for a frequency selective channel and MIMO system are

presented.

Finally, conclusions will be drawn in Chapter VI and related topics of future

research will be discussed.
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CHAPTER II

PHYSICAL LAYER CHARACTERISTICS

To design physical layer models for wireless network simulations, first one needs to

understand the principles of wireless physical layer functions. The physical layer of

a wireless system is intended to support reliable bit level transmission. Unlike a

wired system, wireless channels are susceptible to a lot of impairments such as multi-

path fading, interference and noise. These impairments cause the wireless channel to

exhibit a higher error rate. The physical layer is designed to combat those drawbacks

of wireless links at its best. In this chapter, the important concept of multi-path fading

is introduced, which includes the flat fading channel and the frequency selective fading

channel. A brief overview of an OFDM system structure and the Alamouti MIMO

system structure is also provided in this chapter.

A. Fading Channel

Fading is one of the major issues involved in a wireless communication system. As a

result of multi-path propagation, fading is traditionally a pitfall of wireless transmis-

sion. In contrast to large scale path loss and shadowing, small scale fading is used

to describe the rapid fluctuation of a signal over a short period of time [24] [25]. It

is a result of multipath propagation caused by the reflections from the ground and

surrounding structures. The combined signals at the receiver vary widely in ampli-

tude and phase, depending on the amplitude and relative phases of the component

signals. The multiple versions of signals may add constructively when their phases

are aligned or cancel one another at other times.

Based on the relationship between the signal parameters and channel parameters,

the fading process can be divided into different types. Fading can be slow or fast fading
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depending on the relationship between the doppler rate and the symbol duration. On

the other hand, fading can be flat or frequency selective depending on the relationship

between the multipath time delay spread and the transmitted symbol duration.

1. Flat Fading Channel

With multiple versions of the delayed signal at the receiver due to multipath, the

complex envelope of the received signal can be modeled as

r(t) =
N

∑

k=1

αk(t)e
jθk(t)s(t − τk) + n(t), (2.1)

where N is the number of multipath components, αk and θk are the amplitude at-

tenuation and phase shift of kth path respectively and τk is the delay for the kth

path.

If the differential path delays τi − τj ¿ Ts for all paths, it can be assumed that

s(t− τk) ≈ s(t), in which case it is called flat fading. By utilizing this property, (2.1)

can be written as

r(t) =
N

∑

k=1

αk(t)e
jθk(t)s(t) + n(t). (2.2)

Define

g(t) = x(t) + jy(t) =
N

∑

k=1

αk(t)e
jθk(t), (2.3)

x(t) =
N

∑

k=1

αk(t) cos θk(t), (2.4)

y(t) =
N

∑

k=1

αk(t) sin θk(t). (2.5)

If there are a large number of paths available and each of the paths has approxi-

mately equal attenuation, then the central limit theorem can be invoked and both

x(t) and y(t) can be treated as Gaussian random processes. This is well known as
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Rayleigh fading since the magnitude of the received envelop, |g(t)|, follows a Rayleigh

distribution. At any time t1,

fR(r) =
r

σ2
exp(− r2

2σ2
), r ≥ 0 (2.6)

where E[R2] = 2σ2. This Rayleigh fading condition is typically encountered in urban

areas where a line-of-sight or dominant path does not exist. The autocorrelation of

the flat fading channel can be characterized by φgg(τ).

φgg(τ) =
1

2
E[g∗(t)g(t + τ)]

= φxx(τ) + jφxy(τ), (2.7)

where

φxx(τ) = φyy(τ), (2.8)

φxy(τ) = φyx(−τ). (2.9)

Note that the phases θk(t) can be assumed to be uniformly distributed over [−π, π]

and independent for each k1 6= k2. Let Ωp = E[x2(t)] + E[y2(t)] =
∑N

k=1 α2
k and fm

be the Doppler rate. Then, it is straightforward to get the crosscorrelation

φxy(τ) = Eθ[x(t)y(t + τ)]

=
Ωp

2
Eθ[sin(2πfmτ cos θ)]

=
Ωp

2

1

2π

∫ π

−π
sin(2πfmτ cos θ)dθ

= 0. (2.10)

This means x(t) and y(t) are uncorrelated and independent Gaussian random pro-
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cesses. The correlation φxx can be obtained as follows:

φxx(τ) = Eθ[x(t)x(t + τ)]

=
Ωp

2
Eθ[cos(2πfmτ cos θ)]

=
Ωp

2

1

2π

∫ π

−π
cos(2πfmτ cos θ)dθ

=
Ωp

2

1

π

∫ π

0
cos(2πfmτ cos θ)dθ

=
Ωp

2
J0(2πfmτ), (2.11)

where J0(x) is the zero-order Bessel function of the first kind. The normalized auto-

correlation function φxxτ/(Ωp/2) is illustrated in Fig. 6.

The power spectral density (PSD) of g(t) can be derived by the Fourier transform

of φgg(τ).

Sgg(f) = F [φgg(τ)]
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= F [φxx(τ) + jφxy(τ)]

=
Ωp

2πfm

1
√

1 − ( f
fm

)2)
. |f | ≤ fm (2.12)

The normalized PSD Sgg(f) is plotted in Fig. 7. Sgg(f) is limited to the frequency

range of |f | ≤ fm. The value of the spectral density is zero at the frequencies out of

this range.

Two important second order statistics associated with Rayleigh fading are the

level crossing rate LR and the average fade duration t. If R is the envelope threshold,

define the normalized envelope threshold ρ as

ρ =
R

√

Ωp

=
R

Rrms

. (2.13)

The level crossing rate and average fading duration for a Rayleigh fading channel

are:

LR =
√

2πfmρe−ρ2

, (2.14)
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t =
eρ2 − 1

ρfm

√
2π

. (2.15)

2. Frequency Selective Fading Channel

In the previous subsection, we have considered channel models that are appropriate

for narrow band transmission, where the symbol duration is much larger than the

delay spread of the channel. Under this condition, all frequency components of the

transmitted signal will experience the same envelope attenuation and phase shift.

However, this condition is not satisfied for the case of wideband signal transmission,

where the symbol duration is small compared to the time spread of the propagation

path delays. For a wideband signal, different frequency components will experience

different phase shifts and thus will introduce amplitude and phase distortion into the

transmitted signal. Such a channel is called a frequency selective fading channel.

In macro-cellular mobile radio, delay spreads are mostly in the range from about

100 nanoseconds to 10 microseconds. In indoor and micro-cellular channels, the delay

spread is usually smaller. Most of the delay spreads for indoor environments are less

than a few hundred nanoseconds. Denote Td as the value of delay spread, for a

wideband signal with symbol duration Tc the number of resolvable paths is

L = bTd/Tcc + 1. (2.16)

Frequency selective fading channels can be modeled by a τ spaced tapped delay line

with L taps, as illustrated in Fig. 8.

g(t, τ) =
L

∑

i=1

gi(t)δ(τ − τi). (2.17)

The complex envelope of the received signal is

r(t) =
L

∑

i=1

gi(t)s(t − τi). (2.18)
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Fig. 8. Discrete-time tapped delay line model for a wideband multipath fading channel

If we assume a wide sense stationery uncorrelated scattering (WSSUS) channel, each

tap will experience uncorrelated flat fading. The autocorrelation at each tap is

φgkgk
(τ) =

Ωk

2
J0(2πfmτ), (2.19)

where Ωk is the envelope power for the kth tap and fm is the maximum Doppler shift.

The total envelope power is

Ωp =
L

∑

k=1

Ωk. (2.20)

At the receiver, the transmitted signal arriving at various time slots will cause in-

tersymbol interference (ISI). Certain signal processing techniques will have to be

employed to reduce the ISI. On the other hand, diversity can be achieved by resolv-

ing multipath components at different time delays and combining them efficiently.

By exploiting the frequency diversity inherent in the channel, system performance in

terms of error rate can be improved considerably. Although ISI will be introduced

by a frequency selective fading channel, it provides opportunities to decrease the bit

error rate while there is no such opportunity to gain frequency diversity in a flat

fading channel.
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B. Orthogonal Frequency Division Multiplexing (OFDM) System

Orthogonal frequency division multipexing (OFDM) is a modulation technique that

has been suggested for use in cellular radio, digital audio broadcasting, and wireless

LAN systems such as IEEE 802.11 [26] [27]. The OFDM technique distributes the

data over a large number of sub-carriers that are spaced in frequency. By spacing the

frequencies right, orthogonality is ensured so that data on different subcarriers does

not interfere with one another. The structure of an OFDM multiplexing system is

plotted in Fig. 9.

One of the key advantages of OFDM is that the modulation and demodulation

can be achieved by using the discrete Fourier transform, which can be efficiently

implemented by using the fast Fourier transform algorithm. Another key advantage

of OFDM is the easiness of eliminating Intersymol Interference (ISI) by adding a guard

interval to the data sequence. These attractive features make OFDM a very popular

modulation technique for high speed data transmission. Primary drawbacks of the
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OFDM technique are the large peak to average power ratio (PAPR) it tends to create

and tight synchronization required to ensure the orthogonality of the subcarriers.

As seen in Fig. 9, a block of N serial data symbols, each with duration Ts, is

converted into a block of N parallel data symbols, each with duration T = NTs.

The N sub-carriers are spaced 1/T apart so that the transmitted data on different

sub-carriers will not interfere. Assuming a rectangular pulse uT (t) is used for the

amplitude shaping function, the complex envelope of an OFDM signal is

s̃(t) = A
N−1
∑

k=0

xk exp{j2πkt

NTs

}uT (t). (2.21)

Sample the complex envelope at t = nTs, then the sample sequence is

Xn = A
N−1
∑

k=0

xk exp{j2πkn

N
}, n = 0, 1, . . . , . . . , N − 1. (2.22)

This is equivalent to taking the IDFT (Inverse Discrete Fourier Transform) of the

sequence xk, k = 0, 1, . . . , N − 1, and multiplying with a constant value A.

Likewise, at the receiver side, the demodulated sequence can be acquired by

performing a DFT (Discrete Fourier Transform) on the received vector Rn, n =

0, 1, . . . , N − 1. The demodulated sequence is

Zi =
1

N

N−1
∑

n=0

Rne
−j 2πni

N , i = 0, 1, . . . , N − 1. (2.23)

Hence, by taking the IDFT and DFT of the transmitted sample sequence and

the received sequence, OFDM can by implemented with one carrier modulation and

demodulation. Further improvement can be achieved by using an IFFT and FFT

algorithm to increase the efficiency and speed. This property greatly simplifies the

OFDM system implementation and it is one of the main reasons that OFDM has

received so much attention recently.

To mitigate the effects of ISI, a guard interval with a cyclic suffix of length G
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can be attached to the transmitted sequence X. The block diagram of an OFDM

transmitter and receiver is shown in Fig. 10.

With a guard interval, the transmitted sequence becomes

Xg
n = A

N−1
∑

k=0

xk exp{j2πkn

N
}, n = 0, 1, . . . , N + G − 1. (2.24)

Suppose the channel impulse response is {gm},m = 0, 1, . . . , L, ignoring the

noise, the received sequence Rg
n is

Rg
n =

L
∑

m=0

gmXg
n−m. (2.25)

The first L received samples are corrupted by the ISI from the channel. If G ≥ L,

we can eleminate the ISI by removing the first G samples and replacing them with

the last G samples. This way, the newly sequenced sample Rn are free of ISI. Denote
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(n)N as the residue of n modulo N

Rn = Rg
G+(n−G)N

=
L

∑

m=0

gmX(n−m)N
. 0 ≤ n ≤ N − 1 (2.26)

The OFDM demodulator performs a DFT on Rn

Zi =
1

N

N−1
∑

n=0

Rne
−j 2πni

N

= λiAxi, 0 ≤ i ≤ N − 1, (2.27)

where

λi =
L

∑

m=0

gme−j 2πmi
N . (2.28)

As shown in the above equation, after removing the cyclic prefix, the perfectly

periodic signal can be transformed to the transmitted symbols by performing a DFT.

The ISI caused by the channel has been completely removed. However, the addition

of a guard interval will increase the bandwidth or reduce the data rate.

Another advantage of OFDM is that combined with appropriate coding, the

frequency diversity inherent in the wideband channel can be exploited to improve

the system performance greatly. A rule of thumb is that when the minimum free

distance between the codewords is three times larger than the number of independent

multipaths L provided by the channel, a diversity order of L can be achieved, which

means the bit error rate will diminish with SNR L times faster than with a flat

fading channel. This free frequency diversity gain makes a coded OFDM system

highly desirable, especially in a fading environment. A considerable amount of recent

research has focused on optimum coding and interleaving with OFDM systems.

One of the drawbacks with OFDM in implementation is that the peak to average

power ratio (PAPR) is large, which makes the design of transmitter amplifier difficult
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and not power efficient. Consider the case when all the subcarriers are at their

maximum point, the PAPR can be as large as N times the power of each subcarrier.

The large amplitude variation also increases the in-band noise and increases the BER

when the signal has to go through amplifier non-linearities. Thus additional signal

processing such as clipping and filtering is often needed to mitigate the large PAPR

associated with OFDM systems.

The other problem with OFDM is that synchronization has to be kept tight

otherwise the subchannel orthogonality will be impaired. If the subchannels are not

orthogonal anymore, inter channel interference (ICI) will be introduced and cause an

increase in the bit error rate. There will be a constant part added to λiAxi in (2.27)

representing the interference. Loss of subchannel orthogonality will also arise in a

fast fading channel. When there are variations in the channel gain over the duration

of an OFDM block, the condition to guarantee the subchannel orthogonality is not

satisfied anymore. Because of inter channel interference, an error floor will show up

with the increase of signal noise ratio. Thus, one needs to be careful about choosing

the number of subcarriers and block size when designing an OFDM system.

OFDM has been proposed and used for a lot of applications lately. Some param-

eters of the OFDM application used in the wireless LAN standard IEEE 802.11a are

given below:

Data rates: 6Mbps to 48Mbps

Modulation: BPSK, QPSK, 16QAM and 64QAM

FFT size: 64, 52 subcarriers in use, 48 for data, 4 for pilots.

Subcarrier spacing: 0.3125 MHz

Guard duration: 0.8µsec

Symbol duration: 4µsec
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C. Alamouti MIMO System

To counter the fading effects on the wireless systems, which is typically a pitfall,

various type of diversities are sought to improve the system performance in a fading

environment. Frequency diversity is utilizing the independent fading in different

frequency sub-bands of a wideband channel. Time diversity transmits the signal in

different time slots where uncorrelated fading can be experienced. Space diversity is

obtained by using multiple antennas, each placed at certain spacing so that the fading

at each antenna is independent. To achieve frequency diversity, extra bandwidth is

required. To gain time diversity, either data rate will be reduced or the bandwidth

will increase. Also time delay will be introduced to transmit the same information

at multiple time periods that are separated by the coherence time of the channel. In

contrast, space diversity does not demand extra bandwidth or reduce the data rate,

which is a very attractive feature. When the available radio spectrum is limited, extra

bandwidth can not be afforded.

Multiple Input Multiple Output (MIMO) has recently emerged as one of the

most significant techniques in wireless communication [28]. The diagram of a MIMO

system is shown in Fig. 11. There are M and N antennas equipped at the transmitter

and receiver respectively.

Define H as the N×M complex matrix of the channel. The ij-th component of H

is denoted as hij, which represents the channel fading coefficient from the jth transmit

antenna to the ith receive antenna. Assume there is no channel state information

(CSI) at the transmitter, the MIMO system capacity is given by [29]

C = log2[det(IN +
ρ

M
HH∗)] bit/sec/Hz, (2.29)

where ρ is the SNR at any receive antenna.
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If the channel is known at the transmitter, a waterfilling mechanism can be used

to optimize the system capacity [29]. In this situation, the capacity is

CWF =
m

∑

i=1

log2(µλi)
+ bit/sec/Hz, (2.30)

where a+ denotes max(a, 0), m = min(M,N), λi are the nonzero eigenvalues of the

matrix HH∗ if N ≤ M , while if M < N , λi are the nonzero eigenvalues of the matrix

H∗H and µ is chosen to satisfy

ρ =
n

∑

i=1

(µ − λ−1
i )+ bit/sec/Hz. (2.31)

In actual transmission systems, space-time coding is employed to approach the

capacity of MIMO wireless channels. Space time coding is a coding technique designed

to encode the multiple transmit antennas jointly. Space-time coding is performed in

both the time domain and the spatial domain to introduce correlations between signals

transmitted from various antennas at various times. By introducing the spatial-
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temporal correlation, transmit diversity can be achieved to minimize the errors at

the receiver in a multipath fading channel. There are different type of space time

coding structures available, including space-time block codes (STBC), space-time

trellis codes (STTC), space-time turbo trellis codes and layered space-time codes.

Below the basic concepts of the Alamouti space-time block coding scheme will be

presented. Because of the simple structure and linear processing of the Alamouti

scheme [30], it is a very attractive scheme in practice and is currently part of both

the WCDMA and CDMA2000 standards.

The Alamouti code is designed to achieve transmitter diversity with two antennas

at the transmitter. This scheme achieves a full diversity gain with a simple maximum-

likelihood decoding algorithm. The block diagram of Alamouti space-time encoder is

show in Fig. 12.

The modulated symbols are grouped into blocks of two modulated symbols each

and space-time coding is performed for each block. Asssume the two modulated

symbols in a block are {c1, c2}, the matrix that maps them to the transmit antenna

is given by

C =









c1 −c∗2

c2 c∗1









. (2.32)

The encoder outputs are transmitted from two antennas in two consecutive transmis-
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sion periods. At the first transmission period, [c1 c2] are transmitted from antenna

one and antenna two respectively. During the second transmission period, [−c∗2 c∗1]

are transmitted from antenna one and antenna two.

Assume the fading coefficients are constant during two symbol periods, which

are denoted as h1 and h2 for antenna one and antenna two respectively. Denote the

received signal at the receiver antenna over two consecutive time periods as r1 and

r2, which can be expressed as

r1 = h1c1 + h2c2 + n1, (2.33)

r2 = −h1c
∗
2 + h2c

∗
1 + n2, (2.34)

where n1 and n2 represents Gaussian noise sample at the two time intervals.

Suppose that the channel state information h1 and h2 are perfectly know at the

receiver, by combining the received signal and the channel state information, two

decision statistics can be constructed as

c̃1 = h∗
1r1 + h2r

∗
2, (2.35)

c̃2 = h∗
2r1 − h1r

∗
2. (2.36)

Substituting r1 and r2 from (2.33), (2.34) into the above equations,

c̃1 = (|h1|2 + |h2|2)c1 + h∗
1n1 + h2n

∗
2, (2.37)

c̃2 = (|h1|2 + |h2|2)c2 − h1n
∗
2 + h∗

2n1. (2.38)

The maximum likelihood decision rule can be expressed as

ĉ1 = arg min
ĉ1∈S

(|h1|2 + |h2|2)|ĉ1|2 + d2(ĉ1, c̃1), (2.39)

ĉ2 = arg min
ĉ2∈S

(|h1|2 + |h2|2)|ĉ2|2 + d2(ĉ2, c̃2). (2.40)
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Thus with simple linear combining at the receiver, maximum likelihood decoding

can be performed for the Alamouti code. A diversity order of two can be achieved in

this case.

The above discussions are for the Alamouti scheme with two transmit antennas

and one receive antenna . It can be easily extended to the case of multiple receive

antennas with similar linear combining. Assume there are a number, N , receive

antennas, rj
1, rj

2 are the received signals at two consecutive time t and t + T at the

jth receive antenna. T is the symbol duration.

rj
1 = hj,1c1 + hj,2c2 + nj

1, (2.41)

rj
2 = −hj,1c

∗
2 + hj,2c

∗
1 + nj

2, (2.42)

where hj,i represents the fading coefficient for the path from the ith transmit antenna

to the jth receive antenna, i = 1, 2, 1 ≤ j ≤ N .

The two decision statistics c̃1 and c̃2 are given by

c̃1 =
N

∑

j=1

h∗
j,1r

j
1 + hj,2(r

j
2)

∗, (2.43)

c̃2 =
N

∑

j=1

h∗
j,2r

j
1 − hj,1(r

j
2)

∗. (2.44)

Substituting r1 and r2 from (2.41), (2.42) into the above equations,

c̃1 =
2

∑

i=1

N
∑

j=1

|hj,i|2c1 +
N

∑

j=1

(

h∗
j,1n

j
1 + hj,2(n

j
2)

∗
)

, (2.45)

c̃2 =
2

∑

i=1

N
∑

j=1

|hj,i|2c2 +
N

∑

j=1

(

h∗
j,2n

j
1 − hj,1(n

j
2)

∗
)

. (2.46)

The maximum likelihood decision rule can be expressed as

ĉ1 = arg min
ĉ1∈S

[(

N
∑

j=1

(|hj1|2 + |hj2|2) − 1
)

|ĉ1|2 + d2(ĉ1, c̃1)
]

, (2.47)
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ĉ2 = arg min
ĉ2∈S

[(

N
∑

j=1

(|hj1|2 + |hj2|2) − 1
)

|ĉ2|2 + d2(ĉ2, c̃2)
]

. (2.48)

Therefore, the Alamouti scheme can be easily applied to the environment of

multiple receive antennas. Linear combining will be employed at the receiver and

then maximum likelihood decoding can be performed. A diversity order of 2 × N

will be achieved. Following the Alamouti scheme, space time block codes with more

than two transmit antennas have been studied and constructed to provide maximum

diversity order [31]. However, the Alamouti scheme is the only space time block code

with a complex transmission matrix to achieve the full transmission rate.
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CHAPTER III

DESIGN OF PHYSICAL LAYER MODELS

Network performance relies on the characteristics of physical layer activities. Network

simulator2 (ns2) is a popular network simulation software tool for evaluating network

protocols under various network conditions. Ns2 has been widely accepted by the

network communities and has proven itself as a valuable tool for network researchers.

The basic structure of ns2 is introduced in the following. In order to investigate

various physical channel models in wireless network simulation, some modifications

to ns2 have been addressed, because of the fact that the models are not provided

in the current software. In wireless network simulations, various physical layer mod-

els are employed according to the various circumstances. It is important that the

appropriate physical layer models are adopted to obtain a proper view of the upper

layer protocols. In this chapter, some popular physical layer models: the two-state

Markov model and the finite-state Markov model are introduced. It is discovered that

the two-state Markov model can not provide accurate network results especially for

low to medium signal-to-noise ratios. The transition probabilities of the finite state

Markov model are difficult to set and the complexity makes it impracticable for slow

fadings. To solve this problem, the statistics of the physical layer frame error process

are investigated. The physical layer good and bad frame run length distributions of

the physical layer models are identified to be key factors for the purpose of providing

accurate network throughput. A run length model is proposed and shown to have ac-

curate network results. Inspired by the run length model, a simple four-state Markov

model is presented. The structure of the four-state Markov model is detailed in this

chapter.
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A. Network Simulator Ns2

Network simulator2 originated from the Realistic and Large (REAL) network sim-

ulator in 1989 [32]. Developed through the Virtual Inter Network Testbed (VINT)

project funded by the Defense Advanced Research Projects Agency (DARPA) in 1995,

ns was a collaborative effort at Lawrence Berkeley National Laboratories (LBNL), Xe-

rox Palo Alto Research Center(PARC), University of California Berkeley(UCB) and

the University of Southern California/Information Sciences Institute (USC/ISI). The

simulator was updated to ns2 and released to the public. Currently the development

of the simulator is supported by DARPA and National Science Foundation (NSF)

with the projects Simulation Augmented by Measurement and Analysis of Networks

(SAMAN) and Collaborative Simulation for Education and Research (CONSER), re-

spectively. Carnegie Mellon University (CMU), Sun Microsystems and AT&T Center

for Internet Research at ICSI (ACIRI) also contributed to the development of ns2.

Ns2 provides support for simulation of TCP, routing, and multicast protocols over

wired and wireless networks [33]. With its increasing popularity, ns2 has become a

standard experiment environment for network researchers to evaluate protocols and

validate the design of new approaches.

1. Ns2 Overview

Ns2 is an object-oriented, discrete event driven network simulator. It covers multiple

layers including the application layer, transport layer, network layer and the link

layer and supports simulations at the packet level [33]. Network protocols such as

TCP and UDP, traffic source behavior such as File Transfer Protocol (FTP), Telnet,

Web, router queue management mechanisms such as Drop Tail, RED (Random Early

Detection) and CBQ (Class-Based Queueing) and routing algorithms such as Dijkstra,
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Fig. 13. Otcl and C++ in ns2 simulation

are implemented in ns2. Ns2 also implements multicasting and some of the MAC layer

protocols for LAN simulations.

Ns2 is written in the C++ language and uses Object Tool Command Language

(Otcl) as a front-end interpreter. Back-end C++ language implements the codes for

defining protocols, agents, byte/bit level processing that are executed frequently. Otcl

scripts performs the setup of the simulation scenarios, topologies and control of the

simulation. The relationship between Otcl and C++ in a ns2 simulation is shown in

Fig. 13. The dual language approach enables a high run-time speed and easiness to

adapt the simulation parameters or configuration. The C++ language is fast to run

but it is not convenient to change, compile and debugging especially for people who

are not familiar with the structure of the program code. On the other hand, Otcl

runs slower but it has a user friendly feature. Otcl script is simple for modifications

and programming. Combining these two languages together, ns2 provides the user

an easy to use and reconfigurable interface with fast running time.

Ns2 is discrete event driven which means that the simulator has list of events

ordered by simulation time and each event happens at an instant of virtual time. An
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event in ns2 is a packet ID that is unique for every packet with scheduled time and

the pointer to an network object that handles the packet.

Ns2 network topology usually includes four major types of components: Appli-

cation, Agent, nodes and link. Application represents the communication instigator.

Agent refers to the packet generator or consumer. Application is attached to trans-

port agents, which are responsible for handling transport data from an application to

another agent. Node is the addressable entity. Link stands for the set of queues and

contains information about how nodes are connected with regard to the data rate,

delay and queue type. There are various integrated protocol modules from the phys-

ical layer to the application layer offered by ns2 to choose from, which means various

types of applications, agents and links can be specified in ns2. To build a simple

ns2 network scenario, first one would create two nodes and then create a source/sink

agent to attach to each node. Connect the two agents, and then create the application

such as FTP to attach to one of the nodes. For post simulation analysis, trace files

are provided with information about the packets.

A simple example of two nodes connected over a link is shown in Fig. 14. Node

0 is connected with TCP/Reno agent and Node 1 is connected with null agent to

receive data. An FTP application is attached to the TCP/Reno agent at node 0.

The Otcl scripts of trying to send data between these two nodes are followed.

set ns_ [new Simulator]

set tracefd [open tracefile.tr w]
$ns_ trace-all $tracefd
set node0 [$ns_ node]
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set node1 [$ns_ node]

set tcp_reno [new Agent/TCP/Reno]
$ns_ attach-agent $node0 $tcp_reno
set sink_reno [new Agent/TCPSink]
$ns_ attach-agent $node1 $sink_reno

$tcp_reno set packetSize_ 512
$tcp_reno set window_ 100
$sink_reno set packetSize_ 40

$ns duplex-link $node0 $node1 10Mb 1ms Droptail

set ftp0 [new Application/FTP]
$ftp0 attach-agent $tcp_reno
$ns_ connect $tcp_reno $sink_reno
$ns_ at 1.0 "$ftp0 start"
$ns_ at 100 "$ftp0 stop"
proc stop {} {

global ns_ tracefd

$ns_ flush-trace

close $tracefd

}

$ns_ run

2. Ns2 Simulation Over Wireless Link

The Rice Monarch Project at Carnegie Melon University (CMU) has made substan-

tial extensions to the ns2 network simulator [34]. It enables mobile nodes simulations

under a wireless network environment. A radio propagation model is used in ns2

wireless simulations to decide whether a packet will be received correctly through

the wireless channel. IEEE 802.11 Media Access Control Protocols, a carrier-sense

multiple access (CSMA) MAC protocol and Address Resolution Protocol (ARP) are

added to the Link Layer protocol stack. A series of Mobile Routing Protocols such as

dynamic source routing (DSR), destination sequence distance vector (DSDV), tem-



39

porally ordered routing algorithm (TORA) and ad-hoc on demand distance vector

(ADOV) are also added to the network layer to simulate multi-hop wireless networks.

A CMU trace file is generated for analysis of the simulation.

To account for the packet loss in a wireless channel, radio propagation models

are implemented in ns2. These models are used to predict the received signal power of

each packet. When a packet is received, the signal power is compared to a receiving

threshold. If the signal power exceeds the receiving threshold, the packet will be

assumed correct. Otherwise, it will be marked as error and abandoned by the MAC

layer. There are several radio propagation models provided by the ns2, including a

free space model, a two-ray ground reflection model and a shadowing model.

It should be noted that the radio propagation models only represent the large

scale path loss. Small scale multipath fading, such as Rayleigh fading and Ricean

fading, is not incorporated in these models. Since in digital mobile communication

systems multipath fading is traditionally a pitfall, it should not be ignored in wireless

network simulations with mobile terminal movement. An add-on package is available

to simulate Ricean and Rayleigh fading developed by the Antenna & Radio Commu-

nication Group at CMU [35]. In this package, a pre-computed data set is used for

the calculation of the fading envelope [36]. The dataset will be stretched or squeezed

according to the value of the maximum Doppler frequency. Since the data set only

represents a limited period of time, it is used repeatedly if the simulation runs for a

long period of time. Although the CMU Ricean fading package results in an accurate

simulation of the wireless channel for each individual flow, it generates identical fading

components for different flows, which is not the scenario in reality. While reusing the

dataset affects the accuracy, the required time to generate the pre-computed dataset

also causes a time delay for ns2 simulations.

Therefore, with ns2 providing a variety of protocol stacks for wireless network
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simulations, the simulation of physical layer multipath fading environment is not

accurate and there are issues that still need to be addressed.

3. Ns2 Modifications

To investigate the influence of various physical layer models on wireless network sim-

ulations, the ns2 simulator is adapted for our purpose.

Ns2 implements the functions which are related to sending and receiving frames

in a single MAC object. In order to embed a new physical layer function into ns2,

the MAC is modified by adopting a customized function each time the physical layer

receives a frame. This customized physical layer function will decide whether the

received frame is correct or not. Information about the packet length, transmission

time and node positions are passed to the physical layer function. The physical layer

function invokes a specific module according to the physical layer environment.

The major modification to ns2 is to build appropriate physical layer modules for

our research purpose. To compare the performance of various physical layer models,

first it is essential to build a module which simulates the real physical layer activities

as close as possible. It will set a benchmark for all kinds of physical layer models.

Therefore, multipath fading, corresponding modulation and coding schemes are all

included in the baseline physical layer module. The specific modulation and coding

schemes are simulated as the 802.11a and 802.11b standard in the flat fading and

frequency selective fading scenario.

To accurately portray the multipath fading, a time domain linear filter is em-

ployed. Complex white Gaussian noise is passed through a linear filter to produce a

Rayleigh fading process with a prescribed power spectral density. It should be noted

that the fading process has to be run in continuous time. The packets may arrive

at various time periods and the associated fading process has to take account of the
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time gap between the transmission of each packet. There are a few other options to

generate the Rayleigh fading process in addition to the linear time filter such as the

famous Jakes model [37] or frequency domain method [38]. The time domain linear

filter approach is chosen to generate the random fading process for the following rea-

sons. First very minimal memory is required, which speeds up the simulation process.

Second, it is convenient to generate a random fading process for an unknown period

of time. In the simulation, the size of random fading parameters is dependent on the

time period of the transmitted packet. The time domain linear filter approach pro-

duces random data for each realization while the Jakes model produces the same data

for the same time instant. This property is a huge benefit when there are multi-links

in the wireless network so each link can be guaranteed to have their own random

fading process.

A third order filter is used to generate the random fading process with the transfer

function [39]

H(s) =
ω3

o

(s2 + 2ξωos + ω2
o)(s + ωo)

, (3.1)

where ωo = 2πfd/1.2 and ξ = 0.175. The transfer function (3.1) is mapped into a

discrete time filter using a bilinear transformation. Let fs be the desired sample rate

of the discrete time signal, the discrete time filter is described by

H(z) = H(s)

∣

∣

∣

∣

∣

s=2fs( 1−z−1

1+z−1 )
. (3.2)

The discrete time transfer function can be written as a ratio of two polynomials

H(z) =
b0 + b1z

−1 + b2z
−2 + b3z

−3

a0 + a1z−1 + a2z−2 + a3z−3
(3.3)
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Fig. 15. Third order time domain linear filter fading simulator

which defines a difference equation

X[n] = −a1X[n−1]−a2X[n−2]−a3X[n−3]+b0N [n]+b1N [n−1]+b2N [n−2]+b3N [n−3].

(3.4)

The power spectral density and autocorrelation of a random fading process with the

third order time domain linear filter are shown in Fig 15.
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B. Current Physical Layer Models

To approximate some key statistics of physical layer performance in a Rayleigh fading

channel, a variety of channel models have been proposed and employed. Especially

for research related to upper layer protocols and algorithms, block statistics of the

physical layer are of primary concern and hence block-based channel models are com-

monly used to simplify and expedite simulations. Of all the current channel models,

the two-state Markov model (2SMM) which is well known as the Gilbert-Elliott chan-

nel is most popular and has been widely used to characterize wireless fading channels

due to the simplicity of its implementation. The Finite-state Markov model (FSMC)

has been proposed by [17] to model a Rayleigh fading channel.

1. Two-State Markov Model

The memoryless two-state Markov model shown in Fig. 16 enjoys prevalent popularity

by researchers in network protocol design and evaluation, e.g. [40] [6] [41] [42] [41]

[43] [44]. It is also well known at the Gilbert-Elliott channel [45]. The model is

particularly popular in wireless applications where the physical channel is of the flat

Rayleigh fading type. With its wide popularity, the validity of this model for wireless

networks has been questioned in recent years [46] [47] [48]. But due to the simplicity

of the two-state Markov model, it is still the most popular channel model in wireless

networks.

The 2SMM provides the ability to emulate the burstiness caused by the under-

lying fading process. In the good state, all frames are transmitted successfully while

in the bad state all frames will be in error. The transition probabilities [13] [49] and
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the steady state error rate are described as following:

Πj =









p 1 − p

1 − q q









, (3.5)

ε =
1 − p

2 − p − q
, (3.6)

where p is the probability of successfully transmitting a frame given the previous

frame was successfully transmitted and 1 − q is the probability of successfully trans-

mitting a frame given the previous frame was in error. The frame error rate is defined

as ε and the average frame error length is equal to 1/(1−q). Values of both the frame

error rate and average frame error length can be observed from simulations with the

specific physical channel, coding, and modulation. With knowledge of ε and q , we

can easily derive the remaining parameter p

p = 1 − (1 − q)ε

1 − ε
. (3.7)

Thus the 2SMM physical layer approximation is fully defined. The parameters of the

2SMM are dependent upon the frame size. Each state of the Markov Model indicates

the channel state for the period of a frame duration.

As we can see, the two-state Markov Model is designed to match the statistics

of frame error rate (FER) and average burst error length (ABEL) of the physical



45

layer. With regard to the accurateness of the Markov Models, Wang [13] argued

from a mutual information perspective that with full knowledge of the current state,

the knowledge of the previous state is insignificant to form the future realization.

This argument became the foundation of using Markov models to approximate flat

Rayleigh fading channels. In [50], it is suggested that a first order Markov model is

adequate for representing the block error process for a slow fading channel.

The previous arguments of the adequateness of the two-state Markov model are

mostly from the view of mutual information. Tan pointed out in [51] that a first

order Markov model is typically unsuitable for applications requiring a large number

of consecutive samples based on comparing the autocorrelation functions (ACF) and

argued that comparing ACFs of consecutive samples is a more effective approach than

the information theoretic metric [52]. To investigate the appropriateness of using the

two state Markov model for wireless network simulation, wireless LAN 802.11a and

802.11b environments are simulated and the network throughput of the 2SMM and

the representative 802.11a and 802.11b physical layer are compared. The network

throughput of a two-node network with the TCP and UDP protocols are shown in

Fig. 17 and Fig. 18. Note that we use the definition of SNR= Eb/No throughout all

the physical layer simulations and ns2 simulations in this thesis.

As shown, the two-state Markov model substantially underestimated the network

throughput especially for low to medium signal noise ratios. It does not picture the

network performance accurately in terms of throughput. This result indicates that the

commonly used two-state Markov model is not appropriate under some circumstances

and may lead to improper conclusions of upper layer protocols. For researchers to

validate or evaluate the upper layer protocols, an accurate physical layer model is

imperative.
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2. Finite-State Markov Model

Wang proposed a finite-state Markov model (FSMC) to a represent a Rayleigh fad-

ing channel by partitioning the received instantaneous signal-noise ratio into a finite

number of intervals [17]. In [18], a methodology to partition the received signal-to-

noise ratio into a finite number of states according to the time duration of each state

is described.

The structure of the finite-state Markov model is shown in Fig. 19. Pij is the

transition probability from state si to state sj [53]. A given state can only transfer to

its two adjacent states. The states are divided by the received instantaneous signal

to noise ratio. Each state is associated with a specific bit error rate which indicates

the quality of the fading channel. The number of states is determined by the fading

speed of the channel, which is implied by the normalized Doppler frequency shift.

The criterion of setting the SNR range for each state is to keep the average time

duration of each state equal. The transition probabilities can be approximated based

on the state thresholds and the level crossing rate at the state thresholds. Denote γ0

as the average SNR, fm as the Doppler frequency,~Γ = [Γ1, Γ2, · · · , ΓK+1]
t as the state

SNR threshold, where Γ1 = 0 and ΓK+1 = +∞. A received packet is in state sk if

the received instantaneous SNR is in the range [Γk, Γk+1). The average duration τ̄k
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of the received SNR interval [Γk, Γk+1) is given by [18]

τ̄k = ckTp, (3.8)

ck =
exp(−Γk

γ0
) − exp(−Γk+1

γ0
)

√

2πΓk

γ0
exp(−Γk

γ0
) +

√

2πΓk+1

γ0
exp(−Γk+1

γ0
)
· 1

fmTp

, k = 1, · · · , K. (3.9)

By constraining all the ck to be equal to a constant c, there are K equations with

K variables Γ2, Γ3, · · · , ΓK and c. The value of state threshold Γk can then be solved.

After setting the state threshold, the transition probability can be approximated by

[17]

Pk,k+1 ≈ N(Γk+1)Tp

πk

, k = 1, 2, · · · , K − 1. (3.10)

Pk,k−1 ≈ N(Γk)Tp

πk

, k = 2, 3, · · · , K. (3.11)

Thus the finite-state Markov model has been set up. The number of states K needs

chosen before finding the state threshold and transition probabilities. The value of

c can be obtained by solving the K equations described in (3.9). It is important to

have a suitable value of c set for the model. It is suggested that a choice of c between

3 and 8 should be reasonable [18]. The associated average probability of symbol error

rate for state sk is given by

Pek =

∫ Γk+1

Γk
Pe(γ)p(γ)dγ

πk

, (3.12)

p(γ) =
1

γ0

exp(− γ

γ0

), γ ≥ 0 (3.13)

πk =
∫ Γk+1

Γk

p(γ)dγ = exp(−Γk

γ0

) − exp(−Γk+1

γ0

), (3.14)

where Pek is the average probability of symbol error for state sk, Pe(γ) is the prob-

ability of symbol error as a function of SNR γ, p(γ) is the exponential distribution

of the received instantaneous SNR γ with additive Gaussain noise, γ0 is the average
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SNR, πk is the steady-state probability.

With an increasing of the number of states in the Markov model compared to the

two-state Markov model, the accuracy of the finite-state Markov model is improved.

However, a large amount complexity is added to the model set-up process as a tradeoff

for better performance. For low Doppler frequencies or small packet lengths, the

channel changes slowly and a larger number of states is required to keep the value of

c within a reasonable range which results in a larger number of nonlinear equations

to be solved. Moreover, it is uncertain how many states are needed until the array of

equations are solved. One has to try it several times empirically before deciding the

proper number of states. Also there is no analytical results indicating the appropriate

value of the constant c. Furthermore, the error function Pe(γ) versus SNR γ has to

be acquired in order to resolve the average probability of symbol error Pek for each

state.

To validate the performance of the FSMC, TCP and UDP network simulations

have been set up with fmTp = 0.038 and π/4-DQPSK modulation with coherent

detection. The FSMC parameters are listed in [18], where K = 11 and c = 3.0446.

The network throughput of a two-node network operating over a wireless channel is

shown in Fig. 20.

In contrast to the two-state Markov model, the FSMC tends to overestimate

network throughput for low to medium signal-to-noise ratios. The FSMC offers a rel-

atively more accurate approximation for network throughput. However, the tradeoff

is the substantially increased complexity of the model set-up process. The required

number of states becomes large for lower Doppler frequencies or packet durations.

For a different Doppler rate, the entire process of setting the parameters has to be

redone. And there is no clear criterion about choosing the number of states and the

appropriate value of the average time duration c. Due to this complexity, the FSMC
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has enjoyed very limited applications in practical experiments and simulations.

There are other partition approaches proposed for the FSMC model set-up avail-

able such as the equal probability method and the MMSE quantization method. For

example, in [17], the equal probability method is used to partition the states by set-

ting the SNR thresholds so that the steady probabilities of each state are equal to

1/K. The MMSE quantization approach uses the quantization thresholds of the opti-

mum Minimum Mean-Square Error (MMSE) Lloyd-Max quantizer for exponentially

distributed SNR random variables. Compared to the equal average time duration

method described above, the other two methods do not reflect the dynamics of the

fading process since only the univariate fading signal random variable is considered.

Zhang claimed that the other approaches cause deviations in the state transition prob-

abilities [18] and the equal average time duration method described above gives the

best representation of the fading channel. Although the finite-State Markov model

has been used in the analysis of channel capacity and wireless network performance,

e.g. in [54], [55], [56], [57], generally it is not chosen for the analysis of specific upper

layer protocol stacks such as TCP and UDP because of the complexity issue.

C. The Frame Error Process

To give an accurate representation of the underlying fading process of the physical

layer, matching the first-order statistics is not sufficient anymore. It is demonstrated

that the channel approximation provided by the 2SMM underestimates the network

performance badly, especially when the SNR value is low to moderate. Apparently,

the higher order characteristics of the frame error process are important to produce

accurate network simulation results.

For the 2SMM, the probability density functions (PDF) of good and bad run
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lengths are exponentially distributed and related to the value of p and q. However,

as shown in Fig. 21 and Fig. 22, the distributions of good and bad frame run lengths

for the wireless physical layer are more like a mixture of two exponential curves with

a small slope matching the tail of the curve and a larger slope matching the initial

part of the curve. In order to obtain frame error statistics of the physical channel, the

802.11a and 802.11b modulation scheme were simulated to send frames across a flat

Rayleigh fading channel with a Doppler frequency of 100Hz. Greater than 430,000

good and bad frame run lengths were obtained through simulation, accounting for

over 2 billion simulated bits for SNR values in the range 5-15dB. Parameters of the

2SMM were set by matching the FER and AFEL with the 802.11a and 802.11b

wireless physical channel.

Good and bad run length distributions for FSMC with DPSK modulation across

a flat Rayleigh fading channel are also simulated and compared in Fig. 23 and Fig. 24

at signal-to-noise ratios 8dB and 10dB. As we can see from the picture, the FSMC

provides a good approximation of the physical layer bad run length distribution but

it does not give an accurate approximation for the good run length distribution.

The higher order statistics of the physical layer frame error process have a great

influence on the upper layer network performance. Fail to match the good and bad run

length distributions can cause a deviation of the estimation of upper layer activities,

which explains why the 2SMM is not providing accurate network results.

D. Run Length Model

To further the understanding of how important it is to match the frame error process,

we use a two-state run length model (2SRLM) to duplicate the good and bad frame

run length distributions of the physical channel. The 2SRLM is illustrated in Fig. 25.
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In this model, the time duration staying in the good state, τg, and the time duration

staying in the bad state, τb, are random variables whose distributions are set to

exactly match the specific physical channel environment. From the good (bad) state,

it transfers to the bad (good) state after a time duration of τg (τb). Unlike the

2SMM which is defined by the frame error rate and average frame error length, this

two state run length model is described by the distributions of τg and τb. We made

a PDF table from physical layer simulations to get the distributions of τg and τb.

This table is lengthy and requires extensive simulation to obtain, but it’s worthwhile

to gain insight into how the network layer reacts if we use a model with accurate

distributions of the good and bad frame run lengths.

With the two-state run length model, the network simulation performance is

extremely close to what is obtained when the flat Rayleigh fading physical channel is

employed in the ns2 simulation. The network results is shown in Fig. 26 and Fig. 27.

This reveals the fact that using a physical layer model which generates accurate

distributions of good and bad frame run lengths is sufficient to generate accurate

network simulation results.

However, the two-state run length model is impractical in a network simulation

because of the complexity of constructing the distribution table (and the difficulty

in obtaining these tables). This complexity increases with the maximum good and

bad frame run lengths. Also, because the distributions of τg and τb do not scale with
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different signal to noise ratios (SNR), one has to rerun the physical layer simulation for

each different SNR value. The purpose in our using this model is that it helps to clarify

the most important factors in the physical channel which affect network performance.

The result is encouraging in that if we can build a model which reasonably matches

the statistics of the good frame run lengths and bad frame run lengths, then the task

of physical layer channel modeling is solved.

E. Structure of the Four-State Markov Model

As shown in Fig. 21 and Fig. 22, from graphs of good and bad frame run length

distributions, we notice that both ends of the frame run length distributions seem to

follow an exponential behavior. Hence it is possible to approximate the run length

distributions with a mixture of geometric distributions.

f(k) = p(1 − α)αk + (1 − p)(1 − β)βk, (3.15)

where α is chosen to fit the slope of the initial part of the probability mass function

(PMF), β is chosen to fit the slope of the tail part of the PMF, and p is the mix-

ture parameter. One set of parameters {αg, βg, pg} is used for the good frame run

length distribution and another set {αb, βb, pb} is used for the bad frame run length

distribution. The resulting two-state RLM is illustrated in Fig. 28a.

Since the run length distributions are approximated using a mixture of geometric

distributions, the resulting two-state RLM is equivalent to a four-state Markov Model
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Fig. 28. Simplified models for the flat Rayleigh fading physical layer; (a) Two-state

RLM (b) Equivalent four-state Markov model.

illustrated in Fig. 28b whose transition probability matrix is given by

Π =

























GS GL BS BL

GS αg 0 (1 − αg)pb (1 − αg)(1 − pb)

GL 0 βg (1 − βg)pb (1 − βg)(1 − pb)

BS (1 − αb)pg (1 − αb)(1 − pg) αb 0

BL (1 − βb)pg (1 − βb)(1 − pg) 0 βb

























, (3.16)

where GS = good state short, GL = good state long, etc.

Both the good state and the bad state have been split into two sub-states, one

which tends to produce short runs and one which tends to produce long runs. In this

model, any transition ending in one of the good states produces a correct frame while

any transition ending in one of the bad states leads to a frame in error. The resulting

physical layer model is very simple to implement.

In order to implement the 4SMM shown in Fig. 28b, we must have knowledge
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of several model parameters, namely {α, β, p} for both the good and bad frame run

length distributions. To obtain these via simulation would require substantial effort.

Fortunately, these parameters can be linked to various physical channel characteris-

tics. This set-up process will be described in the next chapter.

F. Summary

This chapter described the basic structure of the ns2 network simulator and the

modifications we made to adapt ns2 to various physical layer modules. Current

physical layer models, the two-state Markov model and the finite-state Markov model

were investigated in detail. The two-state Markov model was shown not to be able to

accurately approximate physical layer activities in terms of network performance. The

limitation of using the Finite-state Markov model was discussed, which is mainly due

to the complexity and uncertainty of setting up the model parameters. The network

throughput of using both 2SMM and FSMC in 802.11a and 802.11b environment

were both presented. Physical layer frame error statistics were studied and compared

for the MM and FSMC. A run length model was set up to accurately present good

and bad frame run length distributions of the physical layer. It was shown that

by matching physical layer good and bad frame run length distributions, accurate

network results can be gained. However, immense complexity for initial simulations

to set up model parameters and requirement to re-run the simulations when one

of the physcial layer conditions change make it impractical to use the run length

model in practice. Inspired by the run length model, a new four-state Markov model

was proposed by approximating the frame run length distributions with a mixture

of geometric distributions. The diagram of the 4SMM was presented. The process

of setting up the parameters of 4SMM for a flat Rayleigh fading channels will be
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explored in the next chapter.
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CHAPTER IV

FOUR-STATE MARKOV MODEL FOR RAYLEIGH FADING CHANNELS

In the previous chapter, the commonly used two-state Markov model has been demon-

strated to badly underestimate network throughput especially when the signal-to-

noise ratio is low to medium. There are other models proposed which provide better

approximations but the complexity and inflexibility to establish the model parameters

make them have limited application. The inaccuracy of the 2SMM can be explained

by the deviance of the good and bad frame run length distributions. The 2SMM has

exponential run length distributions while the real physical layer distributions are

more like a mixture of two exponential slopes. The good and bad run length distri-

butions are identified to be key factors in order to accurately present physical layer

activities in a network environment. A four-state Markov model was proposed in the

previous chapter. It is inspired by the two-state run length model and approximates

the good and bad run length distributions with a mixture of exponential distributions.

Two good and bad sub-states are introduced in the 4SMM with each one representing

short and long runs respectively. The diagram was shown in the previous chapter. In

this chapter, we will study the structure and property of the 4SMM. First frame error

statistics of the 4SMM will be analyzed. The process of setting up model parame-

ters for flat Rayleigh fading channels will be investigated thoroughly. An analytical

approach is presented to estimate the model parameters with no initial simulations

required. Moreover, the 4SMM parameter estimation with regard to varied Doppler

frequency shift and frame size will be discussed. Network throughput in 802.11a and

802.11b flat Rayleigh fading environments will be presented and compared in this

chapter.
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A. Frame Error Statistics

Run length distributions have been identified to be the key to accurately approximate

physical layer activities. As shown in Fig. 29, both good and bad frame run length

distributions can be approximated with a mixture of two exponential distributions.

Compared with the 2SMM, the mixture of two exponential distributions exhibits

considerable improvement in the run length distribution approximation. The run

length distribution of the 4SMM can then be described as

f(k) = p(1 − α)αk−1 + (1 − p)(1 − β)βk−1 , (4.1)

where α represents the exponential slope of the short run length distribution, β repre-

sents the exponential slope of the long run length distribution, p represents the weight

factor of the two exponential distributions. {αg, βg, pg} is denoted as the parameters

of the good frame run length distribution, {αb, βb, pb} is denoted as the parameters of

the frame error run length distribution. The state diagram and transition probabili-

ties for the 4SMM have been described in the previous chapter. Based on knowledge

of two sets of parameters {αg, βg, pg} and {αb, βb, pb}, the 4SMM can be easily set

up and implemented in applications. Unlike the FSMC, for different physical layer

conditions, the 4SMM only needs to adjust the value of {αg, βg, pg} and {αb, βb, pb}.

There is no additional efforts needed to alter the number of states and the value of

state thresholds which is a necessary process for the FSMC. With only four states,

by choosing the value of {αg, βg, pg} and {αb, βb, pb} appropriately, the four-state

Markov model is quite simple to implement and is more easily adjusted with different

physical layer conditions compared to the finite-state Markov model.
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B. Parameter Setting

As stressed in the previous section, choosing the model parameters properly is critical

for the 4SMM to have good approximations to the actual run length distributions.

To obtain these via simulation would require substantial effort. Fortunately, these

parameters can be linked to underlying physical channel characteristics.

1. Tail Exponential Slope

The tail of the run length distributions indicates the probability of a long burst of

frame errors or a long run of good frames and is seen to behave in an exponential

manner. Long runs of frame errors are caused by long deep fades of the underlying

Rayleigh fading process. Similarly, long continuous good frame runs occur when the

fading process remains at a relatively high level. Suppose that any time the fading

magnitude falls under a certain threshold r1, the fading process will cause frame errors.

Then the task of deriving the tail exponential slope of the bad run length distribution

is converted into the problem of finding the tail exponential slope of the distribution

of the time duration in which the Rayleigh fading process remains below r1. Vice

versa, assume that any time the fading remains above another threshold r2, a run of

good frames results. The task of deriving the tail exponential slope of the good run

length distribution is converted into the problem of finding the tail exponential slope

of the distribution of the duration in which the Rayleigh fading process stays above r2.

Considering the signal power at the transmitter end as well as the modulation/coding

scheme employed, r1 and r2 are set based on two instantaneous SNR thresholds which

decide if the frame is good or bad. The instantaneous SNR thresholds are chosen

according to the frame error rate performance of the modulation/coding scheme in a

Gaussian noise channel. For example, as shown in Fig. 30, for the 802.11a physical
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layer in a Gaussian noise channel, the frame error rate (FER) is near 1 when the SNR

is lower than 3dB and the FER is near 0 when the SNR is higher than 8dB. Hence

the two instantaneous SNR thresholds are set to be 3dB and 8dB. For example, if the

long term average received SNR is 10dB, the two fading envelope thresholds r1 and

r2 are set to be -7dB and -2dB respectively.

The distribution of time duration τ when the flat Rayleigh fading process falls

below a certain threshold has been studied before, but to date no accurate mathe-

matical description has been given. Although the average fading time below a certain

threshold and the level crossing rate are well known [37], we require a more complete

description here. Rice developed a method for approximating the distribution of fad-

ing time intervals for a Rayleigh process [58]. Unfortunately it is only asymptotically
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applicable for the case when τ is small (i.e., short frame run lengths). We require

the slope of the tail, that is, the long frame run lengths. The following describes an

analytical procedure to estimate the tail distribution of τ .

Define a flat Rayleigh fading process as x(t), the duration for which x(t) falls be-

low the lower threshold r1 as τ , and periodic samples of the fading process x0, x1, x2, . . . , xN ,

taken at a sampling interval of ∆t. Then

{

τ ≥ t
∣

∣

∣|x0| = r1

}

⇒
{

|x1| < r1, |x2| < r1, . . . , |xN | < r1

∣

∣

∣|x0| = r1

}

, (4.2)

where N = b t
∆t
c. Note that the left event implies the right, but the right event does

not necessarily imply the left.

However, if ∆t is set to be small relative to the correlation time of the fading pro-

cess, then the right event in (5.1) will almost always imply the left event. Hence when

∆t is sufficiently small, the probability of
{

τ ≥ t
∣

∣

∣|x0| = r1

}

can be well approximated

by the joint probability of
{

|x1| < r1, |x2| < r1, . . . , |xN | < r1

∣

∣

∣ |x0| = r1

}

.

On the other hand, if we choose the sample distance ∆t sufficiently large we can

claim the events {|xi| < r1}, i = 0, 1, 2, . . . , N are approximately independent of each

other, thus

Pr(τ ≥ t) ≈ Pr

(

|x1| < r1, |x2| < r1, . . . , |xN | < r1

∣

∣

∣ |x0| = r1

)

≈ Pr(|xn| < r1)
N .

(4.3)

Utilizing the property that the magnitude squared of a Rayleigh process is exponen-

tially distributed,

1 − Fr(t) ≈ (1 − e−r2
1)t/∆t, (4.4)

where ∆t is the time difference between each sample of the fading process. Notice that

the analysis is in the continuous time domain here for the convenience of derivation.
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Taking derivatives of each side, we get

fr(t) ≈
1

∆t
ln

( 1

1 − e−r2
1

)

(1 − e−r2
1)t/∆t. (4.5)

From equation (4.11), we can easily get the exponential slope as 1
∆t

ln
(

1 − e−r2
1

)

.

It is equivalent to a geometric distribution with βb = (1− e−r2
1)Tf /∆t in discrete time,

where Tf is the frame duration.

For the selection of ∆t, we take advantage of the autocorrelation function of a

flat Rayleigh fading process,

φ(τ) =
Ω

2
J0(2πfmτ), (4.6)

where Ω is the envelope power and J0(x) is the zero-order Bessel function of the first

kind. ∆t is chosen as the smallest value so that the normalized correlation value

φ(∆t)/(Ω
2
) is about 0, which leads to

∆t = 1.2/(πfm). (4.7)

Thus we can reasonably approximate the samples of the fading process as independent

while ∆t is small enough to keep the left hand approximation in (4.10) reasonably

accurate.

Similarly, for the distribution of the time duration above a certain threshold r2,

Pr(τ ≥ t) ≤ Pr

(

|x1| > r2, |x2| > r2, . . . , |xN | > r2

∣

∣

∣ |x0| = r2

)

≈ Pr(|xn| > r2)
N ,

(4.8)

fr(t) ≈
−r2

2

∆t
e−r2

2
t/∆t. (4.9)

Then the tail exponential slope for the good run length distribution is equal to
−r2

2

∆t
.

It is equivalent to a geometric distribution with βg = e
−r2

2Tf

∆t in discrete time.

By taking advantage of the bivariate Rayleigh distribution and using a smaller
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∆t, the accuracy of the tail exponential slope estimation can be improved. In this

case, the neighboring samples do not have to be independent to each other. ∆t can

be smaller so that only the neighboring samples are correlated, thus

Pr(τ ≥ t) ≈ Pr

(

|x1| < r1, |x2| < r1, . . . , |xN | < r1

∣

∣

∣ |x0| = r1

)

≈
(

Pr(|xn−1| < r1, |xn| < r1)

Pr(|xn−1| < r1)

)N−1

· Pr

(

|x1| < |r1|
∣

∣

∣|x0| = r1

)

≈
(

Pr(|xn−1| < r1, |xn| < r1)

Pr(|xn−1| < r1)

)
t

∆t
−1

· Pr

(

|x1| < |r1|
∣

∣

∣|x0| = r1

)

.

(4.10)

Taking derivatives of each side, we get

fr(t) ≈
−1

∆t
ln

(Pr(|xn−1| < r1, |xn| < r1)

Pr(|xn−1| < r1)

)

(

Pr(|xn−1| < r1, |xn| < r1)

Pr(|xn−1| < r1)

)
t

∆t
−1

. (4.11)

Then the tail exponential slope λ can be described as 1
∆t

ln

(

Pr(|xn−1|<r1,|xn|<r1)
Pr(|xn−1|<r1)

)

,

which is equivalent to geometric distribution with βb =

(

Pr(|xn−1|<r1,|xn|<r1)
Pr(|xn−1|<r1)

)

Tf

∆t

in

discrete time.

The bivariate Rayleigh cumulative distribution function (cdf) was derived in [59]

and [60]. Using an infinite series representation,

Pr(|xn−1| < r1, |xn| < r1) = (1 − ρ)
∞
∑

k=0

ρK · P
(

k + 1,
r2
1

(1 − ρ)

)

× P
(

k + 1,
r2
1

(1 − ρ)

)

,

(4.12)

where ρ = cov(|xn−1|2, |xn|2)/
√

var(|xn−1|2)var(|xn|2) = J2
0 (2πfmτ),

P (α, x) = (1/Γ(α))
∫ x
0 e−ttα−1dt is a common form of the incomplete gamma function.

Since the power of a Rayleigh process is exponentially distributed, it is easy to
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get that Pr(|xn−1| < r1) = 1 − exp(−r2
1). Then

βb =

(

(1 − ρ)
∑∞

k=0 ρK · P
(

k + 1,
r2
1

(1−ρ)

)

× P
(

k + 1,
r2
1

(1−ρ)

)

1 − exp(−r2
1)

)

Tf

∆t

. (4.13)

Similarly, the tail slope for the good run length distribution can be refined with

the smaller ∆t following the same procedure. The tail exponential slope λ for the

good run length distribution can be described as 1
∆t

ln

(

Pr(|xn−1|>r2,|xn|>r2)
Pr(|xn−1|>r2)

)

, which

is equivalent to geometric distribution with βg =

(

Pτ (|xn−1|>r2,|xn|>r2)
Pr(|xn−1|>r2)

)

Tf

∆t

in discrete

time.

Using an infinite series representation for the bivariate Rayleigh cdf,

Pr(|xn−1| > r2, |xn| > r2) = (1−ρ)
∞
∑

k=0

ρK ·
(

1−P
(

k+1,
r2
2

(1 − ρ)

))

×
(

1−P
(

k+1,
r2
2

(1 − ρ)

))

.

(4.14)

It is known that Pr(|xn−1| > r2) = exp(−r2
2), so

βg =

(

(1 − ρ)
∑∞

k=0 ρK ·
(

1 − P
(

k + 1,
r2
2

(1−ρ)

))

×
(

1 − P
(

k + 1,
r2
2

(1−ρ)

))

exp(−r2
2)

)

Tf

∆t

. (4.15)

2. Initial Exponential Slope

Now that the slopes of the tails of the run length distributions have been determined,

we focus our attention on the other end of these distributions. Short bursts of bad

(or good) frames occur when the fading process is in that region between the two

thresholds r1 and r2. In that region, we model the frame error process as having

each frame in error with some probability qo independent of other frames. Note that

since the fading process is in this in-between region, the frame error probability qo is

neither very small, nor very close to one. Hence, both frame errors and good frames

are frequent, leading to many short bursts of both good and bad frames. Furthermore,

under this model, the bad (good) frame run length distribution will be geometric with
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parameter αb = qo (αg = 1 − qo).

Note that with this model, the initial slopes of the run length distributions do

not depend on many of the physical channel parameters. For example, as long as

the fading process is sufficiently slow so that the process tends to stay in the in-

between region for much longer than the run lengths typically last, then the run

length distribution will be largely unaffected by changes in the Doppler rate. Also,

the long term SNR is irrelevant. The short runs occur when the instantaneous SNR

falls in the in-between region. The long term average SNR will determine how often

the process enters this region but it will not affect the behavior of the run lengths

once the process is known to be in that region.

Simulations using the 802.11a and 802.11b physical layer operating over a flat

Rayleigh fading channel have confirmed this hypothesis. Good and bad run length

distributions under different SNR and Dopper rate in a flat Rayleigh fading chan-

nel are shown in Fig. 31 and Fig. 32. An 802.11a physical layer environment was

simulated. We can see that the initial exponential slope almost stays constant for

various SNR and Doppler rate. Namely, the initial slope of both the good and bad

run length distributions seems to be independent of SNR, Doppler rate, frame size,

and the choice of modulation/coding. Furthermore, we have found that using a value

of qo = 1/2 so that αg = αb = 1/2 seems to be adequate.

3. Combination Factor

The last parameter we need to set is the combination factor p, which combines the

two different exponential distributions. Analytically, p means the percentage of short

runs in the total number of good or bad runs. Short runs represent good or bad frame

runs when the instantaneous SNR r belongs to the middle region, whereas long runs

represent the frame errors occurring when the underlying Rayleigh fading process falls
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below the threshold r1 or the good frame runs occurring when the magnitude of the

fading process is higher than threshold r2. The value of p can be derived by utilizing

the mathematical expression of level crossing rate.

The number of long runs Nl per second can be described as the level crossing

rate at level γ [61] in the positive direction only (or in the negative direction only).

Nl = R

√

2πγ

γ0

fm exp(− γ

γ0

), (4.16)

where γ0 is the average SNR.

Each time the random process passes level r1, one long error frame run will be

generated. Each time the random process passes level r2, one long good frame run

will be generated.

The total number of runs is the sum of the number of long runs and short runs.

Unlike those long runs, short runs occur when the magnitude of fading process r

belongs to the middle region from r1 to r2. Assume the frame error rate as r ∈ [r1, r2]

is Pf , the average length of error runs in this region can be estimated as follows.

L̄ =
∞
∑

n=1

nP n−1
f (1 − Pf ) (4.17)

=
1

1 − Pf

. (4.18)

The total number of error frames per second is
Pf

∫ r2
2

r2
1

p(γ)dγ

Tf
, where p(γ) = 1

γ0
exp(−γ)

is the probability density function of the instantaneous power of the fading process,

Tf is the frame duration. Since Pf is different for every instantaneous SNR, aver-

aging Pf over [r2
1, r

2
2], the average number of short error runs per second Ns can be

approximated by

Ns =
∫ r2

2

r2
1

p(r)
1

Tf

pe(r)/L̄dr
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=
∫ r2

2

r2
1

exp(−r)
1

Tf

pe(r)(1 − pe(r))dr, (4.19)

where pe(r) is the frame error rate of instantaneous SNR (γ0+r)(dB) with no random

fading process added.

Therefore, assume the average power of the fading process is 1, the percentage

of short runs p can be approximated by

p =
Ns

Ns + Nl

(4.20)

=

∫ r2
2

r2
1

exp(−r)pe(r)(1 − pe(r))dr
∫ r2

2

r2
1

exp(−r)pe(r)(1 − pe(r))dr +
√

2πγ2fmTf exp(−γ2)
, (4.21)

where γ is chosen to be r1 if p is for the frame error run length distribution or r2 for

the good frame run length distribution.

Hence, all the parameters in the four-state Markov Model can be set analytically

with no additional physical layer simulation.

An alternative approach to set up p is available by taking advantage of the

average good frame run length τ̄g and average bad frame run length τ̄b. With these

additional measurements, p can be set up to model the physical layer more accurately.

The average run length for the short bursts is 1/(1−α) and the average run length for

the long run lengths is 1/(1 − β). To make the model average run length consistent

with the observed run length, we must set p to satisfy

p · 1

1 − α
+ (1 − p) · 1

1 − β
= τ̄ , (4.22)

⇒ p =
τ̄ − 1

1−α
1

1−β
− 1

1−α

. (4.23)

The results of using these two approaches to set up the combination factor p will

be compared in the next section.
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C. Statistical Approximation Results

In summary, the parameters of the 4SMM are set as follows:

1)αg, αb = 0.5;

2)Set r1 and r2 according to the plot of the FER of the underlying modula-

tion/coding scheme in a Gaussian noise channel.

3)βb = (1 − e−r2
1)

πfmTf

1.2 , βg = e−
r2

2πfmTf

1.2 , where Tf is the frame duration and fm

is the Doppler rate.

Or improve the accuracy by choosing a smaller delta and use the βb and βg in

(4.13) and (4.15)

4)

pb =

∫ r2
2

r2
1

exp(−r)pe(r)(1 − pe(r))dr
∫ r2

2

r2
1

exp(−r)pe(r)(1 − pe(r))dr +
√

2πr2
1fmTf exp(−r2

1)
,

pg =

∫ r2
2

r2
1

exp(−r)pe(r)(1 − pe(r))dr
∫ r2

2

r2
1

exp(−r)pe(r)(1 − pe(r))dr +
√

2πr2
2fmTf exp(−r2

2)
,

where pe(r) is the function of frame error rate when the instantaneous SNR is (γ0 +

r)(dB).

Or using the alternative approach when the average good and bad run length are

available, then pb = ( 1
(1−βb)

− τ̄b)/(
1

(1−βb)
− 1

(1−αb)
), pg = ( 1

(1−βg)
− τ̄g)/(

1
(1−βg)

− 1
(1−αg)

).

Using the analytical approach(without taking advantage of the information of

τ̄b and τ̄b), the run length distributions in the 802.11a and 802.11b physical layer

environment are shown in Fig. 33, Fig. 34 and Fig. 35. It can be seen that the

4SMM gives good approximations of the run length distributions, especially in that

4SMM matches the initial slope and the tail slope of the run length distributions

very well. Thus the 4SMM estimates run length distributions properly by setting

up model parameters analytically. By constraining the average run length to the
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observed value(the alternative approach to set up p), the four-state Markov model is

expected to perform better because now we have more information available to set

up the model. As we can see in Fig. 34, Fig. 33 and Fig. 35, the alternative approach

is slightly better for the good run length distributions when the SNR is lower but

no apparent difference for medium to high SNRs. The performance of the four-state

Markov model using these two approaches in a wireless network will be evaluated and

compared in the next section.

We also increase the frame size to 1200 bytes to see if the frame size will affect

the approximation accuracy of the 4SMM. The Doppler rate is chosen to be 8Hz, as

a lower Doppler rate is more usual in an indoor environment. The 802.11a physical

layer is simulated. As shown in Fig. 36 and Fig. 37, the 4SMM has a good run length

distribution estimation with the increased frame size. This is expected because in the

procedure of choosing the 4SMM parameters, the frame size and Doppler rate have

been accounted for.

Another issue when setting up the 4SMM is that choosing the thresholds r1 and

r2 can be empirical to a certain extent because these thresholds are chosen to make

the instantaneous FER close to 1 or 0 and there is no precise definition of how close

to 1 or 0 the FER should be. We found that generally choosing the thresholds so that

the instantaneous FER is 1%/99% seems to be a reasonable choice. We move the

thresholds so that the instantaneous FER is as high as 0.01%/99.99% at one extreme

and as low as 5%/95% at the other extreme. As we can see in Fig.38 and Fig.39,

changing the thresholds in this range does not affect the run length distributions

much. Overall, the 4SMM is robust to a slight shift of the thresholds. We will also

look at the network simulation results with varying thresholds in the next section.



81

0 100 200 300 400 500
10

−6

10
−4

10
−2

10
0

Frame error run length distributions, SNR=8dB
P

r
o
b
a
b
il
it
y

Physical layer simulation

4SMM approx.

4SMM approx. alternative

0 100 200 300 400 500 600 700 800
10

−6

10
−4

10
−2

10
0

Good frame run length distributions, SNR=8dB

P
r
o
b
a
b
il
it
y

Physical layer simulation

4SMM approx.

4SMM approx. alternative

Fig. 33. 4SMM run length distribution approximations with lower SNR, 802.11a envi-

ronment



82

0 100 200 300 400 500
10

−6

10
−4

10
−2

10
0

Frame error run length distributions, SNR=10dB
P

r
o
b
a
b
il
it
y

Physical layer simulation

4SMM approx.

4SMM approx. alternative

0 200 400 600 800 1000
10

−6

10
−4

10
−2

10
0

Good frame run length distributions, SNR=10dB

P
r
o
b
a
b
il
it
y

Physical layer simulation

4SMM approx.

4SMM approx. alternative

Fig. 34. 4SMM run length distribution approximations, 802.11a environment



83

0 100 200 300 400 500 600

10
−5

10
0

Frame error run length distributions, SNR=10dB
P

r
o
b
a
b
il
it
y

Physical layer simulation

4SMM approx.

4SMM approx. alternative

0 200 400 600 800 1000 1200 1400
10

−6

10
−4

10
−2

10
0

Good frame run length distributions, SNR=10dB

P
r
o
b
a
b
il
it
y

Physical layer simulation

4SMM approx.

4SMM approx. alternative

Fig. 35. 4SMM run length distribution approximations, 802.11b environment



84

0 100 200 300 400 500
10

−6

10
−4

10
−2

10
0

Frame error run length distributions, SNR=10dB
P

r
o
b
a
b
il
it
y

Physical layer simulation

4SMM approx.

4SMM approx. alternative

0 100 200 300 400 500 600 700 800
10

−6

10
−4

10
−2

10
0

Good frame run length distributions, SNR=10dB

P
r
o
b
a
b
il
it
y

Physical layer simulation

4SMM approx.

4SMM approx. alternative

Fig. 36. 4SMM run length distribution approximations, frame size 1200 bytes,

SNR=10dB



85

0 50 100 150 200 250 300
10

−6

10
−4

10
−2

10
0

Frame error run length distributions, SNR=12dB
P

r
o
b
a
b
il
it
y

Physical layer simulation

4SMM approx.

4SMM approx. alternative

0 100 200 300 400 500 600 700 800
10

−6

10
−4

10
−2

10
0

Good frame run length distributions, SNR=12dB

P
r
o
b
a
b
il
it
y

Physical layer simulation

4SMM approx.

4SMM approx. alternative

Fig. 37. 4SMM run length distribution approximations, frame size 1200 bytes,

SNR=12dB



86

0 50 100 150 200 250 300 350 400 450 500
10

−6

10
−4

10
−2

10
0

Frame error run length distributions, SNR=10dB
P

r
o
b
a
b
il
it
y

0 100 200 300 400 500 600 700 800
10

−6

10
−4

10
−2

10
0

Good frame run length distributions, SNR=10dB

P
r
o
b
a
b
il
it
y

Simulated PHY

4SMM Approx 0.01%

4SMM Approx 0.1%

4SMM Approx 1%

4SMM Approx 5%

Simulated PHY

4SMM Approx 0.01%

4SMM Approx 0.1%

4SMM Approx 1%

4SMM Approx 5%

Fig. 38. 4SMM run length distribution approximations with varying thresholds,

SNR=10dB



87

0 50 100 150 200 250 300
10

−6

10
−4

10
−2

10
0

Frame error run length distributions, SNR=12dB
P

r
o
b
a
b
il
it
y

0 100 200 300 400 500 600 700 800
10

−6

10
−4

10
−2

10
0

Good frame run length distributions, SNR=12dB

P
r
o
b
a
b
il
it
y

Simulated PHY

4SMM Approx 0.01%

4SMM Approx 0.1%

4SMM Approx 1%

4SMM Approx 5%

Simulated PHY

4SMM Approx 0.01%

4SMM Approx 0.1%

4SMM Approx 1%

4SMM Approx 5%

Fig. 39. 4SMM run length distribution approximations with varying thresholds,

SNR=12dB



88

D. Network Performance

We apply the four-state Markov model in a wireless LAN 802.11a and 802.11b envi-

ronment with the ns2 network simulation tool. To make a fair comparison, we also

embed a simulated 802.11a and 802.11b physical channel with channel coding, mod-

ulation and flat Rayleigh fading into ns2 to get the simulated physical layer results.

The Doppler frequency is selected to be 100Hz. The frame size and transmission rate

chose for 802.11a and 802.11b are 384bits, 12Mb/s and 296bits, 11Mb/s respectively.

The normalized Doppler, fmTf is 0.0032 and 0.0027 for the 802.11a and 802.11b

physical layers respectively.

Two finer points of model implementation need to be addressed here. When

choosing the simulated frame, a frame size of 384 and 296 bits is chosen for 802.11a

and 802.11b simulations respectively. The purpose of using a small frame size is to

adapt to the different frame size definitions in the physical layer. In this way, longer

frames can be split into several frames while for the shorter frames the accuracy

can still be maintained. Another issue is about ensuring the accuracy of the temporal

process. When the channel is not in use, the time between frame transmissions should

be accounted for in the simulated frame error process. That is, the simulated error

process must be advanced even when the channel is idle.

A simple two-node wireless network was set up by the ns2 simulation tool. Sim-

ulations were conducted for 30% channel loadings, with the following network setup:

a constant SNR of 5-15dB, the 802.11a and 802.11b MAC protocols with the dis-

tributed coordination function and a queue length of 50 packets, TCP Reno with

an initial window length of 100, and also the user datagram protocol (UDP). Each

simulation was conducted for 10 minutes of simulation time. Note that this is the

network simulation duration set before the ns2 simulation, while the ns2 simulator
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can run for days to finish. A trace file was generated for each simulation and analyzed

later for network characteristics. Parameters for the 4SMM were set as described in

the previous section. Considering that the 2SMM is the most commonly used model,

the network throughput of the 2SMM will be used for comparison. The parameters

of the 2SMM and 4SMM are listed in tables I, II, III and IV. Note that we use the

smaller ∆t approach in (4.13) and (4.15) to get the βb and βg in the following tables.

The network simulation results are presented in Fig. 40 and Fig. 41. As shown,

The four-state Markov Model makes a much more accurate estimation of the network

performance compared to the 2SMM for both 802.11a and 802.11b environment.

Using the alternative approach to estimate the combination factor p improves the

network throughput for the lower SNR. For the medium SNR which is of the most

interest for research purpose, the 4SMM with analytical approach provides very ac-

curate network results. For the high SNR, the frame error rate becomes very low and

network throughput comes close to the offered data load and becomes predictable.

From a practical engineering point of view, when the SNR is too low(frame error rate

close to 0.5) the system is not able to operate and when the SNR is very high(frame

error rate close to 0) the physical layer errors can be easily recovered by MAC layer

retransmission scheme and the upper layer sees almost an error-free physical layer.

It is the medium SNR range that we are not clear about the behavior and the inter-

action of physical layer and upper layer and so the medium SNR range is worth the

most attention for physical layer modeling. Overall, the four-state Markov model is

substantially better than the traditional two-state Markov model. The physical layer

interactions are simulated with a baseband equivalent simulation. We also compared

the network results with different approach to select ∆t described in the previous

section. As shown in Fig.42 and Fig.43, using a smaller ∆t to estimate the tail slope

improves the model accuracy. The effect of choosing different thresholds are shown
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Table I. Two-state Markov Model Parameters, 802.11a

SNR(dB) ε AFEL p q

8 0.37327 12.885 0.95378 0.92239

9 0.30252 12.77 0.96603 0.92169

10 0.25149 11.094 0.96971 0.90986

11 0.2024 11.934 0.97874 0.91621

12 0.18901 11.725 0.98012 0.91471

13 0.12654 10.871 0.98667 0.90801

14 0.11841 10.903 0.98768 0.90828

15 0.08024 10.068 0.99133 0.90067

Table II. Two-state Markov Model Parameters, 802.11b

SNR(dB) ε AFEL p q

8 0.3256 9.527 0.9493 0.8950

9 0.2797 8.9337 0.9565 0.8881

10 0.224 8.4995 0.9660 0.8823

11 0.1809 8.1269 0.9728 0.8770

12 0.1515 7.8329 0.9772 0.8723

13 0.1232 8.3289 0.9831 0.8799

14 0.0978 7.7794 0.9861 0.8715

15 0.076 8.0765 0.9898 0.8762
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Table III. Four-state Markov Model Parameters, 802.11a

SNR(dB) αg βg pg αb βb pb

8 0.5 0.9904 0.90469 0.5 0.9857 0.89551

9 0.5 0.9918 0.88505 0.5 0.9830 0.88756

10 0.5 0.9931 0.86429 0.5 0.9802 0.8784

11 0.5 0.9942 0.84252 0.5 0.9773 0.86799

12 0.5 0.9951 0.81981 0.5 0.9742 0.85631

13 0.5 0.9959 0.79621 0.5 0.9710 0.84334

14 0.5 0.9966 0.77173 0.5 0.9677 0.82904

15 0.5 0.9972 0.74641 0.5 0.9643 0.81339

Table IV. Four-state Markov Model Parameters, 802.11b

SNR(dB) αg βg pg αb βb pb

8 0.5 0.9917 0.94037 0.5 0.9825 0.94067

9 0.5 0.9929 0.92575 0.5 0.9799 0.93662

10 0.5 0.9940 0.90995 0.5 0.9773 0.93175

11 0.5 0.9949 0.89309 0.5 0.9745 0.92604

12 0.5 0.9957 0.87523 0.5 0.9717 0.91947

13 0.5 0.9964 0.85638 0.5 0.9689 0.912

14 0.5 0.9971 0.83657 0.5 0.9659 0.90359

15 0.5 0.9976 0.81578 0.5 0.9630 0.89418
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in Fig. 44. We can see that when choosing the thresholds so that the instantaneous

FER is 5%/95% the estimated network throughput has a little deviation compared

to the results of choosing the thresholds so that the instantaneous FER is within

1%/99%. When the thresholds are chosen so that the instantaneous FER is 1%/99%,

the network throughputs are well approximated. This confirms our argument in the

previous section that although choosing the thresholds is somewhat empirical, the

4SMM is robust to varying thresholds as long as they are chosen within a reasonable

range. We recommend choosing the thresholds so that the FER is 1%/99%. Overall,

the four-state Markov Model is shown to be efficient, accurate, easy to set up and

suitable for different physical environments. Since most of the network simulations

are conducted with a 30% offered load, we varied the load from 10% to 90% of the

channel bandwidth for the SNR= 12dB in the 802.11b system. As seen in Fig.45,

changing the offered load does not affect our previous observation of the model per-

formance. The four-state Markov model is able to estimate the network throughput

accurately with varying offered load.

E. Summary

A novel four-state Markov model was presented to approximate physical layer frame

error statistics in this chapter. The procedure to establish the transition probabilities

for the four-state Markov model was described in detail. By approximating the good

and bad run lengthes distributions with a mixture of geometric distribution, the four-

state Markov model captures the essential physical layer characteristics so that it can

be used for upper layer wireless network simulations and analysis in a flat Rayleigh

fading channel. By choosing the tail slope and initial slope based on the underlying

fading process statistics, the parameters in the four-state Markov model can be set
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up without having to run initial simulations while most of the current models require

simulations to obtain certain physical layer statistics such as the frame error rate

and average frame error run length before setting up the model parameters. Besides

accurate network simulation results, this advantage sets the four-state Markov model

apart from most of the other physical layer models. The ns2 simulation for 802.11a

and 802.11b environments showed that the four-state Markov model is superior than

the most popular two-state Markov model. Especially for the medium SNR range,

which is of the most interest for upper layer designers, the four-state Markov model

produces close network results with the actual simulated physical layer. An alterna-

tive approach to derive the combination factor p was also presented in this chapter.

This approach requires the information of the average good frame run length and

the average bad frame run length of the physical layer. With this additional infor-

mation, the performance of the four-state Markov model can be further improved.

The approach is suitable when the physical layer statistics are available. The simple

structure of the four-state Markov model provides a valuable tool for wireless net-

work analysis and simulations based on the frame level error statistics in a flat fading

channel.



100

CHAPTER V

FOUR-STATE MARKOV MODEL FOR DIVERSITY CHANNELS

In the previous chapter, we established an accurate and efficient physical layer model

for wireless flat Rayleigh fading channels. It will be helpful if the model can be

adapted for multi-path frequency selective channels. Instead of generating different

paths separately and combining them, a more efficient way is to directly generate

the error process at the output of a diversity receiver. Iskander and Mathiopoulos

extended the FSMC model for diversity channels with different combining schemes

[62] [63]. However, as pointed out in [18], an inappropriate method to partition

the states can cause substantial deviation in the transition probabilities and hence

inaccurate modeling of the fading process. Again, to partition the state using the

equal duration method proposed by Zhang involves large complexity to solve the

equations and the number of states and equations will become too many to deal with

if the Doppler frequency shift is low, which makes the FSMC model less attractive

in practice. In this chapter, the four-state Markov model is used to emulate the

frame error process with frequency selective channels and diversity gain out of the

frequency selective channel. The process of establishing parameters for the 4SMM

will be investigated for diversity channels. The physical layer frame error statistics are

analyzed in order to set up the model parameters. An 802.11a coded OFDM system

and an Alamouti scheme STBC will be studied and simulated for the physical layer

to provide real data to compare with. In the end, network throughput for the 4SMM,

2SMM and simulated physical layer environment will be compared and discussed.
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A. Frame Error Statistics

In chapter IV, we established the procedure to set up the transition probabilities

for the four-state Markov model by examining the physical layer frame error process

and matching the run length distributions. For a wideband communication system,

the channel becomes frequency selective and diversity gain may be obtained at the

receiver with appropriate signal processing techniques.

To build up an adequate model for a physical layer with a frequency selective

channel and diversity gain, the physical layer run length distributions are simulated.

In an 802.11a OFDM physical layer environment, assume there are 4 independent

paths available in the channel and each of them experiences independent fading. By

using a convolutional code with a large enough free distance, a diversity order of

approximately 4 can be achieved. The parameters for the simulation are as follows:

data rate 12Mbps, frame size 384 bits, maximum Doppler frequency shift 100Hz,

fmTf = 0.0032, SNR 8dB, the good and bad run length distributions are shown in

Fig. 46.

It can be seen that the good and bad run length distributions follow a mixture

of two exponential slopes as well as in the flat fading case. Therefore, the run length

distributions for the frequency selective channel and diversity gain can still be ap-

proximated by the mixture of two exponential slopes. The structure of the four-state

Markov model described in the previous chapter can be applied to a physical layer

with a frequency selective channel. However, the transition probabilities of the 4SMM

need to be adapted appropriately. With L uncorrelated fading paths, the probability

of the instantaneous SNR dropping below a certain threshold is much lower. The

procedure to set up a 4SMM for a physical layer with a frequency selective channel

and diversity gain will be investigated in the next section.
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B. Parameter Setting

As shown in chapter IV, the 4SMM transition probabilities depend on the two expo-

nential slopes and the combining factor of the run length distributions, which need to

be reevaluated when the fading channel becomes frequency selective with diversity.

The goal is to identify these quantities by analysis so that the model can be set up

without having to run the pre-simulations to acquire the slopes and the combining

factor.

1. Tail Exponential Slope

As discussed in the flat fading scenario, the tail slope can be related to the distri-

bution of the time duration in which the instantaneous fading magnitude falls below

a threshold r1 or above a threshold r2. The process of finding the threshold for the

frequency selective channel is the same as for the flat fading channel. Running the

physical layer with the same modulation and coding scheme through an AWGN chan-

nel, look at the plot of FER versus SNR and find the low SNR S1 when the FER is

close to 1 and the high SNR S2 when FER is close to 0. Then r1 is the average SNR

minus S1 and r2 is the average SNR minus S2 ( in dB scale).

For a frequency selective channel with diversity order L, define the equivalent

diversity combined fading process as x(t), the duration for which x(t) falls below the

lower threshold r1 as τ , and periodic samples of the diversity combined fading process

x0, x1, x2, . . . , xN , taken at a sampling interval of ∆t. Let |xi|, i = 0, 1, 2, . . . , N be

the diversity combined envelope at the sample time. Then

{

τ ≥ t
∣

∣

∣|x0| = r1

}

⇒
{

|x1| < r1, |x2| < r1, . . . , |xN | < r1

∣

∣

∣|x0| = r1

}

, (5.1)

where N = b t
∆t
c.
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By choosing ∆t so that the correlation value R(xi, xj) of xi, xj, i 6= j is approxi-

mately 0, the distribution of τ can be written as

Pr(τ ≥ t) ≈ Pr

(

|x1| < r1, |x2| < r1, . . . , |xN | < r1

∣

∣

∣ |x0| = r1

)

≈ Pr(|xn| < r1)
N .

(5.2)

Assume the branches are equal strength, the sum of the branch powers are 1 and

they are independent Rayleigh fading processes. The distribution of the diversity

combined envelope square γ is a chi-square distribution with 2L degrees of freedom

[64],

pγ(x) =
1

(L − 1)!x
(Lx)Le−Lx. (5.3)

The cdf of γ is

Fγ(x) = 1 − e−Lx
L−1
∑

k=0

1

k!
(Lx)k. (5.4)

Hence we have

1 − Fr(t) ≈ (1 − e−Lr2
1

L−1
∑

k=0

1

k!
(Lr2

1)
k)t/∆t, (5.5)

where ∆t is the time difference between each sample of the diversity combined fading

process. Notice that the analysis is in the continuous time domain here for the

convenience of derivation. Taking derivatives of each side, we get

fr(t) ≈
1

∆t
ln

( 1

1 − e−Lr2
1

∑L−1
k=0

1
k!

(Lr2
1)

k

)

(1 − e−Lr2
1

L−1
∑

k=0

1

k!
(Lr2

1)
k)t/∆t. (5.6)

From equation (5.6), we can get the exponential slope λb as

λb =
1

∆t
ln

(

1 − e−Lr2
1

L−1
∑

k=0

1

k!
(Lr2

1)
k
)

. (5.7)

It is equivalent to a geometric distribution in discrete time with

βb = (1 − e−Lr2
1

L−1
∑

k=0

1

k!
(Lr2

1)
k)Tf /∆t, (5.8)
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where Tf is the frame duration.

For the selection of ∆t, a similar procedure can be followed as with the flat

fading case. The difference is now the autocorrelation we need to characterize is

αM =
∑L

k=1 α2
k. Since αi, αj are independent for i 6= j, the autocorrelation of the

process αM(t) is the sum of correlation value for each branch. Hence,

φαM
(τ) =

L
∑

k=1

φαM
(τ)

=
π

16
J2

0 (2πfmτ). (5.9)

∆t is chosen as the smallest value so that the correlation value φαM
is about 0, which

leads to J2
0 (2πfmτ) = 0. Note that this is the same result as in the flat fading scenario.

The relationship of autocorrelation of the diversity combined fading process does not

change since each of the branches is independently Rayleigh distributed. Therefore,

the value of ∆t is

∆t = 1.2/(πfm). (5.10)

Thus we can reasonably approximate the samples of the fading process as independent

while ∆t is small enough to keep the left hand approximation in (5.2) reasonably

accurate.

For the distribution of the time duration above a certain threshold r2, a similar

procedure can be followed.

Pr(τ ≥ t) ≤ Pr

(

|x1| > r2, |x2| > r2, . . . , |xN | > r2

∣

∣

∣ |x0| = r2

)

≈ Pr(|xn| > r2)
N ,

(5.11)

fr(t) ≈
−Lr2

2 + ln(
∑L−1

k=0
1
k!

(Lr2
2)

k)

∆t
(e−Lr2

2

L−1
∑

k=0

1

k!
(Lr2

2)
k)t/∆t. (5.12)

Then the tail exponential slope for the good run length distribution λg is equal to

λg =
−Lr2

2 + ln(
∑L−1

k=0
1
k!

(Lr2
2)

k)

∆t
. (5.13)
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It is equivalent to a geometric distribution in discrete time with

βg =
(

e−Lr2
2

L−1
∑

k=0

1

k!
(Lr2

2)
k
)Tf /∆t

. (5.14)

Similar to the flat fading scenario, the accuracy of the tail slope can be improved

by taking advantage of the bivariate Rayleigh distribution and using a smaller ∆t.

The tail exponential slope λ can be described as 1
∆t

ln

(

Pr(|xn−1|<r1,|xn|<r1)
Pr(|xn−1|<r1)

)

, which

is equivalent to geometric distribution with βb =

(

Pτ (|xn−1|<r1,|xn|<r1)
Pr(|xn−1|<r1)

)

Tf

∆t

in discrete

time.

Then the tail exponential slope λ can be described as

λ =
1

∆t
ln

(

Pr(|xn−1| < r1, |xn| < r1)

Pr(|xn−1| < r1)

)

, (5.15)

which is equivalent to a geometric distribution in discrete time with

βb =

(

Pr(|xn−1| < r1, |xn| < r1)

Pr(|xn−1| < r1)

)

Tf

∆t

. (5.16)

The bivariate Rayleigh cumulative distribution function (cdf) was derived in [59]

and [60]. Using an infinite series representation,

Pr(|xn−1| < r1, |xn| < r1) =
(1 − ρ)L

Γ(L)

∞
∑

k=0

ρK · P
(

k + L,
r2
1L

(1 − ρ)

)

× P
(

k + L,
r2
1L

(1 − ρ)

)

,

(5.17)

where ρ = cov(|xn−1|2, |xn|2)/
√

var(|xn−1|2)var(|xn|2) = J2
0 (2πfmτ),

P (α, x) = (1/Γ(α))
∫ x
0 e−ttα−1dt is a common form of the incomplete gamma function.

Since Pr(|xn−1| < r1) = 1 − e−Lr2
1

∑L−1
k=0

1
k!

(Lr2
1)

k, then

βb =

(

(1 − ρ)L/Γ(L)
∑∞

k=0 ρK · P
(

k + L,
r2
1

(1−ρ)

)

× P
(

k + L,
r2
1

(1−ρ)

)

1 − e−Lr2
1

∑L−1
k=0

1
k!

(Lr2
1)

k

)

Tf

∆t

. (5.18)

The tail slope for the good run length distribution can be refined with the smaller
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∆t following the same procedure. The tail exponential slope λg for the good run length

distribution can be described as

λg =
1

∆t
ln

(

Pr(|xn−1| > r2, |xn| > r2)

Pτ (|xn−1| > r2)

)

, (5.19)

which is equivalent to a geometric distribution in discrete time with

βb =

(

Pr(|xn−1| > r2, |xn| > r2)

Pr(|xn−1| > r2)

)

Tf

∆t

. (5.20)

Using an infinite series representation for the bivariate Rayleigh cdf,

Pr(|xn−1| > r2, |xn| > r2) = (1− ρ)L/Γ(L)
∞
∑

k=0

ρK ·
(

1−P
(

k + L,
r2
2

(1 − ρ)

)

)2

. (5.21)

It is known that Pr(|xn−1| > r2) = e−Lr2
2

∑L−1
k=0

1
k!

(Lr2
2)

k, so

βg =

(

(1 − ρ)L/Γ(L)
∑∞

k=0 ρK ·
(

1 − P
(

k + L,
r2
2

(1−ρ)

))2

e−Lr2
2

∑L−1
k=0

1
k!

(Lr2
2)

k

)

Tf

∆t

. (5.22)

Therefore, the tail slopes for good and bad run length distributions are deter-

mined. The procedure to set up the tail slope for a frequency selective channel with

diversity is no different than with the flat fading case except that the probability of

the envelope of the combined diversity fading process falling above or below certain

threshold needs to be adjusted accordingly.

2. Initial Exponential Slope

As in the flat fading channel, the initial slope of the run length distributions represents

the short bursts occurring when the instantaneous fading envelope falls between the

middle region from r1 to r2. Although the channel is frequency selective with diversity

gain now, it does not change the fact that the appearances of short runs are associated

with the instantaneous fading envelope falling between the middle region. Once the
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instantaneous fading envelope falls into that region, we model the frame error process

independent with each frame with an average frame error rate of 1/2.

Therefore, we have the same results as we have in the flat fading channel. Under

this model, the bad (good) frame run length distribution will be geometric with

parameter αb = αg = 1/2. And the argument that the initial slopes of the run length

distributions do not depend on many of the physical channel parameters such as

Doppler rate and long term SNR still holds here for the frequency selective channel

with diversity gain. The frequency selective channel with diversity only changes how

often or how long the fading process stays in this region. While once the fading

process enters this region, the behavior of run lengths will be the same and will not

be affected by those physical layer parameters.

Fig. 47 illustrates the initial slope of good and bad run length distributions. An

802.11a OFDM system with 4 independent fading channels are simulated. It is seen

that the invariance of the initial slope still exists as in the flat fading channel. The

initial slope does not depend on Doppler rate, average SNR or diversity order, which

is a nice result considering it remains constant and does not have to be recalculated

when the physical layer condition differs.

3. Combination Factor

The combination factor p represents the percentage of short runs in the total number

of good or bad runs. Long runs are supposed to occur when the underlying Rayleigh

fading process falls below the threshold r1 or the good frame runs occurr when the

magnitude of the fading process is higher than the threshold r2. Short runs occur

when the instantaneous SNR r belongs to the middle region.

The number of long runs Nl per second can be described as the level crossing

rate of the composite fading process at level γ in the positive direction only (or in
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the negative direction only), which is given by Iskander and Mathiopoulos [65].

Nl = R

√
2πfm

Γ(L)
(
γ2

γ0

)L− 1

2 e
(− γ2

γ0
)
, (5.23)

where γ0 is the average SNR, L is the diversity order.

Assume the frame error rate as r ∈ [r1, r2] is Pf , the average length of error runs

in this region can be estimated as follows

L̄ =
∞
∑

n=1

nP n−1
f (1 − Pf ) (5.24)

=
1

1 − Pf

. (5.25)

Let the average SNR be γ0, the average number of short error runs per second

Ns can be approximated by

Ns =
∫ r2

2

r2
1

p(r)
1

Tf

pe(r)/L̄dr

=
∫ r2

2

r2
1

1

(L − 1)!r
(Lr)Le−Lr 1

Tf

pe(r)(1 − pe(r))dr, (5.26)

where pe(r) is the frame error rate of instantaneous SNR (γ0+r)(dB) with no random

fading process added.

Therefore, assume the average power of the fading process is 1, the percentage

of short runs p can be approximated by

p =
Ns

Ns + Nl

(5.27)

=

∫ r2
2

r2
1

1
(L−1)!r

(Lr)Le−Lrpe(r)(1 − pe(r))dr
∫ r2

2

r2
1

1
(L−1)!r

(Lr)Le−Lrpe(r)(1 − pe(r))dr +
√

2πfm

Γ(L)
(γ2)L− 1

2 e−γ2
, (5.28)

where γ is chosen to be r1 if p is for the frame error run length distribution or r2 for

the good frame run length distribution.

Thus all the parameters in the four-state Markov Model can be set analytically
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for a frequency selective channel with diversity combining with minimum physical

layer simulation.

4. Statistical Approximation Results

In summary, the parameters of the 4SMM are set as follows:

1)αg, αb = 0.5;

2)Set r1 and r2 according to the plot of the FER of the underlying modula-

tion/coding scheme in a Gaussian noise channel.

3)βb = (1 − e−Lr2
1

∑L−1
k=0

1
k!

(Lr2
1)

k)
πfmTf

1.2 , βg =
(

e−Lr2
2

∑L−1
k=0

1
k!

(Lr2
2)

k
)

πfmTf

1.2 , where

Tf is the frame duration, fm is the Doppler rate and L is the diversity order.

Or improve the accuracy by choosing a smaller delta and use the βb and βg in

(5.18) and (5.22)

4)

pb =

∫ r2
2

r2
1

1
(L−1)!r

(Lr)Le−Lrpe(r)(1 − pe(r))dr
∫ r2

2

r2
1

1
(L−1)!r

(Lr)Le−Lrpe(r)(1 − pe(r))dr +
√

2πfm

Γ(L)
(r2

1)
L− 1

2 e−r2
1

,

pg =

∫ r2
2

r2
1

1
(L−1)!r

(Lr)Le−Lrpe(r)(1 − pe(r))dr
∫ r2

2

r2
1

1
(L−1)!r

(Lr)Le−Lrpe(r)(1 − pe(r))dr +
√

2πfm

Γ(L)
(r2

2)
L− 1

2 e−r2
2

,

where pe(r) is the function of frame error rate when the instantaneous SNR is (γ0 +

r)(dB).

Using this approach, the run length distributions of 802.11a environment in a

4 path frequency selective fading channel are shown in Fig. 48. Note that for the

coded OFDM system, the actual achieved diversity order may not be the diversity

available in the channel depending on the adopted coding, modulation scheme and

average SNR. One needs to verify the real diversity order achieved before conducting

the physical layer modeling to ensure the accurateness when setting up the 4SMM.
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Run length distributions of an Alamouti scheme [30] with 2 transmit antennas and 2

receive antennas in a flat Rayleigh fading channel are shown in Fig. 49. The diversity

order is 4 for an Alamouti system with 2 transmit antennas and 2 receive antennas.

One reason we choose an Alamouti scheme to justify the models is because the di-

versity order is only dependent on the number of transmit and receive antenna if we

assume all the fading branches are independent. There will be no confusion about

the diversity order in the physical layer system. No channel coding is included in

the Alamouti system. Channel coding only changes the value of two thresholds r1

and r2 but will not change the diversity of the system. We can see that the 4SMM

gives good approximations to the run length distributions for both cases, especially

the 4SMM matches the initial slope and the tail slope of the run length distributions

very well. Thus the 4SMM estimates run length distributions for frequency selective

channel with diversity and Alamouti MIMO scheme properly by setting up model

parameters analytically. It is encouraging that the 4SMM can be easily adapted for

a diversity channel with a similar procedure to establish the state transition proba-

bilities. This result for diversity channel confirms the idea of approximating the run

length distribution with two exponential distributions and choosing the parameters

by utilizing the inherent behavior of the underlying fading process. The performance

of the four-state Markov model in a wireless network will be evaluated in the next

section.

C. Network Performance

We apply the four-state Markov model in a wireless LAN 802.11a frequency selective

channel and Alamouti MIMO environment with the ns2 network simulation tool.

To make a fair comparison, we also embed a simulated 802.11a physical channel
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with channel coding, modulation in a 4 path frequency selective channel into ns2 to

get the simulated physical layer results. A similar simulation is performed for the

Alamouti scheme. The Doppler frequency is selected to be 100Hz. The frame size

and transmission rate chosen are 384bits, 12Mb/s. The normalized Doppler fmTf is

0.0032.

A simple two-node wireless network was set up by the ns2 simulation tool. Sim-

ulations were conducted for 30% channel loadings, with the following network setup:

a constant SNR of 5-15dB, the wireless LAN MAC protocols with the distributed

coordination function and a queue length of 50 packets, TCP Reno with an initial

window length of 100, and also the user datagram protocol (UDP). Each simulation

was conducted for 10 minutes of simulation time. A trace file was generated for each

simulation and analyzed later for network characteristics. Note that this is the net-

work simulation duration set before the ns2 simulation, while the ns2 simulator can

run for days. For a physical layer with a number of independent fading paths, it takes

substantial time to simulate the physical layer with diversity. Moreover, the simula-

tion time increases with the average SNR because the better the frame error rate the

more data packets will be transmitted through the network and more simulation time

will be consumed. For example, it could take five to seven days on a dual 1800MP+

processor computer with 2GB of DDR RAM to execute a 600 second simulation for

a 4 path 802.11a environment with 10dB SNR. In comparison, the 4SMM only takes

3 minutes to complete the ns2 simulation.

Another issue one should be careful about is the selection of the diversity or-

der. In a coded OFDM system which is employed in the 802.11a physical layer, the

maximum diversity order is the number of independent fading paths L available in

the channel. But that is the asymptotic result and for a specific SNR, the achieved

diversity order may be less than L. For instance, with a constraint length 7, mini-
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Table V. Two-state Markov Model Parameters, 802.11a coded OFDM system

SNR(dB) ε AFEL p q

9 0.09167 3.6979 0.9727 0.7296

10 0.04811 3.2376 0.9844 0.6911

11 0.03097 2.9300 0.9891 0.6587

12 0.0145 2.7938 0.9947 0.6421

15 0.00262 2.4486 0.9989 0.5916

Table VI. Two-state Markov Model Parameters, Alamouti MIMO scheme

SNR(dB) ε AFEL p q

12 0.1693 2.8923 0.9295 0.6543

13 0.0957 2.5746 0.9589 0.6116

14 0.0498 2.3599 0.9778 0.5763

15 0.0240 2.1926 0.9888 0.5439

16 0.0114 2.0999 0.9945 0.5238

20 0.0004 1.8151 0.9998 0.4491

mum free distance 10, 1/2 convolutional code [66], the diversity order for a 4 path

frequency selective channel at 10dB is about only 2. When setting the 4SMM param-

eters according to the described procedures, it is necessary to use the actual achieved

diversity order at the specific SNR not the asymptotic results.

The parameters of the 2SMM and 4SMM are listed in tables V, VI, VII and

VIII. As shown in Fig.50 and Fig.51, the four-state Markov model approximates the

TCP throughput more accurately compared to the two-state Markov model.
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Table VII. Four-state Markov Model Parameters, 802.11a coded OFDM system

SNR(dB) αg βg pg αb βb pb

9 0.5 0.9953 0.7727 0.5 0.9710 0.8551

10 0.5 0.9969 0.7274 0.5 0.9622 0.8660

11 0.5 0.9979 0.6837 0.5 0.9550 0.8622

12 0.5 0.9986 0.6382 0.5 0.9472 0.8579

15 0.5 0.9998 0.4793 0.5 0.9138 0.8565

Table VIII. Four-state Markov Model Parameters, Alamouti MIMO scheme

SNR(dB) αg βg pg αb βb pb

12 0.5 0.9828 0.9761 0.5 0.9574 0.9920

13 0.5 0.9877 0.9429 0.5 0.9481 0.9934

14 0.5 0.9915 0.8882 0.5 0.9379 0.9943

15 0.5 0.9944 0.8139 0.5 0.9272 0.9948

16 0.5 0.9965 0.7277 0.5 0.9159 0.9951

20 0.5 0.9997 0.4173 0.5 0.8681 0.9949
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D. Summary

The four-state Markov model was applied to model physical layer block level statistics

in diversity channels in this chapter. By approximating the frame good and bad run

length distributions with a mixture of geometric distributions, the four-state Markov

model successfully captured the essential physical layer characteristics and provided

good network simulation results. The procedure to set up the 4SMM parameters

was described in detail. The transition probabilities of the 4SMM were obtained by

matching the physical layer frame run length distributions. Without having to run

initial simulations, the parameters of the 4SMM can be acquired analytically, which

provides great convenience for upper layer analysis and simulations. Coded OFDM

system and Alamouti MIMO scheme were studied as examples of the application of

the 4SMM. By simulating physical layers of the coded OFDM system and Alamouti

MIMO scheme in ns2, we compared the network performance of the 4SMM, which

provides excellent network results. The four-state Markov model is shown to be a

simple, accurate and easily set-up model for wireless physical layer with diversity

channels.
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CHAPTER VI

CONCLUSION

In this dissertation, current widely used physical layer models were examined and

shown to be deficient. An inaccurate physical layer model can lead to incorrect upper

layer protocol judgements and analysis when applied to simulations and analytical

derivations. To address this problem, physical layer statistics were investigated. We

identified the key properties of the physical layer to be the good and bad frame run

length distributions for the purpose of approximating the physical layer activities ac-

curately and thus providing a good physical layer model for upper layer simulations

and analysis. A two-state run length model was presented in which the duration of

each state was set to duplicate the exact physical layer frame run length distribution.

In the two-state run length model, from the good (bad) state, it transfers to the bad

(good) state after a certain time duration. To make a fair comparison of the perfor-

mance of all the physical layer models, the actual physical layer with channel coding

and fading were implemented and embedded into the ns2 simulator so that we can

know what to expect and compare with the upper layer network simulation results.

The ns2 network throughput with the two-state run length model is extremely close

to the network throughput with simulated actual physical layer. However, the two-

state run length model is impractical because the knowledge of the exact frame run

length distribution is required in order to set up the model. If one of the physical

layer parameters varies such as the signal-to-noise ratio and Doppler frequency shift,

the frame run length distribution will be completely different and physical layer sim-

ulation has to be conducted to obtain the frame run length distributions. Although

the two-state run length model is unrealistic for applications, it verifies the point that

if we can approximate the physical layer frame run length distributions accurately in
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the physical layer the model will generate accurate upper layer simulation results.

Encouraged by the results of the two-state run length model, we examined the

physical layer frame run length distributions in the flat Rayleigh fading channel. For-

tunately, we found that the frame run length distributions can be well approximated

by a mixture of two exponential distributions. Approximating the run length distri-

bution in such a manner will result in an innovative four-state Markov model. The

transition probabilities of the four-state Markov model are linked with the slopes

and the combination factors of the mixture exponential distributions. The four-state

Markov model can be easily set up if the parameters of the mixture exponential distri-

butions are known. The main idea when deriving the parameters of the approximated

frame run length distributions is that we assume all the good or bad long runs oc-

cur when the instantaneous signal-to-noise ratio is above or below certain thresholds.

And all the good or bad short runs occur when the instantaneous signal-to-noise ratio

falls in the middle region. By carefully choosing the upper and lower thresholds for

the fading process, a procedure to estimate the initial and tail slope has been devel-

oped. The combination factor of the mixture exponential slope can also be estimated

by taking advantage of the level crossing rate of the flat fading process. Following

the described procedure, the four-state Markov model can be easily established. Ns2

simulation showed that the proposed four-state Markov model performs superior to

the popular two-state Markov model. The generated ns2 TCP and UDP throughput

with the four-state Markov model were shown to be quite accurate. In addition to the

accuracy of the four-state Markov model, the process of setting it up does not require

previous physical layer simulations in a fading environment, whereas the traditional

method to set up two-state Markov model needs to run previous physical simulations

for each signal-to-noise ratio or Doppler frequency shift. The only condition one needs

to know in order to set up the four-state Markov model is the physical layer frame
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error rate versus signal-to-noise ratio in a Gaussian channel, which is very easy to

obtain. The advantage of setting up the parameters analytically makes the model

much favorable for upper layer analysis and simulations.

We also looked at the problem of physical layer modeling in a diversity channel.

We start by investigating the frame run length distributions. The frame run length

distributions for the diversity channel still presents a behavior of mixture exponential

distributions. Thus it is possible to apply the four-state Markov model to the diversity

channel if we can choose the slopes and combination factor appropriately. With a

similar procedure to divide the instantaneous signal-to-noise ratio into three regions

by choosing the upper and lower threshold, the procedure of setting up the model

parameters has been adapted for the diversity channel. The procedures were similar

with what we did in the flat fading scenario. A coded OFDM system with a frequency

selective channel and an Alamouti MIMO system with 2×2 antennas were embedded

and simulated in the ns2 simulator to provide benchmark results for the comparison of

physical layer models. One should make sure that the actual achieved diversity order

is in agreement with the diversity order used for model parameter derivation before

trying to set up the model. The four-state Markov model was shown to approximate

the frame run length distributions and network throughput nicely. Whereas the two-

state Markov model presented a completely different behavior with respect to the

frame run length distributions and underestimated the network throughput badly

especially for low to medium signal-to-noise ratio. It took up to weeks to execute a

600 seconds network simulation for a 4 path 802.11a environment on a dual 1800MP+

processer computer while utilizing the four-state Markov model the simulation can

be finished in minutes. Moreover, the simplicity of the four-state Markov model

could make it a valuable tool for the analysis of the upper layer properties. This

four-state Markov Model makes a practical and efficient model for the research of
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wireless network which is generic and can be applied for many different kinds of

physical environments. The four-state Markov Model is shown to be an excellent

physical layer block level model for wireless network analysis and simulations and

holds significant potential.
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