
OPTIMAL MONITORING AND VISUALIZATION OF

STEADY STATE POWER SYSTEM OPERATION

A Dissertation

by

BEI XU

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2006

Major Subject: Electrical Engineering

OPTIMAL MONITORING AND VISUALIZATION OF

STEADY STATE POWER SYSTEM OPERATION

A Dissertation

by

BEI XU

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Ali Abur
Committee Members, Mladen Kezunovic

Anirudda Datta
Ergun Akleman

Head of Department, Costas N. Georghiades

August 2006

Major Subject: Electrical Engineering

iii

ABSTRACT

Optimal Monitoring and Visualization of

Steady State Power System Operation. (August 2006)

Bei Xu, B.S.; M.S. Shanghai Jiaotong University

Chair of Advisory Committee: Dr. Ali Abur

Power system operation requires accurate monitoring of electrical quantities

and a reliable database of the power system. As the power system operation becomes

more competitive, the secure operation becomes highly important and the role of state

estimation becomes more critical. Recently, due to the development of new technology

in high power electronics, new control and monitoring devices are becoming more

popular in power systems. It is therefore necessary to investigate their models and

integrate them into the existing state estimation applications.

This dissertation is dedicated to exploiting the newly appeared controlling and

monitoring devices, such as Flexible AC Transmission System (FACTS) devices and

(Phasor Measurement Units) PMUs, and developing new algorithms to include them

into power system analysis applications. Another goal is to develop a 3D visualization

tool to help power system operators gain an in-depth image of the system operation

state and to identify limit violations in a quick and intuitive manner.

An algorithm of state estimation of a power system with embedded FACTS

devices is developed first. This estimator can be used to estimate the system state

quantities and Unified Power Flow Controller (UPFC) controller parameters. Further-

more, it can also to be used to determine the required controller setting to maintain

a desired power flow through a given line. In the second part of this dissertation, two

methods to determine the optimal locations of PMUs are derived. One is numerical

and the other one is topological. The numerical method is more effective when there

iv

are very few existing measurements while the topology-based method is more applica-

ble for a system, which has lots of measurements forming several observable islands.

To guard against unexpected failures of PMUs, the numerical method is extended to

account for single PMU loss. In the last part of this dissertation, a 3D graphic user

interface for power system analysis is developed. It supports two basic application

functions, power flow analysis and state estimation. Different visualization techniques

are used to represent different kinds of system information.

v

To My Parents: Guihai Xu, Yuhua Pang and My Husband: Yunli Xiong

vi

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor, Dr. Ali Abur, for his guidance,

patience and support throughout my Ph.D. studies. His encouragement and technical

comments are essential to the completion of this dissertation.

I would also like to express my special thanks to Dr. Ergun Alkeman for his help

and invaluable advice in developing the 3D visualization interface. I am also very

grateful to my committee members, Dr. M. Kezunovic and Dr. A. Datta, for their

help and academic advice during my graduate studies.

Thanks to Power System Engineering Research Center (PSERC), the National

Science Foundation (NSF) and the Department of Electrical and Computer Engineer-

ing Department of Texas A&M University for their financial support.

I would like to thank my parents and my husband for their generous love and

support. I also want to thank my dear friends Dr. Cansın Y. Evrenosog̃lu for his

generous help in my research and Dr. Aleksander K. Wójcik for his proof reading of

the manuscript.

vii

TABLE OF CONTENTS

CHAPTER Page

I BACKGROUND . 1

A. Background . 1

B. Contributions of This Dissertation 3

1. State estimation of system with FACTS devices 3

2. Optimal PMU placement 3

3. Visualization of power system 4

C. Organization of Chapters 4

II STATE ESTIMATION OF POWER SYSTEM WITH FACTS

DEVICES . 5

A. Introduction . 5

B. Steady State Model of UPFC 7

C. Developed Algorithm . 10

1. Hachtel’s augmented matrix method 10

2. Observability analysis 15

3. Bad data analysis . 15

4. Measurements equations 16

a. Lines without an installed UPFC 16

b. Lines controlled by a UPFC 17

5. Algorithm . 19

D. Computational Issues . 20

1. Initialization . 20

2. Adjusting the barrier parameter and step length . . . 20

3. Matrix conditioning 22

E. Simulation Results . 22

1. IEEE 14-bus system 23

a. Case 1: State estimation without measure-

ment errors . 25

b. Case 2: Introducing bad data 25

c. Case 3: Operating the UPFC at its capacity limit 26

d. Case 4: Controller parameter determination . . . 27

2. IEEE 57-bus system 29

3. IEEE 118-bus system 33

viii

CHAPTER Page

F. Conclusions . 34

III OPTIMAL PMU PLACEMENT 35

A. Introduction . 35

B. Algorithm for Optimal PMU Placement 37

1. Integer programming based method 39

a. Case 1: A system with no PMUs or conven-

tional measurements 40

b. Case 2: A system with some flow measurements . 43

c. Case 3: A system with both injection mea-

surements (some of which may be zero injec-

tion pseudo-measurements) and flow measurements 44

d. Case 4: A system which contains conventional

flow and injection measurements as well as

PMU measurements 49

e. Case 5: Placement strategy against loss of a

single PMU . 51

2. Topology based method 52

C. Simulation Results . 53

1. IEEE 14-bus system 54

a. Case 1: Effect of considering zero injections . . . 54

b. Case 2: Considering single PMU loss 56

2. IEEE 30-bus system 56

a. Case 1: Effect of considering zero injection 57

b. Case 2: Considering single PMU loss 57

3. IEEE 57-bus system 58

a. Case 1: Effect of considering zero injection 59

b. Case 2: Considering single PMU loss 60

4. IEEE 118-bus system 62

a. Case 1: Effect of considering zero injection 62

b. Case 2: Considering single PMU loss 65

c. Case 3: System having several conventional

measurements . 65

D. Conclusions and Future Work 65

IV 3D GUI FOR POWER SYSTEM VISUALIZATION 68

A. Introduction . 68

B. Program Description . 70

ix

CHAPTER Page

1. Power flow analysis 71

2. State estimation . 72

C. Cases Studies . 73

1. Create/edit a system 73

2. Observability analysis 74

3. Bad data detection/identification 75

4. Power flow analysis 78

D. Software Design Overview 80

1. Main classes and their functions 80

a. PETViewWindow class 81

b. PETEditWindow class 82

c. Classes for the components in the system 82

d. PETScene class 83

e. PETSystem class 83

f. PETTerrain class 84

2. Interface between the FORTRAN subroutines and

the GUI . 85

E. Conclusion . 86

V CONCLUSION . 87

A. Summary of Contributions 88

B. Future Work . 88

REFERENCES . 90

APPENDIX A . 94

APPENDIX B . 96

APPENDIX C . 98

VITA . 108

x

LIST OF TABLES

TABLE Page

I Parameters and constraints of UPFC in IEEE 14-bus system 24

II Measurements data in IEEE 14-bus system for case 1 24

III Estimated UPFC control variables and iterations in case 1 25

IV Bad data analysis results in case 1 25

V Estimated UPFC control variables and iterations in case 2 26

VI Bad data analysis results in case 2 26

VII Estimated UPFC control variables and iterations in case 3 27

VIII Bad data analysis results in case 3 27

IX Measurements data in IEEE 14-bus system for case 4 28

X Estimated UPFC control variables and iterations in case 4 28

XI Parameters and constraints of UPFC in IEEE 57-bus system 30

XII Voltage measurements information in IEEE 57-bus system 30

XIII Flow and injection measurements data in IEEE 57-bus system 31

XIV Estimated UPFC control variables and iterations of IEEE 57-bus

system . 32

XV Bad data analysis results of IEEE 57-bus system 32

XVI Comparison of simulations carried on IEEE 57-bus system 33

XVII Comparison of simulations carried on IEEE 118-bus system 33

XVIII System information of IEEE 14-bus system 54

xi

TABLE Page

XIX Results for the 14-bus system without considering single PMU loss . 55

XX Results for 14-bus system considering single PMU loss 55

XXI System information of IEEE 30-bus system 57

XXII Results for the 30-bus system without considering single PMU loss . 57

XXIII Results for the 30-bus system considering single PMU loss 58

XXIV System information of IEEE 57-bus system 58

XXV Results for the 57-bus system without considering single PMU loss . 60

XXVI Results for the 57-bus system considering single PMU loss 61

XXVII System information of IEEE 118-bus system 61

XXVIII Results for the 118-bus system without considering single PMU loss . 62

XXIX Results for the 118-bus system considering single PMU loss 64

XXX Measurements information for IEEE 118-bus system 66

XXXI Results for 118-bus system considering conventional measurements . 66

xii

LIST OF FIGURES

FIGURE Page

1 Basic circuit arrangement of UPFC 8

2 Steady state model of UPFC . 9

3 Candidate measurements on line k-m without UPFC 16

4 UPFC and candidate measurements on line k-m 17

5 IEEE 14-bus system embedded with one UPFC 23

6 IEEE 57-bus system embedded with one UPFC 29

7 IEEE 14-bus system with 3 PMUs 38

8 IEEE 14-bus system with conventional measurements 40

9 Apply topology transformation on IEEE 14-bus system 48

10 Observable islands in IEEE 14-bus system 53

11 IEEE 14-bus system . 54

12 IEEE 30-bus system . 56

13 IEEE 57-bus system . 59

14 IEEE 118-bus system . 63

15 Graphical user interface . 71

16 Creation of a new line by the user 74

17 Observable islands in the IEEE 118-bus system 75

18 Bad data in the IEEE 118-bus system 77

19 Detailed numerical results of bad data test 77

xiii

FIGURE Page

20 Power flow analysis of IEEE 118-bus system 79

21 Detailed bus information . 79

22 The data structure of PET GUI . 81

B-1 OpenGL rendering pipeline . 97

C-1 Data structure of OBJObject class 99

1

CHAPTER I

BACKGROUND

A. Background

Power system state estimation has been playing an active and critical role in elec-

tric power system since 1969 when it was first introduced by Fred Schweppe [1].

By collecting analog measurements data and the status data of the circuit breakers

through the Supervisory Control and Data Acquisition System (SCADA) and feeding

them into state estimation function, state estimation can provide an estimate for all

measured and unmeasured electrical quantities and network parameters of the entire

power system, detect and filter out gross errors in the measurement set and detect

the topology errors in the network configuration. It is one of the essential functions

in Energy Management Systems (EMS) to provide an accurate monitoring of the

operation quantities of power systems and a reliable database of the system upon

which subsequent network functions such as optimal power flow, security analysis,

etc. could be deployed.

As power system deregulation becomes widespread around the globe, power mar-

kets become competitive. As a result, to maintain the secure operation of power

system becomes highly important and more difficult and the role of state estimation

is becoming more critical. Meanwhile, new control and monitoring devices such as

Flexible AC Transmission System (FACTS) and Phasor Measurement Units (PMU)

are becoming more and more popular in the deregulated power system due to the

development of new technology in high power electronics. Thus, to investigate the

detailed mathematical models of these devices and integrate them into the existing

The journal model is IEEE Transactions on Power Systems.

2

state estimation applications will become necessary.

The concept of Flexible AC Transmission Systems was first introduced by Hingo-

rani, N.G. in 1988 [2]. Since then, many types of FACTS devices have been developed.

FACTS devices are able to change, in a fast and effective way, the network param-

eters to achieve a better system performance. They use circuit reactance, voltage

magnitude and phase angle as control variables to provide flexible loading of lines by

shifting the flows from heavy loaded lines to lighter loaded lines therefore increase

the security and reliability of the power systems and enhance the Available Transfer

Capability (ATC) of the power network without the construction of new transmission

lines.

Synchronized Phasor Measurement Unit is a device, which uses synchronized

signals from the global positioning system (GPS) satellites and is placed at selected

substations to monitor the phasors of bus voltage as well as all the currents incident to

the bus. PMU was first introduced in mid-1980s. It was first utilized in a substation

for monitoring and analyzing power system dynamics. As they become available in

large numbers, they can provide valuable information for EMS applications as well.

PMUs are by far more accurate than the conventional measurements. By placing

PMUs on certain strategic buses, a complete monitoring of the entire system can be

accomplished, allowing the instant calculation of system states. Thus a faster and

more reliable state estimation can be achieved.

In large scale power systems, system operators are overwhelmed by vast amount

of data from EMS, which is usually displayed as numerical values on a one-line di-

agram. Recent advances in computer software and hardware makes it possible to

develop highly detailed representation of power system in Graphical User Interface

(GUI) for visualizing information about power system operation and deciding on the

necessary corrective actions. The objective of power system visualization is to aid

3

system operators to gain a better understanding of the system state at a glance.

B. Contributions of This Dissertation

The objectives of the research work are to exploit recently introduced control and

monitoring devices and to develop a 3D visualization tool for improved monitoring of

the power system operation. The contributions of this dissertation are briefly outlined

below.

1. State estimation of system with FACTS devices

The detailed steady state model of Unified Power Flow Controller (UPFC) is used

and integrated into the state estimation algorithm. The Interior Point (IP) method

is used to solve the nonlinear optimization problem. The developed state estimation

algorithm can work as a sate estimator as well as a tracing tool for the parameters

of UPFC devices. Furthermore, it can detect multiple conforming bad data by using

the inequality constraints of UPFC.

2. Optimal PMU placement

An integer programming based formulation and a topology-based algorithm for opti-

mal PMU placement are developed. The integer programming based algorithm is a

numerical method and allows systematic analysis of network observability for mixed

measurement sets, which include conventional flow and injection measurements as

well as PMUs. The other one is a topology analysis method, which makes the system

observable by merging existing observable islands. Moreover, the numerical approach

is extended to account for contingencies involving loss of single PMUs.

4

3. Visualization of power system

A graphical user interface for power system visualization is developed. This interface

supports two basic application functions, power flow analysis and state estimation.

Different kinds of visualization methods are used to provide images of system with

easily identifiable characteristics related to violations of various operating limits. Con-

venient features, such as zooming in/out, panning and rotating are provided to aid

the user for getting a better view of the power system.

C. Organization of Chapters

This dissertation is organized as below.

• Chapter II presents the formulation of state estimation of power system embed-

ded with UPFCs.

• Chapter III describes the two algorithms for optimal PMU placements, a nu-

merical method and a topology-based method.

• Chapter IV presents a user-friendly visualization tool, which supports two basic

power system applications, power system analysis and state estimation.

• Chapter V is the summary of the research work in this dissertation.

5

CHAPTER II

STATE ESTIMATION OF POWER SYSTEM WITH FACTS DEVICES ∗

After the establishment of power markets with transmission open access, the signifi-

cance and use of Flexible A.C. transmission systems (FACTS) devices for manipulat-

ing line power flows to relieve congestion and optimize the overall grid operation have

increased. As a result, there is a need to integrate the FACTS device models into the

existing power system applications. This chapter will present an algorithm for state

estimation of network embedded with FACTS devices. Furthermore, it will be shown

via case studies that the same estimation program can also be used to determine the

controller setting for a desired operation condition.

A. Introduction

FACTS devices enable secure operation of power systems which have to be otherwise

upgraded in order to relieve load on congested transmission lines, to increase the

Available Transmission Capacity (ATC) of the power system and to optimize the

system resources. As these devices are becoming more and more popular in the

transmission systems, monitoring of the system state will require detailed models of

these devices and their integration into the existing power system applications. One

of these applications with a critical role in system monitoring is the state estimator.

There are several kinds of FACTS devices. Thyristor-switched series capaci-

tors (TCSC) and thyristor switched phase shifting transformer (TCPST) can exert a

voltage in series with the line and therefore can control the active power through a

∗ Reprinted with permission from “State estimation of systems with UPFCs using
the interior point method” by Bei Xu and Ali Abur, 2004. IEEE Transactions on
Power Systems, Vol. 19, 1635-1641. Copyright 2004 IEEE

6

transmission line [3]. On the other hand, the Unified Power Flow Controller (UPFC)

has a series voltage source and a shunt voltage source, allowing independent control

of the voltage magnitude, the real and reactive power flows along a given transmission

line [4, 5]. In this chapter, only one device namely the UPFC is considered due to its

complexity and versatility in controlling the power flows, even though the presented

formulation is quite generic and can be applied to any type of FACTS device.

State estimation in power system can be formulated as a nonlinear weighted

least square (WLS) problem. The UPFC model introduces operational and parame-

ter constraints for the components. Thus, the state estimation problem will have to

be formulated as an optimization problem with such constraints. It has a set of mea-

surement equations: z = h(x)+ ε; a set of equality constraints g(x) = 0, representing

the zero injections of buses and the zero active power exchange between the power

system and FACTS devices; a set of inequality constraints f(x) ≤ 0, representing the

Var limits on generators, transformer tap ratio limits and the power and voltage limit

of FACTS devices. This problem is then solved by using the well documented and

tested Interior Point (IP) method [6].

IP method has already been applied to the solution of a variety of power system

problems [3, 7, 8, 9, 10]. In [9], it is used to solve the optimal reactive dispatch prob-

lem. IP method is used in optimal power flow formulation together with the multiple

centrality corrections (MCC) technique in [8]. The problem of constrained LAV state

estimation is formulated and solved via the IP method by using scaled penalty pa-

rameters [4]. Another application of IP method to the solution of constrained power

system state estimation problem is given in [3] and [7]. In this formulation, Hachtel’s

method [11] is used due to its desirable numerical robustness. This chapter provides a

more comprehensive description of the method including the discussion of the compu-

tational issues concerning the choice of the step length and use of scaling for improved

7

matrix conditioning for large systems. By solving the problem we can not only esti-

mate the state variables (bus voltages and phase angles) of power system but can also

determine the controller settings of FACTS devices for a desired operating condition.

Some practical solutions are proposed and simulation results for larger size IEEE test

systems are provided to illustrate the performance of the proposed implementation.

This chapter is organized as below.

• Section A is introduction part.

• Section B introduces the steady-state model of the UPFC [5] with operating

and parameters limits.

• Section C describes the method used in the proposed state estimator. First the

commonly used Hatchtel’s augmented matrix method [11] is used to implement a

numerically robust and computationally efficient state estimator. Logarithmic

barrier function method [7] is used and integrated into Hatchtel’s matrix to

treat the inequality constraints. Then the issues of observability analysis and

bad data detections are discussed. The detailed equations for the measurements

used in the algorithm are given in the section.

• Section D discusses about the computational issues such as the choice of initial

points, adjusting step length and scaling the matrix to improve its conditioning.

• Simulation results for typical systems are shown in section E.

• The last section is the conclusion part.

B. Steady State Model of UPFC

The Unified Power Flow Controller (UPFC) can control the voltage magnitude, real

and reactive power flows simultaneously. It is assumed that the system is operating

8

Fig. 1. Basic circuit arrangement of UPFC

under normal conditions and therefore only the steady state model of the UPFC

is of interest. This model has been developed in [5]. The real physical model of

UPFC consists of an excitation transformer, a boosting transformer and two switching

converters as illustrated in Figure 1. The two inverters are operated from a common dc

link provided by a dc storage capacitor. This arrangement functions as an ideal AC to

AC power converter in which the real power can freely flow in either direction between

the AC terminals of the two inverters and each inverter can independently generate

(or absorb) reactive power at its own AC output terminal. The losses associated with

the UPFC operation are typically neglected and under this assumption the UPFC

will neither inject nor absorb any real power from the system while operating in the

steady-state.

The steady state model can be built by using a voltage source and its source

impedance inserted in series with the line and another voltage source and its source

impedance connected in shunt at the bus where the excitation transformer is. The

circuit model corresponding to this representation is shown in Figure 2.

The complex source voltage values are designated by VB 6 θB and VE 6 θE for the

9

Fig. 2. Steady state model of UPFC

series and shunt sources respectively. Note that the given equality constraint PB +

PE = 0 in Figure 2 implies that no real power is exchanged between the UPFC and

the system. Here, PB and PE are the real power outputs of the two voltage sources.

The operations of the two voltage sources are therefore mutually dependent. The

parameters XB, XE and Zkm represent the source reactances for the series and shunt

voltage sources and the transmission line impedance respectively.

The complex power flows that go through line k-m and m-k can be expressed as:

Skm = V̂k · Î∗km (2.1)

Smk = V̂m · Îmk (2.2)

where,

Îkm = −Îmk =
V̂k + V̂B − V̂m

Zkm + jXB

(2.3)

Îkm is defined as the line current from bus k to bus m, while Îmk is the line

current from bus m to bus k. V̂k and V̂m are the phasor voltages at bus k and bus

m. they are defined as Vk 6 θk and Vm 6 θm respectively, where VE, θE VB, θB are the

control variables of UPFC.

10

The complex power outputs of the series and shunt voltage sources can be ex-

pressed as:

SE = V̂E · ÎE (2.4)

SB = V̂B · ÎB (2.5)

where,

ÎB = Îkm =
V̂k + V̂B − V̂m

Zkm + jXB

(2.6)

ÎE =
V̂E − V̂k

jXE

(2.7)

There are equality and inequality constraints of UPFC, which can be formulated

by Equations (2.8) to (2.12).

Real Power Constraints : PE + PB = 0 (2.8)

Shunt Power Constraints : |SE| =
√

P 2
E + Q2

E ≤ SE,max (2.9)

Series Power Constraints : |SB| =
√

P 2
B + Q2

B ≤ SB,max (2.10)

Shunt V oltage Constraint : |VE| ≤ VE,max (2.11)

Series V oltage Constraint : |VB| ≤ VB,max (2.12)

where, SE,max and SB,max are the power limits for the shunt and series voltage sources,

and VE,max and VB,max are the limits on their voltage magnitudes.

C. Developed Algorithm

1. Hachtel’s augmented matrix method

Power system state estimation problem can be formulated as a nonlinear least squares

problem with a set of equality and inequality constraints [7] as shown in Equation

11

(2.13)

Minimize
1

2
rT R−1r

Subject to

g(x) = 0

r − z + h(x) = 0

f(x) ≤ 0

(2.13)

z = h(x) + r represents the equations for measurements, where z is the (m× 1)

measurement vector; h(·) is the (m × 1) vector of nonlinear functions, which relates

measurements to state; x is the (n × 1) state vector; r is the (m × 1) measurement

error vector.

g(x) = 0 represents the equality constraints, where g(·) is the (r × 1) vector

of nonlinear functions. These equality constraints represent the zero injection buses

and the zero active power exchange between the system and FACTS devices given by

Equation (2.8).

f(x) ≤ 0 represents the inequality constraints, where f(·) is the (p× 1) vector of

nonlinear functions. These constraints represent the Var limits on generators, ratio

limits of transformer tap and the power and voltage limits of the UPFC given by

Equations (2.9) to (2.12)

The interior point method [6, 3, 7] can then be used to solve the nonlinear

optimization problem. A non-negative slack variable vector s ≥ 0 is added in order

to convert the inequality constraints to equality constraints and the objective function

is augmented by a logarithmic penalty function in order to ensure that s will remain

non-negative. This leads to:

Minimize
1

2
rT R−1r − µ

p∑
k=1

ln sk

12

Subject to

f(x) + s = 0

g(x) = 0

r − z + h(x) = 0

s ≥ 0

(2.14)

The Lagrangian function for the transformed problem of 2.14 is given by:

L =
1

2
rT R−1r − µ

p∑
k=1

ln sk − λT [f(x) + s]− ρg(x)− π[r − z + h(x)] (2.15)

Note that, the barrier parameter µ ≥ 0 is forced to decrease towards zero as the

iterations progress.

The Kuhn-Karroush-Tucker (KKT) optimality conditions for this problem are

∇sL = −µS−1e− λ = 0

∇λL = −f(x)− s = 0

∇ρL = −g(x) = 0

∇πL = −r + z − h(x) = 0 (2.16)

∇rL = R−1r − π = 0

∇xL = −F T λ−GT ρ−HT π = 0

λ ≤ 0

where, S is a diagonal matrix, whose Kth diagonal element is sk; F , G and H are the

gradients of f(x), g(x) and h(x) respectively; R is a diagonal matrix whose diagonal

elements are the measurement variances, Rii = σ2
i ; e is a vector with all entries equal

to 1.0.

The nonlinear functions in 2.16 can be replaced by their first order approxima-

13

tions as given below:

f(x) ≈ f(xk) + F∆x

g(x) ≈ g(xk) + G∆x (2.17)

h(x) ≈ h(xk) + H∆x

S−1e ≈ (Sk)−1e− (Sk)−2∆s

Using the first equation in (2.16) and the fourth and fifth equation in (2.17):

S−1e +
1

µ
λ ≈ (Sk)−1e− (Sk)−2∆s +

1

µ
λ = 0 (2.18)

The second equation in 2.16 yields:

f(xk) = −sk (2.19)

F∆x = −∆s (2.20)

Eliminating ∆s and sk from 2.18, 2.19 and 2.20,

(Sk)2

µ
λ + F∆x = f(xk) (2.21)

Further eliminating r from the fourth and fifth equations in (2.16) and using the

first order approximation of h(x):

Rπ + H∆x = z − h(xk) (2.22)

Now, the above derived Equations (2.21), (2.22), the second equation in (2.17)

14

and the sixth equation in (2.16) can be combined to obtain:

D 0 0 F

0 0 0 G

0 0 R H

F T GT HT 0

·

λ

ρ

π

∆x

=

f(xk)

−g(xk)

z − h(xk)

0

(2.23)

where D is a diagonal matrix, whose kth diagonal element is given by:

Dkk =
S2

k

µ
(2.24)

The entire matrix on the left side will be denoted by K. The solution to the

nonlinear optimization problem can be obtained by iteratively solving Equation (2.23)

and updating the values of the variables at each iteration.

xk+1 = xk + α ·∆xk+1 (2.25)

In Equation (2.25), the step length is adjusted via α, a factor used to keep the

changes of phase angle to be small enough to maintain linearity of the first order

equation and to keep xk+1 in the feasible region so that f(x) ≤ 0, λ ≤ 0. Further

discussion of choosing α will be presented in section D.

Consider the case where a UPFC will be used to adjust the real power flow

through a branch for a given system loading and generation dispatch condition. The

same program, which solves 2.14, can be used to solve for the system states and the

required UPFC parameters, by assigning all bus injections and the desired branch flow

as measurements. Hence, the developed state estimator can also be used to obtain

the required set of UPFC parameters to maintain a desired flow in the network. Note

that in this case, the measurement set is chosen on purpose as a minimally observable

set including all the injections and the desired line flows through the UPFC branches.

15

Hence, the solution will exactly satisfy the injections and the desired flows with zero

residuals. This will guarantee that the solved UPFC setting will yield the desired

flow exactly.

2. Observability analysis

Observability analysis can be carried out using the numerical method [12]. The

measurement Jacobian matrix which excludes inequality constraints and given by:

J =

 G

H

 (2.26)

will be decomposed into its lower and upper rectangular factors by using the Peters-

Wilkinson [13] method. In case of zero pivots, pseudo measurements will be added

to make the system observable. The pseudo measurements will indicate deficiencies

in the measurement system, both for the network states as well as for the UPFC

parameters.

3. Bad data analysis

The largest normalized residual test is used for bad data analysis [14]. In order

to avoid the possibility of singularity of the gain matrix, equality constraints are

maintained as part of the measurement set despite the fact that their residuals are

known to be zero ahead of time. Artificially small error variances are assigned to

these equality constraints in forming the augmented diagonal measurement covariance

matrix Ra that includes the variances of both the regular measurements as well as

those of the equality constraints. Hence, the residual covariance matrix Ω is computed

as shown below:

Ω = Ra − J · (JT R−1
a J)−1 · JT (2.27)

16

Fig. 3. Candidate measurements on line k-m without UPFC

where J is the Jacobian matrix given in 2.26.

The residuals are then normalized as :

rN
i =

|ri|√
Ωii

, i = 1, · · · , m (2.28)

and the measurement having the largest normalized residual which is also larger than

the detection threshold (set to be 3.0 in the program), is identified as bad data.

Identification and elimination of bad data and re-estimation of the system state is

repeated, until no more bad data is detected.

4. Measurements equations

This section provides the detailed equations for the measurements incident to a given

line, both with and without a UPFC device.

a. Lines without an installed UPFC

Consider the two possible measurements, meter 1 and meter 2 on line k-m as shown

in Figure 3.

17

Fig. 4. UPFC and candidate measurements on line k-m

Equations for meter 1 are:

Pk = V 2
k Gkk + Vk

n∑
j=1,j 6=k

Vj(Gkj cos θkj + Bkj sin θkj) (2.29)

Qk = −V 2
k Bkk + Vk

n∑
j=1,j 6=k

Vj(Gkj sin θkj −Bkj cos θkj) (2.30)

Equations for meter 2 are:

Pkm = −V 2
k Gkm + VkVm(Gkm cos θkm + Bkm sin θkm) (2.31)

Qkm = V 2
k (Bkm − Ckm) + VkVm(Gkm sin θkm −Bkm cos θkm) (2.32)

b. Lines controlled by a UPFC

Suppose a UPFC is installed on line k-m. Meters 1, 2, 3, 4 are the measurements

that can be placed on line k-m as shown in Figure 4.

Equations for meter 1 are:

Pk = V 2
k (Gkk + Gkm) + Vk

n∑
j=1,j 6=k,m

Vj(Gkj cos θkj + Bkj sin θkj)

+VkVBBB sin θkB − VkVk′BB sin θkk′ − VkVEBE sin θkE (2.33)

Qk = −V 2
k (Bkk + Bkm + BB + BE)

+Vk

n∑
j=1,j 6=k,m

Vj(Gkj sin θkj −Bkj cos θkj)

−VkVBBB cos θkB + VkVk′BB cos θkk′ + VkVEBE cos θkE (2.34)

18

Equations for meter 2 are:

Pkm = Vk′VkBB sin θk′k + Vk′VBBB sin θk′B (2.35)

Qkm = −V 2
k′BB − Vk′VkBB cos θk′B (2.36)

and,

Pkm = −V 2
k′Gkm + Vk′Vm(Gkm cos θk′m + Bkm sin θk′m) (2.37)

Qkm = V 2
k′(Bkm − Ckm0) + Vk′Vm(Gkm sin θk′m −Bkm cos θk′m) (2.38)

Equations for meter 3 are:

Pmk = −V 2
mG′

km + VmVk(Gkj cos θmk + Bkj sin θmk)

+VmVB(G′
km cos θmB + B′

km sin θmB) (2.39)

Qmk = V 2
m(B′

km + Ckm0) + VmVk(Gkj sin θmk −Bkj cos θmk)

+VmVB(G′
km sin θmB −B′

km cos θmB) (2.40)

Equations for meter 4 are:

Pm = V 2
m(Gmm + Gmk −G′

km) + Vm

n∑
j=1,j 6=k,m

Vj(Gmj cos θmj + Bmj sin θmj)

+VmVk(G
′
km cos θmk + B′

km sin θmk)

+VmVB(G′
km cos θmB + B′

km sin θmB) (2.41)

Qm = −V 2
m(Bmm + Bmk −B′

km) + Vm

n∑
j=1,j 6=k,m

Vj(Gmj sin θmj −Bmj cos θmj)

+VmVk(G
′
km sin θmk −B′

km cos θmk)

+VmVB(G′
km sin θmB −B′

km cos θmB) (2.42)

19

5. Algorithm

The procedures of the proposed algorithm used in this program of state estimation

is listed below. It is based upon the previously presented analysis and the reader is

referred to the previous sections for the notation used in the following description of

algorithm steps.

Step 1: Read network data and measurements;

Step 2: Initialize: xk, k = 0;

Step 3: Form Kk matrix;

Step 4: Calculate the equality and inequality constraints, measurements mismatches,

and form the right hand side b vector;

bk =

−f(xk)

−g(xk)

z − h(xk)

0

(2.43)

Step 5: Solve the equation:

Kk ·

λ

ρ

π

∆x

= bk (2.44)

get ∆xk.

Step 6: Update x: xk+1 = xk + ∆xk;

Step 7: Terminate execution if ∆xk −∆xk−1 ≤ ε, and go to Step 3; Else, k = k + 1

and go to Step 8

20

Step 8: Stop and print out results.

D. Computational Issues

1. Initialization

The initial state vector x0 should satisfy f(x0) < 0. So, all of the bus voltages are

initialized to 1.0 and phase angles to 0.0. The control variables associated with the

UPFC are initialized assuming that these devices are initially out of service, that is,

all shunt voltages are set equal to 1.0, i.e. VE = 1.0, θE = 0.0, and all series voltages

are set equal to 0.0, i.e. VB = 0.0, θB = 0.0. However, choosing , VB, θB or θE as

zero, leads to a singular K matrix. Hence, these variables are assigned very small but

non-zero values (e.g. 0.001) in order to avoid singularity during initialization. The

barrier parameter µ is initialized to 1.0 and proportional to the duality gap during

the iterations [7].

2. Adjusting the barrier parameter and step length

The barrier parameter µ is forced to decrease towards zero during the iterations as

the optimal point is approached. The difference between primal and dual objective

functions is calculated during each iteration and used to adjust µ. The dual of the

problem given in 2.13 is shown below [7]:

Maximize 1
2
rT R−1r − λT f(x)− ρT g(x)− πT [r − z + h(x)]

Subject to :

−F T λ−GT ρ−HT π = 0

R−1r − π = 0

λ ≤ 0

(2.45)

The duality gap between the primal and dual objective functions can be expressed

21

as:

δ = λT f(x) + ρT g(x) + πT [r − z + h(x)] (2.46)

This gap should always be non-negative and finally become zero at the opti-

mal point. The barrier parameter µ is adjusted according to δ at each iteration as

suggested in [7]:

µ =
δ

n2
(2.47)

where, n is the dimension of state vector x.

The step length is chosen based on three requirements. The first one is to keep

the changes in θ small enough so that the linearity of the first order equation is

maintained. The second one is to make the solutions feasible within the inequality

constraints so that f(x) ≤ 0. The third one is to keep λ ≤ 0.

In this implementation, the maximum change for the phase angle is set as 0.2

radians, ∆θlim = 0.2. α̂θ is chosen to keep α̂θ ·∆θi ≤ ∆θlim.

α̂θ = min

{
∆θlim

|∆θi|
, |∆θi| > ∆θlim

}
(2.48)

To keep x in the feasible region, α̂s is chosen to keep f(xk+1) ≤ 0,

f(xk+1) ≈ f(xk) + F · α̂s∆x = −Sk · e− α̂s∆s ≤ 0 (2.49)

we get,

α̂s = min
{
− si

∆si

, ∆si < 0
}

(2.50)

To keep λk+1 ≤ 0,

λk+1 = λk + α̂λ · (λk+1
old − λk) ≤ 0 (2.51)

22

we get,

α̂λ = min

{
λk

λk
i − λk+1

i,old

, (λk
i − λk+1

i,old) < 0

}
(2.52)

Step length adjustor α is chosen as,

α = min {1, α̂θ, α̂s, α̂λ} (2.53)

The inequality constraint f(xk +α ·∆xk+1) ≤ 0 is also tested to ensure feasibility.

3. Matrix conditioning

The barrier parameter µ appears in the denominator of the expression for the sub-

matrix D in Equation (2.25). As the optimal point is approached, µ will decrease

towards zero, causing severe ill conditioning of the K matrix.

One way to overcome ill conditioning is via the application of matrix scaling as

follows:

µD 0 0 F

0 0 0 G

0 0 R F

µF GT HT 0

·

λ
µ

ρ

π

∆x

=

−f(xk)

−g(xk)

z − h(xk)

0

(2.54)

The effectiveness of scaling will be illustrated via simulations in the next section.

The effect of scaling on the conditioning of the K matrix is found to be very significant.

E. Simulation Results

Simulations are carried out on the IEEE 14-bus, IEEE 57-bus and IEEE 118-bus

systems. For all the simulations, the tolerance used to define convergence is 10−4 and

the bad data detection threshold is set to be 3.0. Gaussian errors with zero mean are

added to the measurements in all the simulations. The standard deviations are 0.004

23

Fig. 5. IEEE 14-bus system embedded with one UPFC

for all the voltage measurements, 0.01 for all the flow measurements and 0.008 for

all the injection measurements. The improvements made in the condition number of

the coefficient matrix by applying matrix scaling are documented in cases using the

IEEE 57-bus and 118-bus test systems.

1. IEEE 14-bus system

There are 4 cases carried on IEEE 14-bus system, which illustrate the response of

the estimator to bad data as well as its possible use for setting the parameters of

power flow controllers to maintain a desired flow in the network. Bad data processing

are carried on cases 1, 2 and 3. For those cases where more than one bad data

identification cycle is needed, the largest normalized residual is given for each cycle.

Figure 5 shows the network diagram of the IEEE 14-bus system. A UPFC is

installed on line 6−12 at bus 6. The voltage and capacity constraints and parameters

of UPFC are given in Table I.

24

Table I. Parameters and constraints of UPFC in IEEE 14-bus system

XB XE VB,max VE,max SB,max SE,max

0.05 0.05 1.10 1.10 0.44 0.44

Table II. Measurements data in IEEE 14-bus system for case 1

Voltage Measurement

Bus Voltage Bus Voltage Bus Voltage

1 1.0684 2 1.0453 3 1.0063

6 1.0724 8 1.0904

Flow Measurement

Line P Q Line P Q Line P Q

1-2 1.5709 -0.2062 2-3 0.7412 0.0382 4-7 0.2800 -0.0178

6-11 0.0629 0.0865 6-12 0.1967 0.0229 7-8 0.0065 -0.2017

7-9 0.2822 0.1524 9-14 0.0777 0.0042 12-13 0.1231 0.0186

13-14 0.0703 0.0389 12-6 -0.1852 -0.0278 9-7 -0.2826 -0.1541

Injection Measurement

Bus P Q Bus P Q Bus P Q

3 -0.9410 0.0399 5 -0.0985 -0.0128 6 -0.1171 -0.0386

8 0.0025 0.2171 9 -0.2913 -0.1698 10 -0.0882 -0.0675

11 -0.0354 -0.0157 12 -0.0770 -0.0037 13 -0.1316 -0.0638

25

Table III. Estimated UPFC control variables and iterations in case 1

V 6 θ P Q Iteration

Series Source 0.0776 44.08◦ 0.0056 0.0127
8

Shunt Source 1.0906 -15.22◦ -0.0056 0.4378

Table IV. Bad data analysis results in case 1

rmax
N Measurement Result Cycle

1.8933 V olt3 No Bad Data 1

a. Case 1: State estimation without measurement errors

This case illustrates that the status of the installed UPFC can be estimated provided

that there are enough measurements to make the network and the device parameters

observable. Measurements that are assumed to be available for this case are listed in

Table II.

The estimated UPFC control variables and the number of iterations are shown

in Table III. There is no bad data in this case as shown in Table IV.

As can be observed from Table III, PB + PE = 0, validating that no real power

exchange takes place between UPFC and the power system. The voltages and power

ratings of the series and shunt voltage sources modeling the UPFC are all within their

respective limits.

b. Case 2: Introducing bad data

This case is identical to Case 1, except for a single bad data, which is intentionally

introduced by changing the sign of real power injection measurement at bus 9 from

26

Table V. Estimated UPFC control variables and iterations in case 2

V 6 θ P Q Iteration

Series Source 0.0776 44.08◦ 0.0056 0.0127
8

Shunt Source 1.0916 -15.20◦ -0.0056 0.4389

Table VI. Bad data analysis results in case 2

rmax
N Measurement Result Cycle

30.5198 PInj,9 Bad Data 1

1.8773 V olt3 No Bad Data 2

negative to positive. The final estimation results of UPFC and number of iterations

are shown in Table V. Applying the largest normalized residual test, bad data is

identified as shown in Table VI.

c. Case 3: Operating the UPFC at its capacity limit

This case simulates multiple conforming bad data and the use of inequality constraints

to aid bad data identification. Case 1 is modified by introducing a 0.10 per unit

increase in both injection measurement P12 and flow measurement P6−12. Note that

these will then become interacting measurements with conforming bad data.

Initially, state estimation is run by excluding all the inequality constraints of the

UPFC. The estimation results and the number of iterations are shown in Table VII.

In this case, the largest normalized residual test falsely identified flow measurement

P12−6 as bad data shown in Table VIII.

Next, the operation limits given in Table I for the UPFC are activated. In

27

this case both bad measurements P12 and P6−12 are correctly identified as bad data.

Normalized residuals are shown in Table VIII.

Table VII. Estimated UPFC control variables and iterations in case 3

V 6 θ P Q Iteration

Series Source 0.0906 45.08◦ 0.0077 0.0175
8

Shunt Source 1.0906 -15.46◦ -0.0077 0.4710

Table VIII. Bad data analysis results in case 3

Ineq. Constr. rmax
N Measurement Result Cycle

Without
10.5186 PFlow,12−6 Bad Data 1

1.8931 V olt3 No Bad Data 2

9.6321 PInj,12 Bad Data 1

With 10.1760 PFlow,6−12 Bad Data 2

1.8920 V olt3 No Bad Data 3

d. Case 4: Controller parameter determination

This case illustrates the alternative usage of this estimator in order to determine the

controller parameters of UPFC for a desired operating condition. It is assumed that

the net power injections at each bus are specified as shown in Table IX and the real

power flow through line 6−12 is desired to be 0.15p.u. This is to be accomplished via

a UPFC installed on line 6 − 12. The series and shunt voltage sources are set equal

to 0.073 and 1.09p.u. respectively. The required parameter setting for the UPFC to

accomplish the required flow is estimated as shown in Table X. Note that no bad data

28

can be identified in this case, because the measurement set is intentionally designed

as a minimally observable set, i.e. every measurement is critical in this case.

Table IX. Measurements data in IEEE 14-bus system for case 4

Voltage Measurement

Bus Voltage Bus Voltage Bus VOltage

1 1.0583

Injection Measurement

Bus P Q Bus P Q Bus P Q

2 0.1859 0.2199 3 -0.9535 0.0446 4 -0.4661 0.0396

5 -0.0641 -0.0170 6 -0.1124 -0.0436 7 0.0000 0.0000

8 0.0033 0.2233 9 -0.2933 -0.1794 10 -0.0919 -0.0509

11 -0.0277 -0.0018 12 -0.0669 -0.0230 13 -0.1132 -0.0494

14 -0.1504 -0.0374

Table X. Estimated UPFC control variables and iterations in case 4

V 6 θ P Q Iteration

Series Source 0.0736 0.64◦ 0.0081 0.0096
8

Shunt Source 1.0906 -14.50◦ -0.0081 0.4264

29

2. IEEE 57-bus system

In this modified IEEE 57-bus test system, a UPFC is installed on line 6-8 near bus 6

as shown in Figure 6.

Fig. 6. IEEE 57-bus system embedded with one UPFC

30

The information of UPFC and measurements is given in Tables XI, XII and XIII.

Table XI. Parameters and constraints of UPFC in IEEE 57-bus system

XB XE VB,max VE,max SB,max SE,max

0.05 0.05 1.10 1.10 1.70 1.70

Table XII. Voltage measurements information in IEEE 57-bus system

Bus Voltage Bus Voltage Bus Voltage Bus Voltage Bus Voltage

1 1.0483 2 1.0083 3 0.9834 6 0.9818 8 1.0022

31

Table XIII. Flow and injection measurements data in IEEE 57-bus system

Flow Measurement

Line P Q Line P Q Line P Q

6-7 -0.6249 0.1181 6-8 0.3764 0.77900 8-9 2.0259 0.1669

13-15 -0.4001 0.0216 18-19 0.0303 0.0187 19-20 0.0044 0.0035

23-24 0.0335 0.0025 24-25 0.1434 0.0306 24-26 -0.1039 -0.0078

26-27 -0.1041 -0.0325 27-28 -0.1843 -0.0300 25-30 0.0760 0.0495

22-38 -0.1105 -0.0417 41-43 -0.1353 -0.0283 15-45 0.3439 0.0509

50-51 -0.1143 0.0019 40-56 0.0547 -0.0695 9-55 0.1987 -0.0587

3-2 -1.0260 0.0375 5-4 -0.2327 0.0870 8-6 -0.2700 0.0944

11-9 -0.1904 -0.8756 13-11 0.0215 -0.0155 15-14 0.6409 0.0606

28-27 0.2092 0.1324 33-32 -0.03734 0.0360 36-35 0.1159 -0.0212

37-36 0.1669 0.0673 38-37 0.2158 0.1493 42-41 -0.0940 -0.0352

44-38 0.2355 -0.0299 38-44 -0.2095 0.0509 9-55 0.1987 0.1015

Injection Measurement

Bus P Q Bus P Q Bus P Q

3 -0.0015 -0.1370 5 -0.1243 -0.04783 6 -0.7432 -0.2656

8 3.0024 -0.5765 10 -0.0301 -0.02562 12 -0.6742 1.0233

13 -0.1707 -0.0101 16 -0.4416 -0.0311 17 -0.4268 -0.0672

20 -0.0305 -0.0248 27 -0.1090 -0.0063 28 -0.0543 -0.0221

29 -0.1558 -0.0141 30 -0.0423 -0.0138 31 -0.0510 -0.0168

33 -0.0223 -0.0058 38 -0.1611 -0.0613 44 -0.1105 -0.0139

49 -0.1928 -0.0923 52 -0.0430 -0.0112 54 -0.0282 -0.0079

55 -0.0686 -0.0219 56 -0.0890 -0.0324 57 -0.0654 -0.0210

32

Table XIV. Estimated UPFC control variables and iterations of IEEE 57-bus system

V 6 θ P Q Iteration

Series Source 0.2986 35.191◦ -0.0948 0.2497
8

Shunt Source 1.0526 -11.264◦ 0.0948 1.5103

Table XV. Bad data analysis results of IEEE 57-bus system

rmax
N Measurement Result Cycle

42.6161 PFlow,38−44 Bad Data 1

9.7093 QFlow,9−55 Bad Data 2

2.6750 QFlow,8−6 No Bad Data 3

The estimation results for UPFC control variables are shown in Table XIV. The

cases are also run with bad data in the real power flow through branches 38-44 by

changing the signs from negative to positive and the reactive power flow through

branches 9-55 from positive to negative respectively. Both bad data are successfully

identified by the estimator. Maximum normalized residuals obtained after the initial

bad data processing cycle are shown in Table XV.

It is noticed that the condition number of the K matrix deteriorates as the system

size increases. Table XVI shows the comparisons of the iterations and the condition

number of the K matrix with and without using scaling. While scaling is observed to

improve the condition number significantly, the iteration count is not affected for this

case. Hence, a much larger size test system, namely the IEEE 118-bus test system is

considered next.

33

Table XVI. Comparison of simulations carried on IEEE 57-bus system

Method Iteration Number Condition Number

Non-Scaled 9 1041

Scaled 9 107

Table XVII. Comparison of simulations carried on IEEE 118-bus system

FACTS Method Iterations Condition Number
Measuements

Volt Inj. Flow

17-18
Non-Scaled 11 1057

12 81 43
Scaled 11 105

17-18, Non-Scaled Not Converged 1054

89-90 Scaled 8 108

3. IEEE 118-bus system

The effect of scaling on the convergence characteristics of the estimator is studied

further using the IEEE 118-bus system. Also, the number of UPFCs is increased

from one to two, one being placed on line 17-18 at bus 17 terminal and the other

on line 89-90 at bus 89 terminal. Simulations are carried out with only one installed

UPFC on line 17-18 as well as with both of them installed. The comparative results

are shown in Table XVII. It is noted that, not only the increased system size but

also adding more UPFCs contribute to the deterioration of the condition number of

the K matrix. Use of scaling significantly improves the convergence characteristics,

particularly for larger systems.

34

F. Conclusions

This chapter presents an algorithm for state estimation of power systems embedded

with FACTS devices. While only the Unified Power Flow Controller (UPFC) is used

in the developed program, other types of controllers can easily be integrated into the

developed prototype with minor effort. This program may have dual purpose. It can

be used to estimate the controller parameters along with system states during normal

operation. It can also be used to determine the required controller settings in order

to maintain a desired power flow through a given line.

Several computational issues related to the initialization, choice of the proper step

length and ill-conditioning of the matrices are studied and solutions are proposed.

Simulations are carried out on IEEE 14-bus, 57-bus and 118-bus test systems to

illustrate the performance of the developed state estimator in the presence of bad

data. The estimator is also shown to be useful in determining the required UPFC

settings corresponding to a desired power flow through the controlled line.

35

CHAPTER III

OPTIMAL PMU PLACEMENT

Power systems are rapidly becoming populated by Phasor Measurement Unit (PMU),

which have multiple uses at substations. They provide valuable phasor information

for protection and control of power systems during abnormal operation. In the steady-

state operation, these synchronized phasors will still be very useful in monitoring the

system state. This chapter describes the study undertaken to determine the optimal

locations of PMUs for a given power system.

A. Introduction

Secure operation of power systems requires close monitoring of the system operating

conditions. This is traditionally accomplished by the state estimator which resides in

the control center computer and has access to the measurements received from numer-

ous substations in the monitored system. These measurements are commonly pro-

vided by the remote terminal units (RTU) at the substations and include real/reactive

power flows, power injections, and magnitudes of bus voltages and branch currents.

Until recently, available measurement sets did not contain phase angle measurements

due to the technical difficulties associated with the synchronization of measurements

at remote locations. Global positioning system (GPS) alleviated these difficulties and

lead to the development of phasor measurement unit.

PMUs are devices, which use synchronization signals from GPS satellites and

provide the positive sequence phasor voltages and currents measured at a given sub-

station [15]. While PMUs are not yet found at every substation, their utilization

in substations for protection and control functions is rapidly increasing. As they

become available in large numbers, they can provide valuable information for EMS

36

applications as well. One such application, which will be significantly affected by the

introduction of PMUs, is the state estimator.

The idea of using direct phasor measurements for system monitoring applications

including the specific case of state estimation has first been suggested in [15, 16]. The

problem of choosing PMU locations for network observability is addressed in [17].

That study assumes that each PMU provides voltage and current measurements at

its associated bus and all incident branches. It is therefore possible to fully monitor

the system by using relatively less number of PMUs than the number of system

buses. This problem is solved by using a graph theoretic observability analysis and

an optimization method based on Simulated Annealing in [17]. Possible loss or failure

of PMUs is not considered in that study. As the considered systems increase in size

such combinatorial optimization solutions may become computationally demanding.

In this chapter, two alternative procedures are introduced to solve the PMU

placement problem. First, a numerical method based on an integer programming

formulation will be presented. This formulation facilitates the analysis of network

observability and is general enough to account for the existence of zero and non-

zero power injections and power flow measurements. There are two different ways to

treat zero and non-zero power injection measurements using this method. One is via

the use of non-linear constraints, and the other one is based on a special topology

transformation. These two methods will be illustrated in this chapter using the IEEE

14-bus as an example. The procedure can also be extended to account for loss of

single PMUs. Some preliminary results are already presented in [18] and [19].

Another procedure presented in this chapter is a topology-based method. It

is more applicable for a system, which has a lot of measurements forming several

observable islands. Placing a few extra PMUs at strategic boundary buses will make

the entire network observable.

37

The chapter is organized in four sections.

• Section A is introduction part.

• Section B contains the details of the proposed algorithm for the solution of

the optimal PMU placement problem. The two alternative methods, numer-

ical method and the topology-based method, are described first, followed by

the discussion of the case where loss of single PMU is considered as an added

reliability criterion.

• Section C presents simulation results obtained by applying the developed meth-

ods to standard IEEE test systems with typical measurement configurations.

• Conclusions and final remarks are given in the last section.

B. Algorithm for Optimal PMU Placement

PMUs provide two types of measurements: bus voltage phasors and branch current

phasors. Depending on the type of PMUs the number of channels used for measuring

voltage and current phasors will vary. Here, it is assumed that each PMU has enough

channels to record the bus voltage phasor at its associated bus and current phasors

along all branches that are incident to this bus. The objective of the PMU placement

problem is to render an observable system by using a minimum number of PMUs.

An example of an optimally placed set of PMUs in a 14-bus system is shown below

in Figure 7.

In this system, there are three PMUs placed at buses 2, 6 and 9 respectively.

Bus 7 is the only zero injection bus. The PMU at bus 2 can not only measure the

voltage phasor of bus 2, but also the current phasors of branches 2-1, 2-3, 2-4 and 2-5.

Using Ohm’s law, the voltage phasors at buses 1, 3, 4 and 5 can be obtained from

38

p

p p

4

3

85 7

1 2

1011

13 1412

6 9

Fig. 7. IEEE 14-bus system with 3 PMUs

the branch currents and the voltage at bus 2. Having determined voltage phasors

at buses 1, 2, 3, 4, and 5, the current phasors of branches 1-5, 3-4 and 4-5 can be

calculated. Following the same logic, PMU at bus 6 can measure the voltage phasor

at bus 6 and the current phasors of branches 6-5, 6-11, 6-12 and 6-13, thus allowing

the calculation of the voltage phasors at buses 5, 11, 12, 13 and the current phasor

of branch 12-13. PMU at bus 9 can measure the voltage phasor at bus 9 and the

current phasors of branches 9-4, 9-7, 9-10, 9-14 and allow the calculation of the voltage

phasors at buses 4, 7, 10, 14, and the current phasors of branches 4-7. As voltage

phasors of buses 10, 11, 13, 14 are known, current phasors of branches 10-11 and

13-14 can now also be calculated. Using the known current phasors of branches 4-7

and 9-7, and the zero injection at bus 7, the current phasor of branch 7-8 can be

derived using the Kirchhoff’s Current Law. The only remaining unknown voltage

phasor at bus 8 can now be calculated by using the voltage phasor at bus 7 and the

current phasor of branch 7-8. Thus the entire system becomes observable by placing

only three PMUs at buses 2, 6, 9 and by considering the zero injection at bus 7.

39

In the following sections, two different procedures are introduced to solve the PMU

placement problem. One is an integer based programming method, and the other one

is a topology-based method. Both of these methods will be discussed in detail via the

use of the IEEE 14-bus example in the following sections.

1. Integer programming based method

In this section, a numerical method based on Integer Programming will be presented

to solve the optimal PMU placement problem. For an n-bus system, the PMU place-

ment problem can be formulated as follows:

Minimize
n∑
i

ωi · xi

Subject to f(X) ≥ 1̂ (3.1)

where, ωi is the cost of the PMU installed at bus i.

X is a binary decision variable vector, whose entries are defined as

xi =

1 if a PMU is installed at bus i

0 otherwise
(3.2)

f(X) is a vector function, whose entries are non-zero if the corresponding bus

voltage is solvable using the given measurement set and zero otherwise. 1̂ is a vector

whose entries are all ones.

The objective function, which is the inner product of the binary decision variable

vector and the cost vector represents the total costs of the selected PMUs. Constraint

functions ensure full network observability while minimizing the total cost of the

PMUs.

The procedure for building the vector function f(X) will be described for four

possible cases, where (1) no PMU measurements or conventional measurements exist,

40

� ��

13 1412

6 9

4

3

85 7

1 2

1011

�
�
�
�

P

Fig. 8. IEEE 14-bus system with conventional measurements

(2) only flow measurements exist, (3) both flow and injection measurements (they

may be zero injections or measured injections) exist or (4) PMU measurements and

conventional flow or injection measurements exist. The procedure for each case will

be described using IEEE 14-bus system as an example. However, the entire procedure

is actually implemented and successfully tested on different size systems with diverse

measurement configurations.

Consider the IEEE 14-bus system and its measurement configuration shown in

Figure 8. In this system, there is a conventional paired flow measurement on line 5-6,

which is represented by a black box, and a PMU measurement at bus 10. Also, note

that bus 7 is a zero injection bus which is indicated by the black dot next to it.

a. Case 1: A system with no PMUs or conventional measurements

In this case, the PMU, the flow measurement and the zero injection are ignored. In

order to form the constraint set, the binary connectivity matrix A, whose entries are

41

defined as below, will be formed first.

Ak,m =

1 if k = m or k and m are connected

0 otherwise
(3.3)

Matrix A can be directly obtained from the bus admittance matrix by trans-

forming its entries into binary form. Building the A matrix for the 14-bus system

yields:

A =

1 1 0 0 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 0 1 0 1 0 0 0 0 0

1 1 0 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 1 1 1 0

0 0 0 1 0 0 1 1 1 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 1 0 0 1 0 1 1 0 0 0 1

0 0 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 1 0 0 0 1 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 1 1 0

0 0 0 0 0 1 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 1 0 0 0 1 1

(3.4)

Based on the acknowledgement that by placing a PMU on one bus, the voltage

phasors of this bus and its neighbouring buses can be calculated, we can get

f(X) = A ·X

Thus, in order to make all bus voltage phasors solvable for this case, the following

42

inequality constraints should be satisfied:

f(X) = A ·X =

f1 = x1 + x2 + x5 ≥ 1

f2 = x1 + x2 + x3 + x4 + x5 ≥ 1

f3 = x2 + x3 + x4 ≥ 1

f4 = x2 + x3 + x4 + x5 + x7 + x9 ≥ 1

f5 = x1 + x2 + x4 + x5 + x6 ≥ 1

f6 = x5 + x6 + x11 + x12 + x13 ≥ 1

f7 = x4 + x7 + x8 + x9 ≥ 1

f8 = x7 + x8 ≥ 1

f9 = x4 + x7 + x9 + x10 + x14 ≥ 1

f10 = x9 + x10 + x11 ≥ 1

f11 = x6 + x10 + x11 ≥ 1

f12 = x6 + x12 + x13 ≥ 1

f13 = x6 + x12 + x13 + x14 ≥ 1

f14 = x9 + x13 + x14 ≥ 1

(3.5)

The operator ”+” serves as the logical ”OR” and the use of ”1” in the right hand

side of the inequality ensures that at least one of the variables appearing in the sum

will be non-zero. For example, consider the constraint associated with bus 1 as given

below:

f1 = x1 + x2 + x5 ≥ 1

It implies that at least one PMU must be placed at either one of buses 1, 2 or 5

in order to make bus 1 observable.

43

b. Case 2: A system with some flow measurements

This case considers the situation where some flow measurements may be present. Flow

measurement on branch 5-6 in the 14-bus example system will be used to illustrate

the approach on how to deal with existing flow measurements. Existence of this

flow measurement will lead to the modification of the constraints for buses 5 and 6

accordingly. Modification follows the observation that having a flow measurement

along a given branch allows the calculation of one of the terminal bus voltage phasors

when the other one is known. Hence, the constraint equations associated with the

terminal buses of the measured branch can be merged into a single constraint. In the

case of the example system, the constraints for buses 5 and 6 are merged into a joint

constraint as follows,
f5 = x1 + x2 + x4 + x5 + x6 ≥ 1

f6 = x5 + x6 + x11 + x12 + x13 ≥ 1
⇒

f5 new = f5 + f6 = x1 + x2 + x4 + x5 + x6 + x11 + x12 + x13 ≥ 1

(3.6)

which implies that if either one of the voltage phasors at bus 5 or 6 is observable, the

other one will be observable.

Applying this modification to the constraints for the 14-bus system, the following

44

set of constraints will be obtained,

f(X) =

f1 = x1 + x2 + x5 ≥ 1

f2 = x1 + x2 + x3 + x4 + x5 ≥ 1

f3 = x2 + x3 + x4 ≥ 1

f4 = x2 + x3 + x4 + x5 + x7 + x9 ≥ 1

f5 new = x1 + x2 + x4 + x5 + x6 + x11 + x12 + x13 ≥ 1

f7 = x4 + x7 + x8 + x9 ≥ 1

f8 = x7 + x8 ≥ 1

f9 = x4 + x7 + x9 + x10 + x14 ≥ 1

f10 = x9 + x10 + x11 ≥ 1

f11 = x6 + x10 + x11 ≥ 1

f12 = x6 + x12 + x13 ≥ 1

f13 = x6 + x12 + x13 + x14 ≥ 1

f14 = x9 + x13 + x14 ≥ 1

(3.7)

c. Case 3: A system with both injection measurements (some of which may be zero

injection pseudo-measurements) and flow measurements

In this case, injection measurements whether they are real measurements or zero

injections, are treated the same way.

Consider again the same 14-bus system, where bus 7 is a zero injection bus. It is

easy to see that if the phasor voltages at any three out of the four buses 4, 7, 8 and 9

are known, then the fourth one can be calculated using the Kirchhoff’s Current Law

applied at bus 7 where the net injected current is known.

There are two different ways to treat the injection measurements and form the

constraints. One is to form non-linear constraints for the neighbors of the buses,

which have injection measurements installed. The alternative approach involves a

45

topology transformation. These will be discussed separately next.

I. Forming non-linear constraints

One way to treat the injection buses is to modify the constraints associated with the

neighboring buses of these buses and form a set of non-linear constraints. This is

accomplished as shown below.

To treat the zero injection bus 7 in the IEEE 14-bus system, constraints associate

with its neighboring buses 4, 8 and 9 will be modified as follows,

f4 = x2 + x3 + x4 + x5 + x7 + x9 + f7 · f8 · f9 ≥ 1

f8 = x7 + x8 + f4 · f7 · f9 ≥ 1

f9 = x4 + x7 + x9 + x10 + x14 + f4 · f7 · f8 ≥ 1

(3.8)

Note that the operator ”·” serves as the logical ”AND” in the above equations.

For example, the expression of f8 in Equation (3.8) implies that bus 8 will be observ-

able if there is a PMU on either bus 7 or 8, or if buses 4, 7 and 9 are all observable.

The expressions for fi in Equation (3.8) can be further simplified by using the

following properties of the logical AND (·) and OR (+) operators:

Given two sets A and B, where set A is a subset of set B, then A + B = B and

A · B = A. For instance, substituting the expression for f7 in the expression for f4,

f4 can be written as:

f4 = x2 + x3 + x4 + x5 + x7 + x9 + f7 · f8 · f9

= x2 + x3 + x4 + x5 + x7 + x9 + (x4 + x7 + x8 + x9) · f8 · f9

= x2 + x3 + x4 + x5 + x7 + x9 + x4 · f8 · f9 + x7 · f8 · f9 + x8 · f8 · f9 + x9 · f8 · f9

= x2 + x3 + x4 + x5 + x7 + x9 + x8 · f8 · f9

Note that the expression for f7 should also include an extra product term given

46

by f4 · f8 · f9. However this higher order term will be neglected. In all our simulated

cases, this approximation is found to have no effect on the optimization.

Carrying on the simplifications, the product x4 · f8 · f9 is eliminated because it

is the subset of x4, which already exists in the expression. Using similar reasoning,

x7 · f8 · f9 and x9 · f8 · f9 are also eliminated. Then, substituting the expression of f8

yields:

f4 = x2 + x3 + x4 + x5 + x7 + x9 + x8 · f8 · f9

= x2 + x3 + x4 + x5 + x7 + x9 + x8 · (x7 + x8) · f9

= x2 + x3 + x4 + x5 + x7 + x9 + x8 · f9

Substituting for f9:

f4 = x2 + x3 + x4 + x5 + x7 + x9 + x8 · f9

= x2 + x3 + x4 + x5 + x7 + x9 + x8 · (x4 + x7 + x9 + x10 + x14)

= x2 + x3 + x4 + x5 + x7 + x9 + x8 · x10 + x8 · x14

Finally, the expression for f4 simplified to the following:

f4 = x2 + x3 + x4 + x5 + x7 + x9 + x8 · x10 + x8 · x14

Applying similar simplification logic to all other expressions, the constraint set

can be written as follows:

f4 = x2 + x3 + x4 + x5 + x7 + x9 + x8 · x10 + x8 · x14 ≥ 1

f8 = x4 + x7 + x8 + x9 ≥ 1

f9 = x4 + x7 + x9 + x10 + x14 + x2 · x8 + x3 · x8 + x5 · x8 ≥ 1

Note that the constraints corresponding to all other buses will remain. One

47

exception is that the constraint for bus 7 where the injection is measured (or known)

will be eliminated from the constraint set. The reason for removing the constraints

associated with injection buses is that their effects are indirectly taken into account

by the product terms augmented to the constraints associated with the neighboring

buses.

The constraints for this case are shown in Equation (3.9).

f(X) =

f1 = x1 + x2 + x5 ≥ 1

f2 = x1 + x2 + x3 + x4 + x5 ≥ 1

f3 = x2 + x3 + x4 ≥ 1

f4 = x2 + x3 + x4 + x5 + x7 + x8 + x9 · x10 + x8 · x14 ≥ 1

f5 new = x1 + x2 + x4 + x5 + x6 + x11 + x12 + x13 ≥ 1

f8 = x4 + x7 + x8 + x9 ≥ 1

f9 = x4 + x7 + x9 + x10 + x14 + x2 · x8 + x3 · x8 + x5 · x8 ≥ 1

f10 = x9 + x10 + x11 ≥ 1

f11 = x6 + x10 + x11 ≥ 1

f12 = x6 + x12 + x13 ≥ 1

f13 = x6 + x12 + x13 + x14 ≥ 1

f14 = x9 + x13 + x14 ≥ 1

(3.9)

This way of forming constraints for zero injection buses or buses which have

injection measurements is complicated and time consuming. It is also noticed that

nonlinear part will be introduced in the constraints and it will further slow down

the integer programming. Hence, the following alternative method is developed for

systems with a relatively large number of injections.

II. Topology transformation

This alternative method referred here as the topology transformation is developed for

48

5

1011

13 1412

9

31 2

4 8

6

� �
� �
� �
� �

Fig. 9. Apply topology transformation on IEEE 14-bus system

handling injection measurements. The main idea is to merge the bus which has the

injection measurement, with any one of its neighbors. This is based on the observation

that if the voltage phasors of all its neighbors are known, the voltage phasor of this

injection bus can be calculated by the Kirchhoff’s Current Law.

Figure 9 shows the updated system diagram after the merger of buses 7 and 8

into a new bus 8′. The newly created branch 8′ − 9 reflects the original connection

between buses 7 and 9.Hence, the constraints vector function can be formed as shown

49

in Equation (3.10).

f(X) =

f1 = x1 + x2 + x5 ≥ 1

f2 = x1 + x2 + x3 + x4 + x5 ≥ 1

f3 = x2 + x3 + x4 ≥ 1

f4 = x2 + x3 + x4 + x5 + x8′ + x9 ≥ 1

f5 new = x1 + x2 + x4 + x5 + x6 + x11 + x12 + x13 ≥ 1

f8′ = x4 + x8′ + x9 ≥ 1

f9 = x4 + x8′ + x9 + x10 + x14 ≥ 1

f10 = x9 + x10 + x11 ≥ 1

f11 = x6 + x10 + x11 ≥ 1

f12 = x6 + x12 + x13 ≥ 1

f13 = x6 + x12 + x13 + x14 ≥ 1

f14 = x9 + x13 + x14 ≥ 1

(3.10)

Topology transformation is faster and will not introduce any nonlinear part in

constraint set. Yet a word of caution needs to be added here in that, if the optimal

solution chooses the newly formed fictitious bus (merger of two actual buses) as a

candidate bus, it may indicate to place one PMU on one of these two buses or two

PMUs on both. In this case, a topology analysis needs to be applied to check the

observability of the system. This also assures that the minimum number of PMUs

will be placed.

d. Case 4: A system which contains conventional flow and injection measurements

as well as PMU measurements

This case considers the most general situation where both conventional flow or injec-

tion measurements and PMU measurements may be present, but not enough to make

50

the entire system observable.

To build the constraints for this case is simple. After forming the constraint

equation f(X) according to the procedure described above, simply replace all the xi

by 1, where i represents the bus with an already installed PMU.

Consider again the 14-bus system shown in Figure 8. There is a PMU installed

at bus 10, all x10 terms appearing in the constraint set in Equations (3.9) and (3.10)

will have to be replaced by 1. The modified equations in Equation (3.9) will look as

follows:

f4 = x2 + x3 + x4 + x5 + x7 + x9 + x8 · x10 + x8 · x14

= x2 + x3 + x4 + x5 + x7 + x9 + x8

f9 = x4 + x7 + x9 + x10 + x14 + x2 · x8 + x3 · x8 + x5 · x8 = 1

f10 = x9 + x10 + x11 = 1

f11 = x6 + x10 + x11 = 1

Now that f9, f10 and f11 are all ones, they can be removed from the constraint

equations, Equation (3.9) will be modified as:

f(X) =

f1 = x1 + x2 + x5 ≥ 1

f2 = x1 + x2 + x3 + x4 + x5 ≥ 1

f3 = x2 + x3 + x4 ≥ 1

f4 = x2 + x3 + x4 + x5 + x7 + x8 + x9 ≥ 1

f5 new = x1 + x2 + x4 + x5 + x6 + x11 + x12 + x13 ≥ 1

f8 = x4 + x7 + x8 + x9 ≥ 1

f12 = x6 + x12 + x13 ≥ 1

f13 = x6 + x12 + x13 + x14 ≥ 1

f14 = x9 + x13 + x14 ≥ 1

(3.11)

51

Following the same logic, Equation (3.10) can be modified as:

f(X) =

f1 = x1 + x2 + x5 ≥ 1

f2 = x1 + x2 + x3 + x4 + x5 ≥ 1

f3 = x2 + x3 + x4 ≥ 1

f4 = x2 + x3 + x4 + x5 + x8′ + x9 ≥ 1

f5 new = x1 + x2 + x4 + x5 + x6 + x11 + x12 + x13 ≥ 1

f8′ = x4 + x8′ + x9 ≥ 1

f12 = x6 + x12 + x13 ≥ 1

f13 = x6 + x12 + x13 + x14 ≥ 1

f14 = x9 + x13 + x14 ≥ 1

(3.12)

e. Case 5: Placement strategy against loss of a single PMU

The above discussion implicitly assumes that all PMUs are free of defects and their

failure is not considered as a possibility. In practice, this assumption may not always

hold true due to unexpected failures in these devices or gross errors introduced by

the noise in the communication system. Therefore, it might be prudent to consider

at least the case of single PMU failure as a possible contingency in the formulation

and solution of the PMU placement problem.

Note that the above-presented formulation yields a set of PMUs that form a

critical set, which means loss of any single PMU will lead to an unobservable system.

In order to upgrade this set so that it will remain insensitive against the loss of single

PMUs, a back-up set is chosen by using the same approach. In the process of choosing

the backup set, those PMUs that are already selected as members of the primary set

are disregarded. This can be done easily by removing all the xi terms in the constraint

functions, where bus i is in the primary set, in order to avoid picking up the same bus

which appears in primary set. Hence, the resulting set of primary and backup PMUs

52

will constitute the new solution that can withstand the loss of single PMUs while

maintaining an observable system. As expected, accounting for PMU losses increases

the required number of PMUs significantly. This is the cost of added reliability.

2. Topology based method

The integer programming based procedure is quite effective in systematically placing

PMUs in a system where there are very few existing measurements. It can also be

used for placing PMUs in a system which is to be exclusively monitored by PMUS

only. However, most of today’s power systems already have a significant number

of conventional measurements and PMUs are planned to be installed to enhance the

existing measurement system. For such systems which may be unobservable and have

few observable islands, a topology based method can be easier to apply. The method

will find the strategic locations of PMUs by merging the observable islands. Since

only boundaries buses contribute to the process of merging observable islands, these

will be the strategic locations for placing PMUs.

First a well-documented numerical observability analysis method [20] is carried

out to determine the observable islands. Then the boundary bus, which connects to

the maximum number of other islands or the one which has the maximum number of

branches connected to other islands will be chosen to place a PMU. In order to take

advantage of the injection measurements, after the selection of one PMU location, the

numerical observability analysis will be re-applied to update the observable islands.

The same procedure of selecting the position of PMU is repeated until all islands

merge into a single observable island.

Consider the IEEE 14-bus system example shown in Figure 10, where there

are 5 initially observable islands. Boundary buses are identified as buses 1, 2, 5,

6, 9, 10, 11, 13 and 14. Among them bus 5, 9, 10 and 14 are connected to two

53

�
�
�
�

�
�
�
�

�
�
�

�
�
�

� �
� �
� �

�
�
�

�
�
�

	
	
	

�
�

� �
� �
� �

4

11

1312

6 9

3

87

1 2

5
� �� �

14

� �
� �
� �

� �
� �
� �

10

Fig. 10. Observable islands in IEEE 14-bus system

different observable islands respectively. Bus 9 is chosen to install a PMU. Numerical

observability analysis is then executed and the system is found to become observable.

This implies that installing one PMU at bus 9 merges all of the five observable islands

into one observable system. The logic is simple and easy to implement, provided that

there are few observable islands and consequently few boundary buses.

C. Simulation Results

This section contains various simulation examples, which are carried out using the

IEEE 14-bus, 30-bus, 57-bus and 118-bus systems. Network data for these systems

is in public domain [21]. TOMLAB/MINLP and MILP [22] software package is

used to solve the Integer Linear/Nonlinear Programming problem. Detailed system

information and simulation results are given in the following sections.

54

Fig. 11. IEEE 14-bus system

1. IEEE 14-bus system

IEEE 14-bus system is shown in Figure 11. The information of the system and zero

injections are given in the Table XVIII.

Table XVIII. System information of IEEE 14-bus system

System Num. of branches Num. of zero injections Zero injection buses

IEEE 14-bus 20 1 7

a. Case 1: Effect of considering zero injections

In this case, two sets of simulations are carried out on the IEEE 14-bus system,

which initially have no flow measurements. Integer programming is used to solve the

55

Table XIX. Results for the 14-bus system without considering single PMU loss

Consider zero injections

Ignore zero injections
Non-linear constraints Topology transformation

PMUs Loc. (bus No.) PMUs Loc. (bus No.) PMUs Loc. (bus No.)

4 2, 6, 7, 9 3 2, 6, 9 3 2, 6, 9

Table XX. Results for 14-bus system considering single PMU loss

Consider zero injections

Ignore zero injections
Non-linear constraints Topology transformation

PMUs Loc. (bus No.) PMUs Loc. (bus No.) PMUs Loc. (bus No.)

9 1, 2, 3, 6, 7, 8, 9,

10, 13

7 1, 2, 4, 6, 9, 10,

13

7 1, 2, 4, 6, 9, 10,

13

optimal placement problem. Loss of PMUs is not considered in this case. In the

first set of simulations, zero injection is simply ignored while in the second set, it

is used as existing measurement. The two ways of handling zero injection, namely

by forming nonlinear constraints and by applying a topology transformation to the

zero injection bus and one of its neighbors are used for the second set. Comparative

simulation results are shown in Table XIX. Having zero injections will reduce the

number of required PMUs as can be seen from these results. In this case, the topol-

ogy transformation method and the nonlinear constraints method present the same

solution.

56

b. Case 2: Considering single PMU loss

In this case, simulations of case 1 are repeated by accounting for the loss of single

PMUs. Primary and backup locations are found and combined results are shown

in Table XX. When compared with those of Table XIX, the results show a marked

increase in the required number of PMUs when loss of single PMUs is taken into

account.

2. IEEE 30-bus system

IEEE 30-bus system is shown in Figure 12.

Fig. 12. IEEE 30-bus system

The Information of the system and zero injections are given in the Table XXI.

57

Table XXI. System information of IEEE 30-bus system

System Num. of branches Num. of zero injs. Zero injection buses

IEEE 30-bus 41 5 6, 9, 11, 25, 28

a. Case 1: Effect of considering zero injection

In this case, Integer Programming method is used to solve the optimal PMU place-

ment problem without considering the loss of single PMU. Simulations are carried

out with and without considering zero injections. Results are given in Table XXII.

Table XXII. Results for the 30-bus system without considering single PMU loss

Consider zero injections

Ignore zero injections
Non-linear constraints Topology transformation

PMUs Loc. (bus No.) PMUs Loc. (bus No.) PMUs Loc. (bus No.)

10 2, 4, 6, 9, 10, 12,

15, 18, 25, 27

7 3, 5, 10, 12, 18,

23, 27

8 2, 3, 6, 10, 12,

18, 23, 27

b. Case 2: Considering single PMU loss

In this case, single PMU loss is considered. Integer Programming is used, simulations

are carried out with and without considering zero injections. Results are given in

Table XXIII.

58

Table XXIII. Results for the 30-bus system considering single PMU loss

Consider zero injections

Ignore zero injections
Non-linear constraints Topology transformation

PMUs Loc. (bus No.) PMUs Loc. (bus No.) PMUs Loc. (bus No.)

22 2, 3, 4, 5, 6, 8,

9, 10, 11, 12, 13,

14, 15, 16, 18,

19, 21, 23, 25,

26, 27, 29

17 2, 3, 4, 5, 6, 10,

12, 13, 15, 17,

18, 19, 21, 23,

24, 27, 29

18 1, 2, 3, 4, 7, 8,

9, 13, 14, 15, 16,

19, 20, 21, 23,

24, 28, 29

3. IEEE 57-bus system

IEEE 57-bus system is shown in Figure 13. The Information of the system and zero

injections are given in the Table XXIV.

Table XXIV. System information of IEEE 57-bus system

System
Num. of Num. of zero

Zero injection buses
branches injections

IEEE 57-bus 78 15 4, 7, 11, 21, 22, 24, 26, 34, 36, 37,

39, 40, 45, 46, 48

59

Fig. 13. IEEE 57-bus system

a. Case 1: Effect of considering zero injection

In this case, Integer Programming method is used to solve the optimal PMU place-

ment problem without considering the loss of single PMU. Simulations are carried

out with and without considering zero injections. Results are given in Table XXV.

60

Table XXV. Results for the 57-bus system without considering single PMU loss

Consider zero injections

Ignore zero injections
Non-linear constraints Topology transformation

PMUs Loc. (bus No.) PMUs Loc. (bus No.) PMUs Loc. (bus No.)

17 1, 4, 7, 9, 15, 20,

24, 25, 27, 32,

36, 38, 39, 41,

46, 50, 53

13 1, 6, 9, 15, 20,

25, 27, 32, 38,

47, 50, 53, 56

12 1, 5, 9, 14, 15,

20, 25, 28, 32,

50, 53, 56

b. Case 2: Considering single PMU loss

In this case, single PMU loss is considered. Integer Programming is used, simulations

are carried out with and without considering zero injections. Results are given in

Table XXVI.

61

Table XXVI. Results for the 57-bus system considering single PMU loss

Consider zero injections

Ignore zero injections
Non-linear constraints Topology transformation

PMUs Loc. (bus No.) PMUs Loc. (bus No.) PMUs Loc. (bus No.)

35 1, 2, 4, 6, 7, 9,

11, 12, 13, 15,

19, 20, 22, 24,

25, 26, 27, 29,

30, 32, 33, 34,

36, 37, 38, 39,

41, 44, 46, 47,

50, 51, 53, 54, 56

30 1, 2, 6, 7, 9, 10,

12, 14, 15, 18,

20, 21, 24, 25,

27, 29, 31, 32,

33, 34, 37, 38,

41, 44, 47, 49,

50, 53, 54, 56

26 1, 2, 4, 5, 9, 12,

13, 14, 15, 18,

20, 23, 25, 28,

29, 30, 32, 33,

35, 38, 41, 50,

51, 53, 54, 56

Table XXVII. System information of IEEE 118-bus system

System
Num. of Num. of zero

Zero injection buses
branches injections

IEEE 118-bus 179 10 5, 9, 30, 37, 38, 63, 64, 68, 71, 81

62

Table XXVIII. Results for the 118-bus system without considering single PMU loss

Consider zero injections

Ignore zero injections
Non-linear constraints Topology transformation

PMUs Loc. (bus No.) PMUs Loc. (bus No.) PMUs Loc. (bus No.)

32 2, 5, 9, 11, 12,

17, 21, 24, 25,

28, 34, 37, 40,

45, 49, 52, 56,

62, 63, 68, 73,

75, 77, 80, 85,

86, 90, 94, 101,

105, 110, 114

29 2, 8, 11, 12, 15,

19, 21, 27, 31,

32, 34, 40, 45,

49, 52, 56, 62,

65, 72, 75, 77,

80, 85, 86, 90,

94, 101, 105, 110

28 2, 8, 11, 12, 17,

21, 25, 28, 33,

34, 40, 45, 49,

52, 56, 62, 72,

75, 77, 80, 85,

86, 90, 94, 101,

105, 110, 114

4. IEEE 118-bus system

IEEE 118-bus system is shown in Figure 14.

The Information of the system and zero injections are given in the Table XXVII.

a. Case 1: Effect of considering zero injection

In this case, Integer Programming method is used to solve the optimal PMU place-

ment problem without considering the loss of single PMU. Simulations are carried

out with and without considering zero injections. Results are given in Table XXVIII.

63

F
ig

.
14

.
IE

E
E

11
8-

b
u
s

sy
st

em

64

Table XXIX. Results for the 118-bus system considering single PMU loss

Consider zero injections

Ignore zero injections
Non-linear constraints Topology transformation

PMUs Loc. (bus No.) PMUs Loc. (bus No.) PMUs Loc. (bus No.)

72 1, 2, 4, 5, 6, 9,

10, 11, 12, 15,

16, 17, 19, 21,

22, 24, 25, 27,

28, 29, 30, 32,

34, 35, 37, 39,

40, 41, 43, 45,

46, 49, 50, 51,

52, 54, 56, 59,

62, 63, 64, 66,

68, 70, 71, 73,

75, 76, 77, 78,

80, 81, 83, 85,

86, 87, 89, 90,

92, 94, 96, 100,

101, 105, 106,

108, 110, 111,

112, 114, 116,

117

65 1, 2, 6, 8, 9,

11, 12, 13, 14,

15, 17, 19, 20,

21, 23, 24, 27,

28, 31, 32, 34,

35, 37, 40, 41,

43, 45, 46, 49,

51, 52, 54, 56,

57, 59, 62, 65,

67, 68, 70, 72,

75, 76, 77, 78,

80, 83, 85, 86,

87, 89, 90, 92,

94, 96, 100, 101,

105, 106, 108,

110, 111, 112,

114, 117

65 1, 2, 5, 6, 8,

10, 11, 12, 15,

16, 17, 19, 21,

22, 24, 25, 27,

28, 31, 32, 33,

34, 35, 39, 40,

41, 43, 45, 46,

49, 50, 51, 52,

53, 56, 59, 62,

65, 66, 70, 72,

75, 76, 77, 78,

80, 83, 85, 86,

87, 89, 90, 92,

94, 96, 100, 101,

105, 106, 108,

110, 111, 112,

114, 117

65

b. Case 2: Considering single PMU loss

In this case, single PMU loss is considered. Integer Programming is used, simulations

are carried out with and without considering zero injections. Results are given in

Table XXIX.

c. Case 3: System having several conventional measurements

This case illustrates the application of the topology-based method to place PMUs in

the IEEE 118-bus system. Several conventional flow and injection measurements are

introduced and several observable islands are formed. The list of flow and injection

measurements is given in Table XXX. Zero injections shown in Table XXVII are also

considered and treated the same as injection measurements. Applying the topology-

based method to merge these observable islands yields the number of PMUs shown

in Table XXXI. Loss of single PMUs is not considered in this case.

D. Conclusions and Future Work

In this chapter, two practical methods for determining optimal locations for PMUs

are developed and applied to IEEE 14-bus, 30-bus, 57-bus and 118-bus systems.

Placement of PMUs can be carried out using different criteria depending on

the objective of the investigator. In this research, the main focus is on the state

estimation function and therefore the objective is to make the entire system observable

by optimal placement of PMUs. Various scenarios are considered where the system

is first assumed to be observed by PMUs only. While this appears impractical today,

it may very well be the case in a few years when these devices become standard

equipment at substations. Next, the placement problem is considered for a system

with existing measurements, some of which may be PMUs. Case studies which are

66

Table XXX. Measurements information for IEEE 118-bus system

Num. of

Flow measurements Injection measurements
observable

Num. Locations Num. Locations islands

49 6-7, 5-6, 1-3, 3-12, 3-5, 8-30,

8-5, 8-9, 26-25, 25-27, 29-31,

28-29, 23-32, 32-114, 27-32, 70-

74, 74-75, 47-69, 46-47, 82-83,

83-84, 93-94, 92-94, 94-100, 99-

100, 98-100, 106-107, 105-107,

51-52, 51-58, 55-59, 54-59, 59-

60, 15-19, 19-20, 19-34, 12-16,

12-117, 35-37, 34-37, 35-36, 38-

37, 43-44, 49-50, 65-68, 68-116,

68-69, 110-111, 110-112

29 5, 9, 12, 19, 21,

27, 28, 30, 32,

37, 38, 41, 44,

47, 50, 53, 59,

62, 63, 64, 68,

71, 81, 83, 86,

94, 96, 108, 110

58

Table XXXI. Results for 118-bus system considering conventional measurements

Num. of PMUs 19

Loc.(bus No.) 2, 11, 17, 21, 24, 40, 49, 56, 62, 71, 77, 80, 86, 89, 91,

100, 102, 108, 118

67

carried out on IEEE test systems indicate that strategically placing PMUs at roughly

one third of the system buses, the entire system can be made observable with only

PMUs. Furthermore, zero injections, which can be considered free measurements,

can significantly reduce the required number of PMUs for a given system.

PMU placement problem does not have a unique solution. Depending upon the

starting point, the developed optimization scheme may yield different sets of optimal

solutions, each one providing the same minimum number of PMUs but at different

locations. On the other hand, it is not unusual to have additional considerations apart

from strict observability criterion, when deciding on the location of PMUs. These

considerations can be taken into account by appropriately modifying the optimization

problem which is formulated in this research. This can be done as an extension to

this research in the future. One of the important functions of state estimators is

to detect and eliminate bad measurements in the system. Bad data processing is

strongly dependent upon the measurement redundancy as well as accuracy of the

measurements used. Even for fully observable systems, strategic placement of few

PMUs can significantly improve bad data detection and identification capability. This

aspect of PMU placement can also be investigated in the future so that the operation

of the existing state estimators can be improved via PMU placement.

68

CHAPTER IV

3D GUI FOR POWER SYSTEM VISUALIZATION

Visualization of power system operation state has become of interest for the system

operators as well as planning engineers alike. A good visualization method can aid

system operators to gain a better insight into the system state and identify system

violations in a quick and intuitive manner. This chapter presents a user-friendly

3D visualization tool. It focuses on two application functions, namely the power

flow and the state estimation. One of the essential goals of the envisioned tool is

to aid system operators by providing images of the system with easily identifiable

characteristics related to violations of various operating limits. Effectiveness of the

tool is illustrated via different scenarios, which are created using the IEEE 118-bus

system as an example.

A. Introduction

Power system operators have the difficult job of maintaining continuity of service to

power customers without violating any operating limits as the operating conditions

change during the daily operation. This task requires close monitoring of the system

conditions, in particular those, which might cause temporary or permanent service

interruption, possible damage to power equipment as well as the customers.

Power system operators are challenged by the overwhelming amount of data that

are transmitted to the control centers for their use. A good visualization method can

aid system operators to gain a better insight into the system state and identify system

violations in a quick and intuitive manner.

Earlier work on this topic showed the effectiveness of providing better commu-

nication between massive amounts of data and the users [23, 24, 25, 26, 27]. In [28],

69

programs to visualize line flow and bus data are presented. In [29], bad measurements

used in state estimation are displayed in an easily identifiable way.

This chapter describes a flexible software tool, which takes advantage of differ-

ent visualization techniques such as animation, color contouring and 3D visualization

in order to extract and highlight certain user specified information from the data

acquired by the Supervisory Control and Data Acquisition (SCADA) system. Two

essential and critical applications in today’s Energy Management Systems (EMS)

namely the state estimation and power flow analysis are used as examples. In power

flow analysis mode, animation and bus contouring technique is used for visualizing

power flows and bus voltages. In state estimation mode, color contour is used to visu-

alize different observable islands and bad measurements, which are identified through

the largest normalized residues test. Effectiveness of the tool is illustrated via different

scenarios, which are created using the IEEE 118-bus system as an example.

The developed program uses 3D visualization and animation techniques to in-

terpret system information. This window-based interface is an upgraded version of

the existing software package, Power Education Toolbox (PET), which is previously

developed in Texas A&M University for educational purposes [30]. The new interface

is developed in C++ using Fast Light Tool Kit (FLTK). OpenGL technique is used

to create 3D visualization. The following sections present a detailed description of

the program. Different scenarios including unobservable cases with several observ-

able islands, measurement systems containing bad data and operating conditions with

heavily loaded buses are created using the IEEE 118-bus system.

The chapter is organized as below.

• Section A is the introduction.

• Section B is the description of the program.

70

• Section C uses different scenarios to demonstrate that proper visualization

method can provide a better understanding of the operation of power system.

• Section D explains in details about the structures of the main classes and the

data exchange between the GUI and the FORTRAN subroutines.

• Section E is conclusion.

B. Program Description

This graphical user interface contains two windows3, an edit window and a view

window. Object Oriented Programming (OOP) technique is used to allow the user to

interact with the objects, which represents different components in the power system.

In edit window, the top view of a power system is shown as a one-line diagram. It

allows the user to edit and build the power system by adding/moving/deleting buses

and lines. View window shows 3D visualization of power system where the user can

choose different view angles. The user can easily pan or zoom in/out in these two

windows to locate the point of interest in the system.

Figure 15 shows an example of the interface. The left window is edit window and

the right window is view window. The towers in the view window represent buses in

power system while wavy lines represent the transmission lines. In this example, a

map of the state of Texas is used to show the geographic information of a real power

system. Note that a color map can instead be loaded to show the system information

during simulation.

Once a system is opened, all the associated information is read by the corre-

sponding variables for running the supported applications. Each power system case

has two associated data files. One file specifies the 3D coordinates of all the buses

while the other file defines power system information by using IEEE common data

71

Fig. 15. Graphical user interface

format [21]. Once a power system case is opened, the system information is read and

2D/3D visualizations are displayed. User can use the main menu to choose between

options of editing the system or running simulations for applications such as power

flow analysis and state estimation.

1. Power flow analysis

During system operation, three attributes are required to be visualized simultaneously

in the system diagrams. These are:

• Magnitudes of bus voltages: There are lower and upper limits, which should not

be violated in order to avoid voltage instability and equipment safety violations.

• Phase angles of bus voltages: These values should be monitored with respect to

each other among network buses so that wide separation of angles are detected

before they lead to power angle instability.

• Real power flow along lines: Direction and amount of power flow along lines

72

must be monitored in order to avoid violating thermal and stability limits. They

also provide information about existing margins of load ability for a given line.

In this software, magnitude of a bus voltage is visualized via coloring of the

terrain immediately around the transmission tower representing that bus. Phase

angles of bus voltages are represented as heights (altitudes) of the terrain at the

associated transmission tower. Hence, the resulting terrain reflects the variation of

phase angle in terms of peaks and valleys in the system scene. Real power is known

to follow closely the variation of the phase angles; hence such representation provides

information about the distribution of power flows in the entire system. Thus, two

kinds of information can be displayed simultaneously. Animated waves traveling

along transmission lines are used to visualize the power flows, whose directions are

indicated by the direction of the traveling waves. Furthermore, numerical values of

these visualized quantities such as voltage magnitudes, phase angles and power flows

can be displayed using a dialog box by simply clicking on the object of interest. Also,

the objects in the system can be hidden upon user request if only the terrain pattern

is desired to be visualized.

2. State estimation

State estimation is a function, which acts like a filter to the system measurements

and provides the best estimate of the system state using the available measurement

system. Usually, two types of information are of crucial interest to the operator when

executing this application: network observability and measurement errors.

Network observability refers to the ability of the estimator to provide a network-

wide solution using the existing set of measurements. If the measurements were

insufficient, then the operator would like to identify the observable islands, within

73

which power flows could still be monitored. On the other hand, measurement errors

creep in without warning and bias the estimated state. In order to avoid this, a

post estimation test is typically carried out and suspected bad data are identified.

Observable islands and bad data are both visualized via color contours on the terrain.

The details are presented in the next section.

C. Cases Studies

In this section, different scenarios are created using IEEE 118-bus system to illus-

trate the benefits of using proper visualization methods in monitoring power system

operation.

1. Create/edit a system

Users can interactively build new a power system from scratch in the edit window.

To add a bus in the system, the user can choose “Add a Bus” option from the main

menu and click on the desired location in the edit window, a tower will then appear in

that position and a dialog box pops up where the parameters associated with the bus

can be entered. To add a new line, simply choose “Add a Line” option from the main

menu and click on two towers as from-bus and to-bus, a waved line representing the

transmission line will be added in between and a dialog box appears where the user

can input line parameters. The program provides flexibility of moving the existing

bus while all the incident lines move with it. This makes it possible to neatly create

even very large scaled power system diagrams together with the panning and zooming

in/out features.

Figure 16 illustrates creation of a new line by the user.

74

Fig. 16. Creation of a new line by the user

2. Observability analysis

State estimator can identify observable islands and label the branches that connect

these islands as unobservable branches by analyzing the existing measurements set.

A method referred to as color contouring is used to visualize different observable

islands. This is done as described below.

For each and every observable island, all the buses that belong to that island

are assigned an identical island number. Note that a bus can be assigned one and

only one island number since islands cannot overlap. Then, each and every vertex

in the grid that defines the terrain is assigned a unique color ID according to the

island number of its nearest bus. Hence, a map representing observable islands can

be created by color mapping. In the resulting map, all unobservable branches are

colored in red and observable branches in blue. This allows the operator to quickly

identify the islands as well as candidate locations where additional meters can be

placed to merge these islands.

Figure 17 shows the observability analysis of IEEE 118-bus system, where four

75

Fig. 17. Observable islands in the IEEE 118-bus system

observable islands can easily be identified. The unobservable branches are shown in

red color.

3. Bad data detection/identification

It is customary to perform post-estimation tests to detect and identify bad data

in the measurement set. Success of these tests in detecting and identifying bad

data depends among other factors on the measurement redundancy. A commonly

used test is the largest normalized residue test where the normalized residue of each

measurement is calculated and the largest one is identified as bad data provided it

exceeds a statistical threshold. In order to quickly determine the region that is most

affected by the identified bad data, a color contour is used. This contour is created

as described below.

Every system bus is assigned a value, which is determined as the largest nor-

malized residue among all measurements measured at that bus. Bus injections are

measured at the associated buses and line flows are measured at their sending-end bus.

If a bus has no measurement associate with it, the value is set to be zero. Because an

76

error introduced by a bad measurement can spread in the system and affect others,

not all the measurements whose normalized residues are larger than the threshold are

bad. In this program, only the measurements whose normalized residues are larger

than the threshold and among the largest five are considered. These measurements

and their associated buses are marked as “bad” and needed to be identified. In order

to create a spatially continuous contour, a virtual value is assigned to each and every

vertex in the terrain. The virtual value of the vertex related to a bus is calculated

as the scaled value of that bus. The multiplier is calculated in a way such that all

the ”bad” buses appear in red color and other buses appear in blue when applying

texture mapping. All other terrain vertices, which are not related to a bus, are as-

signed average values based on the already assigned values to their closest vertices.

This way, one mapping using blue color for the lower values and red color for higher

values can create a color map.

The advantage of color contour method is obvious. For a large scaled power

system, in which the measurements may not be visible when showing the entire system

map, the user can easily identify the red region in the color map and then locate the

bad measurement by panning and zooming into the identified suspect area.

To show the bad measurements, all those measurements identified as “bad” are

rendered in red color. This way, bad data can be easily identified when the users

notice an abnormal in the system and want to take a close look.

Figure 18 shows bad data analysis results of IEEE 118-bus system. A red area,

which indicates existence of bad data in the system, can easily be noticed. In this case,

the measurements set is hide to render a neat scene. Figure 19 shows a close-up view

of the suspected area. Measurements set is shown this time. The flow measurement

in red is identified as bad data. And by clicking it, a dialog box pops up showing the

numerical results from the bad data test associated with this specific measurement.

77

Fig. 18. Bad data in the IEEE 118-bus system

Fig. 19. Detailed numerical results of bad data test

78

4. Power flow analysis

Power flow analysis calculates the state variables, which are voltage magnitudes and

phase angles for all the buses in the entire power system. Two kinds of visualization

methods are used to visualize these two bus-related data. Color contouring is used

for visualizing voltage magnitude while the varying height of the underneath terrain

represents the phase angles.

Color map ranges from red to blue, which represents higher voltage and lower

voltage. The color map provides an overview of voltage profile of entire power system

and helps the user to identify voltage violations at a glance. The varying height of

the vertices creates a mountain shaped terrain with peaks and valleys. Note that real

power is more related to phase angles, it typically flows from the bus having relatively

higher phase angle to the bus with a smaller phase angle. So, the mountain shaped

terrain provides the user a quick overview of the distribution of real power flows in

the power system: real power flows from the higher tower to the lower tower along

the transmission lines. This is analogous to water flow in a similar terrain with water

pipes. Animation is also used to represent the direction of the line flows. Direction

of the traveling wave matches the direction of the real power flow in the transmission

line. Numerical values for bus voltages and line flows can be easily recovered via a

dialog box by simply clicking on the object.

Figure 20 shows the 3D visualization of estimated state variables for IEEE 1118-

bus system. The operator can conveniently focus on the red area, which indicates

a voltage violation. Further clicking on the bus produces a dialog box as shown in

Figure 21 displaying the numerical values associated with this bus.

79

Fig. 20. Power flow analysis of IEEE 118-bus system

Fig. 21. Detailed bus information

80

D. Software Design Overview

This software provides a windows-based graphical user interface linked with the power

system applications. This 3D GUI is developed in C++ programming language under

Linux Fedora by using FLTK version 1.1.6, while the linked application are developed

as subroutines in FORTRAN 90. The following sections explain in details about the

data structure of the software, the main classes, their functions and the data exchange

between the GUI and the FORTRAN subroutines.

1. Main classes and their functions

This program is developed using FLTK, which provides a group of classes for con-

struct framework and components used for a windows-based GUI. Furthermore, it

also supports 3D graphical via OpenGL. All the objects used in this program such as

terrain, tower, meter etc., are built from the base class OBJObject, which is already

developed by the visualization lab in Texas A&M University. The introduction of

FLTK, OpenGL and the base classes used in this program are given in Appendix A,

B and C.

The edit window and view window in this interface are represented by two global

variables, petewin and petvwin respectively. Each of them contains a pointer to the

global variable petscene, which contains the information of a power system and shows

its behavior. petscene is composed of two main member variables petsystem and

terrain. petsystem contains all the information of the buses and lines of a power

system while terrain represents the terrain beneath the system. The data structure

of the GUI is shown in Figure 22.

The descriptions of main classes used in this program and their functions are

given in the following sections.

81

terrain

line 1 line 2 line 3 line m...lines

bus 1 bus 2 bus 3 bus n...buses

petsystem

petscene

petvwin

View Window

. .
petewin

Edit Window

Fig. 22. The data structure of PET GUI

a. PETViewWindow class

There are two classes for the view window and the edit window, PETViewWindow and

PETEditWindow. Both of them are subclasses from Fl Gl Window class (provided

by FLTK), which supports OpenGL commands.

PETViewWindow class contains the functions to render the entire system in 3D.

It has its own events handlers to render the system and redraw the window when the

user zooms in/out, rotates and translates the scene.

• PETViewWindow(int x, int y, int w, int h, const char * l = 0) creates a view

window. This window is derided from Fl Gl Window class.

• void draw(void) prepares the background color and the transformation matrix

for view port, sets up texture, and draw the system (petscene) in 3D.

• int handle(int event) handles all the events from keyboard and mouse.

82

b. PETEditWindow class

PETEditWindow contains all the methods needed to create and edit a power system.

It renders the top view of the system. PETEditWindow has its own redraw function

and events handlers to deal with the messages and redraw the whole window.

• PETEditWindow(int x, int y, int w, int h, const char * l = 0) creates an edit

window, which is derided from Fl Gl Window class.

• void draw(void) prepares the background and the transformation matrix, and

draws the top view of the system.

• selectBus(int mx, int my) returns a pointer to the selected bus.

• selectLine(int mx, int my) returns a pointer to the selected line.

• int handle(int event) dispatches the events to different event handlers for editing

the system and zooming in/out or translating the scene.

c. Classes for the components in the system

Several classes are created to represent the components in a power system. Theses

classes are:

• PETBus: It contains all the functions and variables associate with a bus. It

has a member variable object of PETGraphicBus class.

• PETGraphicBus: It contains the geographic information of a bus and all the

functions needed to render and redraw a bus object when information is up-

dated.

• PETLine: It contains all the functions and variables associate with a transmis-

sion line. It has a member variable object of PETGraphincLine class.

83

• PETGraphicLine: It contains the functions for rendering and redrawing a line

object. The lines are represented by waved lines, and the power flows in the

system is shown by animation of moving waves along the line.

• PETKnob: PET Know is similar to PETBus. It contains a member variable ob-

ject of PETGraphicKnow class, which renders a knob in view and edit windows.

Knob contains no system information. It is used to adjust long transmission

lines and to avoid the crossing of two lines.

• PETMeter: It contains all the functions and variables associate with a measure-

ment in power system. It has a member variable object of PETGraphicMeter

class.

• PETGraphicMeter: It contains all the functions needed to render and redraw a

measurement object.

d. PETScene class

PETScene has two member variables, petsystem and terrain, which are instances from

PETSystem and PETTerrain classes respectively. PETScene takes care of reading

network information of the system and the geographic positions of all the buses from

the input data files, creating a corresponding terrain and rendering a system in 3D.

e. PETSystem class

PETSystem represents a real power system, which contains arrays of buses, lines

and measurements. It manipulates all the system information and takes care of data

exchanges between the GUI and the FORTRAN subroutines.

84

f. PETTerrain class

PETTerrain is derived from OBJObject class. Terrain is automatically generated in

the program according to the geographic positions of all the buses in the system,

and its color and shape changes during system operation reflecting different system

information.

The steps to generate a terrain are described as follows.

• First, the positions of all the buses are recorded as generating points and a

Delaunay triangulation function is called to partition a plane into a set of tri-

angles, which have the properties that the out circle of every triangle does not

contain any other generating points.

• Once the system data is updated, the y-positions of the vertices in the terrain

can be changed to reflect the system information, which is customized by the

user.

• Doo-Sabin [31] subdivision algorithm is then applied to smooth the surface of

the terrain.

• A texture ID is assigned to each and every vertex in the terrain. For the gener-

ating points, the texture ID is calculated according to the voltage magnitudes

of the corresponding buses, while for the new generated vertices during the sub-

division procedure, the texture id is the average of the texture IDs of all the

surrounding generating points.

• A customized image is loaded and mapped on to the terrain. Once the global

light placed on top of the scene is lightened, a vivid 3D image of terrain is

presented, which contains the operation information of the power system.

85

In this program, a one-dimension image is used which has red color on the left

side, indicating one type of fault in the system such as over voltage, and blue color

on the right side, indicating another kind of fault such as lower voltage. The color

gradually changes from red to green then to blue in the middle, representing the

continuous data of the system. The texture map can be customized and reloaded by

the user. A two-dimension map can also be used to represent the geographic system

information as shown in Figure 15.

2. Interface between the FORTRAN subroutines and the GUI

The subroutine functions are written in FORTRAN and the GUI calls external object

functions complied using FORTRAN 90 compiler whenever the user chooses to run

applications.

The structure petblock is defined in this program. It is an equivalent structure of

the common block defined in file “defblk.inc”, which contains variables shared between

the user interface and the FORTRAN subroutines. The FORTRAN subroutines are

declared as external functions. For example, the subroutine for power flow analysis

is declared as

extern "C" extern void fdpf_(void);

When the user select “Power Flow Analysis” option from the menu, the func-

tion PETSystem::updateDPF(void) is called. First, it exchanges data to get all the

needed information for buses and lines into the global variable petblock , and then the

FORTRAN subroutine fdpf (void) is called to do the calculations. After that, another

data exchange is done to update the bus and line data with the newly computed value

in petblock .

86

E. Conclusion

This chapter describes a user-friendly GUI, which is developed as an aid to the system

operator. It allows the user to construct the system diagram for a new power system

or to edit an existing one for desired modifications. 3D animation and color contouring

techniques are used to visualize the results of two application functions, namely the

state estimation and power system analysis. Examples of different cases are created

to illustrate the performance of the developed software.

87

CHAPTER V

CONCLUSION

This dissertation focuses on three topics related to the optimal monitoring and visu-

alization of steady state power system operation.

In Chapter II, the detailed state steady model of UPFC is studied and a new state

estimation algorithm is implemented to integrate the UPFC model into the estimation

applications. The developed program has dual purpose. it can be used to estimate the

system state variables as well as the controller parameters of UPFC devices and also

to determine the required settings of UPFC control parameters in order to deliver

a desired power flow along a transmission line. Several computational issues are

discussed and the effectiveness of this algorithm is demonstrated by simulation results

on IEEE test systems.

The optimal PMU placement problem is to find the strategy locations of PMUs

to present a fully observable system using minimum number of PMUs. Chapter III

proposes two algorithms, a numerical method and a topology-based algorithm, to

solve this problem.

The numerical is an integer-programming based optimization problem. It is

effective in systematically placing PMUs in a system where there are very few existing

measurements. In order to guard against unexpected failures of PMUs, this method

is extended to account for single PMU loss.

The concept of topology-based method is to merge the existing observable islands

by placing extra PMUs at strategic boundary buses. It is more applicable for a system,

which has lots of measurements forming several observable islands.

Chapter IV describes a user-friendly 3D graphical interface for power system

analysis. This GUI supprots two essential and critical applications on today’s energy

88

management system (EMS), power flow analysis and state estimation.

This program adopts Object-Oriented Programming (OOP) concepts, so that

the user can interact with the objects in the system. All the components in the

system can be easily replaced by reloading the corespondent objects designed by the

user, which makes the program reusable. OpenGL technique is used in developing

this interface to create 3D visualization of power system operation which can reveal

several kinds of system information simultaneously. The program also provides easily

identifiable images of violations of operation limits. Furthermore, its modular design

also allows easy addition of new applications.

A. Summary of Contributions

The main contributions of this dissertation are listed as below.

1. An algorithm of state estimation for power system with embedded FACTS de-

vices is implemented.

2. Two algorithms, a integer-programming based numerical method and a topology-

based method, are developed to solve optimal PMU placement problem.

3. A novel 3D graphical user interface is developed to visualize the operation of

electrical power system.

B. Future Work

There are still room for further work in the following directions.

1. Further research on state estimation of system with PMUs can be done in the

future. A state estimator integrating PMUs can be developed and the issue of

redundancy and bad data detection/identification should be addressed.

89

2. Upgrade the 3D graphical user interface. Extend it by adding more functions

such as optimal power flow and transient stability.

90

REFERENCES

[1] F.C. Schweppe, J. Wildes, and D.B. Rom, “Power system static-state estimation,

parts I, II and III,” IEEE Transactions on Power Apparatus and Systems, vol.

89, pp. 120–135, January 1770.

[2] N.G. Hingorani, “High power electronics and flexible AC transmission system,”

IEEE Power Engineering Review, vol. 8, no. 7, pp. 3–4, July 1988.

[3] K.A. Clements, G.W. Woodzell, and R.C. Burchett, “A new method for solving

equality-constrained power system static-state estimation,” IEEE Transactions

on Power Systems, vol. 5, no. 4, pp. 1260–1266, November 1990.

[4] L. Gyugyi, C.D. Schauder, S.L. Williams, T.R. Rietman, D.R. Torgerson, and

A. Edris, “The unified power flow controller: A new approach to power trans-

mission control,” IEEE Transactions on Power Delivery, vol. 10, no. 2, pp.

1085–1097, April 1995.

[5] A. Nabavi-Niaki and M.R. Iravani, “Steady-state and dynamic models of unified

power flow controller for power system studies,” IEEE Transactions on Power

Systems, vol. 11, no. 4, pp. 1937–1943, November 1996.

[6] K.A. McShane, C.L. Monma, and D.F. Shanno, “An implementation of a primal-

dual interior point method for linear programming,” ORSA Journal on Com-

puting, vol. 1, pp. 70–83, Spring 1989.

[7] K.A. Clements, P.W. Davis, and K.D. Frey, “Treatment of inequality constraints

in power system state estimation,” IEEE Transactions on Power Systems, vol.

10, no. 2, pp. 567–574, May 1995.

91

[8] G.L. Torres and V.H. Quintana, “On a nonlinear multiple-centrality-corrections

interior-point method for optimal power flow,” IEEE Transactions on Power

Systems, vol. 16, no. 2, pp. 222–228, May 2001.

[9] S. Granville, “Optimal reactive dispatch through interior point methods,” IEEE

Transactions on Power Systems, vol. 9, no. 1, pp. 136–146, February 1994.

[10] H. Singh, F.L. Alvarado, and W-H.E. Liu, “Constrained LAV state estimation

using penalty functions,” IEEE Transactions on Power Systems, vol. 12, no. 1,

pp. 383–388, February 1997.

[11] F.F. Wu, W-H.E. Liu, L. Holten, A. Gjelsvik, and S. Aam, “Observability

analysis and bad data processing for state estimation using Hachtel’s augmented

matrix method,” IEEE Transactions on Power Systems, vol. 3, no. 2, pp. 604–

611, May 1988.

[12] A. Monticelli and F.F. Wu, “Network observability: Theory,” IEEE Transac-

tions on Power Apparatus and Systems, vol. 104, no. 5, pp. 1042–1048, May

1985.

[13] G. Peters and J.H. Wilkinson, “The least squares problem and pseudo-inverses,”

The Computer Journal, vol. 13, no. 3, pp. 309–316, August 1970.

[14] A. Monticellli and A. Garcia, “Reliable bad data processing for real-time state

estimation,” IEEE Transactions on Power Apparatus and Systems, vol. 102, no.

5, pp. 1126–1139, August 1983.

[15] A.G. Phadke, “Synchronized phasor measurements in power systems,” IEEE

Computer Applications in Power, vol. 6, no. 2, pp. 10–15, April 1993.

92

[16] A.G. Phadke, J.S. Thorp, and K.J. Karimi, “State estimation with phasor mea-

surements,” IEEE Transactions on Power Systems, vol. 1, no. 1, pp. 233–241,

February 1986.

[17] T.L. Baldwin, L. Mili, M.B. Boisen, and R. Adapa, “Power system observability

with minimal phasor measurement placement,” IEEE Transactions on Power

Systems, vol. 8, no. 2, pp. 707–715, May 1993.

[18] B. Xu and A. Abur, “Observability analysis and measurement placement for

systems with PMUs,” in Power Systems Conference and Exposition, New York,

October 2004.

[19] B. Xu, Y.J. Yoon, and A. Abur, “Optimal placement and utilization of pha-

sor measurements for state estimation,” in 15th Power Systems Computation

Conference, Liège, Belgium, August 2005.

[20] A. Abur and A.G. Expósito, Power System State Estimation: Theory and Im-

plementation, Marcel Dekker, Inc., New York, NY, 1st edition, 2004.

[21] Power Systems Test Case Archive,

http://www.ee.washington.edu/research/pstca/.

[22] The Tomlab Optimization Environment,

http://tomlab.biz/.

[23] P.M. Mahadev and R.D. Christie, “Minimizing user interaction in energy man-

agement systems: Task adaptive visualization,” IEEE Transactions on Power

Systems, vol. 11, no. 3, pp. 1607–1612, August 1996.

[24] P.R. D’Amour and W.R. Block, “Modern user interface revolutionizes supervi-

sory systems,” IEEE Computer Applications in Power, vol. 7, no. 1, pp. 34–39,

93

January 1994.

[25] G.P. de Azevedo, C.S. de Souza, and B. Feijo, “Enhancing the human-computer

interface of power system applications,” IEEE Transactions on Power Systems,

vol. 11, no. 2, pp. 646–653, May 1996.

[26] T.J. Overbye, P.W. Sauer, C.M. Marzinzik, and G. Gross, “A user-friendly

simulation program for teaching power system operations,” IEEE Transactions

on Power Systems, vol. 10, no. 4, pp. 1725–1733, November 1995.

[27] T.J. Overbye, G. Gross, M.J. Laufenberg, and P.W. Sauer, “Visualizing power

system operations in an open market,” IEEE Computer Applications in Power,

vol. 10, no. 1, pp. 53–58, January 1997.

[28] T.J. Overbye, D.A. Wiegmann, A.M. Rich, and Y. Sun, “Human factors aspects

of power system voltage contour visualizations,” IEEE Transactions on Power

Systems, vol. 18, no. 1, pp. 76–82, February 2003.

[29] A.P.S. Meliopoulos, G.J. Cokkinides, M. Ingram, S. Bell, and S. Mathews, “Visu-

alization and animation of state estimation performance,” in 38th Annual Hawaii

International Conference on Systems Science, Waikoloa, HI, January 2005.

[30] A. Abur, F.H. Magnago, and Y. Lu, “Educational toolbox for power system

analysis,” IEEE Computer Applications in Power, vol. 13, no. 4, pp. 31–35,

October 2000.

[31] D. Doo and M. Sabin, “Behaviour of recursive division surfaces near extraordi-

nary,” Computer Aided Design, vol. 10, no. 6, pp. 356–360, September 1978.

94

APPENDIX A

INTRODUCTION OF FLTK

FLTK was originally developed by B. Spitzak and is currently maintained by a small

group of developers across the world. It is an open-source and cross-platform C++

graphic user interface toolkit for UNIX, Microsoft Windows and MacOS. It composes

a group of classes and functions to provide the framework and components used to

develop GUI. FLTK is designed to be small and modular enough to be statically

linked and works as fine as a shared library. FLTK is chosen to develop vizPET

program because,

• It is one of the best free, open-source GUI took kits available.

• It supports 3D graphic via OpenGL and its built-in GLUT emulation.

• It is convenient and it works on almost all popular platforms.

A. Drawing and Events Handling

FLTK has a virtual method fltk::Widget::draw(), where the user can write their codes.

By making a subclass of one of the existing fltk::Widget classes, the users can imple-

ment their own version of draw().

To handle the events, FLTK provides a virtual method fltk::Widget::handle().

All the events are identified by the integer argument passed to this method. The user

has to realize implement this virtual method to handle all the events from mouse,

keyboard or widgets.

95

B. Using OpenGL in FLTK

There are two ways to use OpenGL in FLTK. One way is to make a subclass of

fltk::GlWindow. FLTK’s <FL/gl.h> header file must be included in the subclass. It

will include the file <GL/gl.h> and define some extra drawing functions provide by

FLTK. To make subclass fltk::GlWindow, a draw() method and a handle() method

must be provided. The draw() method uses OpenGL calls to draw the display, it is

where the actual OpenGL drawing happens and handle() method handles mouse and

keyboard events for the window.

Another way is to put OpenGL code into fltk::Widget::draw() method, and in-

clude <fltk/gl.h> folder. The OpenGL drawing code starts with gl start() and ends

with gl finish(), and all the OpenGL drawing functions must be put in between.

96

APPENDIX B

INTRODUCTION OF OPENGL

OpenGL was fist introduced in 1992, and it is the most widely used Application Pro-

gramming Interface (API) for developing interactive 2D and 3D graphics applications.

OpenGL uses a client-server model. It is portable and hardware independent, which

means that all the OpenGL applications can produce the same visual display results

on any OpenGL API-compliant hardware, regardless of the operating system.

The default language for OpenGL is C/C++. OpenGL incorporates about 150

commands for the users to do rendering, texture mapping, special effects and other

visualization function, which simplify the development of software graphics. To the

programmer, OpenGL works as a software interface between user and the graphic

hardware.

OpenGL provides software developers geometric and image primitives, display

lists, modeling transformations, lighting and texturing, antialiasing, blending and

many other features. It doesn’t provide high-level commands to describe 3D models;

instead, all the complex models have to be built up from geometric primitives, such as

points, lines and polygons. OpenGL provides ways that the user can change certain

states that control how OpenGL renders the specified objects.

The order of series of processing states of OpenGL operations is called OpenGL

rendering pipeline. It is shown as Figure B-1. Geometric data (vertices, lines and

polygons) is first transformed to camera co-ordinate system, and then all the vertices

that outside the view will be eliminated, this procedure is called 3D clipping; next

step is to project 3D objects onto 2D plane and then convert them into pixel values.

Pixels data (images, and bitmaps) is treated slightly different, it will goes through

97

the pixel operations and then enter the final rasterization procedure. Both data will

be written into framebuffer. Framebuffer is an area of memory, which holds all the

information that graphics display needs to control the color and intensity of all the

pixels on the screen.

� � �� � �

�
�
�
�

�
�
�
�

perform per-vertex rotations

achieve final geometry, then

translations and scaling to

transform to the camera

co-ordinate system

Transform
Geometry

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Vertices

� � �� �

�
�
�
�

	
	
	
	

eliminate vertices that

will not be visible in

the final image

Clip to View
Volume

�
�
�
�
�
�
�
�

� �

�
�
�
�

�
�
�
�

project vertices onto the

2-D plane represting

the viewport/screen

Project to
Viewport

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

� � �� �

�
�
�
�

�
�
�
�

convert all polygons,

lines and points to

pixel values

Rasterise

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

� � �� � �

�
�
�
�

�
�
�
�

Pixels

Fig. B-1. OpenGL rendering pipeline

98

APPENDIX C

THE BASE CLASSES USED IN THE 3D GUI

All the bases class used in the developed 3D graphic user interface are introduced in

this appendix.

A. OBJObject Class

OBJObject class is the base class for all the 3D object classes used in vizPET program,

such as PETGraphicBus, PETGraphicMeter, PETGraphicKnob and PETTerrain. It

provides all the methods related to 3D object constructing and rendering. OBJObject

class consists of arrays of vertices, faces and materials. In the next sections, the

data structure of OBJObject, its member variables and functions, and the classes of

OBJVertex, OBJFace, OBJFaceVertex and OBJMaterial will be introduced.

1. Data structure of OBJObject class

In real world, an object consists of a series of vertices and faces; each face is composed

of corners. In OBJObject class, an object contains a face array and a vertex array.

Each face in the face list contains a list of face vertices, which compose the face.

(Corner is defined as face vertex in OBJObject class.) Each vertex in the vertex

list contains a list of pointers pointing to the corresponding face vertices that belong

to this vertex. This data structure can clearly describe an object and support the

functions such as tracing a vertex/face, inserting and deleting a vertex/face etc.

Figure C-1 gives an illustration of the data structure for a tetrahedron. The

object has a vertex list of vertices 1, 2, 3, 4 and a face list of faces 1, 2, 3, 4. Face

99

1 contains face vertices 1, 3, 2. It has to be pointed out that the orientation of face

vertex has to be unique. Right hand orientation is used in this class. For vertex 1,

it has a list of pointers pointing to all the face vertices (corners) belong to it. In this

way, it is easy to find a face from a vertex, and it is also possible to find the vertex

from a give face.

Tetrahedron

1

v 1 v 3 v 2

2f

v v 2 v 41

f 3

v 4v 1 v 3

� �� �

��

��

v 2 v 4v 3v 1

f

v 2 v 3 v 4

4

1f

2f

3f

4f

v 1

v 2

v 3

v 4

f

Fig. C-1. Data structure of OBJObject class

2. Variables and functions of OBJObject class

OBJObject class has member variables position, scale, rotation, which record the
position, scale and the rotation of the object. It contains vertex array, matl array,
face array, which record the information of all the vertices, faces, materials of an
object. Tow Vertex3d arrays, normals and texcoords contain information for nor-
mals and textured IDs of each and every faces, these information is used for loading
texture and lighting the object. A Transformation variable tr is used for OpenGL
transformations.

class OBJObject
{

100

public :
Vector3d position; // Position of object
Vector3d scale; // Scale of object
Quaternion rotation; // Rotation of object

protected :
OBJVertexArray vertex_array; // Array of vertices
OBJMaterialList matl_list; // List of materials
OBJFaceArray face_array; // Array of faces

static Vector3dArray normals; // Array for reading normals
static Vector2dArray texcoords; // Array for reading texture coordinates
static Transformation tr; // For doing GL transformation
...

}

OBJObject class provides a series subroutines to render the object under different
occasions.

// Use material information to render faces.
// Use GL_TRIANGLES/GL_QUADS/GL_POLYGON as parameters to render faces.

void OBJObject::render(void) const

// Use material properties to outline faces.
// Use GL_LINE_LOOP as parameters to render outline.

void OBJObject::outline(void) const

// Render faces without using material properties.
// Uses face vertex colors and normals.

void OBJObject::renderFaces(void) const

// Outline faces without using material information.
// Uses face vertex colors.

void OBJObject::outlineFaces(void) const

// Render faces without using material information or face vertex colors.
// Uses the Face normals.

void OBJObject::plainRender(void) const

// Outline faces without using material properties or face colors.
void OBJObject::plainOutline(void) const

// Use material and texture information to render faces.
void OBJObject::renderT(void) const

// Render faces without using material properties.

101

// Uses texture information, face vertex colors and normals.
void OBJObject::renderFacesT(void) const

// Render faces without using material properties or face colors.
// Uses texture information and face normals.

void OBJObject::plainRenderT(void) const

OBJObject also provide the method to read and write an object from a data

file. The file is usually ended with “.obj”. This file contains the coordinates of

all the vertices and faces information. Vertices information is listed starting with

“v” followed by the x, y, z coordinates of the vertex. Face information is listed

starting with “f” followed by the vertex numbers, which compose the face. Right

hand orientation is adopted for the face. The lines followed by # are comment lines.
For example, for the tetrahedron given in Figure C-1, the format of the object

data file is given bellow.

#Tetrahedron.obj
v -10 -5 -5
v 0 -5 10
v 10 -5 -5
v 0 10 0
4vertices
f 1 3 2
f 1 2 4
f 1 4 3
f 2 3 4
4 faces

3. OBJVertex class

OBJVertex implements a vertex class for OBJObject class. It contains the coordinates
of this vertex and a list of pointers to each and every face vertices that belong to this
vertex.

class OBJVertex
{

public :
Vector3d coords; // Coordinates of vertex

// List of face vertices sharing this vertex
OBJFaceVertexPtrList fvptr_list;
...

102

}

4. OBJFace class

OBJFace implements a face class for OBJObject class. It consists a list of face vertices
that compose this face and a list of pointers to the materials for this face.

class OBJFace
{

protected :
OBJFaceVertexList fv_list; // List of face vertices
OBJMaterialPtr matl_ptr; // Pointer to material for this face
...

}

5. OBJFaceVertex class

OBJFaceVertex implements a face vertex class for the OBJObject class. It contains
a pointer to the associate vertex, the normal, color and texture ID of this corner.

class OBJFaceVertex
{

public :
OBJVertexPtr vertex; // Associated vertex pointer
Vector3d normal; // Normal
RGBColor color; // Color
Vector2d texcoord; // Texture coordinate
...

}

6. OBJMaterial class

OBJMaterial implements a material used in OBJObject class.It contains the name
and the color of the material. It also has a list of pointers pointing to the faces that
use this material.

class OBJMaterial
{

public :
char * name; // Name of material
RGBColor color; // Material diffuse color
OBJFacePtrList faces; // Pointers to faces using this material
...

}

103

B. Other Base Classes

1. BaseObject class

BaseObject is an abstract base class. It can be used to build container classes.

BaseObject has no member data; it only has protected constructors, virtual destruc-

tors and an assignment operator.

2. Vector3D class

Vector3d class is derived from BaseObject class. It is a class for a 3D vector. All the

vector operations are defined in this class, such as vector addition (+), vector subtrac-

tion (−), scalar/dot product (∗), cross product (%), scalar division (/), calculating

the norm of the vector and normalizing a given vector.

Vector2D, Vector4D are two classes for 2D and 4D vectors, which are similar to

Vector3D.

3. Quaternion class

Quaternion is a class that is mostly used for rotation. It has a Vector3d component

and a double scalar component. They function as axis and angle respectively. The

class provides the following arithmetic operations such as addition (+), subtraction

(−), product (∗), division (/), and the functions to get/set angle and axis and to scale

angle.

4. Matrix3x3 class

Matrix3x3 is a class for 3×3 matrix. It is derived from BaseObject and built from

Vector3d. Each row of the matrix is a Vector3d. It defines the operations needed for

104

matrix such as addition (+), subtraction (−), product (∗), division (/), transpose,

determinant and inverse of a matrix.

Matrix4x4 is a modified version of class Matrix3x3 for 4×4 matrix.

5. Transformation class

Transformation is the class for transformations such as translation, scaling and rota-

tion. It has to be noted that the class has an operation lookat, which functions as

gluLookAt in OpenGL. It creates a 4×4 matrix for the given eye, center and upvector.

6. Camera class

Camera is one of the important base classes. This class encapsulates an OpenGL type
camera. It contains the eye position; the point of interest (lookat), up vector and it
also has projection parameters (field-of-view, aspect ratio, near/far). It supports both
perspective and orthogonal projections, and it also supports symmetric-view (along
each axis).

enum ProjectionType { Orthographic=0, Perspective=1 };

class Camera
{

protected :
Vector3d center; // Point of interest
Vector3d eye; // Eye position
Vector3d up; // Up-vector
double nearl, farl; // Near/far clipping planes

// For orthographic/perspective projection
double umin, umax, vmin, vmax; // Viewing volume
double fovy, aspect; // Y field-of-view, aspect ratio
double dist; // Dist from eye to center
ProjectionType projtype; // Type of projection

// For GL selection mode
double mousex, mousey, pickw, pickh; // Selection region

// for gluPickMatrix
GLint * viewport; // The viewport
bool pickmode; // in selection mode
...

105

}

In the camera class, a set of OpenGL commands are encapsulated in the am-
era::applyTransform() function.

//--- Apply the camera transformation ---//
void Camera::applyTransform(void) const
{

glMatrixMode(GL_PROJECTION);
glLoadIdentity();

if (pickmode)
gluPickMatrix(mousex, mousey, pickw, pickh, viewport);

if (projtype == Perspective)
gluPerspective(fovy,aspect,nearl,farl);

else if (projtype == Orthographic)
glOrtho(umin,umax,vmin,vmax,nearl,farl);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
double e0=eye[(uint)0];
double e1=eye[(uint)1];
double e2=eye[(uint)2];
double c0=center[(uint)0];
double c1=center[(uint)1];
double c2=center[(uint)2];
double u0=up[(uint)0];
double u1=up[(uint)1];
double u2=up[(uint)2];

gluLookAt(e0,e1,e2,c0,c1,c2,u0,u1,u2);
}

7. Arcball class

This class implements an Arcball, which takes mouse events (mouse down, mouse

drag, mouse up) as input and creates the appropriate quaternion and the 4×4 matrices

to present the rotation given by the mouse.

106

8. TransControl class

TransControl class implements a translate controller. It contains a Matrix4x4 class

member to record the transformation matrix, and Vector3d vectors to record the

current/updated mouse points and the current/updated translations.

9. DollyControl class

DollyControl class implements a dolly translate controller. It is very similar to

TransControl class except it has a scale factor, which can scale the given coordinate

value of the mouse.

10. ZoomControl class

ZoomControl class implements a zoom controller by scaling in the current XY plane.

11. Viewport class

Viewport implements a generic view port class. It is another important base class
used in the program. It supports rotation, panning, zooming and dollying actions.
It uses a transformation matrix and its own subroutines to handle the corresponding
events.

enum VPView {VPPersp=0, VPFront=1, VPRight=2, VPTop=3, VPBack=4,
VPLeft=5,

VPBottom=6};
enum VPTransformType {VPNone=0, VPPan=1, VPRotate=2, VPZoom=3,
VPDolly=4 }; enum VPMouseEvent {VPUnknown=0, VPPush=1, VPRelease=2,
VPDrag=3};

class Viewport {
protected :

int width, height; // Width and height of viewport
Arcball arcball; // The arcball controller
TransControl trcontrol; // Translation controller
ZoomControl zoomcontrol; // Zoom controller
DollyControl dollycontrol; // Dolly controller

107

Transformation transform; // Combined transformation
VPTransformType currenttr; // Current transformation
VPView view; // view

public :
// Made public to allow changing camera settings easily

Camera camera; // Camera attached to this window
...

}

In its function member Veiwport::switchTo(), the camera settings are changed
to get the specified view.

// Change camera settings to get specified view
void Viewport::switchTo(VPView v)

In Viewport::MouseToViewport() function, mouse coordinates are converted to
real world coordinates.

// Convert mouse coordinates to real-world coordinates
void Viewport::mouseToViewport(double& x, double& y, double& z)

The class also provides a series of virtual subroutines to handle mouse events for
rotation, panning, dollying.

// Handle rotation by mouse
virtual void Viewport::handle_rotate(VPMouseEvent event, int
event_x, int event_y)

// Handle panning by mouse
virtual void Viewport::handle_pan(VPMouseEvent event, int event_x,
int event_y)

// Handle zooming by mouse (only x movement is used)
virtual void Viewport::handle_zoom(VPMouseEvent event, int event_x,
int event_y=0)

// Handle dollying by mouse (only x movement is used)
virtual void Viewport::handle_dolly(VPMouseEvent event, int event_x,
int event_y=0)

The transformation under different cases (VPPan, VPZoom, VPRotate) is ap-
plied in Viewport::apply transform() function. It composes a series of OpenGL com-
mands to implement the transformation.

void Viewport::apply_transform(void) const // Apply the
transformation

108

VITA

Bei Xu received her B.S. degree and M.S. degree in electrical engineering from

Shanghai Jiao Tong University, China, in 1998 and 2001, respectively. In January

2002, she began pursuing her Ph.D. degree in the Department of Electrical and Com-

puter Engineering at Texas A&M University. She can be reached at:

Bei Xu

Department of Electrical and Computer Engineering

Texas A&M University

College Station, Texas 77843

The typist for this dissertation was Bei Xu.

