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ABSTRACT

Joint Synchronization of Clock Phase Offset, Skew and Drift

in Reference Broadcast Synchronization (RBS) Protocol. (August 2006)

Ilkay Sari, B.S., Bilkent University, Ankara, Turkey

Chair of Advisory Committee: Dr. Erchin Serpedin

Time-synchronization in wireless ad-hoc sensor networks is a crucial piece of

infrastructure. Thus, it is a fundamental design problem to have a good clock syn-

chronization amongst the nodes of wireless ad-hoc sensor networks. Motivated by this

fact, in this thesis, the joint maximum likelihood (JML) estimator for relative clock

phase offset and skew under the exponential noise model for the reference broadcast

synchronization protocol is formulated and found via a direct algorithm. The Gibbs

Sampler is also proposed for joint estimation of relative clock phase offset and skew,

and shown to provide superior performance compared to the JML-estimator. Lower

and upper bounds for the mean-square errors (MSE) of the JML-estimator and the

Gibbs Sampler are introduced in terms of the MSE of the uniform minimum variance

unbiased estimator and the conventional best linear unbiased estimator, respectively.

The suitability of the Gibbs Sampler for estimating additional unknown parameters

is shown by applying it to the problem in which synchronization of clock drift is also

needed.
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CHAPTER I

INTRODUCTION

A. Wireless Sensor Networks

Recently, design of wireless sensor networks (WSN), which can briefly be described

as networks of hundreds or thousands of transceivers spread over the area of interest

collaboratively conveying the information that they gather from their own neighbor-

hood to a fusion center (sink), has caught a huge attention from research communities

with diverse concentrations. One reason for their popularity is that setting up WSN

can serve for many different purposes, which are difficult to handle with traditional

networks. They can be utilized in battle fields, environmental monitoring, traffic con-

trolling, material testing, health applications, creating smart environments and many

other applications. The other reason which makes WSN more and more popular is

the strong belief that with the advances in wireless communication techniques and

fabrication technologies of micro-electro-mechanical systems (MEMS), deployment of

WSN will be cost-wise feasible in the near future.

For successful deployment of WSN, many design factors should be taken into

account such as tolerance to node failures, scalability, time-varying network topol-

ogy, hardware-constraints, production cost and power consumption [1]. Since energy

in WSN is non-renewable, the efficient use of energy lie on top of all other design

challenges [2]. Consequently, various techniques to reduce the power consumption

in WSN have been suggested like application of power-save protocols and relaying.

Local processing of the data, before transmitting it to the sink, also appears to be

promising for the energy efficiency in WSN, since the energy required to transmit 1

The journal model is IEEE Transactions on Automatic Control.
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bit over 100 meters (3 Joules) is approximately equivalent to the energy required to

execute 3 millions of instructions [3].

B. Importance of Time-Synchronization in WSN

Time-synchronization is a crucial element of WSN and can be defined, with general

terms, as the task to assure that all nodes in a network have a common reference

timescale. The synchronized time in WSN can be necessary for various reasons from

well-functioning of the network to cooperative operation of separate nodes.

For a network to successfully operate, it is not always necessary to have a ref-

erence timescale. However, if the phenomenon to be detected is time-varying, time-

synchronization is a must for the sink to successfully interpret the raw data coming

from individual nodes [4]. For example, if the aim of WSN is to track an object, it is

impossible to achieve this without having a synchronized time.

The role of time-synchronization in assuring well-functioning of the network

might be observed in other distributed systems as well. However, there are some

other cases in which the need for time-synchronization is unique to WSN. For exam-

ple, there are some special techniques like distributive communication protocols and

TDMA-like sleep/wake-up MAC protocols which are suggested to comply with the

design requirements of WSN. To implement these techniques successfully, the nodes

need to have a common timescale [4].

In this section, we pointed out some of the important scenarios where time-

synchronization is required for WSN. Elson, in [4], provides a good overview with

many other examples and an extensive list of references.
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C. Contributions

Although in the previous section we discussed the importance of the time synchroniza-

tion in WSN, the target in this thesis is more specific. As the title and the abstract

partially suggest, we aim to achieve the joint synchronization of the phase offset, skew

and drift of the sensor clocks which are using the reference broadcast synchronization

(RBS) as the time-synchronization protocol. Estimating the relative clock skew and

drift together with the relative phase offset is much more important in WSN, since it

guarantees long-term reliability and increases synchronization accuracy.

In a computer network, (since the energy is not limited) the nodes can run the

time-synchronization protocol to estimate the relative phase offset whenever it is

necessary. In WSN, on the other hand, prediction appears to be a valuable tool for

long-term reliability, and hence for energy efficiency (instead of running the time-

synchronization protocol every time a relative phase offset estimation is needed).

However, to be able to utilize the prediction technique, estimating the relative skew

and drift is necessary [5].

Additionally, in some sensor network applications like underwater acoustic net-

works, a fixed value model for the relative phase offset is not sufficient and such a

model decreases the accuracy of the time-synchronization protocol significantly [6].

The only way to increase the accuracy of the time-synchronization protocol is to

compensate for the relative skew and drift.

The importance of the estimation of the relative skew together with the estima-

tion of the relative phase offset is also emphasized in [4]. However, in that work, Elson

considers a noise model with the normal distribution which seems to be unrealistic

for couple of reasons. This is the basic motivation of the thesis and will be further

discussed in the following chapter. With this motivation, we formulated the joint
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maximum likelihood (JML) estimator for the relative phase offset and skew under

the exponential noise model for the reference broadcast synchronization protocol and

found the solution via a direct algorithm. We also proposed the Gibbs Sampler to

jointly estimate the relative phase offset and skew, and showed that the Gibbs Sampler

provides superior performance compared to the JML-estimator. We also introduced

lower and upper bounds for the mean-square errors (MSE) of the JML-estimator and

the Gibbs Sampler in terms of the MSE of the uniform minimum variance unbiased

(UMVU) estimator and the conventional best linear unbiased estimator (BLUE), re-

spectively. Lastly, we used the Gibbs Sampler for the joint estimation of the relative

phase offset, skew and drift.

D. Outline of the Thesis

After this brief discussion on Wireless Sensor Networks and Importance of Time-

Synchronization in WSN, in what follows, we will explore the problem of joint syn-

chronization of the clock phase offset, skew and drift in more detail.

In Chapter II, we present the related work, which also serves as the motivation

of the problem. In that chapter, we prefer a constructive style, i.e., we build the

complete problem step-by-step.

In Chapter III, we explore some tools from statistics such as Monte-Carlo integra-

tion, Markov Chain Monte-Carlo sampling techniques (MCMC) and Gibbs sampling,

which are utilized in the solution of the problem.

In Chapter IV, we look at the joint synchronization of the clock phase offset and

skew only. We benefit from the tools presented in Chapter III to solve this prob-

lem. This chapter also includes derivations of performance bounds and simulations

regarding the performances of different estimators.
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Chapter V considers the effect of unknown noise parameters on the results of the

previous chapter.

Chapter VI proposes the Gibbs Sampler for the joint synchronization of the clock

phase offset, skew and drift. This chapter shows how flexible the Gibbs Sampler is

for estimating additional unknown parameters.

Finally, in Chapter VII, we present a summary of the thesis and conclude the

thesis by suggesting possible future works.
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CHAPTER II

LITERATURE SURVEY AND MOTIVATIONS

As pointed out before, time-synchronization is the task of assuring that every node in

the network has a common reference clock. However, this is a general description and

from this statement it is not obvious at all what the difficulties are in achieving this

goal. In this chapter, we will elaborate on this issue more and list the motivations

which lead to the construction of the problem.

In Section A, we give the definition of a clock in an individual node. This sec-

tion is followed by a summary on the time-synchronization protocols for distributed

systems and more specifically for WSN (Section B). In Section C, we discuss message

exchange methods used in different time-synchronization protocols and the delays

affecting the performance of these methods. Section D explores basic data-filtering

techniques used in time-synchronization protocols. Recent works, which analyze the

data-filtering techniques from a statistical point of view, are presented in Section E.

This section is followed by a brief summary on the reference broadcast synchroniza-

tion (RBS) protocol for WSN (Section F) . Section G investigates the statistical

characteristics of the receive time uncertainty (delay) in RBS. The last section of this

chapter, Section H, is dedicated to the detailed statement of the problem.

A. Definition of Clock

Every individual node in a network has its own clock. The clock consists of hardware

and software parts. The hardware part includes an oscillator and a counter. The

counter is incremented in accordance with the zero-crossings or the edges of the

periodic output signal of the oscillator. When the counter hits a certain threshold

value, an interrupt is created. The interrupt triggers the software part to increment
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the data, which is kept in the memory representing the clock, by one clock-tick. The

frequency of the oscillator and the threshold value determine the resolution of the

clock. The software and the hardware parts of the clock are configured depending on

the expected frequency of the oscillator such that the clock function of the ith node

will be Ci(t) = t, with t standing for the ideal or reference time. However, due to

nondeterminism in the oscillator’s frequency, the clock function is given by

Ci(t) = βi,0 + βi,1t + βi,2t
2, (2.1)

where the parameters βi,0, βi,1 and βi,2 are called clock phase offset, clock skew and

clock drift, respectively [7]-[9].

Having the definition of the clock function as in (2.1), the reasons which make the

time-synchronization in WSN a problem, can be explored in more details. First of all,

the clock parameters are different for different type of oscillators, for example cesium

based or crystal-quartz based oscillators have completely different characteristics.

Another important point is that for every individual oscillator of the same kind, the

parameters can have different values, i.e., they are different realizations of a random

variable. For example, the data-sheet of a typical cheap crystal-quartz oscillator used

in WSN can contain the range information about the effect of frequency deviations

as 40ppm, which means clocks of different nodes can loose as much as 40ms in an

ideal second. In other words, after a mass-production cycle, every single oscillator

can have a different skew parameter from 0 to 40ppm, independent of each other.

If the whole problem was as explained above, there would be no need to use any

complex protocol to solve the time-synchronization problem. Calibrating each node’s

clock with a reference clock before setting up the network would solve the problem.

However, there is another issue. Although the clock phase offset, skew and drift are

labeled as parameters, they are indeed time-dependent random processes [10].
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There are two terms used in clock terminology regarding time-dependent ran-

domness present in clock parameters, which are short-term and long-term stabilities

[10] and [11]. For crystal-quartz based oscillators which are currently used in sensor

networks, all these parameters are almost constant in short term. As an example, the

skew is actually governed by βi,1(t) = βi,1 + e(t) for short term. The additive noise

term’s (e(t)) spectral density is a power-law type that is Se(f) = 1/fα with α ≥ 1

[10]. Additionally, the total power in the noise process is too small to be effective in

short time-spans [12]. These two factors are valid for all three clock parameters and

these are the fundamental reasons which lead to the assumption that the parameters

of a clock are unknown constants for time-periods of interest in time-synchronization

problems.

As far as the long-term stability is concerned, the parameters are subject to

change due to environment or other external effects to the oscillator such as change

in temperature, ionizing radiation or power supply voltage [11].

In summary, the discussion presented in this section has revolved around two

main points. First of all, the most frequently used model for the clock in the time-

synchronization literature is the one given in (2.1). The second concern of this section

was to show that it is indeed this model which leads to the periodic application of a

protocol to achieve time-synchronization in sensor networks. Since clock parameters

are subject to change in long term, they have to be estimated from time to time.

B. Time-Synchronization Protocols

To solve the problem of time-synchronization, many different synchronization meth-

ods have been suggested starting with the advent of computer networks. The network

time protocol (NTP), as an example, is the standard time-synchronization scheme of
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the Internet [13] and [14]. Although the NTP works quite well in computer networks,

it is not suitable for WSN. The NTP benefits from practically-unlimited energy re-

sources, use of the Global Positioning System (GPS) and existence of a nearly-static

topology in computer networks. However, these benefits are not available in WSN.

Because of this reason, many other time-synchronization protocols are designed to

accommodate the special needs of WSN, such as the timing-sync protocol for sensor

networks (TPSN) [15], the flooding time synchronization protocol (FTSP) [16], the

time-diffusion synchronization protocol (TDP) [17], the reference broadcast synchro-

nization protocol (RBS) [18] and many others [8]. Ideally, a time-synchronization

protocol for WSN would try to work optimally in terms of all requirements of time-

synchronization, which are energy efficiency, scalability, precision, robustness, life-

time, cost and size. However, the complexity of WSN makes it very difficult to

optimize the protocol with respect to all requirements at the same time. Instead,

in general, some tradeoffs are made. Thus, all the protocols mentioned above put

different weights on different requirements. Roughly speaking, this is what makes

them different in many ways.

There are many possible categorizations of time-synchronization protocols such

as

• master-slave where first the network is arranged in a tree-like manner, after

this arrangement only the connected nodes in the tree synchronize with each

other as in TPSN vs. peer-to-peer where any pair of nodes in the network

can synchronize with each other as in RBS,

• clock correcting where the clock function kept in memory is modified after

each run of the protocol vs. untethered clocks where every node keeps its

own clock as it is, and keeps a time-translation table relating its clock to other
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nodes’ as in RBS; thus, instead of updating its clock constantly, each node

translates the time information in the data packets coming from other nodes to

its own clock by using the time-translation table,

• sender-to-receiver where one of two nodes, which are synchronizing with each

other at the moment, sends a time-stamp while the other one receives it as in

TPSN vs. receiver-to-receiver where a third node transmits synchronization-

signals and two synchronizing nodes both receive these signals and record the

time of receptions (time-stamps) as in RBS.

The reader is referred to [8] and [9] for additional categorizations of time-synchronization

protocols.

C. Message (Time-Stamp) Exchange and Message Delay

There is one common feature of all network time-synchronization protocols. They

rely on some sort of message (time-stamp) exchange mechanism between nodes.

Time-stamps are the type of messages used in time-synchronization protocols,

they simply have local clock information at the time of recording. Message exchange

in time-synchronization protocols is a rather simple process, one node tells the other

one its time in a controlled manner just like saying “it’s ten past five according to

my clock”. There are two main methods to exchange time-stamps. The first method

is called sender-to-receiver and the second one is called receiver-to-receiver.

The main source of difficulty in achieving time-synchronization of two nodes

arises from the uncertainty (nondeterminism) of the network delays that are experi-

enced by messages (time-stamps) while traveling from one node to the other. When

a node creates a time-stamp and sends it to the other node, the message experiences

a variable amount of delay, which prevents the receiver node to directly compare the
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incoming time-stamp to its own local clock reading.

The message (packet or network) delay is generally decomposed as send time,

access time, propagation time and receive time. Since more or less all these time-

uncertainties are common to different message exchange ways, we will discuss them

using a sender-to-receiver type of message exchange scenario as illustrated in Figure 1.

We will assume that local clock drifts are zero and skews are equal to one in both

nodes. Therefore, the only concern is the relative phase offset (β0 = βy,0−βx,0), which

is apparently 2 since CY (0) − CX(0) is equal to 2 from Figure 1. Node X wants to

know what the relative phase offset (β0) is. Thus, first, X sends a time-stamp TX [1]

to Y . Then node Y checks its own clock right after it receives the time-stamp from

X and records its own clock reading which becomes the time-stamp TY [1]. If there

was no delay experienced by messages, β0 = TY [1]− TX [1] would be what X needed.

However, in a real-life, the network delay does exist and is composed of

• Send Time which is the time elapsed while the message being prepared by

the operating system of the sender,

• Access Time which is the time spent in medium access layer (MAC), while

the packet waits for the channel to be available for transmission,

• Propagation Time which is the time taken for messages to propagate from

one node to the other,

• Receive Time which is the time needed to transport the received time-stamp

from the physical layer to the application layer of the receiver [7].

Since all these time uncertainties are certainly positive valued, the most widely used
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network delay model is as depicted in the following equations:

Tnd,XY [i] = dXY + eXY [i], (2.2)

Tnd,Y X [i] = dY X + eY X [i], (2.3)

where Tnd,XY and Tnd,Y X stand for the aggregate network delays, dXY and dY X are

positive unknown constants, and eY X and eY X are additive and positive noise terms

for the links X → Y and Y → X, respectively, with i = 1, 2, ...N/2 [19],[20] and [21].

Fig. 1. Transmission of time-stamps in a sender-to-receiver type of time-synchroniza-

tion protocol.

In Figure 1, X initiates the time-synchronization process by sending a time-

stamp (TX [1]) and Y records the time-stamp (TY [1]) upon receiving TX [1]. From the

model in (2.2), with these 2 time-stamps, only TY [1] − TX [1] = dXY + eXY [1] + β0

can be formed. At least to be able to eliminate constant parts of the network delays

(dXY and dY X , which are mostly considered as being equal to each other), the cycle

is completed with the same steps from Y to X (with time-stamps TX [2] and TY [2]) as

illustrated in Figure 1. Thus, with the completion of the first cycle, X will have 4 time
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stamps as {TX [1], TY [1], TX [2], TY [2]}. This process will be repeated N/2 times to be

able to average out the random effects of noises (eXY and eY X) from the estimation

of the parameters. Therefore, at the end, X will have the data set

D = {TX [2i− 1], TY [2i− 1], TX [2i], TY [2i] : i = 1, 2, ...N/2}. (2.4)

In this section, we explored components of the network delay (time uncertainty)

with the help of a sender-to-receiver type of message exchange method. The sec-

ond type of message exchange method, i.e., receiver-to-receiver, will be discussed in

Section G.

D. Data Filtering Algorithms in Time-Synchronization Protocols

Once the message exchange process is complete, the next step is to find a good

estimator for β0, i.e, the relative clock phase offset1. Methods which are used for this

purpose are named as data-filtering algorithms and the first step which is common

to all is to form an estimation set (E) consisting of the estimates of the relative

phase offset and the average network delay for every cycle, by using the data set D

from (2.4) as,

E = {(β̂0[i], d̂[i]) : i = 1, 2, ...N/2}, (2.5)

1We still continue to use the example from Figure 1. Hence, β0 is still the only
unknown parameter to be estimated and notations regarding the time-stamps in the
following equations still refer to that example.
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where β̂0[i] and d̂[i] stand for the relative phase offset and the average network delay

estimates in the ith cycle, respectively, and they are equal to

β̂0[i] =
(TY [2i− 1]− TX [2i− 1])

2
− (TX [2i]− TY [2i])

2

=
dXY + β0 + eXY [i]

2
− dY X − β0 + eY X [i]

2

= β0 +
dXY − dY X

2
+

eXY [i]− eY X [i]

2
, (2.6)

and

d̂[i] =
(TY [2i− 1]− TX [2i− 1])

2
+

(TX [2i]− TY [2i])

2

=
dY X + dXY

2
+

eY X [i] + eXY [i]

2
, (2.7)

respectively [19].

Data-filtering algorithms differ in the way they form the final estimate of the

relative phase offset. Some of the most frequently referred ones are the median round

delay algorithm (MdRD), the minimum round delay algorithm (MnRD) which is also

used in the NTP, and the minimum link delay algorithm (MnLD) [19]. The ways

these algorithms form their relative phase offset estimators (β̂0) are as follows;

• MdRD : β̂0 = β̂0[k] is used as the final relative phase offset estimator, where

k is the index of the median of the set {d̂[i] : i = 1, 2, ...N/2}, i.e., k =

#med<i>(d̂[i]),

• MnRD : β̂0 = β̂0[k] is used as the final relative phase offset estimator, where

k is the index of the minimum of the set {d̂[i] : i = 1, 2, ...N/2}, i.e., k =

#min<i>(d̂[i]) = #d̂(1),

• MnLD : First, U [i] = TY [2i − 1] − TX [2i − 1] and V [i] = TX [2i] − TY [2i] are
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formed, then

β̂0 =
min<i>(U [i])−min<i>(V [i])

2
=

U(1)− V (1)

2

= β0 +
dXY − dY X

2
+

eXY (1)− eY X(1)

2
(2.8)

is used as the final relative phase offset estimator2.

The reason behind the use of the MnRD algorithm in the NTP can be explained

with the dynamics of computer networks. Since, in the Internet, it is very hard

to characterize the probabilistic properties of the random part of the network delay

(noise terms from the model given in (2.2) and (2.3)), the sample with the minimum

error terms are selected for estimation [13]. The MnRD algorithm is also shown to

be superior, through experiments using real-life data in [13] and references therein.

However, Paxson, in [22] and [23], observed that the MnLD algorithm produced

more accurate results for the relative phase offset estimation compared to the MnRD

algorithm. Since the main topic of Paxson’s works is not time-synchronization, he

argues this observation informally. He argues that formation of β̂0[i] as (U [i]−V [i])/2

causes information loss. Since the noise terms in U [i] and V [i] are definitely positive-

valued, using U(1) and V (1) to form the relative phase offset estimator further reduces

the effect of the noise.

E. Recent Works on Filtering Methods

Paxson’s arguments on the superiority of the MnLD algorithm are reasonable. How-

ever, they are not complete and satisfactory enough, because it is possible to find

a probability density function for the noises such that the variance of the random

2In theory of order statistics, parentheses (.) are used to index the set after as-
cending ordering [24]. For regular (or time-domain) indexing, square brackets [.] are
used.
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variable created by (eXY (1)− eY X(1))/2 from (2.8) (MnLD) will be higher than that

of (eXY [k] − eY X [k])/2 from (2.6) (MnRD). This will be the case, as an example,

when min(.) of a random process is a rare event and the density is locally flat around

min(.). Thus, more detailed and rigorous arguments explaining the superiority of the

MnLD algorithm over the MnRD algorithm is needed.

The first comprehensive study on statistical analysis of different ad-hoc data-

filtering algorithms is presented by Abdel-Ghaffar in [19]. In his work, Abdel-Ghaffar

assumes that links X → Y and Y → X are symmetric that is dXY = dY X = d

and feXY
= feY X

with f standing for the probability density function. Additionally,

Abdel-Ghaffar assumes that d is known and the noise distributions are independent

and identically (i.i.d) distributed exponentials. Under these assumptions, Abdel-

Ghaffar shows that the MnLD algorithm has a better mean square error (MSE)

performance compared to the other ad-hoc algorithms both through mathematical

analysis and simulations. However, he concludes that a unique maximum likelihood

estimator (MLE) for this problem set-up does not exist.

Jeske, in [20], uses the same problem set-up as Abdel-Ghaffar. He, on the other

hand, assumes that d is unknown. Under these assumptions, he shows that the MnLD

algorithm is actually the MLE. Jeske also notes that if the noises are not symmetric,

that is if exponential distributions have different mean-parameters, the MnLD algo-

rithm is still the MLE but not unbiased anymore. In addition to this contribution,

Jeske, in [21], successfully applies bootstrapping to reduce the bias created due to the

model with asymmetric noise distributions.
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F. Reference Broadcast Synchronization

All of the works mentioned in the previous section use a sender-to-receiver type of

set-up as illustrated in Figure 1. Although those discussions will definitely prove to be

very useful, the main problem considered in this thesis assumes a receiver-to-receiver

type of protocol, namely RBS. Thus, it will be beneficial at this point to discuss some

aspects of RBS.

RBS is a recently proposed receiver-to-receiver time-synchronization protocol

for wireless sensor networks [18]. RBS exploits the broadcast nature of WSN. The

first step, in RBS, is partitioning of the sensor nodes into clusters as in Figure 2.

Every cluster has a server node called transmitter as shown in Figure 2. Cluster-

ing and choice of transmitters is dynamically handled to provide an energy efficient

implementation. Roughly speaking, in each cluster the transmitter broadcasts N

synchronization signals and the receivers record time-stamps using their local clocks.

In other words, an individual transmitter of a cluster does not produce time-stamps,

but it triggers all the receivers inside its broadcast domain to produce time-stamps

by broadcasting synchronization signals. Then, any pair of receivers can exchange

the time-stamps to estimate the relative clock parameters. However, the pair-wise

synchronization can create a considerable amount of overhead and can lead to more

power consumption. Hence, for a more efficient implementation, the receivers pass

the data, consisting of N time-stamps, back to the transmitter where the relative

clock parameters between all pairs of receivers are calculated, and this information

is broadcasted back to the receivers as a table. This process describes the time-

synchronization procedure in the broadcast domain of a single transmitter, i.e., inside

a cluster only. Time-synchronization between different clusters in RBS is achieved

simply by exchanging the time-translation tables.
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Fig. 2. Clustering for RBS.

One advantage of RBS is that by using N synchronization signals all receivers

inside a cluster can be synchronized. The other one is that by the help of RBS,

two (even three) of the main error sources of clock synchronization are eliminated,

which are uncertainties at send time and access time and partially propagation time.

Closer examination of Figure 3 will make this point clearer. Since the transmitter

does not produce time-stamps (only receivers produce time-stamps upon receiving

a synchronization signal), there is neither send nor access time uncertainty in final

time-stamps. From the time that a synchronization signal is broadcasted to the time

that the time-stamps are recorded in receivers, the message experiences propagation

and receive delays only. Furthermore, the difference between propagation times for

different receivers in a cluster is negligible compared to the uncertainty at the receive

time, which becomes the only error source. Since the total propagation time inside a

cluster is negligible compared to the receive delay, the difference between propagation

times of two different receivers will be even smaller [18].



19

Fig. 3. Transmission of time-stamps in RBS.

G. Characterization of Receive Time in RBS

In [18], it is experimentally argued that uncertainty at the receive time can be modeled

with a normal distribution. In the experiment, there are 5 receiver nodes and the

transmitter sends 160 broadcast signals in the course of 3 minutes. The receivers are

connected to an external logic analyzer which creates time-stamps. The receiver nodes

are programmed such that as soon as receiving a signal they produce an interrupt for

the logic analyzer. This experiment is also illustrated in Figure 4.

The logic analyzer creates 160 time-stamps for each receiver. Then, the differ-

ences between time-stamps for each possible pair of receivers is calculated and the

resulting 1600 relative receive time error terms are plotted as a histogram (Figure 2

in [18]), which can be approximated with a normal distribution quite well.

Starting from this observation that the receive time is normal, the authors use

the mean estimator (β̂0 = 1/N
∑

<i>(TY [i]−TX [i])) to time-synchronize the receivers,
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Fig. 4. Characterization of the receive time in RBS from [18].

since it is optimal in additive Gaussian noise.

However, several objections can be raised over the competency of this experiment

in characterizing the receive time uncertainty in RBS. First of all, the mean estimator

is optimal only if the receive time uncertainties for individual receivers are normally

distributed. However, the experiment characterizes only the difference between re-

ceive time uncertainties, not the individual receive time uncertainties. Fundamentally,

individual receive time uncertainties are positive-valued; hence, they cannot have a

normal distribution, although their difference might look like one.
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Secondly, the experimental set-up is idealistic. The receivers just wait for syn-

chronization signals, and they do not have any other duty. They even do not process

the packets after reception. They just inform the logic analyzer about the recep-

tion so that the logic analyzer will record time-stamps. It is doubtful that such an

experimental set-up will successfully characterize the receive time uncertainty.

Modeling of network delays in WSN, using a closed-form expression, seems to be

a challenging task [25]. On the other hand, the exponential, Gamma, log-normal and

Weibull distributions have been shown to be feasible for different cases [26]. Amongst

them, the exponential distribution fits quite well several applications [27]. One of

these applications is point-to-point wireless links with a single server [19], [21] and [28].

It was also the exponential network delay assumption enabling the mathematical proof

of Paxson’s observation on the superiority of the MnLD algorithm as mentioned in

Section E [20]. These arguments advocate the use of exponential distribution for the

receive time uncertainty.

H. Summary and Problem Statement

To summarize the analysis and the survey which have been presented up to this point,

it can be said that for time-synchronization in sender-to-receiver type of protocols,

rigorous statistical analysis led to substantial performance gains [19]-[23]. It is also

noted that RBS, because of the broadcast nature of WSN, is a convenient time-

synchronization protocol for WSN and it provides considerable noise power reduction

by eliminating the send and access time uncertainties. However, the network delay

assumption which was found through an idealized experiment in [18] seems to be

unrealistic. In real-life, there will be communication signals going around, not just

synchronization signals, and nodes will have other jobs, not just the time-stamping.
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Therefore, the link from the transmitter to an individual receiver is expected to behave

as a regular point-to-point network link (M/M/1), where the receive time uncertainty

has exponential distribution [19] and [28]. (In some texts, this type of uncertainty is

also named as the processing delay.) It is also emphasized that in addition to relative

phase offset, estimation of relative skew and relative drift is much more important in

WSN compared to traditional computer networks because of resulting energy-save.

Considering all these points, the problem can be expressed as how to achieve the joint

synchronization of clock phase offset, skew and drift in RBS under the exponential

receive time uncertainty model. Mathematically speaking, the problem is to estimate

the relative phase offset, skew and drift between the clocks of nodes X and Y , which

are given by

β0 = βy,0 − βx,0 , (2.9)

β1 = βy,1 − βx,1 , (2.10)

β2 = βy,2 − βx,2 , (2.11)

using N time-stamps from each node, of which the ith ones are given by

TX [i] = T1 + βx,0 + βx,1τ [i] + βx,2τ
2[i] + vx,λx [i], (2.12)

TY [i] = T1 + βy,0 + βy,1τ [i] + βy,2τ
2[i] + vy,λy [i], (2.13)

where T1 stands for the time on the transmitter when it sends the first synchronization

signal, βx,0, βx,1 and βx,2 stand for the phase offset, skew and drift between the clocks

of X and the transmitter, τ [i] stands for the difference between T1 and the time of

ith synchronization signal (with respect to the transmitter’s clock) and vx,λx [i] stands

for the additive i.i.d exponential noise (with mean 1/λx), with i = 1, . . . , N . (Similar

descriptions also apply for the terms with subscript Y , see Figure 5.)
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Fig. 5. System model.

The problem formulation given above includes some implicit assumptions. We

will conclude this chapter by addressing them.

First of all, the model assumes that constant parts of the network receive delays

are known and both are equal to zero (dXY = dY X = d = 0). This is a reasonable as-

sumption as explained before. Since the receiver nodes are in the broadcast domain of

the transmitter, the propagation time, which constitutes the constant part of the net-

work delay, is negligible compared to receive time uncertainty. Even if d is unknown,

it would not have any effect on the final result due to (2.9). If, on the other hand,

dXY and dY X are not equal and their difference is a non-negligible unknown constant,

the problem of estimating relative phase offset becomes unidentifiable. The difference

dY X−dXY adds up to β0 and this produces a new relative offset β
′
0 = β0 +dY X−dXY .

The other assumptions is that during the broadcast of N synchronization signals,

the noise is stationary, i.e., λx and λy stay the same. Extensive studies on the Internet

show that delay parameters are approximately stationary for 30 to 60 minutes [29].
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This time-duration is much longer compared to the time typically taken to broadcast

N synchronization signals.



25

CHAPTER III

MONTE-CARLO STATISTICAL METHODS

To solve the problem stated in the previous chapter, we will first consider the MLE as

in [20], and it will turn out that although a unique MLE exists, it is not a simple task

to express it in a closed-form. In such cases, one must resort to more convenient tools.

For example, Jeske shows that when the assumption of symmetry on the network de-

lays is dropped, a better solution is achieved by bootstrapping [21]. These reasons and

successful application of it to many challenging problems of communication theory as

in [30], suggest the use of Markov Chain Monte-Carlo (MCMC) techniques. For this

reason, in this chapter, we will give a brief description of MCMC techniques and in

particular the Gibbs Sampler. The tools discussed in this chapter will be applied to

the problem in the following chapters.

A. Monte-Carlo Integration

We will start with the description of a generic inference problem. Assuming that

the data vector z is observable, it is of interest to estimate the parameters Φ =

[φ1, φ2, ..., φM ]T . For any kind of statistical inference, the joint posterior distribution

of the parameters p(Φ|z) ∝ p(z|Φ)p(Φ) can be used. For inference problems, most

of the time, the evaluation of mathematical expressions like γ =
∫

f(Φ)p(Φ|z)dΦ,

p(φ1|z) =
∫

<φ2,...,φM>
p(Φ|z)dφ2...dφM or γ = maxφ1 p(φ1|z) produces reasonable esti-

mators [31]. When it is hard to carry out this type of mathematical derivations on the

posterior distribution, Monte-Carlo methods are used, i.e., to draw as many samples

as possible from the posterior distribution so that the inference, which is made using

these samples, will be arbitrarily close to the exact solution. For example, the previ-

ous integration can be approximated by γ̂ = (1/N)
∑

i=<1,N> f(Φi) where Φ1, ..., ΦN
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are i.i.d samples from p(Φ|z). Furthermore, this structure allows evaluating the ac-

curacy of the approximation for any fixed N with var(γ̂) = (1/N)var(f(Φ)) [32].

This also means that once a way to sample from p(Φ|z) is found, the accuracy of the

approximate estimation method is controllable.

B. Indirect Sampling Techniques

Most of the time, p(Φ|z) is not a distribution readily available to draw samples from.

For this kind of situations, there are some sampling techniques which enable sampling

from the target distribution indirectly. Some of the most frequently used ones are

Importance Sampling, Rejection Sampling and Weighted Bootstrap [31], [32] and [33].

These techniques are non-iterative and fast. Most of them need an auxiliary distribu-

tion to draw from, which is similar to the target distribution in some sense. However,

these non-iterative methods are not good and efficient enough for high dimensional

parameter spaces since it is very hard to find a good auxiliary distribution for high

dimensional parameter spaces. For such cases, Markov Chain Monte-Carlo (MCMC)

type iterative sampling techniques are used. That resumes to setting up a Markov

chain whose stationary distribution is the target joint posterior. The most well known

method amongst these techniques is called Metropolis-Hastings Algorithm, in which

the rejection sampling is used iteratively and adaptively [34] and [35].

C. Gibbs Sampling

One of the most convenient forms of the MCMC techniques is called Gibbs sampling,

which was first suggested by Geman and Geman in [36]. In Gibbs sampling, the

samples are iteratively drawn from one-dimensional conditionals p(φi|z,Φi), where

Φi is a vector of dimensions (M − 1) × 1 with entries {φj}j 6=i [37]. Under mild
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conditions, these one dimensional conditional distributions uniquely determine the

joint posterior distribution [38].

Specifically, the general algorithm for Gibbs sampling with initial values Φ(0) =

[φ
(0)
1 , ..., φ

(0)
M ] is to iterate the following steps:

• Draw φ
(k+1)
1 from p(φ1|z, φ(k)

2 , ..., φ
(k)
M )

• Draw φ
(k+1)
2 from p(φ2|z, φ(k+1)

1 , φ
(k)
3 , ..., φ

(k)
M )

...

• Draw φ
(k+1)
M from p(φM |z, φ(k+1)

1 , ..., φ
(k+1)
M−1 ).

After a threshold value t, the set {Φ(t), Φ(t+1), ...} behaves like samples from the

joint posterior distribution of the parameters. Then this set can be used to form an

estimator such as the sample median, the sample mean and so on [37].

One important point is that the joint posterior distribution should be proper.

That is it should be positive-valued and integrable. Otherwise, the Gibbs Sampler

always converges to some local points, but not necessarily to a meaningful one [39].

D. Final Remarks

MCMC techniques are generally discussed in the Bayesian framework. However, we

do not have any prior information regarding the clock parameters; thus, we will per-

form frequentist estimation, i.e., we will only utilize the likelihood function. When

MCMC tools are used for frequentist estimation only, the priors are chosen as un-

informative and flat. When the prior distribution is chosen as flat, the posterior

distribution becomes equivalent to the likelihood function. However, if the likelihood

function in the parameter space is not proper, it cannot be used as the posterior dis-

tribution directly. The prior distribution should be chosen in a way that the resulting
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posterior distribution is proper while the prior itself is uninformative (frequentist). In

the literature, there are many different prior distributions suggested to serve this pur-

pose such as conjugate priors. Conjugate priors are beneficial because the posterior

distribution assumes the same form as the prior distribution [40]. For the problem

considered in the thesis, the likelihood function does have a bounded integral over

the domain, i.e., it is proper. Therefore, the prior distribution can safely be taken as

flat.

Another important concept in MCMC techniques is the convergence diagnos-

tics [33]. The issue is to be able to determine if the chain has forgotten its initial

point and converged to its stationary distribution. Methods to test the convergence

generally use statistical similarity tests performed on a couple of parallel chains. The

other method is to plot the estimator acquired from the chain, as the chain moves,

and to observe if it converges to the true value or not. The latter is generally preferred

in communication applications [30].
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CHAPTER IV

JOINT SYNCHRONIZATION OF CLOCK PHASE OFFSET AND SKEW

In this chapter, we consider the synchronization of clock phase offset and skew with

known network delay characteristics. In the first section of the chapter, we take a

closer look at the likelihood function and suggest two algorithms to find the solution

which maximizes the likelihood function. In the second section, the Gibbs Sampler is

used as an estimator, we also present the motivations that lead us to use this method.

In Section C, the performance bounds are derived. Finally, the chapter is concluded

with simulation results.

A. Likelihood Function and Joint Maximum Likelihood Estimation

Although important, the joint estimation of relative skew and phase offset might not

be easy. Though in a different context, in [41], Sadler shows that under uniform noise,

there are infinite solutions for the MLE. Furthermore, the support of the likelihood

function is not convex which leaves out the possibility of taking the mean of all equally

likely solutions. Turning back to the problem of this thesis, we will consider the case

described in (2.9)-(2.13). We will assume that the parameter (β2) of equation (2.11),

is known and equal to zero. We will also assume that λx and λy are known. As

long as the two parameter sets {βx,0, βx,1, λx} and {βy,0, βy,1, λy} do not have a direct

relationship and the noise sources in different nodes (vx,λx and vy,λy) are independent

(both of which are realistic assumptions), the joint maximum likelihood estimator

(JML) for relative offset and skew (β0 and β1) can be found, without loss of any

information, by first estimating the parameters (βx,0, βx,1) and (βy,0, βy,1) separately

and then plugging these estimates back into (2.9) and (2.10). Thus, from now on we

will concentrate on the estimation of βx,0 and βx,1 only. (For a brief discussion on the
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possible performance loss due to application of the transformation (TY − TX) before

estimation, as it is done in [18], please see the Appendix A.)

First of all, for simplicity, we will assume that T1 is zero and τ [i] = i− 1. Under

these assumptions the likelihood function becomes

L(βx,0, βx,1) =
N∏

i=1

λxe
−λx(TX [i]−(βx,0+(i−1)βx,1))I(TX [i] ≥ βx,0 + (i− 1)βx,1)

= λN
x e−λxN(TX−(βx,0+N−1

2
βx,1))

N∏
i=1

I(TX [i] ≥ βx,0 + (i− 1)βx,1)(4.1)

= λN
x e−λxN(TX−f)

N∏
i=1

I(TX [i] ≥ fi), (4.2)

where f(βx,0, βx,1) = βx,0 + ((N − 1)/2)βx,1 and fi(βx,0, βx,1) = βx,0 + (i− 1)βx,1, TX

stands for the sample mean of observations TX [i] (i = 1, . . . , N), and I(·) denotes

the indicator function. Note that in (4.2), the multiplication of indicator functions

defines a convex region (S) on the parameter space (βx,0, βx,1), with S = {(βx,0, βx,1) :
⋂N

i=1 fi(βx,0, βx,1) ≤ TX [i]}, which is the domain of the likelihood function. S has k

vertices {sj}k
j=1 and k + 1 edges (1 ≤ k ≤ N − 1). Specifically, the shape of this

region and the value of k will strongly depend on the ordering of TX [1], ..., TX [N ].

To maximize the likelihood function over the convex set (S), we have to maximize

the objective function, f(βx,0, βx,1) = βx,0 + ((N − 1)/2)βx,1, which is also convex.

In that case, the maximum is achieved on the boundary of (S) [42]. Because of the

inequality 0 < ((N − 1)/2) < N − 1, the support of the solution is guaranteed to be

a closed-convex region on the boundary of S.

In general, if N = 2m, the solution will be one of the vertices sj. If N = 2m− 1

the solution will assume possibly a segment of the line fm : βx,0 + (m− 1)βx,1 (or one

of the vertices sj, depending on the ordering of the observations). For N = 2m− 1,

the slope of the objective function is aligned with the line fm. If fm is active, i.e.,
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it is one of the lines constituting the borders of S, the line segment, which is the

intersection of fm and S, will be the JML-estimator.

Fig. 6. S and the solution s2 for N = 4.

Figure 6 illustrates these remarks for N = 4. In this illustrative example, since f

attains its maximum on s2 amongst all points on S, s2 gives the JML-estimate of βx,0

and βx,1. However, there are different possibilities for the same scenario. For example,

in Figure 7, N is still equal to 4, but this time f3 becomes inactive, i.e., f3 has no

effect on the shape of the domain S, since TX [3] is too noisy. The domain of likelihood

function completely changes compared to the previous example. However, since N is

even, there exists no fi matching the slope of f and the solution is guaranteed to be

a unique point.

Lastly, Figure 8 illustrates all possibilities for S with N = 3 (odd). There are two
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Fig. 7. S and the solution s2 for N = 4 and f3 inactive.

different cases which is either f2 active as in Figure 8.a, or inactive as in Figure 8.b.

In Figure 8.a, the solution is a complete line segment that is the part of f2 inside the

domain of the likelihood function. In Figure 8.b, on the other hand, the solution is

the point s1. As mentioned before, for odd-valued N , the solution depends on the

situation whether the line whose slope match that of f is active or inactive. If it is

active then the solution is a line segment, otherwise a unique point.

While f1 and fN are always active in the formation of (S), the remaining N − 2

lines could be active or inactive. In other words, there are 2N−2 possibilities for the

shape of S. Therefore, it seems difficult to come up with a closed-form expression for

the JML-estimator. However, it is possible to set up different algorithms to find the

JML-estimate. One way to find the JML-estimate would be to check all possibilities.
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Fig. 8. S and the solution for N = 3: a) f2 active, b) f2 inactive.

When N = 2m, for example, we can find all N(N − 1)/2 intersection points of the

lines fi = TX [i], and set active those of which are on S. Then, amongst these active

points we can choose the one that maximizes f .

It is also possible to find computationally less demanding algorithms. As an

example, assume that N = 10. First, we can find the 9 intersection points of all

the other lines with f1 = TX [1]. Amongst these points, we will choose the one with

minimum βx,1 and record it to a list. Assume that this point is the intersection of

the lines f5 = TX [5] and f1 = TX [1] in a specific scenario, then we can discard the

lines f6 = TX [6], ..., f10 = TX [10] and the intersection points defined by these lines

beforehand. Then, we need to apply the same step as above to f5 = TX [5] and

f2 = TX [2], ..., f4 = TX [4], and again record the intersection point with minimum βx,1

amongst these 3 points to the list. At the very end, we will choose the median of the

elements present in the list which will give the JML-estimate.

In the first method, we need to find all N(N − 1)/2 intersection points first.
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However, in the second method, we start with finding N − 1 of them, then in each

iteration we have the chance to discard some or all of the intersection points without

calculating them, which will reduce the computational load.

B. Application of Gibbs Sampling

In this section we will apply the Gibbs Sampler to jointly estimate the parameters (βx,0

and βx,1). The Gibbs Sampler can be used to find an approximate JML-estimate which

is arbitrarily close to the exact one. However, there are some more important benefits

of using the Gibbs Sampler. First of all, it can be shown that the JML-estimator

(β̂(x,0),JML, β̂(x,1),JML) is biased for finite N . (As an example consider the case with

N = 2, E[β̂(x,0),JML] = E[TX [1]] = E[βx,0 + vx,λx [1]] = βx,0 + 1/λx.) For this reason,

we need to look for the uniform minimum variance unbiased (UMVU) estimator. To

find the UMVU estimator, the Lehmann-Scheffe theorem can be used, which requires

to find sufficient statistics first. The Neyman-Fisher factorization theorem provides

mini(TX [i]−βx,0 +(i− 1)βx,1) as sufficient statistics, which is not independent of the

parameters to be estimated. Thus, it seems even harder to find the UMVU estimator.

On the other hand, if we use the Gibbs Sampler; at the end, we do not have just a

single point estimate but the posterior distribution for the parameters to be estimated

as the output. Then, we can either find the JML-estimate or set the corresponding

estimator as the mean value of the posterior distribution of the parameter, which will

automatically perform the marginalization and will give better results with reduced

bias and variance. In this work, we will follow this approach, i.e., using the mean

value of the samples of the parameters as the estimator. Another appealing feature

of the Gibbs Sampler is its straightforward extendability for estimating additional

unknown parameters. For example, it is possible that λx is unknown (a set-up that
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will be considered in the next chapter) or in addition to the clock phase offset and

skew, we could have clock drifts: βx,2 and βy,2 (which will be considered in Chapter

VI).

As mentioned before, it is important to make sure that the joint posterior dis-

tribution used for inference is proper. However, for the problem of this thesis, the

likelihood function itself can be used as posterior distribution, since its integral is

always bounded and positive-valued which makes it proper. Then, using (4.1), the

procedure becomes

• Draw β
(k+1)
x,0 from ∝ eλxNβx,0I(βx,0 ≤ mini(TX [i]− (i− 1)β

(k)
x,1))

• Draw β
(k+1)
x,1 from ∝ eλx

N(N−1)
2

βx,1I(βx,1 ≤ mini(
TX [i]−β

(k+1)
x,0

i−1
)).

For β
(k+1)
x,0 , we will draw a sample from an exponential distribution with parameter

λxN , multiply it with -1 and add mini(TX [i] − (i − 1)β
(k)
x,1) to it. The procedure for

β
(k+1)
x,1 will be similar. We will draw a sample from an exponential distribution with

parameter λxN(N − 1)/2, multiply it with -1 and add mini((TX [i]− β
(k+1)
x,0 )/(i− 1))

to it. Final estimators will be formed as

β̂(x,0),GIBBS =
1

K + 1

t+K∑
i=t

β
(i)
x,0 ,

β̂(x,1),GIBBS =
1

K + 1

t+K∑
i=t

β
(i)
x,1 ,

where t indicates the number after which the chain converges and K is the number

of samples which are taken from the output of the Gibbs Sampler.

C. Performance Bounds

The next step would be to simulate some realistic scenarios and observe the perfor-

mances of the two estimation methods suggested in the previous sections, the JML-
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estimator and the Gibbs Sampler. However, it will be useful to have some benchmarks

with whom to compare their performances. For this reason, this section is dedicated

to derivation of such bounds. Some theorems from Statistics are used in this section

and their explanations can be found in Appendix B.

1. Lower Bounds

The first step is to look for lower bounds for skew and offset estimation. Since the

likelihood function does not satisfy the regularity conditions required by the CRLB

(Cramer-Rao Lower Bound), calculating CRLBs is dropped out of the list. One

possible lower bound can be found by assuming that all the parameters are known

but one. Then we can find the UMVU estimators both for the phase offset and skew

in closed forms. Since in the original problem of this chapter, both parameters (offset

and skew) are unknown at the same time, we cannot perform better than UMVU

estimators which will be derived in this section.

• For βx,0, it is known that

β̂(x,0),UMV U = min(TX [i]− (i− 1)βx,1)− 1

Nλx

, (4.3)

and the MSE (Mean-Square Error) of the estimator equals 1/(Nλx)
2 [43].

• For βx,1, with known βx,0, the likelihood function can be written as

L(βx,1) = Ceλx
N(N−1)

2
βx,1ΠN

i=2I

(
βx,1 ≤ TX [i]− βx,0

i− 1

)
, (4.4)

where C is a normalizing constant. By the Factorization Theorem [43], Z =

mini=2,3,...,N((X[i] − βx, 0)/(i − 1)) is a sufficient statistics. The next question

is whether it is complete or not. To check the completeness of the sufficient

statistics Z for estimating the parameter βx,1, we first need to find the distri-
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bution function FZ . From the theory of order statistics [24], the distribution of

the minimum of a sample set is given by

FZ(z) = 1− (1− F2(z))(1− F3(z))...(1− FN(z)), (4.5)

where Fi(z) = F ((TX [i]− βx,0)/(i− 1) ≤ z) = F (vx,λx [i] ≤ (i− 1)(z − βx,1)) =

(1− e−λx(i−1)(z−βx,1))I(z ≥ βx,1). Then, plugging these back into (4.5), the dis-

tribution function of the sufficient statistics becomes

FZ(z) = 1− e−λx(z−βx,1)(1+2+...+N−1) = 1− e−λx(z−βx,1)
N(N−1)

2 , (4.6)

which is an exponential distribution with the scale parameter λxN(N − 1)/2

and the location parameter βx,1.

Completeness of sufficient statistics (Z). Assume that h(βx,1) = E[g(Z)] =

0 for all βx,1. Since h(βx,1) =
∫∞

βx,1
g(Z)fZ(z)dz = c

∫∞
βx,1

g(Z)e−c(z−βx,1)dz, using

Leibniz Rule h
′
(βx,1) = c(h(βx,1)− g(βx,1)) = −cg(βx,1). Since h

′
(βx,1) = 0 then

g(βx,1) = 0. Hence, the sufficient statistics (Z) is complete.

Then, by the Lehmann-Scheffe Theorem [43], the UMVU estimator for clock

skew when the clock phase offset and λx are known takes the following form:

β̂(x,1),UMV U = mini(
TX [i]− βx,0

i− 1
)− 2

λxN(N − 1)
. (4.7)

The MSE of β̂(x,1),UMV U equals the variance of Z which is 4/(λxN(N − 1))2.

2. Upper Bounds

We will also consider the BLUE (Best Linear Unbiased Estimator). There are two

reasons why we want to use the BLUE in our simulations. Since we have the JML-

estimator, the BLUE will definitely represent an upper bound. Additionally, the
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BLUE is suggested as an estimator in the RBS in [18], for joint estimation of clock

skew and offset; however, the BLUE is optimal when the noise is normally distributed.

It is not optimal with exponentially distributed noise. The simulations will enable us

to see this distinction clearly.

Since there is abundant amount of information on the BLUE (mostly due to the

Gauss-Markov Theorem [42]), we discuss it briefly. We will use the same notation

as [41] (except X is replaced with A, to prevent possible confusion). However, since

the noise is not zero-mean, after treating the data as if it is embedded in zero-mean

noise, we need to subtract 1/λx from the resulting linear estimate of βx,0 so as to end

up with the BLUE, i.e., [β̂(x,0),BLUE, β̂(x,1),BLUE]> = (A>A)−1A>TX − [1/λx, 0]>. It is

well known that var([β̂(x,0),BLUE, β̂(x,1),BLUE]>) = diag{1/λ2
x(A

>A)−1} ∝ [1/N, 1/N3]>.

For a detailed discussion on this estimator, the interested readers are referred to [41]

and [44].

D. Simulations

In this section, we present the simulation results regarding the performance compar-

ison of the estimators considered in this chapter, the convergence properties of the

Gibbs Sampler and the sample distributions of the estimators.

By setting βx,0 = 1.0, βx,1 = 0.001, λx = 1 and N = 20, and using a single

realization of the noise process (vx,λx), the estimates of the estimators (JML, GIBBS

and BLUE), are depicted in Figure 9. From the figure, it can be seen that the BLUE

can produce an estimate outside the domain of the likelihood function. The same

figure also shows the samples of the Gibbs Sampler. Theoretically, the sampling

procedure can visit any point inside the domain of the likelihood function. However,

the samples of the Gibbs Sampler are concentrated on the part of the domain where
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the likelihood function has most of its volume.

The MSE of the Gibbs Sampler and the JML-estimator for phase offset and skew

estimations, with βx,0 = 1, βx,1 = 0.01 and λx = 103 (var(vx,λx) = 10−6) are presented

in Figures 10 and 11, respectively. The figures also include the lower and upper

bounds derived in the previous section. The MSE are plotted against the number of

synchronization signals from 4 to 36. It is interesting to note that the MSE of the

Gibbs Sampler and the JML-estimator behave like the lower bounds; i.e., the decay

rates scale with 1/N2 and 1/N4 for the phase offset and skew estimates, respectively.

Additionally, in terms of MSE performances, compared to the JML-estimator, the

Gibbs Sampler performs 40% and 25% better for the phase offset and skew estimates,

respectively. Compared to the JML-estimator, the Gibbs Sampler reduces the bias

in phase offset estimation remarkably, which is illustrated in Figure 12.

The convergence behavior of the Gibbs Sampler for βx,0 = 1, βx,1 = 0.01, N = 20

and λx = 1, is illustrated in Figure 13. In this figure, the first 100 samples drawn

by the Gibbs Sampler of the phase offset and skew parameters are plotted. The true

values of the clock parameters are also depicted in the same figure as the straight

lines. It is remarkable that the Gibbs Sampler converges within 20 iterations, even

though λx = 1 (note that the smaller the value of λx gets, the slower the Gibbs

Sampler converges).

The Figures 14 and 15, illustrate the probability density functions of the estima-

tors for offset and skew estimates, respectively, using the corresponding histograms.

The histograms are based on 1000 Monte-Carlo samples for βx,0 = 1, βx,1 = 0.01,

N = 20 and λx = 1. Since the regularity conditions are violated, the density of the

Gibbs Sampler does not resemble a normal distribution. On the contrary, it is more

like a Laplace distribution.
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Fig. 9. Gibbs sampling and estimates by BLUE, JML and Gibbs Sampler. The pa-

rameters are set as βx,0 = 1.0, βx,1 = 0.001, λx = 1 and N = 20.
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Fig. 10. MSE performances of the offset estimators. The estimators are β̂(x,0),BLUE,

β̂(x,0),JML, β̂(x,0),GIBBS, and β̂(x,0),UMV U . The parameters are set as βx,0 = 1,

βx,1 = 0.01 and λx = 103.
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Fig. 11. MSE performances of the skew estimators. The estimators are β̂(x,1),BLUE,

β̂(x,1),JML, β̂(x,1),GIBBS and β̂(x,1),UMV U . The parameters are set as βx,0 = 1,

βx,1 = 0.01 and λx = 103.
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Fig. 12. Bias on offset estimators. The estimators are β̂(x,0),JML and β̂(x,0),GIBBS. The

parameters are set as βx,0 = 1, βx,1 = 0.01 and λx = 103.
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Fig. 13. Convergence of the Gibbs Sampler for offset and skew estimates. The param-

eters are set as βx,0 = 1, βx,1 = 0.01, N = 20 and λx = 1.
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Fig. 14. Histograms for the offset estimators. The parameters are set as βx,0 = 1,

βx,1 = 0.01, N = 20 and λx = 1. The estimators are a) BLUE, b) GIBBS

and c) JML.
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Fig. 15. Histograms for the skew estimators. The parameters are set as βx,0 = 1,

βx,1 = 0.01, N = 20 and λx = 1. The estimators are a) BLUE, b) GIBBS

and c) JML.
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CHAPTER V

EFFECT OF UNKNOWN NOISE PARAMETERS

In the previous chapter, we assumed that the parameters of the exponential noise

terms λx and λy are known to the transmitter. As a matter of fact, it is more likely

that the transmitter will not know the values of λx and λy. However, we made this

assumption, not because it is more reasonable, but because it is more convenient. The

assumption of unknown noise parameters would introduce a third dimension to the

parameter space. This would reduce the readability of most of the derivations and

figures, at no return. As it will be clear, in this section, unknown noise parameters

has no effect on the maximum likelihood estimation and negligible effect on the Gibbs

Sampler.

In short, this chapter is dedicated to analyzing the effect of unknown noise pa-

rameters on the performance of the estimators. In the first section of this chapter,

the JML-estimator is derived. In the second section, the Gibbs Sampler is applied,

and the last section presents the simulation results.

A. Joint Maximum Likelihood Estimator

First of all, the likelihood function, which is given in equation (4.1), is maximized

over λx when λ̃x(βx,0, βx,1) = (TX − (βx,0 + (N − 1)/2βx,1))
−1 for all fixed values of

(βx,0, βx,1). Therefore, by plugging λ̃x back into (4.1), the reduced likelihood function

for (βx,0, βx,1) can be found as

LR(βx,0, βx,1) = C(TX − (βx,0 +
N − 1

2
βx,1))

−N

N∏
i=1

I(TX [i] ≥ βx,0 + (i− 1)βx,1).(5.1)
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Since the inequality TX > βx,0 + (N − 1)βx,1/2 always holds, finding the maximum

of (5.1) is equivalent to finding the maximum of (4.1). In other words, to find the

JML-estimator when λx is unknown, the same objective function f = βx,0 + (N −
1)βx,1/2, should be maximized over the same region S.

In summary whether λx is known or not, the JML-estimator is the same for both

situations.

B. Application of Gibbs Sampling

To obtain the Gibbs Sampler for the case with unknown noise parameter, we will

again use the likelihood function given in (4.1). However, this time, we will treat λx

as a third parameter to be estimated. Then the procedure for applying the Gibbs

Sampler becomes

• Draw λ
(k+1)
x from ∝ λN

x e−λxN(TX−(β
(k)
x,0+N−1

2
β

(k)
x,1))

• Draw β
(k+1)
x,0 from ∝ eλ

(k+1)
x Nβx,0I(βx,0 ≤ mini(TX [i]− (i− 1)β

(k)
x,1))

• Draw β
(k+1)
x,1 from ∝ eλ

(k+1)
x

N(N−1)
2

βx,1I(βx,1 ≤ mini(
TX [i]−β

(k+1)
x,0

i−1
)).

To implement these iterative steps, for λ
(k+1)
x , we will draw a sample from a Gamma

distribution with parameters (N +1) and (TX−(β
(k)
x,0 +β

(k)
x,1(N−1)/2))−1). (Note that

both of these parameters are guaranteed to be positive-valued, so they do not violate

the requirements of the Gamma distribution.) For β
(k+1)
x,0 , we will draw a sample

from an exponential distribution with parameter λ
(k+1)
x N , multiply it with -1 and

add mini(TX [i]− (i− 1)β
(k)
x,1) to it. The procedure for β

(k+1)
x,1 will be similar. We will

draw a sample from an exponential distribution with parameter λ
(k+1)
x N(N − 1)/2,

multiply it with -1 and add mini((TX [i]− β
(k+1)
x,0 )/(i− 1)) to it.
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C. Discussions and Simulations

In the previous chapter, the value of λx was assumed known to the transmitter and it

was used in the application of Gibbs sampling. When this parameter is unknown, the

transmitter should also estimate it in the Gibbs Sampler, while the JML-estimator

does not need to know the value of λx. Estimating an additional parameter will

cause performance degradation in the Gibbs Sampler. The question is whether the

performance loss will be significant or negligible.

The simulation result is shown in Figure 16, where the MSE of the Gibbs

Samplers and the JML-estimator for offset estimation are depicted, with βx,0 = 1,

βx,1 = 0.01 and λx = 103. The figure shows the MSE result of the Gibbs Sampler

from the previous section (Figure 10), which is labeled as GIBBS-old, and the Gibbs

Sampler when λx is unknown, which is labeled as GIBBS-new.

Figure 16 shows that when the total number of synchronization signals broad-

casted by the transmitter is smaller than 12, the performance loss in the Gibbs Sam-

pler is noticeable. However, when the total number of synchronization signals is 12 or

more, the performance loss is vanishingly small. It is also remarkable that the Gibbs

Sampler is superior compared to the JML-estimator even if λx is unknown.
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Fig. 16. MSE performances of the offset estimators (with unknown λx). The estimators

are β̂(x,0),JML and β̂(x,0),GIBBS. The parameters are set as λx = 103, βx,0 = 1

and βx,1 = 0.01.
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CHAPTER VI

JOINT SYNCHRONIZATION OF CLOCK PHASE OFFSET, SKEW AND DRIFT

In this section, we finally consider the complete problem of the thesis that is the joint

synchronization of clock phase offset, skew and drift. In Chapter IV, we considered

the joint maximum likelihood approach and Gibbs sampling for estimation of clock

skew and offset assuming that the relative drift is zero. We saw that finding the JML-

estimator is not easy at all. It will probably be even more difficult when we introduce

one more parameter (drift) to the problem. For this reason, in this chapter we want

to apply only the Gibbs sampling procedure to the problem. In the first section of

this chapter, the Gibbs Sampler will be adopted for the problem. The second section

presents the related simulation results.

A. Application of Gibbs Sampling

To obtain the Gibbs Sampler, we first need a new likelihood function, since (4.1)

does not include βx,2. By using the model described by (2.12), we can express the

likelihood function for (βx,0, βx,1, βx,2) as

L = CeλxN((βx,0+N−1
2

βx,1+
(N−1)(2N−1)

6
βx,2))

N∏
i=1

I(TX [i] ≥ βx,0 + (i− 1)βx,1 + (i− 1)2βx,2).

(6.1)

Using the likelihood function from (6.1), the procedure for Gibbs sampling for

estimating (βx,0, βx,1, βx,2) becomes

• Draw β
(k+1)
x,0 from ∝ eλxNβx,0I(βx,0 ≤ mini(TX [i]− (i− 1)β

(k)
x,1 − (i− 1)2β

(k)
x,2))

• Draw β
(k+1)
x,1 from ∝ eλx

N(N−1)
2

βx,1I(βx,1 ≤ mini(
TX [i]−β

(k+1)
x,0 −(i−1)2β

(k)
x,2

i−1
))

• Draw β
(k+1)
x,2 from ∝ eλx

N(N−1)(2N−1)
6

βx,2I(βx,2 ≤ mini(
TX [i]−β

(k+1)
x,0 −(i−1)β

(k+1)
x,1

(i−1)2
)).
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For all three steps, we can use simple exponential distributions as it was done in the

previous chapters. At the end, we can use the mean of samples from parameter space

as the estimator for a specific parameter.

B. Simulations

In this section, we will check whether the Gibbs Sampler still preserves its superiority

over the conventional BLUE or not. The BLUE will still have the same form, which

is [β̂(x,0),BLUE, β̂(x,2),BLUE, β̂(x,2),BLUE]> = (A>A)−1A>TX − [1/λx, 0, 0]>.

Simulation results are shown in Figures 17, 18 and 19, where the parameters are

set as βx,0 = 1, βx,1 = 0.1, βx,2 = 0.01 and λx = 10. These figures illustrate the MSE

of drift, skew and offset estimators, respectively. For all three parameters, the Gibbs

Sampler has still much better performance compared to the BLUE.
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Fig. 17. MSE performances of the drift estimators (with unknown drift). The esti-

mators are β̂(x,2),BLUE, and β̂(x,2),GIBBS. The parameters are set as βx,0 = 1,

βx,1 = 0.1 and βx,2 = 0.01.
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Fig. 18. MSE performances of the skew estimators (with unknown drift). The esti-

mators are β̂(x,1),BLUE, and β̂(x,1),GIBBS. The parameters are set as βx,0 = 1,

βx,1 = 0.1 and βx,2 = 0.01.
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Fig. 19. MSE performances of the offset estimators (with unknown drift). The esti-

mators are β̂(x,0),BLUE, and β̂(x,0),GIBBS. The parameters are set as βx,0 = 1,

βx,1 = 0.1 and βx,2 = 0.01.
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CHAPTER VII

SUMMARY

A. Conclusions

The contributions of this work can be summed up as follows:

• Under the exponential noise model, we have shown that the maximum of the

likelihood function in (4.1) is achieved on the boundary of the domain S. We

have also discussed two different methods to find this point, i.e., the JML-

estimator.

• The setting was convenient to apply the Gibbs sampling procedure which showed

better performance compared to the JML-estimator. Lower and upper-bounds

for the performance of the JML-estimator and the Gibbs Sampler were also

presented in terms of the MSE-performances of the UMVU estimator and the

BLUE, respectively.

• We have also shown by simulations that the MSE performances of the JML-

estimator and the Gibbs Sampler are proportional to 1/N2 and 1/N4 for the

phase offset and skew estimations, respectively. Since the MSE performances

of the BLUE for the phase offset and skew are proportional to 1/N and 1/N3,

the Gibbs Sampler provides significant improvement over the BLUE.

• We also showed that unknown noise parameter does not change the performance

of the JML-estimator, while it degrades the performance of the Gibbs Sampler

slightly, only when the number of synchronization signals is smaller than 12.

• Finally, we extended the Gibbs Sampler for estimating the relative drift and

showed that the Gibbs Sampler is adequate for high dimensional parameter
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estimations, and is still superior compared to the conventional BLUE.

In summary, we tried to show that by applying powerful statistical signal pro-

cessing tools, we can obtain significant performance gains in RBS protocol.

B. Future Research Work

We believe that the following problems might be worth to investigate.

• Exponential distribution has only one free parameter. In some situations, we

might need more general distributions to capture the network delays. Gamma

distribution might be a better candidate since it has two free parameters. We

believe that the form of the likelihood function in that case will be much more

complex for mathematical analysis. The Gibbs Sampler will most probably help

a lot towards the solution of this problem as well.

• Although we have assumed that we do not have any prior information regarding

the clock parameters, if we can find a good probabilistic model for the long-term

stability properties of the clock parameters, this model can be used to establish

a prior distribution for the clock parameters. Then the Gibbs Sampler can be

adopted for Bayesian estimation.

• We have also assumed that the transmission of synchronization signals is peri-

odic. However, by relaxing this assumption, the optimal scheme for transmission

times of synchronization signals can be obtained.

• This work considered only local time-synchronization. Extension to global syn-

chronization, using the distributive particle-filtering technique, which is a dy-

namic MCMC technique, might be possible.
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APPENDIX A

PERFORMANCE LOSS DUE TO PROCESSING OF DATA BEFORE

ESTIMATION

In this appendix, we will discuss what we might lose if we apply the transforma-

tion TY−TX before estimating the relative clock parameters, under exponential noise

model of (2.12) and (2.13). We will look at the case where only the relative offset

(β0) is unknown. When the noise is normal, the transformation does not effect the

optimality of the estimator. On the other hand, it degrades the performance severely

in exponential noise. From [20] (although it was shown for sender-to-sender systems,

the same basic idea applies here as well), the MLE is given by

β̂0 = TY (1)− TX(1), (A.1)

where the brackets around the index (.) indicate the mth sample after ordering the

data (order statistics, i.e., TX(1) < TX(2) < ... < TX(N)) [24]. For the order statistics

of an i.i.d. exponential sample set, it is well known that, E[TX(i)] = µi/λx + βx,0

and V ar(TX(i)) = σ2
i /λ

2
x, where µi =

∑N
j=N−i+1 1/j and σ2

i =
∑N

j=N−i+1 1/j2 [21]

and [24]. Therefore, mse(β̂0) of equation (A.1) is 2(λ2
x + λ2

y)/N
2λ2

xλ
2
y.

When we, on the other hand, apply the transformation first, then the transmitter

will have

TZ [i] = TY [i]− TX [i] = β0 + wλx,λy [i], (A.2)

where wλx,λy [i] stands for a skewed (asymmetric) Laplace distribution that is fw(w) =

(λyλx/(λy + λx))(e
−λy |w|u(w) + e−λx|w|u(−w)). Then the likelihood function for β0

becomes

L(β0) = f(TZ|λx, λy, β0) = (
λxλy

λx + λy

)N

N∏
i=1

e−λi|TZ [i]−β0|, (A.3)
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where λi = λy if β0 < TZ [i] and λi = λx otherwise. We can find the point which max-

imizes L(β0) as follows: First order the N observations. Since L(β0) is a combination

of decaying-exponentials, it is enough to consider the points, TZ(i), only. Then the

question is

L(TZ(k))
TZ(k)

≷
TZ(k+1)

L(TZ(k + 1)).

That is we need to find k such that L(TZ(k)) is maximized. By following these steps,

L(TZ(k))

L(TZ(k + 1))
=

e−(N−k)λy

e−kλx
= ekλx−(N−k)λy

kλx − (N − k)λy

TZ(k)

≷
TZ(k+1)

0 ⇒ k(λy + λx)
TZ(k)

≷
TZ(k+1)

Nλy

⇒ k(1 +
λx

λy

)
TZ(k)

≷
TZ(k+1)

N ⇒ k
TZ(k)

≷
TZ(k+1)

N

1 + λx/λy

k = d N

1 + λx

λy

e, (A.4)

the maximum for the maximum likelihood function is found as,

β̂0 = TZ(d N

1 + λx

λy

e). (A.5)

Furthermore, mse(β̂0) of equation (A.5) can be shown to be ∼ C/N , using some

results from [19] and [45]. Recall that it was ∼ C/N2 without applying the transfor-

mation first.

Thus, it is clear that when the transformation is applied to the data coming from

nodes X and Y , before estimating the relative clock parameters, under exponential

noise, the performance is degraded severely.
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APPENDIX B

DEFINITIONS AND THEOREMS FROM STATISTICAL ANALYSIS

The very first step in statistical analysis is to summarize the data. There are

many different ways of doing it, such as moment summaries, percentiles and sufficient

statistics.

Definition B.1. (Sufficient Statistics) A statistics T (z) is sufficient for φ (z ∼ F (.|φ))

if p(z|T (z)) does not depend on φ.

There are different techniques to find appropriate sufficient statistics for a pa-

rameter and one of them is to use the following theorem.

Factorization Theorem. T (z) is sufficient for φ iff f(z|φ) = g(T (z)|φ)h(z), for all

z and φ, with f(z|φ) being the joint pdf of z.

Definition B.2. (Completeness) A statistics T (z) is complete if E[g(T (z))] = 0 for

all φ, implies P (g(T (z) = 0)) = 1.

If a sufficient statistics is also complete, it seems to be the most successful one,

in summarizing data, as the next theorem suggests.

Lehmann-Scheffe Theorem. If T (z) is a complete sufficient statistics for φ, and

h(z) is an unbiased estimator for f(φ), then E[h(z)|T (z)] is the UMVU estimator for

f(φ).
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