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ABSTRACT

Multi-Input Multi-Output (MIMO) Detection by a Colony of Ants. (August 2006)

Dana N. Jaber, B.E., Beirut Arab University, Beirut, Lebanon

Chair of Advisory Committee: Dr. Costas N. Georghiades

The traditional mobile radio channel has always suffered from the detrimental effects

of multipath fading. The use of multiple antennae at both ends of the wireless channel

has proven to be very effective in combatting fading and enhancing the channel’s spectral

efficiency. To exploit the benefits offered by Multi-Input Multi-Output (MIMO) systems,

both the transmitter and the receiver have to be optimally designed. In this thesis, we

are concerned with the problem of receiver design for MIMO systems in a spatial multi-

plexing scheme. The MIMO detection problem is an NP -hard combinatorial optimization

problem. Solving this problem to optimality requires an exponential search over the space

of all possible transmitted symbols in order to find the closest point in a Euclidean sense

to the received symbols; a procedure that is infeasible for large systems. We introduce a

new heuristic algorithm for the detection of a MIMO wireless system based on the Ant

Colony Optimization (ACO) metaheuristic. The new algorithm, AntMIMO, has a simple

architecture and achieves near maximum likelihood performance in polynomial time.
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CHAPTER I

INTRODUCTION

Recent trends in wireless mobile communications reflect an increasing demand for wireless

multimedia services as well as an increasing number of subscribers. Since current air inter-

faces are incapable of supporting the required high data rates and high quality of service

typically associated with broadband services, system designers have been looking into new

techniques that would improve average and peak bit rates, latency, service coverage, and

most importantly, spectral efficiency and system capacity. One of the most promising

techniques is the use of multiple antennae at both the transmitting and receiving sides of

the radio channel.

A. Motivation

The study of Multi-Input Multi-Output wireless systems has been an active research area

for the past decade. Information theoretic results as well as computer simulations demon-

strate the advantages of using multiple antennae systems as opposed to the single antenna

system scenario. Great benefits can be achieved in terms of improved data rates and

enhanced link reliability.

Traditionally, transmission over a wireless medium has always faced a number of

obstacles such as path loss and interference from nearby users, but the performance of the

radio channel has been mainly governed by fading [1], a phenomenon where the received

signal exhibits fluctuations in the signal level due to the presence of scatterers between the

transmitter and the receiver . When a channel experiences a deep fade, data is lost and

the channel is rendered temporarily useless. The use of multiple antennae helps mitigate

The journal model is IEEE Transactions on Automatic Control.
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the impairing effects of fading; in fact, the MIMO model exploits the very presence of

the rich scattering environment to provide diversity and improve the performance of the

wireless channel.

To harness the potential diversity and multiplexing gains of the multiple antennae

system, the transmitter and the receiver should be optimally designed. For the rest of this

work, we will concentrate on receiver design for the spatial multiplexing scheme, where we

have t different uncoded data symbols transmitted from t antennae during a single use of

a wireless channel employing t transmit and r receive antennae.

B. System Model

The general scheme of data transmission in a MIMO wireless communication system with

t transmit and r receive antennae is illustrated in Fig. 1.

Fading

channel

x1

x2

xt

i/p bit

stream
TX RX

o/p bit

stream

y1

y2

yr

n1

n2

nr

h1,1

hr,1
h2,t

Fig. 1. Schematic representation of a MIMO system.

The information source generates a sequence of input data bits; the transmitter mod-

ulates these bits and sends the appropriate continuous-time waveform through the fading

channel. The receiver attempts to recover the corrupted transmitted signal and decide

upon the data bits that have been sent. For the rest of this work, we assume that the
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channel is experiencing independent Rayleigh flat fading; that is, there is no interfer-

ence between symbols transmitted at different time intervals, the antennae are placed far

enough (typically more than λ\2) so that individual channels hij experience independent

fading, and that there is no line of sight between the transmitting and receiving antennae.

We also assume that the channel matrix H̃ is perfectly known to the receiver (H̃ can be

estimated by means of sending known training symbols [2, 3] ).

Mathematically, a complex baseband MIMO system is represented by the linear

model:

ỹ = H̃x̃ + ñ (1.1)

where

• ỹ is an r × 1 complex received vector.

• H̃ is an r × t complex matrix representing the Rayleigh flat fading channel. Each

entry h̃ij represents the complex path gain between the jth transmit and ith receive

antenna. Assuming the presence of a rich scattering environment, the columns of

H̃ are independent and entries h̃ij are modeled as independent zero mean complex

Gaussian random variables with unit variance.

• x̃ is a t× 1 complex transmitted vector whose elements are drawn from an M -QAM

constellation.

• ñ is an r × 1 complex noise vector whose components ñi are modeled as zero mean

independent complex Gaussian random variables with variance σ2 per real dimen-

sion.

Note that a complex vector ũ and a complex matrix M̃ can be transformed into their

real equivalent counterparts u and M according to :

u = [<(ũ)T=(ũ)T ] (1.2)
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and

A =







<(Ã)T =(Ã)T

−=(Ã)T <(Ã)T






(1.3)

Using appropriate scaling of the transmit vector x and the noise vector n and the vector

and matrix transformations of (1.2, 1.3), we replace the system model of (1.1) by its

real-valued equivalent model,

y = Hx + n (1.4)

In this model, the transmit vector x, of dimension 2t × 1, belongs to the set Z
2t√

M
, with

Z√
M = {0, . . . ,

√
M − 1} denoting the set of integers residues modulo

√
M .

C. Thesis Outline

In Chapter II, we summarize the information theoretic results on the capacity of MIMO

systems and present some of the architectures that require the use of multiple antennae in

a wireless scenario. Chapter III is concerned with the MIMO detection problem; we for-

mally introduce Maximum-Likelihood (ML) detection for MIMO channels as an NP -hard

problem. We survey some of the most popular techniques that have been suggested in the

literature to approximate the behavior of the ML detector; we discuss the performance and

complexity of such algorithms so that they can be compared to our proposed algorithm,

AntMIMO.

In Chapter IV, we introduce the Ant Colony Optimization (ACO) metaheuristic,

an algorithmic paradigm that was used to design the AntMIMO algorithm. The ACO

metaheuristic, inspired by the behavior of real colonies of ants, is capable of solving hard

combinatorial optimization problems. Chapter IV discusses the different elements of the

metaheuristic and surveys some of the most famous ACO algorithms.

Chapter V presents the main contribution of this thesis. We describe in detail the

AntMIMO algorithm; we show, using Monte Carlo simulations, that when used for the de-
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tection of MIMO systems, AntMIMO approximates the maximum-likelihood performance

with polynomial complexity.

Chapter VI summarizes the conclusions from this work and discusses areas of future

research.
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CHAPTER II

OVERVIEW OF MIMO SYSTEMS

This chapter presents a brief overview of the research that has been conducted in the area

of multi-input multi-output (MIMO) wireless systems. In Section 2.1, we summarize some

of the information theoretic results on MIMO capacity [4, 5]. These results demonstrate

the significant potential gains in channel capacity that can be achieved when using multiple

antennae systems. To capitalize these gains, researchers have developed some practical

techniques and signal processing algorithms suitable for multi-input multi-output wireless

scenarios. In Section 2.2, we describe the BLAST system [5, 6] that has been proposed

to achieve high data rate wireless transmission, and in Section 2.3, we discuss space-

time coding techniques, particularly space time block codes, that aim at increasing the

reliability of transmission over a wireless channel.

A. Capacity of MIMO Systems

Channel capacity is the maximum data rate that a channel can support with an arbitrarily

low probability of error. It is also defined as the maximum mutual information between

vectors x̃ and ỹ, where the maximization is taken over all possible probability distributions

of the random vector x̃ [7]. Based on the system model described in Section 1.2 where the

channel matrix H̃ is random, the information rate associated with the MIMO channel is

also random. Thus, we will discuss two notions of capacity: Ergodic Capacity and Outage

Capacity. We would like to point out that, in the following, we will present only those

results pertaining to a single user MIMO system under the assumptions made in Section

1.2.
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1. Ergodic Capacity

The ergodic capacity of a MIMO channel is the ensemble average of the information rate

over the distribution of the elements of the channel matrix H̃ [8]. When the channel is

known to the receiver but not to the transmitter, the ergodic capacity is given by [4, 5]

C = EH̃

[

log2 det(Ir +
ρ

t
H̃H̃H)

]

bps/Hz (2.1)

where H̃H is the transpose-conjugate of H̃ and ρ is the SNR at any receive antenna; it is

assumed that the transmitted signal vector x̃ is composed of t statistically independent

equal power components each with a gaussian distribution.

To gain some insight on the significance of the above result, (3) can be rewritten as

[4]

C =
m

∑

i=1

E
[

log2(1 +
ρ

t
λi)

]

bps/Hz (2.2)

where m = min (t, r) and λ1 ... λm are the eigenvalues of the matrix H̃H̃H. Here, the

capacity of the MIMO channel is expressed as the sum of the capacities of m parallel

SISO channels (CSISO = log2(1+ρ|h|2) bps/Hz), each having power gain λi and signal-to-

noise ratio equal to ρ. Fig. 2 shows the significant gains in capacity when using multiple

antennae as opposed to single antenna systems.

Furthermore, it can be shown that when both t and r increase, the capacity grows

linearly with min (t, r). On the other hand, if t is fixed and r is allowed to increase,

the capacity increases logarithmically with r; whereas if r is fixed and t is increased, the

capacity saturates at some fixed value. Fig. 3 illustrates these asymptotic behaviors.

So far we have assumed that the channel state information is known only at the

receiver. Another possible scenario is that the channel state information is known at both

the transmitter and the receiver; this assumes the presence of an ideal feedback link from
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Fig. 2. Ergodic capacity of a MIMO system with CSIR and no CSIT.

the receiver to the transmitter and a very slowly fading channel for this assumption to

be feasible in practice. With this knowledge of the channel, the total transmitted power

can now be allocated in the most efficient way over the different transmitting antennae

to achieve the highest possible bit rate; this is done using the water-filling algorithm [7].

The ergodic capacity is then given by

C = E
[

t
∑

i=1

(log2(νλi))
+

]

bps/Hz (2.3)

where λi is the ith eigenvalue of H̃H̃
H

and the parameter ν is chosen such that it satis-

fies the instantaneous power constraint Pt =
∑t

i=1
(ν − 1

λi
)+ . The notation a+ denotes

max (0, a). We expect the ergodic capacity when the channel is known to the transmitter

to be higher than when the channel is unknown. This is illustrated in Fig.4; we notice
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Fig. 3. Asymptotic behavior of the ergodic capacity of a MIMO system.

that the water filling capacity is indeed higher, yet at high SNR the gap between the two

curves is reduced.

2. Outage Capacity

Since in a Rayleigh fading environment the channel matrix H̃ changes randomly, the

capacity is also random. One way to express the capacity of such a channel is the ergodic

expression of (2.2). However, suppose that a “bad” realization of H̃ occurs, then no matter

how small the rate that we attempt to communicate at, there is a non-zero probability

that this realized H̃ is incapable of supporting this rate no matter how long we take our

code length. For such a scenario, we introduce the concept of outage probability q, which

is the fraction of time the capacity falls below a given threshold Coutage and is given by
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Fig. 4. Ergodic capacity of a 4× 4 MIMO system with and without water filling.

q = Pr{C ≤ Coutage} (2.4)

where C is the instantaneous capacity given by C = log2 det(Ir + ρ
t
H̃H̃H). A capacity of

20 bps/Hz with 1% outage probability means that a data rate of 20bps/Hz is supportable

for 99% of the time. As in the case of ergodic capacity, the outage capacity increases with

SNR and is higher for larger antennae configurations. For this definition of capacity, we

are usually interested in the Complementary Cumulative Distribution Function (CCDF)

plots of the capacity. The capacity CCDFs as a function of SNR are shown in Fig. 5,

where a SISO and a 4 × 4 MIMO system are depicted for comparison. We see that at

a 10% outage probability level, we have a significant increase in capacity for every 2 dB

increase in SNR whereas for the SISO case, the increase is not even visible at low SNRs
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and is only a fraction of a bit at high SNRs.
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Fig. 5. Complementary Cumulative Distribution Function (CCDF) plot of the outage ca-

pacity of MIMO systems.

B. The BLAST System

The information theoretical results from the preceding section indicate the enormous in-

crease in capacity when employing multiple antennae at both ends of the radio channel.

Realizing such a potential gain, researchers at Bell-Labs developed the first MIMO archi-

tecture for high-speed wireless communications, the Bell-Labs Layered Space Time a.k.a

BLAST system. In a BLAST system, the input data stream is demultiplexed into t sub-

streams; independent bit-to-symbol mapping of each substream is performed at each of

the t transmit antennae. The generated continuous-time waveforms are then simultane-
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ously launched into the wireless channel overlapping in time and frequency. The signals

are received by the r receive antennae as shown in Fig. 6 and signal processing at the

receiver attempts to unmix the received signals and recover the transmitted data. Mea-

surement campaigns of the BLAST system showed the great increase in spectral efficiency

at reasonable SNR and BER vs. a SISO system [9]. Several variants of the original Blast

system have been developed with various detection techniques [9]; these techniques will

be covered in Chapter II.

BLAST

Signal

Processing

Fading

channel
S/P

converter

y1

y2

yr

n1

n2

nr

x1

x2

xt

i/p bit

stream

o/p bit

stream

Fig. 6. Schematic representation of the BLAST system.

C. Space-Time Codes

Earlier, we have suggested the use of multiple antennae as an effective means to combat

fading. This is feasible through the concept of diversity. Diversity provides redundant

replicas of the transmitted message such that if this message has a probability p of being

received erroneously, this probability becomes pd when using a system with diversity order

d. The three main forms of diversity typically used in wireless systems are: temporal

diversity, frequency diversity, and spatial (antenna) diversity. In MIMO systems, we are

interested in a combined spatial-temporal diversity, often known as transmit diversity. A
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t× r MIMO system offers a tr -diversity gain i.e tr possible means of getting the message

across the channel correctly.

In order to achieve this diversity gain, Space-Time Codes (STC) are typically used.

Space-time codes introduce redundancy across space and time by spreading the infor-

mation message across the multiple transmit antennae achieving spatial diversity and

over multiple signaling intervals achieving temporal diversity. The amount of redundancy

introduced by a space-time code is quantified by its rate, and the effectiveness of the re-

dundancy is quantified by the diversity order. There are two main types of STCs, namely

Space-Time Block Codes (STBC)and Space-Time Trellis Codes (STTC).

1. Space-Time Block Codes

As its name suggests, the space-time block encoder operates on a block of input symbols

producing a code matrix. We will illustrate this encoding operation by discussing the

pioneering Alamouti scheme [10], which is one of the simplest and most elegant space-

time codes. As shown in Fig. 7, the information bits are first modulated according to

i/p bits
Modulator

 ST Encoder t1

t2

[s1      s2 ]
s1       s2

-s2*       s1*

Fig. 7. Schematic representation of the Alamouti space-time encoder.

some M -ary modulation scheme. The encoder takes a block of two modulated symbols,
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s1 and s2, and produces the corresponding code matrix S

[s1 s2]→ S =







s1 s2

−s∗2 s∗1






(2.5)

The rows of S represent transmission over space and its columns represent transmission

over time; thus, in the first signalling interval, s1 is transmitted from transmit antenna

1 and s2 is transmitted from transmit antenna 2; in the next signalling interval, −s∗2 is

transmitted from antenna 1 and s∗1 from antenna 2. A close examination shows that matrix

S is orthogonal; this results in a diversity gain of order 2r for a 2× r MIMO system with

Alamouti encoding. Moreover, the orthogonality of the code matrix greatly simplifies the

decoder design on the receiving end of the channel; Maximum-Likelihood performance is

obtained with linear complexity. The simplicity and efficiency of the Alamouti scheme

inspired its generalization to more than two transmit antennae; the new codes, referred

to in the literature as space-time block codes, maintain the orthogonality property of the

code matrix thus achieving full diversity with a very simple decoding scheme [11].

2. Space-Time Trellis Codes

Space-time block codes do not generally provide coding gain, unless concatenated with an

outer code. Space-time trellis codes, on the other hand, provide coding gain that depends

on the complexity of the code, in addition to providing diversity gain. STTCs were first

introduced by Tarokh, Seshadri, and Calderbank in 1998 [12]; they are an extension of

trellis coded modulation. A STTC encoder maps binary data into modulation symbols

according to a trellis diagram, then spreads the coded symbols over space and time as

in STBCs. Their disadvantage is that they are extremely hard to design and generally

require high complexity encoders and decoders; STTCs decoding is usually implemented

using a Viterbi algorithm whose complexity grows exponentially with the number of states
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in the trellis [12].
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CHAPTER III

MIMO RECEIVER DESIGN

In the previous chapter, we have shown how the use of multiple antennae can greatly

increase the spectral efficiency and/or the reliability of a mobile radio channel without

increasing system bandwidth or transmission power. Yet, the design of commercially

feasible MIMO systems is not as simple as adding the extra antennae or choosing the

right modulation and coding schemes. The catch lies in designing simple and efficient

receivers that can harness the benefits of the MIMO architecture without draining the

mobile receiver’s battery power or taking a long time to decode the transmitted symbols.

In this chapter, we will introduce the Maximum-Likelihood detection problem and we

will review some of the detection architectures that have been associated with MIMO

systems in the uncoded spatial multiplexing context and comment on their complexity

and performance as opposed to the optimum Maximum-Likelihood detector.

A. The Maximum-Likelihood Detector

The optimum receiver that is capable of detecting the transmitted data vector x while min-

imizing the probability of making an erroneous decision, assuming equally likely uncoded

transmit symbols, is the Maximum-Likelihood (ML) detector [13]. When the system model

is given by y = Hx + n, the ML detector maximizes the likelihood that y was received

given that x was sent,

max
x∈Z

2t
√

M

py/x(y/x) (3.1)

which, in the presence of AWGN, is equivalent to solving the following non-linear opti-

mization problem:
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min
x∈Z

2t
√

M

||y −Hx||2 (3.2)

The optimization is performed over the space of all possible vectors x. Since the

search space is discrete with x having integer components, this problem is posed in the

literature as an integer least-squares optimization problem [14], and it belongs to the class

of nondeterministic polynomial-time hard, NP -hard, combinatorial optimization problems

[15, 16].

A combinatorial optimization (CO) problem involves finding values for discrete vari-

ables such that the optimal solution with respect to a given objective function is found

[17]. A straight forward approach to the solution of a CO problem would be exhaustive

search, i.e. the enumeration of all possible solutions and choosing the one that minimizes

the objective function. A naive implementation of this search strategy results in a pro-

hibitive complexity, as the number of candidate solutions increases exponentially with the

problem size. For a t×r MIMO system with symbols x̃ drawn from M -QAM constellation,

the search space of size M t grows exponentially with t.

Two classes of algorithms are available for the solution of combinatorial optimiza-

tion problems: exact and approximate algorithms. Exact algorithms are guaranteed to

find the optimal solution and to prove its optimality for every finite size instance of a

combinatorial optimization problem within an instance-dependent run time; however, for

NP -hard problems, exact algorithms have an exponential worst-case complexity, and they

generally suffer from a strong rise in computation time when the problem size increases.

Approximate algorithms, on the other hand, trade optimality for efficiency; they exploit

some problem-specific knowledge to produce very good solutions at relatively low compu-

tational cost without being able to guarantee the optimality of the produced solutions.

In the following, we will briefly review some of the exact and approximate algorithms

that have been used to solve the MIMO detection problem.
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B. The Sphere Decoder

In the last decade, the sphere decoding (SD) algorithm of Fincke and Pohst [18] has

been introduced as an exact algorithm [19, 20] for the MIMO detection problem with

ML-performance, Fig. 8.
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Fig. 8. Performance of the SD algorithm for a 4-QAM 2*2 MIMO system.

The transmitted data vectors are interpreted as points on a t-dimensional integer-

grid rectangular lattice. The MIMO channel matrix H is considered a lattice-generating

matrix and the r-dimensional vector Hx spans a skewed lattice. Therefore, given the

skewed lattice Hx and the received vector y, the ML problem reduces to finding the

“closest” lattice point in a Euclidean sense to y. The main idea behind sphere decoding is

to search over only those lattice points that lie within a hypersphere of radius R around

the received vector y , rather than searching over the entire lattice, as illustrated in Fig.
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9.

y
R

Fig. 9. Geometric representation of the sphere decoding algorithm.

Clearly, the point in the hypersphere closest to y is also the closest lattice point for

the whole lattice. Different variations of the SD algorithm address the issues of selecting

the radius R and determining which lattice points lie inside the sphere. These two issues

can dramatically improve or degrade the complexity of the algorithm.

The Sphere Decoder algorithm belongs to the family of Branch and Bound tree search

algorithms [20]. Performing a QR factorization of the channel matrix H exposes the

inherent tree structure of the problem; thus, replacing H by the product of the unitary

matrix Q and the upper triangular matrix R in (5.2) and multiplying the whole expression

by QT yields the following equivalent problem:

min
x∈Mn

||y′ −Rx||2 (3.3)

where y′ = QTy. Due to the upper triangular nature of R, the objective function of (3.3)

can be rewritten in the SD algorithm’s context as

n
∑

j=1

||y′
j −

n
∑

l=j

rj,lxl||2 ≤ C0 (3.4)

where C0 is the squared radius of an n-dimensional sphere centered at y′. A necessary
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condition for a lattice point x to lie inside the sphere is to satisfy the constraints of (3.4)

for every component xj, j = 1 . . . n. Examining these constraints in reverse order from n

to 1 is akin to searching a tree in a depth-first manner till the algorithm reaches a leaf node

that satisfies all of the above constraints, then backtrack in search of more constraints-

satisfying leaf nodes till no more can be found; the algorithm then outputs the lattice

point with the minimum Euclidean distance to y′.

Root

j = 4

j = 3

j = 2

j = 1

0 1

0

01 1

1

1

1

0

Fig. 10. Tree representation of the sphere decoding algorithm.

Fig. 10 shows the tree built by the SD algorithm for a 4-QAM 2× 2 MIMO system;

the nodes not satisfying the radius constraints were pruned from the tree; the only lattice

points that belonged to the sphere, in this particular instance, were x1 = (1,0,1,0) and

x2 = (1,0,0,1).

The original SD algorithm of Fincke and Pohst didn’t specify a mechanism for select-

ing the search radius C0. Vikalo and Hassibi suggested exploiting the noise statistics to

determine C0 [21]. Another version suggested setting C0 initially to infinity till the first

lattice point is found, after which C0 is equated to its Euclidean distance from the received

vector [22]. The SD algorithm has been well studied in the literature; several researchers
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have suggested various techniques (such as lattice basis reductions [20], increasing radii

[23],and pruning by means of lower bounds [24] among others) to speed up the tree search

procedure of the algorithm while maintaining an acceptable performance.

While the worst case complexity of the SD algorithm is still exponential, its expected

complexity has been claimed to be cubic over a certain range of rate, SNR and dimension

[21]. However, recently, Jalden et al derived an exponential lower bound on the average

complexity of the SD; thus, there will always be some problem size where an approximate

polynomial time algorithm is more efficient than the sphere decoder; this is especially true

when using large constellations at low SNR [25].

The rest of the techniques reviewed in this chapter belong to the class of approximate

algorithms.

1. The Zero-forcing Receiver

This receiver solves the integer least-squares problem by removing the discreteness con-

straint on the components of x. In this case, it is well known that the solution of the

problem becomes [14], assuming H is invertible and known to the receiver,

x̂ZF = (HHH)−1HHx = H†x (3.5)

where H† denotes the pseudo-inverse of H and x̂ZF is rounded to the nearest integer in

the constellation from which x is selected. The zero − forcing notation comes from the

fact that this receiver attempts to force the cross correlation between the estimation error

e, e = x̂ZF − x, and the transmit vector x to zero.

The ZF-receiver is a linear receiver in the sense that it behaves as a linear filter,

separating the different data streams to perform independent decoding on each stream,

hence eliminating multistream interference. The problem with this scheme is degraded

performance due to the fact that the AWGN n loses the “whiteness” property, it becomes
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enhanced and correlated across the data streams. Moreover, the ZF-receiver provides only

r−t+1 diversity order out of a maximum possible r order diversity in a t×r MIMO system

[8]. On the bright side, the ZF-receiver has a polynomial complexity; the computational

complexity of the algorithm is determined by the complexity of calculating the pseudo-

inverse of the channel matrix H. For the case when H is an n ∗ n square matrix, the

complexity is of cubic order, O(n3).

2. The Linear MMSE Receiver

This receiver estimates the transmitted vector x by applying the linear transformation G

to the received vector y, such that the mean square error, ε2 =E[||x̂− x||2], is minimized,

thus

x̂MMSE = G y; (3.6)

where

G = (HHH +
1

SNR
It)

−1HH; (3.7)

The LMMSE receiver balances multi-stream interference mitigation and noise en-

hancement by minimizing the total error; it was found to be of superior performance to

the ZF-receiver at low SNR , and it converges to the ZF-receiver at high SNR [26, 27].

The complexity of this receiver is dominated by the matrix inversion in (3.7); it has a

cubic order complexity, O(n3), for an n× n MIMO system.

3. The BLAST Receiver:

The detection algorithm associated with the BLAST architecture is the successive cancel-

lation (SUC) algorithm. Rather than jointly decoding all of the t transmitted symbols,

this nonlinear detector decodes the first transmitted symbol by satisfying the zero forcing

(ZF) or minimum mean squared error (MMSE) performance criterion while treating the
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rest of the data symbols as interference; then it cancels out its contribution to obtain a

reduced order integer least-squares problem with t− 1 unknowns. The process is repeated

until all the symbols are detected. The algorithm is briefly summarized below.

1.Apply the MMSE or ZF criterion to extract the first symbol x1,

z = g̃y;

where g̃ is the first row of H† or G in (3.5) and (3.7). Slice z to the nearest integer

constellation to decode x1.

2.Assuming that the decision on x1 is correct, subtract its contribution from the

received vector y. The reduced signal model becomes,

y−1 = y − h1x1;

where y−1 is the r × 1 received vector with the contribution of x1 removed.

3. Return to step 1, decode x2 and repeat until all the symbols in x have been

decoded.

The computational complexity of SUC is of O(n4) for an n × n MIMO system. In

general, this algorithm performs better than the ZF or MMSE receivers, but it suffers from

error propagation; its performance quickly degrades if that first symbol was incorrectly

decoded. A suggested improvement is the use of ordered successive cancellation (OSUC),

an algorithm associated with the Vertical-BLAST architecture. The main idea behind

OSUC is that rather than selecting the symbols to be decoded in their natural order

as in SUC, the symbols at the beginning of each decoding stage are ordered in terms of

decreasing signal-to-interference noise ratio (SINR), and the symbol with the highest SINR

is selected for decoding. The complexity of OSUC is the same as that of SUC, augmented
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by the cubic complexity of the ordering operation. The computational complexity of

SUC can be further reduced from O(n4) to O(n3) by using the more efficient square-root

algorithms [28, 29].

4. The SDP Receiver

Another approach to solving the integer least-squares problem is via convex relaxation

techniques. In such techniques, the objective function to be minimized and the corre-

sponding constraints are expressed in an equivalent relaxed form to ensure the convexity

of the new problem; the new convexified problem is solved using mathematical program-

ming methods; the produced solution is then discreticized to the nearest constellation

integer to produce x̂.

Recently, Semi-Definite Programming (SDP) techniques have been applied to the

MIMO detection problem with reasonable performance [30, 31]. Semidefinite programming

refers to optimization problems that can be expressed in the form [32]

minimize Tr(CX)

subject to Tr(AiX) = bi for all i = 1, . . . ,m

X � 0

.

where the variable is X ∈ Sn, the space of real symmetric n × n matrices. The vector

b ∈ R
m, and the matrices Ai ∈ Sn and C ∈ Sn are given problem parameters. The

Tr(CX) notation stands for the trace of the matrix CX and the inequality X � 0 means

X is positive semidefinite.

In the MIMO detection context, the integer-least squares problem is either formulated

in a higher dimension and then the nonconvex constraints are relaxed to obtain a SDP or

the semi-definite program can be derived as the Lagrangian bidual, i.e., the dual program

of the dual, of the integer-least squares problem [33]. In [30], the authors convert the
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integer lease-squares problem into a binary quadratic minimization problem using three

different relaxation models that are solvable via an SDP solver. Their approach can achieve

near ML performance for M-QAM constellations with a tolerance ε and complexity in the

order of O(n5.5M5.5 log(1/ε)) for n× n MIMO system.
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CHAPTER IV

INTRODUCTION TO ANT COLONY OPTIMIZATION

In this chapter, we introduce the Ant Colony Optimization (ACO) metaheuristic. We

first give a brief review on heuristics, metaheuristics and the role they play in solving hard

optimization problems. Section 4.2 describes the underlying biological model that inspired

ACO algorithms. In Section 4.3, we formally present the ACO metaheuristic; we describe,

in detail, the Ant System (AS) algorithm to illustrate the underlying mechanics of the

ACO approach, and we survey some of the more recent ACO algorithms and the problems

to which they have been successfully applied. Finally, we discuss some of the aspects

related to the performance of these algorithms, such as convergence and incorporation of

local optimization heuristics.

A. Heuristics and Metaheuristics

We have mentioned earlier that the integer-least squares problem belongs to the class of

NP -hard Combinatorial Optimization (CO) problems. Formally, a CO problem P is a

triple (S, f, Ω), where S is the set of candidate solutions, f is the objective function which

assigns to each candidate solution s ∈ S a cost value f(s) and Ω is a set of constraints.

The solutions belonging to the set S̃ ⊆ S of candidate solutions that satisfy the constraints

Ω are called feasible solutions. To solve a combinatorial optimization problem, we have

to find a globally optimal feasible solution s∗ ∈ S̃ such that f(s∗) ≤ f(s) for all s ∈ S̃ if

P is a minimization problem, otherwise f(s∗) ≥ f(s) for all s ∈ S̃ if P is a maximization

problem. In this thesis, we will focus on minimization problems.

The majority of combinatorial optimization problems of interest are NP −Complete;

i.e there exist no known polynomial time algorithms that can find the optimal solution

to these problems [34]. Heuristics are approximate algorithms used to find good, but not
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necessarily optimal, solutions to hard CO problems in polynomial-time. There are two

main classes of heuristic methods: construction methods and local search methods.

Construction heuristics generate solutions from scratch by iteratively adding solution

components to an initially empty solution until the solution is complete. Although the

order in which to add solution components can be random, typically some kind of heuristic

rule is involved; for example, in greedy construction heuristics, the solution component

with maximum myopic benefit as estimated by a heuristic function is chosen at each

construction step. Construction heuristics are the fastest among approximate algorithms,

yet they often return solutions of inferior quality when compared to the quality of the

solutions returned by local search algorithms. Local search algorithms start from some

initial solution and iteratively try to improve the current solution by searching, within

a pre-specified neighborhood, for better solutions. A neighborhood structure is used to

specify the solutions’ neighborhood.

Definition A.1. A neighborhood structure is a function N : S → 2S that assigns a set of

neighbors N(s) ⊆ S to every s ∈ S. N(s) is called the neighborhood of s.

The choice of an appropriate neighborhood structure greatly affects the performance

of a local search algorithm and is problem specific. A local search algorithm also requires

the definition of a neighborhood examination scheme that determines how a neighborhood

is searched and which neighbor solutions are accepted. In the majority of local search

algorithms, either the best-improvement rule, which returns the neighbor solution giving

the largest improvement to the objective function, or the first-improvement rule, which

accepts the first improved solution found, are employed. The size of the neighborhood

and the type of acceptance rule used determine the complexity of a local search algorithm.

Moreover, the solution returned by a local search algorithm is locally optimum; there is

no guarantee that it can be globally optimum [17].

Definition A.2. A locally optimum solution for a minimization problem (a local mini-
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mum) with respect to a neighborhood structure N is a solution ŝ such that ∀ s ∈ N(ŝ) :

f(ŝ) ≤ f(s). We call ŝ a strictly locally minimal solution if f(ŝ) < f(s) ∀ s ∈ N(ŝ).

The problem with the above mentioned heuristics is that sometimes they can get

trapped in some bad local optima; to increase their effectiveness, an obvious approach

would be to restart the algorithm several times with some arbitrary initial solutions - or

empty solutions if constructive heuristics are used -, retaining the best local optima ob-

tained over the run time of the algorithm; however, this procedure increases the computing

time of the algorithm and there is still no guarantee that we will reach a better solution.

To overcome this obstacle, we now use metaheuristics.

The term metaheuristics was first introduced by Glover in 1986 [35]; it derives from

the composition of two Greek words: meta which means “beyond, in an upper level” and

heuristics which is derived from the verb heuriskein which means “to find”. It is formally

defined as: “ A metaheuristic is a set of concepts that can be used to define heuristic meth-

ods that can be applied to a wide set of different problems. In other words, a metaheuristic

can be seen as a general algorithmic framework which can be applied to different opti-

mization problems with relatively few modifications to make them adapted to a specific

problem” [35]. So, instead of blindingly examining the search space, metaheuristics guide

the underlying heuristics to areas of the search space containing high-quality solutions

according to some mechanism that is metaheuristic specific. Among the most popular

metaheuristics, we mention Simulated Annealing, Tabu Search, Evolutionary Computing

and Genetic Algorithms, and Ant Colony Optimization. For comprehensive overview on

metaheuristics and their applications, please refer to [36, 37]. Several Metaheuristics such

as tabu search and genetic algorithms have been applied to the multiuser detection prob-

lem in Code Division Multiple Access (CDMA) scenarios with competitive performance

[38], yet none, and especially not the ant colony optimization metaheuristic, has been

applied to the MIMO detection problem to our knowledge.
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The rest of this chapter is dedicated to the ant colony optimization metaheuristic.

B. Ants and Natural Optimization

Social insects such as termites, ants, and bees are capable of complex and intelligent

group behavior [39]. This collective behavior is of interest as it emerges from apparently

simple, and often indirect, interactions among members of these insect groups, known

as colonies. These indirect interactions are often mediated by deliberate modifications

of the environment surrounding the colonies, a process known as stigmergy. Ants, in

particular, are dominantly semi-blind - some species are completely blind -, so most of

the communication among ants or between ants and the environment is based on the

use of odorous volatile chemicals, called pheromones, secreted by a gland located in the

ants’ abdomen. Ants are very sensitive to pheromones; they perceive them because of the

receivers located in their antennae. Ants use pheromones for communication in a number

of contexts such as alerting other individuals to a threat, attracting mates, recognizing

individuals from the same colony, marking a colony’s home range, marking trails to food

sources and recruiting other ants to collect food from those sources [40]. The foraging

behavior of ants was of particular interest to researchers who noticed that a colony is able

to choose the shortest path between the nest and a source of food even though individual

ants do not have a global vision of the path [41]. In a controlled experiment, Deneubourg

et al [41] placed a nest of ants of the Argentine ants species I. humilis and a food source

at the opposing ends of a simple maze consisting of two paths, one longer than the other

as illustrated in Fig. 11.

When ants start exploring the space surrounding the nest in search for food, they do

so in a random fashion; thus when an ant reaches a fork in the road, it chooses either one

of the two paths with equal probability, as there is no initial pheromone traces placed on

either paths to alert the ants to favor one over the other, Fig. 12.
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Nest Food

Fig. 11. Experiment setup.

Nest Food

Fig. 12. Foraging behavior of ants at the beginning of the search.

When an ant reaches the food source, it retraces its path back to the nest, depositing

pheromones along the way to alert other ants to the presence of food at the end of the

path. Given the same period of time, an ant using the shorter path will be able to complete

more trips going back and forth between the nest and the food source than an ant using

the longer path; thus a larger amount of pheromones will accumulate on the shorter path.

This increased amount of pheromones will bias the decision of ants when they reach the

fork in the road once again and the shorter path will be chosen with a higher probability,

which means a larger number of ants will traverse the path with the passage of time leading

to an even larger amount of pheromones accumulating on the shorter path. At the end,

almost all of the ants will choose the shorter path, due to this positive feedback process,

Fig. 13.

The ability of ant colonies to naturally solve optimization problems, such as selecting

the shortest path, inspired Dorigo, Maniezzo and Colorni to build the first ACO algo-

rithm mimicking ants’ behavior to solve hard combinatorial optimization problems . This
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Nest Food

Fig. 13. Foraging behavior of ants after some time t has elapsed.

algorithm, known as Ant System [42], was the progenitor to a number of ant-inspired algo-

rithms which were formally grouped within one general framework called the Ant Colony

Optimization metaheuristic [43].

C. Ant Colony Optimization Metaheuristic

In analogy to the biological example, ACO is based on the indirect communication of a

colony of artificial ants mediated by artificial pheromone trails. An ant is a simple com-

putational agent, which probabilistically builds a solution by iteratively adding solution

components to partial solutions by taking into account (i) a priori available heuristic in-

formation on the problem instance being solved and (ii) artificial pheromone trails which

change dynamically at run-time to reflect the ants’ collective search experience [17]. The

pheromone trails and the heuristic information serve as a guide for the ants to concen-

trate their search in regions of the search space containing high quality solutions. Thus,

ACO employs a constructive heuristic where solution components are added stochastically,

rather than deterministically. It also provides a means from escaping local minima by re-

peatedly letting several ants construct solutions and communicate their search experience

by modifying the pheromone trail, which is a dynamic memory structure available to all

ants. The collective behavior emerging from the interaction of different ants proved to be

effective in solving combinatorial optimization problems.
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1. Problem Representation

Following the notation of [17], a CO problem P = (S, f, Ω), in an ACO context, is mapped

on a problem that can be characterized by the following list of items:

• A finite set C = {c1, c2, ..., cN} of components is given.

• The states of the problem are defined in terms of sequences x =< ci, cj, . . . , ch, ... >

of finite length over the elements of C. The set of all possible states is denoted by

χ. The length of a sequence x, that is the number of components in the sequence,

is expressed by |x|. The maximum length of a sequence is bounded by a positive

constant n < +∞.

• The set of candidate solutions S is a subset of χ (i.e., S ⊆ χ).

• The finite set of constraints Ω defines the set of feasible states χ̃, with χ̃ ⊆ χ.

• A non-empty set S∗ of optimal solutions, with S∗ ⊆ χ̃ and S∗ ⊆ S.

• A cost f(s) is associated to each candidate solution s ∈ S.

Given this representation, artificial ants build solutions by moving on the construc-

tion graph G = (C,L) whose vertices are the components C and the set L fully connects

the components C ( elements of L are called connections). The set of constraints Ω are

implemented by the construction policy of the ants as they walk on G. Moreover, either

components ci ∈ C or connections lij ∈ L can have pheromone values τ and heuristic in-

formation η associated with them. These values are used by the ants to make probabilistic

decisions on how to move on the construction graph.

2. The Metaheuristic

Fig. 14 presents the ACO metaheuristic in pseudo-code; all of the ACO algorithms can

be described by the ScheduleActivities construct and its three procedures: Construc-



33

tAntsSolutions, UpdatePheromones,and DaemonActions.

procedure ACOMetaheuristic

ScheduleActivities

ConstructAntsSolutions

UpdatePheromones

DaemonActions % optional

endScheduleActivities

end-procedure

Fig. 14. The ACO metaheuristic in pseudo-code.

ConstructAntsSolutions allows a colony of ants to iteratively build solutions to the

problem by moving through nodes of the construction graph G while applying a stochastic

local decision policy. Moreover, each ant keeps in memory the path it traversed; when

an ant finishes constructing a solution, it evaluates the cost of this solution in order to

determine how much pheromones need to be deposited by the UpdatePheromones procedure

to communicate its search experience to the other ants.

UpdatePheromones is the process responsible for modifying the pheromone trails; the

trail values increase when ants deposit pheromones on the components or connections

they used to build their solutions, but prior to that, trail values are decreased by means of

evaporation. Evaporation plays an important role by regulating the amount of pheromones

present on a certain path, favoring the possibility of exploring other regions of the search

space and preventing the algorithm from converging rapidly to suboptimum solutions.

Recall that ants have a local, rather than global, vision of their environment. So,

sometimes it is beneficial to use the DaemonActions procedure to implement centralized
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actions which cannot be performed by single ants. Such daemon actions may include the

use of a local search algorithm to improve the quality of the ants’ solutions; it may also

include a mechanism to reward/penalize the best/worst solution by either increasing or

decreasing the corresponding pheromone trail values.

Finally, the ScheduleActivities construct does not specify how the three procedures

are scheduled and synchronized; thus the designer has the freedom to specify how these

procedures should interact and to tailor them according to the specific problem to be

solved.

Next, we will see how ACO algorithms, following the ACO metaheuristic outlined

above, work. We will describe the Ant System algorithm and briefly mention some of the

more recent variants.

3. Ant System (AS)

As mentioned before, Ant System was the first example of an ACO algorithm to be

proposed in the literature. It consisted of the procedures ConstructAntsSolutions and Up-

datePheromones; no DaemonActions were employed. Thus, given a combinatorial opti-

mization problem P = (S, f, Ω) with its corresponding construction graph G = (C,L),

AS outputs a feasible solution ŝ ∈ S and ŝ ∈ χ̃. Let sk
p =< cl, ch, . . . , cj > denote the kth

ant’s partially constructed solution as it walks on construction graph G. The algorithm

goes as follows, assuming pheromones, τij, and heuristic information, ηij, are associated

with connections, lij, without loss in generality:
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Algorithm 4.1: Ant System (AS)

input: a CO problem instance P = (S, f, Ω)

Initialize τij and ηij ∀ (i, j)

while termination conditions not met do

for each ant k = 1, . . . ,m do

repeat

choose in probability the next component ci to add to sk
p by means of (4.1)

append the chosen component ci to the kth ant’s k list of visited nodes.

until ant k has completed its solution.

compute the amount of pheromones ∆τ k
ij to be deposited on all connections lij

ant k traversed when building its solution.

end for

update pheromone values τij on all connections lij of G = (C,L) by means of (4.2)

end while

output : ŝ

The probability with which an ant k chooses to add component cj to its partially

constructed solution sk
p =< ch, . . . , ci > is given by the random proportional rule,

pk
ij =























[τij]
α [ηij]

β

∑

l∈Nk
i

[τil]
α [ηil]

β
, if j ∈ Nk

i

0 if j /∈ Nk
i

(4.1)

where α and β are two user-defined parameters that determine the relative influence of

the pheromone value and the heuristic information on the ant’s choice; Nk
i is the feasible

neighborhood of an ant k, that is, the set of allowable components cj that can be added

to sk
p.
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The pheromone update rule used in AS is given by,

τij = (1− ρ)τij +
m

∑

k=1

∆τ k
ij ∀(i, j) ∈ L (4.2)

where ρ ∈ [0,1] is the pheromone evaporation rate and ∆τ k
ij is the amount of pheromones

deposited by ant k on connection lij,

∆τ k
ij =











F (sk) if ant k used lij when constructing sk

0 otherwise
(4.3)

where F : S → R
+ is a function that satisfies f(s) < f(s′) =⇒ F (s) ≥ F (s′),∀ s 6= s′ ∈ S

when P is a minimization problem. F (·) is commonly called the quality function.

4. ACO Variants

Since its introduction in 1992, several researchers have aimed to improve the performance

of Ant System so that it can be applied to a wide range of problems with competitive

results; the improved versions of AS became stand-alone algorithms in their own right.

Among the best performing ACO algorithms, we mention Ant Colony System(ACS) [44],

Max-Min Ant System (MMAS) [45], and ANTS [46].

a. Ant Colony System (ACS)

The ACS algorithm has been introduced by Dorigo and Gambardella to improve the

performance of AS. It differs from AS in three main aspects. First, it uses a more aggressive

probabilistic choice rule, called the pseudo-random proportional rule; thus an ant k chooses

to add its next component cj to sk
p =< ch, . . . , ci >, according to,

cj =











arg maxl∈Nk
i

[τil]
α[ηil]

β if q ≤ q0

Apply AS choice rule of (4.1) otherwise
(4.4)
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where q ∈[0,1] is a uniform random variable and q0 ∈[0,1] is a parameter controlling the

probability with which an ant makes the best possible move exploiting the algorithm’s

knowledge of pheromone values and heuristic information; the algorithm explores the

search space by employing the AS choice rule of (4.1) with probability (1 − q0). The

second main modification is to the UpdatePheromones procedure. In ACS, pheromones

are updated in two stages: a local stage and a global stage. During a construction phase,

after an ant k traverses connection lij, it modifies the associated pheromone value τij

according to,

τij = (1− ζ)τij + ζτ0 (4.5)

where ζ ∈[0,1] is the local pheromone evaporation rule and τ0 is the initial amount of

pheromones deposited on each connection. The use of the local update rule of (4.5) favors

the exploration of yet unvisited nodes while the use of the global update rule of (4.6)

concentrates the search in the neighborhood of the best-so-far found solution, sbs, since

the start of the algorithm.

τij = (1− ρ)τij + ρ∆τ bs
ij ∀ lij traversed while building sbs (4.6)

Finally, ACS is the first ACO algorithm to incorporate a local optimization heuristic

to improve the quality of the ants’ solutions, as well as to use candidate lists to reduce

the number of components to choose from at each step allowing its application to large

problem instances.

b. Max-Min Ant System (MMAS)

MMAS is another extension of AS. The distinguishing characteristic of MMAS is that all

pheromone values are restricted to an interval [τmin, τmax] and the initial pheromone value

τ0 is set to τmax; this prevents the probability to construct a solution to fall below a certain

threshold greater than 0 and favors the exploration of new regions of the search space,
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especially in the earlier stages of the algorithm. Moreover, MMAS employs the global

update rule of (4.6) sometimes substituting the best-so-far solution with the best-iteration

solution or some combination of the two depending on the application. Finally, to avoid

entrapment in local optima, MMAS re-initialize all pheromone values to τmax when little

change in the solutions produced over time is detected.

c. Approximate Nondeterministic Tree Search (ANTS)

ANTS is an ACO algorithm that exploits ideas from mathematical programming. In

particular, ANTS computes lower bounds (upper bounds in the case of maximization

problems) on the cost of completion of a partial solution to define the heuristic information

η that is used by each ant during solution construction. The name ANTS derives from the

fact that the algorithm can be interpreted as an approximate or incomplete probabilistic

tree search with no backtracking mechanism; it was shown that it can be easily extended

to a branch & bound exact algorithm. Apart from the use of lower bound, ANTS also

uses a modified probability choice rule,

pk
ij =























ζτij + (1− ζ)ηij
∑

l∈Nk
i

ζτil + (1− ζ)ηil

if j ∈ Nk
i

0 if j /∈ Nk
i

(4.7)

where ζ ∈[0,1] is a parameter. Another particularity of ANTS is that it has no explicit

pheromone evaporation; the pheromone update rule is given by,

τij = τij +
m

∑

k=1

∆τ k
ij (4.8)

where

∆τ k
ij =











ϑ
(

1− Ck − LB
Lavg − LB

)

∀ lij traversed while building sk

0 otherwise
(4.9)



39

ϑ is a parameter, Ck is the cost of the current solution sk, Lavg is the moving average

of the cost of the last l globally constructed solutions, and LB is a lower bound on the

optimal solution cost. If an ant’s solution is worse than the current moving average, the

pheromone values of the connections used by the ant are decreased; if the ant’s solution

is better, they are increased. Moreover, if Ck = LB, then the algorithm is stopped,since

in this case the optimum solution is found.

ACO algorithms have been successfully applied to hard combinatorial optimization

problems such as the Traveling Salesman Problem (TSP), the Quadratic Assignment Prob-

lem (QAP), and Graph Coloring problem among others. ACO algorithms also exist for

network routing and for solving continuous optimization problems. For a comprehensive

list of ACO applications, please refer to [47].

D. Performance of ACO Algorithms

In this section, we discuss some of the aspects concerning the performance of ACO algo-

rithms.

1. ACO Parameters

In a typical ACO algorithm, the designer is faced with the problem of selecting values for

a relatively large set of parameters such as initial pheromone value τ0, the number of ants

m, and the evaporation factor ρ among others. In most cases, the different parameter

values are tailored according to the application at hand, often by running experiments

and selecting the set of values that produced the best results which is a tedious and time

consuming procedure. In a recent paper [48], the authors used concepts from genetic

algorithms in order to evolve solution parameters during the running time of the ACS

algorithm, but the procedure was computationally expensive. In another approach [49],

mechanisms from ant colony optimization were incorporated within an ACS algorithm to
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tune the different parameters; the algorithm in this instance is solving the optimization

problem at hand in addition to optimizing the parameter set, which further burdens the

algorithm; however, it was found that the use of such a strategy yielded better performing

algorithms, in terms of objective function values, than when using hand tuned parameters.

2. ACO and Local Search

Local search heuristics are used to improve the solutions returned by ACO algorithms; they

can be easily incorporated within the DaemonActions procedure of the ACO metaheuristic.

ACO algorithms were found to be more effective when they are hybridized with local

search heuristics. This is due to the fact that ACO’s solution construction uses a different

neighborhood than local search, so the probability that local search improves a solution

constructed by an ant is quite high.

3. Convergence Proofs

For a basic random search algorithm, it is guaranteed that the optimal solution will be

found, but for metaheuristics such as the ACO metaheuristic, the random search procedure

is biased and convergence is not guaranteed. In the ACO literature, there have been some

convergence proofs that were derived using simplified versions of actual ACO algorithms,

but no general results currently exist. The first of such proofs was proposed by Gutjahr

[50] who proved the convergence in probability of a theoretical ACO variant called Graph

Based Ant System (GBAS) under certain conditions. In [17], the authors distinguish

between convergence in value and convergence in solution: the former refers to the case

when the algorithm outputs the optimal solution at least once while the latter refers to

the case when the algorithm outputs the optimal solution over and over. Asymptotic

convergence in value was proved for the ACS and MMAS algorithms.
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CHAPTER V

SOLVING THE MIMO DETECTION PROBLEM USING ANT COLONY

OPTIMIZATION

In this chapter, we apply the Ant Colony Optimization metaheuristic to the MIMO de-

tection problem; we show that when using ACO algorithms for MIMO detection near

Maximum-Likelihood performance is achievable in polynomial-time. In Section 5.1, we

pose the integer-least squares problem as a combinatorial optimization problem and rep-

resent it on a construction graph. Section 5.2 introduces the AntMIMO algorithm and

discusses various aspects of the algorithm such as parameter selection, computational

complexity, and performance when applied to MIMO systems.

A. Problem Representation

Given an n × n MIMO system in a spatial multiplexing mode with transmit symbols

selected from a complex M -QAM constellation, we want the receiver to correctly detect

the t transmitted messages using the AntMIMO algorithm.

o/p bit

stream

y1

y2

n1

n2

i/p bit

stream

M-QAM

Modulator
Tx

x1

x2

xn

Fading

channel

yn

nr

M-QAM

DemodulatorAntMIMO

Rx

Fig. 15. Schematic representation of an n × n MIMO system in a SM configuration using

the AntMIMO algorithm at the receiver.

The complex n × n MIMO system of Fig. 15 can be represented by the real system
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model of Section 1.2,

y = Hx + n; (5.1)

where y ∈ R
2n, H ∈ R

2n×2n with hij ∼ N(0, 0.5), x ∈ Z
2n√

M
, and n ∈ R

2n with

ni ∼ N(0, σ2). The MIMO detection problem, as explained in Chapter III, is equivalent

to solving the integer least-squares minimization problem

min
x∈Z

2n
√

M

||y −Hx||2 (5.2)

Following the notation of Sections 4.2 and 4.3, the integer-least squares minimization

problem of (5.2) is represented by the combinatorial optimization problem PMIMO =

(S, f, Ω) where S is the space of all possible transmit vectors x, the objective function f

to be minimized is the Euclidean distance ||y −Hx||2, and the set of constraints Ω impose

the integrality constraint on the elements of x, xi ∈ Z√
M where Z√

M = {0, 1, · · · ,
√

M}.

We associate with the CO problem PMIMO a complete tree T = (C,E) characterized

by:

• A dummy node R serving as root.

• A height h = 2n for an n× n MIMO system.

• The finite set C = {c1,L0
, c2,L1, . . . , cN,L√

M
} represent the labeled nodes of the tree,

where label Li associated with node cj,Li
is selected from the set Z√

M .

• The set E represent the edges connecting parent nodes to children nodes.

• Each parent node has
√

M children when transmit symbols are selected from an

M -QAM constellation.

• A path w = < ci,Lj
, . . . , ch,Lk

> of length 2n that starts at the first level of the

tree where h = 1 and proceeds down the tree selecting a single node at each level
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till a leaf node is reached is representative of the feasible solution x̂ = (j, . . . , k) to

problem PMIMO.

Fig. 16 shows the complete tree associated with a 2 × 2 MIMO system utilizing a

4-QAM constellation. Path w = < c2, 1, c5, 0, c12, 1, c25, 0 >, for instance, is equivalent to

feasible solution x̂ = (1, 0, 1, 0).

1,0 2,1

4,1 5,0 6,1

7,0 8,1 9,0 10,1 11,0 13,0 14,1

15,0 16,1 17,0 18,1 19,0 20,1 21,0 22,1 23,0 24,1 26,1 27,0 28,1 29,0 30,1

12,1

25,0

R

2,1

3,0

Fig. 16. Tree representation of the PMIMO problem for a 4-QAM, 2× 2 MIMO system.

Using this representation, the Ant Colony Optimization metaheuristic can be easily

adapted to solve problem PMIMO. In the following, we give a detailed description of the

new algorithm, AntMIMO.

B. AntMIMO

Following the Ant Colony Optimization paradigm, AntMIMO has three distinctive proce-

dures: ConstructAntsSolutions, ApplyLocalSearch, and UpdatePheromones.

1. ConstructAntsSolutions: A number of m ants are placed randomly at the first level

of the tree, as illustrated in Fig. 17. The m ants iteratively construct solutions to

problem PMIMO as they walk down the tree in parallel. An ant k currently at parent
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1,0

4,1 5,0 6,1

7,0 8,1 9,0 10,1 11,0 13,0 14,1

15,0 16,1 17,0 18,1 19,0 20,1 21,0 22,1 23,0 24,1 26,1 27,0 28,1 29,0 30,1

12,1

25,0

R

3,0

2,1

Fig. 17. A colony of five ants at the first level of the construction tree.

node ci
1 chooses to move into one of the

√
M children nodes cj according to the

random proportional rule,

pk
ij =

τij
∑

l∈Nk
i
τil

(5.3)

where τij is the pheromone level present on the edge eij connecting node ci to node

cj and the set Nk
i is the set all the children of node ci. When an ant reaches a leaf

node, the construction phase ends, and the ant evaluates the cost of the constructed

solution f(xk), Fig. 18. Note that an ant is capable of storing a list of the nodes

it visited while constructing xk. Such a list allows the ant to retrace the path it

traversed and deposit the appropriate amount of pheromones along its edges to

reflect its search experience .

2. ApplyLocalSearch: The solutions constructed by the m ants are carried to their local

optima by means of a 1-opt local search algorithm characterized by a one-flip neigh-

borhood [51]. In the one-flip neighborhood, a solution x is a neighbor of a solution x′

if x and x′ differ in exactly one solution component. For example, if x = (1, 1, 1, 1),

then the one-flip neighborhood N(x) includes (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), and

1For simplicity of notation, we will use ci to refer to a tree node instead of ci,Lj



45

1,0

4,1 5,0 6,1
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Fig. 18. AntMIMO at the end of a construction phase.

(1, 1, 1, 0).

Algorithm 5.1: 1-opt Local Search

input: ant solution xk, corresponding path wk

xk
LS ← xk.

wk
LS ← wk.

for all x′ ∈ N(x) do

Calculate cost of solution x′, f(x′).

if f(x′) < f(xk
LS) then

xk
LS ← x′.

wk
LS ← w′.

end if

end for

output : xk
LS, wk

LS

3. UpdatePheromones : In AntMIMO, we apply the global pheromone update rule of

ACS where only the best-so-far found solution since the start of the algorithm xbs
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is allowed to update the pheromone trails on the edges corresponding to the path it

traversed .

τij = (1− ρ)τij + ρ∆τ bs ∀ eij traversed while building xbs (5.4)

where ρ ∈[0,1] is the evaporation rate, and ∆τ bs is defined to be

∆τ bs = 1/f(xbs) (5.5)

In addition to these three main procedures, we allow the algorithm to re-initialize its

pheromone array via the procedure ReinitializePheromones only in the case when it returns

a “bad” solution. A “bad” solution x̂ has a cost function f(x̂) > fth, where fth is a

pre-computed threshold value.

In the following, we give a pseudo-code description of the AntMIMO algorithm where

the parameter T denotes the pheromone array storing the pheromone values τij and xib

denotes the best solution returned by the ants in a single construction iteration.
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Algorithm 5.2: AntMIMO

input: a problem instance PMIMO

xbs ← NULL.

for all τij do

τij ← τ0

end for

while termination conditions not met do

for k ← 1 to m do

empty ant k’s list of visited nodes.

(xk, wk) ← ConstructAntsSolutions

(xk
LS, wk

LS) ← ApplyLocalSearch(xk, wk)

end for

xib ← arg min (f(x1
LS), . . . , f(xm

LS))

if xbs = NULL or f(xib) < f(xbs) then xbs ← xib

UpdatePheromones(xbs, wbs, T )

if f(xbs) > fth then

ReinitializePheromones(T )

xbs ← NULL

end if

end while

output : xbs
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1. Algorithm Parameters

Similar to other ACO algorithms, AntMIMO’s implementation involves a large set of

parameters, the fine tuning of which greatly affects the performance of the algorithm.

The key is to find a suitable combination of parameter values that can strike a balance

between excessive exploration of the search space and intense exploitation of learned search

experience, which in the worst case may lead to stagnation and producing suboptimum

solution. In the following, we describe the different parameters and the values assigned to

them for the implementation of AntMIMO.

1. Restart Threshold fth: We exploit the statistical properties of the problem to select

a suitable value for fth. Recall that the cost function f(x) to be minimized is equal

to the Euclidean distance ||y −Hx||2. For the original transmit vector x∗ ,

f(x∗) = ||y −Hx∗||2 = ||n||2 =
2n
∑

i=1

n2
i (5.6)

where n ∈ R
2n is AWGN and ni ∼ N(0, σ2). From (5.6), f(x∗) is a random variable,

z, having a chi-square χ2 distribution with 2n degrees of freedom with a cumulative

distribution function, FZ(z), given by

FZ(z) = P (Z ≤ z) = 1− e−z/2σ2

n−1
∑

k=0

1

k!

( z

2σ2

)k

, z ≥ 0 (5.7)

From (5.7), we can determine the range of values the optimum cost function f(x∗)

can take for any problem instance PMIMO; consequently, we set the restart threshold

fth such that P (z > fth) = ε where ε is a very small positive number. For a 4 × 4

MIMO system, for example, the probability of the optimum cost function f(x∗)

taking a value greater than 3.5σ2 is extremely small, P (f(x) ≥ 3.5σ2) = 0.000474,

so we can set fth = 3.5σ2. If AntMIMO returns a solution x̂ with cost function

f(x̂) > fth, we know that the algorithm has returned an unacceptable solution and
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Fig. 19. CDF plot of the cost function f(x) normalized by σ2 for a 4× 4 MIMO system.

needs to be restarted, Fig. 19.

2. Initial Pheromone Value τ0: Different ACO algorithms have different means of ini-

tializing the pheromone array. Typically, τ0 is set to be slightly higher than the

expected amount of pheromones deposited by the ants after a single iteration. The

reason for this choice is that if the initial pheromone values τ0’s are too low, the

search becomes quickly biased by the first tours generated by the ants, which in

general leads towards the exploration of inferior zones of the search space. On the

other hand, if the τ0 values are too high, then many iterations are lost waiting until

pheromone evaporation reduces the pheromone values enough so that pheromones

added by the ants can start to bias the search experience. By setting τ0 = 1/fth in

AntMIMO, not only do we satisfy the general rule of thumb, but we also penalize
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“bad” ants’ solutions during run time. For example, suppose we have a 4×4 MIMO

system with σ2 = 1 , ρ = 0.1, and fth = 3.5; by setting τ0 = 1/fth, the pheromone

trail values of a solution x̂ whose cost function is greater than fth are reduced, which

reduces the probability of selecting the path that led to x̂ in the next iteration of

the algorithm. Thus, if at iteration t = 1, f(xbs) = 8, then ∆τ bs = 0.2 and the

pheromone values become,

τij(1) = (1− ρ)τ0 + ρ∆τ bs ∀ eij traversed while building xbs

= 0.9 ∗ 0.285 + 0.1 ∗ 0.125 = 0.269 < τ0.

3. Evaporation Rate ρ: The evaporation rate ρ ∈[0,1] plays an important role in

AntMIMO; an appropriate value for ρ is necessary to balance the exploration and

exploitation phases of the algorithm. A too small value of ρ will prolong the explo-

ration phase since in the first iterations of the algorithm, the difference in pheromone

values on different edges is small and the biasing effect of the pheromone array is

minimal. To exploit this biasing effect, the algorithm must run for a large number

of iterations. If we select a relatively large value for ρ, the biasing effect of the

pheromones becomes more pronounced in the early stages of the algorithm; we may

allow shorter run time, but we run the risk that the algorithm may get stuck in not

so good regions of the search space and consequently produce a suboptimum solu-

tion. In our simulations, we set ρ ∈[0.1,0.2] depending on the size of the problem,

a small problem size corresponds to a large value of ρ.

4. Number of Ants m: In the presence of local search, there is no need for a large colony

of ants. In our simulations, for n × n MIMO system, we set m = n; increasing m

beyond that doesn’t noticeably improve the performance of the algorithm.

5. Number of iterations t: Allowing the algorithm to run for a long period of time

increases the probability of finding the optimum solution, yet we want t to be as
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small as possible so that we can detect the transmitted symbols as fast as possible

in a wireless transmission scenario; (5.8) gives a rough guide to choosing a suitable

t.

tc =
ln

( 0.01∆τ bs

∆τ bs − τ0

)

ln(1− ρ)
(5.8)

where tc is the time needed for the pheromone values τ bs
ij along the path corresponding

to the best-so-far solution xbs to reach 99% of ∆τ bs, assuming that the algorithm

returns the same xbs after every iteration. For a 4 × 4 MIMO system using τ0 =

1/3.5σ2, ρ = 0.15, and replacing ∆τ bs by the empirical average of ∆τ ∗ = 1.33/σ2,

the time needed for the algorithm to converge to the optimum solution is tc ≈ 27

iterations; (5.8) can be easily derived from the global pheromone update rule of (5.4)

by rewriting the latter as

τij(t) = (1− ρ)tτ0 + ∆τ bs[1− (1− ρ)t] (5.9)

and setting ∆τij(t
c) = 0.99∆τ bs. The parameter tc gives an indication of the time

needed for the algorithm to reach stagnation, a situation where the algorithm stops

exploring new paths and keeps on choosing a single path every time. In our sim-

ulations, we set t ≤ tc. Finally, the number of times the algorithm is allowed to

restart after producing a “bad” solution is determined by a restart counter ct. In

our simulations, we set ct = 2.

2. Algorithm Performance

We tested the algorithm on several n×n MIMO systems in a Rayleigh fading environment

as specified in Section 1.2 with transmit symbols x̃ selected from a 4-QAM constellation.
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In our simulations, the average energy per information bit2 is fixed to Eb = 1. The

transfer matrix H̃ is modeled by independent Gaussian random variables of variance 0.5

per dimension. The variance σ2 of the AWGN ñ per dimension is adjusted by the formula

σ2 =
nEsav

2 log2(q)
10

−SNRb
10 (5.10)

where Esav is the average symbol energy of the M -QAM constellation when Eb = 1 and

SNRb is the signal-to-noise ratio per information bit.

a. Simulation Results

Fig. 20 compares the performance of the AntMIMO algorithm to the optimum Maximum-

Likelihood performance for 2 × 2, 4 × 4, and 6 × 6 MIMO systems employing 4-QAM

constellations. We notice that AntMIMO, in the three cases, achieves a near ML perfor-

mance; the BER plots of AntMIMO are only 0.5 dB worse than those corresponding to

the ML detector; note that AntMIMO can almost approach ML performance, if we allow

it to run for a long period of time.

The different parameter sets used in the simulations are specified in Table. I.

Table I. Parameter Settings Used in Simulations

MIMO System m t ρ fth ct

2× 2 2 4 0.2 2σ2 2

4× 4 4 10 0.15 3σ2 2

6× 6 6 16 0.1 3.5σ2 2

Fig. 21 illustrates the bit error rate performance comparison of the AntMIMO de-

2This normalization lets the elements of x to be selected from the set Z√
M , which is

useful when implementing the search tree.



53

BE
R

1E+0

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

SNR per information bit
20.00.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0

ML,  2*2 MIMO

AntMIMO,  2*2 MIMO

ML, 4*4 MIMO

AntMIMO, 4*4 MIMO

ML, 6*6 MIMO

AntMIMO,  6*6MIMO 

Fig. 20. AntMIMO vs. Maximum-Likelihood BER plots.

coder, the sphere decoder, the ZF-decoder, and the MMSE-decoder for a 4 × 4 MIMO

system employing 4-QAM. Clearly, AntMIMO outperforms the linear decoders and is

slightly worse than the sphere decoder’s performance, which is maximum-likelihood.

b. Effect of Parameter Settings on AntMIMO’s Performance

In this section, we investigate the influence of the various parameter settings and action

choice rules on AntMIMO’s performance. We first study the effect of the ant colony’s size

on AntMIMO’s performance. Fig. 22 shows the BER plots of a 4 × 4 MIMO system,



54

BE
R

1E+0

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

SNR per information bit
20.00.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0

ZF Rx

Sphere Decoder

AntMIMO

MMSE Rx

Fig. 21. AntMIMO vs. SD, ZF, and MMSE decoders for a 4×4 MIMO system with 4-QAM.

using 4-QAM with ρ = 0.15, t = 12, ct = 2, fth = 3σ2 and m ∈ {1, 2, 4, 8}. As expected,

AntMIMO with a single ant has the worst performance; the performance is improved

when using two ants instead of one, but the best compromise between complexity and

performance is attained when m is selected to to be in the order of n for an n× n MIMO

system. Using a larger colony of ants doesn’t improve the performance much as apparent

in the case when m = 8.

Fig. 23 illustrates the effect of the evaporation rate on the performance of a 4 × 4

MIMO system, employing 4-QAM constellation with m = 4, t = 10, ct = 2, fth = 3σ2

and ρ ∈ {0.01, 0.15, 0.5}. Using a run time of 10 iterations with the small evaporation
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Fig. 22. Influence of the ant colony’s size on the performance of AntMIMO for a 4 × 4

MIMO system with 4-QAM constellation.

rate of ρ = 0.01 results in small differences in the pheromone values with time; hence the

positive feedback effect of the pheromones is not evident, and this combination has the

worst performance among the three BER curves. Likewise, having a too high evaporation

factor of ρ = 0.5 leads to the rapid convergence of the algorithm to suboptimum solutions

leading to an inferior performance to the case when ρ = 0.15.

Recall that in the global pheromone update rule of (5.4), we allow only the best-so-far

found solution xbs to update its pheromone trails. In the literature, some of the algorithms

such as the MMAS algorithm allow the ant that returned the best solution at the end of a



56

BE
R

1E+0

1E-5

1E-4

1E-3

1E-2

1E-1

SNR per information bit
15.00.0 2.5 5.0 7.5 10.0 12.5

rho=0.01

rho=0.15

rho=0.5

Fig. 23. Influence of the evaporation rate on the performance of AntMIMO for a 4 × 4

MIMO system with 4-QAM constellation.

construction iteration xib to update its pheromone trails instead. For the MIMO detection

problem, updating the pheromone trails of xbs instead of xib yields a better performance,

as illustrated in Fig. 24.

We also noticed that better performance is achieved when incorporating a restart

mechanism as illustrated in Fig. 25, and when using the 1-opt local search algorithm. As

evident in Fig. 26, AntMIMO without a local search algorithm performs significantly worse

than when a local search algorithm is incorporated given that the same set of parameters

is used in both scenarios, m = 4, t = 12, ρ = 0.15, ct = 2. For the version without local
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MIMO system using 4-QAM constellation.

search to achieve the same performance as that with a local search, we had to adjust the

evaporation rate and increase significantly both the size of the colony and the number of

iterations , ρ = 0.1, m = 10, and t = 45.

In Chapter IV, we mentioned that the dynamic change of the pheromone array val-

ues at run-time is extremely important. It serves as a guiding mechanism that manip-

ulates the lower level constructive and local search heuristics into concentrating their

search on “good” regions of the search space. Figs. 27, 28, 29 demonstrate this dy-

namic change of pheromone values during run-time and how they influence solution
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construction for a 4 × 4 MIMO system using 4-QAM constellation, ρ = 0.15, m =

4, fth = 3σ2, ct = 2, and t ∈ {4, 12, 25}. For this instance of PMIMO, the optimum

solution x∗ has a cost function f(x∗) = 0.199425 and a corresponding path w∗ =<

c2,1, c5,0, c11,0, c23,0, c47,0, c95,0, c162,1, c385,0 >; so we expect as t→∞, the pheromone values,

τ ∗
ij along the path leading to the optimum solution to reach ∆τ ∗ = 1/f(x)∗ = 1.00289.

We observe from the stem plots, that the pheromone values corresponding to a good so-

lution are re-enforced with time. After 4 iterations, the difference in pheromone values on

different branches is not that big, but after 12 iterations the difference is clearly apparent,
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which indicates that with very high probability, the ants will select the path with the

higher amount of pheromones. After 25 iterations,the pheromone values on the path cor-

responding to the best-so-far solution have almost reached ∆τ ∗
ij, ∆τ bs

ij = 0.988551. Note

also that, in all three cases, bad solutions with cost function greater than fth are penalized

during run time by decreasing the pheromone values on their corresponding edges.
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Fig. 27. Pheromone array stem plot at t = 4 for a 4 × 4 MIMO system with 4-QAM

constellation.

c. Complexity of the AntMIMO Algorithm

MIMO detection algorithms, such as the sphere decoder or the nulling and cancelling de-

coder, typically require some form of preprocessing, such as QR factorization or lattice

reduction, to be performed on the channel matrix H̃ before applying the detection al-

gorithm. The computational complexity of such procedures is often discounted from the

computational complexity of these algorithms. In AntMIMO, there is no need for any

such preprocessing stage; the computational complexity of the algorithm is dominated by
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the complexity of the local search heuristic used. A naive implementation of the 1-opt

local search heuristic used in AntMIMO is of cubic complexity; in our implementation,

instead of computing the cost of each new candidate solution x′, we only calculate the

differential gain that can be achieved when choosing x′ instead of xk; the complexity of

this implementation is quadratic. The resulting computational complexity of AntMIMO

is also quadratic, O(mtn2) for an n×n MIMO system using 4-QAM constellation, m ants,

and t iterations.

d. Convergence of the AntMIMO Algorithm

Currently, we do not have a theoretical result on the convergence of the AntMIMO al-

gorithm. Yet, experimentally, the algorithm exhibits both convergence in value and con-

vergence in solution. We noticed that if we allow the algorithm to run for a reasonable

number of iterations, it produces the optimum solution at least once, hence the conver-

gence in value. On the other hand, if we set ρ = 0.01 and let the algorithm run for a very

long period of time, the algorithm shows convergence in solution; all the ants select the

path leading to the optimum solution at the end of each iteration t, t > tc.

e. Fitness Landscape Analysis of Problem PMIMO

The theory of fitness landscapes [52, 53], originally developed to provide a mathematical

framework for studying the dynamics of biological evolutionary optimization, has been

shown to be very useful for understanding the behavior and performance of combinatorial

optimization algorithms. In this section, we perform a fitness landscape analysis on prob-

lem PMIMO in order to study the effectiveness of the AntMIMO algorithm when applied

to PMIMO.

Simply speaking, a fitness landscape is a representation of the search space; it can

be visualized as a mountainous region with hills, craters, and valleys. In a minimization
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problem, a heuristic algorithm can be thought of as navigating through this landscape

to find its lowest point. More formally, a fitness landscape (S, f, d) of a combinatorial

optimization problem instance consists of the set of all feasible solutions S, an objective

function f : S → R, which assigns a fitness value f(x) to every x ∈ S, and a distance

measure d which defines the spatial structure of the landscape; the distance d(x, x′) be-

tween two solutions x and x′ can be defined as the minimum number of moves that have

to be performed to transform x into x′. When analyzing n× n MIMO systems employing

4-QAM constellation, we define the fitness function f(x) to be equal to the cost function

||y −Hx||2 and the distance d(x, x′) to be the hamming distance between binary vectors

x and x′.

It was found that the distribution of local minima in the landscape and their relative

location with respect to global optima is an important criterion for studying the effective-

ness of adaptive multi-start algorithms like ACO algorithms [45]. The Fitness Distance

Correlation (FDC) is an important measure that determines how closely solution fitness

and the distance to the global optima are related, [52]

%(F,D) =
Cov(F,D)

σ(F )σ(D)
(5.11)

where Cov(F,D) is the covariance between the random variables F and D which proba-

bilistically describe the fitness and the distance of local optima to a global optimum, while

σ(F ) and σ(D) denote their standard deviations. For minimization problems, a high pos-

itive correlation factor %(F,D) indicates that the smaller the solution cost becomes, the

closer are the solutions - on average - to a global optimum. For such a case, the search is

expected to be “easy” and algorithms combining adaptive solution generation and local

search, such as ACO algorithms, are expected to perform well. In AntMIMO, for instance,

the smaller the cost of the found solution xbs, the higher the amount of pheromones that

will be deposited along its path; this means that in the next iteration of the algorithm,



63

the search will concentrate in the vicinity of xbs. If problem instance PMIMO has a high

positive fitness distance correlation factor, then the global optimum x∗ is close to xbs,

and there is a high probability that AntMIMO will output x∗. Fig. 30 shows the fitness

distance scatter plot of a PMIMO instance with an FDC factor % = 0.941. We notice that

the solutions with hamming distance d = 1, which are closest to the global minimum, are

also the ones with the lower cost functions. The further we get from the global optimum,

the larger the solution cost becomes.

We empirically computed the FDC factor for 2× 2, 4× 4, and 6× 6 MIMO systems

using a 4-QAM constellation at different values of SNR. In all instances, problem PMIMO

exhibited a relatively high positive mean correlation factor, % ∈[0.66,0.73]; we also noticed

that % increases with increasing SNR. From this analysis, we expect AntMIMO to perform

well on problem PMIMO, and this is actually the case as evident from earlier simulations.
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Fig. 28. Pheromone array stem plot at t = 12 for a 4 × 4 MIMO system with 4-QAM

constellation.
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CHAPTER VI

SUMMARY

In this thesis, we considered the MIMO receiver design problem in a spatial multiplexing

scheme. The MIMO detection problem is equivalent to solving the integer least-squares

problem which is NP -hard. In the literature, suboptimal detection algorithms, typically

of polynomial complexity, are often employed, while exact algorithms, like the sphere de-

coder algorithm, that solve the MIMO detection problem to optimality have an average

exponential complexity. The main contribution of this thesis is the design of an approxi-

mate algorithm, AntMIMO, that outperforms other heuristic techniques and still exhibit

polynomial complexity when used for the detection of MIMO systems. AntMIMO belongs

to the family of Ant Colony Optimization metaheuristic, which is a recent algorithmic

technique that has been inspired by the behavior of real ants to develop strategies for

solving hard combinatorial optimization problems. A formal introduction to the ACO

paradigm was provided in Chapter IV. In Chapter V, we provided a detailed description

of the AntMIMO algorithm. We showed that it is indeed an effective technique for MIMO

detection by performing fitness landscape analysis on the integer least-squares problem

and verifying the existence of strong positive correlation between solution fitness and dis-

tance to the global optimum. The effectiveness of AntMIMO was further demonstrated by

simulating its performance on several n× n MIMO systems using a 4-QAM constellation;

AntMIMO’s BER curves were only 0.5 dB worse than the ML curves. We also studied

the influence of various parameter settings on AntMIMO’s performance and estimated its

computational complexity to be quadratic in the number of used antennae.
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A. Future Work

The AntMIMO algorithm has been optimized for the detection of MIMO systems using

a 4-QAM constellation. Typical MIMO configurations involve the use of higher order

constellations such as 16-QAM. The complexity of AntMIMO is expected to increase as a

more sophisticated local search algorithm will be incorporated within AntMIMO.

Another interesting problem is to configure AntMIMO for the detection of coded

MIMO transmissions. Coding constraints can be implemented by the ants’ construction

policy on the associated graph.

Finally, in this thesis, we equated the MIMO detection problem to a combinatorial

optimization problem that is readily solvable by using a heuristic technique. Another

interesting perspective would be to solve the MIMO detection problem through the use

of convex optimization techniques. We briefly investigated the use of the Reformulation-

Linearization Technique (RLT) of Sherali and Adams [54] for MIMO detection. The

integer least-squares problem was reformulated as a binary mixed integer program that

was solved using the CPLEX solver. Although the results that we obtained were not as

competitive as those of AntMIMO’s, we believe that such a technique warrants further

investigation.
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APPENDIX A

ANTMIMO VIRTUAL INSTRUMENT

This appendix documents the implementation of the AntMIMO algorithm of Chapter

5 as a LABVIEW Virtual Instrument (VI).

Fig. 31. Schematic representation of the AntMIMO VI.

Given a problem instance PMIMO, the inputs to the AntMIMO VI are: the channel

matrix H, the received vector y, the modulation type, the number of antennae, and the

noise variance σ2, in addition to the various algorithm parameters that include the number

of ants m, the number of iterations t, the evaporation rate ρ, the restart counter ct, and

the restart threshold fth. The VI outputs the estimated transmitted sequence x̂ and the

associated cost f(x̂).

Figs. [32,33] show the front panel and the block diagram of the AntMIMO VI respec-

tively.

Following the pseudo-code of Algorithm 5.2, the AntMIMO VI makes use of five main

VIs: the Initialization VI, the Construction VI, the Cost Evaluation VI, the Local Search

VI, and the Pheromone Update VI.

• Initialization VI
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Fig. 32. Front panel of the AntMIMO VI.

This VI computes the total number of nodes present in the construction tree accord-

ing to the formula,

N =
ns+1
∑

i=0

(
√

M)i

where ns = 2n for an n× n MIMO system employing an M -QAM constellation. It

then builds a pheromone array of size N and initializes it to τ0. It also creates m

ant structures where each structure is capable of storing the constructed solution in

a 1× ns array, the associated cost function, and the list of visited nodes in a 1× ns

array.

• Construction VI

This VI allows the ants to walk down the tree in parallel to construct their solutions.

It first places the ants on the first level of the tree in a random fashion. Then the

ants choose the next nodes to move into according to the probability choice rule of

(5.3), until all ants have constructed their solutions. The probability choice rule is

implemented in the subVI, ant-choose-pr,
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Fig. 33. Block diagram of the AntMIMO VI.

In this subVI, the pheromone trails for each child of ant[k].visited[index] are retrieved

and used to calculate the selection probabilities; the variable index indicates at which

level of the tree the ants are currently residing. An ant chooses which next level node

to include in its solution based on the roulette wheel selection strategy; the ant’s

solution array is updated with the new solution element xk
i and the ants’ visited

nodes array is also updated with the selected node’s location information .

• Cost Evaluation VI

This VI calculates the cost function f(xk) = ||y − Hxk||2 for all constructed ants’



78

Fig. 34. Schematic representation of the initialization VI.

Fig. 35. Schematic representation of the construction VI.

solutions in a single iteration.

• Local Search VI

This VI implements the 1-opt local search procedure described in Algorithm 5.1

and outputs the ant structure with the minimum cost function for this iteration,

best-it-ant.

• Update Pheromones VI

This VI updates the pheromone array according to the update rules of (5.4,5.5).

The updated pheromone array reflects the search experience of the ants during run-

Fig. 36. Schematic representation of the ant-choose-pr subVI.
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Fig. 37. Schematic representation of the cost evaluation VI.

Fig. 38. Schematic representation of the local search VI.

time and is used to concentrate the search in promising regions of the search space.

Moreover, we restrict the pheromone values to be greater than a small positive

constant τmin, so that each node has a non-zero probability of being selected.

Fig. 39. Schematic representation of the pheromone update VI.
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