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ABSTRACT 
 
 

The Effects of Constructivist Teaching Approaches  

on Middle School Students’  Algebraic Understanding. (August 2006) 

Amanda Ann Ross, B.S., Stephen F. Austin State University; 

M.Ed., Stephen F. Austin State University 

Chair of Advisory Committee: Dr. Gerald O. Kulm 
 

 The goal in mathematics has shifted towards an emphasis on both procedural 

knowledge and conceptual understanding. The importance of gaining procedural 

knowledge and conceptual understanding is aligned with Principles and Standards for 

School Mathematics (National Council of Teachers of Mathematics, 2000), which 

encourages fluency, reasoning skills, and ability to justify decisions. Possession of only 

procedural skills will not prove useful to students in many situations other than on tests 

(Boaler, 2000). Teachers and researchers can benefit from this study, which examined 

the effects of representations, constructivist approaches, and engagement on middle 

school students’  algebraic understanding.  

 Data from an algebra pretest and posttest, as well as 16 algebra video lessons 

from an NSF-IERI funded project, were examined to determine occurrences of 

indicators of representations, constructivist approaches, and engagement, as well as 

student understanding. A mixed methods design was utilized by implementing multilevel 

structural equation modeling and constant comparison within the analysis. Calculation of 

descriptive statistics and creation of bar graphs provided more detail to add to the 
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findings from the components of the statistical test and qualitative comparison method.

 The results of the final structural equation model revealed a model that fit the 

data, with a non-significant model, p > .01. The new collectively named latent factor of 

constructivist approaches with the six indicators of enactive representations, 

encouragement of student independent thinking, creation of problem-centered lessons, 

facilitation of shared meanings, justification of ideas, and receiving feedback from the 

teacher was shown to be a significant predictor of procedural knowledge (p < .05) and 

conceptual understanding (p < .10). The indicators of the original latent factor of 

constructivist approaches were combined with one indicator for representations and two 

indicators for engagement. Constant comparison revealed similar findings concerning 

correlations among the indicators, as well as effects on student engagement and 

understanding. Constructivist approaches were found to have a positive effect on both 

types of student learning in middle school mathematics. 
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CHAPTER I 
 

INTRODUCTION 

Statement of the Problem 

In middle school mathematics, the focus in learning now includes conceptual 

understanding, in addition to procedural knowledge. The promotion of procedural 

knowledge and conceptual understanding are in alignment with Principles and 

Standards for School Mathematics (National Council of Teachers of Mathematics, 

2000), which encourages higher-level thinking and reasoning skills, as well as 

communicative justifications. Van de Walle (2001) defined procedural knowledge by 

stating, “Procedural knowledge of mathematics is knowledge of the rules and procedures 

that one uses in carrying out routine and mathematical tasks and also the symbolism that 

is used to represent mathematics”  (p. 31). In addition, Van de Walle (2001) defined 

conceptual understanding by stating, “Conceptual knowledge of mathematics consists of 

logical relationships constructed internally and existing in the mind as part of a network 

of ideas”  (p. 31). In order to be mathematically literate, students must possess procedural 

knowledge, reasoning skills, and conceptual understanding (Wilkins, 2000). Students 

can rarely use procedural knowledge alone in situations other than on tests (Boaler, 

1999). With the acquisition of both procedural knowledge and conceptual understanding, 

students are more apt to develop skills related to applicability and obtaining an 

understanding of connected ideas in mathematics (Hiebert & Carpenter, 1992).  

 

This dissertation follows the style of Journal for Research in Mathematics Education. 
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Effective pedagogical strategies for teaching middle school students both 

procedural knowledge and conceptual ideas related to the algebra strand need to be 

determined. Students must understand the ways in which algebra topics relate to other 

mathematics topics, thereby encouraging a broader picture of understanding of 

mathematics. Woodbury (2000) stated, “The point of teaching and learning about any 

algebraic topic is how the topic connects with the larger conceptual arenas of number 

systems and number theory and with symbolic representation and the theory of 

equations”  (p. 230). 

Existing literature on the need for both procedural knowledge and conceptual 

understanding consists primarily of research studies examining learning in areas other 

than algebra (Chappell &  Killpatrick, 2003; Porter & Masingila, 2000; Rittle-Johnson, 

Siegler, & Alibali, 2001; Sierra-Fernandez & Perales-Palacios, 2003), as well as 

suggested activities (Ducolon, 2000; Friel, 1998). Literature on the acquisition of both 

procedural knowledge and conceptual understanding in the area of algebra is quite 

scarce and consists of suggested activities (Davis, 2005), with few research studies 

(Hickey, Moore, & Pellegrino, 2001; Vlassis, 2002). 

By examining the predictors of both procedural knowledge and conceptual 

understanding of middle school algebra students, researchers and teachers can determine 

best practices for promoting such knowledge. Researchers can examine effects on 

procedural knowledge and conceptual understanding in other contexts, as well. Teachers 

can plan effective lessons that build both kinds of learning acquisition. 
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Purpose of This Dissertation 

 This study examined a hypothesized model whereby representations (Bruner, 

1966) and constructivist teaching approaches (Piaget, 1954; Piaget, 1970; Piaget, 1973; 

Vygotsky, 1978) produce engagement (Boaler, 2000; Dewey, 1900; Lave & Wenger, 

1991; Vygotsky, 1978), which in turn impacts middle school students’  procedural 

knowledge and conceptual understanding of algebra. Additionally, the study explored 

relationships among the types of representations, constructivist approaches, and 

engagement realized in the lessons, as well as concurrent descriptions of the 

occurrences. The hypothesized model relating these variables is shown in Figure 1. 

Research Questions 

This study considered the following research questions: 

1. To what extent do representations, constructivist teaching approaches, and 

engagement predict middle school students’  procedural knowledge and conceptual 

understanding? 

2. To what extent do representations and constructivist teaching approaches predict 

middle school students’  engagement?  

3. How do types of representations overlay types of constructivist teaching approaches 

according to student engagement? 

4. In what ways do the teachers’  presentations and students’  actions differ for the various 

algebra lessons? 
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Figure 1. Theoretical model for the study. 

 
 

Limitations 

 In this study, the lessons were assumed to represent different teacher 

engagement. There may be dependency for some lessons due to the same teacher 

teaching more than one lesson, which is not acknowledged. In addition, the teachers 
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teach either 7th or 8th grade. It should be noted that the algebra posttest was not a high-

stakes test, so some students may not have performed at their best. 

Key Terms 

Procedural knowledge: Knowledge of rules and procedures involving routines for 

mathematical tasks and use of symbolism (Van de Walle, 2001). 

Conceptual understanding: Knowledge of logical relationships and connectedness in 

mathematics, which involves internal construction (Van de Walle, 2001). 

Representation: A learning tool that represents something other than itself (Goldin & 

Shteingold, 2001). Three components of representations of learning, as described by 

Bruner (1966) are enactive (hands-on), iconic (pictures and numbers), and symbolic 

(numbers, symbols; words/discussion). 

Constructivist teaching approaches: Teacher encouragement of independent thinking, 

creation of problem-centered lessons, and facilitation of shared meanings (Piaget, 1954; 

Piaget, 1970; Piaget, 1973; Vygotsky, 1978). 

Engagement: Students’  expression of ideas; clarification, justification, and 

representation of ideas; and receiving feedback from teachers about ideas (AAAS, 

2001). 
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CHAPTER II 

BACKGROUND LITERATURE 

Representations, constructivist teaching approaches, and engagement are 

important contributors to students’  learning. These variables rest upon the ideas of 

Jerome Bruner, Jean Piaget, Lev Vygotsky, Ernst von Glasersfeld, John Dewey, Jean 

Lave, Etienne Wenger, Jo Boaler, and James Greeno. The ideas involved in the 

theoretical framework set the stage for application of the variables to the field of 

mathematics education. 

Representations 

Representations are components of learning that can be used to help students 

move from concrete thought to more abstract thought. A representation, in fact, 

represents something other than itself (Goldin & Shteingold, 2001). Representations are 

therefore needed to enhance students’  understanding and ability to make connections in 

mathematics (National Council of Teachers of Mathematics, 2000). According to Bruner 

(1966), the components of representations of learning are enactive (hands-on), iconic 

(pictures), and symbolic (symbols, numbers; words/discussion). For example, children 

can understand the concept of a balance beam through actually sitting on a seesaw 

(enactive), drawing a picture of the balance beam with rings (iconic), and finally writing 

Newton’s Law of Moments (symbolic). When learning about the commutative and 

distributive properties of equations, students can first work with enactive materials, such 

as algebra tiles, proceed to iconic representations, and finally convert the idea to 

symbols. This progression of representations provides the students with prior imagery to 
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relate to in the case that symbolic representations do not transfer to certain problem-

solving situations. Bruner (1966) described the importance of concrete images by 

stating, “When they searched for a way to deal with new problems, the task was usually 

carried out not simply by abstract means but also by ‘matching up’  images”  (p. 65). 

Therefore, it is important for students to be able to abstract meaning through symbolic 

representations, but also to have a repertoire of visual imagery to recall upon and 

compare new ideas to in mathematics (Bruner, 1966). 

Enactive representations, or hands-on materials, such as manipulatives can be 

used in helping students to learn through actions. Bruner (1966) stated, “We know many 

things for which we have no imagery and no words, and they are very hard to teach to 

anybody by the use of either words or diagrams and pictures”  (p. 10). Play with enactive 

representations, such as building blocks, can promote the beginning of intrinsic learning. 

Concrete representations enable students to develop a conceptual understanding of the 

concepts, as well as develop an understanding of future theorems due to exposure to 

intuitive situations (Bruner, 1966).  

Several types of enactive representations, such as manipulatives and 

technological tools can be used to provide a solid foundation for knowledge and 

understanding of underlying ideas in mathematics. The use of algebra tiles can facilitate 

understanding of the variable concept (Chappell, 2001). Based on extensive data 

collection, consisting of interviews, students’  work, and fieldwork notes, Cedillo (2001) 

reported that graphing calculators can help middle school students better understand 

algebraic concepts in a conceptual manner. Attribute blocks can also enable students to 
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acquire deeper levels of conceptual understanding (Bird, 2000), as well as develop an 

ability to build upon prior knowledge and experiences and make much needed 

connections through engagement while discovering new concepts (Quinn, 1997). In a 

study examining only classroom percentages on items correct, Moch (2001) found that 

cubes, tangrams, candy, paper-folding, and cards increased middle school students’  

performance on a test assessing all mathematical concepts by 10 percent. Similarly, 

Kennedy (2000) revealed a significantly higher performance for students using such 

manipulative models as integer chips, pattern blocks, and fraction strips on an exam 

measuring algebraic and proportional reasoning. 

Manipulatives can also provide students with opportunities to connect ideas to 

previous ideas through concrete images, thus creating a basis for long-lasting 

understanding of meaning. Algebra tiles can increase students’  mental imagery, resulting 

in an easier acquisition of learning, as reported by Sharp (1995) in a study examining a 

relatively small sample size. In addition, in a study involving two eighth grade classes in 

Belgium, Vlassis (2002) examined students of low ability levels from areas of low 

socioeconomic status (n = 40) in order to determine the effects of the implementation of 

a balance model in the study of solving equations. A convenient sample of teachers and 

students was utilized in the study with observations of 16 sessions using the materials 

given by the researcher. After interviewing students following an eight month lapse in 

usage of a balance model, results revealed retained learning as indicated by higher 

performance, mental images, and long-term memory and understanding. Students could 

more easily understand the solving of an equation with two unknown members, provide 



9 

clarification as to the role of the equal sign, and explain each step of the process 

involved in solving an equation.  

Iconic representations relate to imagery in the form of pictures and provide 

students with the tools needed to move beyond the concrete stage. With the use of iconic 

representations, students are able to represent concrete materials in pictorial form, which 

indicates a transition in understanding of the true meaning of the mathematical concept. 

Albeit, students are not making abstractions yet, but they are at an integral part of the 

process where they can next become successful at applying a symbol, or a type of 

language to represent something else. Bruner (1966) stated, “ Images develop an 

autonomous status; they become great summarizers of action”  (p. 13). Such 

representations pave the path for complete abstract thought. Students no longer require 

the actual concrete, physical object, and may then begin to delve deeper in thought and 

make much needed connections (Bruner, 1966). 

Students’  understanding of the number strand and computation has increased 

through the use of imagery. In a study examining one class of fourth graders with only 

procedural knowledge revealed prior to any intervention, Saenz-Ludlow (1995) studied 

the effects of numerical diagrams on students’  numerical understanding. With close 

collaboration between the researcher and teacher, specifically with the inclusion of team 

teaching, many opportunities for extensive data collection were afforded. Thus, 

videotaping of class lessons, including student presentations, and weekly interviews of 

small groups of students were examined in the data analysis, along with transcribed 

notes of classroom occurrences and examples of students’  work. The results revealed an 
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increase in students’  abilities towards the number strand, increased numerical reasoning, 

and concurrent engagement when using numerical diagrams to add two numbers. In a 

study examining a group of fifth grade students of mixed ability (n = 48), Ainsworth, 

Bibby, and Wood (2002) used a two-factor mixed design, including systems of 

representations and time to determine the effects of different representations on students’  

success with computational estimation. Posttests, in the form of paper and pen, were 

examined and compared to pretest results after the intervention of a computer-based 

learning environment (CENTS) had taken place. This intervention utilized various 

representations, while promoting prediction and explanations and providing subsequent, 

immediate feedback. The results revealed that the use of pictorial representations 

resulted in a statistically significant improvement in students’  abilities to succeed in the 

area of computational estimation, p < .001.  

Iconic representations have also been used to increase students’  understanding of 

the number strand in conjunction with the learning of fractions. In a study examining a 

non-diverse group of students, Brinker (1997) reported that pictorial models, such as a 

ratio table, can help students apply informal knowledge of fractions. Fifth graders of 

mixed ability in two different schools (n = 23) participated in another study examining 

the abilities of students’  to use various venues for solving division of fractions. These 

students did not hold any prior knowledge concerning the division of fractions. The use 

of well-triangulated data collection, including examination of pretest and posttest results, 

students’  solutions, field notes, and videotaped classroom discussions, revealed that 
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pictorial representations help students develop a conceptual understanding of the 

division of fractions (Sharp & Adams, 2002).  

Symbolic representations, such as numbers, symbols, or words can promote 

students’  abilities to relate ideas and explain their reasoning. When using symbolic 

representations, students are no longer dependent upon the physical actions and imagery. 

Additionally, symbolic representations help students condense information into a form 

that fits into a given attention span. The use of such representations helps students 

internalize ideas, while reaching a new level of understanding, one including abstract 

thought (Bruner, 1966). 

Numbers or other symbols can help students think in new ways about 

mathematics topics. Ainsworth, Bibby, and Wood (2002) reported that the use of 

numerical or symbolic representations improved students’  abilities to perform 

computational estimations, p < .001. The development of symbolic representations 

through constructive procedures can help students develop an understanding of the 

conceptual underpinnings related to the division of fractions (Sharp & Adams, 2002).  

Symbolic representations, in the form of classroom discussions using words as 

abstraction, can also deepen students’  understanding of mathematics. In a study 

comprised of 21 sixth grade female students enrolled in a Canadian private school, 

Nason and Woodruff (2003) examined the effects of discourse on students’  abilities 

related to the number strand, specifically order. A plethora of data sources, including 

observation notes on lessons, student interviews, observation notes on student models, 

and notes on a computer model were used to examine the benefits of a learning 
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environment supported by computers. The Knowledge Forum, a computer supported 

learning environment, was used to provide opportunities for immediate responses, and 

thus plenty of abstraction of numerical ideas. The results revealed engagement through 

discussions increased students’  achievement related to numeracy and order. 

Additionally, discussions in mathematics classrooms can increase students’  performance 

on items related to the algebra strand. After extensive data collection over a nine week 

period, Pugalee (2001) found student engagement in conversations about graphs of 

linear equations, using graphing calculators to develop increased conceptualizations. 

Examples of student work and other writing, as well as anecdotal notes were used to 

ascertain such achievement. The high school algebra students involved in the study (n = 

16) were characterized as low math performers and gained much success in abilities to 

explore, explain ideas, and make connections related to slope and y-intercept after use of 

discussions. 

Constructivist Teaching Approaches 

Constructivist teaching approaches play an important role in developing students’  

conceptual understanding and ability to communicate learned ideas. These approaches 

include teacher encouragement of student independent thinking, creation of problem-

centered lessons, and facilitation of shared meanings. The theory of constructivism is the 

basis for such teaching approaches. 

Constructivism is aligned with active learning and encourages comparison of 

new ideas to prior knowledge (Piaget, 1954; Piaget, 1970; Piaget, 1973; von Glasersfeld, 

1997; Vygotsky, 1978). Constructivism was defined by Slavin (2000) as, “ [The] view of 
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cognitive development that emphasizes the active role of learners in building their own 

understanding of reality”  (p. 32). In this manner, students are not analogous to sponges 

through absorption of new information. Instead, students must participate in classrooms, 

which promote constant reflection of one’s own ideas, as well as the connection to 

others’  ideas (Van de Walle, 2001). The use of physical actions, one component of 

constructivism, can prevent students from simply memorizing information, and 

therefore, promote use of senses to obtain underlying meaning (Vygotsky, 1978). This 

action promotes students’  control of their own learning situation, or independent 

thinking. von Glasersfeld (1996) stated, “For whatever things we know, we know only 

insofar as we have constructed them as relatively viable permanent entities in our 

conceptual world”  (p. 19). Designing classroom activities promoting communication and 

justification of ideas is important in helping students develop problem-solving skills 

(Piaget, 1973). There is great importance in the facilitation of correct mathematical 

language, justification of ideas, and sharing ideas with others (Ball & Bass, 2000). 

The process of assimilation and accommodation as used in the learning of new 

ideas can promote students’  abilities to make connections in ways that will foster the 

retention of knowledge. When the student uses the external environment to make 

accommodations to a previously learned set of ideas, assimilation is taking place (Piaget, 

1954). Such learning approaches are present when students actively engage in the 

learning process while maintaining a freedom to explore ideas that are of interest. Piaget 

(1973) stated, “…He will have acquired a methodology that can serve him for the rest of 

his life, which will stimulate his curiosity without the risk of exhausting it”  (p. 93). 
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Therefore, in order to foster internalization, students need to participate in active 

exploration and discussion, so they can integrate these actions into similar ideas existing 

in the mind (Piaget, 1973). 

Mathematics education relies closely on constructivism and its exploratory and 

inquisitive strategies. Students can construct meaning in mathematics from each other or 

from use of individual objects, both of which are part of experiences (von Glasersfeld, 

1997). Students at all levels can benefit from such hands-on approaches. Students who 

typically perform lower in mathematics foresee ideas in an entirely new light when using 

concrete learning experiences. Thus, all students can learn mathematics when given 

appropriate instruction that is tailored to their needs. This type of instruction fosters the 

linkage between concrete and abstract thought in a meaningful and coherent manner. 

Piaget (1973) explained the importance of use of hands-on, active types of play in 

learning by stating, “Once these mechanisms are accomplished, it becomes possible to 

introduce the numerical data which take on a totally new significance from what they 

would have had if presented at the beginning”  (p. 101). In fact, without such approaches, 

students often approach mathematics in a haphazard fashion through trying already 

known procedures, which are detrimental to the ability to use reasoning skills (Piaget, 

1973). 

The constructivist teaching approach encourages the use of invented algorithms, 

solving of one’s own problems, and question-asking in order to foster independent 

thinking in students. Invented ideas in a constructivist classroom will encourage 

problem-solving through engagement (Warrington & Kamii, 1998). In one study, Kamii, 
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Pritchett, and Nelson (1996) examined data collection from fourth grade observations 

and student interviews to determine the effects of invented methods for finding the 

average of a set of numbers on students’  understanding and reasoning capabilities. With 

no prior knowledge of finding the average of a set of numbers, students eagerly invented 

algorithms and explained their reasoning, as well as provided a definition for the 

meaning of an average. The results revealed the presence of depth of thinking skills that 

abounded as students invented their own procedures for finding the average. 

Specifically, students revealed intuitive understanding, as evidenced by adequate 

qualitative, spatial, and numerical reasoning. Additionally, students moved beyond the 

need for paper and pencil in their computations. Inventing and creating procedures can 

also enhance students’  understanding of equivalent fractions (Curcio & Schwartz, 1998). 

Furthermore, in mathematics, the act of solving one’s own problems (Wood, Cobb, and 

Yackel, 2000), as well as the process of asking questions with other students concerning 

various strategies applicable to the mathematics topic (Carpenter, et al, 1994) can 

increase students’  mathematical abilities. 

The constructivist teaching approach of creating problem-centered lessons 

includes realistic situations and the posing of problems. Teachers need to present 

cumulative problems to increase students’  abilities to make connections in mathematics 

(Carpenter, et al, 1994; Cunningham, 2004; Wood & Sellers, 1997). In a study 

examining the effects of problem-centered lessons on developmental math students’  

problem-solving skills, Verhovsek and Striplin (2003) reported higher engagement and a 

statistically significant increase in performance on a post-test exam. Activities that 
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incorporate real-life situations into problems posed in mathematics lessons promote the 

understanding and realization of applicability of such skills (Tepper, 1999). In a study 

examining a four-way analysis of variance, Hickey, Moore, and Pellegrino (2001) 

reported higher student performance on standardized tests and deeper conceptual 

understanding when learning in a constructivist classroom that implemented video usage 

and real-world situations into lessons involving the posing of problems. Two pairs of 

schools, including 19 fifth grade classrooms, were matched according to students’  

socioeconomic status for inclusion in the study. A significant difference in achievement 

on a subtest resulted for students taught from realistic contexts provided through 

problem situations, specifically in the areas of problem solving and data interpretation. 

Sharp and Adams (2002) reported similar results concerning the manner in which 

realistic situations can help students develop a foundational understanding of division of 

fractions without relying on the invert-and-multiply procedure.  

The constructivist approach of facilitation of shared meanings involves the 

creation of small group activities and use of negotiated meanings. Wood, Cobb, and 

Yackel (2000) explained the importance of negotiated meanings and encouragement of 

small group collaboration in socially communicative situations with students as they 

provide their explanations. Group interaction develops deeper-level thinking as students 

explain ideas (Wood & Sellers, 1997). 

Engagement 

Engagement plays an important role in students’  understanding and application 

of ideas. The development of a classroom community where engagement in 
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communicative situations can flourish will promote students’  abilities to apply 

knowledge learned. An engaging classroom community can be defined as one that 

encourages choice and application of mathematical ideas in a discursive environment 

(Boaler, 2000). Thus, students interact with other students while discussing ideas related 

to the mathematics lesson, as well as interact with the teacher concerning the sharing of 

meanings.  

In mathematics, the use of discourse helps the students formulate ideas and 

develop appropriate reasons for such thoughts. Such activity allows the students to make 

connections, build upon others’  ideas, and realize their current level of understanding 

concerning a mathematics topic. The use of speech and communication (Vygotsky, 

1978) in the learning process, as well as social engagement (Dewey, 1900) can help 

students internalize the concept at hand. Dewey (1938), in opposition to Piaget (1973) 

and von Glasersfeld (1997), believed that learning cannot take place solely within the 

individual child.  Children are believed to learn best through social situations due to the 

fact that all experiences are mostly social (Dewey, 1938). Thus, the creation of a social 

learning environment is of much importance in fostering students’  understanding and 

internalization of ideas. 

Communities of practice, involving engagement through discussion and active 

group collaboration is at the forefront of mathematics education. Engagement in 

communicative environments is derived from a situated perspective in which students 

are involved in work on applications of mathematics in groups (Lave & Wenger, 1991). 

The discussion of mathematical ideas through everyday activities, realized in a practical 
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setting, can help students make connections between learned knowledge and ways to 

apply such knowledge (Lave, 1988). Engagement in activities involving discourse 

promotes individuals’  abilities to make sense of experiences and develop identities as 

learners (Greeno & The Middle-School Mathematics through Applications Project 

Group, 1997). Engagement consists of students’  expression of their ideas; clarification, 

justification, and representation of their ideas; and receiving feedback about their ideas 

(AAAS, 2001). 

Engagement is a product of both the use of different types of representations and 

constructivist teaching approaches in the mathematics classroom. Goldsmith and Mark 

(1999) explained that mathematical ways of thinking results from engagement in 

lessons. Inquiry-based and exploratory activities, such as problem-centered contexts, as 

well as use of various types of representations, including enactive, iconic, and symbolic, 

promote engagement, which in turn promotes both procedural and conceptual 

understanding. Boaler (2000) explained that the use of choice in methods, i.e. 

independent thinking, and negotiating meanings, i.e. facilitating shared meanings, are 

constructivist approaches that affect engagement and subsequently affect learning. 

Goldsmith and Mark (1999) stated, “The emphasis on engaging students in doing 

mathematics is intended to help students understand the why as well as the how of the 

mathematics they study”  (p. 43). Therefore, engagement is a mediator between 

constructivist teaching approaches and use of representations and resulting learning. 

Engagement in mathematics lessons and activities can increase students’  overall 

knowledge, understanding, and reasoning abilities. Student engagement in mathematics 
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lessons is promoted by use of representations (Nason & Woodruff, 2003; Pugalee, 2001; 

Quinn, 1997; Saenz-Ludlow, 1995) and constructivist teaching approaches 

(Cunningham, 2004; Verhovsek & Striplin, 2003; Warrington & Kamii, 1998). High 

engagement and academic competence are closely related, as revealed by higher 

academic achievement (Rodriguez, 2004), indicating a high-quality classroom (Weiss & 

Pasley, 2004). In a study utilizing constructivist teaching approaches involving problem-

posing, Cunningham (2004) found students to become more engaged in the lesson when 

discussing ideas in small groups of three to four students. With the examination of 

numerous examples of student responses, the results revealed that mathematics students 

gained higher reasoning skills and deeper understanding of mathematics, as well as more 

reflection from the concurrent engagement. 

Engagement includes components related to classroom discussion involving 

expression of ideas, justification of ideas, and receiving feedback concerning ideas. 

Expression of ideas and the opportunity to receive feedback can indeed promote 

internalization of mathematics ideas (Artzt, 1996). The action of explaining reasons 

behind ideas in mathematics promotes students’  abilities to further their understanding 

(Burns, 2004). Justification, another component of engagement, has been found to 

increase students’  development and understanding of number sense through examination 

of qualitative data taken from a large sample size (Schneider & Thompson, 2000). This 

study examined 26 second grade students and their invented methods, as consequential 

justifications for performing computations and working with arithmetic equations. The 

invented equations were deeply perused to determine students’  success in understanding 
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the material. Specifically, students developed an appropriate understanding of the idea of 

positive and negative whole numbers, creation of new numbers, and meaning of number 

properties.  

Procedural Knowledge 

 Procedural knowledge refers to a level of understanding that involves mostly an 

attainment of facts and algorithms that does not require knowledge of underlying ideas. 

Therefore, the teaching strategies needed for promotion of such knowledge typically 

involves a direct approach that encourages teacher lectures and non-discursive listening 

on the parts of the learners. In this manner, the teacher acts as the deliverer of 

knowledge, whilst the students readily absorb the knowledge. There is not much room 

for inquisitions, discussion, or much active engagement in the lesson process. Boaler 

(2000) described such classroom teaching as fostering much individualism, while 

delivering closed types of learning that are not applicable to other settings outside of the 

classroom. Boaler (2000) stated, “The students believed that adopting classroom 

practices in the real world was inappropriate, so they did not attempt to draw upon 

school mathematics”  (p. 114). 

 It is hypothesized in this dissertation, however, that the learning of procedural 

knowledge can increase with the use of constructivist teaching approaches. With the use 

of teaching approaches that promote conceptual understanding, students will be 

equipped with foundational knowledge, which can then promote students’  abilities and 

achievement related to procedural knowledge. In other words, a student can develop 

other formulas or theorems through a thorough understanding of underlying concepts. In 
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this manner, such approaches can open doors to students in the realm of procedural 

knowledge. Students, can therefore perform higher on exams, thus exhibiting procedural 

knowledge, when learning from constructivist teaching approaches, representations, and 

engagement in the classroom (Ainsworth, Bibby, & Wood, 2002; Hickey, Moore, & 

Pellegrino, 2001; Kennedy, 2000; Moch, 2001; Verhovsek & Striplin, 2003; Vlassis, 

2002, e.g.). 

Conceptual Understanding 

 Conceptual understanding ascribes to a thorough understanding of underlying, 

foundational concepts behind the algorithms performed in mathematics. With proper 

conceptual understanding, students possess the necessary skills to recreate formulas and 

proofs without any memorization or rote process. The base of understanding is present, 

and thus allows the students to build upon prior knowledge, as realized by constructivist 

practitioners. With the assimilation and accommodation used when learning new ideas, 

students are able to make connections and develop deeper meanings through the 

comparison of new ideas to previously learned ideas (Piaget, 1954). Conceptual 

understanding thus involves teaching approaches that allow students to make choices 

and apply their understanding through active engagement in problem-based situations 

(Boaler, 2000). These approaches are in alignment with constructivist teaching, use of 

various representations, and engagement. Such approaches promote deeper levels of 

conceptual understanding and applicability in mathematics students (Cedillo, 2001; 

Cunningham, 2004; Curcio & Schwartz, 1998; Hickey, Moore, & Pellegrino, 2001; 

Vlassis, 2002, e.g.). 
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Relationship between Procedural and Conceptual Knowledge 

 Procedural knowledge and conceptual understanding are both needed in order to 

promote students’  overall successful learning base in mathematics. Constructivist 

teaching approaches need to include methods that involve the attainment of both types of 

knowledge, namely skills and higher-level understanding (Goldsmith & Mark, 1999). 

Therefore, the desire to promote conceptual understanding does not eliminate the desire 

to promote procedural knowledge. Goldsmith and Mark (1999) stated, “Nowhere do the 

Standards contend that computation is unimportant or that students can get by without 

knowing basic number facts and operations. They do, however, recommend diminishing 

the amount of class time dedicated to skills practice…” (p. 41).  

 Students can make much needed connections in mathematics from the cyclical 

knowledge gained from both types of learning. For example, students can develop 

conceptual understanding from prior knowledge and skills by comparing the new ideas 

to old ideas (Piaget, 1954). Previously attained knowledge and procedures can help 

students connect such ideas to the big conceptual ideas in mathematics (Woodbury, 

2000). Furthermore, conceptual understanding can promote new procedural knowledge 

by promoting mathematical ways of thinking that allow students to use generalizations 

to discover new theorems or proofs based upon the already present conceptual base 

(Goldsmith & Mark, 1999).  

Gap in Data Analyses 

 The analyses used thus far in examining the effects of representations, 

constructivist teaching approaches, and engagement on students’  learning involve 
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diverse qualitative methods and some statistical testing. The qualitative methods have 

mostly consisted of observation notes, examples of student notes, and interview data. 

The quantitative statistical tests appearing in the literature have involved descriptive 

statistics and analysis of variance. Therefore, there is a need to examine these variables 

using a more rigorous statistical test, such as that of multi-level structural equation 

modeling. Additionally, constant comparison of descriptions of teachers’  presentations 

and students’  actions for many different teacher lessons need to be examined for the 

variables of representations, constructivist teaching approaches, and engagement. 
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CHAPTER III 

METHODOLOGY 

A mixed methods approach was used in order to observe the effects of 

interventions that had already taken place through use of representations, constructivist 

teaching approaches, and engagement. Mixed methods research provides information 

from both quantitative and qualitative methodologies, thereby providing generalizable 

and contextual data, which reveal more completely the aspects related to the research 

questions (Creswell, 2002). In this study, qualitative data is taken from observations of 

algebra lesson videos, whereas quantitative data is pulled from algebra pre and post-test 

results. 

Participants 

 The sample for this study was 16 lessons of seven 7th and 8th grade teachers and 

their students (n = 971) enrolled in public schools in a rural area of Texas. It should be 

noted that n = 436 was the number of separate students involved in the analysis. Due to 

the inclusion of more than one lesson taught by the same teacher, students were 

duplicated or tripled when performing both descriptive statistics and structural equation 

modeling. The unit of analysis for statistical tests was the teacher lesson. The teachers 

participating in this study were of diverse ethnicities and varied in terms of years of 

experience in teaching. Additionally, the teachers entered the program without any prior 

professional development experience concerning the use of their textbooks. The teachers 

utilized various teaching approaches, representations, and strategies. The population of 

students consisted of diverse ethnicities, also. The ethnic distribution in the year 2004 for 
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12 year-olds in this region included 48.3% White, 20.8% African American, 27% 

Hispanic, and 3.9% for other ethnicities. One-third of the students were categorized as 

low socioeconomic status. 

Instruments 

 The 2003-2004 algebra test taken from the Middle School Mathematics Project, 

an NSF-IERI funded project, was used to examine middle school students’  procedural 

knowledge and conceptual understanding of the algebra strand. The multiple choice 

responses and written responses from pre and post-tests were used to ascertain such 

knowledge and understanding. Eight questions, consisting of three multiple choice, four 

short responses, and one extended response were used to assess procedural knowledge. 

The questions assessing procedural knowledge involved relation of algorithmic and rote 

knowledge of mathematical ideas. Twelve questions, consisting of four multiple choice, 

three short responses, and five extended responses were used to assess conceptual 

understanding. The questions assessing conceptual understanding involved much depth 

and opportunity for students to make connections and applications using a thorough 

understanding of underlying mathematical concepts. For example, students were asked 

to match a real-world situation to a mathematical graph of the function. In this situation, 

students must possess knowledge above and beyond simple rote knowledge. Refer to 

Appendix A for more information. The information obtained from the 16 videos of 

teacher lessons was used to determine the pedagogical tools and strategies used. The 

videos were obtained from the Middle School Mathematics Project, as well. 
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 The middle school algebra strand requires the use of various modeling techniques 

by students in order to understand, represent, and analyze algebraic ideas. According to 

Principles and Standards for School Mathematics, “ [Students are expected to] 

understand patterns, relationships, and functions; represent and analyze mathematical 

situations and structures using algebraic symbols; use mathematical models to represent 

and understand quantitative relationships; and analyze change in various contexts”  

(National Council of Teachers of Mathematics, 2000, p. 395). The algebra test from the 

Middle School Mathematics Project contained questions relating to each of these 

objectives. Such algebraic content expectations include both proficiency and conceptual 

understanding that are evidenced through activities utilizing the translation of types of 

representations such as symbolic to other verbal or graphical representations. 

Additionally, students should use mathematical models in order to represent and analyze 

real world situations, whereby they are actively testing mathematical conjectures 

(National Council of Teachers of Mathematics, 2000).  

Three observation sheets were implemented when viewing the videos to 

determine percentage of time representations and constructivist teaching approaches 

were used, as well as percentage of time students were engaged. The sheets were also 

used to determine percentages of time for use of different types of representations, 

constructivist teaching approaches, and engagement. Refer to Appendix B, C, and D for 

more information. The three types of representation are enactive, iconic, and symbolic 

(Bruner, 1966). The criteria for constructivist teaching approaches include 

encouragement of independent student thinking, creation of problem-centered lessons, 
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and facilitation of shared meanings. These criteria are derived from the components of 

constructivism (Piaget, 1954; Piaget, 1970; Piaget, 1973; Vygotsky, 1978). The 

American Association for the Advancement of Science (AAAS, 2001) criteria was used 

as a reference for types of engagement. The criteria include students’  expression of their 

own ideas relevant to the learning goals; clarification, justification, interpretation, and 

representation of ideas; and receiving specific feedback from the teacher. Descriptions 

and examples were documented and categorized using constant comparison methods. 

With constant comparison techniques, indicators, codes, and categories are compared 

with one another in an attempt to eliminate needless repetition. In this manner, overall 

categories emerge from the recorded data (Creswell, 2002). A space for extra 

observations or pertinent information was also included in the instrument.  

The time coding for the indicators of representations, constructivist teaching 

approaches, and engagement was undertaken using specific operational definitions. 

Refer to Table 1. With this approach, more accuracy in determining actual occurrences 

across the 16 video lessons was ensured. Some of the specifics involved in the 

definitions were more obvious than others, as with the case of viewing use of enactive 

materials, or manipulatives. Therefore, each code was documented for each portion of a 

lesson by examining the operational definition and determining its fit. In several cases, 

time coding for various indicators overlapped due to concurrent use of more than one 

representation in the same part of the lesson. 
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Table 1 
Description of Indicators of Coded Variables 
Indicator Description 
Enactive Representations The lesson involves the use of physical 

objects, i.e. blocks, graphing calculators. 
Iconic Representations The lesson involves the use of pictures, i.e. 

graphs, diagrams. 
Symbolic Representations The lesson involves the use of written 

numerals or symbols, as well as spoken or 
written words. Abstraction of meaning is 
the key in this case. 

Encourage Independent Student Thinking The lesson promotes the discovery of 
ideas, including invented processes, and 
question-asking. 

Create Problem-Centered Lessons The lesson includes cumulative math 
problems whereby connections are made, 
i.e. students use manipulatives to discover 
patterns and later place the data into t-
tables and then graph the ordered pairs, 
while discussing the connections between 
the representations and the meaning 
involved. 

Facilitate Shared Meanings The lesson promotes participation in 
discussions and negotiated meanings for 
mathematical ideas. 

Students’  Expression of Ideas Students provide higher-level, descriptive 
comments during the lesson. Simple, short 
phrases are not included. Explanations are 
not included. 

Students’  Justification of Ideas Students provide explanations for ideas 
provided in the lesson. Simple, short 
phrases are not included. 

Receiving Feedback from Teacher Students receive meaningful feedback 
from the teacher, i.e. the teacher makes 
connections, expands on ideas offered 
students, models, and provides probing 
questions. 

 

Representations were the easiest indicators to code, due to their apparent 

presence in the lesson. The use of enactive representations was coded whenever physical 

objects (manipulatives) were utilized in teaching the algebraic concept, or procedure. For 



29 

example, the use of wooden, colored blocks for teaching the concept of patterns would 

be considered an enactive representation. Likewise, the use of graphing calculators to 

teach the concept of function would also be considered an enactive representation. Iconic 

representations were coded for the use of pictorial representations, such as an illustration 

of a diagram, table of values, or graph. Symbolic representations, which involve 

abstraction of mathematical ideas for students, were coded whenever symbols, numbers, 

or words/discussions were used. Such symbols allow students to derive deeper meaning 

while making connections from concrete to abstract thought.  

The coding of constructivist teaching approaches required much more 

deliberation concerning the appropriate fit of the activity or occurrence with the actual 

operational definition. The first indicator of constructivist teaching approaches was the 

encouragement of student independent thinking. Independent thinking included the 

invention of algorithms and independent solving of problems, as well as inquisitive 

comments by students during the lesson. Questions asked during the lesson that dealt 

with possibilities for connections to other ideas in algebra, or other topics in 

mathematics, were seen as acts of independent thinking. The independent solving of 

problems could involve group collaboration if it was not based upon explicit directions 

from the teacher. The second indicator, creation of problem-centered lessons, was coded 

whenever cumulative mathematics problems were posed, whether it was in a realistic 

situation or simulated one. The critical part of such coding for this indicator included the 

posing of a problem that combined several mathematical objectives into one large 

problem, instead of several small problems. An example of a problem-centered lesson 
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would be the use of manipulatives to help students develop and understand patterns, 

whereby they could then develop tables of values and create graphs representing the 

relationships. Students might also discuss ideas with peers concerning similarities and 

differences between graphs and reasons for the various ideas. These activities could be 

tied to realistic ideas, but were not required to do so in order to be coded as problem-

centered. However, whenever realistic activities were utilized, they were coded as 

problem-based lessons. The third indicator of constructivist teaching approaches, 

facilitation of shared meanings, involved small group collaboration and discussion, as 

well as whole-class discussions and negotiation of ideas. Discussions pertained to the 

lesson and/or connections to other topics in algebra. Such approaches involved both the 

teacher and students in discourse concerning the mathematics topic and not simply rote 

performance. 

The coding of engagement involved students’  expression of ideas; justification, 

clarification, and interpretation of ideas; and receiving feedback from teachers. When 

deciding upon the appropriateness of coding occurrences as expression of ideas, 

comments made by students indicating higher-level, or descriptive ideas related to the 

lesson were coded. For example, yes or no responses, as well as short phrase responses 

to the teachers’  question were not coded as expression of ideas. Comments offered 

during discussions, however, were coded as expression of ideas. The coding of 

justification of ideas involved students’  offering of explanations for steps, ideas, or 

solutions to the algebraic problems. An example of justification of ideas could involve 

an explanation involving reasons for identifying a function as linear from a table of 
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values. The coding of receiving feedback from teachers involved a high level of 

deliberation in determining such labeling. It was determined that simple recognition of 

correct or incorrect responses, as well as restatements of students’  answers in a similar or 

exact form were not forms of feedback indicative of an engaged classroom. However, 

the use of probing questions, modeling, facilitation of connections to other ideas, and 

expansion of ideas to other topics were coded as receiving feedback from the teacher. 

An experienced mathematics educator coded eleven representative segments of 

two of the videos to verify and provide a reliability estimate of the coding variables. 

Inter-rater reliability was calculated in order to provide information concerning the 

similarity of results concerning the coding of the three variables. Eleven time segments 

were viewed by a fellow mathematics education doctoral student. These time segments 

were representative of the various indicators examined in the lessons. The percentage of 

agreement was 91%. Creswell (2002) stated, “This method has the advantage of 

obtaining observational scores from two or more individuals, thus negating any bias that 

might be brought on by one of the individuals”  (p. 182). Triangulation was used, 

therefore, consisting of the coding and descriptions of the videos using the observation 

sheets completed by the researcher, with a follow-up completion by a colleague. In 

addition, for the teachers who did follow the textbook, confirmation of lesson 

presentation and materials used were described from the textbook. It should be noted 

that in Lesson 7, the use of iconic representations were not coded, due to the inability to 

discern their inclusion on the worksheet. However, when the actual lesson materials 

were later viewed, it was determined that pictorial drawings of pattern blocks were used 
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in the lesson. Lastly, observation sheets filled out by those who videotaped the lessons 

were used to determine teachers’  strategies and techniques in the classroom.  

Data Analysis 

 The 16 videos of algebra lessons were selected based upon the opportunity to 

relate the effects of representations and constructivist teaching approaches to student 

achievement. The multiple choice responses and written responses from the 2003-2004 

algebra test were examined to determine procedural knowledge and understanding. Both 

the pre-test data and post-test data were used to ascertain the gain in achievement. 

Responses to multiple choice questions were coded as 1 for correct and 0 for incorrect. 

Written responses to open-ended questions were coded according to level of correctness 

using 0 for incorrect, 1 for partially correct, and 2 for correct. The level of correctness 

for open-ended questions was recorded using a rubric developed by researchers working 

on the Middle School Mathematics Project. Refer to Appendix E. The data for 

determining the growth in procedural knowledge and conceptual knowledge were 

collected from pre-test to post-test gain.  

 Quantitative data on teaching included the time and percentage of use of 

representations, constructivist teaching approaches, and engagement. Each time segment 

of a lesson was recorded for each of the indicators of the three variables. Time segments 

were divided by overall instructional time to obtain percentages for each type of 

representation, constructivist teaching approach, and engagement. Minutes and 

remaining seconds for each occurrence of an indicator were converted to total seconds, 

which were then converted to minutes that were rounded to the nearest hundredth. A 
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total for each indicator was calculated by adding the time segments together and 

rounding to the nearest percentage. Software that records specific times from start to 

finish for each category was used to ensure accurate measurements of time.  

Qualitative data included summary descriptions of teacher and student actions for 

each lesson. Through the use of constant comparison, types of action and clustering of 

engagement around certain representations were categorized and described. Descriptions 

of lesson components, student responses, and teacher feedback were recorded to reveal 

the qualitative aspects related to the situations surrounding teachers’  and students’  

actions. Percentage of representations and constructivist teaching approaches were 

examined through the creation of two bar graphs. The first bar graph examined the 

percentages of the indicators of representations and constructivist teaching approaches 

for the first lesson taught by each teacher. The second bar graph examined the average 

percentage of the indicators of representations and constructivist teaching approaches for 

each teacher. The means and ranges associated with each teacher and the concurrent 

indicators were provided to demonstrate size of differences between lessons for each 

teacher. The pictorial representation was used to reveal the amount of commonality 

between representations and constructivist approaches.  

Descriptive statistics were calculated on the resulting information from the nine 

indicators of types of representations, types of constructivist teaching approaches, and 

types of engagement, as well as for the test data for both types of questions. In addition, 

calculations were performed using information from the 16 lessons overall, as well as 

from information gathered from each of the 16 lessons. Thus, mean percentages and 
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standard deviations for each indicator across the 16 lessons were computed. Means and 

standard deviations for the pre-test and post-test data for both procedural and conceptual 

types of questions were calculated. Procedural and conceptual gains across the 16 

lessons were also computed. These overall descriptive statistics across the lessons were 

computed in order to obtain a baseline of how students performed for each question 

item. Also, the overall means and standard deviations for the indicators provided 

information concerning the amount of occurrences that prevailed when examining 

several different lessons. The information from each of the 16 lessons provided 

information concerning percentages of indicators across the board for each unit of 

analysis. Therefore, it could be discerned which lessons had strong or weak attributes of 

use of various representations, constructivist teaching approaches, and engagement in 

the lesson.  

Student achievement was estimated by calculating procedural and conceptual 

gains and standard deviations for each of the lessons in order to observe the differences 

and similarities between performances on procedural type questions as compared to 

conceptual type questions. In addition, the standard deviations revealed the distances that 

scores were from the mean. Also, the mean gains revealed high or low scores which 

could be examined according to the types of teaching approaches utilized in the lessons. 

In this manner, an idea of how students perform related to various approaches could be 

analyzed. 

A correlation matrix for the nine indicators was calculated using SPSS. Each pair 

of indicators was examined to determine slight, limited, or good predictions, as well as 
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need for combination of indicators due to likely measurement of the same item. Thus, r² 

was calculated for each pair of indicators in order to determine the amount of variability 

accounted for, or predicted by one indicator from another (Creswell, 2002). Of course, r, 

or the coefficient, was first examined to reveal the degree to which the items were 

correlated, in addition to any statistically significant correlations at either the .01 or .05 

level. 

Structural equation modeling was used to determine the relationship between 

representations, constructivist teaching approaches, engagement, procedural knowledge, 

and conceptual understanding. A multi-level structural equation model with a student 

level (within groups) and teacher level (between groups) was examined using MPLUS. 

The two-level structural equation model prevented the loss of variation at the teacher 

level because the student variation contributed to the variation at the teacher level. 

Muthen and Muthen (2006) stated, “Random effects representing across-cluster variation 

in intercepts and slopes or individual differences in growth can be combined with factors 

measured by multiple indicators on both the individual and cluster levels”  (p. 6). The use 

of a two-level structural equation model prevents the loss of information, due to the fact 

that independence is not assumed over all scores, but only those dealing with between-

level scores. Otherwise, a single-level structural equation model would ignore certain 

teacher level (between-level) predictors that do indeed reveal that scores for students in 

certain clusters are in fact more related than students randomly pulled from participation 

in different teacher lessons (Kline, 2005). 



36 

The study determined whether the paths from representations, constructivist 

teaching approaches, and engagement indicated significant predictions for procedural 

knowledge, or conceptual understanding. The study also determined if the path from 

representations and constructivist teaching approaches indicated a significant prediction 

for engagement. An overall model fit for the data was reported, including � ² and degrees 

of freedom, as well as the p-values for the variables predicting classroom means for 

procedural knowledge and conceptual understanding. The Comparative Fit Index (CFI) 

and Root Mean Square Error of Approximation (RMSEA) were reported to provide 

further information concerning the model fit. Paths were examined for possible removal, 

or addition, depending on the significance of the path (non-significant paths removed). 

The model was determined to fit the data when a non-significant model resulted, p > .05. 

The structural equation model that relates these variables is shown in Figure 2.  
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Figure 2. Structural equation model with measures of the latent variables. 
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CHAPTER IV 

ANALYSIS 

Examination of Each Lesson 

 Each lesson was examined through detailed recording of descriptions of teacher 

and student actions. Thus, examples of occurrences of each indicator were listed, along 

with any distinct materials utilized within these categories. For example, when looking 

for iconic representations, examples of such representations, such as a graph were drawn 

to provide detail as to the kinds of representations used. Likewise, with types of 

constructivist approaches, examples revealing ways students were working 

independently, on problem-centered lessons, or using shared meanings were 

documented. In addition, examples depicting how students appeared to be engaged in the 

lesson were also provided. The teacher actions during the lesson were also documented, 

including the types of feedback each one normally provided to the students, the learning 

environment provided, and the promotion or prohibition of independent thought. 

Lesson 1 Taught by Teacher 1 

 Lesson 1 followed the intended lesson from the textbook, MathThematics, with 

the use of an exploration activity involving the graphing of equations. This activity was 

observed in the video lesson. However, the teacher did not include the graphing 

calculator activity provided at the end of the lesson in the textbook. This activity 

involved entering the equation into the y= screen, creating the appropriate settings for 

the window, graphing the equation, and using either the trace feature or table feature to 

find specific values on the graph.  
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Throughout Lesson 1, presentations of symbolic and iconic representations were 

used, without any use of enactive representations. Students created tables of values, 

discovered closed form rules, created graphs, and discussed ideas. They also wrote 

ordered pairs for the x and y-values of the table of values. Students discussed with the 

teacher appropriate scales to use when labeling the graphs. Additionally, the table of 

value was examined through transition of the pictorial form of the numbers into words. 

For example, one student commented, “For every 10 miles per hour, there’s 15 

additional feet in distance.”  Students worked with labeling the independent and 

dependent axes of the graph, as well. They realized such labeling by deciding which 

variable depends on the other variable. One student stated, “Distance depends on speed.”  

The students and teacher also discussed the idea of proportionality as it related to the 

graph. When the teacher asked why a relationship was not proportional, a student 

responded, “…because it doesn’ t go through (0, 0).”  Students also learned how to 

determine whether or not a point was a solution to the equation. One student responded, 

“ If the point is on the graph, the ordered pair is a solution.”  Throughout the lesson, it 

was observed that the use of symbolic representations, and discourse coded from 

constructivist approaches and engagement were shared with the teacher instead of 

amongst the students themselves.  

Lesson 1 involved limited use of constructivist teaching approaches with no 

facilitation of shared meaning involved. Students did not solve their own problems, but 

were instead directly guided throughout the learning process by the teacher. The amount 

of time coded as student independent thinking for this lesson involved only the process 
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of asking questions during the lesson. The time spent on such tasks was very low. For 

the creation of problem-centered lessons, the teacher did not present a cumulative 

problem to solve that involved the students in discovering ideas throughout the learning 

steps. Instead, the connections between equation, table, and graph were taught using 

direct teaching. In addition, guess and check was used primarily to find closed form 

rules instead of well thought processes. The portion of the lesson coded as problem-

centered involved use of illustrations of real world examples, such as correlating 

highway driving to the understanding of functions. During the lesson, the teacher did not 

foster any negotiation of meaning, or create small groups to foster collaboration. 

There was a small amount of engagement in the lesson with no connections or 

probing offered by the teacher in the form of feedback. It was noted that the teacher 

lectured the entire time. Thus, there were not many openings for students’  expression of 

ideas and especially justification of these ideas. Again, comments were coded as such, 

whenever students provided a comment or question pertaining to an ideas related to the 

lesson or connection to other topic in mathematics. Short phrase responses or simple 

statements were not coded as comments. Students provided very few justifications. One 

student did explain how to estimate the number of car lengths that should be in front of a 

car in order to avoid a wreck. In addition, feedback consisted of reiteration of responses, 

with no connections or probing questions offered. 

Lesson 2 Taught by Teacher 1 

Lesson 2 followed the intended lesson from the textbook, MathThematics, with 

an exploration activity involving finding the slope of a line. Students also read a story 
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that fostered discussions involving rate of change. Additionally, they discussed ways to 

determine a person’s height by his/her footprint. Thus, they were learning about 

independent and dependent variables. These activities were observed in the video 

lessons. 

There was predominant use of symbolic representations, with some iconic 

representations, and no enactive representations. The students primarily discussed ideas 

related to slope after examining the story. They also worked with the formula for finding 

the slope of a line. Interestingly enough, the teacher used algorithmic rules to explain 

ways to subtract integers. There weren’ t any conceptual reasons provided for such 

approaches. During the remainder of the lesson, the teacher used a graph to teach the 

concept of slope. Students were asked to provide the slope of the line by counting 

intervals up and over in order to get back on the line. This sort of direct instruction 

teaching was apparent throughout the lesson. Instead of allowing students the time 

needed to explore ways to find the slope of the line, instructions were explicitly 

provided. 

This lesson involved a small amount of overall constructivist teaching 

approaches, with little or no time devoted to encouragement of student independent 

thinking or creation of problem-centered lessons. The teacher did, however, spent about 

a third of her time providing opportunities for small group activities. Students worked 

with partners to explore the slope of a line. In this lesson, some discussion of ideas 

concerning the story, as well as the creation of graphs and finding slopes ensued. The 

teacher delineated the meanings, formulas, and definitions of mathematical ideas to the 



42 

students during the lesson. The small group activities did not, however, provide students 

to explore ideas on their own. Instead, they provided more practice time to collaborate 

with peers concerning previously learned ideas. The teacher more or less described the 

steps needed to take in using the coordinates to find the slope of the line. Additionally, 

the lesson involved using a graph and its coordinates to find the slope of the line, but did 

not tie these ideas together with a cumulative problem. Therefore, this lesson did not 

exude much constructivist approaches as described by the operational definitions. 

There was a rather limited amount of engagement observed in the lesson. For 

example, students provided mostly short responses to questions asked. They did not 

elaborate, or provide higher-level comments during the lesson. One student expressed an 

idea in the lesson by stating, “ If they’ re tall, they have a long foot.”  This student was 

making a conjecture based upon previous data. This sort of expression was an anomaly 

in this lesson, however. In addition, students did not spend much time making 

justifications for reasons beyond short responses. One student did explain her reasoning 

by stating, “A higher slope is not reasonable since the line is flatter.”  Slightly more 

percentage of time was devoted to providing students with meaningful feedback. It 

should be noted that this percentage is still considerably low. The teachers’  meaningful 

feedback consisted of providing counterexamples, expounding on ideas, making 

connections to other ideas, and proving students concerning reasonableness. 

Lesson 3 Taught by Teacher 2 

Lesson 3 involved material at the beginning of the lesson, other than that 

provided in the textbook, Mathematics: Applications and Connections. The sheet the 
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students were working on wasn’ t the same as the sheet included in the observation 

packet. Towards the end of the lesson, however, students began working on writing 

expressions from word problems that came from the lesson provided in the textbook. 

Therefore, the activities provided in the lesson packet did not completely match the 

material watched on the video lesson. 

The predominant type of representation presented in this lesson was symbolic 

representations. A small amount of time was devoted to iconic representations, with no 

enactive representations used in the lesson. Most of the lesson consisted of the teacher 

solving equations on the board. Each step was explicitly shown, without any room for 

discovery. Likewise, the teacher wrote the operations of addition, subtraction, 

multiplication, and division on the board along with synonyms used in word problems. 

This use of symbolic representations did involve more student interaction, as they 

provided words for the teacher to write down on the board. Additionally, students 

worked on writing expressions from word problems, both as whole class participation 

and individual class work. The use of iconic representations consisted of a diagram 

drawn to illustrate the order of operations. The teacher also used a number line to 

illustrate the process of addition and subtraction of integers.  

The use of constructivist teaching approaches was minimal or non-existent in this 

lesson. There was not any creation of problem-centered lessons, or facilitation of shared 

meanings through either small group activities or negotiation of meanings. Students 

practiced on their work, or in other words, spent time on task. Much time was spent 

providing students exact algorithms to use when performing mathematical tasks. For 
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example, once during the lesson, the teacher asked, “A positive and negative, you do 

what?”  Rules were therefore encouraged and enforced without providing transitions 

from underlying conceptual ideas. During the lesson, students did ask some questions 

related to the writing of expressions, which was labeled as independent thinking. They 

also provided the teacher with synonyms for the four basic operations without any 

assistance from the teacher.  

This lesson consisted of virtually no engagement as defined by the operational 

definitions. There were not any cases of expression of ideas, as constituted by higher-

level comments instead of simple short responses. Likewise, students did not provide 

any justifications that would be considered as explanatory. A small amount of time, 

albeit less than one minute, was devoted to providing meaningful feedback to the 

students. The feedback provided consisted of teacher probes to help students understand 

the difference between equations and expressions. 

Lesson 4 Taught by Teacher 2 

Lesson 4 followed the intended lesson from the textbook, Mathematics: 

Applications and Connections, with the use of t-tables, graphs, ordered pairs, equations, 

and writing sentences to correspond with the situation described from the function. The 

lesson began with examining the average height of males and drawing a graph to 

demonstrate the increase in height. Students learned that height depends on age, or is a 

function of age. The information from the lesson packet matches the observations from 

the video lesson. 
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This lesson involved a high use of symbolic and much higher use of iconic than 

that used in the previous lesson taught by this teacher. Enactive representations were not 

used in this lesson either. The lesson was taught in a direct instruction manner with 

symbolic representation use consisting of copying the definition of a function into their 

journals, filling in the table of values with numerals and symbols, writing ordered pairs 

and equations to relate the function. These processes were learned through a step-by-step 

process lead by the teacher. It should be noted students did discuss the function as it 

appeared on the graph, while comparing it to the table and graph. The use of iconic 

representations consisted of creation of t-tables, or tables of values, as well as graphs, 

which were presented in a non-discovery manner. 

There was not any noted use of constructivist teaching approaches in this lesson. 

For each of the three indicators of constructivist approaches, there was not any time in 

minutes devoted to them. Students did work on sheets at their desks, which represented 

time-on-task. However, they were not using invented algorithms, or solving problems 

that had not been explicitly explained to them beforehand. Question-asking was also not 

a part of the learning process revealed in this lesson. As for creation of problem-centered 

lessons, students did work on tying together representations of functions in written, 

tabular, and graphical form. However, they did not work on one cumulative problem that 

was given to them to work on as they constructed ideas for themselves. Instead, they 

worked with worksheets that contained several problems. 

Engagement also played a small role in the execution of this lesson, as well. For 

example, there were not any examples of students’  expression of ideas that resembled 
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higher-level comments. In fact, the teacher left little room for these sorts of comments 

through constant reiteration of steps and facts. At one point, the teacher commented, 

“What did I say earlier? This is always x, and this is always y.”  This comment left no 

room for students to discover the reasoning behind such labeling. One student did 

provide an explanation for the particular labeling of the axes. Thus, this occurrence 

constituted the small amount of time devoted to justifications. A limited amount of time 

was spent providing meaningful feedback to students in this lesson, as well. Most 

comments provided by the teacher consisted of, “Why?” The feedback provided that was 

helpful for students consisted of use of probing questions to help the students make 

meaningful connections. However, the use of such feedback was quite scarce. 

Lesson 5 Taught by Teacher 2 

Lesson 5 did not include an observation packet from which alignment with a 

textbook could be determined. As viewed from the video, the lesson included learning 

more about functions, whereby students substituted values for x into an expression in 

order to obtain the solution, or y. Next, ordered pairs were written and used to create a 

graph. 

This lesson included much use of symbolic and iconic representations, due to the 

inclusion of using numerals and symbols to write expressions, as well as the creation of 

a table of values and graphs to represent the functions. The students also reviewed the 

concept of a function. There were not any enactive representations, or manipulatives 

used in this lesson. 
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There were virtually no examples of constructivist teaching approaches utilized 

in this lesson. There was one example whereby a student asked a question concerning 

how to set up a table of values. Independent thinking, as realized by invented processes 

and solving of one’s own problems, was not presented here. There was absolutely no 

creation of problem-centered lessons, or facilitation of shared meanings. The 

components of the lesson were not presented as a coherent whole. Additionally, the 

students were not provided opportunities to work on the cumulative problem while 

discovering ideas. Instead, every step was delineated by the teacher, therefore, hindering 

any opportunity for negotiated meanings and discussion. 

The amount of time spent students spent engaged in the lesson was minimal. 

Students provided mostly short responses when answering the teacher, and comments 

made on one’s own accord were rarely seen. In one case, a student described that a linear 

function forms a straight line. Justifications were not apparent in the lesson, either. 

Additionally, the teacher did not provide meaningful feedback to students. Instead, 

simple, short responses were given concerning the correctness of the response. Other 

instances of feedback consisted of the teacher following a response with a short question 

meant to evoke a correct response. These follow-up questions were not probing in the 

sense of leading students to the correct answer through the use of connections. Instead, 

they offered much assistance that more or less gave the answer away. Thus, this 

feedback was not coded. 
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Lesson 6 Taught by Teacher 3 

Lesson 6 did not follow the intended lesson from the textbook, Mathematics: 

Applications and Connections, which consisted of the writing expressions and equations 

using textbook examples. Instead, the students participated in a Jet Ski activity, whereby 

they worked in groups exploring proportional relationships. Students also reviewed two 

Short Stack activities in which the stacking of cups was used to demonstrate non-

proportional relationships. Therefore, the lesson that was provided was much more 

constructivist-based, than the intended lesson. Students did work with expressions and 

equations, but in a more exploratory manner. The material watched from the video 

lesson coincided with the observation notes for the lesson. 

This lesson involved a variety of each of the three types of representations 

examined. Symbolic representations were primarily used, and enactive and iconic 

representations were relatively equal in the percentage of time used during the lesson. 

Students worked with symbolic representations in a variety of ways including finding 

the nth term in a sequence, writing formulas for geometric figures, writing expressions 

and equations, and writing the constant of proportionality. Students worked with cups in 

order to understand the reasons behind the non-proportional relationship demonstrated 

with cup stacking. As for iconic representations, students examined graphs to determine 

proportionality by deciding whether or not the line passed through the origin. The 

teacher also drew pictures of geometric figures on the overhead at the beginning of the 

lesson in order to provide students with opportunities to see connections between the 
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drawing of the figure and the formulas for finding the perimeter, area, and circumference 

of the figure.  

Constructivist teaching approaches were highly integrated into the lesson, 

especially via creation of problem-centered lessons and facilitation of shared meanings. 

The indicator of encouragement of student independent thinking was present in 

approximately one-third of the lesson. Students were provided opportunities to construct 

their own meaning concerning proportionality. It could be discerned that students were 

struggling with this concept during the lesson, but after it was over, they seemed to have 

a firm understanding of ways to determine proportionality and non-proportionality in a 

variety of formats. Throughout the lesson, a definition of proportionality was never 

offered, but instead students were encouraged to compare different equations and 

determine the differences between them. As for the creation of problem-centered 

lessons, students participated in an activity that related representations of proportional 

relationships via tables, graphs, and equations. Each of these elements was tied together 

in a constructivist manner, whereby students made connections and discovered ideas 

through inquiry and collaboration with others. Lastly, students worked in small groups 

and thus engaged in negotiated meanings with each other and with the teacher. Students 

discussed ways to determine proportionality, and the whole class decided upon these 

facets. Students also determined reasons for translation of a word problem into a 

graphical representation, whereby the line did pass through the origin. One student 

responded, “ If you don’ t go skiing, it won’ t cost you anything, so it starts at 0.”  
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A relatively high level of engagement was exhibited during the lesson with 

mostly feedback from the teacher and expression of ideas. During the lesson, students 

made several comments concerning the lesson, especially while working in the small 

group setting. Students were providing higher-level, unique comments concerning their 

progress in understanding proportionality. Furthermore, when the teacher asked 

questions, students provided justifications for their responses, which surpassed simple, 

short phrase answers. Additionally, the teacher provided much probing and connections 

to previously learned ideas related to expressions, equations, and proportionality. 

Lesson 7 Taught by Teacher 4 

 Lesson 7 followed the intended lesson from the TAKS Mathematics Preparation 

Booklet, with the use of an exploratory patterns activity. Students worked with patterns 

to determine the numerical value of the nth term, as well as proportionality and non-

proportionality. The activity required students to fill in missing cells concerning the 

visual form of the pattern, written description, process column (or formula), and value 

for the term. This activity was not in alignment with the activity viewed from the video 

lesson. In the video, the use of iconic representations could not be discerned. However, it 

was obvious that enactive representations in the form of blocks were being used to help 

the students build the necessary patterns as explained by the formulas. Therefore, the 

coding from the video did not reveal the use of iconic representations. 

 Symbolic representations and enactive representations were predominantly used 

in the lesson. Iconic representations were not coded, due to the inability to view the sheet 

used in the lesson. It was believed that the patterns built from the blocks were being 
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created solely from the use of a written description. The use of enactive representations 

included the use of blocks to help students understand the progression of the patterns. 

Additionally, such use was integrated to help students determine a formula for the nth 

term. Students used symbolic representations when writing formulas for the functions, 

writing numerical values for the nth term, and using words to describe the situation. 

 Constructivist teaching approaches were quite apparent throughout the entire 

lesson. For example, encouragement of student independent thinking and facilitation of 

shared meanings were present during almost the entire instructional lesson time. 

Likewise, creation of problem-centered lessons was also predominant, with integration 

revealed during almost three-fourths of the lesson. During the lesson, the teacher did not 

explicitly state any algorithms or rules. Instead, she guided students in an endeavor to 

invent procedures and solutions on their own. This sort of guidance encouraged students 

to ask questions concerning their learning, and thus inquire into underlying meanings 

concerning proportionality. The problem-centered lessons invited students to make 

connections between various representations of functions. Students then made further 

connections to the idea of proportionality and developed an ability to discern a 

proportional relationship based upon characteristics in the various representation 

formats. This activity was developed around small group participation, whereby the 

students and teacher negotiated meanings concerning appropriate representations and 

meanings. 

 Engagement was relatively high and included both whole class discussion and 

small group interaction. Students specifically discussed pattern-building and ideas 
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underlying proportional relationships. Justifications were provided, along with 

comments, concerning reasons behind these ideas. One student explained that the 

relationship shown was proportional because the n was multiplied by 5. During these 

learning processes, the teacher provided much probing and connections to the various 

representations. 

Lesson 8 Taught by Teacher 4 

 Lesson 8 followed the intended lesson from the TAKS Mathematics Preparation 

Booklet, which included determining patterns for finding the numerical value for the 

number of faces to be painted on adjacent cubes. The lesson included filling in the nth 

term, pictorially representing the cube train, describing the situation in words, writing a 

formula, and filling in the numerical value for the number of faces to paint. This activity 

aligned with the observations made from the video lesson. 

 Each type of representation was used highly during this cube face painting 

lesson. For example, students worked with actual cubes in order to provide a better 

visual basis concerning which faces will be showing. Many students have an easier time 

visualizing special relationships if they can manipulate the objects first. In addition, 

student drew the cube trains on paper, therefore working with iconic representations. 

Lastly, students used written words and algebraic expressions to describe the 

relationships. Additionally, students examined the process column, which contained 

formulas such as f(n) = 3n + 2, which was written as 3(1) + 2, 3(2) + 2, 3(3) + 2, … on 

the students’  chart. Students examined the expression to determine if it represented a 

proportional relationship, y = kx. 
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 Constructivist teaching approaches were paramount throughout this lesson, as 

well. Students participated in solving cumulative problems, which involved modeling, 

drawing, writing formulas, finding the value for the nth term, and finding ways to 

determine proportionality. These ideas were discussed in a coherent manner, so that 

students did not walk away with an understanding of disconnected topics, but instead 

with an understanding of the whole picture. Additionally, students were encouraged to 

figure out ideas for themselves. The teacher provided only assistance in guiding the 

students towards an understanding. Each of the objectives of the lesson was delivered 

through interaction, both at the small group level and whole class level. Lecture was not 

the means used to teach these algebraic concepts. 

 Engagement in this lesson was quite high, due to the increased use of discussion 

during a large portion of the lesson. Not only did students discuss ideas in groups, but 

they also shared discoveries with classmates at the close of the lesson. These ideas were 

elaborated on by the teacher through probing questions, connections, and expansion to 

other ideas. The students shared revelations concerning ways to determine 

proportionality, thus exhibiting a high level of engagement in the lesson. Students were 

able to speak from understanding, which was prompted from engagement and not from 

memorization provided from a text. 

Lesson 9 Taught by Teacher 4 

 Lesson 9 followed the intended lesson from the textbook, MathThematics, which 

involved a lesson on patterns and sequences. Students were given word problems and 

prompted to create a table of values and then write an expression to reveal the value of 
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the nth term, or the closed form rule. Students who had not finished the face painting of 

the cubes from the previous lesson were provided time to do so, also. The lesson 

materials matched the observations from the video lesson. 

 A variety of each of the three representations was used in this lesson, with an 

especially high use of symbolic and iconic representations. During the lesson, students 

who had not finished the face painting activity did so with the use of enactive 

representations, or blocks. The other students worked on writing expressions to represent 

the closed form rule of the function. Thus, students were creating tables of values that 

were considered as both iconic, due to the pictorial format, and symbolic due to the use 

of numbers and symbols. Additionally, students used symbolic representations when 

writing expressions, reading aloud the word problems, and discussing ideas. 

 Constructivist approaches were used to help students develop a thorough 

understanding of the connection between word problems and algebraic expressions 

relating them. Students worked in small groups with peers in order to discover correct 

ways to set up t-tables, or tables of values, and determine a closed form rule. Each of the 

representations was tied together with the emphasis being on the connectedness of the 

representations. Additionally, the students working on the cube face painting were 

working on developing connections between representations of the function. 

 Engagement was definitely a prominent facet of this lesson, as evidenced from 

discussions concerning functions, closed form rules, proportionality, and constants and 

variables. Students engaged in discussions with each other, as well as the teacher and 
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provided reasons to support their ideas. The teacher provided meaningful feedback in the 

form of making connections and probing students to develop a coherent understanding. 

Lesson 10 Taught by Teacher 5 

 Lesson 10 followed the intended lesson from the textbook, Mathematics: 

Applications and Connections, which included solving equations. The sheet including 

exploratory activities using cups and counters to illustrate the steps involved in solving 

equations was not used in the lesson. Instead, only symbols were used to reveal the steps 

taken to proceed through the solution process. The other lesson materials asked students 

to solve equations and check their answers through substitution. These materials were in 

alignment with the materials observed in the video lesson. 

 The only representations utilized in this lesson were symbolic representations. 

Enactive representations and iconic representations were not used in this lesson. 

Interestingly enough, the lesson materials called for use of cups and counters, but such 

objects were not integrated into the lesson. Instead, students were required to use only 

rote steps while working with symbols in order to progress through the stages to obtain 

the solution. Likewise, iconic drawings of these manipulatives were not used either. 

Therefore, reasons underlying the steps were not brought to the students’  attention 

during the lesson. 

 Constructivist approaches were not used in this lesson by the teacher to facilitate 

learning. Instead, the teacher relied on a more direct instruction approach, in which 

lecture was the main mode of deliverance of knowledge. Students were explicitly told 

each step they should take in the learning process. There wasn’ t any room for inquiry, or 
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student independent thinking. There was one documented case of a student asking a 

question about the placement of the word “mean”  in a table filled with synonyms for the 

four basic operations. Otherwise, question-asking was not a component of the lesson. 

There were many problems modeled for students, as well as many problems given to 

students for individual seatwork. In this light, it is easy to determine that one cumulative 

problem with several connected parts was not used here. Also aligned with the lecture 

method was an avoidance of small group work and discussion of any kind. Students did 

not participate in developing negotiated meanings with other students, or with the 

teacher. 

 Engagement was certainly not a component in this lesson, due to little 

opportunity for discussion. Students did not spend any percentage of time providing 

higher-level, thoughtful comments, or justifications of ideas during the lesson. 

Additionally, the teacher provided feedback in the form of acknowledgement of correct 

and incorrect responses. Connections or probing questions were not used to guide 

students in the right direction concerning the learning of algebraic concepts. Instead, the 

teacher reiterated the correct answer, or restated the steps taken to arrive at the solution.  

Lesson 11 Taught by Teacher 5 

 Lesson 11 did not follow the intended lesson from the textbook, Mathematics: 

Applications and Connections, which included materials on writing expressions and 

equations. The lesson included materials from the textbook on functions and graphs, 

which was included in the following lesson. In fact, students drew graphs using 

information provided in t-tables while learning about labeling of axes and appropriate 
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scaling. The lesson materials, therefore, did not match the materials viewed in the video 

lesson. 

 Symbolic and iconic representations were approximately evenly split in their 

integration into the lesson. Enactive representations, however, were not present in the 

lesson. This lesson consisted of creating graphs to represent the functions delineated in 

the t-tables. Students used symbolic representations to label the axes, fill in table values, 

and write short statements describing the functions. Iconic representations were used via 

the use of tables and graphs. 

 Constructivist approaches were not utilized at all during this lesson, due to a 

heavy dependence upon lecture. The only questions asked were by students who had 

started seatwork and needed to know how to set up the graphs. It should be noted that 

these questions were not inquisitive, but rather consisted of learning how to 

algorithmically solve the problem. The teacher tells them exactly what they should write 

on their paper. For example, the teacher stated, “What comes first in a table goes on the 

bottom, and what comes next goes along the side of the graph.”  The reasons behind this 

statement were never explained. Additionally, several mini problems were given to 

students, as opposed to a cumulative problem encompassing many objectives. 

Discussion was not integrated into the lesson with the lesson involving short response 

answers instead. 

 There was little to no participation in classroom engagement found in the lesson. 

There were not any forms of student expression of ideas, or justification of ideas 

presented here. One occurrence of meaningful feedback was provided to a student by the 
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teacher through probing questions used to promote understanding concerning the choice 

of appropriate intervals on a graph. In other words, this lesson consisted of mostly 

lecture and independent seatwork without opportunity for sharing with others. 

Lesson 12 Taught by Teacher 5 

 This lesson did not follow the intended lesson from the textbook, Mathematics: 

Applications and Connections, which included worksheets on functions and graphs. The 

lesson did concentrate on the algebraic objectives, however. Instead of the proposed 

lesson materials, the teacher used other handouts that asked students to examine 

processes, ordered pairs, and graphs as they related to functions. Therefore, the lesson 

examined from the video did not match the lesson materials provided. 

 Symbolic and iconic representations were the representations of choice for this 

lesson, as well. Enactive representations, or physical objects, were not integrated into the 

lesson. Students used tables of value to determine input and output values, rules, and 

ordered pairs. Then, the students transferred this data into graphs, in which the 

relationship could be examined to determine the type of function represented. Students 

learned about linear functions, as well as equations that represent such functions. The 

teacher asked, “What equation would we use to graph this line?”   

 In this lesson, constructivist approaches were barely integrated into the learning 

process. There was not any evidence of problem-centered lesson creation, with only one 

occurrence of invented algorithms, supporting independent thinking. Two occurrences of 

facilitation of shared meanings were documented, with both dealing with negotiation of 

meaning and finding new ways to tackle the problem.  
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 The presence of engagement was also scarce and included only one account of 

student expression of ideas and two accounts of receiving meaningful teacher feedback. 

In one situation, a student invented an algorithm for finding the value for the number of 

riders after 10 hours. Also, the teacher used probing in one situation to help a student 

discover ways to find the speed of the rollercoaster. At another time, the teacher 

expanded on a students’  idea by revealing the appropriateness of the procedure in 

solving the problem. The teacher commented, “ I had not thought of solving it that way, 

but that is definitely a way we could do it.”    

Lesson 13 Taught by Teacher 6 

 Lesson 13 followed the intended lesson from the textbook, Texteams, which 

included examining the height of cups in order to determine proportional relationships. 

Students converted the information to graphical form after filling in the process column 

and determining a closed form rule. Students worked with a Short Stack activity in class 

and were given another one for homework. These materials matched the materials and 

activities viewed from the video lesson. 

 During the lesson, students worked with a variety of representations in order to 

obtain a thorough understanding of proportional relationships. In this lesson, students 

worked predominantly with symbolic representations, but also worked with enactive and 

iconic representations. Students used the graphing calculator in order to graph equations 

and determine if they passed through the origin, or were indeed proportional. In addition, 

students drew and labeled graphs to represent the functions. Additionally, students 

created t-tables, both on paper and using the table function of the graphing calculator. In 
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this manner, they could trace, so they could determine how many cups it would take to 

make a stack of nth height. Lastly, students set up proportions using equations, wrote 

equations for the line, wrote the constant of proportionality, and worked with symbols on 

both the graphs and tables. 

 Constructivist teaching approaches were a consistent part of this lesson. Each of 

the components of constructivist approaches was used during approximately half of the 

instructional part of the lesson. The creation of a problem-centered lesson encompassed 

the most amount of time, with facilitation of shared meanings and encouragement of 

independent thinking closely following. The students worked on one problem which tied 

together a realistic situation in the form of physical modeling, creation of t-tables, 

creation of graphs, and discussion of meanings associated with the connected ideas. 

Students determined their own procedures for analyzing and representing data. For 

example, students were asked to design their own graphs and explain reasons for the set 

up, in addition to describing whether or not it represented a proportional relationship. 

Each group presented their results to the class. Students also worked in small groups 

during the lesson, while sharing knowledge with members of their group, whole class, 

and teacher. 

 Student engagement played an important role in the structure of the lesson. 

Students were given ample opportunity to discuss ideas with others, provide 

justifications, and receive feedback from the teacher. Students spent the highest 

percentage of time providing higher-level comments, such as describing whether or not 

the dots on a graph should be connected. Additionally, students provided justifications 
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concerning reasons for proportionality. Lastly, the teacher provided meaningful feedback 

mostly in the form of making connections to previously learned knowledge in 

mathematics. She encouraged them to examine other representations, make comparisons, 

and then determine the resulting ideas. 

Lesson 14 Taught by Teacher 6 

 Lesson 14 did not follow the intended lesson from the textbook, Mathematics: 

Applications and Connections, which included graphing linear equations. Instead, 

students participated in a more exploratory activity involving the graphing of linear 

equations with a Cell Phone activity. Students worked with t-tables and graphs to 

determine proportional relationships. They also wrote equations found total costs, 

decided whether or not to connect the dots, and examined what happens at zero months. 

The Cell Phone activity matched the lesson materials and activities viewed from the 

video lesson. 

 Symbolic and iconic representations were the only representations used in the 

lesson. Students used symbols when working with both graphs and tables, as well as 

writing equations to represent the relationship. The lesson also involved the use of words 

to describe situations and reasons behind choices. In addition, students had to use 

symbols to reveal the process taken to arrive at the value for the nth term. Students 

worked heavily with making connections between the iconic and symbolic 

representations. In addition, much discussion concerning reasons behind responses was 

realized in the lesson.  
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 Constructivist approaches were a very large part of this lesson with over 70% of 

time devoted to such approaches for each of the three indicators. Students were asked to 

determine their own strategies, representations, and solutions, as well as provide detailed 

justifications for their ideas. Such an inquiry-based activity involved much question-

asking during the lesson. The lesson involved one large problem, which was a perfect 

example of a cumulative problem in mathematics. Students were given representations 

of data, asked to provide other representations, determine meanings for the 

representations, provide justifications for such meanings, and make connections to other 

ideas in mathematics. Likewise, the class was divided into groups whereby the sharing 

of ideas played a major role in the learning process. Also, whole class discussion 

concerning ideas related to proportionality was used. 

 Engagement was highly used in the lesson with predominant participation in 

expression of ideas. Students engaged in in-depth conversations with their group 

members, other classmates, and the teacher. These discussions were related to the ability 

to make connections and develop conceptual meaning for ideas, not for simply learning 

facts or procedures. Additionally, students spent much time providing justification for 

their responses, due largely to the requirement to explain reasoning during the activity. 

Lastly, teacher feedback consisted of probing and offering assistance to help students 

make connections to other ideas that might help them better understand the concept at 

hand. 
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Lesson 15 Taught by Teacher 6 

 Lesson 15 did not follow the intended lesson from the textbook, Mathematics: 

Applications and Connections, which included worksheets on graphing quadratic 

functions. Instead, the teacher continued the activity from the previous lesson, using the 

Cell Phone activity. Students worked more with using t-tables, graphs, and equations to 

determine proportional relationships and describe in words the occurrences realized 

through the graph. These lesson materials were aligned with the activity viewed from the 

video lesson. 

 Enactive, iconic, and symbolic representations were each used in the lesson in a 

coherent manner. Students used the graphing calculator to model situations, both in 

tabular and graphical form. Additionally, students used symbols to fill in tables, work 

with graphs, write equations, and describe relationships as evidenced by the data. Iconic 

representations in the form of graphs and tables were included in the Cell Phone activity. 

Each of these representations was incorporated into the lesson in a manner which 

promoted the ability to make connections in algebra. 

 Constructivist teaching approaches were once again a large part of the lesson, 

due to the inclusion of a cumulative mathematical problem with many components. 

Students were encouraged to find solutions on their own in a setting where mathematics 

was seen as a coherent whole, not as a source with many disconnected topics. Students 

were encouraged to develop their own ideas in a classroom environment where direct 

instruction was avoided. Furthermore, students participated in both small group and 

whole class discussions concerning their decisions and findings. 
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 Engagement was also a large part of the classroom environment, with expression 

of ideas spanning over one-third of the classroom instructional time. One student 

summarized the previous day’s findings from the lesson and revealed great 

understanding in doing so. Justifications were also provided by students during both 

small group and whole class discussion. One student explained, “You already paid it, so 

it’s already there.”  He was explaining why you must keep the original amount paid when 

determining the closed form rule. Teacher expansion of ideas was also prominent in this 

lesson, as evidenced by her promotion of understanding the meaning of intersecting lines 

on a graph. 

Lesson 16 Taught by Teacher 7 

 Lesson 16 matched the intended lesson from the textbook, Mathematics: 

Applications and Connections, which included using tables to graph functions. Students 

completed function tables, including filling in a process column, and then graphed the 

functions. The lesson was limited to use of the textbook. No other activities were 

involved in the lesson. These materials from the textbook correlate with the materials 

viewed in the video lesson. 

 Symbolic and iconic representations were the only representations used in the 

lesson. The lesson materials involved students in filling out function tables and creating 

corresponding graphs. Symbolic representations were utilized during both activities. 

Likewise, the use of such pictorial drawings indicates the use of iconic representations. 

Enactive materials were not used in this lesson. 
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 This lesson did not include many constructivist teaching approaches, but instead 

relied on a more direct instruction teaching approach. The teacher provided information 

through primarily lecture and did not include a cumulative problem in the lesson. 

Instead, students were asked to work on several mini-problems that required simple rote 

procedures and knowledge. They were asked to copy the tables, finish filling them out, 

and create a graph to represent the data. The only portions of the lesson that were 

constructivist dealt with the need for students to create graphs without first being shown 

how to do so. Students were asked to discover ways to represent the information in 

graphical form. They also were given the opportunity to work with a partner in this 

endeavor. 

 Engagement was at a minimum during this lesson with all occurrences 

accounting for less than 2% of the instructional time. Students did not have many 

opportunities to provide comments or justifications due to the direct instruction format. 

Students did work with a partner, but little discourse was observed between the students. 

Most teacher feedback consisted of acknowledgement of correct or incorrect answers, 

along with a restatement of correct procedures. 

Findings from Constant Comparison 

 When examining the 16 lessons, several commonalities and differences were 

found between the lessons. To begin with, three of the teachers, accounting for seven of 

the lessons, used primarily a constructivist approach to teaching. The other four teachers, 

accounting for the remaining nine lessons, used little constructivist approaches, with 

mainly an emphasis on direct teaching. In other words, four of the teachers relied 
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primarily on lecture as the mode to deliver knowledge to the students. It should also be 

noted that teachers were consistent with their teaching approach across each of the 

lessons they taught. In other words, if a teacher primarily used constructivist approaches, 

then these approaches were evident in each of the lessons. There was not much 

variability in the coding of such approaches for the same teacher across the lessons 

taught by the teacher. 

 The use of constructivist teaching approaches seemed to have an effect on 

students’  level of engagement during the lesson. For example, high levels of use of 

constructivist approaches revealed higher levels of engagement than lessons utilizing a 

more direct instruction approach. Higher levels of engagement were found for each of 

the three indicators of expression of ideas, justification of ideas, and receiving 

meaningful feedback from the teacher. Likewise, lessons with little constructivist 

approaches apparent revealed low levels of engagement. Thus, constructivist approaches 

seemed to be related to engagement.  

 The use of symbolic and iconic representations did not seem to have much effect 

on whether or not the lesson was constructivist-based or encompassed high levels of 

engagement. However, the use of enactive representations, or manipulatives, did seem to 

be related to higher levels of constructivist approaches and engagement. Whenever 

lessons involved a variety of representations, including enactive representations, the 

lessons seemed to be more problem-centered. In fact, students were engaged with 

various representations, which promoted independent thinking and shared meanings 

through expression and justification of ideas. In addition, the teacher was more involved 
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in the learning process with the students, and thus, provided much more meaningful 

comments to the students. Thus, there seemed to be a correlation between use of 

enactive representations and constructivist activities and engagement in the lesson. 

 High levels of engagement occurring in a lesson revealed much discussion, 

inquiry, and connection-making in the learning process. As described by the operational 

definitions, engagement was based upon expression of ideas, justification and 

interpretation of ideas, and receiving meaningful feedback from the teacher. During 

lessons with high levels of engagement, students appeared to be participating in a 

community of practice (Boaler, 2000). Such participation revealed higher levels of 

understanding, as compared to the understanding of students evidenced by low 

engagement in the lesson. By this statement, it is meant that students seemed to possess a 

more complete understanding of the mathematics, as opposed to simply knowledge of 

algorithms and rote procedures.  

 All of the lessons involving more constructivist approaches involved specific 

roles for both teachers and students. When constructivist approaches were applied, the 

teacher played the role of facilitator of learning, whereby the responsibility was seen as 

the need to guide students in their endeavor to discover appropriate strategies, develop 

reasoning skills, and make connections. During these lessons, students were actively 

involved in the lesson, while creating strategies, testing ideas, discussing solutions and 

reasons with fellow students, and asking questions. Therefore, in these video lessons, 

students and teachers were participants in a community of learning. Everyone played an 

integral role in the learning process, and many shared ideas were available. 
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 The lessons involving less of a constructivist approach and more of a direct 

instruction, or teacher-directed approach, also involved specific roles for teachers and 

students. For example, during these lessons, the teacher based lessons on lectures and 

played the role of “holder of knowledge”  while covering the various algebraic topics. 

Students quietly sat at their desks, rarely working with other students, either taking notes 

or routinely filling in worksheets. In these lessons, students did not ask many questions, 

other than those concerning ways to set up a problem, or draw a graph. Instead of being 

inquiry questions, questions dealt with ways to set up problems and get started on the 

activity. 

Representations and Constructivist Comparisons 

 In the analysis, it was desired to determine the amount of similarity between use 

of indicators of representations and indicators of constructivist teaching approaches. To 

begin with, a bar graph was created that revealed the percentage of occurrence for each 

indicator through a study of the first lesson taught by each teacher. Refer to Figure 3. 

Percentage of time for representations and constructivist approaches for each teacher 

revealed high use of constructivist approaches were present with high use of enactive 

representations. However, high use of iconic or symbolic representations did not seem to 

have a correlation with high use of constructivist approaches. 

 Level of engagement was shown to have an effect on the overlay of 

representations on constructivist teaching approaches. Total level of engagement for the 

three indicators of expression of ideas, justification of ideas, and receiving feedback 

were calculated for the first lesson of each teacher. The percentages of engagement for 
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the first lesson ranged from small to rather large (9%-Teacher 1; 4%-Teacher 2; 55%-

Teacher 3; 60%-Teacher 4; 1%-Teacher 5; 16%-Teacher 6; 4%-Teacher 7). High levels 

of engagement resulted in high levels of enactive representations and high levels of each 

of the three indicators of constructivist approaches (independent thinking, problem-

centered lessons, and shared meanings). An engagement level of 60% resulted in 65% 

use of enactive representations, 98% independent thinking, 65% problem-centered 

lessons, and 98% shared meanings. On the contrary, an engagement level of 1% resulted 

in 0% enactive representations, 2% independent thinking, 0% problem-centered lessons, 

and 0% shared meanings. High or low levels of engagement did not seem to have an 

effect on iconic or symbolic representations, as evidenced by 60% engagement and 0% 

iconic representations realized in the same lesson. In another lesson, 55% engagement 

resulted in 54% iconic representations. Symbolic representations were high across the 

board, regardless of level of engagement. Engagement resulted in higher enactive 

representations and constructivist approaches. Also, enactive representations were the 

only representations shown to relate to constructivist approaches.  
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Figure 3. Percentages for first lesson of each teacher. 

 

A bar graph was also created that revealed the percentage of occurrence for each 

indicator through a study of the average of the indicators for all lessons taught by each 

teacher. Refer to Figure 4. The average percentage for representations and constructivist 

approaches for each teacher revealed increased constructivist approaches with the use of 

enactive representations. Iconic and symbolic representations did not seem to have an 

effect on use of constructivist approaches. In fact, the use of iconic or symbolic 

representations alone revealed low levels of constructivist approaches. Also, higher use 

of iconic representations revealed high levels of constructivist approaches than use of 

symbolic representations. 

Average level of engagement for each teacher was also shown to correlate with 

higher use of enactive representations and constructivist approaches. The average of 

total engagement for the three indicators of expression of ideas, justification of ideas, 
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and receiving feedback for each teacher was calculated. The average percentages for 

overall engagement once again ranged from small to rather large (13%-Teacher 1; 5%-

Teacher 2; 55%-Teacher 3; 76%-Teacher 4; 2%-Teacher 5; 58%-Teacher 6; 4%-Teacher 

7). The results revealed that 76% engagement resulted in 52% use of enactive 

representations, 88% independent thinking, 75% problem-centered lessons, and 88% 

shared meanings. On the contrary, 2% engagement resulted in 0% use of enactive 

representations, 1% independent thinking, 0% problem-centered, and 1% shared 

meanings. Again, level of engagement did not have an effect on iconic representations, 

which fluctuated regardless of engagement, or on symbolic representations, which was 

consistently high for each of the averaged indicators. 
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Figure 4. Average percentages for each teacher. 
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Ranges and Means Examined for Indicators for Each Teacher 

 Higher means for enactive representations were indicative of higher levels of 

constructivist approaches. Refer to Table 2. In addition, the teacher with the highest 

mean for enactive representations had the highest means for independent thinking, 

creation of problem-centered lessons, and facilitation of shared meanings, as well. 

Likewise, one teacher with a 0% average for enactive representations had the lowest 

averages for the three indicators of constructivist approaches, with 1% being the highest 

average. The ranges revealed whether or not the approach of examining average 

percentages for each teacher was appropriate. It appeared that the ranges were not large 

across the board. The ranges for enactive and iconic representations were large in a few 

cases, due to the extremes of no use of these representations to high usage. Otherwise, 

the ranges were fairly consistent across the lessons for each teacher. 

 
Table 2 
Means and Ranges for Each Teacher for Indicators of Representations and 
Constructivist Teaching Approaches 
 T1 T2 T3 T4 T5 T6 T7 
 M      R M      R M      R M      R M      R M      R M      R 
E   0       0   0      0 47      0 52     68   0       0 35     61   0       0 
I 67       2 58    80 54      0 53       8 52     87  80     26 50       0     
S 90     19  95      2 82      0 95      11 91     12 90     12  89       0 
IT   1       2    7    20 31      0 88      25   1       2   65     34 12       0 
PC   2       4   0      0 68      0  75      19   0       0 68     18   0       0  
SM 16     32         0      0 74      0 88      16   1       2 69     25 11       0 
 
Note. E = Enactive; I = Iconic; S = Symbolic; IT = Independent Thinking; PC = 
Problem-Centered Lessons; SM = Shared Meanings; T = Teacher # 
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Descriptive Data Analysis 

 After the data collection from both the algebra pre and post-test results and video 

observations were finished, descriptive statistics were calculated on the information. To 

begin with, an overall mean and standard deviation for the percentages of each indicator 

across the 16 lessons were calculated. Refer to Table 3. By calculating these descriptive 

statistics, the indicators with the highest and lowest means overall could be discerned, in 

addition to the distance scores were from the mean.  

After examining the results, it was obvious that symbolic representations had the 

highest mean, whereas justification had the lowest mean. In fact, such results would be 

easily hypothesized, due to the abundance of use of symbols, numbers, and words in 

classrooms and less appearance of justifications for reasoning. Although justifications 

were apparent throughout the viewing of the video lessons, the amount of time spent 

providing explanations for ideas delivered in discussions seemed to be lowest amount 

the indicators observed. Most of the discussions were in the form of comments about the 

task at hand and intriguing ideas they were discovering. Mostly, students only provided 

explanations if the teacher directly asked for such. In fact, expression of ideas and 

receiving feedback from teachers also ranked lowest among the means for all of the nine 

indicators. It should be noted that this does not mean that there was not much discussion 

between teachers and students and group interaction during the lessons. It does, 

however, show that use of representations and participation in problem-centered and 

independent lead lessons with subsequent group work and negotiated meanings will 

most likely receive higher percentages of time than items including engagement related 
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to discussion. In other words, students may be in the setting for indicators of discussion, 

but will spend less time on each individual occurrence of discussion than the whole 

activity of constructivist approaches which encompasses the discussion.  

Other indicators seemed to have means that revealed an understandable degree of 

use, as well. For example, enactive representations had a lower mean than the other 

types of representation, due to the fact that many of the lessons did not include any use 

of manipulatives. Additionally, iconic representations had a lower mean than symbolic 

representations, but a higher mean than enactive representations. This can be evidenced 

by the high use of pictorial representations in the form of tables, graphs, diagrams, and 

more that was used in addition to symbolic forms. In some rarer cases, enactive 

representations were used to help students work with iconic representations and lastly, 

symbolic representations. Therefore, the means for the indicators seems to fall in 

expected bounds.  

The high standard deviations, however, indicated a large deviation from the 

means on most of the indicators. Use of symbolic representations and justification of 

ideas had the lowest standard deviations, which can be accounted for by the consistency 

of use of these types of representations across lessons and similar time coding for 

justification across lessons. The other lessons showed more variability in scores’  

distance from the mean, which reveal the sometimes large differences in time coding 

across the lessons. 
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Table 3 
Percentages of Instructional Time for Indicators of Latent Variables across 16 Lessons 
(N = 971) 
Indicator M SD 
Enactive Representations 22.67 29.15 
Iconic Representations 58.58 31.54 
Symbolic Representations 91.43 6.36 
Independent Thinking 35.66 37.22 
Problem-Centered Lessons 35.33 36.02 
Shared Meanings 41.02 39.34 
Express Ideas 13.23 16.41 
Justify Ideas 5.47 7.12 
Receive Feedback 16.54 17.76 

 

In addition, an overall mean and standard deviation for responses to procedural 

types of questions were calculated. Refer to Table 4. On both the pre-test and post-test, 

students from all 16 lessons scored the highest on question 8b, which assessed students’  

abilities to fill in a table of values for number of apple trees and number of pine trees for 

each term. On both the pre-test and post-test, students from all 16 lessons scored the 

lowest on question 10, which assessed students’  abilities to find a different pair of values 

that would still make the equation, or statement, true. Students also scored low on 

question 12, which examined students’  understanding of finding the n that corresponded 

to the value for the nth term. These results revealed that students did not have much 

difficulty with filling in a table of values with finding the value of the nth term. 

However, when asked to think a little more abstractly and find other values than the ones 

provided that would make a statement true, students had more difficulty. Also, when 

asked to think in a backwards manner and find the n that relates to the nth term, students 

scored quite low. Therefore, students had more difficulty applying concepts to problems 

that were not presented in a certain, straightforward manner. Across the 16 lessons, the 
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two largest gains for procedural questions from pre-test to post-test were on questions 8b 

and 16, which both dealt with finding values of y. The standard deviations for scores on 

procedural questions were low (all less than 1), with those for questions 8b and 16 being 

the highest.  

 

Table 4 
Correct Responses to Procedural Type Questions across 16 Lessons (N = 971) 
 
 
Question 

M 
 

Pre-test     Post-test 

SD 
 

Pre-test     Post-test 
#1            .59             .65            .49             .48 
#5            .60             .69            .49             .46 
#7            .61             .60            .49             .49 
#8a            .59             .70            .49             .46 
#8b            .68             .97            .91             .94 
#10            .32             .42            .47             .49 
#12            .39             .44            .49             .50 
#16            .56             .77            .81             .88 
 
 

Descriptive statistics were also calculated for conceptual understanding types of 

questions across all 16 lessons. Refer to Table 5. On both the pre-test and post-test, 

students from all 16 lessons scored the highest on question 4, which assessed their 

understanding of the commutative property. On both the pre-test and post-test, students 

from all 16 lessons scored the lowest, as well as the same, on questions 8d and 13. 

Question 8d assessed students’  understanding of examining growth of patterns through 

the need to describe which type of tree increases more quickly, either apple or pine. 

Question 13 assessed students’  abilities to recognize a linear relationship via a constant 

rate of change through a table of values. With the results from this set of questions, it 

appears that students did well with having a firm conceptual understanding of properties. 
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However, the ability to look at patterns and examine changes, as with constant or non-

constant rates of change, was more difficult for the students. Across the 16 lessons, the 

two largest gains for conceptual questions from pre-test to post-test were on questions 8c 

and 14. Question 8c was quite a high level question dealing with the need to find a value 

of n that would provide the same number of apple trees as pine trees. Students not only 

had to find that value of n, but also had to explain how they found the answer. Question 

14 asked students to determine if the closed form rule was correct and support the 

answer with an accurate explanation. The standard deviations for scores on conceptual 

questions were low (most less than .50), with those for questions 8d and 13 being the 

lowest. 

 

Table 5 
Correct Responses to Conceptual Type Questions across 16 Lessons (N = 971) 
 
 
Question 

M 
 

Pre-test     Post-test 

SD 
 

Pre-test     Post-test 
#2            .33             .42            .47             .49 
#3            .31             .35            .46             .48 
#4            .59             .65            .49             .48 
#6            .32             .30            .47             .46 
#8c            .08             .18            .35             .53 
#8d            .06             .10            .29             .35 
#9            .24             .32            .43             .47 
#11            .13             .20            .42             .50 
#13            .06             .10            .30             .35 
#14            .12             .23            .38             .35 
#15a            .20             .24            .40             .43 
#15b            .45             .47            .50             .50 
 
 

Descriptive statistics were also computed on procedural and conceptual gains 

across the 16 lessons. Refer to Table 6. The mean gain for procedural type questions was 
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higher than the mean gain for conceptual type questions. The means were not very far 

apart from one another, with a difference of .22. In addition, the standard deviations for 

both mean gains are low, with both being less than three standard deviations. Therefore, 

when looking at overall mean gains for all 16 lessons, it can be discerned that students 

increased gains from pre-test to post-test highest for those types of questions asking for 

more factual, rote types of knowledge. 

 
Table 6 
Procedural and Conceptual Gains across 16 Lessons (N =971) 
Question Type    Mean Gain   SD 
 
Procedural Questions          .87             2.76 
Conceptual Questions          .65                                   2.41 
   

 

Percentages of each indicator for each of the 16 lessons were computed in order 

to obtain an understanding of the prominence of certain occurrences in the various 

lessons. Refer to Table 7. After examining the data, use of symbolic representations was 

the only indicator that did not result in 0%. In fact, the percentage of time spent with 

these representations was high among each of the 16 lessons. Also, use of enactive 

representations had the highest number of lessons recorded with 0%. Lessons that did 

not use manipulatives could not be coded above 0%, whereas several of the other 

indicators receiving lower percentages, i.e. justification of ideas and facilitation of 

shared meanings, often included at least one occurrence related to the indicator. 

Each lesson was examined according to high or low levels of percentages of time 

for indicators across the board. The data was analyzed in order to determine lessons that 
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seemed to have high occurrences for all nine indicators. The results revealed that lessons 

6, 8, 9, 13, and 15 all had reasonably high scores across each of the nine indicators, 

when comparing these scores to those from other lessons. Therefore, of the 16 lessons, 

five of the lessons revealed high levels of constructivist activities, whereas the other 11 

illustrated various parts of such activities. It can also be noted that lessons 7 and 14 also 

had high percentages for the indicators, with the exclusion of either iconic or enactive 

representations. For the constructivist teaching approaches of fostering student 

independent thinking, creation of problem-centered lessons, and facilitation of shared 

meanings, lessons 6-9 and 13-15 had the highest percentages. Likewise, for the 

components of engagement, which included expression of ideas, justification of ideas, 

and receiving feedback from the teacher, these lessons also showed the highest 

percentages. Therefore, a consistency for each lesson across the indicators seemed to be 

normal. Additionally, it should be noted that the teachers who included enactive 

representations (manipulatives) in the lesson typically yielded higher percentages for the 

indicators related to both constructivist teaching approaches and engagement. This was 

not the case for one lesson whereby the teacher used iconic and symbolic representations 

in such a problem-centered manner that percentages across the board were very high. It 

simply appears that use of enactive representations coincided with high percentages for 

the other indicators that involve use of other representations, constructivist approaches, 

and engagement in the lesson. Finally, the highest percentages for each of the nine 

indicators were all above 50%, except for the highest percentage for justification of 

ideas, which appeared in lesson 8 at 26%. These results solidify the ideas that students 



80 

are not spending as much time explaining reasons behind their ideas as they are in 

performing other tasks, even in constructivist settings. 

 
Table 7 
Indicator Scores for Lessons 1-16 
   Percentages of Lessons Attributed to each Indicator 
 
Lessons     N  E I S IT PC SM EX J RF 
 
1      43  0 66 80   2  4   0 7 2   0 
2      43  0 68 99   0  0 32 3 4 10 
3      68  0   5 94 20  0   0 0 0   4  
4      68  0 84 95   0  0   0 0 0   8 
5      68  0 85 96   0  0   0 2 1   1 
6    117             47 54 82 31       68 74      20 8 27 
7      79             65   0 98 98       65 98      13 5 42 
8      79             79 84 87 94       84 84      35        26          58 
9      79             11 76 99 73       76 82      19 7 24 
10      58   0   0 87   2  0   0 0 0   1 
11      58  0 87 88   0  0   0 0 0   3 
12      58  0 68 99   1  0   2 1 0   1 
13      41             61   68 89 46       58   56 8 5   3 
14      41  0 78 85 80       76 70      67        14 22 
15      41             43 94 97 71       71 81      37 6 11 
16      30  0 50 89 12  0 11 1 1   2 
   
Note. E = Enactive; I = Iconic; S = Symbolic; IT = Independent Thinking; PC = 
Problem-Centered Lessons; SM = Shared Meanings; EX = Express Ideas; J = Justify 
Ideas; RF = Receive Feedback  
  
 

Means and standard deviations for procedural gains and conceptual gains for 

each lesson were calculated. Refer to Table 8. In order to obtain an understanding of 

student performance on both types of questions, a lesson-by-lesson analysis of the data 

was conducted. Using descriptive data results only, it was determined that lessons 1 and 

2 had the highest mean gain from pre-test to post-test on procedural type questions. 

However, lesson 6 had the highest mean gain on conceptual type questions. Therefore, 
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the students who had the highest mean gain on procedural type questions did not also 

have the highest mean gain on conceptual type questions. Likewise, the students with the 

second highest mean gain on procedural type questions did not have the highest gain on 

conceptual type questions. Also, lessons 13-15 had relatively high mean gains on 

procedural type questions (M = 1.22), but had low mean gains on conceptual type 

questions (M = .17). Oddly enough, lesson 16, which had a negative mean gain on 

procedural type questions (M = -.43), had a relatively high mean gain on conceptual type 

questions (M = 1.17). In addition, the lesson involved very little constructivist teaching 

approaches and engagement and resulted in a higher gain for conceptual type questions 

than some of the lessons that involved much constructivist approaches and engagement, 

i.e. lessons 7-9. In fact, this lesson seems to be an anomaly in that it is one of only two 

lessons whereby students had a higher mean gain on conceptual type questions than 

procedural type questions. However, the other lesson that had a higher mean gain for 

students on conceptual type questions than procedural type questions (lesson 6), did 

involve very high levels of constructivist approaches and concurrent engagement. The 

standard deviation for each lesson for both procedural and conceptual types of questions 

was low, with all standard deviations being less than 3.50. Thus, the mean gain for each 

lesson was not very far from the overall mean of these gains across all 16 lessons. 
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Table 8 
Procedural and Conceptual Gains for Lessons 1-16 
                Procedural    Conceptual 
 
Lesson      N  Mean Gain  SD  Mean Gain  SD 
 
1     43        1.70  2.88                    .88  2.24 
2     43        1.70  2.88                    .88  2.24 
3     68        1.25  2.45                    .71  1.69 
4     68        1.25  2.45                    .71  1.69 
5     68        1.25  2.45                    .71  1.69 
6   117        1.09  3.03                      1.52  2.62 
7     79        1.37  2.29                      1.03  2.30 
8     79        1.37  2.29                      1.03  2.30 
9     79        1.37             2.29                      1.03  2.30 
10            58      -  .79  2.61                    -  .40   2.20 
11     58      -  .79  2.61                    -  .40   2.20 
12     58      -  .79  2.61                    -  .40   2.20 
13     41       1.22  2.87                   .17   3.14 
14     41       1.22  2.87                   .17   3.14 
15     41       1.22  2.87                   .17   3.14 
16     30      -  .43  3.49                     1.17   2.88 
 
 
 

A correlation matrix of the nine indicators of the latent variables was also 

examined. Refer to Table 9. According to Creswell (2002), the coefficient, r, provides 

information regarding the degree of the correlation between two variables. The 

coefficient of determination, or r², can be used to provide information concerning the 

strength of the relationship between the variables. In other words, one can determine the 

amount of variance accounted for in one variable by another variable. After examining 

the coefficients in Table 9, it appeared that iconic representations had a low correlation 

with symbolic representations; iconic representations had a low correlation with 

facilitation of shared meanings; iconic representations had a low correlation with 

receiving feedback from the teacher; and symbolic representations had a low correlation 
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with facilitation of shared meanings. The other correlations were pretty high and 

represented a statistically significant correlation.  

After squaring the coefficients and obtaining r², the proportion of variance was 

examined for each pair of indicators. As described by Creswell (2002), coefficients of 

determination can provide slight predictions (.20-.35), limited predictions (.35-.65), good 

predictions (.66-.85), or correlations so high that the items should be combined (.86+). 

After examining all of the data, only seven pairs of indicators represented good 

correlations, or predictions, of the variance in one variable by that of the other variable. 

These pairs included use of enactive representations and receiving feedback from the 

teacher; fostering independent thinking and creating problem-centered lessons; fostering 

independent thinking and facilitation of shared meanings; fostering of independent 

thinking and receiving feedback from the teacher; creation of problem-centered lessons  

and receiving feedback from the teacher; facilitation of shared meanings and receiving 

feedback from the teacher; and students’  justification of ideas and receiving feedback 

from the teachers. Only one pair of indicators had a coefficient of determination higher 

than .86, which was that of creation of problem-centered lessons and facilitation of 

shared meanings. This high r² indicates the possible need to combine these indicators 

since they seem to be measuring the same item. 
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Table 9 
Correlation Matrix of the Indicators 
 E I S IT PC SM EX J RF 
E 1.00   -.07*   -.20**   .74**   .78**    .80**  .44**   .70**   .82**  
I  1.00  -.02 -.07*  .11**   -.01 .28**   .28**  -.03 
S    1.00  .09**  -.17**   -.03 -.28**  -.30**  -.11**  
IT    1.00  .89**    .90**   .72**   .72**   .84**  
PC     1.00  .96**   .79**   .76**   .81**  
SM      1.00  .70**   .68**   .83**  
EX       1.00  .76**   .60**  
J        1.00  .85**  
RF         1.00 
 
Note. E = Enactive; I = Iconic; S = Symbolic; IT = Independent Thinking; PC = 
Problem-Centered Lessons; SM = Shared Meanings; EX = Express Ideas; J = Justify 
Ideas; RF = Receive Feedback 
*  p < .05. **  p < .01. 
 
 

Multi-level Structural Equation Modeling Analysis 

 Structural equation modeling analyses were chosen for this study in order to 

provide pertinent information concerning the overall model fit and significance of paths 

represented in the model. For example, an overall � ² and corresponding fit indices were 

reported for the model as a whole, as well as path coefficients between the latent factors 

and manifest variables. Multi-level structural equation modeling was used due to the 

need to examine both the student level and teacher level of data. Individual test score 

gains were analyzed, as well as classroom test score gains. Due to the fact that the videos 

revealed classroom occurrences, the student data was nested within the teacher-level 

(classroom) data. Therefore, it was determined that the relationships of the variables 

should be examined at both levels. In addition, such modeling would prevent the loss of 

variation at the teacher level. 
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 The first part of the structural equation modeling process involved writing a 

program for MPLUS that included the within level for student individual gain scores, in 

addition to the between level for classroom gain scores on procedural and conceptual 

knowledge. The within level included only a path between procedural and conceptual 

knowledge, ascertained by individual student gains from pre-test to post-test. The 

between level examined the effects of three different latent factors and their indicators 

on classroom averages of gains from pre-test to post-test for both types of learning. The 

indicators for the three separate factors were entered at the between level for 

representations, constructivist approaches, and engagement. Factor 1 (representations) 

included use of enactive, iconic, and symbolic representations. Factor 2 (constructivist 

teaching approaches) included fostering independent student thinking, creation of 

problem-centered lessons, and facilitation of shared meanings. Factor 3 (engagement) 

included students’  expression of ideas, justification of ideas, and receiving feedback 

from the teacher. In addition, the program was written to examine the paths between 

representations and engagement, as well as constructivist approaches and engagement, 

whereby engagement was portrayed as a mediator. The path between constructivist 

teaching approaches and use of representations was also examined. The paths from 

engagement to both types of learning, procedural and conceptual, were included in the 

model. Additionally, the path between procedural and conceptual knowledge at the 

between level was examined. 

 The analysis of this original model, as portrayed in Figure 2, resulted in a model 

of bad fit. Both � ² and other fit indices were examined, namely Comparative Fit Index 
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(CFI), Tucker-Lewis Index (TLI), and Root Mean Square Error of Approximation 

(RMSEA). The results revealed a significant model, which indicated a model that did not 

fit the data, � ²(40, N = 971) = 96.38, p < .001. The alpha level for the significance of the 

model was set at .01. Due to the fact that a large n can provide a significant p-value, the 

other fit indices must be examined. CFI, TLI, and RMSEA provide a more complete 

picture of the model fit from the data. The results of fit indices included CFI = 0.84, TLI 

= 0.78, and RMSEA = 0.04. Both CFI and TLI were lower than the desired 0.90 for each 

of these. RMSEA was lower than 0.06 and thus was good. Additionally, the model 

results revealed some abnormal standardized coefficients for factor 1. 

 The next steps in the analysis procedure involved examining the model estimates 

to determine possible additions or deletions to the model. At the within level, the path 

between individual student procedural and conceptual knowledge was significant, p < 

.01. Factor 1 (representations) revealed negative unstandardized coefficients and 

abnormal output for standardized coefficients. The paths from y4 (independent 

thinking), y5 (problem-centered lessons), and y6 (shared meanings) to factor 2 

(constructivist teaching approaches) were significant, p < .01. The paths from y7 

(expression of ideas), y8 (justification of ideas), and y9 (receiving feedback) to factor 3 

(engagement) were significant, p < .01. The path from representations to engagement 

was not significant, p > .05. However, the path from constructivist teaching approaches 

to engagement was significant, p < .01. Factor 3 (engagement) significantly predicted 

procedural knowledge, p < .05, as well as conceptual knowledge, p < .10 when using 

one-tailed distributions. Due to a priori beliefs in direction for procedural and conceptual 
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gains, a one-tailed test was used on these two parts of the model throughout each stage 

of the analysis process. Also, the correlation between factor 1 (representations) and 

factor 2 (constructivist teaching approaches) was significant, p < .01. Lastly, the path 

between procedural knowledge and conceptual understanding at the between level was 

significant, p < .05. It should be noted that all other portions of this model other than the 

gains from the predicting factor to procedural or conceptual knowledge were analyzed 

using a two-tailed test. 

 These model results were very interesting and important to report, but a change 

in the model needed to occur resulting from the overall model fit results, abnormal 

standardized coefficients for factor 1, and negative variance for factor 1. Therefore, the 

next step involved removing y2 (iconic representations) and y3 (symbolic 

representations) from the model. The path from factor 1 to iconic representations was 

not significant, p = .309. Likewise, the path from factor 1 to symbolic representations 

was not significant, p = .480. 

 An exploratory factor analysis (EFA) was also performed on the data due to the 

abnormal standardized coefficients for the first factor, negative variance for the first 

factor, and lack of model fit. Using Principal Component Analysis with Promax as the 

rotation method, a pattern matrix was produced that revealed all indicators loading onto 

one factor, except for y2 (iconic representations) and y3 (symbolic representations), 

which loaded onto two separate factors. These factors were already thrown out of the 

analysis due to their non-significance in the model estimates. Therefore, the remaining 

indicators were y1 (enactive representations), y4 (independent thinking), y5 (problem-
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centered lessons), y6 (shared meaning), y7 (expression of ideas), y8 (justification of 

ideas), and y9 (receiving feedback from the teacher). These indicators all loaded onto 

one factor. 

 The next part of the structural equation modeling process involving writing 

another program for MPLUS that included this second model, altered from the original. 

The within level included the path between individual student scores for both procedural 

knowledge and conceptual understanding. The between level was altered to contain only 

the seven remaining indicators, which were loaded onto factor 1. Classroom level 

procedural knowledge and conceptual understanding were predicted from this factor. 

Refer to Figure 5. 

 The model fit results of the second model indicated a much better fit than the 

original. The model was still significant, however, and thus indicated a model that did 

not fit the data, � ²(26, N = 971) = 55.37, p = .001. The fit indices were much improved 

with values for CFI and TLI approaching high values (CFI = 0.90, TLI = 0.86). RMSEA 

was still less than 0.06, indicating no problems (RMSEA = 0.03). The model estimates 

from the second model revealed information concerning the significance of paths 

represented, as well as a problem with one of the parameters. Each of the paths 

represented in the model, both at the within level and the between level were significant. 

It should be noted that a two-tailed test was used for determining significance of all 

paths, except for those from factor 1 to either procedural knowledge or conceptual 

understanding, whereby a one-tailed test was used. Refer to Table 10. The program 

output notified a problem with the parameter between y7 and factor 1.  
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Figure 5. Structural equation model for second model. 
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Table 10 
Path Coefficients from Model II 
Path Unstandardized Standard 

Error 
Critical 
Ratio 

P Standardized 

Within      
PK and CU 2.46 0.39 6.31 .000**  0.37 
Between      
Factor from E 0.62 0.16 3.95 .000**  0.77 
Factor from IT 1.60 0.41 3.95 .000**  0.95 
Factor from PC 1.61 0.43 3.72 .000**  0.98 
Factor from SM 1.70 0.43 3.98 .000**  0.97 
Factor from EX 0.65 0.28 2.35 .010*  0.76 
Factor from J 0.24 0.08 3.13 .001**  0.78 
Factor from RF 0.62 0.13 4.79 .000**  0.82 
PK from Factor 0.02 0.01 2.03 .022†† 0.46 
CU from Factor 0.01 0.01 1.49 .068† 0.32 
PK and CU 0.25 0.11 2.25 .013*  0.47 
 
Note. PK = Procedural Knowledge; CU = Conceptual Understanding; E = Enactive; IT = 
Independent Thinking; PC = Problem-Centered Lessons; SM = Shared Meanings; EX = 
Express Ideas; J = Justify Ideas; RF = Receive Feedback. 
*p < .05, two-tailed. **p < .01, two-tailed. † p < .10, one-tailed. †† p < .05, one-tailed. 

 

The continued steps in the analysis process included excluding y7 from the third 

and final model. The only change to the third model consisted of including six indicators 

for factor 1, instead of seven. These indicators were y1 (enactive), y4 (independent 

thinking), y5 (problem-centered lessons), y6 (shared meanings), y8 (justification of 

ideas), and y9 (receiving feedback). Refer to Figure 6. Thus, the latent factor 1 was 

examined in accordance with these indicators to determine the idea represented by the 

six indicators. It was determined that the remaining six indicators reveal the crux, or 

main components of constructivist teaching approaches. The use of hands-on materials, 

independent thinking, cumulative problems, discussion, justification, and receiving 
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meaningful feedback all feed into the process of helping students construct meaning for 

themselves. 

 The model fits results from the third and final model were indicative of a model 

that fit the data. The model was not significant, � ²(19, N = 971) = 30.60, p = .045. The 

alpha level used to determine significance of the model was set at .01. The other fit 

indices revealed good values with CFI = 0.96, TLI = 0.93, RMSEA = 0.03. Each of the 

paths represented in the model were significant. Refer to Table 11. Again, it should be 

noted that a two-tailed test was used to determine significance in all cases, except for the 

two paths from factor 1 to procedural knowledge and conceptual understanding. Due to 

the a priori belief in a gain, a one-tailed test was used. Variances, means, and intercepts 

were recorded for the final model. Refer to Appendix F. It should be noted the variance 

of x1 (individual student procedural knowledge) and x2 (individual student conceptual 

knowledge) at the within level, as well as y1 (enactive representations), y9 (receiving 

feedback), x3 (classroom procedural knowledge), and x4 (classroom conceptual 

understanding) at the between level revealed a significant difference from zero. 

Therefore, the scores for these variables were more widely distributed. 
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Figure 6. Structural equation model for final model. 
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Table 11 
Path Coefficients from Final Model 
Path Unstandardized Standard 

Error 
Critical 
Ratio 

P Standardized 

Within      
PK and CU 2.46 0.39 6.31 .000**  0.37 
Between      
Factor from E 0.63 0.15 4.14 .000**  0.78 
Factor from IT 1.58 0.38 4.14 .000**  0.95 
Factor from PC 1.58 0.41 3.87 .000**  0.98 
Factor from SM 1.69 0.41 4.08 .000**  0.98 
Factor from J 0.23 0.07 3.14 .001**  0.77 
Factor from RF 0.62 0.13 4.95 .000**  0.82 

PK from Factor 0.02 0.01 2.05 .020†† 0.47 
CU from Factor 0.01 0.01 1.55 .061† 0.33 
PK and CU 0.24 0.11 2.22 .013*  0.47 
 
Note. PK = Procedural Knowledge; CU = Conceptual Understanding; E = Enactive; IT = 
Independent Thinking; PC = Problem-Centered Lessons; SM = Shared Meanings; EX = 
Express Ideas; J = Justify Ideas; RF = Receive Feedback. 
*p < .05, two-tailed. **p < .01, two-tailed. † p < .10, one-tailed. †† p < .05, one-tailed. 
 

After the final model was run using MPLUS, �  and R² were also examined. All 

of the beta weights were significant, thus indicating an increase in the dependent 

variable by a specific number of standard deviations. For example, enactive 

representations resulted in an increase in factor 1 of .78 standard deviations. Factor 1 

resulted in an increase in procedural knowledge at the between level of .47 standard 

deviations. Factor 1 also resulted in an increase in conceptual knowledge at the between 

level of .33 standard deviations. Refer to Table 11. R² values were reported for each of 

the observed variables. The observed variables included y1 (enactive, R² = 0.61), y4 

(independent thinking, R² = 0.90), y5 (problem-centered lessons, R² = 0.95), y6 (shared 

meaning, R² = 0.95), y8 (justification of ideas, R² = 0.60), y9 (receiving feedback, R² = 

0.68), x3 (classroom procedural knowledge, R² = 0.22), and x4 (classroom conceptual 
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understanding, R² = 0.11). These results reveal the largest proportion of variance 

accounted for are represented by independent thinking, problem-centered lessons, and 

shared meaning. 

 The final model thus revealed that of the nine original indicators placed onto 

three separate latent factors, six actually fit the data. These six indicators loaded onto a 

single factor, thus collapsing the model of three factors to one factor. The results indicate 

that there is a significant correlation between students’  gains on procedural knowledge 

and conceptual understanding at the within level. Additionally, there is a significant 

correlation between classroom level gains on the two types of learning at the between 

level. Enactive representations, fostering independent thinking, creating problem-

centered lessons, facilitation of shared meanings, justification of ideas, and receiving 

feedback were significant predictors of factor 1, or in other words, constructivist 

teaching approaches. It should be noted that originally the indicators of fostering 

independent thinking, creating problem-centered lessons, and facilitation of shared 

meanings were labeled constructivist approaches. However, as the analysis revealed, 

other indicators loaded with these onto one factor. Therefore, the factor with the six 

remaining indicators has been renamed as constructivist teaching approaches. Lastly, 

constructivist teaching approaches are a significant predictor of both procedural 

knowledge and conceptual understanding of middle school algebra. 
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Summary 

 The original model for the study involved nine indicators predicting three latent 

factors, which were entered as predicting the two types of learning. The latent factor of 

representations included enactive, iconic, and symbolic representations. Additionally, 

the latent factor of constructivist teaching approaches included encouragement of student 

independent thinking, creation of problem-centered lessons, and facilitation of shared 

meanings. Lastly, the latent factor of engagement included expression of ideas, 

justification of ideas (involving clarification and interpretation), and receiving feedback 

from the teacher. Engagement was included as a mediator in the model, and therefore 

predicted from representations and constructivist approaches and predicting procedural 

knowledge and conceptual understanding.  

 The original model did not fit the data, revealing a significant model with bad fit 

indices. The low CFI and TLI and negative variance for factor 1 revealed a need to run 

an exploratory factor analysis (EFA) on the variables to determine which indicators 

loaded onto certain factors. After doing so, it was determined that each of the indicators 

loaded onto factor 1, except for y2 (iconic representations) and y3 (symbolic 

representations), which loaded onto two separate factors. Due to the fact that the paths 

between y2 and y3 and factor 1 were found to be non-significant, these indicators were 

taken out of the model. 

 The second model involved seven indicators loading onto factor 1 and predicting 

the two types of learning. The model thus included the indicators of y1 (enactive 

representations), y4 (student independent thinking), y5 (problem-centered lessons), y6 
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(shared meanings), y7 (expression of ideas), y8 (justification of ideas), and y9 (receiving 

feedback) as loading onto factor 1. The model revealed better fit indices, but still 

provided a significant model, which did not fit the data. The results did reveal a problem 

with the parameter involving y7 (expression of ideas). Therefore, this indicator was 

taken out of the model. 

 The third and final model included only six indicators loading onto factor 1 and 

predicting procedural knowledge and conceptual understanding. The six indicators of 

factor 1 were y1 (enactive representations), y4 (student independent thinking), y5 

(problem-centered lessons), y6 (shared meanings), y8 (justification of ideas), and y9 

(receiving feedback). The indicators were examined to determine the name of the latent 

factor containing such parts. It was decided that enactive representations, independent 

thinking, problem-centered lessons, shared meanings, justification of ideas, and 

receiving meaningful feedback from the teacher represented the crux, or main 

components of constructivist teaching approaches. Therefore, factor 1 was renamed as 

constructivist teaching approaches. Active, hands-on learning during cumulative 

problems involving shared ideas is learning that occurs in constructivist-based 

classrooms. This model was not significant, p > .01, and revealed good fit for both CFI 

(0.96) and TLI (0.93). Additionally, RMSEA was at a good level well below 0.06 at 

0.03. Each of the paths in the model was significant, also.  

 The results from the final structural equation model revealed a significant 

correlation at the within level for the variables of student procedural knowledge and 

student conceptual understanding. At the between level, each of the indicators had 



97 

significant paths from the latent factor of constructivist teaching approaches. The latent 

factor of constructivist teaching approaches significantly predicted both procedural 

knowledge and conceptual understanding. Lastly, the correlation between both types of 

learning at the between level (classroom level) was significant. The results thus revealed 

that the latent factor of constructivist teaching approaches, with six indicators, had 

significant effects on both types of student learning. The R² results for the observed 

variables at the between-level revealed y4 (student independent thinking), y5 (problem-

centered lessons), and y6 (shared meanings) accounted for the most variance. These 

variables were the original indicators of constructivist approaches. However, y1 

(enactive representations), y8 (justification of ideas), and y9 (receiving feedback) also 

accounted for a good proportion of the variance. The endogenous variables, x3 

(procedural knowledge) and x4 (conceptual understanding) also accounted for a good 

proportion of the variance. Of course, these were lower than the other R² values, with R² 

= 0.22 for x3 (procedural knowledge) and R² = 0.11 for x4 (conceptual understanding), 

as compared to a range of 0.60-0.95 for R² for the indicators. However, the proportion of 

overlap revealed by the two types of learning was large.  

 Constant comparison of details from the sixteen lessons revealed similar findings 

to those realized from the structural equation model. For example, it was determined that 

the teachers with higher percentages of time with constructivist approaches also had 

higher levels of engagement in the classroom. Also, use of enactive representations 

seemed to have an effect on students’  level of participation in constructivist activities, as 

well as engagement in the lesson. Lessons involving use of enactive representations had 
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higher levels of constructivist approaches and student engagement. Furthermore, 

engagement in the lesson revealed more discussion, inquiry, and connection-making 

during the lesson. 

 The examination of the structural equation model and constant comparison 

revealed similar findings. For example, the structural equation model revealed a 

connection between enactive representations, the original three indicators of 

constructivist approaches, and two of the indicators of engagement. These results were 

closely aligned with the findings from constant comparison. The main difference lay 

within the correlation between use of enactive representations and higher levels of 

expression of ideas. In the structural equation model, expression of ideas did not fit into 

the final model along with enactive representations. However, justification of ideas and 

receiving feedback, the two other forms of discussion, did fit in the model. It was 

discerned that such hands-on activities promoted overall discussion. The structural 

equation model revealed the paths that indicated a model of good fit and thus revealed a 

closer match with justification of ideas and receiving feedback than with expression of 

ideas.  

The examination of the commonalities between representations and constructivist 

teaching approaches also revealed similar findings to both the structural equation model 

and constant comparison. The two bar graphs revealed the presence of higher levels of 

the three indicators for constructivist approaches of encouragement of student 

independent thinking, creation of problem-centered lessons, and facilitation of shared 

meanings with the presence of enactive representations. The presence of iconic and 
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symbolic representations did not reveal high levels of constructivist approaches. On the 

contrary, presence of these representations alone revealed low levels of constructivist 

approaches. Therefore, the only representation with high correlation with constructivist 

teaching approaches was enactive representations. This result was also provided in the 

final model of the structural equation model, as well as from the constant comparison of 

the details from the 16 lessons. 

The descriptive statistics revealed important information concerning overall 

presence of the indicators across the lessons examined. For example, symbolic 

representations had the highest mean for percentage of indicators of representations 

across the 16 lessons. Facilitation of shared meanings had the highest mean for 

percentage of indicators of constructivist teaching approaches across the lessons. 

Receiving feedback had the highest mean for percentage of indicators of engagement 

across the lessons. 

The descriptive statistics also revealed interesting information pertaining to the 

mean gains for the two types of learning across the 16 lessons. For example, students 

had a higher mean gain for procedural type questions (M = .87) than for conceptual type 

questions (M = .65). Thus, students had a higher increase in learning concerning 

procedural type questions from pretest to posttest. However, the mean gains were not 

very far apart. In relation to the structural equation model, the use of constructivist 

approaches had a significant effect on these main gains for procedural knowledge and 

conceptual understanding. 
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In conclusion, this study revealed the indicators that were significant predictors 

of constructivist teaching approaches. Furthermore, this study revealed that 

constructivist teaching approaches did, in fact, significantly predict students’  procedural 

knowledge and conceptual understanding. Enactive representations, encouragement of 

student independent thinking, creation of problem-centered lessons, facilitation of shared 

meanings, justification of ideas, and receiving meaningful feedback from the teacher 

promoted higher levels of learning, both procedurally and conceptually. In addition, 

students were more engaged with constructivist approaches. This engagement revealed 

increased understanding, as evidenced through increased higher-level discourse. 

Therefore, classrooms rich in activities that promote construction of one’s own 

knowledge, active engagement in the lesson, and discourse with others was shown to be 

connected to increased learning. The results from the video data and algebra test data 

corroborate these findings. 
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CHAPTER V 

CONCLUSIONS 

The quantitative and qualitative findings from this study revealed interesting 

aspects concerning the indicators that align with constructivist teaching approaches. 

Additionally, the findings revealed the effects of such approaches on students’  

procedural knowledge and conceptual understanding. The structural equation modeling 

tests and constant comparison technique provided similar results concerning correlation 

of indicators and their effects on learning. 

Factors Predicting Procedural and Conceptual Knowledge 

The original model with the three latent factors of representations, constructivist 

approaches, and engagement predicting procedural knowledge and conceptual 

understanding did not fit the data in this study. The final model, which resulted in good 

fit, involved one latent factor (renamed as constructivist approaches) with the six 

indicators of enactive representations, encouraging student independent thinking, 

creating problem-centered lessons, facilitation of shared meanings, student justification 

of ideas, and receiving feedback from the teacher. The newly renamed, constructivist 

teaching approaches, significantly predicted procedural knowledge (p = .02) and 

conceptual understanding (p = .06), with alpha level set at .10. 

There are various possible reasons for the collapsing of the three latent factors 

into one factor. Classroom approaches that would most closely align with constructivist 

ideals are those that are hands-on, promote inquiry, and involve reasoning and 

discussion. The six indicators provided the crux of constructivist approaches, based upon 
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the theory of constructivism. Such indicators of learning provide opportunities for 

independent learning, construction of knowledge, and communication (Piaget, 1973; von 

Glasersfeld, 1997; Vygotsky, 1978). Therefore, the findings do align with the theoretical 

framework.  

Some of the variables were most likely excluded from the model, due to either 

teacher technique when using the approach, or less rigorous requirements from the 

students. For example, iconic and symbolic representations did not fit into the model of 

good fit. Their exclusion provides counter findings to previous research that ascribes to 

their important role in understanding. The manner, in which these representations were 

used, however, played an important role in the classroom environment, whether it was 

constructivist, or more teacher-lead instruction. Thus, often the use of these variables in 

a non-constructivist fashion would not lead to increased learning and understanding. 

Expression of ideas was most likely excluded, due to the fact that expression of ideas 

does not require as high a level of understanding as justification of ideas, which did fit 

the model. Although expression of ideas was coded whenever higher-level comments 

were made, justification of these comments was an even harder task. Thus, the ability to 

justify claims in mathematics would certainly be indicative of both procedural and 

conceptual understanding. Expression of ideas might certainly relate their procedural 

knowledge, but may not indicate their underlying conceptual knowledge. 

Representations and Constructivist Approaches Predicting Engagement 

From the original model results, representations were not found to be significant 

predictors of engagement (p = .42), but constructivist approaches were shown to be 
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significant predictors of engagement (p = .000). This counters the literature that explains 

the importance of use of representations, including iconic and symbolic representations 

on engagement (Saenz-Ludlow, 1995). It can be assumed that representations were not 

significant predictors of engagement, due to the fact that once again, the manner in 

which the representations were used affected student engagement. In a classroom based 

primarily on lecture, students might be using each of the three representations with little 

or no engagement. If the teacher is modeling each and every step, the students are not 

engaged, but instead are spending time on task. Constructivist approaches involve 

inquiry, investigative work on cumulative problems, and sharing ideas with others. Thus, 

it is easy to understand why constructivist approaches would indeed promote student 

engagement in the lesson. 

The final model included one representation (not all three), three of the original 

constructivist approaches, and two of the indicators of engagement. These findings 

support the literature base explaining the correlation of these indicators, with enactive 

representations promoting engagement (Quinn, 1997), as well as constructivist 

approaches promoting engagement (Boaler, 2000; Cunningham, 2004; Verhovsek & 

Striplin, 2003; Warrington & Kamii, 1998). In this study, enactive representations and 

the original three indicators of constructivist approaches resulted in a model of good fit, 

along with the indicators of justification of ideas and receiving feedback from the 

teacher. The reason for the inclusion of enactive representations relates to the typically 

higher use of these representations in constructivist classrooms than use of iconic or 
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symbolic representations. Although enactive representations can be used in a more direct 

instruction manner, they are more often than not, integrated as an exploratory activity.  

Representations and Constructivist Approaches Overlay 

 The original three indicators of representations and three indicators of 

constructivist approaches were qualitatively examined in order to determine similarities 

and differences with the multi-level structural equation model. An examination of 

representations and constructivist approaches for both percentages of occurrence during 

the first lesson for each teacher and the average percentage across a teacher’s lessons 

revealed similar findings. It was determined that use of iconic or symbolic 

representations produced a low overlap with each of the three original indicators of 

constructivist approaches. Enactive representations, however, did reveal high levels of 

constructivist approaches. These variables were also examined according to total 

engagement for the first lesson, as well as average total engagement across teachers’  

lessons. In examining the overlap according to engagement, it was determined that high 

levels of engagement were linked to high levels of use of enactive representations and 

constructivist approaches. Low levels of engagement were linked to low levels of 

enactive representations, and concurrently, low levels of constructivist approaches. 

 The findings of the relationship between enactive representations, constructivist 

approaches, and engagement are supported by the literature. Again, iconic and symbolic 

representations are not included as being supported by engagement or supporting 

constructivist approaches in this study. Thus, the literature that explains their benefits in 

assisting students’  understanding is not evidenced in this study. Similar reasons can be 
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stated for the way in which representations overlap constructivist approaches according 

to student engagement. When students are engaged, they could easily be working with 

hands-on materials, while portraying independent thinking in collaboration with others 

on investigative, cumulative mathematics problems. When students are engaged, they 

are actively constructing their own meaning (Piaget, 1954). 

Teachers’  Presentations and Students’  Actions 

 Teachers’  presentations and students’  actions differed greatly across the 16 

algebra lessons. Constant comparison revealed interesting findings concerning the actual 

occurrences revealed during a teacher lesson. Three of the teachers used mostly 

constructivist approaches, while the other four utilized a more direct instruction format. 

The choice in teaching approach promoted vast differences in the behaviors of both 

teacher and students. 

The teachers’  presentations and students’  actions differed for the lessons that 

included more constructivist approaches. For example, teachers played the role of 

facilitator in lessons, whereby students were guided during their inquiry of mathematical 

ideas. During these lessons, students were actively working on solutions and engaging in 

discussions with peers. On the contrary, the teachers who used more direct instruction 

approaches depended on lecture as the main foray of knowledge dissemination. In these 

lessons, students quietly sat at their desks filling out worksheets. The tasks required very 

little reasoning skills on the part of the students. Instead, they busily worked on ideas 

that had already been explicitly lectured to them. 
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The constant comparison of qualitative recordings revealed similar findings to 

both the structural equation model and descriptive statistics results. Students learning 

from constructivist approaches were more engaged in the lesson. When examining the 

percentages, it was realized that constructivist approaches impacted all three indicators 

of engagement. The actions of teachers and students in the videos also revealed the 

connection of enactive representations to higher levels of constructivist approaches and 

engagement. These findings are supported by the descriptive statistics and structural 

equation model, as well. Finally, the lessons involving higher levels of engagement 

showed more student discussion, inquiry, and connection-making.  

The actions of the teacher, in the form of design of the lesson and feedback and 

support given to students, as well as the active participation of students in the lesson 

revealed deeper levels of understanding. Students were able to justify their ideas when 

learning in a constructivist setting, which revealed higher levels of procedural 

knowledge and conceptual understanding. Once again, these variables are included in the 

structural equation model as supporting both types of understanding.  

Final Thoughts 

 The descriptive statistics in this study revealed that students had a higher 

procedural knowledge gain than conceptual knowledge gain. Additionally, they scored 

highest on a question asking them to fill in a table of values and lowest on questions 

asking them to find two more values that would make the statement true and finding the 

n that corresponded to the nth term, when using procedural knowledge. They scored the 

highest on a question asking them to choose the description of the commutative property 
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and lowest on questions pertaining to understanding growth of patterns and recognizing 

linear relationships, when using conceptual understanding. Therefore, it is obvious that 

students are in much need of promoting their conceptual understanding and procedural 

knowledge by thinking in a more abstract manner. The two questions dealing with 

procedural knowledge that were the most difficult for the students involved more 

abstraction than simple rote solving of an algebraic equation. 

 These findings reveal the need for appropriate strategies that boost both types of 

learning in mathematics. The results of the analyses completed during this study reveal 

the need for more enactive representations, independent student thinking, problem-

centered lessons, shared meanings, justification of ideas, and receiving meaningful 

feedback from the teacher. The benefits of use of these strategies are supported through 

both qualitative and quantitative analyses. In fact, the multi-level structural equation 

model revealed significant increases in procedural and conceptual knowledge with their 

use. Additionally, there is a correlation among these types of learning at both the 

individual level and classroom level. Therefore, we have more evidence that procedural 

and conceptual knowledge are indeed related. To conclude, teachers need to foster 

mathematical literacy by tapping into both types of knowledge via constructivist 

approaches that allow hands-on, inquiry-based activities in discursive environments. 

Implications for Future Study 

 This study provides evidence for need of constructivist approaches in the 

endeavor to help students become more mathematically literate. Thus, the findings 

related to these six indicators reveal the ability to acquire both procedural and conceptual 
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types of knowledge. This study was conducted examining middle school students and 

their understanding of the entire algebra strand. Other studies which examine effects of 

constructivist teaching approaches with different age groups of students on their 

understanding of the algebra strand at that level need to be completed. In addition, 

studies need to be completed that examine the effects of constructivist approaches at 

various grade levels and different areas of mathematics. Rigorous testing, as with 

structural equation modeling, can provide invaluable information concerning indicators 

which load onto certain factors that affect these types of learning. Qualitative data 

completes the picture by providing more information concerning the actual actions of 

students and teachers. Constant comparison, as well as diagrams can reveal occurrences 

that support statistical results. In this study, the use of both methods provided evidence 

and support for one another. Therefore, it would be very interesting to see these analyses 

completed on other data at other levels in algebra, as well as other levels in other topic 

areas in mathematics.  
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APPENDIX A 

ALGEBRA TEST QUESTIONS 

Procedural Questions 

1. What is the value of �  in this equation? 

43 = �  – 28 

A. 15 

B. 25 

C. 61 

D. 71 

5.  

A B 

12 3 

16 4 

24 6 

40 10 

What is the rule used in the table to get the numbers in column B from the numbers 

in column A? 

A. Add 9 to the number in column A. 

B. Subtract 9 from the number in column A. 
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C. Multiply the number in column A by 4. 

D. Divide the number in column A by 4. 

7. The table shows values for the equation y = 2x + 5 

X Y 

1 

2 

3 

4 

7 

9 

11 

13 

 

Which sentence describes the change in the y values compared to the change in the x 

values? 

A. The y values increase by 6 as the x values increase by 1. 

B. The y values increase by 7 as the x values increase by 1. 

C. The y values increase by 2 as the x values increase by 1. 

D. The y values increase by 5 as the x values increase by 2. 

8. A farmer plants his orchard so that pine trees are all around the border and apple trees 

are in the center in a grid. 

Here you see a diagram of this situation where you can see the pattern of apple trees and 

pine trees for any number of apple trees: 

 

PLEASE DO NOT COPY WITHOUT PERMISSION FROM DR. GERALD 

KULM. 



119 

�  = pine tree 

�  = apple tree 

n = number of rows of apple trees 

 

A) How many pine trees are in an orchard with 2 rows of apple trees? 

_____________________ 

B) Complete the table. (n = number of rows of apple trees) 

N Number of apple trees Number of pine trees 

1 1 8 

2 4  

3   

4   

5   
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10. a = b – 2 is a true statement when a = 3 and b = 5. 

Find a different pair of values for a and b that also make this a true statement. 

a = ________________ 

b = _________________ 

12. The table represents a relationship between A and B. 

A B 

8 3 

12 5 

20 9 

32 15 

? 23 

 

Based upon this relationship, what is the missing number in column A? __________ 

16. Find the value(s) of y that make the equation true. Show how you got your 

answer. 

19 = 3 + 4y 
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Conceptual Understanding Questions 

2. Mary has some trading cards. Julie has 3 times as many trading cards as Mary. 

They have 36 trading cards in all. Which of these equations represents their 

trading card collection? 

A. 3x = 36 

B. x + 3 = 36 

C. x + 3x = 36 

D. 3x + 36 = x 

3. There are n Girl Scouts marching in a parade. There are 6 girls in each row. 

Which expression could you use to find out how many rows of Girl Scouts are 

marching in the parade? 

A. n – 6 

B. 6/n 

C. 6n 

D. n/6 

4. Jacob writes the following rule: If a and b represent any two numbers, a + b = b + 

a. Which of the following describes Jacob’s rule in words? 

A. Equals added to equals are equal. 

B. Order doesn’ t matter when adding two numbers. 
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C. The sum of two whole numbers is a whole number. 

D. When adding three numbers, it doesn’ t matter how the numbers are grouped. 

5. Which of the following statements is NOT TRUE about the equation y = 2t, if t is 

a positive number? 

A. It shows how y changes for different values of t. 

B. It shows a linear relationship between y and t. 

C. It shows that the value of y is independent of the value of t. 

D. It shows that as t increases, y also increases. 

8. A farmer plants his orchard so that pine trees are all around the border and apple trees 

are in the center in a grid. Here you see a diagram of this situation where you can see the 

pattern of apple trees and pine trees for any number of apple trees: 

�  = pine tree; �  = apple tree; n = number of rows of apple trees 
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 C) Look at the table. You might notice that the number of apple trees can be found 

by using the formula n x n. The number of pine trees can be found by using the 

formula 8 x n. Remember, n is the number of rows of apple trees. 

There is a value of n for which the number of apple trees equals the number of pine 

trees. Find that value of n. ___________________ 

Explain how you found that answer. 

D) Suppose the farmer wants to make a much larger  orchard with many rows of 

trees. As the farmer makes the orchard bigger, which will increase more quickly, the 

number of apple trees or the number of pine trees? 

Explain how you found your answer. 

9. Tachi is exactly one year older than Bill. Let T stand for Tachi’s age and B stand 

for Bill’s age. Write an equation to compare Tachi’s age to Bill’s age. 

_____________________________________ 

11. A small boy was raising a flag up a flagpole. 

  

PLEASE DO NOT COPY WITHOUT PERMISSION FROM DR. GERALD 

KULM. 



124 

Write the letter of the graph that best represents the height of the flag above the 

ground as the small boy raises the flag. _______ Explain why you chose this graph. 

________________________________________________________________ 

________________________________________________________________ 

13.  

Age of car (in years) Value of car 

0 $20,000.00 

1 10,000.00 

2 5,000.00 

3 2,500.00 

  

  

Circle the correct choice (is or is not) BELOW and complete the statement. 

The relationship between the age of the car and the value of the car is/is not linear 

because _________________________________________________________ 

________________________________________________________________ 

14. Stella has a phone plan. She pays $10.00 each month plus $0.10 each minute for 

long distance calls. 

One month she made 100 minutes of long distance calls and her bill was $20.00. 

The next month she made 300 minutes of long distance calls and her bill was $40.00. 
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Stella said, “ If I talk three times as long it only costs me two times as much!”  

Will Stella’s rule always work? 

Show or explain why or why not. 

15. Maria sells k donuts. Jinko sells five times as many donuts as Maria. 

They sell the donuts for 25 cents each. 

The number of donuts Maria sells is a variable. 

A. Name another variable in the problem. _______________________ 

B. Name something in the problem that is NOT a variable. 

_________________________________________________________ 
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APPENDIX B 

REPRESENTATIONS 

Enactive 

(Manipulatives) 

Iconic  

(Pictures) 

Symbolic  

(Symbols, numbers; 

words/discussion) 

Time in Minutes:  

_____________ 

% of Time in 

Minutes: 

_____________ 

Time in Minutes: 

_______________ 

% of Time in  

Minutes: 

________________ 

Time in Minutes: 

______________ 

% of Time in  

Minutes: 

______________ 

Descr iption: 

 

 

 

 

 

 

 

 

 

 

 

Descr iption: Descr iption: 
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APPENDIX C 

CONSTRUCTIVIST TEACHING APPROACHES 

Encourage Student 

Independent Thinking 

(Use of invented 

algorithms; solving of one’s 

own problems; question-

asking) 

Create Problem-centered 

Lessons 

(Realistic situations; posing 

of problems) 

Facilitate Shared 

Meanings 

(Creation of small group 

activities; use of negotiated 

meanings) 

Time in Minutes: 

______________ 

% of Time in  

Minutes: 

______________ 

Time in Minutes: 

______________ 

% of Time in 

Minutes: 

______________ 

Time in Minutes: 

______________ 

% of Time in 

Minutes: 

______________ 

 

Descr iption: Descr iption: Descr iption: 
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APPENDIX D 

ENGAGEMENT 

Students express their  

own ideas 

(Provide comments about 

the lesson/not simple yes-

no or short phrase 

responses) 

Students justify, clar ify, 

and interpret ideas 

(Provide explanations, 

reasons, or background for 

ideas) 

Students receive feedback 

from teachers 

(Receive feedback other 

than simple 

acknowledgement of 

correct or incorrect 

answers) 

Time in Minutes: 

______________ 

% of Time in 

Minutes: 

_____________ 

Time in Minutes: 

______________ 

% of Time in 

Minutes: 

______________ 

Time in Minutes: 

______________ 

% of Time in 

Minutes: 

______________ 

Descr iption: Descr iption: Descr iption: 
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APPENDIX E 

ALGEBRA RUBRIC 

8. Apple Trees/Pine Trees and Stones/Br icks 

Cell Code Description 
Par t A   
16a1 1 16 or 16 pine trees 
16a2 0 Any other response 
16a3 0 Blank 
Par t B   
16b1 2 All entries correct 
16b2 1 One incorrect entry in table 
16b3 0 Many mistakes 
16b4 0 Blank 
Par t C   
16c1 2 N = 8, because 8 x 8 = 64, n 

x n = 8 x n and 8² = 64 OR 
explains something roughly 

equivalent to this 
16c2 2 OR shows algebraically n² 

= 8n   n² - 8n = 0 so n = 8 
16c3 2 OR continued pattern in 

table 
16c4 1 N = 8, with fuzzy or 

incomplete explanation 
(e.g., 8 x 8 = 64 and 8 x 8 = 
64 but does not distinguish 
n x n or 8 x n) OR incorrect 
answer (e.g. 64) but correct 

explanation 
16c5 0 Correct response, no 

explanation 
16c6 0 Correct response, incorrect 

explanation 
16c7 0 Incorrect response 
16c8 0 Blank 
Par t D   
16d1 2 [Apple trees/stones] are 

squared so they increase 
faster than 8n for [pine 
trees/bricks] when n > 8 
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16d2 2 Show graphs of n² & 8n and 
notes that [apple 

trees/stones] increase faster 
when n > 8 [apple 

tees/stones] are quadratic, 
[pine trees/bricks] are linear 

so 
16d3 2 [apple trees/stones] increase 

faster when n > 8   n x n 
and 8n both have a factor of 
n, but n x n increases faster 

when n > 8 
16d4 2 Extends table and states 

[apple trees/stones] increase 
faster when n > 8 

16d5 2 [apple trees/stones] for 
apple trees, you add 1, 3, 5, 

9, .. trees for each row 
16d6 2 But for pine trees you 

always add 8 so eventually 
(> 8) apple trees grow 

faster 
16d7 1 Any of the strategies in 2a-

2e but without mentioning 
n > 8 OR [apple 

trees/stones] are squared 
(for example), but does not 
compare growth of [apple 
trees/stones] to growth of 

[pine trees/bricks] OR 
[apple trees/stones] are 

filling the inside v. [pine 
trees/bricks] on the 

perimeter OR [apple 
trees/stones] increase faster 
when n > 8  but offers no 

explanation 
16d8 0 Incorrect [pine trees/bricks] 

OR [apple trees/stones] 
with incorrect explanation 

16d9 0 Blank 
PLEASE DO NOT COPY WITHOUT PERMISSION FROM DR. GERALD 

KULM.
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9. Tachi and Bill 

Cell Code Description 
8a 1 T = B + 1 or the equivalent 

(T – B = 1; T – 1 = B) 
8b 0 Transposes T and B 
8c 0 Any other answer 
8d 0 Blank 

 

 

 

 

10. a = b – 2 

Cell Code Description 
9a 1 Any (a, b) for which a = b – 

2, except a = 3 and b = 5 
9b 0 Any other response 
9c 0 Blank 

 

 

 

 

 

 

 

 

 

PLEASE DO NOT COPY WITHOUT PERMISSION FROM DR. GERALD 

KULM. 



132 

11. Small boy raises a flag 

Cell Code Description 
10a 2 Shows evidence of 

understanding that the 
graph shows height of the 

flag over time. If A is 
given, states that height is 
steadily increasing over 
time. If C is given, states 
that height is the same 

during some time intervals 
(i.e., there is some 

pausing/stopping in raising 
flag) 

10b 1 Shows evidence of 
understanding that the 

graph shows height of the 
flag over time but lacks 

complete explanation (as in 
2 above) 

10c 0 Correct answer but 
misunderstood graphical 
representation; incorrect 

explanation (e.g., selects A 
because “you raise a flag 

sideways”) 
10d 0 Correct answer but no 

explanation 
10e 0 B 
10f 0 D 
10g 0 Blank 

 

 

 

 

PLEASE DO NOT COPY WITHOUT PERMISSION FROM DR. GERALD 

KULM.
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12. Missing number in table 

Cell Code Description 
11a 1 48 
11b 0 Any other response 
11c 0 Blank 

 

 

13. Value of car  not linear  

Cell Code Description 
12a 2 Is not linear and explains 

that linear means constant 
change or rate (may or may 
not use these words but gets 

at notion of constant 
difference) 

12b 1 Sees the constant difference 
is not here, but doesn’ t 

articulate it clearly OR tries 
to draw graph, then 
concludes it’s linear 

12c 0 Thinks that it is a regular 
pattern, even if not a 

constant difference means 
linear OR other incorrect 
OR is not linear but no 

explanation 
12d 0 Blank 

 

 

 

 

 

PLEASE DO NOT COPY WITHOUT PERMISSION FROM DR. GERALD 

KULM. 
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14. Stella’s phone plan 

Cell Code Description 
13a 2 Gives a counterexample 

(e.g., m = 200, cost = 30; m 
= 600, cost = 70; $70 �  $60 
OR shows m = 900, cost = 
$100 not $80 NOTE: must 
show compar ison of costs 
for  the different minutes 

13b 2 States that this is not a case 
of direct variation (y 

intercept is not 0) 
13c 1 Correct answer but 

incomplete demonstration 
of 2a or 2b (e.g., minor 

errors with 
counterexample—doesn’ t 
add the $10 or multiplies 

the minutes by 2 instead of 
3) AND/OR no comparison 

of costs for the different 
minutes 

13d 0 Correct answer, incorrect 
explanation 

13e 0 Correct answer, no 
explanation 

13f 0 Incorrect 
13g 0 Blank 

 

 

 

 

 

 

PLEASE DO NOT COPY WITHOUT PERMISSION FROM DR. GERALD 

KULM. 
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15. Maria and Jinko’s donut sales 

Cell Code Description 
Par t A   
14a1 1 Number of donuts Jinko 

sells OR 5K OR “Jinko 
sells five times as many 

donuts as Maria”  (no credit 
for “ five times as 

many/much”) OR total 
profits OR total number of 
donuts Maria and Jinko sell 

together 
14a2 0 Any other response 
14a3 0 Blank 
Par t B   
14b1 1 Price of donuts OR other 

irrelevant information (e.g., 
“ they both sell” , “ five”) 

14b2 0 Any other response 
14b3 0 Blank 

 

 

 

 

 

 

 

 

 

PLEASE DO NOT COPY WITHOUT PERMISSION FROM DR. GERALD 

KULM.
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16. 19 = 3 + 4y 

Cell Code Description 
15a 2 16 = 4y, 4 = y 
15b 2 Guess and check 

(substitutes 4 for y in the 
equation) 

15c 2 Other (e.g., running 
equation—4 x 4 = 16 + 3 = 

19) 
15d 1 Y = 4 but no explanation 

OR made other errors (e.g., 
correct guess and check but 
reached wrong conclusion) 
OR may show 3 + 4 x 4 = 
19 but does not conclude 

that y = 4. 
15e 0 Completely incorrect (19 = 

7y, 2.7 = y) OR correct 
answer but explanation 
doesn’ t support answer 

15f 0 Blank 
 

 

 

 

 

 

 

 

 

PLEASE DO NOT COPY WITHOUT PERMISSION FROM DR. GERALD 
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APPENDIX F 

VARIANCE TABLE FOR FINAL MODEL 

 Variance Residual 
Variance 

M Intercept 

Within Level     
X1          7.63           0.87  
X2          5.78           0.65  
Between Level     
Y1         304.57          19.13 
Y4         138.39          33.13 
Y5           63.06          31.38 
Y6           70.42          36.88 
Y8           17.69            4.94 
Y9           86.98          13.53 
X3             0.62            0.83 
X4             0.30            0.56 
Factor 1      477.54    



138 

VITA 
 

Amanda Ann Ross, 291 North Fourth Street, Timpson, TX 75975 
 

EDUCATIONAL EXPERIENCE 
 

Ph.D., Texas A& M University, Curriculum and Instruction with emphasis in 
Mathematics Education and Educational Research, 2006. 

M.Ed., Stephen F. Austin State University, Elementary Education with emphasis in 
Mathematics Education, 2004. 

B. S., Stephen F. Austin State University, Interdisciplinary Studies with concentration 
in Mathematics, 2001. 

 
TEACHING EXPERIENCE 

 
Texas A& M University      College Station, TX 
Co-Instructor of graduate mathematics education course  2005 
Texas A& M University      College Station, TX 
Instructor of online mathematics professional development courses 2004-2005 
Timber Creek Elementary      Livingston, TX 
Math Teacher-4th grade      2002-2003 
 

PUBLICATIONS 
 

Ross, A. (2006). Investigating the effects of manipulative use on middle school students’  
understanding of equations. The Lamar Electronic Journal of Student Research, 
3, http://dept.lamar.edu/lustudentjnl/current%20edition.htm. 

 
Ross, A. (2006). A quasi-experimental study examining the effects of access to virtual 

manipulatives and use of kinesthetic manipulatives on middle school students’  
understanding of equations. The Lamar Electronic Journal of Student Research, 
3, http://dept.lamar.edu/lustudentjnl/current%20edition.htm. 

 
SELECTED PRESENTATIONS 

 
Cassidy, S., Wiburg, K., Benedicto, R., Toshima, J., Saldivar, R., Ross, A., et al. (2006). 

MathStar project: A collaboration and collection of “ electronic”  resources for 
teachers and students. Talk presented at the Annual Conference of the National 
Council of Supervisors of Mathematics, St. Louis, MO. 

 
Ross, A., Jolly, D., Cassidy, S., Sims, A., & Saldivar, R. (2006).  Providing online 

support for middle school teachers: Three studies of success. Poster presented at 
the 2nd International Forum for Women in E-Learning Conference, Galveston, 
TX. 


