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ABSTRACT 

 

An Assessment of Middle Grades Preservice Teachers’ Mathematics Knowledge for 

Teaching. (August 2006) 

Margaret Joan Mohr, B.S.Ed., Pittsburg State University; 

M.S., Pittsburg State University 

Chair of Advisory Committee: Dr. Gerald O. Kulm 

 

The overall purpose of this concurrent mixed methods study was to develop an 

online performance assessment using content questions taken from a reputable seventh and 

eighth grade standardized assessment that effectively evaluated and allowed preservice 

middle grades mathematics teachers to demonstrate their mathematics knowledge for 

teaching in the four main content strands of algebra, probability and statistics, geometry, 

and number and operations. In addition, this study examined differences in mathematics 

knowledge for teaching in enrollment characteristics, in courses taken and currently taking, 

and in three different cohorts, each at different stages in the program, of 122 preservice 

middle grades mathematics teachers at a large public university in central Texas.  

Constant comparative analysis and descriptive statistics revealed average scores on 

the seventh and eighth grade content questions. The middle grades preservice teachers’ 

content understanding and pedagogical understanding responses indicated several 

misunderstandings and misinterpretations in the middle grades mathematics they were 

tested on. Content knowledge, content understanding, and pedagogical understanding 

together made up a preservice teacher’s mathematics knowledge for teaching. The study 
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revealed that although preservice middle grades teachers could answer a content question 

correctly; they did not necessarily understand the process they used to arrive at their answer. 

In addition, their lack of explanation and knowledge of how to complete the problem 

correctly was transferred to their pedagogical understanding of the same problem.  

There was a general indication of increasing mathematics knowledge for teaching 

for each content strand across enrollment characteristics (freshmen, sophomore, etc.) and 

cohorts. However, there was a noticeable decrease in average mathematics knowledge for 

teaching scores during middle grades preservice teachers’ junior year. Special integrated 

mathematics and pedagogy courses (MASC) and the middle grades methods course had the 

greatest affect on preservice teachers’ mathematics knowledge for teaching each content 

strand scores. Recommendations are also included in the study which may be used to help 

shape reform initiatives in teacher education programs throughout the United States.   
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CHAPTER I 

INTRODUCTION 

A recent survey of select teacher programs in the United States revealed few 

changes in program characteristics in relation to current education reform 

recommendations (Graham, Li, & Buck, 2000). In addition, currently at the middle grades 

level, 68.5% of teachers have no major certification in mathematics and 21.9% do not have 

a minor in mathematics (Seastrom, Gruber, Henke, McGrath, & Cohen, 2005).  

To deliver the kind of mathematics content in ways that respects middle grades 

students as learners demands a well prepared and motivated teacher. Few existing 

teacher preparation programs meet this need, and certification requirements do not 

support adequate content and pedagogical preparation. (NRC, 2000, p. 15) 

The improvement of middle grades mathematics teacher preparation must be grounded in 

research that provides a theoretical understanding of what prospective mathematics 

teachers for middle grades need to learn, how they learn it, and how their learning can be 

assessed (Kulm, Li, Allen, Goldsby, & Willson, 2005). Therefore, the researcher investigated 

the mathematics knowledge for teaching of middle grades preservice teachers at a large 

university in central Texas in order to gain a better understanding of the growth of this 

knowledge for teaching mathematics during their math/science specialist certification and 

bachelor degree program.  

 

 

   
This dissertation follows the style of Journal for Research in Mathematics Education. 
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Statement of the Problem 

Given the importance placed on the combination of mathematical content 

knowledge and pedagogical content knowledge in preparing preservice teachers, it is 

essential to know the nature of mathematics knowledge for teaching, especially in relation to 

the four main content strands of algebra, probability and statistics, geometry, and number 

and operations, in order to help improve middle grades mathematics teacher preparation 

programs. Not only must teachers understand the material they are teaching, but also 

teachers must be able to communicate the curriculum to the students as well. Therefore, 

this study utilized a standards- and literature-based assessment composed of randomly 

selected problems from a database of questions concerning the following content strands: 

algebra, probability and statistics, geometry, and number and operations. Each question had 

a total of three parts in extended-response format, in order to study approximately 500 

preservice middle grades mathematics teachers’ mathematics knowledge for teaching at a 

large university in central Texas.  

Purpose of the Study 

The overall purpose of this concurrent mixed methods study was to develop an 

online performance assessment that effectively evaluated and allowed preservice middle 

grades mathematics teachers to demonstrate their mathematics knowledge for teaching in 

the four content strands of algebra, geometry, probability and statistics, and number and 

operation. In addition, this study examined differences in mathematics knowledge for 

teaching in three different cohorts of preservice middle grades mathematics teachers at a 

large, public university in Central Texas. The ultimate goal of this study was to provide an 

effective online performance assessment instrument, provide data on preservice middle 
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grades teachers’ mathematics knowledge for teaching, and provide recommendations which 

may be used to help shape reform initiatives in teacher education programs throughout the 

United States.   

Research Questions 

This concurrent mixed methods study initiated an online performance assessment 

instrument which helped determine the nature of the knowledge, and the level of 

knowledge of preservice middle grades mathematics teachers’ mathematics knowledge for 

teaching four content strands specified in national mathematics standards. Specifically, the 

following questions were investigated: 

1. What is preservice middle grades teachers’ mathematics knowledge for 

teaching number and operations? 

2. What is preservice middle grades teachers’ mathematics knowledge for 

teaching algebra? 

3. What is preservice middle grades teachers’ mathematics knowledge for 

teaching geometry? 

4. What is preservice middle grades teachers’ mathematics knowledge for 

teaching probability and statistics? 

Ancillary Questions 

1. What is the effect of various sequencing of mathematics courses? 

2. What developmental differences are there among cohorts as preservice 

teachers progress through the courses? 
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3. Do some types of courses (e.g. algebra, geometry, numerical, statistical or 

applied, theoretical) have more impact than others upon development of 

a teacher’s mathematical knowledge for teaching (MKT)? 

4. Does development happen at greater rates at certain stages of the 

program than others? 

Significance of the Study 

Previous research has provided insights into specific areas or parts of teacher 

knowledge (e.g., Carter, 2005), but no studies have been undertaken to collectively evaluate 

mathematics knowledge for teaching at the preservice middle grades level and across 

different cohorts. The design of this study allowed for a snapshot of the development of 

mathematics knowledge for teaching middle grades during teacher preparation. The current 

middle grades mathematics certification bachelor degree program at this large, public 

university in Central Texas includes strong mathematics preparation in courses designed for 

teachers, specialized courses designed to integrate mathematical knowledge with pedagogy, 

and school-based methods and practicum. The model used in this specific middle grades 

program represents a model for teacher preparation recommended by professional 

organizations (cf. CBMS, 2001). Research on this model has provided the university and the 

education world with results which are intellectually and scientifically sound; contributed to 

teacher preparation; and will have significant implications for current and future teacher 

preparation programs, especially at the middle grades level.  

Theoretical Base for the Study 

The RAND Mathematics Science Panel (2003) report found a compelling 

relationship between what teachers could do with their students and their own level of 
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mathematics competence. The obstacle is that “either teachers do not have enough content 

knowledge, or what they do know is not the ‘right’ content knowledge” (Sherin, 2002, p. 

123). The NCTM (2000) emphasized teachers need different kinds of knowledge, such as 

knowledge of specific content, curricular goals, the challenges students face in learning 

these ideas, assessment, and pedagogical knowledge of effective teaching strategies. In 

addition, “there is a positive connection between subject matter preparation (in both 

content and specific teaching methods) and teacher performance; however, for some 

subjects, like mathematics, current subject matter preparation (including an academic 

subject major) may need to be reformed to increase reasoning skills and conceptual 

knowledge” (ASCD, 2003, p. 1). 

Shulman (1986) introduced the notion of “pedagogical content knowledge” in 

which there is a conceived complementary relationship between the pedagogical knowledge 

and the content knowledge of the subject area. Hill, Schilling, and Ball (2004) such specific 

measures were not yet in place in mathematics education. So they set out, beginning at the 

elementary level, to map out what inservice elementary teachers knew regarding pedagogical 

content knowledge. What Hill, Schilling, and Ball found through their multiple-choice 

assessment was teachers’ “mathematics knowledge for teaching” (the specific pedagogical 

content knowledge of mathematics teachers) elementary grades was partly domain specific 

rather than relating to their teaching or mathematical ability. In their 2005 article, Hill, 

Rowan, and Ball formally defined mathematics knowledge for teaching, 

By “mathematical knowledge for teaching,” we mean the mathematical knowledge 

used to carry out the work of teaching mathematics. Examples of this “work of 

teaching” include explaining the terms and concepts to students, interpreting 
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students’ statements and solutions, judging and correcting textbook treatments of 

particular topics, using representations accurately in the classroom, and effects of 

teachers’ mathematical knowledge on student achievement providing students with 

examples of mathematical concepts, algorithms, or proofs. (Hill, Rowan, & Ball, 

2005, p. 373) 

The following diagram (Figure 1) is Hill, Rowan, & Ball’s (Ball, 2006) visual 

description of mathematics knowledge for teaching and the specific parts this definition 

implies. Common Content Knowledge (CCK) refers to the mathematical knowledge shared 

 

 

Figure 1. Mathematical Knowledge for Teaching (Ball, 2006). 

 

 

by most educated adults, such as knowledge of the curriculum. Specialized Content 

Knowledge (SCK) refers the mathematical knowledge of teachers that goes beyond the 

knowledge of the curriculum. An example of this specialized content knowledge is 
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providing explanations.  Knowledge of Content and Students (KCS) and Knowledge of 

Content and Teaching (KCT) are complementary domains concerning the knowledge about 

mathematics, the knowledge about teaching, and the knowledge about students (Hill, 

Schilling, & Ball, 2004). Knowledge of curriculum and knowledge at the mathematical 

horizon are two newer areas of their model they are currently investigating (Ball, 2006). The 

last two domains (KCS and KCT) are closely related to “pedagogical content knowledge” 

(Shulman, 1986). Utilizing the above figure as a framework for a specific theoretical model 

for this study, the following table (Table 1) was developed. 

 

 

Table 1 
Mathematical Knowledge for Teaching the Middle Grades of Preservice Teachers 

Preservice Teachers’ Mathematical Knowledge for Teaching the Middle Grades 

 
Content Knowledge 

Pedagogical Knowledge 
for the Teaching of 

Middle Grades 
Mathematics 

 
 

 

 
 

Content Strand 

 
 

Correct Answer 
(Yes/No) 

 
(Common 
Content 

Knowledge) 

 
Explanation of solution 

provided 
(Accuracy/Clear/Higher 
Order Thinking Present, 

etc.) 
 

(Specialized Content 
Knowledge) 

Explanation of 
implementation into 

middle grades classroom 
(Accuracy/Clear/Various 

Methods/Type of 
Presentation, etc.) 
(Integration of 

Knowledge of Content 
and Students, and 

Knowledge of Content 
and Teaching) 

Algebra    
Geometry    
Probability and 
Statistics 

   

Number and 
Operations 
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Since there is a lack of research concerning middle grades teachers’ mathematics 

knowledge for teaching, this model was developed to help explore what exactly their 

mathematics knowledge for teaching was and what it entailed, based off of the research of 

mathematics knowledge for teaching of elementary school teachers presented by Hill, 

Schilling, and Ball (2004), and Hill, Rowan, and Ball (2005). The four broad content strands 

chosen are recommended content areas middle grades teachers need to be studying in their 

teacher preparation programs (CBMS, 2001). In addition, these content strands closely 

resembled that of the state standards where the study was held, the state standards where 

the items were chosen, and the National Council of Teachers of Mathematics’ (NCTM) 

Principles and Standards for School Mathematics (2000). 

In addition to formalizing the definition of mathematics knowledge for teaching, 

their study of first and third grade teachers found that teachers’ mathematical knowledge for 

teaching was significantly related to student achievement gains in both grade levels. The 

implementation of the definition of the mathematics knowledge for teaching may very well 

be the beginnings of the reform ASCD (2003) discusses. 

Definition of Terms 

The following definitions are provided for terms having special application in this 

study. 

Assessment: the process of collecting, interpreting, and synthesizing information to 

aid in decision making (Airasian, 1991). The purpose of assessment is to “find out what 

each student is able to do, with knowledge, in context (Wiggins, 1996/1997, p. 19).  
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Culturally responsive: using the cultural knowledge, prior experiences, and performance 

styles of diverse students to make learning more appropriate and effective for them (Gay, 

2000). 

Mathematical achievement: the attainment and success of a student in mathematics as 

indicated by scores that go beyond the number of correct responses. One example of 

mathematical achievement is a score on a text-embedded chapter test. 

Mathematics knowledge for teaching: the mathematical knowledge “used to carry out the 

work of teaching mathematics” (Hill, Rowan, & Ball, 2005, p. 373). 

Middle grades: fifth to eighth grades. 

Middle grades certification: Math/science specialist program: middle grades certification 

program leading to the Bachelor of Science degree (B.S.) with a major in Interdisciplinary 

Studies (INST) through the Middle Grades Certification Program in a curriculum and 

instruction department at a large, public university in Central Texas. It is a field-based 

program with students spending extensive time in area middle schools. Credit hours 

required for graduation in the Mathematics/Science strand total 133-134 credit hours. 

NCTM: the National Council of Teachers of Mathematics, an organization 

composed of classroom teachers, supervisors, educational researchers, teacher educators, 

university mathematicians, and administrators involved in the mathematics education of 

students.  

Pedagogical content knowledge: the knowledge of content, knowledge of teaching, and 

knowledge of learners’ cognition. 

Performance assessment:  a form of testing requiring students to demonstrate their 

achievement of understandings and skills by completing a demanding task(s) in which they 
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are asked to respond to the task(s) orally, in writing, or by constructing a product 

(Gronlund, 2003; Nitko, 2001; Popham, 2005). 

Preservice teacher: a college student enrolled and accepted into the College of 

Education for the Mathematics/Science Specialist degree program who has the intention of 

teaching in a middle school upon graduation. 

Assumptions 

1. The participants provided accurate information. 

2. The participants did not receive outside help (i.e., internet, other persons, 

textbooks, etc.) when completing the online assessment. 

Delimitations 

It is not possible to test all preservice middle school mathematics teachers. Thus, 

the study is limited to the number of preservice teachers and topics feasibly available. The 

study did not consider gender or ethnicity because of feasibility for the study. 

Organization of Study 

Chapter I has presented an introduction to the assessment of mathematics 

knowledge for teaching of middle school preservice teachers while justifying the need for 

this study. Specialized terms, research questions, and statistical techniques have been 

described and identified. Chapter II presents a review of relevant literature. Chapter III 

describes the methodology of the study. Chapter IV reports the results of the analysis of the 

data obtained in the study. Chapter V discusses the conclusions and implications that can be 

drawn from the study. 
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CHAPTER II 

BACKGROUND LITERATURE 

This chapter review the literature relevant to the learning theory on which 

performance assessment and mathematics knowledge for teaching is based, constructivism, 

the research regarding mathematics knowledge for teaching, the research regarding 

assessment, especially in regards to performance assessment and the assessment of teachers’ 

knowledge, and the research regarding the preparation of teachers, especially in regards to 

middle grades mathematics. 

Currently, there is no literature concerning preservice teachers’ mathematics 

knowledge for teaching. In addition, the only published research on mathematics knowledge 

for teaching has been at the elementary levels. This lack of literature indicates a dire need to 

investigate preservice teachers’ mathematics knowledge for teaching at the middle grades 

level.  

The National Council of Teachers of Mathematics (NCTM) has had a major impact 

on the teaching and learning of mathematics. The emphasis the NCTM has placed on 

student involvement, alternative assessment techniques, and the creation of culturally 

responsive mathematical environments shows its ideas are more consistent with 

constructivism than other various learning theories. Previous research studies (e.g., Hill, 

Rowan, & Ball, 2005) have relied heavily on the use of multiple-choice assessments to 

evaluate inservice teachers’ mathematics knowledge for teaching. However, their model of 

mathematics knowledge for teaching (see Figure 1) suggests many of components have an 

underlying constructivism theory.  
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Constructivism 

Borrowed from cognitive psychology, constructivism currently dominates 

mathematics and science education. Constructivism began as a theory of learning, but has 

since been described as a philosophy, an epistemology, a cognitive position, or a 

pedagogical orientation (Matthews, 2000; Noddings, 1998). “Constructivism has become 

education’s version of the ‘grand unified theory’” (Matthews, 2000, p. 1). Constructivism 

can be generally described the constructing of one’s own knowledge with the premise that 

knowledge is not the result of passive reception (Noddings, 1998).  

Directly applied to mathematics education, constructivism has the following tenets: 

1. Knowledge is actively created or invented by the child, not passively 

received from the environment.  

2. Children create new mathematical knowledge by reflecting on their physical 

and mental actions. Ideas are constructed or made meaningful when 

children integrate them into their existing structures of knowledge. 

3. No one reality truly exists, only individual interpretations of the world. 

These interpretations are shaped by experience and social interactions. 

4. Learning is a social process in which children grow into the intellectual life 

of those around them (Bruner, 1986, cited in Clements & Battista, 1990). 

Mathematical ideas and truths, both in use and in meaning, are cooperatively 

established by the members of a culture. 

5. When a teacher demands students use set mathematical methods, the sense-

making activity of students is seriously curtailed. Their beliefs about the 

nature of mathematics change from viewing mathematics as sense making to 
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viewing it as learning set procedures that make little sense. (Clements & 

Battista, 1990) 

Constructivism in education can be traced back to Jean Piaget who sought to 

“identify the structures of the mind underlying cognitive behaviors characteristic at each 

stage of mental development” (Noddings, 1998, p. 115). Piaget’s work was attractive to 

educators because of the active involvement of the child in his or her own learning. Active 

engagement of students in the classroom was encouraged while lecturing and telling was de-

emphasized. Although Piaget and his learning stages are still popular today, critics felt he 

neglected the social aspects of learning. This eventually led to a split into two more specific 

areas of constructivism, radical (also has been called personal) constructivism and social 

constructivism. Radical constructivism has its origin in Piaget, but is most clearly defined 

through the works of Ernst von Glasersfeld (Matthews, 2000). Social constructivism, our 

topic of interest, has its origins with Lev Vygotsky, a Soviet contemporary of Piaget. More 

recent enunciated works of social constructivism in mathematics education can be found in 

the writings of Paul Ernest.  

Vygotsky’s interest in the arts and aesthetics as a young man later influenced his 

development of psychological theories on consciousness and culture. Many of his 

colleagues regarded him as an outsider in the field of psychology. He received his share of 

criticism regarding his points of view and his use of terminology, especially when he “never 

ceased to uphold the principle of reconstructing psychological phenomena from data 

seemingly belonging to other disciplines” (Vygotsky, 1986, p. xvi). His work has been 

labeled metatheoretical, metapsychological, metapragmatic, and a metasematic – in other words he 

would be considered a metatheoretican. He worked in varied areas of psychology, but 
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concentrated his scientific efforts on the development of human consciousness. According 

to Davydov and Zinchenko (1993), “Vygotsky created a fundamental theory of human 

development that is still of considerable practical significance for upbringing and education” 

(p. 93).  

Vygotsky’s theories differed from the traditional Russian psychological theory. For 

example, his views are now seen “as an alternative to behaviorism and to Piaget. It is 

important to understand that Vygotsky did not try to exclude behaviorism from his overall 

psychology-philosophy; however it was firmly positioned within the lower mental processes, 

which should not be confused with the higher mental processes” (Robbins, 2001, p. 7). 

The emphasis on social learning was a foundational shift to the current pedagogical 

approaches of the 1920s and 1930s. Vygotsky “recognized that what was necessary was a 

theory which focused on how to get the child from his present state of development or 

learning to a point in the future” (Evans, 1993, p. 32), which became the Zone of Proximal 

Development (ZPD). Succinctly put, the ‘zone’ is a stage in his development where “a child 

can resolve a certain range of problems only under the guidance of adults and in 

collaboration with more intelligent comrades, but cannot do so independently” (Evans, 

1993, p. 33; Davydov & Zinchenko, 1993, p. 102.) Vygotsky (1986) noted that “experience 

has shown that the child with the larger zone of proximal development will do much better 

in school” (p.187). In the ZPD it appears one only moves towards the highest levels of the 

higher mental processes, yet later Vygotsky recognized the need to understand education is 

not linear, but a spiral and it might even include regression.  

Vygotsky’s work has permeated the mathematics education world with the most 

recent writings coming from Paul Ernest. Ernest has written several books concerning the 
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philosophy of mathematics and social constructivism including, Social Constructivism as a 

Philosophy of Mathematics (1998) and The Philosophy of Mathematics Education (1991). He believes 

“mathematics is a social construction, a cultural product, fallible like any other branch of 

knowledge. This view entails two claims. First of all, the origins of mathematics are social or 

cultural. …secondly, the justification of mathematical knowledge rests on its quasi-empirical 

basis” (Ernest, no date, p. 3). Ernest even borrows the two principles of radical 

constructivism to help construct a social constructivist epistemology.  

With the publication of two of von Glasersfeld’s works in the Journal for Research in 

Mathematics Education (Richards & von Glasersfeld, 1980; von Glasersfeld, 1981), 

constructivism was thrust into the mathematics education spotlight, moving it from an 

“almost hidden, still dualistic phenomenon in the 1960s and 1970s, to a more defined, 

evolving, and seemingly individually oriented but seriously challenged system for 

mathematical knowing in the mid 1980s, to an interactionist but nonrepresentationist view 

of mathematical knowing and teaching today” (Steffe & Kieren, 1994, p. 728). Since the 

introduction of constructivism, the way people learn mathematics and how mathematics 

should be taught has been criticized, immortalized, and debated. Constructivism, and more 

specifically social constructivism, has played a key role in the current mathematics education 

reform. Standards-based textbooks, which boast of conceptual and active learning, are being 

implemented in states all across the country. Even the NCTM 1989 Standards and the 2000 

PSSM, reveal constructivist ideas within their documents. 

Mathematics Knowledge for Teaching 

Concerning teachers’ knowledge of mathematics, two things can be repeatedly seen: 

US teachers’ mathematical knowledge continues to be weak, and there is an inherent 
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difference between the mathematical knowledge needed to be an effective teacher and 

needed by a mathematician (RAND Mathematics Study Panel, 2003). The RAND 

Mathematics Study Panel (2003) report found a compelling relationship between what 

teachers can do with their students and their own level of mathematics competence. The 

obstacle, however, is that “either teachers do not have enough content knowledge, or what 

they do know is not the ‘right’ content knowledge” (Sherin, 2002, p. 123). The NCTM 

(2000) emphasized teachers need different kinds of knowledge of specific content, 

curricular goals, the challenges students face in learning these ideas, assessment, and 

pedagogical knowledge of effective teaching strategies. In addition, “there is a positive 

connection between subject matter preparation (in both content and specific teaching 

methods) and teacher performance; however, for some subjects, like mathematics, current 

subject matter preparation (including an academic subject major) may need to be reformed 

to increase reasoning skills and conceptual knowledge” (ASCD, 2003, p.1).  

Shulman (1986) introduced the notion of “pedagogical content knowledge” in 

which there is a conceived complementary relationship between the pedagogical knowledge 

and the content knowledge of the subject area. Shulman (1987) formally defines pedagogical 

content knowledge as the ability of the teacher to transform the content knowledge into 

forms which are “pedagogically powerful and yet adaptive to the variations in ability and 

background presented by the students” (p. 15). This pedagogical content knowledge links 

content, students, and pedagogy, revealing a special kind of teacher knowledge (RAND 

Mathematics Study Panel, 2003). “To be a teacher requires extensive and highly organized 

bodies of knowledge” (Shulman, 1985, p. 47). Teacher pedagogical content knowledge is 

closely connected with the subject matter being taught, how this subject matter achieves the 
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transformation through the learning process, in the way which one knows how the students 

think, and with teachers’ beliefs (Fennema & Franke, 1992). 

Fennema and Franke (1992) used Shulman’s model as a base in discussing the five 

components of their model of teachers’ knowledge: the knowledge of the content of 

mathematics, knowledge of pedagogy, knowledge of students’ cognitions, context specific 

knowledge, and teachers’ beliefs. The content of mathematics includes teachers’ knowledge 

of the concepts, procedures, and problem-solving processes within the domain in which 

they teach. Pedagogical knowledge is teachers’ knowledge of teaching procedures. Learners’ 

cognitions include knowledge of how students think and learn. This model further 

illustrates the complex and dynamic nature of teachers’ knowledge. Ma’s study (1999), 

Knowing and Teaching Elementary Mathematics presented a generative form of pedagogical 

content knowledge by describing “knowledge packages” and the idea of “profound 

understanding of fundamental mathematics.” An important aspect of this profound 

understanding is linked to the knowledge of teachers who have the ability to explain 

mathematics effectively to students. 

Taking all the aforementioned research into consideration, Hill, Schilling, and Ball 

(2004) argued specific measures frequently mentioned in relation to pedagogical content 

knowledge and mathematical content knowledge were not yet in place in mathematics 

education. They set out, at the elementary level, to map out what elementary teachers knew 

regarding pedagogical content knowledge. What they found through their multiple-choice 

assessment was teachers’ mathematics knowledge for teaching (their phrase used in place of 

pedagogical content knowledge) the elementary grades was partly domain specific rather 
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than relating to their teaching or mathematical ability. In their 2005 article, Hill, Rowan, and 

Ball formally defined mathematics knowledge for teaching (see Figure 1): 

By “mathematical knowledge for teaching,” we mean the mathematical knowledge 

used to carry out the work of teaching mathematics. Examples of this “work of 

teaching” include explaining terms and concepts to students, interpreting students’ 

statements and solutions, judging and correcting textbook treatments of particular 

topics, using representations accurately in the classroom, and effects of teachers’ 

mathematical knowledge on student achievement providing students with examples 

of mathematics concepts, algorithms, or proofs. (Hill, Rowan, & Ball, 2005, p. 373) 

Hill, Rowan, and Ball’s (2005) study of mathematical knowledge for teaching in the 

elementary grades presented remarkable and groundbreaking research for the mathematics 

education community. In addition to finding that teachers’ mathematical knowledge for 

teaching positively mathematics achievement during the first and third grades, their results 

suggested measures of teacher knowledge should be at least content specific and better yet, 

specific to the teaching of grade level. In addition, their results confirmed studying 

Shulman’s (1986) pedagogical content knowledge as a subject-specific behavior is critical. 

The implementation of the definition of the mathematics knowledge for teaching may very 

well be the beginnings of the reform the ASCD (2003) discusses.  

Assessment 

With the introduction of No Child Left Behind (NCLB) into education in the United 

States (US), high-stakes testing and assessment in general has been thrust into the spotlight. 

Currently, many US schools are using high-stakes testing to measure student performance. 

These tests not only provide valuable feedback to teachers regarding individual student 
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performance, curriculum, and teaching methods, but they also help to hold schools and 

school districts accountable for students’ performances (American Psychological 

Association [APA], 2001). Although tests are among one of the best methods to assess 

student learning, high-stakes testing is often perceived as a single “snapshot” of a student’s 

academic achievement (APA, 2001). Schools give the students one chance to successfully 

pass a paper-and-pencil test. In addition, the tests often “have unintended and potentially 

negative consequences for individual students, groups of students, or the educational system 

more broadly” (APA, 2001, ¶ 5).   

Airasian (1991) describes assessment as the process of collecting, interpreting, and 

synthesizing information to aid in decision making. The purpose of assessment is to “find 

out what each student is able to do, with knowledge, in context” (Wiggins, 1996/1997, p. 

19). Traditionally, effective assessment has been defined by what it is not (i.e., standardized 

tests). However, effective assessment is “built on current theories of learning and cognition 

and grounded in the views of what skills and capacities students will need for future 

success” (Herman, 1992, p. 75). Webb (1992) described assessment as having multiple 

cameras at all different views taking pictures at all different angles all at the same time. 

However, the most common forms of assessment in classrooms today do not give different 

angles to a students’ knowledge. Instead, the assessments give a single snapshot, usually a 

snapshot indicating whether or not they know the content material (Bransford, Brown, & 

Cocking, 2000). These assessments are commonly in multiple choice formats and are graded 

as right or wrong. Summative assessments can be effective forms of assessment, but 

monies, grade advancement, certification, and other labels are often associated with these 

assessments. 
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Although assessment has taken a more negative connotation in the past decade, 

assessment does have a necessary and useful function in classrooms today. Assessments 

allow students to demonstrate proficiency on specified topics and content areas in order to 

help teachers and others determine whether students are moving satisfactorily toward 

learning goals and outcomes specified by the teacher (Popham, 2005).  

In general, there are two types of assessment: formative and summative. Formative 

assessments are evaluations intended to improve unsuccessful yet still modifiable 

instruction. Summative assessments, most commonly utilized and talked about, refer to 

tests whose purpose is to make a final success/failure decision about a relatively 

unmodifiable set of instructional activities (Popham, 2005).  

Gradually more schools, school districts, and states are experimenting with 

alternative forms of assessment. Most are not convinced the traditional standardized tests 

measure many of the important aspects of learning. In addition, traditional standardized 

tests fail to support many of the useful teaching strategies preservice teachers are currently 

being taught in their college courses (Darling-Hammond, Ancess, & Falk, 1995). 

Researchers (cf. Dorr-Bremme & Herman, 1983; Herman & Golan, 1991; Kellaghan & 

Madaus, 1991; Shepard, 1991; Smith & Rottenberg, 1991) have also concluded “the time 

focused on test content has narrowed the curriculum by overemphasizing basic-skill 

subjects and neglecting higher-order thinking skills” (Herman, 1992, p. 74). Although some 

test scores have improved through the use of the “teaching to the test” method, the 

standardized test scores represent only the content and formats included on the tests and in 

the end, teaching to the test does not result in meaningful learning for the students 

(Herman, 1992). 
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Performance Assessment 

Alternative assessment practices are being developed to look directly at “students’ 

work and their performance in ways that can evaluate the performances of students, classes, 

and whole schools” (Darling-Hammond et al., 1995, p. 10). The alternative practices are 

known as “authentic” assessments or “performance” assessments because students are 

engaged in “real world” tasks rather than multiple choice exercises. A performance 

assessment is a form of testing in which a student is given a task, usually a demanding one, 

then asked to respond to the task orally, in writing, or by constructing a product (Popham, 

2005). The students are then evaluated according to criteria (typically a rubric of some sort 

is used) important for the actual performance in the particular field (Wiggins, 1989). 

Basically, in performance assessment, a student (the examinee) is asked to demonstrate and 

apply the skills and knowledge they have learned (Stiggins, 1987). “Performance tasks give 

the teacher and students feedback as to the current level of achievement and suggest ways 

for teacher and students to improve future outcomes” (Huetinck & Munshin, 2004, p. 373).  

Performance assessments are broader in scope than traditional pencil and paper 

assessments. They are more authentic and are more likely to elicit a student’s full repertoire 

of skills and reflect a range of goals the teacher wants the students to meet (Campbell, 

Melenyzer, Nettles, & Wyman, 2000). There are various forms of performance assessment 

including, oral presentations along with student written work, experiments, debates, teacher 

observation and inventories, inquiries, and portfolios (Archbald & Newman, 1988; Meisels, 

1996/1997; O’Neil, 1992). These various forms of performance assessments are also a 

valuable tool in special education where paper-and-pencil tests are unable to be utilized or 

fail to test important skills (Stiggins, 1987). Although there are various forms of 
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performance assessment, all forms have the same three features in common: multiple 

evaluative criteria, prespecified quality standards, and judgmental appraisal (Popham, 2005). 

Typically, performance assessments are integrated within the curriculum, not 

considered separate, as some tests are. Performance assessments can become an integral 

part of a classroom because the students are no longer stressed with comparing scores 

against each other. Instead, they are challenged to meet at least minimum proficiency on 

specified tasks (Huetnick & Munshin, 2004). In addition, performance assessments can be 

used in group or individual settings, increasing its flexibility for use in the classroom. 

Using performance assessments at the middle grades level has many advantages for 

students (both classroom and college students), teachers, and even parents and 

administrators. Performance assessments allow students the opportunity to display more 

than just speed and accuracy. In addition, students have more opportunities to do their own 

organizing and thinking as they solve more creative problems, allowing them to focus more 

on the process rather than just memorizing the rules. In performance task assessment—an 

assessment activity requiring a student to produce a written or spoken response, to engage 

in an activity or to create a product (Nitko, 2001)—students are involved in real tasks which 

engage and motivate. For teachers, assessment is an integral part of instruction and student 

learning. By utilizing performance assessment in their classrooms, teachers increase the 

quality of information they can obtain about student understanding and ability to do 

mathematics and they are able to gain more comprehensive information for instructional 

decisions about student misconceptions or errors. For administrators and parents, the use 

of performance assessment in classrooms provides direct evidence of students learning to 
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think and use mathematics in new situations. A connection between schoolwork and real 

life is demonstrated.  

Although performance assessment appears to be unbeatable in the classroom, there 

are some limitations which must be considered when implementing such an assessment 

system. The development of performance assessment requires considerable time and effort 

on the teacher’s part. In addition rubrics have to be created or adapted to each assessment 

situation. The scoring of the performance assessments themselves can be burdensome and 

typically has low reliability in the end, much of it due to the subjectiveness of performance 

assessments. 

With NCLB and the implications of high-stakes testing, the push for an alternative 

form of assessment is greater than ever. Although a nation-wide effort and federal funding 

would be the best scenario for the implementation of an alternative assessment program 

such as performance assessment, the schools, ultimately, will be the deciding factor. The 

amount of time and effort needed for the proper development, design, and actual 

implementation of performance assessments will be the largest barrier schools will have to 

get over (Mohr, 2006). 

Assessment of Teachers’ Knowledge 

Until recently, typical approaches to providing measures of teacher knowledge in 

mathematics included using mathematics courses taken in their later high school years and 

in college. However, these proximate measures have been found to be poor indicators of 

what teachers actually know and how they use that knowledge in teaching mathematics 

(Hill, Rowan, & Ball, 2005; RAND Mathematics Study Panel, 2003). Specifically at the 

middle grades level these proximate measures likely not exist due to the lack of specific 
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middle grades programs and lack of content-specific certification in several states (Seastrom 

et al., 2005).  

Although assessing procedures and facts is important, assessments, especially in 

relation to teacher knowledge and understanding, should focus also on understanding since 

the goal is not just to learn, but to learn with understanding (Bransford et al., 2000). 

Assessing understanding can be tricky though since one is not able to assess it directly and it 

usually cannot be inferred from a single response on a single task. Instead, a “variety of 

tasks are needed to generate a profile of behavioral evidence” (Hiebert & Carpenter, 1992, 

p. 89). 

In the late 1980s, the National Center for Research on Teacher Education took a 

step in the direction of the assessment reform and developed a better method of assessing 

content knowledge by posing questions in the context of teaching. Their results revealed 

teachers’ thin understanding of mathematics and mathematics pedagogy. Moreover, the 

results also revealed a lack of understanding of the concepts behind the answers the 

elementary and secondary teachers gave when they were asked to explain their reasoning 

(RAND Mathematics Study Panel, 2003). Further research has indicated similar results (e.g., 

Eisenhardt, Borko, & Underhill, 1993; Ma, 1999)—teachers got the “right answers” but 

they lacked understanding of why they were doing certain computation procedures or they 

were unable to explain why they arrived at the solution they did. In a study of preservice 

secondary teachers over topics common to preservice middle grades and elementary 

teachers, Bryan (1999) found that about 35% of the time, the group of nine participants 

offered no explanation or offered a flawed explanation in response to direct interview 

questions. Only 22% offered a sound explanation in the same situation. 
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A lack of understanding and failure to successfully justify answers is not just a 

problem in preservice and inservice teachers. In the analysis of the results of the National 

Assessment of Education Progress (NAEP) for rational numbers, Wearne and Kouba 

(2000) found students at all grade levels had difficulty justifying their responses and 

explaining how they arrived at these responses. One might speculate the lack of teacher and 

preservice teacher understanding has an affect on student understanding. However, in order 

to fully understand and target this idea, teacher misconceptions and knowledge must be 

dealt with first. “We have to first deal with teachers’ misconceptions before we can expect 

them to be competent at helping their students to overcome misconceptions” 

(Shaughnessy, 1992, p. 484). In order to deal with the misconceptions of teachers, one must 

first understand the nature of the misconceptions.  

The lack of sophisticated, robust, valid, and reliable measures of teachers’ 

knowledge has limited what we can learn empirically about what teachers need to 

know about mathematics and mathematics pedagogy. The lack of measures also 

limits our understanding about how such knowledge affects the learning 

opportunities of particular students and their development of mathematical 

proficiency over time. …A range of tools is needed, including survey measures, 

performance tasks, and written and interactive problems. (RAND Mathematics 

Study Panel, 2003, p. 26) 

Mathematical content knowledge, pedagogical content knowledge, and mathematics 

knowledge for teaching are critical and central components of teacher preparation. 

However, there is a lack of research concerning what mathematics middle grades teachers 

and preservice teachers actually do know and understand (Post, Harel, Behr, & Lesh, 1991). 
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Teacher Preparation for Middle Grades Mathematics 

Reforms seem to be happening all over the US. Ongoing education reform efforts 

have been escalated in line with new accountability systems. Mathematics education 

continues its “math wars” and is now struggling to put and keep teachers in the classrooms. 

Another reform effort is the new teacher education. The new teacher education grows out 

of changing notions of accountability and more specifically, the recent educational reform 

movements in the US (Cochran-Smith, 2005). The quality of classroom instruction had not 

been a major concern of policy makers and educators until it was compared to other 

educational systems (e.g., Silver, 1998). Now the ever-static American classroom (NCMST, 

2000) is gradually seeing changes thanks to numerous professional development programs, 

nationally-funded research projects in cooperation with major universities, and reform 

initiatives in teacher preparation programs.  

For almost all of the last century, teacher preparation has been located within higher 

education institutions. This is not the case anymore. Almost every state in the US has some 

sort of alternative certification program—some are attached to universities while others 

bypass them altogether (Cochran-Smith, 2005). This has caused colleges and universities to 

look hard at the way their teachers are prepared. Some programs have been disbanded all 

together while others work hard to adapt and compete with the new teacher education. 

Mathematics education programs have been thrust into the spotlight, especially at the 

middle grades levels, because of the recent comparison studies revealing poor student 

performance and static teacher instruction in middle grades classrooms (Hiebert et al., 2003; 

Stigler & Hiebert, 1997, 1999, 2004). However, it is not the poor student performance or 
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the methods of instruction that is of major concern. It is of the mathematical and 

pedagogical content knowledge of teachers (Hill, Rowan, & Ball, 2005).  

National agencies and professional organizations in various reports have expressed 

concern about teachers’ mathematical preparation. 

There is evidence of a vicious cycle in which too many prospective teachers enter 

college with insufficient understanding of school mathematics, have little college 

instruction focused on the mathematics they will teach and then enter their 

classrooms inadequately prepared to teach mathematics to the following generation 

of students. (CBMS, 2001, p. 5)  

As teachers take more mathematical courses at the college level, they often move away from 

the curriculum they will teach, resulting in better preparation for graduate school than for 

teaching in the classroom (Usiskin, 2001). Mathematics courses are needed to help teachers 

develop a strong and deep understanding of the mathematics they will teach. Since the 

introduction of the Professional Standards for Teaching Mathematics (NCTM, 1991), other 

national organizations have followed suite, many of them providing specific 

recommendations for the creation of effective mathematics teacher education programs 

(e.g., CBMS, 2001; INTASC, 1995; RAND Mathematics Study Panel, 2003).  

 A common theme among the recommendations is the creation or reformation of 

teacher preparation program targeted for middle grades (grades 5-8) mathematics teachers. 

If no middle grades program is available, the teacher is prepared in either elementary school 

mathematics or secondary school mathematics. If the teacher is prepared in elementary 

school mathematics they often lack the broader background needed to teach the more 

advanced mathematics of the middle grades (CBMS, 2001). If the teacher is prepared in 
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secondary school mathematics, they often lack the pedagogical knowledge needed to be 

successful at the middle grades levels. Existing middle grades teacher preparation programs 

tend to differ substantially depending on whether they gaining generalist (all content areas, 

similar to that of an elementary teacher preparation program) or specialist (i.e., mathematics 

and science) certification partly because of the organization of schools, universities, and 

state accreditation and certification programs (NCES, 1993, 1995; Nelson, Weiss, & 

Conaway, 1992).  

The Conference Board of the Mathematical Sciences (CBMS, 2001) made the 

following recommendation: 

Recommendation 11. Mathematics in middle grades (grades 5 – 8) should be taught by 

mathematics specialists. This recommendation mirrors similar recommendations by a 

number of other groups seeking to improve U.S. school mathematics instruction. 

Middle grades mathematics teachers must know the high school mathematics 

curriculum well and understand the foundation that is being laid for it in their 

instruction. As concepts like fractions and decimals enter the curriculum, teaching 

mathematics well requires subject matter expertise that non-specialists cannot be 

expected to master. Having mathematical specialists, beginning in middle grades, 

both reduces the education burden for those teaching mathematics in these grades 

and provides opportunities for prospective teachers of these grades who like 

mathematics to specialize in it. (CBMS, 2001, p. 11) 

The CBMS (2001) recommends at least 21 semester hours of mathematics that includes 

four broad content areas (i.e., number and operations, algebra and functions, geometry and 

measurement, and data analysis, statistics, and probability). The courses must be designed to 
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such a way that prospective teachers develop a deep understanding of the mathematics they 

will be teaching. In addition, courses are needed that will strengthen prospective teachers’ 

“own knowledge of mathematics and broaden their understanding of mathematical 

connections between one educational level and the next, connections between elementary 

and middle grades as well as between middle grades and high school” (pp. 25-26). Further 

recommendations include: more focus on transitioning prospective teachers from a world 

of college courses into a world in which they are the teacher of record (Bransford et al., 

2000), more effective communication between education and mathematics departments, 

especially amongst instructors (Bransford et al., 2000), and development of a prospective 

teachers’ mathematics knowledge for teaching in which both content knowledge, pedagogy, 

and pedagogical content knowledge for mathematics are focused upon (CBMS, 2001).  

Future teachers of mathematics at any level will be expected to teach and follow 

more challenging mathematics (INTASC, 1995) in order to successfully fulfill the ultimate 

goal of school: helping students transfer what they have learned in school to the ever-

increasingly complexities of students’ everyday settings (Bransford et al., 2000). Therefore 

teacher preparation programs, especially at the middle grades level, must focus on 

developing teachers who have a thorough understanding of mathematics, a deeper 

understanding of how this knowledge is developed throughout each grade band 

(elementary, middle grades, secondary), and who believe in and can provide challenging 

learning opportunities for all students when it is their turn to go into the classroom (CBMS, 

2001; Cochran-Smith, 2005; INTASC, 1995). 
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Conclusions 

“In this changing world, those who understand and can do mathematics will have 

significantly enhanced opportunities and options for shaping their futures. Mathematical 

competence opens doors to productive futures. A lack of mathematical competence keeps 

those doors closed” (NCTM, 2000, p. 5). There is limited research available concerning 

competency of prospective teachers at the middle grades level. In addition there is little or 

no research concerning the levels of competency middle grades preservice teachers can 

achieve through specific program studies such as the one found in this research study. Thus 

it is imperative to undertake a comprehensive study of middle grades preservice teachers’ 

mathematics knowledge for teaching. 
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CHAPTER III 

METHODOLOGY 

The intent of this concurrent mixed methods study was to assess the nature of 

mathematics knowledge for teaching in middle grades mathematics teachers. This study 

utilized a mixed-model design (cf. Johnson & Onwuegbuzie, 2004) where the data were 

qualitatively analyzed initially followed by a quantitative analysis. The data were qualitatively 

analyzed in order to understand the nature and structure of the participants’ responses. The 

data were quantitatively analyzed in order to investigate the overall implications. The results 

from the qualitative analysis were used to compliment and provide depth to the findings 

from the quantitative analysis.  

This chapter will discuss the research design, population, instrumentation, research 

questions, and statistical design. A description of the scoring procedures for the tests is also 

provided. 

Mixed Methodology Research Design 

Mixed methods research has its origins in psychology and was first used when 

Campbell and Fiske were researching the validity of psychological traits in 1959. Campbell 

and Fiske (1959) created a multitrait-multimethod matrix that helped researchers examine 

“multiple approaches to data collection in a study” and encouraged other researchers to use 

the matrix as well (Creswell, 2003, p. 15). In the 1970s triangulation of data sources emerged 

as a system for uniting qualitative and quantitative methods. Currently, several authors (e.g., 

Collins, Onwuegbuzie, & Sutton, 2006; Johnson & Onwuegbuzie, 2004; Tashakkori & 

Teddlie, 1998) are discussing the ever-expanding motives for conducting a mixed methods 
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study, and researchers from all over the world have begun developing procedures for 

mixing quantitative and qualitative methods.  

Mixed methods research can be defined as a unique integration of qualitative and 

quantitative research methodologies in order to conduct a single study or several studies in 

an agenda of investigation. Mixed methods researchers realize limiting oneself to including 

only quantitative or qualitative methods “falls short of the major approaches used today in 

social and human sciences” (Creswell, 2003, p. 4). Therefore researchers employ mixed 

methods for several reasons. Mixed methods designs have been used to expand 

understanding from one method to another, or to substantiate results from a different data 

source. Researchers have used mixed methods study so that one form of investigation 

informs another.  

Although mixed method designs have been seen as a well-rounded method for 

conducting research, there are several challenges mixed methods researchers face. 

Researchers who choose to mix methods must be familiar with both quantitative and 

qualitative methods of conducting research. Also, mixed methods research is very time 

consuming in the fact there is a need for extensive data collection and analyzation. These 

challenges come as a small price to pay for the powerful data that can be gleaned from a 

mixed methods study.  
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This study will employ a concurrent triangulation mixed methods strategy, the most 

familiar of the six major mixed methods models, in order to answer the aforementioned 

research questions and ancillary questions. The concurrent triangulation strategy uses 

separate quantitative and qualitative methods in order to give strength to one method in 

areas where the other method is inherently weak. In this strategy it is ideal for quantitative 

and qualitative approaches to be given equal treatment with the integration of the results of 

the two methods happening at the interpretation phase (Creswell, 2003).  

The researcher felt it necessary to include a qualitative measure, in addition to a 

quantitative measure, in this study to gain a deeper understanding of preservice middle 

grades teachers’ mathematics knowledge for teaching. Although connecting test scores of 

mathematics knowledge for teaching the middle grades to various course sequencing, 

cohorts, class, etc. could easily be done with quantitative measures, the researcher felt the 

richness of the study could be found in more qualitative aspects such as the open-ended 

responses on the Mathematics Knowledge for Teaching Middle Grades Online Assessment. 

Figure 2 below gives a more detailed picture of the concurrent triangulation strategy 

(Creswell, 2003) being used in this study. 
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Figure 2. Mixed Methods Design for the Study (adapted from Creswell, 2003; Tashakkori & 
Teddlie, 1998). 

 

 

Population 

This study occurred at a large, southern, public university. The population for the 

study was preservice teachers pursuing a Mathematics/Science Specialist degree, who intend 

to teach in a middle school upon graduation, and who are currently enrolled in the 

following courses: MATH 365 Structure of Math I, MATH 366 Structure of Math II, 

MATH 367 Basic Concepts of Geometry, MATH 368 Introduction to Abstract Math, 

MATH 403 Math and Technology, MASC 351 Problem Solving, MASC 450 Integrated 

Mathematics, MEFB 460 Methods of Teaching Middle Grades Mathematics, and MEFB 

497 Teaching Middle Grades (see Appendix F for course descriptions).  MATH 365 

Structure of Math I, MATH 366 Structure of Math II, MATH 367 Basic Concepts of 
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Geometry, MATH 368 Introduction to Abstract Math, and MATH 403 Math and 

Technology were taught through the Department of Mathematics; MASC 351 Problem 

Solving, MASC 450 Integrated Mathematics, MEFB 460 Methods of Teaching Middle 

Grades Mathematics, and MEFB 497 Teaching Middle Grades were taught through the 

Department of Teaching, Learning and Culture. All instructors for these courses were asked 

to encourage their students to participate. One of the instructors did not respond. However, 

confirmation of enrollment in the courses revealed 90% of these students were concurrently 

enrolled in one of the other courses and were therefore accessed through those courses. 

The final population total for the study was 122.  

Of the 122 participants in the sample, 109 (89.3%) were female. Of the participants, 

2 (1.6%) were freshmen, 17 (13.9%) were sophomores, 45 (36.9%) were juniors, and 58 

(47.5%) were seniors. of the participants, 3 (2.5%) were Asian or Pacific Islander, 2 (1.6%) 

were African American, 11 (9.0%) were Hispanic/Latino, 106 (86.9%) were White (non-

Hispanic), and none were American Indian or Alaskan Native. None chose not to respond. 

Instrumentation 

The primary data collection tool was the Mathematics Knowledge for Teaching 

Middle Grades Online Assessment given to the targeted population. The assessment 

instrument was comprised of four different assessments targeting the following content 

strands: Algebra, Number and Operation, Geometry, and Probability and Statistics. Each of 

the four strands consisted of seven questions with three parts a piece. The four assessments 

were a compilation of items from the 2005 seventh-grade and eighth-grade New York State 

Assessment published items.  
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The assessment was subject to a two-stage pilot test. In the first stage, the 

assessment was administered online to three informed practitioners and content experts. 

Two grammar revisions, on the error of the researcher, were made. In the second stage, the 

assessment was administered online to a sample of 41 undergraduate preservice elementary 

(PK-4 certification) students in their final semester of coursework. These 41 undergraduate 

preservice elementary students will be student teaching in the fall semester in PK-4 settings. 

The data were analyzed and no revisions were made.  

A validation study was not needed since these items were published state assessment 

items created by a major publishing company. The test is considered content valid as it was 

designed to test the specific state standards for the State of New York. Content validity is of 

prime importance in the type of measure to be used. The test publisher also claims the tests 

are content valid as they are created specifically to test for material for the specific topics 

addressed in the New York State Standards for the grade levels of sixth thru eighth. In 

addition, specific procedures were followed during the development in pilot testing of the 

New York State Assessments for eliminating bias and minimizing differential item 

functioning. Although these procedures were believed to improve the quality of the state 

assessment, there is evidence to suggest that expertise in the area is no substitute for data 

(Jensen, 1980). Therefore the researcher opted to not include any items that were reported 

to be biased and that were flagged for their differential item functioning. This did not affect 

the content quality and variation on any of the four assessments. The reliability coefficient is 

the correlation coefficient between scores on parallel tests and is an index of how well 

scores on one parallel test predict scores from another parallel test. The Feldt-Raju index 

reported for the 2005 Eighth Grade New York State Assessment Test was 0.94 which is a 
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number comparable to that of the 2004 eighth grade state assessment (CTB/McGraw-Hill, 

2005). 

The assessment instrument contained seven algebra items, seven probability and 

statistic items, seven geometry items, seven number and operation items, and eight 

demographic items. Each of the items under the four content strands contained three parts. 

Six versions of the overall assessment instrument were created. Each version contained all 

eight demographic items, found at the beginning of the assessment, and two of the content 

strands, seven questions each, for a total of 22 items for each assessment. Content questions 

were kept together (i.e., all seven algebra items followed each other), however, there was no 

demarcation as to when a new content strand began. In addition, the participants were not 

aware of which content strands they were answering; however, it could easily be deduced by 

the participant as they were answering each item. The versions of the tests were content-

ordered as follows: 1) Algebra and Geometry, 2) Number and Operation and Probability 

and Statistics, 3) Algebra and Number and Operation, 4) Probability and Algebra, 5) 

Geometry and Number and Operation, and 6) Geometry and Probability and Statistics. 

Within each content strand, the items were randomly ordered using a random number 

generator for the numbers one thru seven so no version has the same order of items within 

the content strand. Versions one and two of this assessment can be found in Appendices A 

and B, respectively. 

The standards for grades sixth thru eighth in the State of New York closely 

resemble the Texas Essential Knowledge and Skills (TEKS), respectively. In addition, both 

sets of standards closely resemble NCTM’S Principles and Standards for School Mathematics 

(2000) for their respective grade levels. The content part of each question was not changed 
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at all in the development of this assessment. However, there was a removal of the multiple 

choice answers. Each of the items in the assessment contained the same three open-ended 

responses. The first part simply provided a space for the participant to type the answer to 

the question. All of the items, with the exception of one, were number responses. The one 

item that was not a number response was a one word answer. If there were characters 

needed to answer the question properly, a “Note:” was provided above the answer space to 

help participants with the correct characters and to help keep the answers looking relatively 

similar. There was no limitation to the number of characters in this response. The second 

part of the item asked for the participant’s explanation of his or her answer. A box was 

provided for the student to type their response. There was no limitation in characters for 

this response. These first two items were aimed at gathering the participant’s content 

knowledge of the strand addressed. The third part of the item addressed the participant’s 

pedagogical content knowledge of the content strand addressed. The participant was asked 

to respond to this question: “How would you explain, model, and/or demonstrate this item 

to someone who did not understand?” In addition to content knowledge and pedagogical 

content knowledge, the communication and vocabulary were also of interest to the 

researcher. 

The items comprising the algebra assessment contained items addressing the 

Algebra Strand of the Grade 8 Standards for the State of New York. Items 2, 3, and 5 

addressed translating verbal sentences into algebraic equations. Item 1 addressed adding and 

subtracting polynomials and integer coefficients. Item 4 addressed multiplying a binomial by 

a monomial or binomial with integer coefficients. Item 6 addressed factoring a trinomial in 

the form ax2 + bx + c; a = 1 and c having no more than three sets of factors. Item 7 
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addressed applying algebra to determine the measure of angles formed by or contained in 

parallel lines cut by a transversal and by intersecting lines. 

The items comprising the geometry assessment contained items addressing the 

Geometry Strand of the Grade 8 Standards for the State of New York. Items 1 and 2 

addressed calculating the missing angle in a supplementary or complementary pair. Item 3 

addressed identifying pairs of supplementary and complementary angles. Item 4 addressed 

determining angle relationships when given two parallel lines cut by a transversal. Items 5 

and 6 addressed identifying pairs of vertical angles as congruent. Item 7 addressed 

calculating the missing angle measurements when given two parallel lines cut by a 

transversal. 

The items comprising the number and operation assessment contained items 

addressing the Number Sense and Operations Strand of the Grade 8 and Grade 7 for the 

State of New York. Item 1 addressed developing and applying the laws of exponents for 

multiplication and division. Items 2 and 4 addressed estimating a percent of quantity, given 

an application. Items 3 and 6 addressed applying percents to: tax, percent increase/decrease, 

commission, interest rates, simple interest, gratuities, and sale price situations. Item 5 

addressed evaluating expressions with integral exponents. Item 7 addressed determining 

multiples and least common multiples of two or more numbers. 

The items comprising the probability and statistics assessment contained items 

addressing the Grade 7 and Grade 6 Statistics and Probability Strand of the State of New 

York Standards in Mathematics. Item 1 addressed calculating the range for a given set of 

data. Items 2 and 6 addressed predicting the outcome of an experiment. Item 3 addressed 

reading and interpreting data represented graphically through a pictograph. Item 4 
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addressed determining the number of possible outcomes for a compound event by using 

the fundamental counting principle and use this to determine the probabilities of events 

when the outcomes have equal probability. Item 5 addressed determining the probability of 

dependent events. Item 7 addressed interpreting data to provide the basis for predictions 

and to establish experimental probabilities.  

Collection of the Data 

The assessment instrument was created for distribution using Form Management 

System (Strader, 2006), which allowed for online data collection. From the time the 

instruments were posted until they were removed, participants and instructors had 24-hour 

access. Therefore, the assessment instruments could be completed at the convenience of the 

participants. The participants were instructed to go to the home page of the assessment 

instruments. The home page gave a brief summary of what the goal of the research study 

was investigating as well as the contact information of the researcher. The students then 

clicked on a link on the bottom of the page that took them to the participant consent form 

(Appendix C). The form could be printed out if needed, however, it was not necessary nor 

did the participants have to turn in the signed form. At the bottom of the consent form was 

a link to the test. The link was coded so that the participant would get an assessment that 

was randomly selected using a random number code. The participant then chose to agree or 

not agree to the research study and proceeded with the assessment. No data was collected if 

the participant did not agree to the consent form. The term “questionnaire” was used 

instead of assessment in order to reduce or avoid any test anxiety a participant might have. 

This term also helped to reinforce to the participants that the results would not be counted 

against them in their coursework. 
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Instructors agreed to ask their students to access the assessment online between 

April 4th and April 30th, 2006. Form Management System (Strader, 2006) randomly assigned 

one of the six versions of the assessment to each student upon access to the website after 

the consent form was provided. Each student took an assessment containing eight 

demographic questions and two content strands. Each content strand (algebra, number and 

operation, geometry, and probability and statistics) contained seven questions. Therefore, 

each student took an assessment containing a total of 22 items. Students were allowed to 

use calculators but no other aids on the assessment.  

Two of the instructors required all students in their course to take the assessment as 

a participation/completion grade. Four of the instructors provided no incentives for the 

students to complete the online assessment. The rest of the instructors offered minimal 

extra credit. The instructors of the MATH courses handed out slips of paper to the students 

in class containing the title of the questionnaire and the link to the assessment. In addition 

several of the MATH instructors emailed reminders to the students. Two of the instructors 

(both MASC) relied on classroom time to take the assessment. The other instructors relied 

on emailed reminders from the instructor and the researcher. Using this procedure, 

approximately 475 students were asked to respond to the assessment. The computer logged 

309 responses. Eleven of the responses were removed from the data due to the first stage of 

the pilot study. Thirty-nine responses were removed from the data due to the second stage 

of the pilot study. Four responses were removed from the data due to not agreeing to the 

consent form. This left an initial sample size of 255. However, MATH 365 Structure of 

Math I and MATH 366 Structure of Math II are courses for elementary education majors in 

addition to the middles grades specialist degree program. Therefore, 133 responses were 
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removed because the individual had indicated they were not a middle grades math/science 

specialist degree student. Response rate was approximately 68% (see Appendix G for more 

details). The 122 participants left in the sample were seeking certification in 4-8 

math/science and matched the population desired for this study. Therefore 122 middle 

grades preservice teachers comprise the sample investigated in this study. 

Scoring 

All of the data collected on the assessment, with the exception of the demographic 

information, were in open-ended question format. Therefore in order to conduct the 

quantitative analysis for this study, the assessments had to be scored. Each item on the 

assessment contained three identical parts. The first part, answering the content question, 

was scored right or wrong, indicated by a 0-wrong or 1-right. The second part, explaining 

the solution to the problem, was scored on a 7-point holistic rubric (described below). The 

third part, explaining the item to someone who did not understand, was scored on a similar 

7-point holistic rubric (described below).  

The weights of the scores in the rubric were determined using Ball’s (2006) 

definition of mathematics knowledge for teaching (see Figure 3). The figure suggests 

common content knowledge is just a small part of the subject matter knowledge, therefore, 

part one of the assessment (answering the content item) was scored as 0 or 1. Parts two and 

three of the assessment appear to be equally weighted in the diagram, therefore, they were 

scored on a 7-point scale described below (for rubric see Appendix E). 
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Figure 3. The Assessment of Preservice Middle Grades Teachers’ Mathematics Knowledge for Teaching.  
 

 

The researcher and an outside consultant graded the assessments according to the 

rubrics. The outside consultant is a graduate student at the university where the study was 

conducted and has had numerous elementary and middle grades experiences. The 

researcher and consultant graded seven assessments, with each content strand being 

represented at least twice, together in order to become familiar with the rubric and to help 

establish consistency in the coding. Consistency of the coding is essential to the usefulness 

of the results, so intra-rater and inter-rater reliability studies were conducted (Huck, 2004). 

To measure intra-rater reliability, each grader re-analyzed a random sample of four different 

assessments making sure each content strand was represented twice. Intra-rater reliability 

for grader 1 was 97.7%. Intra-rater reliability for grader 2 was 96.7%. To establish inter-rater 
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reliability of the rubrics, the graders analyzed the same random sample of four different 

assessments making sure each content strand was represented twice. Inter-rater reliability 

was 99.3%. 

A 7-point holistic rubric (Appendix E) was used to code the open-ended responses 

from the online assessment. This rubric was adapted from a 4-point rubric (a standard 4-

level rubric—exceeds standard, meets standard, partially meets standard, does not meet the 

standard) published by the New York State Testing Program (2005) and used to grade the 

2005 state assessment where these questions were pulled. A two point scaling for three of 

the parts was adapted so as to account for variations in answers. For example, say a 

student’s answer provided an answer worthy of a score of 4. However, there was one minor 

error which did not seem to affect the overall answer, but according to the rubric, did not 

meet the criterion for a level 4 answer. This student would earn a score of 3 then. A scale of 

this sort helps to minimize unnecessary level penalizations of students’ answers. 

Two 7-point holistic rubrics were adapted. One for the coding of part 2, the 

explanation of the solution, and one for the coding of part 3, the explanation to someone 

who did not understand, of the online assessment. For the coding of part 2, the explanation 

of the solution, the following indicators were focused on in the rubric:  

� Demonstration of a thorough understanding of the mathematics concepts 

and/or procedures embodied in the task;  

� Indication of a correct and complete task, using mathematically sound 

procedures; and  

� Contains clear, complete explanations.  
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For the coding of part 3, the explanation, modeling, and/or demonstration of the item to 

someone who did not understand, the following indicators were focused on in the 7-point 

holistic rubric:  

� Demonstration of a thorough understanding of the mathematics pedagogy 

and/or pedagogy embodied in the task;  

� Indication of a complete and correct task, using mathematically and 

pedagogically sound procedures; 

� Contains clear, complete explanations; and  

� Method of instruction/explanation is culturally responsive and fosters cultural 

understanding, safety, emotional well being and is conducive to learning for 

diverse learners. 

Analysis of the Data 

The research design was a concurrent mixed methods strategy with equal focus 

being given to quantitative and qualitative methods. Initially, skewness and kurtosis were 

computed and reported. In addition normality was assessed because it is an underlying 

assumption that needs to be met when using parametric analysis. 

Research Questions 

What is preservice middle grades teachers’ mathematics knowledge for teaching 

number and operations, algebra, geometry, and probability and statistics? 

These four separate research questions will be answered using descriptive statistics 

and representative participant responses from data analysis based on content and 

pedagogical content knowledge literature. The categories that emerged from the analysis of 

the written explanations were identified and unifying commonalities were grouped in meta-
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categories (Denzin & Lincoln, 2000). Each content strand will be presented separately with 

specific descriptive statistics, meta-categories, and representative participant responses for 

each part, content knowledge, explanation of solution (content understanding), and 

presenting the item to someone who did not understand (pedagogical understanding). In 

addition, item analysis for the content part of each content strand was conducted in order 

to evaluate each test item to determine each item’s discrimination and difficulty level. 

Distractors are usually identified in the process of an item analysis. However, since this was 

not a multiple-choice exam, there was no distractor analysis to conduct. 

Ancillary Questions 

What is the effect of various sequencing of mathematics courses on middle grades 

mathematics teachers? 

This question was explored using a multivariate analysis of covariance 

(MANCOVA) followed by polynomial trend contrasts with grade point average of early 

college mathematics courses as the covariate to “level the playing field.” Since the 

participants follow a specific degree plan for their program, enrollment characteristics 

(freshman, sophomore, junior, senior) were investigated. The comparisons of interest were 

the covariate, mathematics grade point average (GPA), enrollment characteristics (class), 

and the interaction of the covariate, GPA, with the class. Each content strand was analyzed 

and reported separately.  

What cohort development differences are there among students as they progress 

through the courses identified in the middle grades mathematics and science program? 

This question utilized a cohort design and was also investigated using a 

MANCOVA followed by polynomial trend contrasts with GPA as the covariate. The 
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comparison of interest was GPA, cohort, and the interaction of the covariate with the 

cohort. The participants were placed into the following cohorts according to their current 

course enrollments. In order to account for overlapping students, two criteria were 

established: 1) If a student is concurrently enrolled in any MATH course and MASC course, 

they were placed into the MASC cohort; and 2) If a student was concurrently enrolled in 

MASC 450 and MEFB 460, they were placed into the last cohort with the rest of the MEFB 

460 participants. The reasoning for being placed into the MASC cohort over the MATH 

cohort was because the MASC courses are junior-level courses designed to help bridge the 

gap between mathematics and mathematics pedagogy. Therefore students enrolled in the 

MASC courses are theoretically more advanced than those taking the mathematics courses. 

The reasoning for placing the MASC 450 students in the MEFB 460 follows similarly. 

MEFB 460 is in the methods block which is the semester before the students go and 

student-teach in the schools. The methods block contains a field component where the 

students are in the real classroom three days a week and on campus two days a week. 

Therefore students enrolled in the MASC 450 and MEFB 460 are theoretically more 

advanced in pedagogy than those not concurrently enrolled. These two criteria also helped 

to level out the cohorts. The cohort design with their respective numbers can be found in 

Table 2. 
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Table 2 
Cohort Design for Data Analysis 

 
Cohort 

 
Courses and Instructors 

 
Participants 

MATH 365: Structure of 
Math I 
MATH 366: Structure of 
Math II 
MATH 367: Basic Concepts 
of Geometry 
MATH 368: Introduction to 
Abstract Math 

 
 
 
1 
Mathematics 
Courses  

MATH 403: Math and 
Technology 

 
 
 
 
40 

MASC 351: Problem Solving 
 

2 
Mathematics 
Education 
Courses 

MASC 450: Integrated 
Mathematics 

 
48 

MEFB 460: Methods of 
Teaching Middle Grades 
Mathematics 

 
3 
Methods 
Course/Student 
Teaching 
 

MEFB 497: Teaching Middle 
Grades 

 
 
34 

TOTAL NUMBERS 122 
 

 

 

Do some types of courses (e.g. algebra, geometry, numerical, statistical or applied, 

theoretical) have more impact than others upon the development of a teachers’ 

mathematics knowledge for teaching? 

This question was initially explored using MANCOVA with courses taken as a fixed 

factor, and then again with courses currently enrolled in as the fixed factor. The dependent 

variables were the three parts of the assessment along with the total scores of each content 
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assessment. The covariate was GPA in both cases. However, both analyses failed the 

homogeneity of variances (p < .05) for each content strand. Therefore a univariate analysis 

of covariance (ANCOVA) followed by polynomial trend contrasts was run for each content 

strand. Since the several of the different parts (content knowledge, content understanding, 

pedagogical understanding) of each content strand failed the homogeneity of variance, total 

scores for mathematics knowledge for teaching was used as the dependent variable for each 

content strand. The covariate in each case was again, mathematics grade point average.  

The comparisons of interest for current courses were: each course separately; 

MASC 351 and MASC 450; MATH 368, MATH 403, and MASC 351; and MATH 368, 

MATH 403, MASC 351, and MASC 450. The reason for MASC 351 and MASC 450 

together was because these are two courses that were developed by the mathematics 

education program at the site of this study specifically aimed at bridging mathematics 

content and mathematics pedagogy together. These two courses were developed off of 

models recommended by various national organizations (e.g., CBMS, 2001; INTASC, 1995; 

RAND Mathematics Study Panel, 2003). The reason for MATH 368, MATH 403, and 

MASC 351 together was because these three courses are typically taken together in the same 

semester by second semester sophomores or first semester juniors. The reason for MATH 

368, MATH 403, MASC 351, and MASC 450 was because MASC 450 was being pulled out 

of the methods block the participants take the semester before they student teach. The 

researcher was interested in any possible new interactions the changing of the position of 

this course might make on preservice teachers’ mathematics knowledge for teaching. 

The comparisons of interest for taken courses were: each course separately; MASC 

351 and MASC 450; MATH 368, MATH 403, MASC 351, and MASC 450; MATH 365, 
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MATH 366, MATH 367, MATH 368, and MATH 403; and all courses together. The reason 

for MASC 351 and MASC 450 was again because these courses were developed to bridge 

mathematics content and mathematics pedagogy together. The reason for MATH 368, 

MATH 403, MASC 351, and MASC 450 was because of the new recommended sequence 

of courses where MASC 450 was pulled out of the methods block. The reason for MATH 

365, MATH 366, MATH 367, MATH 368, and MATH 403 was because these are the 

mathematics courses specific to middle grades teachers. The reason for all the courses 

together was to see if the overall program contributed to preservice teachers’ mathematics 

knowledge for teaching.  

Does development happen at greater rates in certain stages of the program than 

others? 

Predictor variables for mathematics knowledge for teaching were saved after 

running MANCOVAs for each of the content strands as described above and used in the 

analyses of this ancillary question. In order to determine if the predictors were good 

predictors, a correlation was run between the predictors and their corresponding variables.  

Initially, the predictor variables for mathematics knowledge for teaching each 

content strand were graphed in order to determine their rates (slopes). The rates for each 

course, currently taking and then have taken, were determined by graphing using the course 

as the independent variable and the predictor variable for mathematics knowledge for 

teaching for each content strand for the dependent variable. The rates for each respective 

course were recorded and rates were compared to those of the predictor variables. 

Next, the question initially investigated the results the predicted test scores as the 

dependent variables and enrollment characteristics (class) and then cohort as the 
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independent variables in MANCOVAs and ANCOVAs followed by difference contrasts 

and then again by Helmert contrasts for each content strand. Difference contrasts compare 

the mean of each level (except the first) to the mean of previous levels. Helmert contrasts 

are just the reverse. Helmert contrasts compare the means of each level of the factor 

(except the last) to the mean of subsequent levels. However the assumption of the 

homogeneity of variances was not met.  

Nonlinear regression was used instead to determine a model of fit for enrollment 

characteristics onto the mathematics knowledge for teaching predictor variables for each 

content strand. After an initial analysis of the all the possible fits, it was determined that the 

three possible fits for all of the data were linear, quadratic, and cubic. These three models 

were used for the rest of the analyses for each content strand. The same process was 

repeated for the cohorts onto the mathematics knowledge for teaching predictor variables 

for each content strand. 

Summary of Research Procedures 

The primary source of data collection was from the online assessment administered 

mid-semester of Spring 2006 to 122 preservice middle grades teachers. The assessment 

consisted of eight demographic questions and two content strands (randomly assigned: 

algebra, geometry, probability and statistics, and number and operation) containing seven 

questions each. Each content question contained the same three parts. The first part had the 

student answer the question and was scored as right or wrong. The second part had the 

student explain their solution to the item and was scored on a 7-point scale using a holistic 

rubric specific for this part. The third part had the student write how they would explain, 

model, and/or demonstrate this item to someone who did not understand and was scored 
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on a 7-point scale using a holistic rubric for this part. The online assessment contained 22 

total questions. The data were analyzed qualitatively and quantitatively. The open-ended 

responses were analyzed qualitatively using constant comparative analysis (Denzin & 

Lincoln, 2000). The data were quantitatively analyzed using univariate and multivariate 

statistics as well as nonlinear regression. 
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CHAPTER IV 

RESULTS 

Analysis of the mathematics knowledge for teaching algebra, probability and 

statistics, number and operations, and geometry of preservice middle grades teachers 

involved in this study are presented in this chapter. The data were restricted to the 122 

participants who were enrolled in MATH 365, MATH 366, MATH 367, MATH 368 

MATH 403, MASC 351, MASC 450, MEFB 460, and MEFB 490 and who indicated they 

were pursuing certification in Grades 4-8 Mathematics and Science. 

Each participant took an online assessment consisting of eight demographic 

questions and two of the possible four content strands (algebra, number and operations, 

probability and statistics, and geometry). Figure 4 gives the frequencies of participants for 

each content test. All variables were then coded with a maximum score of one on the first 

part of the item, six on the second part of the item, and six on the third part of the item.  

This assessment was specific to middle grades (grades 5-8) material. There were 

three parts to each item on each content assessment. The parts were identical across all 

contents. The three parts—content solution, explanation of solution, and 

explanation/modeling/demonstrating to someone who did not understand the item—

together make up mathematics knowledge for teaching. These three parts are based on Hill, 

Rowan, and Ball’s (2005) definition of mathematics knowledge for teaching. Throughout 

the analysis the three parts to each item will be referred to as content knowledge (part 1), 

content understanding (part 2), and pedagogical understanding (part 3). 

Skewness and kurtosis were computed for the total assessment scores first by item 

part, then by the total (referred to as the mathematics knowledge for teaching) for each 
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content strand, number and operations (N&O), algebra (Alg), geometry (Geom), and 

probability and statistics (P&S), which was computed by summing the respective rubric 

scores (see Table 3). A lack of extreme skewness and kurtosis was noted. 
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Figure 4. Frequency of Participants for Each Content Strand. 

 

 

The fit of the total content scores to a normal distribution through a Kolmogorov-

Smirnov Test for each content strand, number and operation (z  = 1.051 with N = 60, p = 

.219), algebra (z  = .770 with N = 76, p = .593), geometry (z  = .855 with N = 56, p = .457), 

and probability and statistics (z  = .563 with N = 52, p = .909) revealed no statistical 
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significance. Normality was assessed because it is an underlying assumption that needs to be 

met when using parametric analysis. 

 

 

Table 3 
Skewness and Kurtosis  
  

 
 
 

Skewness 

 
Ratio of 

Skewness to 
Standard Error 
of Skewness 

 
 
 
 

Kurtosis 

Ratio of 
Kurtosis to 
Standard 
Error of 
Kurtosis 

N&O—Answer  of item (content question) .09 .30 -.33 -.54 
N&O—Explanation of solution  -.88 -2.83 .70 1.15 
N&O—Explain/model/demonstrate to 
someone who did not understand 

 
-.40 

 
-1.30 

 
-.58 

 
-.96 

N&O—Mathematics knowledge for teaching 
algebra 

 
-.61 

 
-1.97 

 
-.59 

 
-.97 

Alg—Answer of item (content question) -.91 -3.30 .69 1.27 
Alg—Explanation of solution  -.61 -2.25 .81 1.49 
Alg—Explain/model/demonstrate to 
someone who did not understand 

 
-.45 

 
-1.62 

 
.21 

 
.39 

Alg—Mathematics knowledge for teaching 
algebra 

 
-.47 

 
-1.70 

 
.09 

 
.17 

Geom—Answer of item (content question) -1.50 -4.69 1.87 2.97 
Geom—Explanation of solution  -.37 -1.15 -.80 -1.28 
Geom—Explain/model/demonstrate to 
someone who did not understand 

 
-.36 

 
-1.13 

 
-.99 

 
-1.58 

Geom—Mathematics knowledge for teaching 
algebra 

 
-.50 

 
-1.58 

 
-.82 

 
-1.31 

P&S—Answer of item (content question) -1.26 -3.81 1.41 2.16 
P&S—Explanation of solution  -.19 -.57 .09 .14 
P&S—Explain/model/demonstrate to 
someone who did not understand 

 
-.51 

 
-1.54 

 
-.03 

 
-.04 

P&S—Mathematics knowledge for teaching 
algebra 

 
-.51 

 
-1.55 

 
.24 

 
.37 
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Research Question 1 

What is preservice middle grades teachers’ mathematics knowledge for teaching 

number and operations? 

The analysis of this question was broken into four parts: analysis of the content 

knowledge, analysis of the content understanding, analysis of the pedagogical 

understanding, and analysis of the mathematics knowledge for teaching number and 

operations. The three parts—content knowledge, content understanding, and pedagogical 

understanding—together make up mathematics knowledge for teaching number and 

operations in the middle grades. Beginning with the analysis of the content knowledge part 

of the number and operations exam, the Spearman-Brown prediction formula was used to 

calculate the reliability of the assessment. The coefficient alpha for the Number and 

Operations assessment was .924.  

The next step was to conduct an item analysis for the content knowledge part of the 

number and operations assessment. An item analysis evaluates each test item to determine 

its discrimination and difficulty level. Item discrimination refers to the ability of an item to 

differentiate among students on the basis of how well they know the material being tested. 

An item’s difficulty index is expressed as the proportion of students who responded 

correctly to an item to the total number who responded. Distractors are usually identified in 

the process of an item analysis. However, since this was not a multiple-choice exam, there 

was no distractor analysis to conduct. The item difficulty and discrimination is again 

associated with the content part (part 1) of the items. The item discrimination for the 

content question items in Number and Operations can be found in Table 4. Item difficulty 
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can be found in Table 5. The average item difficulty was 56% (p = .56) which is considered 

moderately difficult on the item difficulty scale. 

Items for which less than half of the participants answered correctly (1, 2, and 4) 

were investigated for commonalities. The first item on the number and operations 

assessment addressed developing and applying the laws of exponents for multiplication. 

There were two common errors found in student answers to this item. The first error was 

after the student correctly multiplied the solution, the solution was left in incorrect scientific 

notation. The coefficient was larger than ten (i.e., 29.5). The second error was after the 

student multiplied the solution correctly, the coefficient was changed so as to reflect a 

number less than ten. However, moving of the decimal was not reflected as the exponent  

 

 

Table 4 
Item Discriminations for Content Question (Part 1) in Number and Operations  

 
Item 

% Item 
Discrimination 

 
Level* 

1—Developing and applying laws of exponents for 
multiplication 

 
20% 

Usually 
Unacceptable 

2—Estimating percent of quantity, given an 
application 

30% Good  

 
3—Applying percents to commission 

 
20% 

Usually 
Unacceptable 

4—Estimating percent of quantity, given an 
application 

27% Good 

 
5—Evaluating expressions with integral exponents 

 
20% 

Usually 
Unacceptable 

6—Applying percents to sale price situations 37% Good 
7—Determining multiples and least common 
multiples of two or more numbers 

 
57% 

 
Excellent 

*Negative = unacceptable; 0% - 24% = Usually unacceptable, might be approved; 25% - 
39% = Good Item; 40% - 100% = Excellent Item 
 



   58 

Table 5 
Item Difficulty for Content Question (Part 1) in Number and Operations 

 
Item 

% Item 
Difficulty 

 
Level* 

1—Developing and applying laws of exponents for 
multiplication 

 
47%  

Moderately 
Difficult 

 
2—Estimating percent of quantity, given an 
application 

 
28%  

Moderately 
Difficult 

3—Applying percents to commission 87%  Easy 
4—Estimating percent of quantity, given an 
application 

23%  Difficult 

5—Evaluating expressions with integral exponents 83%  Easy 
 
6—Applying percents to sale price situations 

 
68%  

Moderately 
Difficult 

7—Determining multiples and least common multiples 
of two or more numbers 

 
58%  

Moderately 
Difficult 

Average Item Difficulty for Number and 
Operations 

56%  Moderately 
Difficult 

*<20% = difficult; 20% - 80% = moderately difficult; >80% = easy 

 

 

remained unchanged on the power of 10. Items two and four on the number and 

operations assessment addressed estimating a percent of quantity, given an application. The 

most common error on both of these items was simply not estimating at all. A majority of 

the students who missed this item reported the exact number instead of the estimate (i.e., 

$562.50 instead of $550 or $600; or 38% instead of 40%). 

Next, the open-ended parts, content understanding and pedagogical understanding 

(parts 2 and 3), of the online number and operations assessment of preservice middle grades 

teachers were explored using constant comparative analysis (Denzin & Lincoln, 2000). For 

consistency of data interpretation, all items were scored on an ordinal scale from zero to six 

according to the holistic rubric (see Appendix G). Although the data were not strictly 
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interval in nature, they approximate an interval scale. Therefore, statistics requiring interval 

scaling, such as mean and standard deviation, can be reasonably interpreted. Descriptive 

statistics including mean, median, mode, standard deviation, and quartiles are reported for 

each item on the number and operations assessment and are reported in Table 6. 

Frequencies for each rubric score on explanation (part 2) and understanding (part 3) were 

computed for each item and are reported in Table 7.  

 

 

Table 6 
Descriptive Statistics of Item Responses (Parts 2 and 3) on Number and Operations  

Percentiles  Mean Median Mode Standard 
Deviation 25 50 75 

Item 1—Explanation 2.15 2 2 1.60 1 2 3 
Item 1—Understanding 2.01 2 0 1.65 0 2 3 
Item 2—Explanation 2.22 2 2 1.28 2 2 3 
Item 2—Understanding 2.05 2 2 1.38 1 2 3 
Item 3—Explanation 2.87 3 3 1.21 3 3 3 
Item 3—Understanding 2.32 3 3 1.43 2 3 4 
Item 4—Explanation 1.73 2 0 1.55 0 2 3 
Item 4—Understanding 1.45 1 0 1.50 0 1 3 
Item 5—Explanation 2.78 3 3 1.30 2 3 3 
Item 5—Understanding 2.72 3 4 1.73 2 3 4 
Item 6—Explanation  2.85 3 3 1.77 2 3 4 
Item 6—Understanding 2.57 3 3 1.69 1 3 4 
Item 7—Explanation 2.75 3 0 2.10 1 3 5 
Item 7—Understanding 2.15 2 0 1.86 0 2 4 
 

  

In terms of explanations of solutions (content understanding—part 2) to items in 

the number and operations assessment, a majority of the students scored either a two or 

three according to the rubric for this item. A score of three on the explanation of the 
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solution generally meant the student just explained their exact algorithmic or mental 

mathematic procedure for the given item. The procedures were mathematically correct and  

 

 

Table 7 
Frequencies for Explanation and Understanding (Parts 2 and 3) of Items in Number and Operations 
 Score 
 0 1 2 3 4 5 6 
 Reported as: Frequency/Percent (n = 60) 
Item 1—Content 
Understanding 

 
15/25.0% 

 
3/5.0% 

 
16/26.7% 

 
16/26.7% 

 
6/10.0% 

 
2/3.3% 

 
2/3.3% 

Item 1—Pedagogical  
Understanding 

 
19/31.7% 

 
3/5.0% 

 
12/20.0% 

 
14/23.3% 

 
8/13.3% 

 
4/6.7% 

 

Item 2—Content 
Understanding 

 
8/13.3% 

 
2/3.36% 

 
31/51.7% 

 
11/18.3% 

 
5/8.3% 

 
2/3.3% 

 
1/1.7% 

Item 2— Pedagogical 
Understanding 

 
11/18.3% 

 
8/13.3% 

 
19/31.7% 

 
14/23.3% 

 
5/8.3% 

 
3/5.0% 

 
 

Item 3—Content 
Understanding 

 
6/10.0% 

 
1/1.7% 

 
3/5.0% 

 
40/66.7% 

 
6/10.0% 

 
3/5.0% 

 
1/1.7% 

Item 3— Pedagogical 
Understanding 

 
10/16.7% 

 
2/3.3% 

 
7/11.7% 

 
26/43.3% 

 
12/20.0% 

 
3/5.0% 

 
 

Item 4—Content 
Understanding 

 
18/30.0% 

 
8/13.3% 

 
17/28.3% 

 
12/20.0% 

 
1/1.7% 

 
2/3.3% 

 
2/3.3% 

Item 4— Pedagogical 
Understanding 

 
23/38.3% 

 
11/18.3% 

 
11/18.3% 

 
9/15.0% 

 
3/5.0% 

 
3/5.0% 

 
 

Item 5—Content 
Understanding 

 
6/10.0% 

 
1/1.7% 

 
8/13.3% 

 
40/66.7% 

 
1/1.7% 

 
 

 
4/6.7% 

Item 5— Pedagogical 
Understanding 

 
12/20.0% 

 
2/3.3% 

 
9/15.0% 

 
14/23.3% 

 
17/28.3% 

 
3/5.0% 

 
3/5.0% 

Item 6—Content 
Understanding  

 
7/11.7% 

 
5/8.3% 

 
13/21.7% 

 
20/33.3% 

 
3/5.0% 

 
4/6.7% 

 
8/13.3% 

Item 6— Pedagogical 
Understanding 

 
10/16.7% 

 
10/16.7% 

 
5/8.3% 

 
14/23.3% 

 
13/21.7% 

 
8/13.3% 

 
 

Item 7—Content 
Understanding 

 
12/20.0% 

 
10/16.7% 

 
6/10.0% 

 
9/15.0% 

 
7/11.7% 

 
8/13.3% 

 
8/13.3% 

Item 7—Pedagogical 
Understanding 

 
16/26.7% 

 
11/18.3% 

 
8/13.3% 

 
8/13.3% 

 
9/15.0% 

 
6/10.0% 

 
2/3.3% 

 

their solution was correct, however, there was no more explanation provided other than 

their algorithmic procedure. A common example of a score of three: 
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� Multiplied 5 by 5.9, and got 29.5 Added the exponents together to get 10^15. Added 

one more to the exponents when I moved the decimal point over one space to get 

2.95 x 10^16. 

Another common example of an explanation of a solution scoring a three according to the 

rubric: 

� Found out what 20% of 37 was, then found what 15% of 29.6 was. Then subtracted 

the two from the original price. 

A score of two on the content understanding for number and operations items generally 

meant the student had a mathematically sound procedure, however, their answer did not 

match what the problem was wanting. The following statement is mathematically correct, 

however, the question was not asking for an exact answer, it was looking for an estimate. 

� Subtracted 511 from 705. Divided that number by 511, then multiplied it by one 

hundred. 

Two other items on the number and operations assessment are noteworthy due to 

their common themes across the explanation of solutions, especially in the misuse of 

mathematical vocabulary. The first concerns item 6 which addressed applying percents to 

sale price situations. A common error among the incorrect content answers was the adding 

together of two percentages given in an original price and then a sale price situation. A 

common answer for the explanation of the solution was: 

� Add the total percent discount and then multiply to 37 then subtract that from 37.  

A more detailed explanation of the same item: 

� If you add the percentages off together, you get 35 percent off. So then I broke it 

down into 30 percent and 5 percent. 30 percent is 10 percent 3 times and 10 percent 
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is 3.70 so I multiplied 3.70 by 3. 5 percent is half of 3.70 so I added this all together 

and subtracted from 37 to get the new price. 

The next item of noteworthy concern is item seven which addressed determining least 

common multiples of two or more numbers. An overwhelming majority of the students 

who missed this item mistook the least common multiple for the greatest common factor. 

Examples of common explanations include (each of these students reported 3 as their final 

answer): 

� 3 is the smallest number that evenly “goes into” 3, 6, and 27 

� Knowing what the multiples of all those numbers were because they were small 

helped me to determine what number was the smallest multiple of all three 

� It is the lowest value they all have in common 

On this same item, misuse of mathematical vocabulary was evident in the explanation of 

their solution although the student received credit for a correct answer on the content (part 

1). Common explanations include: 

� Factor than multiply by all the factors. 

� To have 27 as a factor, the number had to be bigger than 27, and to have 6 as a 

factor it had to be even. The best way to get a number that fits those criteria is to 

multiply 27 by 2. 

� 27 times 2 because 27/6 is not a whole number. 

For the pedagogical understanding of number and operations, being able to 

communicate the material to someone who did understand, many of the same themes and 

trends found in the explanation of the solution emerged from the understanding data. If the 

student did not receive a correct answer on the original content problem or received a low 
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score on the explanation of their solution, they were likely to not receive a high score on the 

pedagogical understanding part. A majority of the participants scored a two, three, or four 

on the pedagogical understanding part of the number and operation assessment. A score of 

two on the pedagogical understanding part of the items on the number and operation 

assessment generally meant the procedure was somewhat correct, but contained minor 

mathematical errors. A score of three generally indicated the student could successfully 

explain their own procedure to a person who did not understand. Scores of two and three 

on the pedagogical understanding part tended to be very algorithmic in nature and the 

general method of instruction could assume to be direct since there was no mention of any 

other method. Examples of scores of two and three on the understanding part of the 

number and operations assessment: 

� I subtracted 511 from 705 to get 194. I then divided 194 by 511 to get .37964 and 

then multiplied by 100 to get the percent of about 38. 

� I’d explain the definition of exponents and how 4^3 is short hand for 4*4*4. And 

then work the multiplication. 

� I could write out all the multiples for all 3 numbers until I found a number that 

appeared as a multiple for all 3. 

A score of four on the pedagogical understanding part indicated the student could do more 

than just explain their algorithmic procedure. They could relate their procedure back to 

different parts of the problem and could often explain why they got a certain number or 

conducted a certain procedure. It is also at this level that the researcher first saw any signs 

of cultural responsiveness on the student’s part: mention of various instructional 

techniques, application to real world situations, and use of hands-on learning. Examples of a 
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score of four on the pedagogical understanding part of the number and operations 

assessment: 

� When we solve percent problems, we set up a proportion in words first. The words 

are PART over WHOLE equals PERCENT over 100: part/whole= /100. Look at 

the first part. The shirt cost 37. is that the whole cost or part of the cost of the shirt? 

The whole. And we want to know what 20% is… so we have ?/37=20/100. Divide 

100 by something to get 37. Do long division and figure out that something is 7.4. 

So the 20% sale gives him $7.40 off the price. Subtract that from the cost and now 

the shirt costs $29.60. Then we set it up the same way and try to find what 15% of 

the sale price is: it’s $4.44. Subtract that from the new cost to get the final cost of: 

$25.16. 

� List out about five multiples of each number. That means 3 times 1, 3 times 2, 3 

times 3, etc. 3: 3, 6, 9, 12, 15 6: 6, 12, 18, 24, 30 27: 27, 54, 81, 108 OK, 

well we need to keep going with 3 and 6 until we get much higher. We are looking 

for the FIRST number that is in all three lists. Let’s try just with 6 (because it is 

bigger, and then see if the number also works with 3)  6: 6, 12, 18, 24, 30, 36, 42, 48, 

54 54!!! So 54 is the LCM of 6 and 27, is it a multiple of 3 also? 3x18=54. YES. 

So the LCM of 3, 6, and 27 is 54. 

� Since he gets 5% of the sale and the sale was $180 we would discuss why we would 

multiply the two together. They would then multiply 180 by .05, which is 5%, to get 

$9.00, which is what he made off of the sale. 
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� You could use the colored rod method. Build three trains of 3, 6, and 27 in length. 

Keep building each train using trains of the same length until all three trains are 

equal. The length of the equal trains is the least common multiple. 

All three of the parts (content knowledge, content understanding, and pedagogical 

understanding) mentioned above in the analysis together make up the component called 

mathematics knowledge for teaching. Total scores for this assessment ranged from 3 to 59, 

a range of 56. Total possible points for the entire number and operations assessment was 91 

points. Descriptive statistics for the total of each part (content knowledge, content 

understanding, and pedagogical understanding) and the total mathematics knowledge for 

teaching number and operations can be found in Table 8.  

 
 
 
Table 8 
Descriptive Statistics for Mathematics Knowledge for Teaching Number and Operations  

Percentiles  Mean Median Mode Standard 
Deviation 25 50 75 

Total Content 
(7 pts possible) 

 
3.95 

 
4 

 
4 

 
1.40 

 
3 

 
4 

 
5 

Total Explanation  
(42 pts possible) 

 
17.32 

 
18 

 
17 

 
6.65 

 
15 

 
18 

 
22 

Total Understanding 
(42 pts possible) 

 
15.57 

 
16.50 

 
20 

 
8.10 

 
9 

 
17 

 
21 

Mathematics Knowledge 
for Teaching Number 
and Operation 
(91 pts possible) 

 
 
 

36.83 

 
 
 

40 

 
 
 

40 

 
 
 

14.63 

 
 
 

25 

 
 
 

40 

 
 
 

49 
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Research Question 2 

What is preservice middle grades teachers’ mathematics knowledge for teaching 

algebra? 

The analysis of this question was again broken down into four parts: analysis of the 

content, analysis of the explanation, analysis of the understanding, and analysis of the 

mathematics knowledge for teaching. The three parts— content knowledge, content 

understanding, and pedagogical understanding—together make up mathematics knowledge 

for teaching algebra in the middle grades. Beginning with the analysis of the content 

knowledge part of the algebra exam, the Spearman-Brown prediction formula was used to 

calculate the reliability of the assessment. The coefficient alpha for the Algebra assessment 

was .935. 

The next step was to conduct an item analysis for the content knowledge part of the 

algebra assessment. An item analysis evaluates each test item to determine its discrimination 

and difficulty level. Item discrimination refers to the ability of an item to differentiate 

among students on the basis of how well they know the material being tested. An item’s 

difficulty index is expressed as the proportion of students who responded correctly to an 

item to the total number who responded. Distractor analysis was not conducted because 

this assessment did not contain any distractors. The item difficulty and discrimination is 

again associated with the content part (part 1) of the items. The item discrimination for the 

content question items in the algebra assessment can be found in Table 9. Item difficulty 

can be found in Table 10. The average item difficulty was 79% (p = .79) which is considered 

moderately difficult on the item difficulty scale.  
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Item two, the only item in which less than half of the participants answered 

correctly, was investigated for commonalities. This item addressed translating verbal 

sentences into algebraic equations. There were two common errors found in students 

answers to this item. The first error was simply not following the directions of the item. The 

item asked for the student to set up an inequality for the information given. About half of 

the students who missed this item solved the inequality and reported an answer instead. The 

second error was the misinterpretation of the information given in the item. The item 

stated, “The web site fee is $30.” The inequality was to be used to determine a minimum 

profit. The other half of the students who missed this problem mistook the website fee for 

a profit and added 30 to the inequality instead of subtracting the fee. 

 
 
Table 9 
Item Discriminations for Content Question (Part 1) in Algebra  
 
Item 

% Item 
Discrimination 

 
Level* 

1—Adding and subtracting polynomials and integer 
coefficients 

 
32% 

 
Good 

2—Translating verbal sentences into algebraic 
equations 

37% Good 

3—Translating verbal sentences into algebraic 
equations 

26% Good 

4—Multiplying a binomial by a monomial or binomial 
with integer coefficients 

 
39% 

 
Good 

 
5—Translating verbal sentences into algebraic 
equations 

 
18% 

Usually 
Unacceptable 

6—Factoring a trinomial in the form ax2 + bx + c; a = 
1 and c having no more than 3 sets of factors 

 
16% 

Usually 
Unacceptable 

7—Applying algebra to determine the measure of 
angles formed by or contained in parallel lines cut by a 
transversal and by intersecting lines 

 
 

16% 

 
Usually 

Unacceptable 
*Negative = Unacceptable; 0% - 24% = Usually unacceptable, might be approved; 25% - 
39% = Good Item; 40% - 100% = Excellent Item 
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Table 10 
Item Difficulty for Content Question (Part 1) in Algebra 
 
Item 

% Item 
Difficulty 

 
Level* 

1—Adding and subtracting polynomials and integer 
coefficients 

 
82% 

 
Easy 

2—Translating verbal sentences into algebraic 
equations 

 
42% 

Moderately 
Difficult 

3—Translating verbal sentences into algebraic 
equations 

 
79% 

Moderately 
Difficult 

4—Multiplying a binomial by a monomial or binomial 
with integer coefficients 

 
78% 

Moderately 
Difficult 

5—Translating verbal sentences into algebraic 
equations 

 
88% 

 
Easy 

6—Factoring a trinomial in the form ax2 + bx + c; a = 
1 and c having no more than 3 sets of factors 

 
92% 

 
Easy 

7—Applying algebra to determine the measure of 
angles formed by or contained in parallel lines cut by a 
transversal and by intersecting lines 

 
 

89% 

 
 

Easy 
 
Average Item Difficulty for Algebra 

 
79% 

Moderately 
Difficult 

*<20% = difficult; 20% - 80% = moderately difficult; >80% = easy 
 

 

Two other items are noteworthy concerning incorrect answers on the content 

knowledge part of the algebra online assessment. Item five addressed translating verbal 

sentences into algebraic equations. Of the three items on this assessment addressing the 

idea, this item was the only one not in a real world context. The one major error common 

to a majority who answered this problem incorrectly was the incorrect placement of the 

“eight less than” in the equation. Instead of subtracting eight from “twice a number” (i.e., 

2x – 8), students subtracted the twice a number from the eight (i.e., 8 – 2x). Item six 

address factoring a trinomial in the form of ax2 + bx + c. Of the students who missed this 

item, with the exception of those who did not complete the item, all simply mixed up their 

signs when reporting their factored answer (i.e., (y + 3)(y – 6) instead of (y + 6)(y – 3)).  
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Next the open-ended parts, content understanding and pedagogical understanding 

(parts 2 and 3), of the online algebra assessment of preservice middle grades teachers were 

explored using constant comparative analysis. For consistency of data interpretation, all 

items were scored on an ordinal scale from zero to six according to the holistic rubric 

designated for each part (see Appendix G). Although the data were not strictly interval in 

nature, they approximate an interval scale. Therefore, statistics requiring interval scaling, 

such as mean and standard deviation, can be reasonably interpreted. Descriptive statistics 

including mean, median, mode, standard deviation, and quartiles are reported for each item 

on the algebra assessment and are reported in Table 11. Frequencies for each rubric score 

on content understanding (part 2) and pedagogical understanding (part 3) were computed 

for each item and are reported in Table 12. 

In terms of content understanding (part 2) of items in the algebra assessment, a 

majority of the students scored either a two or three according to the rubric for this item. A 

score of three on the explanation of the solution generally indicated the student just 

explained or algorithmically showed their exact mathematic procedure for the given item.  

The procedures were mathematically correct and their solution was correct, however, there 

was no more explanation provided other than their algorithmic procedure. Common 

examples of a score of three: 

� I distributed the minus sign throughout the problem in the second set of 

parenthesis. Then I took away the parenthesis and added the problem. 

� Subtract the second parenthesis from the first. Look for like terms. Subtract like 

terms to finish the problem. 

 



   70 

Table 11 
Descriptive Statistics of Item Responses (Parts 2 and 3) on Algebra  

Percentiles  Mean Median Mode Standard 
Deviation 25 50 75 

Item 1—Explanation 3.26 3 3 1.60 2 3 5 
Item 1—Understanding 3.14 3 3 1.77 2 3 5 
Item 2—Explanation 2.82 2 2 1.85 2 2 4 
Item 2—Understanding 2.57 3 2 1.42 2 3 4 
Item 3—Explanation 3.34 3 3 1.79 2 3 5 
Item 3—Understanding 2.79 3 3 1.62 2 3 4 
Item 4—Explanation 3.29 3 3 1.45 3 3 4 
Item 4—Understanding 3.11 3 3 1.37 3 3 4 
Item 5—Explanation 3.24 3 3 1.60 2 3 4 
Item 5—Understanding 3.03 3 4 1.41 2 3 4 
Item 6—Explanation  3.34 3 3 1.60 2 3 5 
Item 6—Understanding 2.80 3 3 1.44 2 3 4 
Item 7—Explanation 3.37 3 3 1.63 3 3 5 
Item 7—Understanding 3.07 3 4 1.74 2 3 4 

 

 

A score of two on the explanation of the solution (content understanding) for 

algebra items generally meant the student had a mathematically sound procedure; however, 

their answer did not match what the problem was wanting. The following example of an 

explanation is of a student who got a correct answer for the item, but they misused 

mathematical vocabulary and had a limited explanation and therefore scored a two: 

� I multiplied each factor using FOIL. 

Five of the seven items on the content understanding part of the algebra assessment 

are noteworthy. Items two, three, and five addressed translating verbal sentences into 

algebraic equations. Although a majority of the students got the items correct in terms of 

content, they had trouble explaining how they came up with their solutions. A common  
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Table 12 
Frequencies for Explanation and Understanding (Parts 2 and 3) of Items in Algebra 
 Score 
 0 1 2 3 4 5 6 
 Reported as: Frequency/Percent (n = 76) 
Item 1—Content 
Understanding 

 
7/9.2% 

 
1/1.3% 

 
12/15.8% 

 
27/35.5% 

 
9/11.8% 

 
14/18.4% 

 
6/7.9% 

Item 1—Pedagogical 
Understanding 

 
11/14.5% 

 
2/2.6% 

 
10/13.2% 

 
21/27.6% 

 
11/14.5% 

 
16/21.1% 

 
5/6.6% 

Item 2— Content 
Understanding 

 
10/13.2% 

 
3/3.9% 

 
28/36.8% 

 
13/17.1% 

 
6/7.9% 

 
4/5.3% 

 
12/15.8% 

Item 2— Pedagogical 
Understanding 

 
9/11.8% 

 
5/6.6% 

 
23/30.3% 

 
18/23.7% 

 
16/21.1% 

 
4/5.3% 

 
1/1.3% 

Item 3— Content 
Understanding 

 
7/9.2% 

 
4/5.3% 

 
12/15.8% 

 
20/26.3% 

 
10/13.2% 

 
12/15.8% 

 
11/14.5% 

Item 3— Pedagogical 
Understanding 

 
12/15.8% 

 
2/2.6% 

 
16/21.1% 

 
19/25.0% 

 
15/19.7% 

 
11/14.5% 

 
1/1.3% 

Item 4— Content 
Understanding 

 
4/5.3% 

 
3/3.9% 

 
8/10.5% 

 
36/47.4% 

 
9/11.8% 

 
9/11.8% 

 
7/9.2% 

Item 4— Pedagogical 
Understanding 

 
7/9.2% 

 
3/3.9% 

 
4/5.3% 

 
33/43.4% 

 
21/27.6% 

 
6/7.9% 

 
2/2.6% 

Item 5— Content 
Understanding 

 
6/7.9% 

 
2/2.6% 

 
15/19.7% 

 
22/28.9% 

 
15/19.7% 

 
8/10.5% 

 
8/10.5% 

Item 5— Pedagogical 
Understanding 

 
5/6.6% 

 
5/6.6% 

 
15/19.7% 

 
20/26.3% 

 
23/30.3% 

 
5/6.6% 

 
3/3.9% 

Item 6— Content 
Understanding 

 
4/5.3% 

 
3/3.9% 

 
17/22.4% 

 
19/25.0% 

 
14/18.4% 

 
10/13.2% 

 
9/11.8% 

Item 6— Pedagogical 
Understanding 

 
9/11.8% 

 
3/3.9% 

 
16/21.1% 

 
22/28.9% 

 
18/23.7% 

 
8/10.5% 

 

Item 7— Content 
Understanding 

 
7/9.2% 

 
3/3.9% 

 
6/7.9% 

 
26/34.2% 

 
14/18.4% 

 
13/17.1% 

 
7/9.2% 

Item 7— Pedagogical 
Understanding 

 
10/13.2% 

 
5/6.6% 

 
11/14.5% 

 
14/18.4% 

 
21/27.6% 

 
10/13.2% 

 
5/6.6% 

 

 

theme across all explanations for these items was “just follow the words…they tell you what 

to do.” Common examples of explanations for these items include: 

� Well you really just have to be familiar with the terminology of a word problem or if 

you know how to solve the problem on your own you could do that. But the word 

problem practically tells you the equations; you just have to be able to put it all 

together. 
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� All I did in this problem is read the statement and translate what it was saying into 

numbers and operations. 

� It is quite simple. All it is is that the number of cars making $4 per car minus the fee 

must be at least $50 for him to make a profit. 

The other two items of interest are items four and six. These two items complement 

each other in that item four addressed the multiplication of binomials and item six 

addressed factoring a trinomial. In item four, the common explanation was “I just used 

FOIL to multiply it out and then I added like terms.” Another example of a common 

solution was: 

� I came to this answer by foiling or multiplying the two parentheses together. By 

doing this I get 6x^2-24x-10x+40. Then combining like terms I get 6x^2-34x+40, 

which is my answer. 

Another method mentioned, but not as frequently, was the “box method” or “tic-tac-toe 

method.” Students who mentioned this method in their explanation of their solution tended 

to score lower because they were unable to clearly communicate this procedure: 

� I did this problem using a tic tac toe method.  You draw what looks like a tic tac toe 

board and then put the first binomial across the top and second binomial down the 

side.  I will try to demonstrate what this looks like on paper but without the lines:            

2x       -8    3x     6x^2      -24x    -5     -10x      40    There would be lines separating 

the lines and columns.  Next you combine like terms.  -24x plus -10x can be added 

together and nothing else can.  This gives you our final answer: 6x^2 -34x +40     

A lack of the phrases “distributive property” and “multiplication of each term” amongst the 

majority of the explanations was noted. Although a majority of the students answered item 
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six correctly, there was a theme of the misuse of mathematical vocabulary and procedures in 

their explanations of their solutions. For example, several students explained they used 

“FOIL” to factor their trinomial: 

� The solution is (y – 3)(y + 6) because when you FOIL these two factors together it 

gives you y^2+3y-18. FOIL is just a way of multiplying the two factors together 

without leaving out a part. 

� y is squared so it needs to be in both parentheses. Then use FOIL. 

Across item six explanations, the most common method of arriving at a solution was to 

work the FOIL method backwards: 

� I did the FOIL method backwards in a way. I know y^2 is y times y so that will be 

the first portion of each binomial. Then I thought about the factors of 18 and 

picked on that when subtracted would equal 3. 

� I got this by working backwards from my original polynomial using the FOIL 

method. I knew that I needed each of my binomials to have y as the first term so 

that they would give me y^2 as my first term in the polynomial. I then looked at 

what two numbers multiplied together would give me 18, that would also give me a 

-3 when added together. I came up with 6 and 3, and I knew that to get a +3, the 6 

had to be the binomial with the + sign and the 3 with the – sign. Thus giving me 

(y+6)(y-3). 

Although the explanations above considered the y2 term, this was not common to most 

answers. Most of the explanations just concentrated on explaining how the factors of 18 

were combined to find the middle term: 
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� I just did this problem in my head by breaking it down into what factors of 18 could 

be subtracted to give me a difference of 3. 

� I arrived at this solution by deciding the factors of 18 and then once I did that I 

knew one would be positive and the other negative because the 18 was negative. All 

I had to do then was figure which two values subtracted from each other was +3. 

The solution to this is +6 and -3 which when added equal +3 and when multiplied 

equal -18 which we are looking for. 

For the pedagogical understanding of algebra, again, many of the same themes and 

trends found in the explanation of the solution emerged. If the student did not receive a 

correct answer on the original content problem or received a low score on the explanation 

of their solution, they were likely to not receive a high score on the pedagogical 

understanding part. A majority of the participants scored a two or three on the pedagogical 

understanding part of the items on the algebra assessment. A score of two on the 

pedagogical understanding part of the items on the number and operation assessment 

generally meant the procedure was somewhat correct, but contained minor mathematical 

errors or had missing parts to the item missing. A score of three generally indicated the 

student could successfully explain their own procedure to a person who did not understand. 

Scores of two and three tended to be very algorithmic and procedure-oriented in nature. 

The general method of instruction could be assumed to be direct since there was often no 

mention of any other method. Examples of scores of two on the understanding part of the 

algebra assessment include: 

� They would need to know a little bit of geometry and understand the meaning of 

transversal and what that means in regards to parallel lines.  



   75 

� I would show them the FOIL method and how I went about solving this particular 

problem using it. 

� I would list out the possible combinations of factors of -18, and then use trial and 

error to find which pair satisfied the second requirement of a sum of three. 

Examples of scores of three include: 

� After reading “eight less than twice a number is forty-two” first we know that the 

equation = 42 and we know that twice a number is 2xN or 2N. Eight less of 2N is 

2N-8 which equals 42. 

� Use the method First—multiply the first set of numbers in the parentheses and 

carry the values, outside—multiply the outside sets of numbers, inside—multiply 

the inside set of numbers, last—multiply the last set of numbers. Then add or 

subtract the 2nd answer and 3rd answer you got for the outside part and inside part. 

FOIL 

� I would have him or her set up variables of x = how much tank will hold (which 

would equal 12), and g = number of gallons already in tank. In order to find out 

how much it is empty, you would subtract g from 12. You would then multiply the 

price (p) to see how much the total would be. 

Across all the pedagogical understanding responses, there was a greater indication of 

cultural responsiveness than was found on the number and operations items. Exemplar 

pedagogical understanding explanations include: 

� I would write 3x(2x-8) + -5(2x-8) and draw arrows from the coefficients outside the 

parentheses to the two characters inside of each. 

� I would start plugging in real numbers instead of using a variable right away. 
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� I would bust out a protractor to show that the angles are indeed equal, and proceed 

in a similar matter as my explanation of my solution. If someone did not understand 

the algebra, I would do a mini-lesson on doing like-operations on both sides of an 

equal equation in order to solve it. 

� I would bring in a 1 gallon jug and demonstrate the equation using the info from the 

problem. We could say the capacity of the jug is 12 gallons, but we would only fill 

the container partially. Then, calculate how much it would cost to fill the rest of the 

jug. 

� Just work it out step by step with them maybe using different colors or underlining 

to show common terms and such. 

It should also be noted that there were a few examples of multiplying binomials where the 

participants stated they would use Base-10 blocks to model this procedure. Only one 

participant correctly incorporated the use of a hands-on material in the multiplication of 

binomials. The participant suggested algebra tiles be used to model this item. 

 Other themes noteworthy for pedagogical understanding in algebra were the 

teaching of the concepts of the multiplication of binomials and the factoring of trinomials. 

Again, FOIL, forwards and backwards, was a common theme in the responses.  A major 

concentration on just finding the correct combination of factors in factoring trinomials was 

noted. Common examples for the multiplication of binomials include: 

� Ok, I want to teach you FOIL. Front, Outside, Inside, Last. SO when we see a 

problem like this one we know what to do. Front: 3x*2x=6x^2 Outside: 3x*-8=-24x 

Inside: -5*2x=-10x Last:-5*-8=40. We have 6x^2-24x-10x+40. Now we collect like 

terms and end with 6x^2-34x+40. 
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� Explain the FOIL method means first, outer, inner, last. So we must first multiply 

the first variables in each expression. Then we multiply the outer numbers, then the 

inner numbers, and then the last two variables in each expression. After we’ve 

found the solutions we combine our like terms, (usually found with the inner and 

outer answers) and add all of them together. I would make sure to tell the students 

to watch out for negative signs! 

Common examples for the factoring of trinomials include: 

� I’d tell the kids to automatically put (y   )(y   ), because we know y x y is y^2. Then 

I’d show them that since the second sign is -, one sign must be + and one -. Then 

I’d tell them to factor 18, find the numbers that will equal 3 when subtracted, since 

it’s positive three, you know the larger number goes with the plus sign and thus we 

get our answer. 

� I would have them find factors of 18 and then those factors must somehow (either 

by adding or subtracting) equal 3. 

� Review the FOIL process with models and arrows then help them work it 

backwards. 

The box/tic-tac-toe method was again mentioned. As with the explanation of the solution, 

there was no clear explanation of understanding of how the method was to be used: 

� There are many types of ways to model factoring. I was taught using a box method, 

cut into 4 quadrants and is filled in accordingly, with the variables that the rows and 

columns have in common on the outside of the box. I would then make sure they 

knew to go back and check their work to make sure they did it correctly! 
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It was again noted that there was a lack of the use of the term “distributive property” and 

“multiplication of each term.” 

 All three of the parts (content knowledge, content understanding, and pedagogical 

understanding) mentioned above in the analysis together make up the component called 

mathematics knowledge for teaching algebra in the middle grades. Total scores for this 

assessment ranged from 4 to 80, a range of 76. Total possible points for this algebra 

assessment were 91. Descriptive statistics for the total of each part (content, explanation, 

and understanding) and the total mathematics knowledge for teaching algebra can be found 

in Table 13.  

 
 
 
 
Table 13 
Descriptive Statistics for Mathematics Knowledge for Teaching Algebra  

Percentiles  Mean Median Mode Standard 
Deviation 25 50 75 

Total Content 
(7 pts possible) 

 
5.50 

 
6 

 
6 

 
1.17 

 
5 

 
6 

 
6 

Total Explanation  
(42 pts possible) 

 
22.66 

 
23 

 
29 

 
7.61 

 
18 

 
23 

 
29 

Total Understanding 
(42 pts possible) 

 
20.50 

 
21 

 
20 

 
7.92 

 
16 

 
21 

 
26 

Mathematics Knowledge 
for Teaching Algebra 
(91 pts possible) 

 
 

48.66 

 
 

51 

 
 

46 

 
 

14.98 

 
 

39 

 
 

51 

 
 

59 
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Research Question 3 

What is preservice middle grades teachers’ mathematics knowledge for teaching 

geometry? 

The analysis of this question was again broken into four parts: analysis of the 

content knowledge, analysis of the content understanding, analysis of the pedagogical 

understanding, and analysis of the mathematics knowledge for teaching geometry. The three 

parts— content knowledge, content understanding, and pedagogical understanding—

together make up mathematics knowledge for teaching geometry in the middle grades. 

Beginning with the analysis of the content knowledge part of the geometry assessment, the 

Spearman-Brown prediction formula was used to calculate the reliability of the assessment. 

The coefficient alpha for the geometry assessment is .973.  

The next step was to conduct an item analysis for the content knowledge part of the 

geometry assessment. An item analysis evaluates each test item to determine the 

discrimination and difficulty level. Item discrimination refers to the ability of an item to 

differentiate among students on the basis of how well they know the material being tested. 

An item’s difficulty index is expressed as the proportion of students who responded 

correctly to an item to the total number who responded. Distractors are usually identified in 

the process of an item analysis. However, a distractor analysis was not conducted because 

this assessment did not contain any distractors. The item discrimination for the content 

question items in geometry can be found in Table 14. Item difficulty can be found in Table 

15. The average item difficulty was 76% (p = .76) which is considered moderately difficult 

on the item difficulty scale. 
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Table 14 
Item Discriminations for Content Question (Part 1) in Geometry 
 
Item 

% Item 
Discrimination 

 
Level* 

1—Calculating the missing angle in a supplementary or 
complementary pair 

 
39% 

 
Good 

2— Calculating the missing angle in a supplementary or 
complementary pair 

 
43% 

 
Excellent 

3—Identifying pairs of supplementary and 
complementary angles 

 
18% 

Usually 
Unacceptable 

4—Determining angle relationships when given two 
parallel lines cut by a transversal 

 
54% 

 
Excellent 

5—Identifying pairs of vertical angles as congruent 29% Good 
6— Identifying pairs of vertical angles as congruent 29% Good 
7—Calculating the missing angle measurements when 
given two parallel lines cut by a transversal 

 
21% 

Usually 
Unacceptable 

*Negative = unacceptable; 0% - 24% = Usually unacceptable, might be approved; 25% - 
39% = Good Item; 40% - 100% = Excellent Item 
 
 
 
 
Table 15 
Item Difficulty for Content Question (Part 1) in Geometry 
 
Item 

% Item 
Difficulty 

 
Level* 

1—Calculating the missing angle in a supplementary 
or complementary pair 

 
77% 

Moderately 
Difficult 

2— Calculating the missing angle in a supplementary 
or complementary pair 

 
64% 

Moderately 
Difficult 

3—Identifying pairs of supplementary and 
complementary angles 

 
70% 

Moderately 
Difficult 

4—Determining angle relationships when given two 
parallel lines cut by a transversal 

 
66% 

Moderately 
Difficult 

5—Identifying pairs of vertical angles as congruent 86% Easy 
6— Identifying pairs of vertical angles as congruent 86% Easy 
7—Calculating the missing angle measurements when 
given two parallel lines cut by a transversal 

 
86% 

 
Easy 

 
Average Item Difficulty for Geometry 

 
76% 

Moderately 
Difficult 

*<20% = difficult; 20% - 80% = moderately difficult; >80% = easy 
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There were no items for which less than half of the participants answered correctly, 

therefore the three items with the smallest percentage (items 2, 3, and 4) of the participants 

answering correctly were investigated for commonalities across each item. The first item, 

item two, addressed calculating the missing angle in a supplementary pair. There was one 

major error type identified. Participants who incorrectly answer this item most often 

identified their answer as 58 degrees instead of 60 degrees. This is a minor “plugging in” 

error. The item requires one to solve an equation for x. However, the item is looking the 

measure of an angle, given an expression x + 2. The second item, item three, addressed 

identifying pairs of complementary angles. In this item, the majority of those who answered 

this question incorrectly reported angle Q as the complementary angle to the given angle X. 

Angle Q is actually vertical to angle X. The third item, item four, addressed determining 

angle relationships when given two parallel lines cut by a transversal. A majority of the 

participants who answered this item incorrectly described the relationship between the two 

angles as equaling 180 degrees. This is partially correct, but the researcher was looking for 

the specific term, supplementary. It was noted that a few of the responses to this item 

reported a complementary relationship instead of a supplementary relationship. 

Next, the open-ended parts, content understanding and pedagogical understanding 

(parts 2 and 3), of the online algebra assessment of preservice middle grades teachers were 

explored using constant comparative analysis. For consistency of data interpretation, all 

items were scored on an ordinal scale from zero to six according to a holistic rubric specific 

to each part (see Appendix G). Although data were not strictly interval in nature, they 

approximate an interval scale. Therefore, statistics requiring interval scaling, such as mean 

and standard deviation, can be reasonably interpreted. Descriptive statistics including mean, 
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median, mode, standard deviation, and quartiles for each item on the algebra assessment are 

reported in Table 16. Frequencies for each rubric score on explanation (part 2) and 

understanding (part 3) were computed for each item and are reported in Table 17. 

 
 
Table 16 
Descriptive Statistics of Item Responses (Parts 2 and 3) on Geometry  

Percentiles  Mean Median Mode Standard 
Deviation 25 50 75 

Item 1—Explanation 3.93 4 6 2.07 2 4 6 
Item 1—Understanding 3.20 3 3 1.79 2 3 5 
Item 2—Explanation 3.61 4 3 1.88 2 4 5 
Item 2—Understanding 3.00 3 3 1.72 2 3 4 
Item 3—Explanation 3.04 3 0 2.22 0 3 5 
Item 3—Understanding 2.55 3 0 1.94 0 3 4 
Item 4—Explanation 3.05 3 0 2.22 1 3 5 
Item 4—Understanding 2.46 3 0 1.89 0 3 4 
Item 5—Explanation 2.64 3 0 2.20 0 3 5 
Item 5—Understanding 2.38 3 0 2.09 0 3 4 
Item 6—Explanation  2.71 3 3 2.05 1 3 4 
Item 6—Understanding 2.46 3 3 1.82 0 3 4 
Item 7—Explanation 3.34 3 3 2.00 2 3 5 
Item 7—Understanding 2.50 3 0 1.79 1 3 4 
 
 

 

In terms of explanations of solutions (part 2) to items in the geometry assessment, a 

majority of the students scored three according to the rubric for this item. A score of three 

on the explanation of the solution generally meant the student just explained their exact 

algorithmic or mental mathematic procedure with no additional explanations given for the 

given item. The procedures were mathematically correct and their solution was correct. 

Common examples of a score of three on the geometry explanation part include: 

� In order to find angle STU, you must do 180 – 2x 
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� I combined both A and B expressions and set them equal to 180. I solved for the 

missing variable, plugged that back into the expression for angle A and got the 

answer. 

� Vertical angles are basically opposite angles. So since 2 is opposite of 4, they are 

vertical and since 1 is opposite of 3, they are also vertical. 

� Congruent angles mean they are the same degree measure. So since t and s are 

vertical angles, they are congruent and the same goes for r and u. 

Overall, the explanations of the solutions for the geometry assessment revealed 

incorrect mathematical vocabulary. When dealing with parallel lines and a transversal such 

as with items four and seven, a majority of the students mixed up terminology for 

corresponding angles, and alternate interior and exterior angles. In addition it was noted in 

item three that several students thought complementary and congruency were analogous 

terms: 

� By looking at the picture you can see that m<R=90 by opposite angles of a line.  

You can see that m<P=m<S by opposite exterior angles.  So then we can see that 

Q is equal to X. (Item 3—the angles are actually supplementary and the item asked 

for complementary, not congruency) 

� I just looked for the angle that was directly opposite of the angle X (Item 3) 

� Corresponding angles are angle 1 and angle 2 (Item 4—the angles are actually 

supplementary) 

� Opposite exterior angles are congruent. (Item 4) 

Vertical angle terminology, especially in item five, revealed that students often associated 

vertical angles with longitudinal directions instead of intersecting lines and their subsequent 
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Table 17 
Frequencies for Explanation and Understanding (Parts 2 and 3) of Items in Geometry 
 Score 
 0 1 2 3 4 5 6 
 Reported as: Frequency/Percent (n = 56) 
Item 1—Content 
Understanding 

 
7/12.5% 

  
7/12.5% 

 
9/16.1% 

 
6/10.1% 

 
7/12.5% 

 
20/35.7 

Item 1—Pedagogical 
Understanding 

 
9/16.1% 

 
2/3.6% 

 
3/5.4% 

 
15/26.8% 

 
12/21.4% 

 
12/21.4% 

 
3/5.4% 

Item 2— Content 
Understanding 

 
5/8.9% 

 
3/5.4% 

 
7/12.5% 

 
12/21.4% 

 
8/14.3% 

 
9/16.1% 

 
12/21.4% 

Item 2— Pedagogical 
Understanding 

 
9/16.1% 

 
1/1.8% 

 
8/14.3% 

 
14/25.0% 

 
14/25.0% 

 
7/12.5% 

 
3/5.4% 

Item 3— Content 
Understanding 

 
15/26.8% 

 
1/1.8% 

 
6/10.7% 

 
7/12.5% 

 
7/12.5% 

 
12/21.4% 

 
8/14.3% 

Item 3— Pedagogical 
Understanding 

 
16/28.6% 

 
3/5.4% 

 
5/8.9% 

 
9/16.1% 

 
13/23.2% 

 
9/16.1% 

 
1/1.8% 

Item 4— Content 
Understanding 

 
13/23.2% 

 
2/3.6% 

 
7/12.5% 

 
12/21.4% 

 
3/5.4% 

 
7/12.5% 

 
12/21.4% 

Item 4— Pedagogical 
Understanding 

 
16/28.6% 

 
1/1.8% 

 
10/17.9% 

 
9/16.1% 

 
12/21.4% 

 
6/10.7% 

 
2/3.6% 

Item 5— Content 
Understanding 

 
18/32.1% 

 
3/5.4% 

 
3/5.4% 

 
11/19.6% 

 
4/7.1% 

 
12/21.4% 

 
5/8.9% 

Item 5— Pedagogical 
Understanding 

 
22/39.3% 

 
 

 
3/5.4% 

 
9/16.1% 

 
12/21.4% 

 
8/14.3% 

 
2/3.6% 

Item 6— Content 
Understanding 

 
13/23.2% 

 
5/8.9% 

 
5/8.9% 

 
15/26.8% 

 
6/10.7% 

 
4/7.1% 

 
8/14.3% 

Item 6— Pedagogical 
Understanding 

 
15/26.8% 

 
3/5.4% 

 
4/7.1% 

 
18/32.1% 

 
9/16.1% 

 
5/8.9% 

 
2/3.6% 

Item 7— Content 
Understanding 

 
8/14.3% 

 
2/3.6% 

 
8/14.3% 

 
13/23.2% 

 
7/12.5% 

 
6/10.7% 

 
12/21.4% 

Item 7— Pedagogical 
Understanding 

 
14/25.0% 

 
2/3.6% 

 
9/16.1% 

 
13/23.2% 

 
10/17.9% 

 
7/12.5% 

 
1/1.8% 

 

 

angle relationships. Other common terms used instead of vertical angles were opposite and 

diagonal: 

� a is diagonal from 51, so I assumed it was also 52, and then subtracted from 180 to 

get 129 (Item 7) 

� Vertical means up and down.  Horizontal means side-to-side, so the angles that are 

facing up and down are 2, 4. (Item 5) 

� Vertical angles would be the ones that are going up and down…like north and 

south (Item 5) 
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� I first knew that angles that were diagonal from each other are equal and I also used 

that when two angles are next to each other and create a line they equal 180, since 

the lines are parallel and have a transversal they will all have one of the two 

measurements just depending on where they are in the diagram. (Item 7) 

� They are opposite angles of each other so they are equal which implies they are 

congruent. (Item 6) 

The last interesting and noteworthy trend across the explanation of solutions in the 

geometry assessment was the use of the term linear pairs often instead supplementary: 

� The given angle and angle a are vertical angles and vertical angles are congruent. 

The given angle and angle d are a linear pair and linear pairs are supplementary 

� Angle 1 makes a linear pair with, call it angle x, and angle x and angle 2 are 

corresponding angles. Since they are corresponding angles, angle x and angle 2 are 

congruent. 

� Angle 1 and angle 2 make a linear pair. 

� Angle A and Angle B are a linear pair which means the sum of the two angles = 180 

degrees. We set up the equation and solve for x. We then know what x equals and 

can figure out the exact measurement of angle A. 

For the pedagogical understanding of geometry, many of the same themes and 

trends found in the explanations (content understanding) emerged again. If the student did 

not receive a correct answer on the original content problem or received a low score on the 

explanation of their solution, they were likely to not receive a high score on the 

understanding part. A majority of the participants scored a three or a four on the 

pedagogical understanding part of the geometry assessment. A score of three generally 
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indicated that the student could successfully explain their own procedure to a person who 

did not understand. A score of four indicated the student could go just beyond the 

explanation of their own procedure, many times adding terms and definitions associated 

with the problem or providing a basic definition of why they did what they did. Examples 

of a score of three include: 

� First we would review the meaning of supplementary angles. Then I would work 

out the problem vertically step by step, writing next to each step what I was doing if 

necessary. 

� If they knew what vertical angles were then I would remind them that vertical angles 

are congruent and therefore, S&T and R&U are congruent because they are vertical 

angles. 

Examples of a score of four include: 

� I would teach supplementary angles, then parallel lines and corresponding angles. I 

would show the relationship between all these and then explain like that to the 

solution described above. 

� Complementary means two angles sums are equal to 90 degrees. Since 90 degrees is 

a right angle, and we know that there is an angle that is complementary to X, we 

need to find the angle that completes the right angle with X. P is the only choice. R 

is wrong because it is supplementary to X. 

Although directional association with vertical angles was prevalent in the 

explanation of solutions, there was only one directional association in the understanding 

part of the problem: 
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� Show a map or some other object with north and south orientation and then 

demonstrate how the picture is similar. 

Of the students who mentioned directional associations in the explanation (content 

understanding) part, a majority just mentioned describing the definition of vertical angles to 

someone who did not understand. There was no additional explanation given as to what 

this definition might be. 

 There was again an evident misconception that congruency and complementary are 

analogous terms. All of the following understanding explanations refer to item three, 

identifying the complementary angle to X: 

� Find the angles of each with numbers and show that they are equal 

� I could demonstrate this very problem to my class and help them understand why 

the two angles are equal. 

� I would again show the basic way degrees on a line works and how the angle 

opposite diagonally from the given angle is the same. 

Across all pedagogical understanding parts of the items on the geometry assessment 

there were several instances of exploration activities. Most of these activities involved 

providing actual measurements and protractors to students so they could measure the 

angles and then come up with their own idea of the relationships between angles (i.e., 

supplementary, complementary, corresponding, etc.). In addition a majority of the 

responses contained some kind of definition or discussion of giving and/or explaining 

definitions necessary for students to understand the problems. Common examples include: 

� Have the students explore angles and what it means to be supplementary. Have 

them measure the angles formed on both sides of an intersecting line. This should 
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result in an understanding that no matter what the measure of the angle (x) is on 

one side of a intersecting line, the measure of the angle on the other side of the line 

is 180-x. Now have the students use this knowledge and armed with the definition 

of supplementary to tackle this problem. If the two angles are supplementary, what 

does this mean? (Their measure adds up to 180)  How would you write this using 

the above angles? m<PQR + m<STU = 180. If the measure of <PQR is 2x, what is 

the measure of <STU? 2x + <STU = 180 which means 180 - 2x = <STU 

� **This example contains another example of complementary = congruency** Have 

the students review the concepts of supplementary and corresponding angles. After 

the students have physically explored angles, then measured pictorial 

representations, have the students review the relationship between the angles 

formed by two intersecting lines. Have the students list the relationships between 

<a, <d, <b, and angle having measure of 51.  What angles are complementary? <a 

and <d; <a and <b; <d and angle with measure 51; <b and angle with measure of 

51. What does it mean for an angle to be complementary? m<a + m<d = 180; m<d 

+ 51 = 180, etc. With this knowledge, what is the measure of angles <a, <b, <d? 

m<d = m<b = 180-51 = 129; m<a = 51 (either because they form vertical angles 

with the first or by being supplementary with <b and <d). Now that we know what 

the measure of these angles are, how are these angles related to the angles formed 

by the intersection of the same line with a parallel line? (forms angles with same 

measure) Which angle corresponds to <a? <z What are the relationships between 

angles <z, <y, <w, and <x? <z is supplementary with <y and <w; With this 

knowledge, what is the measure of <z, <y, <w, and <x? m<z + m<y = 180; m<z + 
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m<w = 180; m<z = m<a  m<z = 51; 51 + m<y = 180; m<y = 180-51; m<y = 

129; m<y = m<w = 129; m<z = m<x = 51    

� After students have investigated real world examples of angles, then pictorial 

representations of angles have students measure a lot of angles and come up with 

the relationships between them. They should come to the realization that the 

measure of the angle on one side of an intersecting line is the same as that of the 

opposite angle (the vertical angle). Define the term "congruent angles". Stress that 

congruence "- angles having equal measure" relates the measurement of the angles, 

not the size of the representation. Ask the students which angles have the same 

measure. What does having the same measure mean? So...which angles are 

congruent? 

All three parts (content knowledge, content understanding, and pedagogical 

understanding) mentioned in the above analysis together make up the component called 

mathematics knowledge for teaching geometry in the middle grades. Total scores for this 

assessment ranged from 0 to 81, a range of 80. The total possible points for the geometry 

assessment was 91 points. Descriptive statistics for the total of each part (content, 

explanation, and understanding) and the total mathematics knowledge for teaching 

geometry can be found in Table 18.  
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Table 18 
Descriptive Statistics for Mathematics Knowledge for Teaching Geometry  

Percentiles  Mean Median Mode Standard 
Deviation 25 50 75 

Total Content Knowledge 
(7 pts possible) 

 
5.34 

 
6 

 
6 

 
1.77 

 
5 

 
5 

 
7 

Total Content Understanding 
(42 pts possible) 

 
22.32 

 
25 

 
6 

 
11.33 

 
15 

 
25 

 
32 

Total Pedagogical 
Understanding 
(42 pts possible) 

 
 

18.55 

 
 

20.50 

 
 
0 

 
 

10.66 

 
 
9 

 
 

21 

 
 

27 
Mathematics Knowledge for 
Teaching Geometry 
(91 pts possible) 

 
 

46.21 

 
 

50.50 

 
 

59 

 
 

22.29 

 
 

31 

 
 

51 

 
 

65 

 

 

Research Question 4 

What is preservice middle grades teachers’ mathematics knowledge for teaching 

probability and statistics? 

The analysis of this question was again broken into four parts: analysis of the 

content knowledge, analysis of the content understanding, analysis of the pedagogical 

understanding, and analysis of the mathematics knowledge for teaching probability and 

statistics. The three parts— content knowledge, content understanding, and pedagogical 

understanding—together make up mathematics knowledge for teaching probability and 

statistics in the middle grades. Beginning with the analysis of the content knowledge part of 

the probability and statistics assessment, the Spearman-Brown prediction formula was used 

to calculate the reliability of the assessment. The coefficient alpha for the probability and 

statistics assessment was .907. 

The next step was to conduct an item analysis for the content knowledge part of the 

probability and statistics assessment. An item analysis evaluates each test item to determine 

its discrimination and difficulty level. Item discrimination refers to the ability of an item to 
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differentiate among students on the basis of how well they know the material being tested. 

An item’s difficulty index is expressed as the proportion of students who responded 

correctly to an item to the total number who responded. Distractors are usually identified in 

the process of item analysis. However, a distractor analysis was not conducted because this 

assessment did not contain any distractors. The item discrimination for the content question 

items on the probability and statistics assessment can be found in Table 19. Item difficulty 

can be found in Table 20. The average item difficulty was 76% (p = .76) which is considered 

moderately difficult on the item difficulty scale. 

 
 
 
Table 19 
Item Discriminations for Content Question (Part 1) in Probability and Statistics  
 
Item 

% Item 
Discrimination 

 
Level* 

 
1—Calculating the range for a given set of data 

 
23% 

Usually 
Unacceptable 

 
2—Predicting the outcome of an experiment 

 
19% 

Usually 
Unacceptable 

3—Reading and interpreting data represented 
graphically through a pictograph 

 
0% 

Usually 
Unacceptable 

4—Determining the number of possible outcomes 
for a compound event by using the fundamental 
counting principle and use this to determine the 
probabilities of events when the outcomes have equal 
probabilities 

 
 
 
31% 

 
 
 
Good 

5—Determining the probability of dependent events 38% Good 
6— Predicting the outcome of an experiment 35% Good 
7—Interpreting data to provide the basis for 
predictions and to establish experimental probabilities 

 
15% 

Usually 
Unacceptable 

*Negative = unacceptable; 0% - 24% = Usually unacceptable, might be approved; 25% - 
39% = Good Item; 40% - 100% = Excellent Item 
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Table 20 
Item Difficulty for Content Question (Part 1) in Probability and Statistics 
 
Item 

% Item 
Difficulty 

 
Level* 

 
1—Calculating the range for a given set of data 

 
65% 

Moderately 
Difficult 

2—Predicting the outcome of an experiment 90% Easy 
3—Reading and interpreting data represented 
graphically through a pictograph 

 
100% 

 
Easy 

4—Determining the number of possible outcomes for 
a compound event by using the fundamental counting 
principle and use this to determine the probabilities of 
events when the outcomes have equal probabilities 

 
 
 
81% 

 
 
 
Easy 

 
5—Determining the probability of dependent events 

 
46% 

Moderately 
Difficult 

 
6— Predicting the outcome of an experiment 

 
63% 

Moderately 
Difficult 

7—Interpreting data to provide the basis for 
predictions and to establish experimental probabilities 

 
88% 

 
Easy 

Average Item Difficulty for Probability and 
Statistics 

 
76% 

Moderately 
Difficult 

*<20% = difficult; 20% - 80% = moderately difficult; >80% = easy 
 

  

One item, item five, had less than half of the participants answer it correctly. This 

item was investigated for commonalities in the errors of the answers given. Item five 

addressed determining the probability of dependent events. There were three common 

errors. The majority of the participants who did not answer this question correctly simply 

forgot to reduce the fraction for their final answer. There were two types of answers to be 

reduced. When the two original probabilities were multiplied together, the answer needed to 

be reduced. The other type was a result from multiplying the first probability, which was 

initially reduced, by the second probability, which could not be initially reduced. The result 

was another probability which needed to be reduced, and a majority of the time was not. 

The other two types of errors, minimal but still evident in student answers, were the adding 
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of the two probabilities and the treatment of the item as “with replacement” even though 

the problem directly states “without replacing the first cookie.”  

 Next, the open-ended parts, content understanding and pedagogical understanding 

(parts 2 and 3), of the online probability and statistics assessment of preservice middle 

grades teachers were explored using constant comparative analysis. For consistency of data 

interpretation, all items were scored on an ordinal scale from zero to six according to the 

holistic rubric for each part (see Appendix G). Although the data were not strictly interval 

in nature, they approximate an interval scale. Therefore, statistics requiring interval scaling, 

such as mean and standard deviation, can be reasonably interpreted. Descriptive statistics 

including mean, median, mode, standard deviation, and quartiles are reported for each item 

on the probability and statistics assessment and are reported in Table 21. Frequencies for 

each rubric score on explanation (part 2) and understanding (part 3) were computed for 

each item and are reported in Table 22.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   94 

Table 21 
Descriptive Statistics of Item Responses (Parts 2 and 3) on Probability and Statistics  

Percentiles  Mean Median Mode Standard 
Deviation 25 50 75 

Item 1—Content 
Understanding 

 
2.71 

 
3 

 
3 

 
1.18 

 
2 

 
3 

 
3 

Item 1—Pedagogical 
Understanding 

 
3.21 

 
3 

 
3 

 
1.53 

 
2 

 
3 

 
5 

Item 2— Content 
Understanding 

 
3.87 

 
4 

 
3 

 
1.21 

 
3 

 
4 

 
5 

Item 2— Pedagogical 
Understanding 

 
3.33 

 
3 

 
3 

 
1.42 

 
3 

 
3 

 
4 

Item 3— Content 
Understanding 

 
3.46 

 
3 

 
3 

 
1.35 

 
3 

 
3 

 
4 

Item 3— Pedagogical 
Understanding 

 
3.65 

 
4 

 
4 

 
1.30 

 
3 

 
4 

 
5 

Item 4— Content 
Understanding 

 
2.79 

 
3 

 
3 

 
1.26 

 
3 

 
3 

 
3 

Item 4— Pedagogical 
Understanding 

 
3.12 

 
3.50 

 
4 

 
1.75 

 
2 

 
4 

 
4 

Item 5— Content 
Understanding 

 
2.88 

 
3 

 
2 

 
1.65 

 
2 

 
3 

 
4 

Item 5— Pedagogical 
Understanding 

 
2.87 

 
3 

 
4 

 
1.63 

 
2 

 
3 

 
4 

Item 6— Content 
Understanding 

 
3.33 

 
3 

 
3 

 
1.45 

 
2 

 
3 

 
4 

Item 6— Pedagogical 
Understanding 

 
3.21 

 
3 

 
3 

 
1.39 

 
2 

 
3 

  
4 

Item 7— Content 
Understanding 

 
3.38 

 
3 

 
3 

 
1.44 

 
3 

 
3 

 
4 

Item 7— Pedagogical 
Understanding 

 
3.10 

 
3 

 
3 

 
1.55 

 
2 

 
3 

 
4 
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Table 22 
Frequencies for Explanation and Understanding (Parts 2 and 3) of Items in Probability and Statistics 
 Score 
 0 1 2 3 4 5 6 
 Reported as: Frequency/Percent (n = 52) 
Item 1— Content 
Understanding 

 
3/5.8% 

 
3/5.8% 

 
12/23.1% 

 
27/51.9% 

 
3/5.8% 

 
3/5.8% 

 
1/1.9% 

Item 1— Pedagogical 
Understanding 

 
3/5.8% 

 
4/7.7% 

 
9/17.3% 

 
14/26.9% 

 
8/15.4% 

 
13/25.0% 

 
1/1.9% 

Item 2— Content 
Understanding 

 
-- 

 
-- 

 
5/9.6% 

 
18/34.6% 

 
16/30.8% 

 
5/9.6% 

 
8/15.4% 

Item 2— Pedagogical 
Understanding 

 
4/7.7% 

 
-- 

 
6/11.5% 

 
19/36.5% 

 
15/28.8% 

 
4/7.7% 

 
4/7.7% 

Item 3— Content 
Understanding 

 
1/1.9% 

 
-- 

 
7/13.5% 

 
29/55.5% 

 
4/7.7% 

 
3/5.8% 

 
8/15.4% 

Item 3— Pedagogical 
Understanding 

 
1/1.9% 

 
2/3.8% 

 
6/11.5% 

 
12/23.1% 

 
18/34.6% 

 
10/19.2% 

 
3/5.8% 

Item 4— Content 
Understanding 

 
6/11.5% 

 
2/3.8% 

 
-- 

 
37/71.2% 

 
4/7.7% 

 
2/3.8% 

 
1/1.9% 

Item 4— Pedagogical 
Understanding 

 
9/17.3% 

 
1/1.9% 

 
4/7.7% 

 
12/23.1% 

 
14/26.9% 

 
11/21.2% 

 
1/1.9% 

Item 5— Content 
Understanding 

 
5/9.6% 

 
2/3.8% 

 
16/30.8% 

 
15/28.8% 

 
5/9.6% 

 
3/5.8% 

 
6/11.5% 

Item 5— Pedagogical 
Understanding 

 
6/11.5% 

 
4/7.7% 

 
12/23.1% 

 
9/17.3% 

 
13/25.0% 

 
6/11.5% 

 
2/3.8% 

Item 6— Content 
Understanding 

 
1/1.9% 

 
2/3.8% 

 
13/25.0% 

 
15/28.8% 

 
12/23.1% 

 
2/3.8% 

 
7/13.5% 

Item 6— Pedagogical 
Understanding 

 
3/5.8% 

 
1/1.9% 

 
10/19.2% 

 
17/32.7% 

 
13/25.0% 

 
5/9.6% 

 
3/5.8% 

Item 7—Content 
Understanding 

 
3/5.8% 

 
1/1.9% 

 
4/7.7% 

 
25/48.1% 

 
9/17.3% 

 
4/7.7% 

 
6/11.5% 

Item 7— Pedagogical 
Understanding 

 
5/9.6% 

 
3/5.8% 

 
5/9.6% 

 
20/38.5% 

 
10/19.2% 

 
6/11.5% 

 
3/5.8% 

 

 

In terms of explanations of solutions (content understanding—part 2) to items on 

the probability and statistics assessment, a majority of the participants scored a three 

according to the rubric for this part of the assessment. A score of three on the explanation 

of the solution generally meant the student just explained their exact algorithmic or mental 

mathematic procedure for the given item. The procedures were mathematically correct and 

their solution was correct, however, there was no further explanation provided other than 

their algorithmic procedure. Common examples of a score of three include: 
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� Since there are 21 possible options for the first letter, 5 for the second, and 21 for 

the third, you just do 21*5*21 and that gives you 2,205 possible tag codes. 

� Just looking at the pictograph I could see that the yellow lens had sold three times 

the amount of the brown lens. 

� I subtracted 73 from 97. 

There are a few items with minor errors in explanations of noteworthiness. The first 

is item one which addressed calculating the range for a given set of data. Of the students 

who incorrectly answered this problem, a majority of them indicated the range of data as an 

actual range (i.e., 73 – 97) instead of calculating the range by subtracting the highest and 

lowest scores. Another common error revealed in the explanation was the ordering of the 

numbers. The numbers are presented in non-numerical order and instead of reordering 

them, the student took the last score minus the first score. 

Item three addressed reading and interpreting data represented graphically through a 

pictograph. This item is the only item received 100% correct responses out of all four 

assessments. However, in the comparison of the explanations, it was revealed that although 

the participants correctly chose yellow, their explanations were not correct. The pictograph 

displayed three times greater sales for yellow than brown. However, participants 

misinterpreted three times as three more. Green has three less or two times fewer sales than 

yellow. Common examples of this misinterpretation include: 

� Yellow has three more sunglasses in the pictograph than green, so that is how I got 

my answer. 

� You would look at the graph and start with the smallest number of sunglasses, 

which is brown. The pictography has only two sunglasses (20,000) for that. The next 
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one up, green, has three sunglasses (30,000). You can see that that is not the answer, 

because you are looking for something that is three times greater, which means it 

needs to have three more sunglasses in the pictograph. If you compare all of them, 

you find out that yellow has three more (30,000) than green. So, yellow is the 

answer. 

� Yellow had sales three times greater than green because there are three more 

sunglasses pictures for the yellow than there are for the green. 

Item six addressed predicting the outcome of an experiment. Of the students who 

incorrectly answered this problem, a misinterpretation of the graphic representation given 

was the most common. The representation contained ten cards numbered and with the 

color written on them. The black cards were darkened a deep gray while there was little 

room for distinction between the white and gray cards. Therefore participants reported 

probabilities of 7/10 instead of 4/10 in order to predict the outcome of the experiment: 

� He has a 7 out of 10 chance to pick a white card every time he draws a card and 

since he replaces the card each time he always has the same probability of picking a 

white card. If he does this 100 times then you would expect him to pick a white card 

about 70 out of the 100 times. 

� Because every single time he has 10 cards to pick from and every single time there is 

a 70  chance (7 out of 10) that he will pick a white card. Conducted 100 times, the 

theoretical number of times that he should pick a white card is 70. That said, it will 

probably not be the actual number.  
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� There is a probability that Derek will pick up a white card 7 out of 10 times. You 

multiply this 100 times. You don’t have to change the number because he replaces 

the card each time. 

For the pedagogical understanding part of probability and statistics, a majority of 

the participants scored either a three or a four. A score of three generally indicated the 

student could successfully explain their own procedure to a person who did not understand. 

These explanations tended to be very algorithmic in nature and the general method of 

instruction could be assumed to be direct since there was no mention of any other method. 

Common examples of a score of three on various items within the probability and statistics 

assessment include: 

� I divided 240 by 3 since 1 through 5 contains 3 odd numbers. 

� Show that if there is no tampering with the odds of certain cards, each card has an 

equal chance of getting picked. So if there are 100 tries than they need to divide the 

total number of tries by the number of cards. Then multiply the number of certain 

cards times that answer they got. 

� See if they could find the probability of grabbing a red in one try. They have that 

same probability every time they grab from the bag, so they just need to multiply the 

probability times the total number of tries. 

A score of four on the pedagogical understanding part indicated that the student could do 

more than just explain their own procedure. They could relate their procedure back to 

different parts of the problem and could often explain why they got a certain number or 

conducted a certain procedure. Responses at this level tended to be more culturally 
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responsive than a score of three. Common examples of a score of four on various items 

within the probability and statistics assessment include: 

� I honestly don’t know any other method to show this other than drawing out a line 

to show how you read the information given in the problem and how to interpret it 

in order. I wrote three lines to show three letters on the tag. Each letter had a 

specific requirement. The first and third had only twenty-one choices each time and 

the middle had five. I multiply across to find out how many possibilities. 

� I would start with the word problem and ask them what they are looking for and to 

write the word problem out in symbols. So they are looking for X glasses that are 3 

times greater than Y, so Y = 3X and then I would have them figure out the number 

of sunglasses and find which ones fit the equation. 

� Show them on a spinner how the spinner is 3/5ths (60%) odd and thus there is a 

60% chance each time that the spinner will land on an odd number, so 60% times 

240 is 144. 

Analysis across pedagogical understanding of all items on the probability and 

statistics assessment revealed several trends of interest. The first had to do with 

demonstrating an item on a smaller scale first before doing the actual problem. Common 

responses provided include: 

� I would demonstrate the problem with a smaller number and teach the process of 

the problem and then let them do it on their own with the bigger numbers.  

� Scale the problem down to smaller numbers. Ex: 3shoes 2 pants 2 shirts: how many 

combos are there? 



   100 

Another theme was the use of hands-on material in order to conduct experiments. It was 

noted that few of these responses addressed theoretical probability versus experimental 

probability. Common examples include: 

� I would use hands on objects such as the miniature blocks that you can also put on 

the overhead. A lot of teachers use this to teach multiplication. Easily you could 

show the relationship in smaller number of sales and show what "three times 

greater" means. By putting each row into block groups you could add three more 

groups of "sunglass" blocks and see which one = which original groups sales. Then 

you would know that Yellow=Brownx3 

� I would actually lay out all of the cookies or something to represent them. I would 

then have the person choose a cookie and go through the steps in the question. I 

would then talk to them about how to work the problem. 

� I would simply model this by using a deck of cards and discussing black and red 

cards. What is the probability of drawing a red card? Then you could make it more 

difficult and really test their understanding by discussing hearts, spades, diamonds, 

and other things like numbers. This would give the children an understanding of 

how probability works but also a real life example that they might use one day. Also 

it really helps them to understand a concept, but have fun with it. 

If the pedagogical understanding response did not include the use of hands-on material, it 

generally contained some sort of another representation of the item being addressed. The 

majority of representations presented were pictorial. Common examples of the use of 

pictorial representations on the understanding part of the probability and statistics 

assessment include: 
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� I would explain this by drawing out in a picture format the probability of each 

cookie draw. Since we are only drawing out the cookie jar twice in this situation I 

would only need to draw to that point. The first draw is whatever the amount of 

cookies of that type are out of the total number of cookies. I then would draw three 

more branches and here I would notice that we no longer have 24 cookies; we took 

one away so now we have 23. Well that changes the oatmeal’s probability because 

we drew an oatmeal. So it would be 7/23 for example. Now the second draw on a 

chocolate chip doesn’t change because we didn’t draw a chocolate chip. So the 

probability for that is 12/23. Now we multiply across because these two 

probabilities multiplied together form the total probability of those two draws out 

of the cookie jar. 

� I would draw a blank for the three spots on the tag. Then I would say how many 

possible letters could be the first letter and that would be 21. Then I would say that 

5 possible letters could be the second letter and 21 could be the last letter. Then I 

might begin to make a tree diagram. I would not create the whole tree but I would 

show them that say the first letter was B then the second letter could be A, E, I , O, 

or U so for all 21 consonants there would be 5 different combinations of vowels 

just for that first consonant. So each first consonant is taken 5 times and that gives 

you 21 times 5 but then there is a third consonant so now those 105 combinations 

are taken 21 times which gives you 21*5*21 and that equals 2205. 

All three of the parts (content knowledge, content understanding, and pedagogical 

understanding) mentioned above in the analysis make up mathematics knowledge for 

teaching probability and statistics in the middle grades. Total scores for this assessment 
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ranged from 18 to 73, a range of 55. The probability and statistics assessment had a total of 

91 possible points on it. Descriptive statistics for the total of each part (content, 

explanation, and understanding) and the total mathematics knowledge for teaching can be 

found in Table 23.  

 

 

Table 23 
Descriptive Statistics of Mathematics Knowledge for Teaching Probability and Statistics  

Percentiles   
Mean 

 
Median 

 
Mode 

Standard 
Deviation 25 50 75 

Total Content Knowledge 
(7 pts possible) 

 
5.34 

 
6 

 
6 

 
1.17 

 
5 

 
6 

 
6 

Total Content 
Understanding 
(42 pts possible) 

 
 

22.42 

 
 

23.50 

 
 

24 

 
 

5.41 

 
 

19 

 
 

24 

 
 

25 
Total Pedagogical 
Understanding 
(42 pts possible) 

 
 

22.48 

 
 

22 

 
 

22 

 
 

7.69 

 
 

18 

 
 

22 

 
 

27 
Mathematics Knowledge 
for Teaching Probability 
and Statistics 
(91 pts possible) 

 
 
 

50.25 

 
 
 

51.50 

 
 
 

44 

 
 
 

12.63 

 
 
 

43 

 
 
 

52 

 
 
 

60 

 

 

Ancillary Questions 

The statistical design for the first three ancillary questions used was the multivariate 

analysis of covariance (MANCOVA) and the univariate analysis of covariance (ANCOVA). 

Since the assessment was only administered once, the MANCOVA and the ANCOVA 

could be used to adjust for preexisting differences among the individuals. The MANCOVA 

and ANCOVA, which combine regression analysis and analysis of variance, control for the 

effect of extraneous variables. The covariate for the study was an overall grade point 
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average (GPA) derived from self-reported grades on the following courses or their 

equivalents: MATH 142 (Business Mathematics II), MATH 131 (Mathematical Concepts—

Calculus), MATH 166 (Topics in Contemporary Mathematics II), and STAT 303 (Statistical 

Methods). Thirteen participants did not self-report grades. NORM software (Schafer, 1999) 

was used to conduct multiple imputations, a simulation-based approach to the statistical 

analysis of incomplete data, in order to compute the missing data (Schafer, 1997). 

Each of the following questions are comprised of four parts: mathematics 

knowledge for teaching number and operations, mathematics knowledge for teaching 

algebra, mathematics knowledge for teaching geometry, and mathematics knowledge for 

teaching probability and statistics. 

Ancillary Question 1 

What is the effect of various sequencing of mathematics courses on middle grades 

mathematics teachers? 

The middle grades mathematics/science degree program has a specific degree plan 

in which students are required to take courses in certain semesters with little room and 

tolerance for variance from this plan. In order to closely account for a proper sequence of 

courses, enrollment classification (freshman, sophomore, 1st semester junior, 2nd semester 

junior, 1st semester senior, 2nd semester and beyond senior, other) was collected. Initially the 

data were analyzed using a MANCOVA with grade point average as the covariate.  
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However, numerous parts rejected the null hypothesis that the error variance of the 

dependent variables are equal across groups (Levene’s Test of Equality of Variances, p < 

.05). Therefore, enrollment classification data were recoded. Juniors were grouped together 

and seniors were grouped together. Descriptive statistics for enrollment characteristics can 

be found in Table 24. 

Mathematics Knowledge for Teaching Number and Operations 

Using a multivariate regression with the variable adjusted enrollment classification in 

addition to the covariate, GPA, regressed on the variables for the different components of 

mathematics knowledge for teaching number and operation as well as the composite 

variable of mathematics knowledge for teaching number and operation, the overall model 

yielded R2=0.274 for content knowledge, R2=.267 for explanation of solution, R2=.240 for 

pedagogical understanding, and R2=.294 for mathematics knowledge for teaching number 

and operations for summary data (see Table 25). Polynomial trend contrasts were 

conducted on the covariate, the variable, and the interaction of the two. Enrollment 

classification (adjusted) had a statistically significant (p < .05) contribution to content 
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Table 24 
Descriptive Statistics of Adjusted Enrollment Characteristics for Mathematics Knowledge for Teaching 
 Enrollment 

Classification 
 

Mean 
Standard 
Deviation 

 
N 

Freshman  -- -- -- 
Sophomore 4.86 1.21 7 
Junior 3.42 1.33 26 
Senior 4.22 1.34 27 

Number and Operation 
Content Knowledge 

Total 3.95 1.40 60 
Freshman  -- -- -- 
Sophomore 19.14 9.26 7 
Junior 14.73 6.72 26 
Senior 19.33 5.03 27 

Number and Operation 
Explanation of Solution 

Total 17.32 6.65 60 
Freshman  -- -- -- 
Sophomore 18.57 5.22 7 
Junior 11.62 7.63 26 
Senior 18.59 7.68 27 

Number and Operation 
Pedagogical Understanding 

Total 15.57 8.10 60 
Freshman  -- -- -- 
Sophomore 42.57 14.93 7 
Junior 29.77 14.21 26 
Senior 42.15 12.32 27 

Mathematics Knowledge 
for Teaching Number and 
Operation 
 

Total 36.83 14.63 60 
Freshman  5.50 .71 2 
Sophomore 5.13 .64 8 
Junior 5.17 1.40 24 
Senior 5.57 1.19 42 

Algebra 
Content Knowledge 

Total 5.50 1.23 76 
Freshman  18.50 4.95 2 
Sophomore 18.50 9.46 8 
Junior 20.25 8.17 24 
Senior 25.02 6.28 42 

Algebra 
Explanation of Solution 

Total 22.66 7.61 76 
Freshman  15.50 4.95 2 
Sophomore 21.13 7.92 8 
Junior 17.13 6.71 24 
Senior 22.55 8.13 42 

Algebra 
Pedagogical Understanding 

Total 20.50 7.93 76 
Freshman  39.50 9.19 2 
Sophomore 45.75 15.93 8 
Junior 42.54 14.72 24 
Senior 53.14 13.97 42 

Mathematics Knowledge 
for Teaching Algebra 

Total 48.66 14.98 76 
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Table 24 
Continued 

    

 Enrollment 
Classification 

 
Mean 

Standard 
Deviation 

 
N 

Freshman 4.50 3.54 2 
Sophomore 5.55 1.57 11 
Junior 5.75 1.16 20 
Senior 4.96 2.14 23 

Geometry 
Content Knowledge 
**Removed from 
Analysis** 

Total 5.34 1.77 56 
Freshman  11.00 12.73 2 
Sophomore 37.82 9.99 11 
Junior 20.10 11.77 20 
Senior 22.61 10.82 23 

Geometry 
Explanation of Solution 

Total 22.32 11.33 56 
Freshman  11.50 16.26 2 
Sophomore 20.00 11.21 11 
Junior 17.10 10.42 20 
Senior 19.74 10.60 23 

Geometry 
Pedagogical Understanding 

Total 18.55 10.66 56 
Freshman  27.00 32.53 2 
Sophomore 53.63 20.93 11 
Junior 42.95 21.77 20 
Senior 47.30 22.71 23 

Mathematics Knowledge 
for Teaching Geometry 

Total 46.21 22.29 56 
Freshman  -- -- -- 
Sophomore 5.25 1.39 8 
Junior 5.25 1.21 20 
Senior 5.46 1.10 24 

Probability and Statistics 
Content Knowledge 

Total 5.35 1.17 52 
Freshman  -- -- -- 
Sophomore 22.00 5.13 8 
Junior 22.00 6.08 20 
Senior 22.92 5.09 24 

Probability and Statistics 
Explanation of Solution 
 

Total 22.42 5.41 52 
Freshman  -- -- -- 
Sophomore 20.50 8.90 8 
Junior 19.95 8.10 20 
Senior 25.25 6.15 24 

Probability and Statistics 
Pedagogical Understanding 
 

Total 22.48 7.69 52 
Freshman  -- -- -- 
Sophomore 47.75 14.36 8 
Junior 47.20 13.96 20 
Senior 53.63 10.38 24 

Mathematics Knowledge 
for Teaching Probability 
and Statistics 
 

Total 50.25 12.63 52 
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Table 25 
Multivariate Regression on Adjusted Enrollment Classification and GPA (Covariate) for Number and 
Operations 

 
Source 

 
Dependent Variable 

Type I 
Sum of 
Squares 

 
df 

Mean 
Square 

 
F 

 
p 

Partial 
Eta 

Squared 
Content Knowledge 31a 5 6 4.07 .003 .274 
Content Understanding 695b 5 139 3.93 .004 .267 
Pedagogical Understanding 928c 5 86 3.41 .010 .240 

Corrected 
Model 

Mathematics Knowledge for 
Teaching N&O 

 
3710d 

 
5 

 
742 

 
4.49 

 
.002 

 
.294 

Intercept Content Knowledge 936 1 936 606.02 p < .001 .918 
 Content Understanding 17992 1 17992 508.16 p < .001 .904 
 Pedagogical Understanding 14539 1 14539 266.95 p < .001 .832 
 Mathematics Knowledge for 

Teaching N&O 
 

81402 
 

1 
 

81402 
 

492.78 
 

p < .001 
 

.901 
Content Knowledge 16 1 16 10.44 .002** .162 
Content Understanding 271 1 271 7.65 .008* .124 
Pedagogical Understanding 238 1 238 4.38 .041* .075 

GPA 

Mathematics Knowledge for 
Teaching N&O 

 
1290 

 
1 

 
1290 

 
7.81 

 
.007** 

 
.126 

Content Knowledge 12 2 6 4.09 .022* .132 
Content Understanding 242 2 121 3.41 .040* .112 

Enrollment 
Classification 

Pedagogical Understanding 625 2 313 5.74 .005** .175 
 Mathematics Knowledge for 

Teaching N&O 
 

1911 
 

2 
 

956 
 

5.79 
 

.005* 
 

.176 
Content Knowledge 23 2 1 .86 .429 .031 
Content Understanding 183 2 91 2.58 .085 .087 
Pedagogical Understanding 64 2 32 59 .559 .021 

Enrollment 
Classification * 
GPA 

Mathematics Knowledge for 
Teaching N&O 

 
508 

 
2 

 
254 

 
1.539 

 
.224 

 
.054 

Error Content Knowledge 83 54 2    
 Content Understanding 1911 54 35    
 Pedagogical Understanding 2941 54 54    
 Mathematics Knowledge for 

Teaching N&O 
 

8920 
 

54 
 

165 
   

Total Content Knowledge 1051 60     
 Content Understanding 20599 60     
 Pedagogical Understanding 18408 60     
 Mathematics Knowledge for 

Teaching N&O 
 

94032 
 

60 
    

Content Knowledge 115 59     
Content Understanding 2607 59     

Corrected 
Total 

Pedagogical Understanding 3869 59     
 Mathematics Knowledge for 

Teaching N&O 
 

12630 
 

59 
    

* p < .05. **p < .01. 
aR Squared = .274 (Adjusted R Squared = .206) 
bR Squared = .267 (Adjusted R Squared = .199) 
cR Squared = .240 (Adjusted R Squared = .169) 
dR Squared = .294 (Adjusted R Squared = .228) 
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knowledge, explanation of solution (content understanding), pedagogical understanding, 

and mathematics knowledge for teaching number and operations. The covariate, GPA, had 

a statistically significant contribution on number and operations content knowledge, content 

understanding, pedagogical understanding and mathematics knowledge for teaching number 

and operations (p < .05, p < .05, p < .01, and p < .01, respectively). Enrollment classification 

and GPA together did not contribute significantly to any of the dependent variables. Effect 

sizes were small to medium (Huck, 2004). Enrollment classification had a larger impact on 

pedagogical understanding and mathematics knowledge for teaching number and operations 

than on content knowledge and explanation of the solutions. GPA had a larger effect on 

content knowledge than on explanation of solution and mathematics knowledge for 

teaching number and operations. The largest effect was enrollment classification on 

mathematics knowledge for teaching number and operations. 

Mathematics Knowledge for Teaching Algebra 

Using a multivariate regression with the variable adjusted enrollment classification in 

addition to the covariate, GPA, regressed on the variables for the different components of 

mathematics knowledge for teaching algebra as well as the composite variable of 

mathematics knowledge for teaching algebra, the overall model yielded R2=0.162 for 

content knowledge, R2=.229 for explanation of solution, R2=.144 for pedagogical  
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understanding, and R2=.202 for mathematics knowledge for teaching algebra for summary 

data (see Table 26). Polynomial trend contrasts were conducted on the covariate, the 

variable, and the interaction of the two. Enrollment classification (adjusted) did not 

contribute significantly to content knowledge, but did have a statistically significant (p < .05) 

contribution to explanation of solution, pedagogical understanding, and mathematics 

knowledge for teaching algebra. The covariate, GPA, did not contribute significantly to any 

of the dependent variables. Enrollment classification and GPA together did not contribute 

significantly to pedagogical understanding or mathematics knowledge for teaching algebra, 

but did have a statistically significant (p < .05) contribution to content knowledge and to 

explanation of solutions. Effect sizes were small. Enrollment classification had 

approximately equal effects on explanation of solution, pedagogical understanding, and 

mathematics knowledge for teaching algebra. The interaction of enrollment classification 

and GPA had approximately equal effects on content knowledge and explanation of 

solutions. 
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Table 26 
Multivariate Regression on Adjusted Enrollment Classification and GPA (Covariate) for Algebra 

 
Source 

 
Dependent Variable 

Type I 
Sum of 
Squares 

 
df 

Mean 
Square 

 
F 

 
p 

Partial 
Eta 

Squared 

Content Knowledge 18a 6 3 2.22 .051 .162 
Content Understanding 998b 6 166 3.42 .005 .229 
Pedagogical Understanding 678c 6 113 1.93 .088 .144 

Corrected 
Model 

Mathematics Knowledge 
for Teaching Algebra 

 
3400d 

 
6 

 
567 

 
2.91 

 
.014 

 
.202 

Intercept Content Knowledge 2299 1 2299 1675.14 p < .001 .960 
 Content Understanding 39017 1 39016 803.30 p < .001 .921 
 Pedagogical Understanding 31939 1 31939 545.95 p < .001 .888 
 Mathematics Knowledge 

for Teaching Algebra 
 

179937 
 

1 
 

179937 
 

925.26 
 

p < .001 
 

.931 
Content Knowledge 4 1 4 2.75 .102 .038 
Content Understanding 106 1 106 2.18 .144 .031 
Pedagogical Understanding 94 1 94 1.60 .210 .023 

GPA 

Mathematics Knowledge 
for Teaching Algebra 

 
480 

 
1 

 
480 

 
2.47 

 
.121 

 
.035 

Content Knowledge 5 3 2 1.24 .39 .051 Enrollment 
Classification Content Understanding 563 3 188 3.87 .013* .144 
 Pedagogical Understanding 496 3 165 2.83 .045* .109 
 Mathematics Knowledge 

for Teaching Algebra 
 

1985 
 

3 
 

662 
 

3.40 
 

.022* 
 

.129 
Content Knowledge 9 2 5 3.43 .038* .090 
Content Understanding 328 2 164 3.38 .040* .089 
Pedagogical Understanding 89 2 44 .76 .471 .022 

Enrollment 
Classification 
* GPA 

Mathematics Knowledge 
for Teaching Algebra 

 
935 

 
2 

 
468 

 
2.40 

 
.098 

 
.065 

Error Content Knowledge 95 69 1    
 Content Understanding 3351 69 49    
 Pedagogical Understanding 4037 69 59    
 Mathematics Knowledge 

for Teaching Algebra 
 

13419 
 

69 
 

194 
   

Total Content Knowledge 2412 76     
 Content Understanding 43366 76     
 Pedagogical Understanding 36654 76     
 Mathematics Knowledge 

for Teaching Algebra 
 

196756 
 

76 
    

Content Knowledge 113 75     
Content Understanding 4349 75     
Pedagogical Understanding 4715 75     

Corrected 
Total 

Mathematics Knowledge 
for Teaching Algebra 

 
16819 

 
75 

    

* p < .05. **p < .01. 
aR Squared = .162 (Adjusted R Squared = .089) 
bR Squared = .229 (Adjusted R Squared = .162) 
cR Squared = .144 (Adjusted R Squared = .069) 
dR Squared = .202 (Adjusted R Squared = .133) 
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Mathematics Knowledge for Teaching Geometry 

Using a multivariate regression with the variable adjusted enrollment classification in 

addition to the covariate, GPA, regressed on the variables for the different components of 

mathematics knowledge for teaching geometry as well as the composite variable of 

mathematics knowledge for teaching geometry, the overall model yielded R2=.168 for 

explanation of solution, R2=.088 for pedagogical understanding, and R2=.117 for 

mathematics knowledge for teaching geometry for summary data (see Table 27). The 

dependent variable content knowledge for geometry had to be removed from the analysis 

because it rejected the null hypothesis that the error variance of the dependent variable is 

equal across groups. Polynomial trend contrasts were conducted on the covariate, the 

variable, and the interaction of the two. Enrollment classification, GPA, and its interaction 

did not contribute significantly to any of the dependent variables. Effect sizes were small. 
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Table 27 
Multivariate Regression on Adjusted Enrollment Classification and GPA (Covariate) for Geometry 

 
Source 

 
Dependent Variable 

Type I 
Sum of 
Squares 

 
 

df 

 
Mean 
Square 

 
 
F 

 
 
p 

Partial 
Eta 

Squared 

Content Understanding 1182a 6 197 1.64 .155 .168 Corrected 
Model Pedagogical 

Understanding 
 

552b 

 
6 

 
92 

 
.79 

 
.581 

 
.088 

 Mathematics Knowledge 
for Teaching Geometry 

 
3208c 

 
6 

 
535 

 
1.09 

 
.384 

 
.117 

Intercept Content Understanding 27902 1 27902 232.77 p < .01 .826 
 Pedagogical 

Understanding 
 

19277 
 

1 
 

19277 
 

165.72 
 

p < .01 
 

.772 
 Mathematics Knowledge 

for Teaching Geometry 
 

119603 
 

1 
 

119603 
 

242.88 
 

p < .01 
 

.832 
Content Understanding 216 1 216 1.80 .186 .035 GPA 
Pedagogical 
Understanding 

 
219 

 
1 

 
219 

 
1.88 

 
.176 

 
.037 

 Mathematics Knowledge 
for Teaching Geometry 

 
884 

 
1 

 
884 

 
1.80 

 
.187 

 
.035 

Content Understanding 757 3 252 2.11 .112 .114 
Pedagogical 
Understanding 

 
259 

 
3 

 
86 

 
.74 

 
.532 

 
.043 

Enrollment 
Classification 

Mathematics Knowledge 
for Teaching Geometry 

 
1840 

 
3 

 
613 

 
1.25 

 
.304 

 
.071 

Content Understanding 210 2 105 .87 .424 .034 Enrollment 
Classification 
* GPA 

Pedagogical 
Understanding 

 
74 

 
2 

 
37 

 
.32 

 
.729 

 
.013 

 Mathematics Knowledge 
for Teaching Geometry 

 
485 

 
2 

 
242 

 
.49 

 
.614 

 
.020 

Error Content Understanding 5874 49 120    
Pedagogical 
Understanding 

 
5700 

 
49 

 
116 

    

Mathematics Knowledge 
for Teaching Geometry 

 
24130 

 
49 

 
492 

   

Content Understanding 34958 56     Total 
Pedagogical 
Understanding 

 
25529 

 
56 

    

 Mathematics Knowledge 
for Teaching Geometry 

 
146940 

 
56 

    

Content Understanding 7056 55     Corrected 
Total Pedagogical 

Understanding 
 

6252 
 

55 
    

 Mathematics Knowledge 
for Teaching Geometry 

 
27337 

 
55 

    

aR Squared = .168 (Adjusted R Squared = .066) 
bR Squared = .088 (Adjusted R Squared = -.023) 
cR Squared = .117 (Adjusted R Squared = .009) 
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Mathematics Knowledge for Teaching Probability and Statistics 

Using a multivariate regression with the variable adjusted enrollment classification in 

addition to the covariate, GPA, regressed on the variables for the different components of 

mathematics knowledge for teaching probability and statistics as well as the composite 

variable of mathematics knowledge for teaching probability and statistics, the overall model 

yielded R2=0.061 for content knowledge, R2=.033 for explanation of solution, R2=.163 for 

pedagogical understanding, and R2=.104 for mathematics knowledge for teaching 

probability and statistics for summary data (see Table 28). Polynomial trend contrasts were 

conducted on the covariate, the variable, and the interaction of the two. Enrollment 

classification, GPA, and its interaction did not contribute significantly to any of the 

dependent variables. Effect sizes were small. 

Ancillary Question 2 

What cohort developmental differences are there among students as they progress 

through the courses identified in the middle grades mathematics and science program? 

As mentioned above, the middle grades mathematics/science degree program has a 

specific degree plan with highly suggested sequence of courses. Many of the mathematics 

and mathematics education courses taken for the program occur simultaneously. These 

courses can be grouped into three major categories: mathematics courses, specialized 

middle grades mathematics education courses, and methods and student teaching 

experiences/course work. Please refer to Table 2 for the cohort design and number of 

individuals. Descriptive statistics for the cohorts for all assessments can be found in Table 

29.  
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Table 28 
Multivariate Regression on Adjusted Enrollment Classification and GPA (Covariate) for Probability and 
Statistics 

 
Source 

 
Dependent Variable 

Type I 
Sum of 
Squares 

 
df 

Mean 
Square 

 
F 

 
p 

Partial 
Eta 

Squared 
Content Knowledge 4a 5 1 .60 .699 .061 
Content Understanding 49b 5 10 .31 .902 .033 
Pedagogical Understanding  

492c 

 
5 

 
98 

 
1.80 

 
.133 

.163 

Corrected Model 

Mathematics Knowledge for 
Teaching P&S 

 
845d 

 
5 

 
169 

 
1.07 

 
.392 

.104 

Intercept Content Knowledge 1486 1 1486 1043.97 p < .01 .958 
 Content Understanding 26145 1 26145 833.20 p < .01 .948 
 Pedagogical Understanding 26280 1 26280 479.20 p < .01 .912 
 Mathematics Knowledge for 

Teaching P&S 
 

131303 
 

1 
 

131303 
 

828.39 
 

p < .01 
.947 

Content Knowledge 1 1 1 .986 .327 .021 
Content Understanding 11 1 11 .350 .557 .008 
Pedagogical Understanding 101 1 101 1.85 .181 .039 

GPA 

Mathematics Knowledge for 
Teaching P&S 

 
212 

 
1 

 
212 

 
1.34 

 
.254 

 
.028 

Content Knowledge 1 2 1 .15 .859 .007 Enrollment 
Classification Content Understanding 9 2 5 .14 .866 .006 
 Pedagogical Understanding 306 2 153 2.79 .072 .108 
 Mathematics Knowledge for 

Teaching P&S 
 

445 
 

2 
 

222 
 

1.40 
 

.256 
 

.058 
Content Knowledge 2 2 10 .86 .430 .036 
Content Understanding 29 2 15 .47 .631 .020 
Pedagogical Understanding 85 2 43 .78 .467 .033 

Enrollment 
Classification * 
GPA 

Mathematics Knowledge for 
Teaching P&S  

 
188 

 
2 

 
94 

.59 .557 .025 

Error Content Knowledge 65 46 1    
 Content Understanding 1443 46 31    
 Pedagogical Understanding 2523 46 55    
 Mathematics Knowledge for 

Teaching P&S 
 

7291 
 

46 
 

159 
   

Total Content Knowledge 1556 52     
 Content Understanding 27638 52     
 Pedagogical Understanding 29295 52     
 Mathematics Knowledge for 

Teaching P&S 
 

139439 
 

52 
    

Content Knowledge 70 51     
Content Understanding 1493 51     
Pedagogical Understanding 3015 51     

Corrected Total 

Mathematics Knowledge for 
Teaching P&S 

 
8136 

 
51 

    

aR Squared = .061 (Adjusted R Squared = -.041) 
bR Squared = .033 (Adjusted R Squared = -.072) 
cR Squared = .163 (Adjusted R Squared = .072) 
dR Squared = .104 (Adjusted R Squared = .006) 
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Table 29 
Descriptive Statistics for Cohorts for Mathematics Knowledge for Teaching 
  

Cohort 
 

Mean 
Standard 
Deviation 

 
N 

1 3.86 1.56 21 
2 4.00 1.24 23 
3 4.00 1.46 16 

Number and Operation Content 
Knowledge 

Total 3.95 1.40 60 
1 15.62 7.74 21 
2 18.26 5.96 23 
3 18.19 5.95 16 

Number and Operation 
Explanation of Solution 

Total 17.32 6.65 60 
1 11.62 8.58 21 
2 18.70 5.45 23 
3 16.25 8.89 16 

Number and Operation 
Pedagogical Understanding 
**Removed from Analysis** 

Total 15.57 8.09 60 
1 31.10 16.69 21 
2 40.96 11.20 23 
3 38.44 14.56 16 

Mathematics Knowledge for Teaching 
Number and Operation 
 

Total 36.83 14.63 60 
1 5.35 1.43 23 
2 5.54 1.03 26 
3 5.59 1.25 27 

Algebra 
Content Knowledge 

Total 5.50 1.23 76 
1 18.96 7.55 23 
2 23.54 8.02 26 
3 24.96 6.23 27 

Algebra 
Explanation of Solution 

Total 22.66 7.61 76 
1 16.70 7.91 23 
2 21.04 7.12 26 
3 23.22 7.67 27 

Algebra 
Pedagogical Understanding 

Total 20.50 7.93 76 
1 41.00 15.34 23 
2 50.12 14.34 26 
3 53.78 12.99 27 

Mathematics Knowledge for Teaching 
Algebra 

Total 48.66 14.98 76 
1 5.41 1.56 22 
2 5.42 1.80 19 
3 5.13 2.10 15 

Geometry 
Content Knowledge 
 

Total 5.34 1.77 56 
1 18.50 11.72 22 
2 26.63 10.23 19 
3 22.47 70.74 15 

Geometry 
Explanation of Solution 

Total 22.32 11.33 56 
1 14.00 11.11 22 
2 22.63 7.48 19 
3 20.07 11.49 15 

Geometry 
Pedagogical Understanding 

Total 18.55 10.66 56 
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Table 29 
Continued 

    

  
Cohort 

 
Mean 

Standard 
Deviation 

 
N 

1 37.91 22.81 22 
2 54.68 17.98 19 
3 47.67 23.42 15 

Mathematics Knowledge for Teaching 
Geometry 

Total 46.21 22.29 56 
1 5.21 1.37 14 
2 5.36 1.22 28 
3 5.50 .71 10 

Probability and Statistics 
Content Knowledge 

Total 5.35 1.17 52 
1 20.64 5.31 14 
2 23.11 5.86 28 
3 23.00 3.92 10 

Probability and Statistics 
Explanation of Solution 
 

Total 22.42 5.41 52 
1 18.21 8.30 14 
2 23.68 7.34 28 
3 25.10 5.78 10 

Probability and Statistics 
Pedagogical Understanding 
 

Total 22.48 7.69 52 
1 44.07 13.96 14 
2 52.14 12.66 28 
3 53.60 7.63 10 

Mathematics Knowledge for Teaching 
Probability and Statistics 
 

Total 50.25 12.63 52 

 

 

Mathematics Knowledge for Teaching Number and Operations 

Using a multivariate regression with the variable cohort in addition to the covariate, 

GPA, regressed on the variables for the different components of mathematics knowledge 

for teaching number and operations as well as the composite variable of mathematics 

knowledge for teaching number and operations, the overall model yielded R2=.170 for 

explanation of solution, R2=.144 for content knowledge, and R2=.223 for mathematics 

knowledge for teaching number and operations for summary data (see Table 30). The 

dependent variable pedagogical understanding for number and operations had to be 

removed from the analysis because it rejected the null hypothesis that the error variance of 

the dependent variable is equal across groups. Polynomial trend contrasts were conducted 
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on the covariate, the variable, and the interaction of the two. Cohort and the interaction of 

GPA and cohort did not contribute significantly to content knowledge, explanation of 

solutions, or mathematics knowledge for teaching number and operations. However, GPA 

had a statistically significant (p < .05) contribution on number and operations content 

knowledge, explanation of solutions, and mathematics knowledge for teaching number and 

operations. Effect sizes were small. GPA had approximately equal effects on content 

knowledge, explanation of solutions, and mathematics knowledge for teaching number and 

operations. 

Mathematics Knowledge for Teaching Algebra 

Using a multivariate regression with the variable cohort in addition to the covariate, 

GPA, regressed on the variables for the different components of mathematics knowledge 

for teaching algebra as well as the composite variable of mathematics knowledge for 

teaching algebra, the overall model yielded R2=.139 for content knowledge, R2=.183 for 

explanation of solution, R2=.138 for pedagogical understanding, and R2=.183 for 

mathematics knowledge for teaching algebra for summary data (see Table 31). Polynomial 

trend contrasts were conducted on the covariate, the variable, and the interaction of the 

two. Cohort did not contribute significantly to content knowledge, but did have a 

statistically significant (p < .05) contribution to explanation of solution, pedagogical 

understanding, and mathematics knowledge for teaching algebra. The covariate, GPA, and 

Cohort did not contribute significantly to any of the dependent variables. Cohort and GPA  
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Table 30 
Multivariate Regression on Cohort and GPA (Covariate) for Number and Operations 

 
Source 

 
Dependent Variable 

Type I 
Sum of 
Squares 

 
 

df 

 
Mean 
Square 

 
 
F 

 
 
p 

Partial 
Eta 

Squared 
Content Knowledge 17a 5 3 1.82 .125 .144 Corrected 

Model Content Understanding 444b 5 89 2.22 .066 .170 
 Mathematics Knowledge 

for Teaching N&O 
 

2817c 
 

5 
563  

3.10 
 

.016 
 

.223 
Intercept Content Knowledge 936 1 936 514 p < .001 .905 
 Content Understanding 17992 1 17992 449 p < .001 .893 
 Mathematics Knowledge 

for Teaching N&O 
 

81402 
 

1 
 

81402 
 

448 
 

p < .001 
 

.892 
Content Knowledge 16 1 16 9 .004** .141 GPA  
Content Understanding 271 1 271 7 .012* .111 

 Mathematics Knowledge 
for Teaching N&O 

 
1290 

 
1 

 
1290 

 
7 

 
.010** 

 
.116 

Cohort Content Knowledge .093 2 .046 .025 .975 .001 
Content Understanding 50 2 25 .628 .538 .023  
Mathematics Knowledge 
for Teaching N&O 

 
823 

 
2 

 
412 

 
2 

 
.114 

 
.077 

Content Knowledge .310 2 .155 .085 .918 .003 
Content Understanding 123 2 61 2 .225 .054 

Cohort * 
GPA 

Mathematics Knowledge 
for Teaching N&O 

 
703 

 
2 

 
352 

 
2 

 
.154 

 
.067 

Error Content Knowledge 98 54 2    
Content Understanding 2163 54 40     
Mathematics Knowledge 
for Teaching N&O 

 
9814 

 
54 

 
182 

   

Content Knowledge 1051 60     Total 
Content Understanding 20599 60     

 Mathematics Knowledge 
for Teaching N&O 

 
94032 

 
60 

    

Content Knowledge 115 59     Corrected 
Total Content Understanding 2607 59     
 Mathematics Knowledge 

for Teaching N&O 
 

12630 
 

59 
    

* p < .05. **p < .01. 
aR Squared = .144 (Adjusted R Squared = .065) 
bR Squared = .170 (Adjusted R Squared = .094) 
cR Squared = .223 (Adjusted R Squared = .151) 
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Table 31 
Multivariate Regression on Cohort and GPA (Covariate) for Algebra 

 
Source 

 
Dependent Variable 

Type I 
Sum of 
Squares 

 
 

df 

 
Mean 
Square 

 
 
F 

 
 
p 

Partial 
Eta 

Squared 
Content Knowledge 16a 5 3 2.27 .057 .139 
Content Understanding 794b 5 159 3.13 .013 .183 
Pedagogical Understanding 651c 5 130 2.24 .060 .138 

Corrected 
Model 

Mathematics Knowledge for 
Teaching Algebra 

 
3075d 

 
5 

 
615 

 
3.13 

 
.013 

 
.183 

Intercept Content Knowledge 2299 1 2299 1654.62  < .001 .959 
 Content Understanding 39017 1 39017 768.20  < .001 .916 
 Pedagogical Understanding 31939 1 31939 550.02  < .001 .887 
 Mathematics Knowledge for 

Teaching Algebra 
 

179937 
 

1 
 

179937 
 

916.44 
 

 < .001 
 

.929 
Content Knowledge 4 1 4 2.71 .104 .037 
Content Understanding 106 1 106 2.09 .153 .029 
Pedagogical Understanding 94 1 94 1.61 .208 .023 

GPA 

Mathematics Knowledge for 
Teaching Algebra 

 
480 

 
1 

 
480 

 
2.45 

 
.122 

 
.034 

Cohort Content Knowledge 1 2 1 .20 .820 .006 
 Content Understanding 441 2 221 4.34 .017* .110 
 Pedagogical Understanding 508 2 254 4.38 .016* .111 
 Mathematics Knowledge for 

Teaching Algebra 
 

1955 
 

2 
 

978 
 

4.98 
 

.010** 
 

.125 
Content Knowledge 11 2 6 4.11 .021* .105 
Content Understanding 247 2 123 2.43 .096 .065 
Pedagogical Understanding 48 2 24 .41 .663 .012 

Cohort * 
GPA 

Mathematics Knowledge for 
Teaching Algebra 

 
639 

 
2 

 
320 

 
1.63 

 
.204 

 
.044 

Error Content Knowledge 97 70 1    
 Content Understanding 3555 70 51    
 Pedagogical Understanding 4065 70 58    
 Mathematics Knowledge for 

Teaching Algebra 
 

13744 
 

70 
 

196 
   

Total Content Knowledge 2412 76     
 Content Understanding 43366 76     
 Pedagogical Understanding 63354 76     
 Mathematics Knowledge for 

Teaching Algebra 
 

196756 
 

76 
    

Content Knowledge 113 75     
Content Understanding 4349 75     
Pedagogical Understanding 4715 75     

Corrected 
Total 

Mathematics Knowledge for 
Teaching Algebra 

 
16819 

 
75 

    

* p < .05. **p < .01. 
aR Squared = .139 (Adjusted R Squared = .078) 
bR Squared = .183 (Adjusted R Squared = .124) 
cR Squared = .138 (Adjusted R Squared = .076) 
dR Squared = .183 (Adjusted R Squared = .124) 
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together did not contribute significantly to explanation of solutions, pedagogical 

understanding, or mathematics knowledge for teaching algebra, but did have a statistically 

significant (p < .05) contribution to content knowledge. Effect sizes were small.  

Mathematics Knowledge for Teaching Geometry 

Using a multivariate regression with the variable cohort in addition to the covariate, 

GPA, regressed on the variables for the different components of mathematics knowledge 

for teaching geometry as well as the composite variable of mathematics knowledge for 

teaching geometry, the overall model yielded R2=.022 for content knowledge, R2=.133 for 

explanation of solution (content understanding), R2=.189 for pedagogical understanding, 

and R2=.148 for mathematics knowledge for teaching geometry for summary data (see 

Table 32). Polynomial trend contrasts were conducted on the covariate, the variable, and the 

interaction of the two. GPA and the interaction between GPA and Cohort did not 

contribute significantly to any of the dependent variables. Cohort did not contribute 

significantly to content knowledge, content understanding, or mathematics knowledge for 

teaching geometry, but did have a statistically significant (p < .05) contribution to 

pedagogical understanding. Effect sizes were small. 
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Table 32 
Multivariate Regression on Cohort and GPA (Covariate) for Geometry 

Source Dependent Variable 
Type I Sum 
of Squares df 

Mean 
Square F p 

Partial Eta 
Squared 

Content Knowledge 4a 5 1 .23 .948 .022 Corrected 
Model 
  

Content Understanding 937b 5 187 1.53 .197 .133 

  Pedagogical Understanding 1184c 5 237 2.34 .055 .189 

  Mathematics Knowledge for 
Teaching Geometry 

4045d 5 809 1.74 .143 .148 

Intercept Content Knowledge 1597 1 1596 473.23 <.01 .904 

  Content Understanding 27902 1 27902 228.00 <.01 .820 

  Pedagogical Understanding 19278 1 19277 190.20 <.01 .792 

  Mathematics Knowledge for 
Teaching Geometry 

119603 1 119603 256.74 <.01 .837 

GPA Content Knowledge 1 1 1 .02 .898 .000 

  Content Understanding 216 1 216 1.76 .190 .034 

  Pedagogical Understanding 219 1 219 2.16 .148 .041 

  Mathematics Knowledge for 
Teaching Geometry 

884 1 884 1.90 .175 .037 

Cohort Content Knowledge 1 2 1 .13 .883 .005 

  Content Understanding 618 2 309 2.52 .090 .092 

  Pedagogical Understanding 758 2 379 3.74 .031* .130 

  Mathematics Knowledge for 
Teaching Geometry 

2695 2 1347 2.89 .065 .104 

Content Knowledge 3 2 1 .44 .645 .017 Cohort * 
GPA 
  

Content Understanding 104 2 52 .43 .656 .017 

  Pedagogical Understanding 207 2 104 1.02 .367 .039 

  Mathematics Knowledge for 
Teaching Geometry 

466 2 233 .50 .609 .020 

Error Content Knowledge 169 50 3    

  Content Understanding 6119 50 122    

  Pedagogical Understanding 5068 50 101    

  Mathematics Knowledge for 
Teaching Geometry 

23292 50 466    

Total Content Knowledge 1769 56     

  Content Understanding 34958 56     

  Pedagogical Understanding 25529 56     

  Mathematics Knowledge for 
Teaching Geometry 

146940 56     

Content Knowledge 173 55     Corrected 
Total 
  

Content Understanding 7056 55     

  Pedagogical Understanding 6252 55     

  Mathematics Knowledge for 
Teaching Geometry 

27337 55     

* p < .05.  
a R Squared = .022 (Adjusted R Squared = -.075) 
b R Squared = .133 (Adjusted R Squared = .046) 
c R Squared = .189 (Adjusted R Squared = .108) 
d R Squared = .148 (Adjusted R Squared = .063) 
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Mathematics Knowledge for Teaching Probability and Statistics 

Using a multivariate regression with the variable cohort in addition to the covariate, 

GPA, regressed on the variables for the different components of mathematics knowledge 

for teaching probability and statistics as well as the composite variable of mathematics 

knowledge for teaching probability and statistics, the overall model yielded R2=0.061 for 

content knowledge, R2=.033 for explanation of solution, R2=.163 for pedagogical 

understanding, and R2=.104 for mathematics knowledge for teaching probability and 

statistics for summary data (see Table 33). Polynomial trend contrasts were conducted on 

the covariate, the variable, and the interaction of the two. Cohort, GPA, and its interaction 

did not contribute significantly to any of the dependent variables. Effect sizes were small. 

Ancillary Question 3 

Do some types of courses (e.g., algebra, geometry, numerical, statistical or applied, 

theoretical, education) have more impact than others upon development of a teachers’ 

mathematics knowledge for teaching? 

As mentioned above, the middle grades mathematics/science degree program has a 

specific degree plan with highly suggested sequence of courses. Many of the mathematics 

and mathematics education courses taken for the program occur simultaneously. These 

courses can be grouped into three major categories: mathematics courses, specialized 

middle grades mathematics education courses, and methods and student teaching 

experiences/course work.  
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Table 33  
Multivariate Regression on Cohort and GPA (Covariate) for Probability and Statistics 

Source 

 
 

Dependent Variable 

Type I 
Sum of 
Squares df 

Mean 
Square F p 

Partial 
Eta 

Squared 
Content Knowledge 4a 5 1 .611 .692 .062 
Content Understanding 110b 5 22 .734 .601 .074 
Pedagogical Understanding 559c 5 112 2.093 .083 .185 

Corrected 
Model 
  
  
  

Mathematics Knowledge for 
Teaching P&S 

1182d 5 236 1.564 .189 .145 

Intercept Content Knowledge 1486 1 1486 1044.945 <.01 .958 
  Content Understanding 26145 1 26145 870.032 <.01 .950 
  Pedagogical Understanding 26280 1 26280 492.189 <.01 .915 
  Mathematics Knowledge for 

Teaching P&S 
131303 1 131303 868.566 <.01 .950 

GPA Content Knowledge 1 1 1 .983 .327 .021 
  Content Understanding 11 1 11 .365 .549 .008 
  Pedagogical Understanding 101 1 101 1.895 .175 .040 
  Mathematics Knowledge for 

Teaching P&S 
212 1 212 1.401 .243 .030 

Cohort Content Knowledge 1 2 1 .250 .780 .011 
  Content Understanding 76 2 38 1.258 .294 .052 
  Pedagogical Understanding 446 2 223 4.180 .021* .154 
  Mathematics Knowledge for 

Teaching P&S 
932 2 466 3.082 .055 .118 

Content Knowledge 2 2 1 .786 .462 .033 
Content Understanding 24 2 12 .395 .676 .017 
Pedagogical Understanding 11 2 6 .106 .899 .005 

Cohort * 
GPA 
  
  
  

Mathematics Knowledge for 
Teaching P&S  

38 2 19 .127 .881 .005 

Error Content Knowledge 65 46 1    
  Content Understanding 1382 46 30    
  Pedagogical Understanding 2456 46 53    
  Mathematics Knowledge for 

Teaching P&S 
6954 46 151    

Total Content Knowledge 1556 52     
  Content Understanding 27638 52     
  Pedagogical Understanding 29295 52     
  Mathematics Knowledge for 

Teaching P&S 
139439 52     

Content Knowledge 70 51     
Content Understanding 1493 51     

Corrected 
Total 
  
  

Pedagogical Understanding 
3014 51     

  Mathematics Knowledge for 
Teaching P&S 

8136 51     

* p < .05. 
a R Squared = .062 (Adjusted R Squared = -.040) 
b R Squared = .074 (Adjusted R Squared = -.027) 
c R Squared = .185 (Adjusted R Squared = .097) 
d R Squared = .145 (Adjusted R Squared = .052) 
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Univariate Analysis of Covariance (ANCOVA) was run first on the current 

mathematics courses with the mathematics knowledge for teaching as the dependent 

variable and the GPA as the covariate. In addition polynomial trend contrasts were run.  

Mathematics Knowledge for Teaching Number and Operations 

Using a Univariate regression with the variables Current MATH 365, Current 

MATH 366, Current MATH 367, Current MATH 368, Current MATH 403, Current 

MASC 351, Current MASC450, Current MEFB 460, Current MEFB 497 in addition to the 

covariate, GPA, regressed on the variable mathematics knowledge for teaching number and 

operations, the overall model yielded R2=.406 for mathematics knowledge for teaching 

number and operations for summary data (see Table 34). Polynomial trend contrasts were 

conducted for each current course separately, the covariate GPA, and then the following 

interactions: Current MASC 351* Current MASC 450, Current MATH 368* Current 

MATH 403* Current MASC 351, Current MATH 368* Current MATH 403* Current 

MASC 351* Current MASC450. Current enrollment in MASC 450 had a statistically 

significant (p < .05) contribution to mathematics knowledge for teaching number and 

operations. The covariate GPA also had a statistically significant (p < .05) contribution to 

mathematics knowledge for teaching number and operations. Effect sizes were small. The 

largest effect size was current enrollment in MASC 450 on mathematics knowledge for 

teaching number and operations. 
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Table 34 
Univariate Regression on Current Courses with GPA as Covariate for Number and Operations 
Dependent Variable: Mathematics Knowledge for Teaching Number and Operations 

Source 

Type I 
Sum of 
Squares df 

Mean 
Square F p 

Partial 
Eta 

Squared 
Corrected Model 5131a 18 285 1.56 .119 .406 
Intercept 81402 1 81402 445.01 <.001 .916 
GPA 1290 1 1290 7.05 .011* .147 
Current MATH365 66 1 66 .36 .552 .019 
Current MATH366 168 1 168 .92 .344 .022 
Current MATH367 2 1 2 .01 .918 <.001 
Current MATH368 159 1 159 .87 .356 .021 
Current MATH403 130 1 130 .71 .403 .017 
Current MASC351 309 1 309 1.69 .201 .040 
Current MASC450 1162 1 1162 6.36 .016* .134 
Current MEFB460 39 1 39 .21 .646 .005 
Current MEFB497 2 1 2 .01 .915 <.001 
Current MASC351 * Current 
MASC450 

 
64 

 
1 

 
64 

 
.35 

 
.556 

 
.009 

Current MATH368 * Current 
MATH403 * Current MASC351 

 
191 

 
4 

 
48 

 
.26 

 
.901 

 
.025 

Current MATH368 * Current 
MATH403 * Current MASC351 
* Current MASC450 

 
 

1547 

 
 

3 

 
 

516 

 
 

2.82 

 
 

.051 

 
 

.171 
Error 7500 41 183       
Total 94032 60         
Corrected Total 12630 59         
* p < .05 
a R Squared = .406 (Adjusted R Squared = .146) 

 

 

Using a Univariate regression with the variables Taken MATH 365, Taken MATH 

366, Taken MATH 367, Taken MATH 368, Taken MATH 403, Taken MASC 351, Taken 

MASC450, Taken MEFB 460, Taken MEFB 497 in addition to the covariate, GPA, 

regressed on the variable mathematics knowledge for teaching number and operations, the 

overall model yielded R2=.396 for mathematics knowledge for teaching number and 

operations for summary data (see Table 35). Polynomial trend contrasts were conducted for 
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each taken course separately, the covariate GPA, and then the following interactions: Taken 

MASC 351* Taken MASC 450; Taken MATH 368* Taken MATH 403* Taken MASC 351* 

Taken MASC 450; Taken MATH 365*Taken MATH 366*Taken MATH 367* Taken 

MATH 368*Taken MATH 403; Taken MATH 365*Taken MATH 366*Taken MATH 

367*Taken MATH 368*Taken MATH 403*Taken MASC 351*Taken MASC450*Taken 

MEFB 460*Taken MEFB 497 (all taken courses together). The covariate GPA had a 

statistically significant (p < .05) contribution to mathematics knowledge for teaching 

number and operations. Effect sizes were small. 

Mathematics Knowledge for Teaching Algebra 

Using a Univariate regression with the variables Current MATH 365, Current 

MATH 366, Current MATH 367, Current MATH 368, Current MATH 403, Current 

MASC 351, Current MASC450, Current MEFB 460, Current MEFB 497 in addition to the 

covariate, GPA, regressed on the variable mathematics knowledge for teaching algebra, the 

overall model yielded R2=.368 for mathematics knowledge for teaching algebra for 

summary data (see Table 36). Polynomial trend contrasts were conducted for each current 

course separately, the covariate GPA, and then the following interactions: Current MASC 

351* Current MASC 450, Current MATH 368* Current MATH 403* Current MASC 351, 

Current MATH 368* Current MATH 403* Current MASC 351* Current MASC450. 

Current enrollment in MATH 365, MASC 450, and MEFB 497 all had statistically 

significant (p < .01, p <.05, p<.05, respectively) contributions to mathematics knowledge for 

teaching algebra. Effect sizes were small. The largest effect size was current enrollment in 

MATH 365 on mathematics knowledge for teaching algebra. 
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Table 35 
Univariate Regression on Taken Courses with GPA as Covariate for Number and Operations 
Dependent variable: Mathematics Knowledge for Teaching Number and Operations 

Source 

Type I 
Sum of 
Squares df 

Mean 
Square F p 

Partial 
Eta 

Squared 

Corrected Model 5001a 18 277 1.49 .143 .396 
Intercept 81402 1 81402 437.46 <.01 .914 
GPA 1290 1 1290 6.93 .012* .145 
Taken MATH365 424 1 424 2.28 .139 .053 
Taken MATH366 195 1 195 1.05 .312 .025 
Taken MATH367 163 1 163 .87 .355 .021 
Taken MATH368 98 1 98 .53 .473 .013 
Taken MATH403 261 1 261 1.40 .243 .033 
Taken MASC351 15 1 15 .08 .778 .002 
Taken MASC450 34 1 34 .18 .670 .004 
Taken MEFB460 112 1 112 .60 .443 .014 
Taken MEFB497 146 1 146 .79 .380 .019 
Taken MASC351 * Taken MASC450 0 0 . . . .000 

Taken MATH368 * Taken MATH403 
* Taken MASC351 * Taken MASC450 

 
928 

 
4 

 
232 

 
1.25 

 
.306 

 
.108 

Taken MATH365 * Taken MATH366 
* Taken MATH367 * Taken 
MATH368 * Taken MATH403 

 
 

1215 

 
 

3 

 
 

405 

 
 

2.18 

 
 

.105 

 
 

.137 
Taken MATH365 * Taken MATH366 
* Taken MATH367 * Taken 
MATH368 * Taken MATH403 * 
Taken MASC351 * Taken MASC450 * 
Taken MEFB460 * Taken MEFB497 

 
 
 
 

121 

 
 
 
 

1 

 
 
 
 

121 

 
 
 
 

.65 

 
 
 
 

.424 

 
 
 
 

.016 
Error 7629 41 186       
Total 94032 60         
Corrected Total 12630 59         
* p < .05. 
a  R Squared = .396 (Adjusted R Squared = .131) 
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Table 36 
Univariate Regression on Current Courses with GPA as Covariate for Algebra 
Dependent Variable: Mathematics Knowledge for Teaching Algebra 

Source 

Type I 
Sum of 
Squares df 

Mean 
Square F p 

Partial 
Eta 

Squared 

Corrected Model 6184a 16 386 2.14 .018 .368 
Intercept 179937 1 179937 998.20 <.001 .944 
GPA 480 1 480 2.67 .108 .041 
Current MATH 365 1310 1 1310 7.27 .009** .123 
Current MATH 366 337 1 337 1.97 .177 .024 
Current MATH 367 132 1 132 .73 .396 .008 
Current MATH 368 234 1 234 1.30 .259 .025 
Current MATH 403 1 1 1 .001 .977 <.001 
Current MASC 351 239 1 239 1.33 .254 .013 
Current MASC 450 1123 1 1123 6.23 .015* .102 
Current MEFB 460 47 1 47 .26 .613 .003 
Current MEFB 497 923 1 923 5.12 .027* .076 
Current MASC 351 * Current 
MASC 450 

80 1 80 .44 .509 .007 

Current MATH 368 * Current 
MATH 403 * Current MASC 351 

356 3 119 .66 .581 .032 

Current MATH 368 * Current 
MATH 403 * Current MASC 351 
* Current MASC 450 

921 2 461 2.56 .086 .080 

Error 10635 59 180       
Total 196756 76         
Corrected Total 16819 75         
* p < .05. ** p < .01. 
aR Squared = .368 (Adjusted R Squared = .196) 

 

 

Using a Univariate regression with the variables Taken MATH 365, Taken MATH 

366, Taken MATH 367, Taken MATH 368, Taken MATH 403, Taken MASC 351, Taken 

MASC450, Taken MEFB 460, Taken MEFB 497 in addition to the covariate, GPA, 

regressed on the variable mathematics knowledge for teaching algebra, the overall model 

yielded R2=.354 for mathematics knowledge for teaching algebra for summary data (see 

Table 37). Polynomial trend contrasts were conducted for each taken course separately, the 
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covariate GPA, and then the following interactions: Taken MASC 351* Taken MASC 450; 

Taken MATH 368* Taken MATH 403* Taken MASC 351* Taken MASC 450; Taken 

MATH 365*Taken MATH 366*Taken MATH 367* Taken MATH 368*Taken MATH 403; 

Taken MATH 365*Taken MATH 366*Taken MATH 367*Taken MATH 368*Taken 

MATH 403*Taken MASC 351*Taken MASC450*Taken MEFB 460*Taken MEFB 497 (all 

taken courses together). MATH 403, which had already been taken, had a statistically 

significant (p < .05) contribution to mathematics knowledge for teaching algebra. Effect 

sizes were small. 

Mathematics Knowledge for Teaching Geometry 

Using a Univariate regression with the variables Current MATH 365, Current 

MATH 366, Current MATH 367, Current MATH 368, Current MATH 403, Current 

MASC 351, Current MASC450, Current MEFB 460, Current MEFB 497 in addition to the 

covariate, GPA, regressed on the variable mathematics knowledge for teaching geometry, 

the overall model yielded R2=.381 for mathematics knowledge for teaching geometry for 

summary data (see Table 38). Polynomial trend contrasts were conducted for each current 

course separately, the covariate GPA, and then the following interactions: Current MASC 

351* Current MASC 450, Current MATH 368* Current MATH 403* Current MASC 351, 

Current MATH 368* Current MATH 403* Current MASC 351* Current MASC450. 

Current enrollment in MATH 365, and MASC 450 both had statistically significant (p < .01, 

p <.05, respectively) contributions to mathematics knowledge for teaching geometry. Effect 

sizes were small to medium. The largest effect size was current enrollment in MATH 365 

on mathematics knowledge for teaching geometry. 
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Table 37 
Univariate Regression on Taken Courses with GPA as Covariate for Algebra 
Dependent Variable: Mathematics Knowledge for Teaching Algebra  

Source 

Type I 
Sum of 
Squares df 

Mean 
Square F p 

Partial 
Eta 

Squared 

Corrected Model 5947a 19 313 1.61 .085 .354 
Intercept 179937 1 179937 926.85 <.001 .943 
GPA 480 1 480 2.83 .098 .048 
Taken MATH365 279 1 279 1.21 .276 .021 
Taken MATH366 745 1 745 3.83 .055 .064 
Taken MATH367 300 1 300 1.07 .306 .019 
Taken MATH368 28 1 28 .15 .697 .003 
Taken MATH403 1071 1 1071 4.89 .031* .080 
Taken MASC351 177 1 177 1.41 .241 .025 
Taken MASC450 170 1 170 .96 .333 .017 
Taken MEFB460 40 1 40 .11 .742 .002 
Taken MEFB497 602 1 602 3.59 .063 .060 
Taken MASC351 * Taken 
MASC 450 

 
0 

 
0 

. . . 
 

.000 
Taken MATH368 * Taken 
MATH403 * Taken MASC351 * 
Taken MASC450 

 
 

948 

 
 

4 

 
 

237 

 
 

1.22 

 
 

.312 

 
 

.080 
Taken MATH365 * Taken 
MATH366 * Taken MATH367 
* Taken MATH368 * Taken 
MATH403 

 
 
 

407 

 
 
 

3 

 
 
 

136 

 
 
 

.70 

 
 
 

.557 

 
 
 

.036 
Taken MATH365 * Taken 
MATH366 * Taken MATH367 
* Taken MATH368 * Taken 
MATH403 * Taken MASC351 * 
Taken MASC450 * Taken 
MEFB460 * Taken MEFB497 

 
 
 
 
 

701 

 
 
 
 
 

2 

 
 
 
 
 

351 

 
 
 
 
 

1.81 

 
 
 
 
 

.174 

 
 
 
 
 

.061 
Error 10872 56 194       
Total 196756 76         
Corrected Total 16819 75         
* p < .05. 
aR Squared = .354 (Adjusted R Squared = .134) 
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Table 38 
Univariate Regression on Current Courses with GPA as Covariate for Geometry 
Dependent Variable: Mathematics Knowledge for Teaching Geometry 

Source 

Type I 
Sum of 
Squares df 

Mean 
Square F p 

Partial 
Eta 

Squared 

Corrected Model 10406a 15 694 1.64 .106 .381 
Intercept 119603 1 119603 282.57 <.001 .876 
GPA 884 1 884 2.09 .156 .050 
Current MATH365 4968 1 4968 11.74 .642 .227 
Current MATH366 93 1 93 .22 .300 .005 
Current MATH367 467 1 467 1.10 .707 .027 
Current MATH368 61 1 61 .14 .877 .004 
Current MATH403 10 1 10 .02 .343 .001 
Current MASC351 390 1 390 .92 .034* .022 
Current MASC450 2051 1 2051 4.85 .720 .108 
Current MEFB460 55 1 55 .13 .346 .003 
Current MEFB497 385 1 385 .91 .156 .022 
Current MASC351 * Current 
MASC450 

 
0 

 
0 

. . . 
 

.000 
Current MATH368 * Current 
MATH403 * Current MASC351 

 
808 

 
3 

 
269 

 
.64 

 
.596 

 
.046 

Current MATH368 * Current 
MATH403 * Current MASC351 
* Current MASC450 

 
 

235 

 
 

2 

 
 

117 

 
 

.28 

 
 

.759 

 
 

.014 
Error 16931 40 423    
Total 146940 56     
Corrected Total 27337 55     
p < .05. **p < .01. 
aR Squared = .381 (Adjusted R Squared = .148) 

 

 

A Univariate regression with the variables Current MATH 365, Current MATH 366, 

Current MATH 367, Current MATH 368, Current MATH 403, Current MASC 351, 

Current MASC450, Current MEFB 460, Current MEFB 497 in addition to the covariate, 

GPA, was run with mathematics knowledge for teaching geometry as the dependent 

variable. However, it was rejected that the error variance of the dependent variable was 

equal across groups. Further analyses (ANCOVA) were run with current courses and the 
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components of mathematics knowledge for teaching geometry; the tests all failed Levene’s 

Test of Equality of Error Variances. 

Mathematics Knowledge for Teaching Probability and Statistics 

Using a Univariate regression with the variables Current MATH 365, Current 

MATH 366, Current MATH 367, Current MATH 368, Current MATH 403, Current 

MASC 351, Current MASC450, Current MEFB 460, Current MEFB 497 in addition to the 

covariate, GPA, regressed on the variable mathematics knowledge for teaching probability 

and statistics, the overall model yielded R2=.426 for mathematics knowledge for teaching 

probability and statistics for summary data (see Table 39). Polynomial trend contrasts were 

conducted for each current course separately, the covariate GPA, and then the following 

interactions: Current MASC 351* Current MASC 450, Current MATH 368* Current 

MATH 403* Current MASC 351, Current MATH 368* Current MATH 403* Current 

MASC 351* Current MASC450. The interaction of Current MATH 368* Current MATH 

403* Current MASC 351* Current MASC450 together had a statistically significant (p <.05) 

contribution to mathematics knowledge for teaching probability and statistics. Effect sizes 

were small. 
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Table 39 
Univariate Regression on Current Courses with GPA as Covariate for Probability and Statistics 
Dependent Variable: Mathematics Knowledge for Teaching Probability and Statistics 

Source 

Type I 
Sum of 
Squares df 

Mean 
Square F p 

Partial 
Eta 

Squared 

Corrected Model 3467a 15 231 1.78 .078 .426 
Intercept 131303 1 131303 1012.44 < .001 .966 
GPA 212 1 212 1.43 .240 .038 
Current MATH365 185 1 185 .010 .938 <.001 
Current MATH366 1 1 1 1.88 .179 .050 
Current MATH367 244 1 244 1.95 .172 .051 
Current MATH368 252 1 252 .91 .648 .025 
Current MATH403 117 1 117 2.22 .145 .058 
Current MASC351 288 1 288 1.36 .252 .036 
Current MASC450 176 1 176 1.35 .253 .036 
Current MEFB460 175 1 175 .33 .570 .009 
Current MEFB497 43 1 43 1.63 .209 .043 
Current MASC351 * Current 
MASC450 

 
8 

 
1 

 
8 

 
.06 

 
.807 

 
.002 

Current MATH368 * Current 
MATH403 * Current MASC351 

 
984 

 
3 

 
328 

 
2.53 

 
.073 

 
.174 

Current MATH368 * Current 
MATH403 * Current MASC351 
* Current MASC450 

 
 

782 

 
 

1 

 
 

782 

 
 

6.03 

 
 

.019* 

 
 

.143 
Error 4669 36 130       
Total 139439 52         
Corrected Total 8136 51         
* p < .05. 
a R Squared = .426 (Adjusted R Squared = .187) 
 

 

Using a Univariate regression with the variables Taken MATH 365, Taken MATH 

366, Taken MATH 367, Taken MATH 368, Taken MATH 403, Taken MASC 351, Taken 

MASC450, Taken MEFB 460, Taken MEFB 497 in addition to the covariate, GPA, 

regressed on the variable mathematics knowledge for teaching probability and statistics, the 

overall model yielded R2=.459 for mathematics knowledge for teaching probability and 

statistics for summary data (see Table 40). Polynomial trend contrasts were conducted for 
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each taken course separately, the covariate GPA, and then the following interactions: Taken 

MASC 351* Taken MASC 450; Taken MATH 368* Taken MATH 403* Taken MASC 351* 

Taken MASC 450; Taken MATH 365*Taken MATH 366*Taken MATH 367* Taken 

MATH 368*Taken MATH 403; Taken MATH 365*Taken MATH 366*Taken MATH 

367*Taken MATH 368*Taken MATH 403*Taken MASC 351*Taken MASC450*Taken 

MEFB 460*Taken MEFB 497 (all taken courses together). The interaction Taken MASC 

351* Taken MASC 450 together had a statistically significant (p < .05) contribution to 

mathematics knowledge for teaching probability and statistics. In addition, the interaction 

of all courses together (Taken MATH 365*Taken MATH 366*Taken MATH 367*Taken 

MATH 368*Taken MATH 403*Taken MASC 351*Taken MASC450*Taken MEFB 

460*Taken MEFB 497) had a statistically significant (p < .05) contribution to mathematics 

knowledge for teaching probability and statistics. Effect sizes were small to medium. The 

largest effect size was the interaction of the courses, taken previously, together on the 

mathematics knowledge for teaching probability and statistics. 

Ancillary Question 4 

Does development happen at greater rates in certain stages of the program than 

others? 

Predictors for each component of mathematics knowledge for teaching across each 

content strand were saved during the MANCOVA to be used in the analysis of this 

question. A Pearson’s r correlation was run between the predictor and its corresponding 

component to be sure it was a “good” predictor. Table 40 reveals all of the correlations 

were significant at p < .01.  
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Table 40 
Univariate Regression on Taken Courses Data with GPA as Covariate for Probability and Statistics 
Dependent variable: Mathematics Knowledge for Teaching Probability and Statistics 

Source Type I 
Sum of 
Squares 

df Mean 
Square 

F p Partial 
Eta 

Squared 
Corrected Model 3736a 18 208 1.56 .132 .459 
Intercept 131303 1 131303 984.77 <.001 .968 
GPA 212 1 212 1.59 .216 .046 
Taken MATH 365 93 1 93 .70 .410 .021 
Taken MATH 366 49 1 49 .37 .548 .011 
Taken MATH 367 95 1 95 .71 .405 .021 
Taken MATH 368 222 1 222 1.66 .206 .048 
Taken MATH 403 50 1 50 .37 .545 .011 
Taken MASC 351 91 1 91 .68 .415 .020 
Taken MASC 450 2 1 2 .02 .898 .001 
Taken MEFB 460 237 1 237 1.78 .192 .051 
Taken MEFB 497 25 1 25 .19 .668 .006 
Taken  
MASC 351*MASC450 

 
658 

 
1 

 
658 

 
4.93 

 
.033* 

 
.130 

Taken MATH 368 
*MATH 403 *MASC 
351* MASC 450 

 
 

329 

 
 

3 

 
 

110 

 
 

.82 

 
 

.490 

 
 

.070 
Taken MATH 365* 
MATH 366*MATH 
367*MATH 368 
*MATH 403 

 
 
 

19 

 
 
 

1 

 
 
 

19 

 
 
 

.14 

 
 
 

.711 

 
 
 

.004 
Taken MATH 365* 
MATH 366*MATH 
367*MATH 368 
*MATH 403*MASC 
351*MASC 450 *MEFB 
460*MEFB 497 

 
 
 
 
 

1655 

 
 
 
 
 

3 

 
 
 
 
 

552 

 
 
 
 
 

4.14 

 
 
 
 
 

.014* 

 
 
 
 
 

.273 
Error 4400 33 133    
Total 139439 52     
Corrected Total 8136 51     
* p < .05 
a R Squared = .459 (Adjusted R Squared = .164) 
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Table 41 
Correlations of Predictors with Real Scores 

  
Correlation 

Pearson 
Correlation 

Content Knowledge*Predicted Content 
Knowledge 

 
.556** 

Explanation*Predicted Explanation .552** 
Understanding* Predicted Understanding .518** 

Number and 
Operations 

Mathematics Knowledge for Teaching N&O* 
Predicted Mathematics Knowledge for 
Teaching N&O 

 
 

.560** 
Content Knowledge*Predicted Content 
Knowledge 

 
.448** 

Explanation*Predicted Explanation .501** 
Understanding* Predicted Understanding .488** 

Algebra 

Mathematics Knowledge for Teaching 
Algebra* Predicted Mathematics Knowledge 
for Teaching Algebra 

 
 

 .510** 
Content Knowledge*Predicted Content 
Knowledge 

 
.393** 

Explanation*Predicted Explanation .441** 
Understanding* Predicted Understanding .420** 

Geometry 

Mathematics Knowledge for Teaching 
Geometry* Predicted Mathematics 
Knowledge for Teaching Geometry 

 
 

.405** 
Content Knowledge*Predicted Content 
Knowledge 

 
 

.384** 
Explanation*Predicted Explanation .343** 
Understanding* Predicted Understanding .415** 

Probability and 
Statistics 

Mathematics Knowledge for Teaching P&S* 
Predicted Mathematics Knowledge for 
Teaching P&S 

 
 

.364** 
** Correlation is significant at the 0.01 level (2-tailed) 

 

 

The predictors for mathematics knowledge for teaching algebra, number and 

operations, probability and statistics, and geometry were used for the rest of the analyses of 

this question.  
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The next step was to find the rate of the predictors of mathematics knowledge for 

teaching across each content area. Finding the trendline of the data allowed one to obtain 

the rate (see Table 42). Since course information was dichotomous, each course was  

 

Table 42 
Rates for Predictors of Mathematics Knowledge for Teaching 
 Rate 
Number and Operations .0037 
Algebra -.1738 
Geometry .2169 
Probability and Statistics -.1208 

 

 

graphed as the independent variable against the predictor variable of mathematics 

knowledge for teaching (dependent variable) and the trendline was used to determine the 

slope, or rate, for each course in its corresponding content area. Table 42 contains the 

values described above. From Table 43, the course having the most impact, according to 

their rates, across all content areas was MEFB 460 Teaching mathematics in the middle 

grades. This course is designed for preservice middle grades mathematics teachers focusing 

on pedagogy of mathematics in the classroom. It is taken simultaneously with field 

experiences which occur three times a week. The following semester, the preservice teachers 

student teach. 
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Table 43 
Rates for Predictors of Mathematics Knowledge for Teaching vs. Course 

 
Course 

N&O 
Currently 
Enrolled 

N&O 
Already 
Taken 

Algebra 
Currently 
Enrolled 

Algebra 
Already 
Taken 

Geom. 
Currently 
Enrolled 

Geom. 
Already 
Taken 

P&S 
Currently 
Enrolled 

P&S 
Already 
Taken 

MATH 
365 

 
-1.86 

 
-2.43 

 
-8.54 

 
4.10* 

 
-13.68 

 
17.92*@ 

 
-4.11 

 
.64* 

MATH 
366 

 
2.41* 

 
-1.55 

 
-4.96 

 
6.87* 

 
9.91*@ 

 
4.83* 

 
-1.19 

 
1.17* 

MATH 
367 

 
-.74 

 
-1.45 

 
-1.83 

 
6.66* 

 
4.12* 

 
1.97* 

 
-3.99 

 
3.53* 

MATH 
368 

 
3.15* 

 
3.15* 

 
-2.76 

 
6.19* 

 
-.96 

 
1.80* 

 
-.33 

 
4.44* 

MATH 
403 

 
5.15* 

 
5.15* 

 
-1.63 

 
5.42* 

 
.03* 

 
3.03* 

 
.19* 

 
6.00*@ 

MASC 
351 

 
-.91 

 
2.05 

 
-3.58 

 
8.40*@ 

 
3.34* 

 
3.03* 

 
-2.22 

 
3.52* 

MASC 
450 

 
4.23* 

 
4.23* 

 
8.36* 

 
4.61* 

 
1.20* 

 
.03* 

 
4.84* 

 
3.82* 

MEFB 
460 

 
7.13*@ 

 
4.62*@ 

 
8.37*@ 

 
7.18* 

 
.27* 

 
.03* 

 
5.22*@ 

 
2.81* 

MEFB 
497 

 
5.61* 

 
-- 

 
6.39* 

 
-- 

 
.03 

 
-- 

 
3.56* 

 
-- 

Rate of 
Predictor 

 
.0037 

 
-.1738 

 
-.2169 

 
-.1208 

* Indicates a positive relationship 
@ Highest rate for characteristic (taken/current) 

  

 

The next thing to investigate was enrollment characteristics against the predictor 

variables. Nonlinear regression was used to determine a model of fit for enrollment 

characteristics onto the predictor variables for mathematics knowledge for teaching. 

Enrollment characteristics are coded as: 1—Freshman, 2—Sophomore, 3—1st Semester 

Junior, 4—2nd Semester Junior, 5—1st Semester Senior, and 6—2nd Semester Senior and 

Beyond. Enrollment characteristics onto the predictor variable for mathematics knowledge 

for teaching number and operations was found to be quadratic (Figure 5, R2=.495).  
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Figure 5. Curve Fit of Enrollment Characteristics Onto the Predictor Variable for Mathematics Knowledge 
for Teaching Number and Operations. 
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Enrollment characteristics onto the predictor variable for mathematics knowledge 

for teaching algebra was found to be cubic (Figure 6, R2=.550).  
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Figure 6. Curve Fit of Enrollment Characteristics Onto the Predictor Variable for Mathematics Knowledge 
for Teaching Algebra. 
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Enrollment characteristics onto the predictor variable for mathematics knowledge 

for teaching geometry was found to be cubic (Figure 7, R2=.040).  

0.00

20.00

40.00

60.00

80.00

1.00 2.00 3.00 4.00 5.00 6.00

Enrollment Characteristics

Observed

Linear

Quadratic

Cubic

 
Figure 7. Curve Fit of Enrollment Characteristics Onto the Predictor Variable for Mathematics Knowledge 
for Teaching Geometry. 
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Enrollment characteristics onto the predictor variable for mathematics knowledge 

for teaching probability and statistics was found to be quadratic (Figure 8, R2=.583).  
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Figure 8. Curve Fit of Enrollment Characteristics Onto the Predictor Variable for Mathematics Knowledge 
for Teaching Probability and Statistics. 
 

 

Finally, cohorts were investigated through nonlinear regression to determine a 

model of fit for cohorts onto the predictor variables for mathematics knowledge for 
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teaching. Cohorts were coded as: 1—Mathematics courses; 2—Integrated Mathematics and 

Science (MASC) courses; and 3—Methods block and student teaching. Cohorts onto the 

predictor variable for mathematics knowledge for teaching number and operations was 

found to be quadratic (Figure 9, R2=.191). 
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Figure 9. Curve Fit of Cohorts Onto the Predictor Variable for Mathematics Knowledge for Teaching 
Number and Operations. 
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Cohorts onto the predictor variable for mathematics knowledge for teaching algebra 

was found to be linear (Figure 10, R2=.411). 
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Figure 10. Curve Fit of Cohorts Onto the Predictor Variable for Mathematics Knowledge for Teaching 
Algebra. 
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Cohorts onto the predictor variable for mathematics knowledge for teaching 

geometry was found to be quadratic (Figure 11, R2=.034). 
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Figure 11. Curve Fit of Cohorts Onto the Predictor Variable for Mathematics Knowledge for Teaching 
Geometry. 
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Cohorts onto the predictor variable for mathematics knowledge for teaching 

probability and statistics was found to be quadratic (Figure 12, R2=.244). 
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Figure 12. Curve Fit of Cohorts Onto the Predictor Variable for Mathematics Knowledge for Teaching 
Probability and Statistics. 
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Summary of Results 

Analysis of the mathematics knowledge for teaching algebra, probability and 

statistics, number and operations, and geometry of preservice middle grades teachers 

involved in this study were presented in this chapter. Skewness and kurtosis were first 

computed for each item and then the total (mathematics knowledge for teaching) for each 

content strand (algebra, geometry, number and operations, and probability and statistics). A 

lack of extreme kurtosis and skewness was noted. Normality was assessed because it was an 

underlying assumption that needed to be met when using parametric analyses. A 

Kolmogorov-Smirnov Test for each content strand revealed no statistical significance, 

therefore it was concluded that the scores were normally distributed.  

Research Question 1 

 The analysis of question one was broken into four parts: analysis of the content, 

analysis of the explanation, analysis of the pedagogical understanding, and analysis of the 

mathematics knowledge for teaching number and operations. The reliability of the number 

and operations assessment was found to be .924. An item analysis revealed an average item 

difficulty of 56% (p = .56) and the item discrimination revealed three usually unacceptable 

items, three good items, and one excellent item.  

Items for which less than half of the participants answered correctly were 

investigated for commonalities. Common errors on the item addressing developing and 

applying laws of exponents for multiplication included leaving the coefficient a number 

greater than or equal to ten, and not changing the exponent when moving a decimal left or 

write. The two other items addressed estimating a percent of quantity, given an application. 

The most common error on both of these items was simply not estimating at all. In 
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analyzing the content understanding (part 2) of the number and operations assessment, a 

majority of the participants scored either a two or three according to the rubric for this 

item. Misuse of vocabulary was noted on two other items. A common error on one item 

was adding together two percents given in an original price and then a sale price situation. A 

common error on another item was the mixing up of greatest common factor and the least 

common multiple.  

For the pedagogical understanding of number and operations, a majority of the 

participants scored a two, three, or four. Scores of two and three on the pedagogical 

understanding part tended to be very algorithmic in nature and the general method of 

instruction could be assumed to be direct since there was no mention of any other method. 

With a score of four there was often a culturally responsive component included.  

The mathematics knowledge for teaching number and operations scores ranged 

from 3 to 59, a range of 56, out of a total possible 91 points.  

Research Question 2 

The analysis of this question was again broken into four parts: analysis of the 

content knowledge, analysis of the content understanding, analysis of the pedagogical 

understanding, and analysis of the mathematics knowledge for teaching algebra. The 

reliability of the algebra assessment was found to be .935. An items analysis revealed an 

average item difficulty of 79% (p = .76) and the item discrimination revealed three usually 

unacceptable items and four good items. 

Only one item, which less than half of the participants answered correctly, was 

investigated for commonalities. The item addressed translating verbal sentences into 

algebraic equations. Two common errors were found in student answers. The first error was 
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simply not following the directions of the item. The second error was the misinterpretation 

of the information given in the item. Two other items were noteworthy because of the 

commonalities in the incorrectness of their answers. One error was the misplacement of the 

“eight less than” in the equation they were supposed to translate from verbal sentences. 

Another item concerning the factoring trinomials revealed that participants often mixed up 

the signs in the parentheses when they had an incorrect answer.  

A majority of the participants scored either a two or three according to the rubric 

on content understanding for algebra. Other areas of noteworthiness for the content 

understanding first concerned translating verbal sentences into algebraic equations. A 

common them across all explanations for these items was “just follow the words…they tell 

you what to do.” The other two items of interest complemented each other in that one 

addressed multiplying binomials together and the other addressed factoring trinomials. The 

common explanation for content understanding in the item address the multiplication of 

binomials was “I just used FOIL to multiply it out and then I added like terms.” “Box 

method” or “tic-tac-toe method” was also mentioned, but not as frequently. Although a 

majority of the students answered the factoring item correctly, there was a theme of misuse 

of mathematical vocabulary and procedures in the explanations of their solutions. 

For the pedagogical understanding of algebra, a majority of the participants scored a 

two or a three according to the rubric. Scores of two and three tended to be very 

algorithmic and procedure-oriented in nature. The general method of instruction could be 

assumed to be direct since there was often no mention of any other method. Across all the 

pedagogical understanding responses, there was a greater indication of cultural 

responsiveness than was found on the number and operations items. Themes noteworthy 
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for the pedagogical understanding of algebra dealt with the teaching of the concepts of the 

multiplication of binomials and the factoring of trinomials. Again, FOIL, forwards and 

backwards, was a common them in the responses. A major concentration on just find the 

correct combination of factors in factoring trinomials was noted.  

The mathematics knowledge of teaching algebra total scores ranged from 4 to 80, a 

range of 76, out of a possible 91 points.  

Research Question 3 

The analysis of this question was again broken into four parts: analysis of the 

content knowledge, analysis of the content understanding, analysis of the pedagogical 

understanding, and analysis of the mathematics knowledge for teaching geometry. The 

reliability for geometry assessment was found to be .973. An item analysis of the content of 

each item revealed an average item difficulty of 76% (p = .76) and item discrimination 

revealed two usually unacceptable items, three good items, and two excellent items. There 

were no items for which less than half of the participants answered correctly. Therefore, the 

three items with the smallest percentage of the participants answering correctly were 

investigated for commonalities. The first item addressed calculating the missing angle in a 

supplementary pair. The common error found was participants’ lack of “plugging in” the x 

value in order to find the measure of the specified angle. In the item addressing 

complementary angles, the majority of those who answered this question incorrectly 

reported angle Q as the complementary angle to the given angle X. Angle Q is actually 

vertical to angle X. The third item, item four, addressed determining angle relationships 

when given two parallel lines cut by a transversal. A majority of the participants who 

answered this item incorrectly described the relationship between the two angles as equaling 
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180 degrees. This is partially correct, but the researcher was looking for the specific term, 

supplementary. 

On the content understanding part, a majority of the participants scored a three. 

Overall, the explanations of the solutions for the geometry assessment revealed incorrect 

mathematical vocabulary. When dealing with parallel lines and a transversal, a majority of 

the students mixed up terminology for corresponding angles, and alternate interior and 

exterior angles. In addition it was noted in one item that several students thought 

complementary and congruency were analogous terms. Vertical angle terminology revealed 

that students often associated vertical angles with longitudinal directions. Other common 

terms used instead of vertical angles were opposite and diagonal. The last interesting and 

noteworthy trend across the content understanding in the geometry assessment was the use 

of the term linear pairs, often instead supplementary. 

For the pedagogical understanding of geometry, a majority of the participants 

scored a three or a four. Of the students who mentioned directional associations in the 

explanation part, a majority just mentioned describing the definition of vertical angles to 

someone who did not understand. There was no additional explanation given as to what 

this definition might be. There was again an evident misconception that congruency and 

complementary are analogous terms. Across all understanding parts of the items on the 

geometry assessment there were several instances of exploration activities. In addition a 

majority of the responses contained some kind of definition or discussion of giving and/or 

explaining definitions necessary for students to understand the problems. 

For the mathematics knowledge for teaching geometry, total scores ranged from 0 

to 81, a range of 80, out of a possible 91 points.  
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Research Question 4 

 The analysis of this question was again broken into four parts: analysis of the 

content knowledge, analysis of the content understanding, analysis of the pedagogical 

understanding, and analysis of the mathematics knowledge for teaching probability and 

statistics. The reliability for the probability and statistics assessment was found to be .907. 

An item analysis revealed an average item difficulty of 76% (p = .76) and item 

discrimination revealed four usually unacceptable items and three good items. One item had 

less than half of the participants answer it correctly. This item was investigated for 

commonalities in the errors of the answers given. There were three common errors found 

in the item addressing determining the probability of dependent events. The majority of the 

participants who did not answer this question correctly simply forgot to reduce the fraction 

for their final answer. The other two types of errors, minimal but still evident in student 

answers, were the adding of the two probabilities and the treatment of the item as “with 

replacement” even though the problem directly states “without replacing the first cookie.”  

On the content understanding part of the probability and statistics assessment, a 

majority of the participants scored a three according to the rubric for this part of the 

assessment. There are a few items with minor errors in explanations of noteworthiness. The 

first is an item which addressed calculating the range for a given set of data. Of the students 

who incorrectly answered this problem, a majority of them indicated the range of data as an 

actual range (i.e., 73 – 97). Another common error revealed in the explanation was the 

ordering of the numbers. The numbers are presented in non-numerical order and instead of 

reordering them, the student took the last score minus the first score. In an item addressing 

reading and interpreting data represented graphically through a pictograph, although every 
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participant who took the probability and statistics assessment got this answer correct, 

participants often misinterpreted three times as three more. On an item addressing 

predicting the outcome of an experiment a majority of the participants who missed this item 

misinterpreted the graphic representation given.   

For the pedagogical understanding part of probability and statistics, a majority of 

the participants scored either a three or a four. These explanations tended to be very 

algorithmic in nature and the general method of instruction could be assumed to be direct 

since there was no mention of any other method. Responses at the score level of four 

tended to be more culturally responsive than a score of three. Analysis across pedagogical 

understanding of all items on the probability and statistics assessment revealed several 

trends of interest. The first had to do with demonstrating an item on a smaller scale first 

before doing the actual problem. Another theme was the use of hands-on material in order 

to conduct experiments. It was noted that few of these responses addressed theoretical 

probability versus experimental probability. If the understanding response did not include 

the use of hands-on material, it generally contained some sort of another representation of 

the item being addressed. The majority of representations presented were pictorial. 

Mathematics knowledge for teaching probability and statistics scores ranged from 

18 to 73, a range of 55, out of a possible 91 points.  

Ancillary Question 1 

 Enrollment classification (adjusted) had a statistically significant (p < .05) 

contribution to number and operations content knowledge, content understanding, 

pedagogical understanding, and mathematics knowledge for teaching number and 

operations. The covariate, GPA, did not contribute significantly to pedagogical 
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understanding of number and operations, but did have a statistically significant (p < .05) 

contribution on number and operations content knowledge, content understanding, and 

mathematics knowledge for teaching number and operations. Effect sizes were small to 

medium (Huck, 2004). Enrollment classification had a larger impact on pedagogical 

understanding and mathematics knowledge for teaching number and operations than on 

content knowledge and content understanding. GPA had a larger effect on content 

knowledge than on content understanding and mathematics knowledge for teaching 

number and operations. The largest effect was enrollment classification on mathematics 

knowledge for teaching number and operations. 

Enrollment classification (adjusted) did not contribute significantly to algebra 

content knowledge, but did have a statistically significant (p < .05) contribution to content 

understanding, pedagogical understanding, and mathematics knowledge for teaching 

algebra. Enrollment classification and GPA together did not contribute significantly to 

pedagogical understanding or mathematics knowledge for teaching algebra, but did have a 

statistically significant (p < .05) contribution to content knowledge and to content 

understanding. Effect sizes were small. Enrollment classification had approximately equal 

effects on content understanding, pedagogical understanding, and mathematics knowledge 

for teaching algebra. The interaction of enrollment classification and GPA had 

approximately equal effects on content knowledge and content understanding. 

The dependent variable content knowledge for geometry had to be removed from 

the analysis because it rejected the null hypothesis that the error variance of the dependent 

variable is equal across groups. Enrollment classification, GPA, and its interaction did not 
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contribute significantly to any of the dependent variables concerning the mathematics 

knowledge for teaching geometry. Effect sizes were small. 

Enrollment classification, GPA, and its interaction did not contribute significantly 

to any of the dependent variables concerning the mathematics knowledge for teaching 

probability and statistics. Effect sizes were small. 

Ancillary Question 2 

Cohort and the interaction of GPA and cohort did not contribute significantly to 

number and operations content knowledge, content understanding, or mathematics 

knowledge for teaching number and operations. However, GPA had a statistically 

significant (p < .05) contribution on number and operations content knowledge, content 

understanding, and mathematics knowledge for teaching number and operations. Effect 

sizes were small. GPA had approximately equal effects on content knowledge, content 

understanding, and mathematics knowledge for teaching number and operations. 

Cohort did not contribute significantly to algebra content knowledge, content 

understanding, pedagogical understanding, or mathematics knowledge for teaching algebra. 

Cohort and GPA together did not contribute significantly to content understanding, 

pedagogical understanding, or mathematics knowledge for teaching algebra, but did have a 

statistically significant (p < .05) contribution to algebra content knowledge. Effect sizes 

were small. Cohort had a larger effect on mathematics knowledge for teaching algebra than 

on pedagogical understanding or content understanding.   

GPA and the interaction between GPA and Cohort did not contribute significantly 

to any of the dependent variables concerning mathematics knowledge for teaching 

geometry. Cohort did not contribute significantly to geometry content knowledge, content 
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understanding, or mathematics knowledge for teaching geometry, but did have a statistically 

significant (p < .05) contribution to pedagogical understanding. Effect sizes were small. 

Cohort, GPA, and its interaction did not contribute significantly to any of the 

dependent variables concerning mathematics knowledge for teaching probability and 

statistics. Effect sizes were small. 

Ancillary Question 3 

Current enrollment in MASC 450 had a statistically significant (p < .05) contribution 

to mathematics knowledge for teaching number and operations. The covariate GPA also 

had a statistically significant (p < .05) contribution to mathematics knowledge for teaching 

number and operations. Effect sizes were small. The largest effect size was current 

enrollment in MASC 450 on mathematics knowledge for teaching number and operations. 

Taken courses revealed no statistical significance with regards to mathematics knowledge 

for teaching number and operations. The covariate GPA had a statistically significant (p < 

.05) contribution to mathematics knowledge for teaching number and operations. Effect 

sizes were small. 

Current enrollment in MATH 365, MASC 450, and MEFB 497 all had statistically 

significant (p < .01, p <.05, p<.05, respectively) contributions to mathematics knowledge for 

teaching algebra. Effect sizes were small. The largest effect size was current enrollment in 

MATH 365 on mathematics knowledge for teaching algebra. MATH 403, which had already 

been taken, had a statistically significant (p < .05) contribution to mathematics knowledge 

for teaching algebra. Effect sizes were small. 

Current enrollment in MATH 365 and MASC 450 both had statistically significant 

(p < .01, p <.05, respectively) contributions to mathematics knowledge for teaching 
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geometry. Effect sizes were small to medium. The largest effect size was current enrollment 

in MATH 365 on mathematics knowledge for teaching geometry. Analyses on taken 

courses for mathematics knowledge for teaching geometry failed Levene’s Test of Equality 

of Error Variances. 

The interaction of Current MATH 368 x Current MATH 403 x Current MASC 351 

x Current MASC450 together had a statistically significant (p < .05) contribution to 

mathematics knowledge for teaching probability and statistics. Effect sizes were small. The 

interaction Taken MASC 351 x Taken MASC 450 together had a statistically significant (p < 

.05) contribution to mathematics knowledge for teaching probability and statistics. In 

addition, the interaction of all courses together (Taken MATH 365 x Taken MATH 366 x 

Taken MATH 367 x Taken MATH 368 x Taken MATH 403 x Taken MASC 351 x Taken 

MASC450 x Taken MEFB 460 x Taken MEFB 497) had a statistically significant (p < .05) 

contribution to mathematics knowledge for teaching probability and statistics. Effect sizes 

were small to medium. The largest effect size was the interaction of the courses, taken 

previously, together on the mathematics knowledge for teaching probability and statistics. 

Ancillary Question 4 

Predictors for each component of mathematics knowledge for teaching across each 

content strand were saved during the MANCOVA to be used in the analysis of this 

question. A Pearson’s r correlation run between the predictor and its corresponding 

component to be sure it was a “good” predictor revealed all of the correlations were 

significant at p < .01.  

Since course information was dichotomous, each course was graphed as the 

independent variable against the predictor variable of mathematics knowledge for teaching 
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(dependent variable) and the trendline was used to determine the slope, or rate, for each 

course in its corresponding content area. The rates were then compared to the rates of the 

mathematics knowledge for teaching each content strand. The course having the most 

impact, according to their rates, across all content areas was MEFB 460 Teaching 

mathematics in the middle grades.  

Nonlinear regression was used to determine a model of fit for enrollment 

characteristics onto the predictor variables for mathematics knowledge for teaching. 

Enrollment characteristics onto the predictor variable for mathematics knowledge for 

teaching number and operations was found to be quadratic (R2=.495). Enrollment 

characteristics onto the predictor variable for mathematics knowledge for teaching algebra 

was found to be cubic (R2=.550). Enrollment characteristics onto the predictor variable for 

mathematics knowledge for teaching geometry was found to be cubic (R2=.040). 

Enrollment characteristics onto the predictor variable for mathematics knowledge for 

teaching probability and statistics was found to be quadratic (R2=.583).  

 Finally, cohorts were investigated through nonlinear regression to determine a 

model of fit for cohorts onto the predictor variables for mathematics knowledge for 

teaching. Cohorts onto the predictor variable for mathematics knowledge for teaching 

number and operations was found to be quadratic (R2=.191). Cohorts onto the predictor 

variable for mathematics knowledge for teaching algebra was found to be linear (R2=.411). 

Cohorts onto the predictor variable for mathematics knowledge for teaching geometry was 

found to be quadratic (R2=.034). Cohorts onto the predictor variable for mathematics 

knowledge for teaching probability and statistics was found to be quadratic (R2=.244). 
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CHAPTER V 

DISCUSSION, CONCLUSIONS, AND RECOMMENDATIONS 

Discussion 

Initially, normality was assessed for each content strand (algebra, number and 

operations, probability and statistics, and geometry) because it was an underlying 

assumption that needed to be met when using parametric analyses. It was concluded that 

the scores were normally distributed. Therefore, the researcher was able to conduct 

parametric analyses on the data. 

Mathematics Knowledge for Teaching Number and Operations 

The reliability of the assessment was found to be comparable to other standardized 

assessments. This was to be expected because the content questions were taken from a 

reputable standardized test and the content was not changed. The item analysis revealed an 

item difficulty of moderately difficult and the item discrimination revealed three usually 

unacceptable items, three good items, and one excellent items. This is good news and bad 

news. The bad news is that there were three unacceptable items on the test and therefore 

these three items should be looked at and modified or thrown out all together. However, 

item analysis is based on the number of correct responses. The questions given were taken 

from a middle grades standardized assessment; therefore, the content questions should have 

been easy for the participants to answer. 

Common errors in answering number and operations content questions included 

leaving the coefficient of a number in scientific notation greater than or equal to ten, and 

not changing the exponent when moving a decimal left or right when dealing with scientific 

notation. Another common reason for incorrect answers was failure to estimate, specifically 
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when the directions directly asked for estimation. These responses could indicate a lack of 

understanding of the properties of scientific notation; however, it could also just be they did 

not look over their answer carefully before recording it. The failure to estimate could have 

been a failure to read the instructions carefully or could indicate a lack of understanding 

when it comes to proper estimation strategies. Several of the students in the content 

understanding part indicated they estimated the answer after they performed the actual 

operation. This indicates that the failure to estimate and to estimate properly could 

definitely be a lack of understanding. The purpose of estimation is get an idea of what your 

answer should be without having to do any burdening mathematics.  

A majority of participants scored a two or a three on the content understanding 

part. A score of two generally meant the participant had a mathematically sound procedure; 

however, their answer did not match what the problem was wanting. A score of three 

generally meant the participant just explained their exact algorithm or mental mathematic 

procedure for the given item. A score of three indicated the participant’s did nothing above 

and beyond what was asked of them. It could argued, however, that explaining is not simply 

writing out an algorithmic procedure. However, if the solution was correct and was 

mathematically sound, the student had to receive a minimum score of three according to the 

rubric. This could be the fault of the rubric. 

Misuse of vocabulary was noted on two other items in the number and operations 

assessment. A common error on one item was adding together two given percents in an 

original price and then a sale price situation. This is a common error often found in sale 

price situations. The students think they can shorten the amount of work they do by simply 

adding the two percents together. They do not realize one discount applies to the original 
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price and the other discount applies to the sale price. One way to overcome this error is to 

give an example involving percentages that add up to 100. Then, when the participants 

would have added the percents together, they would have seen that the shirt would have 

“cost” them $0. This cannot be, so they would have to go through and think about what the 

problem was asking them to do. The other common error was the mixing up of greatest 

common factor and least common multiple. Even when the participants got the answer 

right, several used the word factor instead of multiple. These two terms, factor and multiple, 

are especially important in instruction in the middle grades. The greatest common factor is 

found when adding and subtracting fractions in number and operations as well as algebra 

settings. Least common multiple is a term introduced around the fifth grade and used 

throughout the rest of the participant’s schooling. A way to show the proper relationship 

between factors and the least common multiple is to find the prime factorization of all the 

numbers given and then find the least common multiple based on the number of times a 

factor occurs in each number. Only two participants on the number and operations 

assessment explained their solution in this way. 

For the pedagogical understanding of number and operations, a majority of the 

participants scored a two, three, or four. A score of two generally meant the procedure was 

somewhat correct, but contained minor mathematical errors. A score of three generally 

indicated the student could successfully explain their own procedure to a person who did 

not understand. A score of four generally indicated the student could do more than just 

explain their own procedure. They could relate their procedure back to different parts of the 

problem and could often explain why they got a certain number or conducted a certain 

procedure. Scores of two and three on the pedagogical understanding part tended to be very 



   162 

algorithmic in nature and the general method of instruction could be assumed to be direct 

since there was no mention of any other method. With a score of four, there was often an 

indication of some culturally responsiveness in the explanation. Scores of two and three are 

a little discouraging because participants should be able to explain their procedures a little 

more thoroughly, especially knowing they are going to have to teach the concept or item to 

someone who did not understand. It is encouraging however, that they can at least explain 

their own procedure correctly to a student. Scores of four on this part were encouraging 

since this indicated a little bit of cultural responsiveness in the explanation as well as going 

beyond just explaining their own algorithmic procedure. 

Although the scores reported for the mathematics knowledge for teaching number 

and operations could initially be discouraging to the reader, it is important to not associate 

letter grades with these percentages. The mean was used to calculate the averages and it is 

important to remember the students are all at various places in their program. Since this 

study is the first of its kind, there can be no comparisons made. Instead, these numbers are 

setting the bar for future studies. 

Mathematics Knowledge for Teaching Algebra 

The reliability of the assessment was found to be comparable to other standardized 

assessments. This was to be expected because the content questions were taken from a 

reputable standardized test and the content was not changed. The item analysis revealed an 

item difficulty of moderately difficult and the item discrimination revealed three usually 

unacceptable items, and four good items. This was good news and bad news again. The bad 

news is that there were three unacceptable items on the test and therefore these three items 

should be looked at and modified or thrown out all together. However, item analysis is 
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based on the number of correct responses. The questions given were taken from a middle 

grades standardized assessment; therefore, the content questions should have been easy for 

the participants to answer.  

There was only one item on the algebra assessment for which less than half of the 

participants answered correctly. The reason for the higher scores in the area of algebra 

could be from the concentration on algebra in often found in high school and early college 

courses in mathematics. Participants had trouble translating verbal sentences into algebraic 

equations. Common errors included simply not following the directions of the item and 

misinterpretation of the given information. In the item, several participants solved an 

inequality when they were just asked to set it up. Many of their answers were correct; 

however, it was not the information the item was looking for. A majority of students who 

missed this item though misinterpreted the given information regarding cost and profit. The 

students added a fee to a profit instead of subtracting it out. This could be from a lack of 

problem solving skills of the participants. Reading items carefully and carefully extracting all 

given information properly are essential to effective teaching in the middle grades. 

Misinterpretation of given information showed up again in another item, although over fifty 

percent of the participants answered the question correctly. Another noteworthy item dealt 

with the factoring of trinomials. Of the students who missed this item, a majority switched 

their signs in the parentheses. Using the distributive property, participants could have 

checked their answer. Checking your answer is an essential part of the problem solving 

process and is often the most skipped over part. Several of the participants stated they 

multiplied their answers back out to check their answer. Interestingly, a majority of the 
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participants who had switched their signs and used the distributive property to check their 

answer got the original problem. 

A majority of the participants scored either a two or a three on content 

understanding for algebra. A score of two generally meant the student had a mathematically 

sound procedure; however, their answer did not match what the problem was looking for. 

A score of three generally indicated the student just explained or algorithmically showed 

their exact mathematic procedure for the given item. These majority scores indicate 

students know how to do the algorithmic procedures needed to be successful in algebra. 

However, they may not understand why they are doing these procedures or even 

understand what they are doing when they complete an algorithmic sequence. 

Interestingly, the noteworthy area for the algebra assessment for content 

understanding was the translating of verbal sentences into algebraic equations again. A 

common theme across all explanations for these items was “just follow the words…they tell 

you what to do.” Again, this could be tied back to problem solving processes. Problem 

solving is an essential component of middle grades mathematics curriculum and is a strand 

in the NCTM (2000) standards. Participants take a course in problem solving (MASC 351) 

during the sophomore or junior year, so this class should help with problems and 

explanations such as these. 

The other two items of interest complemented each other in that one addressed 

multiplying binomials together and the other address factoring trinomials. The common 

explanation for content understanding in the item addressing the multiplication of 

binomials was “I just used FOIL to multiply it out and then I added like terms.” FOIL is a 

process which is supposed to aid students in using the distributive property to multiply two 
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binomials together. However, from this example, one can see it is evident the participants 

memorized the procedure and may not understand what they doing. It was noted there was 

a lack of the term distributive property in a majority of the answers. FOIL, or other 

methods such as the box method, is taught as early as sixth grade and engrained into 

students’ minds all through high school and even on into college. There are alternative 

procedures to teaching the multiplication of binomials that the participants are taught 

during the middle grades program at the site of the study, including algebra tiles. When it 

came to factoring the trinomials, the FOIL method backwards was the most commonly 

chosen method. Several students even went so far as to call factoring “FOILing.” The most 

notable thing about their content understanding explanations was the fact the participants 

concentrated on explaining how the factors of the last term were combined to find the 

middle term. There was little or no concentration on where the first term came from. 

For the pedagogical understanding of algebra, a majority of the participants scored a 

two or a three. Scores of two and three tended to be very algorithmic and procedure-

oriented in nature. A score of two generally meant the procedure was somewhat correct, but 

contained minor mathematical errors or had missing parts to the item. A score of three 

generally indicated the student could successfully explain their own procedure to a person 

who did not understand. However, their explanation did not go beyond their own 

algorithmic procedure. The general method of instruction could be assumed to be direct 

since there was no mention of any other method. Across all the pedagogical understanding 

responses, there was a great indication of cultural responsiveness than was found on the 

number and operations items.  
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Themes noteworthy for the pedagogical understanding of algebra dealt with the 

teaching of the concepts associated with the multiplication of binomials and the factoring of 

trinomials. Again, FOIL, forwards and backwards, was a common theme in the responses. 

It was again noted there was an extreme concentration on finding the two second terms 

from the last term of the trinomial by factoring it and finding combinations of numbers to 

give one the middle term. There was little or no concentration on how and why the 

parentheses were split and what happened with the y2 term. This is most likely because this 

was the only way the participants were taught and they are not aware of anything else. 

However, in the upper level courses in education, there is a focus on different methods of 

instruction. An example of this is the use of algebra tiles to demonstrate multiplication of 

binomials and then factoring of trinomials. Only one participant suggested algebra tiles. A 

few responses indicated the use of Base-10 blocks to model these procedures. However, 

Base-10 blocks are not effective because they all fit together. Algebra tiles have an odd 

length for the x -bar and the unit squares do not fit evenly across the bar. This is to help 

represent x as an unknown. Base-10 blocks cannot do this.  

Mathematics knowledge for teaching algebra scores overall could again be 

discouraging. However, it is important to not assign letter grades with these percentages. 

The mean was used to calculate the averages and it is important to remember the students 

are all at various places in their program. Since this study is the first of its kind, there can be 

no comparisons made. Instead, these numbers are setting the bar for future studies. 

Mathematics Knowledge for Teaching Geometry 

The reliability of the assessment was found to be comparable to other standardized 

assessments. This was to be expected because the content questions were taken from a 



   167 

reputable standardized test and the content was not changed. The item analysis revealed an 

item difficulty of moderately difficult and the item discrimination revealed two usually 

unacceptable items, three good items, and two excellent items. This is again good news and 

bad news. The bad news is that there were two unacceptable items on the test and therefore 

these two items should be looked at and modified or thrown out all together. However, 

item analysis is based on the number of correct responses. The questions given were taken 

from a middle grades standardized assessment; therefore, the content questions should have 

been easy for the participants to answer. 

There were no test items for which less than half of the participants answered 

correctly. There were some interesting commonalities on items that were missed though. 

The first common error found was participants’ lack of “plugging in” the x-value in order 

to find the measure of a specified angle after using algebra to find the missing value. This 

error often happens when there is more work to be done after an equation has been solved. 

Participants need to be sure to read the problem carefully, apply problem solving techniques 

every time, and be sure they are answering what the problem is asking for. On an item 

identifying complementary angles, a majority of the students who incorrectly answered the 

problem identified vertical angles instead of complementary angles. Further analysis, 

discussed later, revealed that these participants are thinking complementary and congruent 

are analogous terms. On another item, participants who incorrectly answered the item 

described a relationship between two angles as equaling 180 degrees instead of 

supplementary. 

On the content understanding part of geometry, a majority of the participants 

scored a three. A score of three generally indicated the student just explained their exact 
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algorithmic or mental mathematic procedure with no additional explanations given for the 

item. The procedures were mathematically correct and their solution was correct. Overall, 

the explanations of the solutions for the geometry assessment revealed incorrect vocabulary. 

When dealing with parallel lines and a transversal a majority of the students who incorrectly 

answered these items mixed up the terminology for corresponding angles, alternate interior 

angles, and alternate exterior angles. There were also several students who thought 

complementary angles were congruent angles. Vertical angle terminology revealed that 

students often associate vertical angles with longitudinal directions. Other common terms 

used instead of vertical angles were opposite and diagonal. The researcher is not sure why 

there was so much confusion with the vocabulary associated with the geometry items. 

Vertical is a directional term in everyday life and the participants may have not seen 

geometry material since their early years of high school. So the participants may have 

forgotten much of the terminology and relationships associated with geometry. This 

however is not good because these terms are very important to middle grades geometry. 

With the way the high school mathematics courses are sequenced, most middle grades 

students will not see geometry again until their sophomore or junior years of high school.  

The last and interesting noteworthy trend across the content understanding in 

geometry was the use of the term linear pairs, often instead of supplementary. A linear pair 

is a term the participants learn in one of their mathematics courses introducing abstract 

mathematics and different methods of proving problems. A linear pair is a conjecture in 

geometry. A linear pair is formed when two lines intersect.  Two angles are said to be linear 

if they are adjacent angles formed by two intersecting lines. The measure of a straight angle 

is 180 degrees, so a linear pair of angles must add up to 180 degrees. Two angles are called 
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supplementary angles if the sum of their degree measurements equals 180 degrees. So, 

comparing the two words, linear pair is a specific instance where adjacent angles add up to 

180 degrees whereas supplementary angles describe the relationship between two angles 

whose sum is 180 degrees. The angles do not necessarily have to be adjacent. 

For the pedagogical understanding of geometry, a majority of the participants 

scored a three or a four. A score of three indicated the student could successfully explain 

their own procedure to a person who did not understand. However, they did no more than 

explain their exact procedure. A score of four indicated the student could go just beyond 

the explanation of their own procedure, many times adding terms and definitions associated 

with the problem or providing a basic definition of why they did what they did. Of the 

students who mentioned directional associations in the content understanding part, a 

majority just mentioned describing the definition of vertical angles to someone who did not 

understand. There was no additional explanation as to what this definition might be. 

Although it cannot be stated for sure, but it can be deduced those students who incorrectly 

associated vertical angles with directions would pass on this information to their students. A 

couple of participants even went so far as to say “horizontal angles” or even to bring a map 

in to help students out with directions. Of the participants who incorrectly associated 

complementary and congruent, their pedagogical understanding revealed similar 

explanations to someone who did not understand.  

Across all pedagogical understanding of the items on the geometry assessment there 

were several instances of exploration activities. Most of the activities involved providing 

actual measurements and protractors to students so they could measure the angles and the 

come up with their own idea of the relationships between angles (i.e., supplementary, 
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complementary, corresponding, etc.). The use of these kinds of activities promotes cultural 

responsiveness in a classroom, allows for student-centered learning, and can aid in 

practicing problem solving processes.  

Mathematics knowledge for teaching geometry scores overall could again be 

discouraging. However, it is important to not assign letter grades with these percentages. 

The mean was used to calculate the averages and it is important to remember the students 

are all at various places in their program. Since this study is the first of its kind, there can be 

no comparisons made. Instead, these numbers are setting the bar for future studies. 

Mathematics Knowledge for Teaching Probability and Statistics 

The reliability of the assessment was found to be comparable to other standardized 

assessments. This was to be expected because the content questions were taken from a 

reputable standardized test and the content was not changed. The item analysis revealed an 

item difficulty of moderately difficult and the item discrimination revealed four usually 

unacceptable items and three good items. This is good news and bad news. The bad news is 

that there were four unacceptable items on the test and therefore these four items should be 

looked at and modified or thrown out all together. However, item analysis is based on the 

number of correct responses. The questions given were taken from a middle grades 

standardized assessment; therefore, the content questions should have been easy for the 

participants to answer. 

One item on the probability and statistics assessment has less than half of the 

participants answer it correctly. This item was investigated for commonalities in the errors 

of the answers given. The majority of the participants who did not answer the question 

correctly simply forgot to reduce the fraction for their final answer. This error can again be 
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associated with problem solving practices. It is very important to double check the answer 

to make sure it is accurate and makes sense. Checking an answer at the end can catch minor 

errors such as reducing fractions. The other two types of errors, minimal but still evident in 

student answers, were the adding of the two probabilities and the treatment of an item 

concerning with or without replacement. Errors such as these reveal a misunderstanding in 

the concepts of independent and dependent events.  

On the content understanding part of the probability and statistics assessment, a 

majority of the participants scored a three. A score of three generally indicated the student 

just explained their exact algorithmic or mental mathematic procedure for the given item. 

The procedures were mathematically correct and their solution was correct; however, there 

was no further explanation provided other than the algorithmic procedure. There were a 

few minor errors noteworthy on the probability and statistics assessment. The first was an 

incorrect form of stating the range of a data set. Of the students who incorrectly answered 

this problem, a majority of them indicated the range of the data as an actual range of 

numbers (i.e., 73 – 97) instead of calculating the range by subtracting the highest and lowest 

scores. This could come from real life experiences. In real life, the range is usually reported, 

“the test scores ranged from 73 to 93.” Participants could have confused this with the 

definition of range in probability and statistics. Another common error on this item was the 

ordering of the numbers. Several participants subtracted the first number from the last 

number. It could perhaps be assumed that the participants just forgot to reorder the items, 

but it could also be assumed that the participants think the range is the difference between 

the first and last scores.  
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Probably one of the most interesting items out of all four assessments was the item 

addressing reading and interpreting data represented graphically through a pictograph. This 

item is the only item out of all four assessments that received 100% correct responses. 

However, in comparison with the explanations, it was revealed that although the 

participants had given the correct answer, their explanations were not correct. The most 

common error was interpreting “three times greater” as “three more.” This could be from 

misunderstanding of the common vocabulary associated with multiplication and addition. 

Another common error found was the misinterpretation of a graphic on the 

assessment. The participants went by the number of colors of the cards instead of the 

words that were written on the cards. This again falls back the problem solving process 

reading the problem carefully and going back to check one’s answer to make sure it makes 

sense.  

For the pedagogical understanding of the probability and statistics assessment, a 

majority of the students scored either a three or a four. A score of three generally indicated 

the student could successfully explain their own procedure to a person who did not 

understand. These explanations tended to be very algorithmic in nature and the general 

method of instruction could be assumed to be direct since there was no mention of any 

other method. A score of four on the understanding part indicated the student could do 

more than just explain their own procedure. They could relate their procedure back to 

different parts of the problem and could often explain why they got a certain number or 

conducted a certain procedure. Responses at this level tended to be more culturally 

responsive than a score of three. Again, a reason for similar procedures being explained to 

their own could be because they do not understand any other way or method to do the 
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problem. It also could have to do with how they were taught probability and statistics items 

when they were in school. 

Analysis across pedagogical understanding of all items on the probability and 

statistics assessment revealed several trends of interest. The first had to do with 

demonstrating an item on a smaller scale. This is often a recommended strategy for 

developmentally teaching a concept. Another theme was the use of hands-on material in 

order to conduct experiments. The participant responses wanted their students to conduct 

the experiments in order to have a better understanding of what the problem was asking 

for. This use of hands-on material and various methods of instruction are encouraging 

because it helps to promote cultural responsiveness in the classroom. However, the 

researcher noticed there was little or no connection of experimental probability to 

theoretical probability. This is an important concept to convey to students because the 

experiments conducted in the classroom may or may not be close to the theoretical 

probability of that experiment. If the use of hands-on material was not mentioned, the 

pedagogical response generally contained some sort of other representation of the item 

being addressed. The most common representation of these was pictorial. Although this 

method is not as culturally responsive as the hands-on method, it at least gives students 

another way to look at a problem.  

Mathematics knowledge for teaching probability and statistics scores overall could 

again be discouraging. However, it is important to not assign letter grades with these 

percentages. The mean was used to calculate the averages and it is important to remember 

the students are all at various places in their program. Since this study is the first of its kind, 
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there can be no comparisons made. Instead, these numbers are setting the bar for future 

studies. 

Effect of Enrollment Classification on Mathematics Knowledge for Teaching 

Enrollment classification (freshman, sophomore, junior, senior) had a statistically 

significant contribution to number and operations content knowledge, content 

understanding, pedagogical understanding, and mathematics knowledge for teaching 

number and operations. Although enrollment classification did not contribute significantly 

to algebra content knowledge, it did have a statistically significant contribution to algebra 

content understanding, pedagogical understanding, and mathematics knowledge for 

teaching algebra. There was no interactions or statistical significance found in the areas of 

geometry and probability and statistics. It makes sense that enrollment classification would 

contribute to mathematics knowledge for teaching since mathematics knowledge for 

teaching should theoretically increase as one advances in courses and classification. A 

reason for no contribution for content knowledge could be because the student came into 

college with the same algebra content knowledge being taught in the courses, therefore 

there was nothing new to learn. Probably the main reason for no significant contributions in 

geometry was because the content knowledge failed the homogeneity of variance test. Even 

though after content knowledge was removed from the analysis, there was a significant 

decrease from R2 to adjusted R2 for each part of the geometry indicating a loss of power. In 

the case of pedagogical understanding, everything and more was lost. The case was similar 

for the probability and statistics strand. A larger sample size could perhaps help get more 

power to run the statistical analyses. Effect sizes were small across each analyses, especially 
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among probability and statistics and geometry. However, there is no interpretation for the 

effect sizes because there are no studies to compare this one to. 

Cohort Development Differences on Mathematics Knowledge for Teaching 

Cohort type did not contribute significantly to mathematics knowledge for teaching 

number and operations or any of its parts. However, in this analysis, GPA, the covariate, 

had a statistically significant contribution on number and operations content knowledge, 

content understanding, and mathematics knowledge for teaching number and operations. 

This could be because much of the content addressed in number and operations is learned 

by the participants in the middle grades and then again in high school. There is very little 

specific focus on this strand in college mathematics courses. Therefore, students will have 

already come in knowing what they need to know to perform well on the number and 

operations assessment. Cohort did not contribute significantly to algebra content 

knowledge, pedagogical understanding, and mathematics knowledge for teaching algebra. 

Cohort did not have a statistically significant contribution to geometry content knowledge, 

content understanding, or mathematics knowledge for teaching geometry, but did have a 

statistically significant contribution to pedagogical understanding. This makes sense because 

as one advances through the cohorts, the more education-related classes (i.e., MASC 351) 

are integrated into the coursework. By the end of the last cohort, one should be an expert in 

middle grades mathematics, especially since they will be going out and teaching the middle 

grades. As cohort level increases, the more pedagogy is integrated. In fact in the last cohort, 

participants were either in their methods block and spending three days a week in the 

classroom, or student teaching. Again, effect sizes were small, but there was nothing to 

compare them to. Cohort did not contribute anything to mathematics knowledge for 
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teaching probability and statistics or any of its parts. Effect sizes were small. On the 

mathematics knowledge for teaching probability and statistics and mathematics knowledge 

for teaching geometry there was a loss of predictive power to where the adjusted R-squared 

was negative. This indicates the analysis essentially lost what it had to begin with and lost 

more in the process. Again, an increase in sample size could help counteract the loss of 

power.  

Impact of Various Types of Courses 

Current enrollment in MASC 450 had a statistically significant contribution to 

mathematics knowledge for teaching number and operations, mathematics knowledge for 

teaching algebra, and to mathematics knowledge for teaching geometry. MASC 450 is a 

special middle grades mathematics course developed to help students bridge their 

mathematics knowledge to mathematics pedagogy. It is very encouraging to see this course 

contribute to mathematics knowledge for teaching for three of the four content areas. 

Current enrollment in MATH 365 had a statistically significant contribution to mathematics 

knowledge for teaching algebra and to mathematics knowledge for teaching geometry. 

MATH 365 is a course designed for elementary and middle grades teachers which 

concentrates on advanced number and operations and algebra concepts. It was interesting 

that current enrollment in MATH 365 contributed to mathematics knowledge for teaching 

geometry. Perhaps this course built a good foundation for the information asked of the 

participants in the geometry assessment. Current enrollment in MEFB 497 had a statistically 

significant contribution to mathematics knowledge for teaching algebra. Students enrolled 

in MEFB 497 the semester of the study were student teaching. A reason for this significant 

contribution could be the topics the student teacher experienced during their student 
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teaching experience; perhaps there was more of a concentration on algebraic concepts 

during the second semester. The interaction of current enrollment in MATH 368 x MATH 

403 x MASC 351 x MASC 450 had a statistically significant contribution to mathematics 

knowledge for teaching probability and statistics. These courses were chosen together 

because a junior student is likely to take all of them in one semester or within a semester of 

each other. These courses demand higher levels of thinking than previous courses and force 

the students to use their problem solving abilities in order to be successful in the courses. 

Probability and statistics takes often takes a lot of higher order thinking skills in order to 

make sure one can correctly predict the experiment or actually conduct the experiment. 

Effect sizes were small for all of the above mentioned interactions. 

Math 403, which had already been taken, had a statistically significant contribution 

to mathematics knowledge for teaching algebra. MATH 403 is a mathematics and 

technology course geared to middle grades teachers. Many of the technologies used in this 

course use algebra and geometry concepts for exemplars, so it is encouraging to see this 

course contribute to the mathematics knowledge for teaching algebra. The interaction of 

MASC 351 x MASC 450, which have both already been taken, had a statistically significant 

contribution to mathematics knowledge for teaching probability and statistics. These two 

courses were often taken together this semester and last semester. It is likely to happen 

more in the future because the placement of MASC 450 is changing. Both courses focus on 

integrating mathematics knowledge with mathematics pedagogy, and promote higher order 

thinking skills. Higher order thinking skills are essential in probability and statistics; 

therefore, it is encouraging to see the interaction of these two courses, which have already 

been taken at the time of the assessment, contribute to participants’ mathematics knowledge 
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for teaching probability and statistics. The interaction of all courses together, which have 

already been taken, had a statistically significant contribution for mathematics knowledge 

for teaching probability and statistics. Essentially, this is telling us that the specified middle 

grades content courses, once taken, can significantly contribute to mathematics knowledge 

for teaching, specifically probability and statistics. This is definitely encouraging since this is 

the goal of the current middle grades program.  

Development in Certain Stages of the Middle Grades Program 

Predictors for mathematics knowledge for teaching each content strand were found 

to be statistically significantly correlated with its corresponding component, mathematics 

knowledge for teaching each content strand. Comparing the rates of each course, taken and 

currently enrolled, against the rates for the predictor for mathematics knowledge for 

teaching each content strand revealed MEFB 460 having the most impact across all content 

strands. MEFB 460 is the methods course middle grades teachers take the semester before 

they student teach. In addition, the preservice teachers are in middle grades schools three 

days a week for observations of classroom teachers. It is encouraging to see this course 

making an impact on mathematics knowledge for teaching since it is the last “real” course 

the participants take before going to student teach. It is also a course where mathematics 

pedagogy is more of a concentration than mathematics content.  

A model of fit for enrollment characteristics for the predictor variables for 

mathematics knowledge for teaching in each content area was determined. Mathematics 

knowledge for teaching number and operations was found to be quadratic. There was a dip 

in scores at the second semester juniors. This could be because of the type of courses the 

participants take their junior year. The courses include an abstract mathematics course, a 
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Euclidean Geometry course, and both MASC courses. These are courses requiring higher 

level thinking and the students are also taking science courses with their labs in order to 

fulfill their science certification requirements. These courses also do not have much 

concentration, if any, on number and operations concepts. Mathematics knowledge for 

teaching algebra was found to be cubic. There was an evening of the curve around the 

junior year and a steep increase during the senior year. The steep increase was encouraging 

and should theoretically happen because this is when the participants are taking their 

methods courses and going out into the schools. Mathematics knowledge for teaching 

geometry was found to be cubic. Although the model was cubic, the picture itself revealed 

very little change in the scores across each semester. However, there was a slight increase in 

the last semester of the participants’ second semester senior year. This is again encouraging 

since this shows that participant’s mathematics knowledge for teaching geometry increased 

as the participants progressed through their degree programs. Mathematics knowledge for 

teaching probability and statistics was found to be quadratic. There was again a slight 

decrease in scores around the junior year and then a steep increase in scores during their 

senior year. Again the increase in scores during their senior year fits the theoretical model of 

increasing mathematics knowledge for teaching as participants progress through their 

degree programs.  

A model of fit for cohort for the predictor variables for mathematics knowledge for 

teaching in each content area was determined. Mathematics knowledge for teaching number 

and operations was found to be quadratic. The picture appears to be linear; however there 

was a slight dip in scores on the second cohort, which were the MASC courses. The trend 

otherwise was increasing. Again, the theoretical model would assume increasing 
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mathematics knowledge for teaching with each cohort. According to this model, there 

seems to be a slight decrease in scores during the MASC courses indicating a negative effect 

on mathematics knowledge for teaching number and operations on cohort two. 

Mathematics knowledge for teaching algebra was found to be linear. The scores steadily 

increased with each cohort, which follows the theoretical model of increasing mathematics 

knowledge for teaching with each cohort. Mathematics knowledge for teaching geometry 

was found to be quadratic. However, instead of a slight decrease in scores during cohort 2, 

there was a slight increase in scores. This indicates the MASC courses had a more positive 

impact on geometry scores than the other two cohorts did. Mathematics knowledge for 

teaching probability and statistics was found to be quadratic. There was a gradual increase in 

scores across each cohort with a steeper grade in cohort 3.  

Conclusions 

Although average mathematics knowledge for teaching scores were low among 

individuals and there were several indications of student misunderstandings and 

misinterpretations, there was a general indication of increasing mathematics knowledge for 

teaching across cohorts and across enrollment characteristics. Again the purpose of this 

study was diagnostic and to investigate growth, not to establish benchmarks or norms. It 

was noted, however that there was a noticeable dip in mathematics knowledge for teaching 

scores during the participants’ junior semesters of courses. This could be from a number of 

factors including type of courses and course loads during the junior year. Hill, Rowan, and 

Ball (2005) found teachers’ mathematics preparation positively predicted student gains in 

the third grade. Although their results were not statistically significant (p < .06), there was 

enough evidence to note this positive prediction. MASC 450 and MEFB 460 were two 
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courses found to contribute the most to mathematics knowledge for teaching algebra, 

geometry, number and operations, and probability and statistics.  

Several other studies have found content understanding and pedagogical 

understanding to be weak among teachers. In the late 1980s, the National Center for 

Research on Teacher Education found elementary and secondary teachers were unable to 

explain their reasoning or why the algorithms they used worked (RAND, 2003). Instead, the 

exhibited a rule-bound sense of understanding. This rule-bound sense of understanding 

reflects the nature of teaching and curriculum teachers experienced in elementary and 

secondary schools (RAND, 2003). Although many of the studies (e.g., Eisenhardt, Borko, & 

Underhill, 1993; Even, 1990; Graeber & Tirosh, 1991; Ma, 1999; Simon, 1993; Wheeler & 

Feghali, 1993) revealed “right answers” by their participants, the participants lacked an 

understanding of the meanings behind their procedures or their solutions.  

Although this study was conducted at one site focusing on one middle grades 

mathematics specialist program, these results should be able to be generalized to other 

programs that follow such a model.  

Recommendations (Issues for Further Investigation) 

The need for further research concerning mathematics knowledge for teaching is 

more essential than ever. Preliminary research has been conducted and published at the 

elementary grade level; however, there is a lack of literature and research concerning 

mathematics knowledge for teaching at the middle grade level. This study was only a 

preliminary study that highlighted the beginnings and ends of preservice middle grades 

teachers’ mathematics knowledge for teaching. Research on this mathematics knowledge for 

teaching of preservice middle grades teachers serves as a foundation for future studies. 
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Effect sizes found in this study ranged from small to medium and should be comparable 

across future studies.  

 It is recommended that research continue on this very important topic by first 

conducting a longitudinal study involving the same assessments and format. Results from 

the longitudinal study should be compared to the initial results found in this study. Analyses 

or future studies varying the weights of the items on the rubric should be conducted in 

order to see if the weights on the parts and criteria for mathematics knowledge for teaching 

significantly change. Including more items, randomly assigned, for a bigger sample 

population would allow for more depth in studying preservice teachers’ mathematics 

knowledge for teaching, and encourage more volunteer student participation by decreasing 

the number of items given to one student. Including inservice teachers in a study with the 

preservice teachers would be essential to forming growth models and to study the increases 

in mathematics knowledge for teaching, especially during the first two years teaching. 

Additional items including the two other components (see Figure 1) of Ball’s (2006) 

mathematics knowledge for teaching model should be included in the assessment in order 

to better compare results to that of Ball and her staff at the University of Michigan. Finally, 

continued research on the middle grades mathematics specialist program should continue in 

order to produce more sound results that would enable the study site to continue to 

improve their program so as to produce middle grades teachers whose mathematics 

knowledge for teaching any content or process strand is exemplary.
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APPENDIX A  

MATHEMATICS KNOWLEDGE FOR TEACHING THE MIDDLE GRADES: A 

PRESERVICE TEACHER ASSESSMENT—VERSION 1  

Mathematics Knowledge for Teaching the Middle Grades of Preservice Teachers 
Questionnaire 

 
Although this questionnaire is a required portion of this course, if you DO NOT wish to 
have your scored included in the study, please indicate so below. No adverse actions will be 
taken against you or your grades if you choose this option. You will still participate in all the 
same tests, assignments, and other classroom activities as the rest of the class. 
 

� I agree to participate in this study 
� I do NOT agree to participate in this study 

 
By clicking to agree, you are agreeing to the consent form from the previous page. (If you 
would like to read it again, please use the back button and then click on take test and start 
again. You can also print the consent form from the previous screen). 
 
I have read and understand the explanation provided to me. I have had all my questions 
answered to my satisfaction, and I voluntarily agree to participate in this study. I have been 
given a copy of the consent form (you may print off the consent form from the previous 
page). 
 
Any questions can be directed to Margaret Mohr (runmohr@tamu.edu). 
 
A calculator is not necessary, but may be helpful. You are welcome to use a 
calculator on this questionnaire, but please do not use any other resources 
(including other people and/or websites)—the results of this questionnaire will 
NOT average into your class grade. Instead, you will receive credit for completing 
the questionnaire as designated by your teacher. We just want to know what you 
remember off the top of your head. 
 
Your answers will not be recorded until you submit the questionnaire. If you choose not to 
be a part of this study, your answers will be discarded, but you will still receive credit for 
completing the questionnaire for the purposes of a completion grade for your course. Please 
note, you MUST submit the questionnaire in order to receive completion credit. 
 
Thank you for your time and effort! We really appreciate your help! 
 

Name:  
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Course:  
 

Instructor:  
 
Background Information 
 
What is your gender? 

� Male 
� Female 

 
What is your current grade level? 

� Freshman 
� Sophomore 
� First Semester Junior 
� Second Semester Junior 
� First Semester Senior 
� Second (or more) Semester Senior 
� Other 

 
Which of the following best describes your major? 

� Education—Early Childhood 
� Education—Gr. 4-8 Language Arts/Social Studies 
� Education—Gr. 4-8 Math/Science 
� Other 

 
What is your ethnic background? 

� American Indian or Alaskan Native 
� Asian or Pacific Islander 
� African American 
� Hispanic/Latino 
� White (Non-Hispanic) 
� Other or prefer not to answer 

 
From the following list of courses, please indicate which ones you have taken: 

� MATH 365 
� MATH 366 
� MATH 367 
� MATH 368 
� MATH 403 
� MASC 351 
� MASC 450 
� MEFB 460 
� MEFB 497 
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From the following list of courses, please indicate which ones you are currently enrolled in 
this semester: 

� MATH 365 
� MATH 366 
� MATH 367 
� MATH 368 
� MATH 403 
� MASC 351 
� MASC 450 
� MEFB 460 
� MEFB 497 

 
What is the highest level of mathematics you took in high school and what grade did you 
receive? If you do not remember your grade in this course, please report the course and just 
omit the grade. 
 

 Course:   Grade: A, B, C, D, F, -- 
 
Please indicate the letter grade you received in each of the following courses. If you did not 
take a course listed, please just omit it from the list 
 
   A, B, C, D, F, Did Not Take       MATH 142 

  A, B, C, D, F, Did Not Take       MATH 131 

  A, B, C, D, F, Did Not Take            MATH 166 

  A, B, C, D, F, Did Not Take       STAT 303 
 

Content Questions 

 
1. Simplify the expression below. 

 

  
NOTE: Please use ^ to indicate powers where necessary. 
 

Answer:  
 
 Please explain your answer: 
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How would you explain, model, and/or demonstrate this item to someone who did 
not understand? 

 
 

2. Hank sells toy cars on a web site. The web site fee is $30. Hank sells each toy car for $4. 
Set up an inequality for Hank to use to determine how many toy cars, c, he must sell to 
make a profit of at least $50. 

 
Note: Please use <= to indicate “less than or equal to” and >= to indicate “greater than 

or  
equal to”. 

 

Answer:  
 
 Please explain your answer: 

 
 

How would you explain, model, and/or demonstrate this item to someone who did 
not understand? 

 
 
3. Linda must calculate the cost of filling her car’s 12-gallon gas tank. She calculates the 

difference between how much gasoline her gas tank will hold and the number of gallons 
of gas, g, already in the tank. Then she multiplies the difference by the price, p, of one 
gallon of gas. Set up an expression for Linda to use to calculate the cost to fill her gas 
tank.       

 

Answer:  
 
 Please explain your answer: 

 
 

How would you explain, model, and/or demonstrate this item to someone who did 
not understand? 

 
 
4. Multiply the expression below. 
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Answer:  
 
 Please explain your answer: 

 
 

How would you explain, model, and/or demonstrate this item to someone who did 
not understand? 

 
 

5. Write an equation that represents “eight less than twice a number is forty-two.” 
 

Answer:  
 
 Please explain your answer: 

 
 

How would you explain, model, and/or demonstrate this item to someone who did 
not understand? 

 
 

6. Factor     into two binomials.       
 

Answer:  
 
 Please explain your answer: 

 
 

How would you explain, model, and/or demonstrate this item to someone who did 
not understand? 

 
 
7. In the figure below, lines k and n are parallel. Line l is a transversal. 
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What is the value of x? 
 

Answer:  
 
 Please explain your answer: 

 
 

How would you explain, model, and/or demonstrate this item to someone who did 
not understand? 

 
 

8. The angles shown below are supplementary. The measure of   is  . 
 
 

 
Please write an expression that represents the measure of . 
 

Answer:  
 
 Please explain your answer: 
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How would you explain, model, and/or demonstrate this item to someone who did 
not understand? 

 
 

9.  
 

 
 

What is the measurement of  
 

Answer:  
 
 Please explain your answer: 

 
 

How would you explain, model, and/or demonstrate this item to someone who did 
not understand? 

 
 
10. Michael drew the diagram below. 

 

 
Which angle is complementary to  
 

Answer:  
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 Please explain your answer: 

 
 

How would you explain, model, and/or demonstrate this item to someone who did 
not understand? 

 
 

11. In the diagram below, line k and line n are parallel. Line l is a transversal. 
 

 
 

What is the relationship between   
 

Answer:  
 
 Please explain your answer: 

 
 

How would you explain, model, and/or demonstrate this item to someone who did 
not understand? 

 
 

12. Line s and line t intersect, as shown below. 
 

 
Which angles are vertical? 
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Answer:  
 
 Please explain your answer: 

 
 

How would you explain, model, and/or demonstrate this item to someone who did 
not understand? 

 
 

13. Line j and line k intersect, as shown below. 
 

 
Which two pairs are congruent angles? Please use a semi-colon to separate your 
answers. 
 

Answer:  
 
 Please explain your answer: 

 
 

How would you explain, model, and/or demonstrate this item to someone who did 
not understand? 

 
 

14. The figure below shows parallel lines cut by a transversal. 
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Based on the information, what is the measure of  ? Please use 
semi-colons to separate each of your answers. 
 

Answer:  
 
 Please explain your answer: 

 
 

How would you explain, model, and/or demonstrate this item to someone who did 
not understand? 

 
 

Please feel free to comment and give feedback on this assessment: the questions it 
contains, how long it took you, concerns, wording, etc. Thank you very much for 
your help!!! 
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APPENDIX B 

MATHEMATICS KNOWLEDGE FOR TEACHING THE MIDDLE GRADES: A 

PRESERVICE TEACHER ASSESSMENT—VERSION 2   

Mathematics Knowledge for Teaching the Middle Grades of Preservice Teachers 
Questionnaire 

 
Although this questionnaire is a required portion of this course, if you DO NOT wish to 
have your scored included in the study, please indicate so below. No adverse actions will be 
taken against you or your grades if you choose this option. You will still participate in all the 
same tests, assignments, and other classroom activities as the rest of the class. 
 

� I agree to participate in this study 
� I do NOT agree to participate in this study 

 
By clicking to agree, you are agreeing to the consent form from the previous page. (If you 
would like to read it again, please use the back button and then click on take test and start 
again. You can also print the consent form from the previous screen). 
 
I have read and understand the explanation provided to me. I have had all my questions 
answered to my satisfaction, and I voluntarily agree to participate in this study. I have been 
given a copy of the consent form (you may print off the consent form from the previous 
page). 
 
Any questions can be directed to Margaret Mohr (runmohr@tamu.edu). 
 
A calculator is not necessary, but may be helpful. You are welcome to use a 
calculator on this questionnaire, but please do not use any other resources 
(including other people and/or websites)—the results of this questionnaire will 
NOT average into your class grade. Instead, you will receive credit for completing 
the questionnaire as designated by your teacher. We just want to know what you 
remember off the top of your head. 
 
Your answers will not be recorded until you submit the questionnaire. If you choose not to 
be a part of this study, your answers will be discarded, but you will still receive credit for 
completing the questionnaire for the purposes of a completion grade for your course. Please 
note, you MUST submit the questionnaire in order to receive completion credit. 
 
Thank you for your time and effort! We really appreciate your help! 
 

Name:  
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Course:  
 

Instructor:  
 
Background Information 
 
What is your gender? 

� Male 
� Female 

 
What is your current grade level? 

� Freshman 
� Sophomore 
� First Semester Junior 
� Second Semester Junior 
� First Semester Senior 
� Second (or more) Semester Senior 
� Other 

 
Which of the following best describes your major? 

� Education—Early Childhood 
� Education—Gr. 4-8 Language Arts/Social Studies 
� Education—Gr. 4-8 Math/Science 
� Other 

 
What is your ethnic background? 

� American Indian or Alaskan Native 
� Asian or Pacific Islander 
� African American 
� Hispanic/Latino 
� White (Non-Hispanic) 
� Other or prefer not to answer 

 
From the following list of courses, please indicate which ones you have taken: 

� MATH 365 
� MATH 366 
� MATH 367 
� MATH 368 
� MATH 403 
� MASC 351 
� MASC 450 
� MEFB 460 
� MEFB 497 
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From the following list of courses, please indicate which ones you are currently enrolled in 
this semester: 

� MATH 365 
� MATH 366 
� MATH 367 
� MATH 368 
� MATH 403 
� MASC 351 
� MASC 450 
� MEFB 460 
� MEFB 497 

 
What is the highest level of mathematics you took in high school and what grade did you 
receive? If you do not remember your grade in this course, please report the course and just 
omit the grade. 
 

 Course:   Grade: A, B, C, D, F, -- 
 
Please indicate the letter grade you received in each of the following courses. If you did not 
take a course listed, please just omit it from the list 
 
   A, B, C, D, F, Did Not Take       MATH 142 

  A, B, C, D, F, Did Not Take       MATH 131 

  A, B, C, D, F, Did Not Take            MATH 166 

  A, B, C, D, F, Did Not Take       STAT 303 
 

Content Questions 
 

1. The Horseshoe Nebula is about 3
5.0 10×  light years away from Earth. One light year is 

equal to approximately 12
5.9 10× miles. What is the approximate distance, in miles, 

between Earth and the Horseshoe Nebula? 
 

Note: Please use the ^ to indicate a power       
 

 Answer:  
 
 Please explain your answer: 

 
 



   206 

How would you explain, model, and/or demonstrate this item to someone who did 
not understand? 

 
 
2. During the summer, Breanna works at a coffee shop. She saves 75% of her earnings to 

buy new school clothes. If Breanna earns $750, what is the best estimate for the 
amount of money she saves to buy clothes? 

 

Answer:  
 
 Please explain your answer: 

 
 

How would you explain, model, and/or demonstrate this item to someone who did 
not understand? 

 
 
3. Thomas earns a 5% commission for each cellular phone he sells. On Tuesday, he sells a 

cellular phone for $180. How much commission does Thomas earn on this sale? 
 

Answer:  
 
 Please explain your answer: 

 
 

How would you explain, model, and/or demonstrate this item to someone who did 
not understand? 

 
 
4. The table below shows the number of students who attended Walters Middle School 

each year during a five-year period. 
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What is the approximate percent increase in the number of students from 2000 to 
2004? 
 

Answer:  
 
 Please explain your answer: 

 
 

How would you explain, model, and/or demonstrate this item to someone who did 
not understand? 

 
  

5. Simplify the expression below. 

      3
4  

 

Answer:  
 
 Please explain your answer: 

 
 

How would you explain, model, and/or demonstrate this item to someone who did 
not understand? 

 
 
6. Xavier bought a shirt that was on sale for 20% off the original price. He also used a 

coupon that gave him an additional 15% off the sale price of the shirt. The original 
price of the shirt was $37. What is the new price of the shirt before tax? 
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Answer:  
 
 Please explain your answer: 

 
 

How would you explain, model, and/or demonstrate this item to someone who did 
not understand? 

 
 
7. What is the least common multiple of 3, 6, and 27? 

 

Answer:  
 
 Please explain your answer: 

 
 

How would you explain, model, and/or demonstrate this item to someone who did 
not understand? 

 
 
8. Jacob received the following scores on his last five science tests. 

                81, 73, 80, 94, 97 
What is the range of Jacob’s scores for these five science tests? 
 

Answer:  
 
 Please explain your answer: 

 
 

How would you explain, model, and/or demonstrate this item to someone who did 
not understand? 

 
  
9. A spinner is divided into five equal sections numbered 1 through 5. Predict how many 

times out of 240 spins the number is most likely to stop on an odd number. 
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Answer:  
 
 Please explain your answer: 

 
 

How would you explain, model, and/or demonstrate this item to someone who did 
not understand? 

 
 
10. The pictograph below records Vista Sunglass sales for 2004. 

 

 
Which color of lens had sales three times greater than one of the other color of 
lens? 
 

Answer:  
 
 Please explain your answer: 

 
 

How would you explain, model, and/or demonstrate this item to someone who did 
not understand? 
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11. A shipping company uses baggage tags with 3-letter city codes. The first and third 
letters of each code are always consonants and the middle letter is always a vowel. The 
English language uses 21 consonants and 5 vowels. How many different combinations 
of tag codes are possible? 

 

Answer:  
 
 Please explain your answer: 

 
 

How would you explain, model, and/or demonstrate this item to someone who did 
not understand? 

 
 
12. Eric’s mother wants to help him with his math homework. She puts 24 cookies in a 

cookie jar. Twelve of the cookies are chocolate chip, 8 are oatmeal, and 4 are peanut 
butter. She then has Eric select a cookie from the jar without looking. Next, without 
replacing the first cookie, Eric picks a second cookie without looking in the jar. What is 
the probability Eric will pick an oatmeal cookie first and a chocolate chip cookie 
second? 

 
NOTE: Please use / to indicate a fraction and/or ratio. 
 

Answer:  
 
 Please explain your answer: 

 
 

How would you explain, model, and/or demonstrate this item to someone who did 
not understand? 

 
 
13. Derek conducts a probability experiment for his mathematics class. He uses the ten 

cards shown below. 
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Derek randomly picks one of the ten cards from a container, looks at the color, and  
replaces the card. He repeats this 100 times. How many times would you expect 
Derek to pick a white card? 
 

Answer:  
 
 Please explain your answer: 

 
 

How would you explain, model, and/or demonstrate this item to someone who did 
not understand? 

 
 
14. Dylan has a bag containing 15 marbles. The table below shows the number of marbles 

of each color in the bag. As part of a probability experiment for his science class, Dylan 
randomly picks a marble from the bag and then replaces it. He repeats this 300 times. 

 

 
Predict the number of times out of 300 Dylan will pick a red marble.  
 

Answer:  
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 Please explain your answer: 

 
 

How would you explain, model, and/or demonstrate this item to someone who did 
not understand? 

 
 
 

Please feel free to comment and give feedback on this assessment: the questions it 
contains, how long it took you, concerns, wording, etc. Thank you very much for 
your help!!! 
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 APPENDIX C 

PARTICIPANT CONSENT FORM FOR INFORMATION RELEASE 

Mathematics Knowledge for Teaching of Preservice Middle Grades Teachers 

The purpose of the study: 

I understand the purpose of this study is to understand more about what future middle 
grades teachers know about teaching middle grades mathematics. Since many students who 
take this class are preparing to teach, I have been asked to participate regardless of my 
major. This is not an experiment. The researcher will not attempt to change the manner in 
which this class is taught. 

I agree to the following during Spring 2006: 

1. My instructor may provide information to the researcher including my grades from 
this class, samples of my work from this class, my age, gender, major, and 
classification (Freshman, Sophomore, Junior, or Senior). 

2. The researcher may request additional background information (such as previous 
course grades, MATH scores, and/or ethnicity). I can accept or decline to provide 
this information without repercussions and still participate in other parts of the 
study. 

I understand that: 

1. Participation is strictly voluntary. I can refuse to include my questionnaire. 

2. The information gathered will not affect grades or any other evaluations made by 
the teacher of this course. 

3. The information gathered will be confidential. Student and teacher names or any 
other identifying factors will be removed from any report or publications of the data 
or results. 

4. I may opt out of the project at any time and for any reason I deem necessary with 
no repercussions if I give written notice to the researcher. 

5. Approximately 600 students per semester in MATH 365, 366, 367, 368, & 403; 
MASC 351 & 450; MEFB 460 & 497 have been asked to participate. 

6. Participation in this study will not directly provide any benefits to me. Declining 
participation in this study will not cause adverse actions to be taken against me or 
my grades. 

I understand that this research study has been reviewed and approved by the Institutional 
Review Board—Human Subjects in Research, Texas A&M University. For research-related 
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problems or questions regarding subjects’ rights, I can contact the Institutional Review 
Board through Ms. Angelia M. Raines, Director of Research Compliance, Office of Vice 
President for Research at (979) 458-4067 (araines@vprmail.tamu.edu).  

I have read and understand the explanation provided to me. I have had all my questions 
answered to my satisfaction, and I voluntarily agree to have the results of my questionnaire 
included in this study. I have been given a copy of this consent form. 

  

Students name PRINTED                                                                                                       

Student’s Signature                                                                               Date                            

Researcher’s Signature                                                                          Date                            

If I do NOT wish to participate I will not return this form. No adverse actions will be taken 
against me or my grades if I choose this option. I will still participate in all the same tests, 
assignments, and other classroom activities as the rest of the class.  

If you have any questions or concerns, please contact: 

Researcher: Margaret J. Mohr 

TLAC Ph.D. student, Texas A&M University, MS 4232, College Station, TX 77843-4232, 
(979) 458-4174 

Student of: Dr. Gerald Kulm, Curtis D. Robert Professor 

TLAC Department, Texas A&M University, MS 4232, College Station, TX 77843-4232, 
(979) 862-4407 
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APPENDIX D 

ANSWER KEY TO ASSESSMENT  

Mathematics Knowledge for Teaching the Middle Grades: A Preservice Teacher Assessment 

NUMBER AND OPERATIONS CONTENT QUESTIONS 
 

1. The Horseshoe Nebula is about 3
5.0 10×  light years away from Earth. One light year is 

equal to approximately 12
5.9 10× miles. What is the approximate distance, in miles, 

between Earth and the Horseshoe Nebula? 
 

Note: Please use the ^ to indicate a power       
 
Answer: 2.95 x 10^16  

 
2. During the summer, Breanna works at a coffee shop. She saves 75% of her earnings to 

buy new school clothes. If Breanna earns $750, what is the best estimate for the 
amount of money she saves to buy clothes? 

 
Answer: $550.00 

 
3. Thomas earns a 5% commission for each cellular phone he sells. On Tuesday, he sells a 

cellular phone for $180. How much commission does Thomas earn on this sale? 
 
Answer: $9.00 

 
4. The table below shows the number of students who attended Walters Middle School 

each year during a five-year period. 
 

 
What is the approximate percent increase in the number of students from 2000 to 
2004? 
 
Answer:  40% 
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5. Simplify the expression below. 

      3
4  

 
Answer: 64 

 
6. Xavier bought a shirt that was on sale for 20% off the original price. He also used a 

coupon that gave him an additional 15% off the sale price of the shirt. The original 
price of the shirt was $37. What is the new price of the shirt before tax? 

 
Answer:  $25.16 

 
7. What is the least common multiple of 3, 6, and 27? 

 
Answer:  54 
 

PROBABILITY AND STATISTICS CONTENT QUESTIONS 
 

1. Jacob received the following scores on his last five science tests. 
                81, 73, 80, 94, 97 
What is the range of Jacob’s scores for these five science tests? 
 
Answer:  24 

 
2. A spinner is divided into five equal sections numbered 1 through 5. Predict how many 

times out of 240 spins the number is most likely to stop on an odd number. 
 
Answer: 144 

 
3. The pictograph below records Vista Sunglass sales for 2004. 
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Which color of lens had sales three times greater than one of the other color of 
lens? 
 
Answer: Yellow 
 

4. A shipping company uses baggage tags with 3-letter city codes. The first and third 
letters of each code are always consonants and the middle letter is always a vowel. The 
English language uses 21 consonants and 5 vowels. How many different combinations 
of tag codes are possible? 

 
Answer: 2,205 

 
5. Eric’s mother wants to help him with his math homework. She puts 24 cookies in a 

cookie jar. Twelve of the cookies are chocolate chip, 8 are oatmeal, and 4 are peanut 
butter. She then has Eric select a cookie from the jar without looking. Next, without 
replacing the first cookie, Eric picks a second cookie without looking in the jar. What is 
the probability Eric will pick an oatmeal cookie first and a chocolate chip cookie 
second? 

 
NOTE: Please use / to indicate a fraction and/or ratio. 
 
Answer: 4/23 

 
6. Derek conducts a probability experiment for his mathematics class. He uses the ten 

cards shown below. 
 



   218 

 
Derek randomly picks one of the ten cards from a container, looks at the color, and  
replaces the card. He repeats this 100 times. How many times would you expect 
Derek to pick a white card? 
 
Answer: 40 times 

 
7. Dylan has a bag containing 15 marbles. The table below shows the number of marbles 

of each color in the bag. As part of a probability experiment for his science class, Dylan 
randomly picks a marble from the bag and then replaces it. He repeats this 300 times. 

 

 
Predict the number of times out of 300 Dylan will pick a red marble.  
 
Answer: 160 times 
 

ALGEBRA CONTENT QUESTIONS 

 
1. Simplify the expression below. 

 

  
NOTE: Please use ^ to indicate powers where necessary. 
 
Answer: 3x^2y – 9xy + 7xy^2 



   219 

 
2. Hank sells toy cars on a web site. The web site fee is $30. Hank sells each toy car for $4. 

Set up an inequality for Hank to use to determine how many toy cars, c, he must sell to 
make a profit of at least $50. 

 
Note: Please use <= to indicate “less than or equal to” and >= to indicate “greater than 
or equal to”. 

 
Answer: 4c – 30 >= 50 

 
3. Linda must calculate the cost of filling her car’s 12-gallon gas tank. She calculates the 

difference between how much gasoline her gas tank will hold and the number of gallons 
of gas, g, already in the tank. Then she multiplies the difference by the price, p, of one 
gallon of gas. Set up an expression for Linda to use to calculate the cost to fill her gas 
tank.       

 
Answer: (12-g)p or p(12-g) 

 
4. Multiply the expression below. 

               
 
Answer: 6x^2 – 34x + 40 
 

5. Write an equation that represents “eight less than twice a number is forty-two.” 
 
Answer: 2n – 8 = 42 

 

6. Factor     into two binomials.       
 
Answer: (y + 6) (y – 3) or (y – 3) (y + 6) 

 
7. In the figure below, lines k and n are parallel. Line l is a transversal. 
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What is the value of x? 
 
Answer: x = 7 
 

GEOMETRY CONTENT QUESTIONS 

1. The angles shown below are supplementary. The measure of   is  . 
 
 

 
Please write an expression that represents the measure of . 
 
Answer: 180 – 2x 

 

2.  
 

 
 

What is the measurement of  
 
Answer: 60 degrees 

 
3. Michael drew the diagram below. 

 

 
Which angle is complementary to  
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Answer: < P or angle P 
 

4. In the diagram below, line k and line n are parallel. Line l is a transversal. 
 

 
 

What is the relationship between   
 
Answer: Supplementary 
 

5. Line s and line t intersect, as shown below. 
 

 
Which angles are vertical? 
 
Answer: < 3 and < 1 OR < 2 and < 4 (can have both) 
 

6. Line j and line k intersect, as shown below. 
 

 
Which two pairs are congruent angles? Please use a semi-colon to separate your 
answers. 
 
Answer:  < T & < S; < U & < R (HAVE TO HAVE BOTH!!!!) 
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7. The figure below shows parallel lines cut by a transversal. 
 

 

Based on the information, what is the measure of  ? Please use 
semi-colons to separate each of your answers. 
 
Answer:  a = 51; d = 129; x = 51; z = 51 (all of these are degrees, but DON’T 
have to put degrees) 
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APPENDIX D 

RUBRIC FOR ASSESSMENT 

Holistic Rubric for Open-Ended Questions 

Content Knowledge 
0 point Did NOT correctly answered the given problem 

1 point Correctly answered the given problem 

 
 
 

5-6 
points 

A five- to six-point response is complete and correct. 
This response: 
� Demonstrates a thorough understanding of the mathematics concepts and/or 

procedures embodied in the task 
� Indicates the student has completed the task correctly, using mathematically sound 

procedures 
� Contains clear, complete explanations and/or adequate work when required 

 
 
 
 
 

3-4 
points 

A three- to four-point response is partially correct. 
This response: 
� Demonstrates partial understanding of the mathematical concepts and/or procedures 

embodied in the task 
� Addresses most aspects of the task, using mathematically sound procedures 
� May contain an incorrect solution but applies a mathematically appropriate process 

with valid reasoning and/or explanation 
� May contain a correct solution but provide faulty or incomplete procedures, reasoning, 

and/or explanations 
� May contain a correct solution but lacks work when required 
� May reflect some misunderstanding of the underlying mathematical concepts and/or 

procedures 

 
 
 
 
 
 

1-2 
points 

A one- to two-point response is incomplete and exhibits many flaws but is not completely 
incorrect. 
This response: 
� Demonstrates only a limited understanding of the mathematical concepts and/or 

procedures embodied in the task 
� May have addressed some elements of the task correctly but reached an inadequate 

solution and/or provided reasoning that was faulty or incomplete 
� Exhibits multiple flaws related to a misunderstanding of important aspects of the task, 

misuse of mathematical procedures, or faulty mathematical reasoning 
� Reflects a lack of essential understanding of the underlying mathematical concepts 

0 
points 

A zero-point response is completely incorrect, irrelevant, or incoherent. 

 
/7 
 

 
TOTAL POINTS AWARD FOR CONTENT SECTION 
 

*Adapted from the New York State Testing Program (2005) Grade 8 Test Sampler Draft 
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Pedagogical Knowledge 
 
 
 

5-6 points 

A five- to six-point response is complete and correct. 
This response: 
� Demonstrates a thorough understanding of the mathematics pedagogy 

and/or pedagogy embodied in the task 
� Indicates the student has completed the task correctly, using mathematically 

and pedagogically sound procedures 
� Contains clear, complete explanations and/or adequate work when required 
� Exemplary method of instruction/explanation is culturally responsive and 

fosters cultural understanding, safety, emotional well being and is conducive 
to learning for diverse learners 

 
 
 
 
 
 

3-4 points 

A three- to four-point response is partially correct. 
This response: 
� Demonstrates partial understanding of the mathematics pedagogy and/or 

pedagogy embodied in the task 
� Addresses most aspects of the task, using mathematically and pedagogically 

sound procedures 
� May contain an incorrect solution but applies a mathematically or 

pedagogically appropriate process with valid reasoning and/or explanation 
� May contain a correct explanation but provides faulty or incomplete 

procedures, reasoning, and/or explanations 
� May contain a correct solution but lacks work when required 
� May reflect some misunderstanding of the underlying mathematics 

pedagogy and/or pedagogy 
� Competent method of instruction/explanation fosters cultural 

understanding, safety, emotional well being and is conducive to learning for 
diverse learners 

 
 
 
 
 
 

1-2 points 

A one- to two-point response is incomplete and exhibits many flaws but is not 
completely incorrect. 
This response: 
� Demonstrates only a limited understanding of the mathematics pedagogy 

and/or pedagogy embodied in the task 
� May have addressed some elements of the task correctly but reached an 

inadequate solution and/or provided reasoning that was faulty or 
incomplete 

� Exhibits multiple flaws related to a misunderstanding of important aspects 
of the task, misuse of mathematical procedures or concepts, or faulty 
mathematical reasoning 

� Reflects a lack of essential understanding of the underlying mathematics 
pedagogy and/or pedagogy 

� Insufficient method of instruction/explanation regarding the creation of 
learning environments that foster cultural understanding, safety, emotional 
well being, and are conducive to learning for diverse learners 

0 points A zero-point response is completely incorrect, irrelevant, or incoherent. No 
evidence; undocumented demonstration of competence. 

/6 TOTAL POINTS AWARDED FOR PEDAGOGY 

/13 TOTAL POINTS AWARDED FOR MATHEMATICS KNOWLEDGE 
FOR TEACHING 
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APPENDIX E 

COURSE DESCRIPTIONS 

 
MATH 365 Structure of Mathematics I 
This course primarily deals with the topics of: informal logic, sets, relations, functions, 
whole numbers, numeration systems, binary operations, integers, elementary number 
theory, modular systems, rational numbers and the system of real numbers. This course is 
designed primarily for elementary teacher certification.  
 
MATH 366 Structure of Mathematics II 
This course primarily deals with the topics of: geometry, measurement and coordinate 
geometry. This course is designed primarily for elementary teacher certification. 
 
MATH 367 Basic Concepts of Geometry 
This course primarily deals with the formal development of geometry: finite {Euclidean and 
non-Euclidean}. This course is designed primarily for elementary teacher certification. 
 
MATH 368 Introduction to Abstract Mathematical Structures 
This course primarily deals with the topics of: mathematical proofs, sets, relations, 
functions, infinite cardinal numbers, algebraic structures, and structure of the real line. This 
course is designed primarily for elementary teacher certification. 
 
MATH 403 Mathematics and Technology 
This course primarily deals with mathematics problem-solving and communication through 
the use of various technologies (both hardware and software). This course is intended 
primarily, but not limited to, students working toward teacher certification. 
 
MASC 351 Problem Solving in Mathematics  
This course primarily deals with topics including: problem solving strategies in math and 
science; evaluate conjectures and arguments; writing and collaborating on problem 
situations; posing problems and conjectures; constructing knowledge from data; developing 
relationships from empirical evidence; and connecting mathematics concepts; readings, 
discussions, and analyses will model and illustrate mathematics problems solving and 
proofs. 
 
MASC 450 Integrated Mathematics 
This course primarily deals with topics including: integration and connections among topics 
and ideas in mathematics and other disciplines; connections between algebra and geometry 
and statistics and probability; and focus for integration with authentic problems requiring 
various branches of mathematics. 
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MEFB 460 Math Methods in the Middle Grades 
This course examines theories, provides practice in teaching methods essential to successful 
mathematics learning; focuses on content and criteria central to teaching mathematics for 
understanding, skill development, and problem solving; readings, discussions, analyses; and 
modeling and practicing mathematics teaching and learning.  
 
MEFB 497 Supervised Student Teaching 
This course includes: observation and participation in an accredited public school 
classroom; and techniques of teaching student’s teaching fields, and appropriate 
instructional strategies for assigned student population in fulfillment of endorsement 
requirements.  
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APPENDIX F 

SURVEY/ASSESSMENT PARTICIPATION 

Course Number of 
students 

enrolled in 
Course* 

 
Number who 

took Assessment* 

Percentage of 
Class 

Participating 

 
Number in 
Analysis* 

MATH 365 123 83 67% 13 
MATH 366 140 58 41% 18 
MATH 367 18 12 67% 12 
MATH 368 47 32 68% 32 
MATH 403 57 27 47% 27 
MASC 351 28 25 89% 25 
MASC 450 58 52 90% 52 
MEFB 460 36 31 86% 29 
MEFB 497 50 8 16% 8 

 *Some students were enrolled in more than one of these courses during Spring 2006, so 
they would be counted twice in this chart. 
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