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ABSTRACT

Congestion Control Algorithms of TCP in Emerging Networks. (August 2006)

Sumitha Bhandarkar, B.E., Mysore University; M.S., Texas A&M University

Chair of Advisory Committee: Dr. A. L. Narasimha Reddy

In this dissertation we examine some of the challenges faced by the congestion

control algorithms of TCP in emerging networks. We focus on three main issues.

First, we propose TCP with delayed congestion response (TCP-DCR), for improving

performance in the presence of non-congestion events. TCP-DCR delays the conges-

tion response for a short interval of time τ , allowing local recovery mechanisms to

handle the event, if possible. If at the end of the delay τ , the event persists, it is treated

as congestion loss. We evaluate TCP-DCR through analysis and simulations. Results

show significant performance improvements in the presence of non-congestion events

with marginal impact in their absence. TCP-DCR maintains fairness with standard

TCP variants that respond immediately.

Second, we propose Layered TCP (LTCP), which modifies a TCP flow to behave

as a collection of virtual flows (or layers), to improve efficiency in high-speed networks.

The number of layers is determined by dynamic network conditions. Convergence

properties and RTT-unfairness are maintained similar to that of TCP. We provide the

intuition and the design for the LTCP protocol and evaluation results based on both

simulations and Linux implementation. Results show that LTCP is about an order

of magnitude faster than TCP in utilizing high bandwidth links while maintaining

promising convergence properties.

Third, we study the feasibility of employing congestion avoidance algorithms

in TCP. We show that end-host based congestion prediction is more accurate than
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previously characterized. However, uncertainties in congestion prediction may be un-

avoidable. To address these uncertainties, we propose an end-host based mechanism

called Probabilistic Early Response TCP (PERT). PERT emulates the probabilistic

response function of the router-based scheme RED/ECN in the congestion response

function of the end-host. We show through extensive simulations that, similar to

router-based RED/ECN, PERT provides fair bandwidth sharing with low queuing

delays and negligible packet losses, without requiring the router support. It exhibits

better characteristics than TCP-Vegas, the illustrative end-host scheme. PERT can

also be used for emulating other router schemes. We illustrate this through prelim-

inary results for emulating the router-based mechanism REM/ECN.

Finally, we show the interactions and benefits of combining the different proposed

mechanisms.
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CHAPTER I

INTRODUCTION

TCP has been the de-facto transport protocol for the Internet for over two decades.

The scale of the Internet and its usage has increased by several orders of magnitudes.

The nature of applications has significantly changed. Some of the assumptions made

during the early design process are no longer valid. And yet, TCP remains the work

horse of the TCP/IP protocol stack based on which the Internet runs. The reason

TCP enjoys this center-stage is that it constantly evolves to keep up with the changing

network demands. For instance, [1] lists over 75 RFCs1 related to TCP that have been

published as of early 2006. These range from standards documents to informational

ones. The study presented in this dissertation is part of the continuous process to

inspect some of the shortcomings of TCP in the current Internet and propose changes

to keep it updated.

TCP resides in layer 4 of the 7-layer OSI network model. It provides a connection-

oriented, reliable, byte-stream service that is both flow and congestion controlled to

the upper layers (application layer), while assuming or expecting little from the lower

layers (IP layer and below). This is accomplished by a complicated set of algorithms.

In this study, we limit our focus to the congestion control algorithms of TCP.

The congestion control functionality of TCP is provided by four main algorithms

namely slowstart, congestion avoidance, fast retransmit and fast recovery in conjunc-

tion with several different timers. Slowstart uses exponential window increase to

The journal model is IEEE Transactions on Automatic Control.

1RFCs (Request For Comments) are the official documents of the Internet Protocol
suite that are defined, recorded and published by the Internet Engineering Task Force
(IETF) and the Internet Engineering Steering Group (IESG ) as part of the the
Internet standards process.
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quickly bring a newly starting flow to speed. In steady state, the flow mostly uses

congestion avoidance in conjunction with fast retransmit/recovery. These algorithms

implement the classic additive increase/multiplicative decrease of the congestion win-

dow. When no losses are observed, the congestion window is increased by one for the

successful acknowledgment of one window of packets. Upon a packet loss, the window

is decreased to half its earlier value, to clear out the bottleneck link buffers.

There are several challenges in current networks to this simple additive increase,

multiplicative decrease policy. In this study we focus on three main issues: (a) loss

of performance in the presence of non-negligible amount of non-congestion events (b)

loss of performance in networks with high delay and bandwidth when multiplexing

is low and (c) enhancing TCP to provide proactive congestion avoidance, instead of

just reactive congestion control. The following sections provide a brief overview of the

problems and why they motivate us. More detailed descriptions and our solutions to

the problems are provided in the chapters that follow.

A. TCP in the Presence of Non-congestion Events

TCP is a self-sufficient protocol, in the sense that the sender uses information pro-

vided by the receiver in the form of acknowledgments, to determine the nature of

congestion in the network. No explicit feedback is expected from the routers. This

self-sufficiency is based on the assumption that anytime packets do not arrive at the

receiver in the same order that the sender sent them, then it is due to congestion in

the network. While in most conventional networks, this assumption is true, newer

network environments challenge it. The most notable cases are when packets get re-

ordered on high-speed switches or are lost due to channel errors in wireless networks.

In these cases, the misclassification of the cause for out-of-order packet delivery or
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packet losses as congestion, forces TCP to use multiplicative decrease of the conges-

tion window and results in degraded performance. In Chapter II, we inspect this

issue in detail and provide a general solution for improving the performance of TCP

in the presence of non-negligible non-congestion events. This is followed by detailed

evaluation of the solution for two specific cases - packet reordering and wireless chan-

nel errors. Since the solution proposes changes to the congestion control algorithms,

we conduct comprehensive evaluation of the proposed scheme in “conventional” sce-

narios which do not contain any non-congestion events to show that it may be safe

for deployment in the general Internet.

B. TCP on High BDP Links with Low Levels of Multiplexing

In the next part of the study, we focus on the performance of TCP in high bandwidth-

delay links with bandwidth of the order of several hundreds of Mbps to a few Gbps

and round trip time in the order of few milliseconds to few hundred milliseconds.

Such links have historically been used only in the core of the network where several

hundreds or thousands of flows get multiplexed. However, the increase in the installa-

tion of fiber links and the availability of low-cost high-speed network interface cards2

and computer hardware/software that support it, has made it possible to use high

Bandwidth-Delay product (BDP) links end-to-end. Currently, such links are used

mainly between large research institutes and universities for sharing vast amounts of

data. However with the advent of bandwidth-hungry latency-sensitive applications

(e.g., on-demand video over IP), it is just a matter of time before the availability of

high BDP links goes main stream. In such environments where few TCP flows share

a high BDP link, the performance of TCP is poor due to the conservative choice of

2During the time that this dissertation is written, 1Gbps and 10Gbps network
interface cards are easily available.
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the parameters used in the additive increase, multiplicative decrease algorithms. In

Chapter III, we study this problem in more detail and propose a solution for improv-

ing the performance of TCP in such high BDP environments. We study the behavior

of the proposed solution, in comparison to other schemes that have been proposed,

via analysis, simulation and Linux emulation.

C. Using TCP for Congestion Avoidance Instead of Congestion Control

Calling the AIMD algorithms used by TCP as “congestion avoidance” is a misnomer,

since TCP does not try to “avoid” congestion proactively. Describing the algorithms

used by TCP as “congestion control” is likely more appropriate, since the response of

TCP is reactive to a perceived packet loss. The study of true congestion avoidance

algorithms is as old as TCP itself. These algorithms use the information contained

in the measured round trip time samples or the throughput to predict the onset of

congestion, and respond before a packet loss occurs, in an effort to prevent the packet

loss from occurring. Such proposals have come under attack in recent years from

measurement studies that claim that the information in the delay signal is insufficient

to accurately predict the congestion. In Chapter IV, we inspect the merits of these

measurement studies. We investigate some of the means to improve the accuracy of

the delay signal. While it may not be possible to entirely remove all the inaccuracies,

we show that by choosing a proper early response function, we can alleviate the

negative effects. Evaluation of the proposed scheme via extensive ns-2 simulations

over wide ranging network parameters is also presented.
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D. Putting It All Together

Finally in Chapter V, we investigate the benefits of combining all the proposed so-

lutions together. We present results based on ns-2 simulations to show the benefits

that can be achieved by using the solutions proposed in this work.
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CHAPTER II

TCP IN THE PRESENCE OF NON-CONGESTION EVENTS

TCP was designed in the 1980’s when the nature of the networks was very different

from the nature of the network today. As a result, it makes some implicit assumptions,

which may not be valid in todays’ networks. For instance, one of the main assumptions

driving the congestion control algorithms of TCP is that a packet loss implicitly

signals congestion. Based on this assumption, when a packet loss is observed, the

flow responds by multiplicatively reducing its window by half. When the reason

for packet loss is indeed congestion, this helps flush the queue at the bottleneck link

buffers [2]. But in cases where the packet loss is not due to congestion related reasons,

or when a reordering event is falsely interpreted as a packet loss, this will result in

an unnecessary window reduction and hence reduced link utilization.

Consider how the TCP flow identifies a packet loss. At the sender, every packet

that is transmitted is given a unique monotonically increasing sequence number, which

is embedded in the packet header. When the receiver receives a packet, it sends a

short acknowledgment packet back to the sender. In the header of this packet, the

receiver embeds the sequence number of the next packet it expects to receive. This will

result in cumulatively acknowledging all the packets that have been received so far.

Now suppose a packet is lost in transit. For all subsequent packets that the receiver

receives, it repeatedly sends sequence number of the packet it expects to receive next,

which is the packet that has been lost in transit. Since these acknowledgments repeat

the same information, they are called “duplicate acknowledgments” (or dupacks for

short). The sender has no definitive means to determine whether the packet that is

indicated in the duplicate acknowledgments is indeed lost or just delayed (reordered).

Hence, it waits until it receives three such dupacks, and then concludes that a packet
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is lost 1.

Hence, the current implementations of TCP provides robustness against reorder-

ing, provided the reordered packet arrives at the receiver no later than three of its

succeeding packets. If a packet is delayed in the network for longer and arrives at

the receiver after four packets have been received with sequence numbers higher than

its sequence number, then the above algorithm is unable to detect it and congestion

response is triggered. Recent studies [3]-[4] have shown that while different parts

of the Internet observe different extent of reordering, wait of three dupacks used in

TCP may be an inappropriate heuristic. While this in itself is a good reason for

investigating the robustness of TCP to packet reordering, the authors of [5] present

a more compelling reason - the taboo against packet reordering prevents or restricts

the research and deployment of several new, beneficial schemes on the Internet for

providing efficient routing or differentiated services.

Next consider the case where a packet is indeed lost. In the absence of explicit

notification, the sender cannot determine the cause for the loss. In the 1980’s, the

primary medium for communication was wired, and so the designers of TCP implicitly

assumed that a loss indicated congestion. But today, the use of wireless networks

is increasing at a tremendous rate. Wireless networks are characterized by higher

channel error rates than wired networks. When TCP is used in wireless networks, the

losses due to channel errors are mistaken for congestion losses and the sending rate

is unnecessarily reduced, resulting in degraded performance [6].

These problems of TCP performance degradations have been studied earlier in

their specific context. For instance [5, 7] propose solutions for improving the perfor-

1Another method for detecting loss is the expiration of the retransmission timer -
but we limit our focus here to cases where packet losses are detected using duplicate
acknowledgments.
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mance of TCP when network paths have high levels of reordering and [8]-[9] focus

on improving TCP performance in wireless networks. The solution provided in one

specific context does not necessarily address the other contexts that cause the mis-

interpretation of congestion. In this chapter, we generalize the problem and provide

a solution that improves the robustness of TCP to “non-congestion events”. Non-

congestion events are defined as events that are unrelated to the congestion in the

network, but result in triggering duplicate acknowledgments.

A. TCP-DCR : The Proposed Solution

Our solution is intuitive and employs two simple ideas: (a) delay the congestion

response of TCP for a short interval of time τ , creating room to handle any non-

congestion events that may have occurred, and (b) employ “local recovery” techniques

to recover from non-congestion events during this interval. If at the end of the delay τ ,

the event has not been handled, then it is treated as a congestion event. This simple

concept fits into the general philosophy of segregation between the different layers

of the network model. The modifications to TCP do not handle the non-congestion

event, but rather, rely on some lower layer mechanism to do local recovery, if necessary.

For instance, in case of packet reordering, no particular recovery mechanism is needed.

If the delay τ in responding to congestion is chosen longer than the time the packet

is delayed compared to its succeeding packets, then congestion control algorithms are

not triggered. In case of wireless networks, simple modifications may be made to

the link layer for recovering packet losses locally within the delay τ , when channel

errors occur. Again, this will prevent the triggering of window reduction at the

sender. Robustness to other non-congestion events (e.g. those related to mobility

and handoff, etc) could also be potentially provided using this solution, provided,
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that local recovery mechanisms are deployed for recovering from the non-congestion

event within the time duration τ . To distinguish this flavor of TCP from the original,

we call it the Delayed Congestion Response TCP (TCP-DCR for short).

1. Behavior of TCP-DCR

Fig. 1 shows the graphical representation of TCP-DCR when (a) the loss of a packet

is due to transmission errors and (b) the loss of a packet is due to congestion. The

TCP-DCR sender sends packets 1 through 5. However, due to channel error, say,

packet 2 is lost. This is communicated by the link layer to the base station, say, by a

negative acknowledgment (NACK). The base station immediately retransmits packet

2. But before packet 2 is recovered by link level retransmission, the TCP receiver

sends dupacks for packet 2. In the case of the traditional implementations of TCP,

three dupacks would trigger an immediate retransmission of packet 2 at the TCP

sender, followed by an unnecessary window reduction. However, in the case of TCP-

DCR, a delayed response timer of τ is started at the sender when the first dupack is

received. During this delay period, packet 2 is recovered via link level retransmission

causing the TCP receiver to generate a cumulative acknowledgment acknowledging

packet 2. On the receipt of this acknowledgment, the TCP-DCR sender cancels the

delayed response timer, and the unnecessary retransmission of packet 2 and reduction

in congestion window is avoided. Also, TCP-DCR sends one new packet on the receipt

of each dupack, if allowed by the congestion window, similar to the proposed standard

“Limited Transmit Algorithm” [10]. This ensures that during the delay τ the sending

rate of the TCP-DCR is the same as it was when the first dupack arrived.

In the case of a congestion loss, the packet cannot be recovered through link

level retransmission. Upon the receipt of the first dupack the delayed response timer

is started. However, since the packet is dropped by an intermediate router due to
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Fig. 1. Behavior of TCP-DCR
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congestion, a cumulative acknowledgment for the lost packet is not received. When

the timer expires, packet 2 is retransmitted and the congestion window is reduced

to half. An important fact to remember here is that, the delay of τ does not cause

the TCP-DCR sender to dramatically over-send packets because the protocol is still

ACK-clocked. That is, a new packet is sent only upon the receipt of a dupack and

the sending rate during the delay period is at most the sending rate when the first

dupack arrived.

2. Choice of τ

The delay in responding to congestion determines the performance of TCP-DCR and

the choice of τ is a critical aspect for the TCP-DCR modifications. Too large a delay

would mean that the protocol responds too sluggishly to congestion in the network.

Too small a delay would not allow the link layer sufficient time to recover from the

losses due to channel errors. Hence it is essentially a tradeoff between unnecessarily

inferring congestion, and unnecessarily waiting for a long time before retransmitting

a lost packet and choosing the correct value for the delay is extremely important.

In this section we provide guidelines for choosing reasonable bounds on the delay to

make it useful, without adversely modifying the TCP behavior. At this point, we

note that the current practice of waiting for three dupacks at the sender is merely a

heuristic.

Consider first the wireless scenario. Fig. 2 shows a general case where the TCP

receiver is connected to a base station over a wireless link. The wired path between

the base station and the TCP sender could consist of several hops, but would not

affect the discussion here and so is shown as a single hop. The round trip time between

the base station and wireless link is indicated by rtt and the end-to-end round trip

time between the TCP sender and the TCP receiver is indicated by RTT .
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Fig. 2. Analysis of TCP-DCR in a Wireless Network with No Losses due to Congestion

In the above scenario, if we ignore ambient delays (e.g., inter-packet delay, queu-

ing delay, etc.), a packet sent by the TCP sender at some time t0 reaches the base

station at t0 + (RTT/2 − rtt/2) and the receiver at time t0 + RTT/2. Suppose, a

packet k sent at time t0 is lost on the wireless link due to channel errors. Then at

t0 + RTT/2 + rtt/2 the base station receives indication that the packet k is lost. If

it immediately retransmits the packet, then the packet k is recovered at the receiver

at time t0 + RTT/2 + rtt. The sender receives an acknowledgment for the packet k

at t0 +RTT/2 + rtt+RTT/2. Hence the sender would have to delay the congestion

response by at least rtt time units after receiving three Dupacks, to allow the link

layer to recover the packet. In practice, the inter-packet delays are non-zero and the

TCP sender may not know the value of rtt. Hence, a simple solution would be to set

the lower bound on the delay in congestion response to one RTT .

The TCP protocol uses two mechanisms for identifying congestion in the network

- the receipt of three dupacks and the retransmission timeout (RTO). The receipt of

three dupacks is considered to be an indication of mild congestion in the network and

hence the response to it is the triggering of fast retransmission/recovery algorithms.

An RTO, on the other hand is treated as an indication of severe congestion in the
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network, and so in response to it, the congestion window is reset to 1 and the window

evolution starts over with a slowstart. This is an extremely expensive operation. The

choice of τ should be such that unnecessary retransmission timeouts are avoided.

Thus, the upper bound on the delay τ is imposed by the retransmission timer of

TCP. The RTO is usually set to RTT + 4 times the measured variance in RTT.

The standard recommends a minimum of 1 second for the RTO, but many TCP

implementations have a much smaller minimum, e.g., 100 ms. A choice of one RTT

or less for the delay τ , can ensure that RTO can be avoided. Thus, the upper limit

on the value of τ is one RTT.

In the case of packet reordering, the amount by which the packet is reordered

could be highly variable - the time to recover the lost packet is the time that the

reordered packet takes to reach the receiver. Hence there is no preset lower bound

for the delay τ , that will facilitate the recovery of all reordered packets. However, the

upper bound is still decided by the discussion above. So, a value of one RTT for tau

is still a reasonable choice.

Based on the discussion above, we conclude that a choice of waiting for one RTT

after the first dupack before responding to congestion is optimal. By setting the

delay to one RTT, rather than a fixed value, we also provide inherent robustness to

fluctuations in the queuing delays ensuring that we do not get into RTO timeout even

during sudden changes in the network load.

3. Implementation

The TCP-DCR modifications need to be applied only to the sender. The receiver

remains unmodified. The congestion response is delayed only during the congestion

avoidance phase and hence does not modify the behavior during the slow start phase.

During the congestion response delay, the congestion window continues to evolve as
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indicated by the congestion avoidance algorithm (additive increase). However, only

one new packet is transmitted in response to each dupack received. This is similar to

the proposed standard limited transmit algorithm [10]. This ensures that TCP-DCR

remains NACK-clocked during the congestion response delay period and a new packet

is put on the network only when indication is received that one of the previously sent

packets has left the network. Thus the sending rate of the TCP-DCR sender during

τ remains at best, the same as when the first dupack was received.

If the congestion response delay timer expires, the fast retransmit/recovery al-

gorithms are triggered. The ssthresh and the congestion window are set to half the

current value of the congestion window just as it would be in a traditional implemen-

tation of TCP.

The sender can implement the delay either by using a timer or by modifying

the threshold on the number of dupacks to be received before triggering the con-

gestion recovery algorithms (dupthresh). The timer based implementation is quite

straight forward, but depends on the clock granularity. In the dupack-based de-

lay implementation, the sender could delay responding to congestion for a window

of packets, with the window corresponding to the delay required. Thus, when τ is

chosen to be one RTT, the sender would wait for the receipt of W dupacks, be-

fore responding to congestion, where W is the sending window when the first du-

pack is received. The implementation of the delay should take care that a faulty

implementation does not result in an RTO. So, for the timer-implementation we sug-

gest that the timer be set to one RTT as indicated by the smoothed RTT estimate

since the RTO estimate is computed based on the smoothed RTT. In case of the

dupack-based implementation, the number of dupacks correspond to the estimate of

current instantaneous RTT and so we suggest that the new value for dupthresh be

scaled by the factor (smoothed RTT )/(current instantaneous RTT ).



15

The TCP-DCR modifications work with most flavors of the TCP protocol. How-

ever, in this study we advocate the use of TCP-DCR with TCP-SACK to ensure

that the performance can be maintained high even under the conditions of multiple

losses per round trip time. When used with TCP-SACK, the only thing modified by

TCP-DCR is the time at which the fast retransmit/recovery algorithm is triggered

in response to dupacks generated by the first loss within a window of packets. All

subsequent losses within the same window (irrespective of whether they are due to

congestion losses or non-congestion events) are handled in exactly the same way as

TCP-SACK would in the absence of TCP-DCR modifications. If the receiver is not

SACK-capable, however, then the sender will have to use TCP-DCR with other fla-

vors such as NewReno. If several packets are lost in one RTT, then the number of

dupacks being received is less, and because of the NACK-clocked nature of the sender,

it implicitly forces the sender the reduce its sending rate.

Use of delayed acks will not intervene with the TCP-DCR modifications, pro-

vided that the implementation of delayed acks follow the guidelines in [11] that the

dupacks (or SACKs) are not delayed.

4. Receiver Buffer Requirement When TCP-DCR Is Used

When TCP-DCR is used, the receiver will need to have additional buffer space to

accommodate the extra packets corresponding to the delay τ , when a packet is lost

due to congestion. Having these extra buffers allows TCP-DCR to achieve the best

performance. However, if the buffers are not available, it does not degrade the perfor-

mance drastically, but the maximum performance improvement is not achieved. This

is because, apart from congestion control, TCP also provides flow control such that

a faster sender does not flood a slow receiver. The flow control is achieved by using

a receiver advertised window, such that at any point the TCP sender may not send
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more packets than that allowed by min(cwnd, rwnd) where cwnd is the congestion

window and rwnd is the receiver advertised window. When the buffer space is not

available, the receiver advertised window is small. As a result, during the delay τ

even though the limited transmit and congestion window allow a packet to be trans-

mitted it will not be sent if the rwnd (and hence the receiver buffer) does not allow

it. However, the TCP sender can still delay the congestion response by τ allowing

the local recovery mechanism to recover from non-congestion event.

5. Local Recovery Mechanisms

The performance benefits to be gained from using the TCP-DCR modifications de-

pend on the existence of an underlying scheme for recovering the losses due to non-

congestion events. In case of packet reordering, nothing needs to be done explicitly

to recover the reordered packet. In case of wireless networks, we assume that the

underlying mechanism is a simple link level retransmission scheme, possibly NACK-

based, that does not attempt in-order delivery. Some of the recent research in the area

of networking for multimedia [12] also advocate the use of link level retransmission

schemes that do not attempt in-order delivery. Alternatively, FEC (Forward Error

Correction) schemes could also be used.

6. Steady State Analysis of TCP-DCR

In this section we present an analysis of the steady state bandwidth of TCP-DCR.

We use the steady state model with uniform congestion loss probability p.

The congestion window for TCP-DCR can be represented using two functions

f1(t) and f2(t), where f1(t) determines the window behavior before the time tdrop

when a packet is dropped and f2(t) determines the behavior after the packet drop.

The function f1(t) is the additive increase function. The function f2(t) has two
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components. For the time period τ between tdrop and tdrop+τ , f2(t) continues with the

additive increase function. Immediately after the congestion delay timer expires, i.e.,

at tdrop+τ+ε, the congestion window is decreased multiplicatively. These two functions

can be represented as follows-

f1(t) : wt+RTT ← wt + α; α > 0

f2(t) : wt+RTT ← wt + α; α > 0, tdrop < t < tdrop + τ

wtdrop+τ
← γ ∗ wtdrop+τ−ε

; γ > 0, t = tdrop+τ

(2.1)

where wt is the congestion window at time t, RTT is the round trip time, τ is the

delay in congestion response and α and γ are constants. Fig. 3 shows the graphical

representation of the congestion window against time.

Fig. 3. Analysis of TCP-DCR with No Channel Errors

Let TD be the time between two successive drops and let ND be the number of

packets sent by the protocol in this time. From equation [2.1], using continuous fluid

approximation and linear interpolation of the window between wt and wt+RTT we get

dw

dt
=

α

RTT
⇒ w =

αt

RTT
+ C (2.2)
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As can be seen from Fig. 3, the parameters TD and ND are independent from

time shifting the curve along the horizontal (time) axis. This implies that one can

arrange it such that a downward interpolation of the curve passes through the origin.

That is, without loss of generality and with no change to TD and ND , one can set C

= 0. Thus we have,

w =
αt

RTT

⇒ t =
wRTT

α

The throughput λ (in packets per second) can be given by the number of packets

that can be sent between two successive drops (ND) divided by the time interval

between two successive drops (TD). From the Fig. 3 we have,

TD = t′2 − t′1 = t2 − t1

=
RTT

α
(w2 − w1)

The window reduction is determined by the constant γ. Hence we have, w1 =

γw2. Substituting this in the above equation, we get,

TD =
RTT

α
· w2 · (1− γ) (2.3)

ND is the shaded are under the curve in Fig. 3. Hence,

ND =
∫ t2

t1
w(t)

dt

RTT
=

1

2α
· w2

2 ·
(

1− γ2
)

(2.4)

However, since ND is the number of packets between two consecutive drops, the

steady state drop probability p = 1/ND.

1

p
= ND =

1

2α
· w2

2 ·
(

1− γ2
)

.
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Thus, w2 =

√

2α

p (1− γ2)
(2.5)

Substituting these values in the throughput equation,

λ =

√

α(1+γ)
2(1−γ)

RTT
√
p

(2.6)

It is evident from the above result that the throughput of the TCP-DCR protocol

is similar to that of TCP Reno [13].

7. Network Dynamics When Congestion Response is Delayed

Even though TCP-DCR responds to a congestion signal with a delay of τ (one RTT)

our results indicate that the response to congestion is faster than some of the other

proposed protocols [14],[15] which are shown to be TCP-compatible. The earlier

studies have shown that even in dynamic network conditions, the slowly responding

protocols are fair and safe for deployment [16]. Since DCR responds to congestion

faster than these earlier protocols, we expect DCR will be safe even in dynamic

network conditions. We demonstrate this point through simulations, later in the

chapter.
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B. TCP-DCR and Reordering Robustness

In current networks, packet reordering is observed to be non-negligible [3]-[4]. Many

new design alternatives for routers or network architectures may benefit if there are

no strict restrictions of zero packet reordering. When routers are designed based on

parallel forwarding or when multi-path routing is employed, packet reordering could

occur. In architectures such as diffserv, requiring no packet reordering restricts the

choices for handling the multiple classes of packets of a single flow. As a result, packet

reordering is becoming an even more important issue.

1. Related Work

Over the past years, several different measurement studies were conducted to deter-

mine the level of packet reordering in the Internet. The measurements were conducted

at different network locations using different methodologies during different time pe-

riods. These studies have presented observations that are seemingly contradictory to

each other.

In [3], the author pioneered the first large-scale measurement study of Internet

packets by conducting 20,000 bulk TCP transfers of 100 Kbytes each between 35

Internet sites. In two sets of measurements conducted during December 1994 and

November-December 1995, the author found 2% and 0.3% reordering of data packets

(0.6% and 0.1% of ACKs) respectively. At least one packet was delivered out of

sequence for 36% of the packets in the first measurement and 12% in the second

measurement. Other main observations were that reordering was asymmetrical, some

paths were sometimes subject to high levels of reordering and the effects were strongly

site specific. The two main causes identified for causing the problems were route

fluttering and router updates and hence they claimed the reordering behavior was
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mainly pathological or not very usual.

More recent studies have supported this claim that packet reordering is not a

commonly occurring phenomenon on the Internet. An extensive study of packet dy-

namics for low-bitrate MPEG-4 video streams over paths with more than 5000 routers

conducted in November 1999 to May 2000 is presented in [17]. The results of this

study indicated that packet reordering is rare. The study presented in [18] looked

at 19 million TCP connections on the Sprint backbone and was conducted during

February 2002 and October 2002. The results indicated that the packet reordering

was observed only in 0.03 to 0.72% of all the data packets (0.15 to 4.9% of all the con-

nections). Additionally, study of packet lag indicated that 87.14% of these reordered

would not cause undesirable behavior in TCP connections since the packet lag was

less than 3. Finally, measurements made in China [19] during May-June 2003 by

tracing 208 connections with 3.3 million data packets using a web-crawler on 10,647

web sites indicated that 5.79% of the sites, and 3.2% of the packets exhibited packet

reordering at least once. Of the sites that exhibited reordering 20% of the sites had

a reordering frequency of more than 80% indicating strong site dependency. 95.3% if

all reordered packets had a lag of less than 3 indicating that the probability of TCP

performance degradation was low.

These results were directly contradicted in [20] where the authors claim that

packet reordering is not pathological behavior on the Internet and is prevalent at

significantly high levels. Their study consisted of measurements conducted on 140

Internet hosts connected to the MAE-EAST exchange during December 1997 and

January 1998. The methodology used was significantly different from that in [3], since

the authors chose to send back-to-back bursts of 50 ICMP-ping packets of 56-byte for

conducting the first measurement and a 100-packet bursts of 512-byte packets for the

second measurement. From the first measurement, they observed that the probability
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of a session experiencing packet reordering was 90%. From the second measurement

they inferred that reordering was a function of network load. Further study indicated

that the main cause for reordering was parallelism in Internet components and links

due to link-level striping and the multiple paths that a packet can take within the

switching devices.

Results from the October 2003 study presented in [21] indicate similar results -

that packet reordering was about 56% of all the streams and the leading cause was

pointed to be parallelism in the Internet components. Two sets of measurements

were conducted, first by sending back-to-back bursts of 50 100-byte UDP packets and

second by sending bursts of 100 UDP packets. More reordering was found in the

second measurement compared to the first measurement. Another study presented

in [4] supported with observations of high levels of packet reordering. The study was

conducted using UDP flows in high-speed networks and the authors point to a high

correlation between packet rate and observed reordering. They conclude that for high

bandwidth applications protocols should be as resilient to packet reordering as they

are to packet loss.

Based on these studies, there seem to be two categories of observations, with

one set claiming that packet reordering is pathological - it is not prevalent across the

Internet, but is rather an artifact of some misconfiguration/misbehavior of network

components. Some of these studies observe that packet reordering may be highly local

with few sites/links exhibiting high levels of reordering, while the packet reordering

is low in case of the general Internet. The other category of results show that packet

reordering is not pathological but is widely prevalent and has a possibility of getting

worse, since the cause for the reordering is parallelism in Internet components which

will only increase as network speed/capacity increases.

The measurement studies that indicate high levels of reordering ([20], [21] and
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[4]) used bursts of ICMP or UDP packets for probing while the other measurements

were mainly TCP based or used low-bitrate traffic. This indicates that when packets

arrive in bursts at a parallel router or switch, it may be characterized by higher packet

reordering. This conjecture has been made in [18] as well. Additionally, in [20] authors

show that packet reordering is dependent on the network load. This is collaborated

in [4] where the authors show that reordering increases as the packet rates increase or

conversely, the inter-packet arrival time in the core of the network reduces. This seems

to indicate that packet reordering cannot be dismissed easily since the network load

on the Internet keeps steadily increasing. The site-dependency of observing higher

levels of reordering has been linked to heavy loads - an observation that supports that

packet reordering may be a function of network load. As a result, it is important that

protocols aimed at high capacity networks be resilient to packet reordering.

Several different solutions have been proposed in literature to solve this problem.

In [7] the authors present several schemes which use DSACKs [22] or timestamps

[23] are used to identify a false fast retransmit, where a packet is falsely identified

by the sender as congestion loss and responded with a reduction in sending rate.

In response to finding that a false fast retransmit has occurred, the sending rate is

restored back to the level it was before the false fast retransmit. The reordering

length for the packet is measured using the information available from DSACKs and

the dupthresh is increased to avoid false fast retransmits. If a RTO timeout occurs,

then it is presumed that the dupthresh has grown too large and it is reset to 3. In [5]

this process is further refined at the cost of maintaining significantly more state at the

sender and using complicated algorithms for finding the optimal value for dupthresh

such that costly RTO timeouts are avoided, while the performance is optimized to

provide maximum reordering robustness.

These schemes rely on some additional scheme for identifying reordering in the
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network (such as DSACKs or timestamps) and the perceived reordering information

is collected from the network to set an optimal value for dupthresh. The intent is to

estimate the optimal amount of time to delay the triggering of fast retransmit algo-

rithm to provide maximum reordering robustness, without resorting to RTO timeouts

too often. By using TCP-DCR, this goal can be met without having to use complex

state or algorithms for tuning the value of dupthresh. While TCP-DCR does not

tune the dupthresh based on the perceived reordering in the network, when it is set

to one RTT, it provides a simple and effective mechanism for providing reordering

robustness without causing RTO timeouts.

2. Simulation Results

We evaluated the performance of TCP-DCR using the ns-2 simulator [24] (version

2.26). The network topology is as shown in Fig. 4. The n different sources are

connected to the router R1 which in turn is connected to the router R2. The n

different receivers are connected to the router R2. The link between the routers R1

and R2 is configured to be the bottleneck link in experiments simulating congestion

in the network. The default values for the link bandwidth and delay for the links

between the routers and the end nodes is fixed at 10 Mbps and 1 ms respectively.

The link bandwidth and the delay for the bottleneck link is varied in accordance with

the requirements of the experiment. Each source i performs bulk data transfer to the

receiver i with a packet size of 1000 bytes. DropTail buffer management scheme is

used at the routers and the queue size is set to 50 packets, unless otherwise specified.

Packet reordering is simulated by modifying the errormodel object of ns-2 such

that randomly selected packets can be delayed for a random amount of time. This

allows us the flexibility to choose the percentage of the packets to be delayed, the

distributions for choosing the packets randomly as well as the distribution for the
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Fig. 4. Network Topology Used in ns-2 Simulations

delays.

The TCP-DCR agent is implemented by modifying the TCP-sack1 implementa-

tion of TCP-SACK agent in ns-2. The TCPSink/Sack1 agent is used for the receivers.

FTP sources start sending data at time 0 and are staggered to avoid synchronization.

All simulations are run for 1100 seconds, but data is collected only after the first 100

seconds to ensure that steady state is reached. The receiver advertises a large window

such that the sending rate is not limited by the receiver dynamics.

a. Performance at Varying Packet Delay Rate

One of the primary reasons for reordering in the network is that some of the packets

get delayed more than others, and hence arrive out of order. In this experiment we

show the effect of delayed packets on TCP-SACK, as the percentage of the packets

getting delayed is increased, and the corresponding improvement in performance in

case of TCP-DCR. The packet delay is picked from a normal distribution with a mean

of 25ms and a standard deviation of 8ms. Thus, most packets chosen for delaying
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are delayed in the range 0 to 50ms, simulating mild but persistent reordering. The

bottleneck link bandwidth is set to 8Mbps and the delay to 50ms. The receiver

advertises a very large window such that the sending rate is not clamped by the

receiver dynamics. There is no congestion in the network. The topology consists of a

single flow. The experiment is first run with TCP-SACK and repeated for TCP-DCR.

The X-axis shows the percentage of packets being delayed, and the Y-axis shows the

total throughput in packets for the flow. Fig. 5 shows the results As can be seen

Fig. 5. Throughput vs Percentage of Packets Delayed (with Single Flow)

from the graph, the performance of TCP-SACK degrades rapidly, since the reordered

packets are treated as indication of congestion in the network and the sending rate is

reduced. Persistent reordering makes the sender congestion window stay at a small

value reducing the throughput drastically. TCP-DCR performs significantly better

than TCP-SACK. Since there is no congestion in the network, and the packets are

only mildly reordered, most packets are recovered within the delay in the congestion

response τ . As a results, DCR does not reduce its window and its performance

remains close to the performance of TCP-SACK with zero packets delayed in the

network.
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b. Performance Comparison with Multi-path Routing

One of the situations in which more robustness to reordering is very important is

when packets are routed over different paths. Suppose, a router chooses between two

different paths for load balancing. In the worst case, alternate packets get routed

over the different routes, causing 50% of all packets to get delayed by the difference

between the round trip time of the two routes. In this simulation we examine such a

situation. The x-axis shows the difference between the RTTs of the two routes. The

link delay of the shorter route is fixed at 50ms. Packets are alternately sent over this

link and the link with the larger link delay. There is no congestion in the network.

Fig. 6 shows the results.

Fig. 6. Performance Comparison with Multi-path Routing

It can be seen from the graph that TCP-DCR performs significantly better than

TCP-SACK. When the delay between the two paths becomes larger than the round

trip time of the shorter path, the performance of TCP-DCR starts to degrade a little.

However, the smoothed RTT estimate at the TCP sender will reflect the average

round trip time of the link, and the congestion response delay is scaled by this value.

As a result, the performance degradation is not drastic.
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c. Performance Comparison with Congestion in the Network

One of the primary concerns with using TCP-DCR is the effect of delaying congestion

response on other flows in the network. In order to study this, we conducted several

simulations with multiple flows in the network, with half the flows using TCP-DCR

and the other half of the flows using TCP-SACK. The graphs are plotted showing

the average throughput achieved by each type of flow with an error bar showing the

range of throughput for individual flows.

In this experiment, the bottleneck link has a capacity of 10Mbps and a link delay

of 10ms. The number of flows in the network is 12, with 6 of them using TCP-DCR

and the other 6 using TCP-SACK. Congestion in the network is controlled by varying

the buffer size at the router R1 for the link between R1-R2. Fig. 7 shows the results

when 10% of the packets are delayed.

Fig. 7. Throughput vs Link Droprate due to Congestion

Packets are reordered as well as lost due to congestion in this simulation. When a

packet is lost due to congestion, the sending rate is reduced both in the case of TCP-

SACK and TCP-DCR. However, when a packet is reordered, the sending rate is re-
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duced only in the case of TCP-SACK. As a result at low congestion levels, TCP-DCR

flows utilize more link capacity than TCP-SACK flows and show better throughput.

When the congestion levels in the network increases, the link capacity is more and

more equitably shared. It is to be noted that the fact that TCP-DCR realizes better

throughput (when packets are reordered) is not due to unfairness, but due to correctly

recovering from the reordering events (without reducing the congestion window). We

address the fairness issue in Section 1 when we consider zero non-congestion events.

d. Mixed Workload at Varying Packet Delay Rates

We now revisit the experiment showing the performance comparison of TCP-DCR

and TCP-SACK at different packet delay rates, but with TCP-DCR and TCP-SACK

flows vying for the same bottleneck link capacity. The experimental setup is similar

to that explained above, with the only difference that the congestion in the network

is fixed at 1.5%. Fig. 8 shows the results.

Fig. 8. Mixed Workload at Varying Packet Delay Rates

When there is no reordering in the network, the link capacity is shared equitably

by the different flows. When more and more packets are delayed, the TCP-SACK
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flows suffer unnecessary reductions in sending rate and their average throughput

reduces. The reduction in the average throughput of the TCP-SACK flows is not

as drastic as seen in Fig. 5. When one SACK flow reduces its window due to a

reordered packet, other SACK flows can claim some of this bandwidth and hence

the differences in throughput become smaller with multiple flows. It is observed that

TCP-DCR achieves 2-3 times more performance when network reorders packets. It

is to be noted again that this gain is not due to DCR’s unfairness or aggressiveness,

but due to correctly recovering from packet reorder events (when SACK does not do

so).

e. Mixed Workload with Varying Number of Flows

In this simulation, we study the throughput of individual flows as the number of flows

in the workload is varied. The experimental setup is similar to that mentioned above.

Congestion in the network is maintained at around 1% by adjusting the buffer size

at router R1 for the link R1-R2, and 1% of the packets are delayed. The number of

flows in the network is varied from 4 to 12, with half the flows using TCP-DCR and

the other half of the flows using TCP-SACK. Fig. 9 shows the results.

As seen from the results, the difference between the average throughput of TCP-

DCR flows and TCP-SACK flows remains fairly stable, indicating that the perfor-

mance is consistent even when the number of flows in the network is varied.

f. Comparison with Other Protocols

Our results can be directly compared with the results presented in [5] and other

solutions proposed for handling reordering. The results show that DCR performs

as well or better than the earlier solutions when packet reordering in the network is

significant.
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Fig. 9. Mixed Workload with Varying Number of Flows
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C. TCP-DCR in a Wireless Network2

Wireless networks are characterized by high channel error rates. When TCP is used in

wireless networks, the losses due to channel errors are mistaken for congestion losses

and the sending rate is unnecessarily reduced, resulting in degraded performance [6].

In this section we show the benefits of using TCP-DCR in wireless networks.

1. Related Work

Several solutions have been proposed to improve the performance of TCP over wireless

networks. These solutions fall in one of the following broad categories: (a) Split

connection approaches: the connection between the sender and receiver is split into

two separate connections, one between the fixed sender and the base station and the

other between the base station and the mobile receiver. The losses that are not related

to congestion are recovered by the connection between the base station and the mobile

host, and hence hidden from the fixed sender. [8],[25],[26],[27] (b) TCP-aware link

layer protocols: the link layer is aware of the semantics of the TCP protocol and the

dupacks are suppressed from reaching the sender if it can be recovered by link level

retransmission. [28],[29] (c) Explicit loss notification approaches : TCP sender relies

on the network to provide explicit notification about the error type [30],[31],[32]. (d)

Receiver-based approaches : approaches where receivers either delay dupacks [33] or

compute the desired sending rate [9]. (e) Modifications to TCP : some of the modified

TCP algorithms have been shown to improve the performance of TCP [34],[35]. TCP-

DCR modifies the sender side of TCP and relies on link level retransmission for

2 c©2005 IEEE. Reprinted, with permission, from “TCP-DCR: A Novel Protocol
for Tolerating Wireless Channel Errors” by Sumitha Bhandarkar, Nauzad Sadry, A.
L. Narasimha Reddy and Nitin Vaidya, published in IEEE Transactions on Mobile
Computing, Vol. 4, No. 5., pp. 517-529, September/October 2005.
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recovering from channel errors. Earlier work has shown that local recovery of channel

errors is efficient [36].

When both congestion losses and losses due to the transmission errors can occur,

the simple solution would be to let the link layer mechanisms to recover from losses

due to transmission errors, allowing the transport protocol to recover from congestion

losses. In order to maintain the segregation between the different layers of the TCP/IP

stack, the link layer should not be required to know the semantics of the transport

level protocol and the transport layer should not expect explicit notification about the

type of the loss from the network layer. When TCP-DCR is used in wireless networks,

a simple link level retransmission scheme that is not aware of TCP semantics would

suffice to recover from transmission errors without any explicit notification from the

network regarding the type of the loss.

2. Simulation Results

The network topology used in these simulations is similar to the one shown in Fig. 4,

except that R2 is the Base station connected to the receivers via wireless links. The

default values for the wired link bandwidth and delay is fixed at 100 Mbps and 5 ms

respectively. The wireless link bandwidth and delay is kept fixed at 1 Mbps and 20

ms respectively, unless otherwise mentioned.

Link level retransmission is simulated by using the error model and the queue

object provided by ns-2. The error model is exponential, and the corrupted packets

are buffered at the base station and retransmitted after a delay corresponding to

the round trip time of the wireless link, thus simulating link level retransmission.

The packet to be retransmitted is added at the head of the queue that holds the

packets awaiting transmission. The TCP/IP and MAC layer headers are ignored in

the throughput calculations.



34

a. Performance at Different Channel Error Rates

First, we present the results for the simulation showing the performance improvement

offered by TCP-DCR at various channel error rates in Fig. 10. The workload consists

of a single flow in this case. There is no congestion in the network.

Fig. 10. Throughput vs Channel Error Rate

As can be seen from the graph, TCP-DCR performs significantly better than

TCP-SACK. Since there is no congestion in the network, all the packet losses are

due to channel errors. Due to delayed response algorithm, TCP-DCR postpones the

window reduction upon receiving dupacks. This allows the link layer retransmission

scheme time to recover the lost packets thereby making a window reduction unneces-

sary. Thus, when there is no congestion in the network, the performance of TCP-DCR

even at high channel error rates stays close to the performance that can be obtained

when there is no channel errors at all. On the other hand, due to repeated reduc-

tions of the congestion window, TCP-SACK cannot efficiently utilize the network

bandwidth, especially so at high channel error rates.
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b. Performance at Different Wireless Delays

Wireless networks have highly varying delays ranging from few milliseconds to few tens

of milliseconds for a LAN to several hundred of milliseconds for satellite links[37, 38].

In this section we show the effect of the wireless delay on the performance of the

different protocol flavors. The topology is similar to that in the previous section. Fig.

11 shows the results.

Fig. 11. Throughput vs Wireless Link Delay

It can be seen from the graph that as the wireless link delay is increased, the

throughput of the TCP-SACK flows degrades significantly. This is because when the

window is reduced incorrectly due to a packet lost by channel errors, it takes a long

time for the protocol to increase the window to the correct value again. This results

in under-utilization of the network bandwidth. TCP-DCR on the other hand is more

robust in the face of large wireless delays, since the window is not reduced as often.

c. Performance Comparison at Different Wireless Bandwidths

Improvement in wireless technology has been constantly raising the bar on how much

bandwidth the wireless channels offer. We evaluate the impact of channel bandwidth
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on protocol performance. The wireless link delay is fixed at 20ms. The buffer size

and the receiver window are adjusted for each simulation to allow maximum link

utilization, without causing any congestion. Fig. 12 shows the results.

Fig. 12. Throughput vs Wireless Bandwidth

It can be seen from the graph that the TCP-SACK flows cannot utilize the

link bandwidth well. At higher channel errors, due to persistent reduction in the

sending rate the congestion window remains small, and no matter how much network

bandwidth is available, the throughput of the TCP-SACK flows stays almost constant

at a small value. TCP-DCR on the the other hand, avoids reducing the congestion

window for channel errors and hence, is capable of utilizing the available bandwidth

much more efficiently.

d. Performance Comparison with Varying Number of Flows

At this point we take a slight deviation to inspect an important factor to be considered

while evaluating the new flavors of TCP protocol - the effect of the number of flows on

the simulation results. An important observation made during the above experiments

was that TCP flows were not able to completely utilize the bandwidth at high channel
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error rates and high wireless delays. It would seem intuitive then that as the number

of flows in the network is increased, the utilization of the link could be improved,

because when one flow backs off in response to packet loss, some other flow could

utilize the link. So we conducted a simulation where the wireless link bandwidth and

delay were fixed at 6Mbps and 20 ms, but the number of flows between the source S

and the receiver R was increased. The receiver advertised window and the buffer size

are adjusted so that a single flow without any losses can almost fully utilize the link.

However, note that, when the number of flows is increased, the congestion losses no

longer remain zero. The results are presented in Fig. 13.

Fig. 13. Throughput vs Number of Flows

As expected, the link utilization does improve at higher number of flows. We

have included these results in this paper to demonstrate an important point: results

for new protocols shown for just a fixed number of flows are not sufficient. In this

case, for the network topology that we have chosen, by having a fixed number of flows

greater than 8, TCP-SACK could be shown to provide very good performance even

at very high channel error rates.

Another perspective on this issue can be provided by the following argument.
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It has been shown in [13] that the throughput of the TCP protocol is proportional

to 1
RTT∗

√
p
(when timeouts are ignored), where p is the loss rate seen by a TCP flow

and RTT is the round trip time perceived by the TCP sender. When there is no

congestion in the network, p represents only channel errors for TCP-SACK . These

losses do not depend on the number of flows in the network, and are fixed relative to

the number of flows in the network. Then for any particular value of p and RTT , the

throughput obtained by a TCP source is fixed, say at T . The fair share of bandwidth

for any particular flow when there are n different flows in the network is B/n. When

the value of n is chosen such that B/n ≤ T , it will appear as if the protocol is making

the best utilization of the available bandwidth, irrespective of how the protocol treats

the channel errors.

Consider TCP-DCR on the other hand. As shown in the Eq. 2.6, the throughout

of a TCP-DCR flow is also proportional to 1
RTT∗

√
p
. However, in this case, p primarily

represents the loss rate due to congestion in the network. As a result, when congestion

in the network is zero, the throughout is only controlled by the receiver’s window. In

other words, when there is no congestion in the network, the TCP-DCR can effectively

utilize all the available bandwidth, irrespective of the number of flows in the network.

It might be tempting at this point to suggest that all we need, to improve the

performance of TCP on a wireless network, is to fill up the pipe with many flows such

that all the bandwidth can be utilized. This could probably be a feasible solution

if we can ensure that at all the times there will be enough flows in the network to

keep it fully utilized. However, if that is not the case, and we wish to have maximum

utilization irrespective of how many flows are in the network, then we would require

modifications to existing TCP protocols. Also, wireless technology is improving at a

rapid rate, and as new technology becomes available, the bandwidth keeps increasing.

The higher bandwidth would require larger number of flows to keep the link fully
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utilized for the same channel error rate. It would be unreasonable to depend only on

the number of flows in the network to make the best use of the available bandwidth.

e. Performance with Congestion in the Network

In this set of simulations, the workload consists of 24 flows, half of which use TCP-

DCR and the other half use TCP-SACK. The different levels of congestion are ob-

tained by varying the buffer size at the router R1. The bottleneck link capacity is set

to 10Mbps and the delay to 5ms. The wireless link bandwidth and delay ate 1Mbps

and 20ms. Fig. 14 shows the results. In the graph, congestion loss rates of less

than 1% are labeled as low error, in the range of 2.5-3.5% are labeled as moderate

congestion and greater than 3.5% are labeled as high congestion.

Fig. 14. Throughput vs Channel Error Rate with Congestion in the Network

It can be seen from the figure that when the congestion loss rate is low, the

average throughput of the TCP-DCR flows is far more than that of TCP-SACK

flows. This is not because the TCP-DCR flows are more aggressive than TCP-SACK.

Rather, it is due to the fact that the TCP-DCR flows can make use of the link

bandwidth not utilized effectively by the TCP-SACK flows. Recall from the discussion
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in previous sections that the TCP-SACK flows cannot utilize the available bandwidth

completely at high channel errors because of persistent window reductions. The TCP-

DCR flows claim this share of the bandwidth not used by the TCP-SACK flows. So

when the congestion in the network is low, the TCP-DCR flows help improve the link

utilization without starving the TCP-SACK flows.

The throughput achieved by TCP-DCR flows is inversely proportional to the

congestion loss rate in the network, whereas the throughput of the TCP-SACK flows

is inversely proportional to the sum of the congestion loss rate and the channel error

rate. So, as the congestion loss rate in the network increases, the difference in the

average throughput of the TCP-DCR flows in the network compared to that of the

TCP-SACK flows becomes narrower.

f. Performance Comparison on Satellite Links

Satellite links are characterized by very high wireless delays, with the one way delays

being as large as 250ms [37]. With such high delays, when the congestion window is

reduced unnecessarily in response to channel errors, it takes a long time to recover

the window back to the optimal size. Thus the performance of TCP-SACK degrades

drastically in satellite networks as the channel error increases. In this section we

present the results of the simulations for performance comparison on satellite links.

The network topology is similar to that above, except that the wireless link has a

large one way delay of 250ms, making the end-to-end RTT 520ms. The average link

drop rate due to congestion is in the range of 0.1-0.4%. Fig. 15 shows the results,

demonstrating the performance improvements with TCP-DCR.
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Fig. 15. Performance Comparison over Satellite Links

g. Comparison of TCP-DCR with Other Protocols

We have carried out extensive simulations to compare the performance of DCR with

other protocols, particularly, TCP-Reno and TCP-Westwood. Due to lack of space,

we have included only one of the results, showing the performance comparison of

TCP-DCR with TCP-Westwood at different wireless delays and channel error rates

in Fig. 16. The WestwoodNR agent was used in this simulation in the ns-2.26 version.

The wireless link bandwidth is fixed at 1Mbps and the receiver advertised window

and the wireless link buffer size are adjusted to maximize the link utilization even

at large delays. Congestion losses occur only at the bottleneck link router. The

simulations indicate that at low channel errors and low delays, the performance of

both the protocols flavors are similar. At higher channel error rates and large delays,

TCP-DCR performs better.
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Fig. 16. Performance Comparison of TCP-DCR vs TCP-Westwood
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D. TCP-DCR in Networks with Only Congestion Events

TCP-DCR delays the response to congestion by one RTT. The delay is chosen to

be a tradeoff between providing robustness to non-congestion events while retaining

responsiveness to congestion events. In order to understand the issues related to

deployment, it is important to study the behavior of TCP-DCR in networks with

no non-congestion events and only congestion events. In this section we present the

results of such a study.

1. Simulation Results

The results we present here are from simulations where the losses are only due to

congestion. We study the behavior of TCP-DCR at three different levels - (a) flow

level - throughput (relative fairness) when TCP-SACK and TCP-DCR flows compete

with each other, time taken to relieve and reclaim bandwidth for sudden changes

in available bandwidth and interaction with web-like transfers. (b) protocol level -

Packet Delivery time and RTT estimation for individual flows. (c) the network level

- average queue lengths and drop rates at the bottleneck link.

The topology used for these experiments is as shown in Fig. 17. The links

between the sources and the router are high-capacity wired links with bandwidth

100Mbps, delay 5ms and buffer size equal to the delay-bandwidth-product. The link

between the router and the base station is the wired bottleneck link of capacity

10Mbps and delay 5ms. The links between the base station and the receivers are

wireless with capacity 1Mbps, delay 20ms and queue-length of 50 packets. Congestion

level on the bottleneck link is modified by varying the buffer size on the link between

the router and the base station. The receiver advertised window is set such that in

the absence of congestion at the bottleneck link, the per-flow throughput does not
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exceed the wireless link capacity to ensure that the congestion happens only on the

link between the router and the base station. Each source performs a single bulk data

transfer to the corresponding receiver with a packet size of 1000 bytes. The duration

for the ftp transfer for most experiments in this paper is set to 1100 seconds, but

for the experiments inspecting the behavior at the flow level and the queue level,

the transfer duration is smaller - 200 seconds - due to the large amount of data

being collected. The total number of flows in the network is 24 (unless otherwise

mentioned).

Fig. 17. Network Topology for Experiments with Congestion Losses

a. Performance Comparison at Different Congestion Loss Rates

In this experiment we evaluate the interaction between 12 TCP-DCR and 12 TCP-

SACK flows. Fig. 18 shows the average throughput of the TCP-DCR flows in com-

parison with the average throughput of the TCP-SACK flows.

As can be seen from the graph, the TCP-DCR flows share the bottleneck link with

the TCP-SACK flows in a relatively fair manner. For long-term flows, delaying the
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Fig. 18. Throughput vs Congestion Loss Rate

congestion response by one RTT does not make TCP-DCR more aggressive compared

to the TCP-SACK flows. TCP-DCR is observed to respond to congestion faster than

some of the other proposed protocols [14],[15] which are shown to be TCP-compatible.

The earlier studies have shown that even in dynamic network conditions, the slowly

responding protocols are fair and safe for deployment [16]. Since TCP-DCR responds

to congestion faster than these earlier protocols, we expect TCP-DCR will be safe

even in dynamic network conditions.

b. Performance Comparison for Sudden Changes in Available Bandwidth

In this experiment we evaluate the performance of TCP-DCR in comparison with

TCP-SACK for sudden changes in the available bottleneck bandwidth. The network

consists of 24 flows. Half the flows do long-term ftp transfer starting at time 0

seconds using the protocol being evaluated. The other half of the flows carry shorter

ftp transfer (referred henceforth as traffic) using TCP-SACK starting at 50 seconds

and lasting for 50 seconds. Thus, 50 seconds after the long-term flows are started, the

available network bandwidth goes down by 50%. At 100 seconds, the traffic stops,
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and the available bandwidth doubles back to the original level. The average link drop

rate over the period of the simulation is about 2%. Fig. 19 shows the aggregate

throughput of the long term flows and the traffic (computed with 1 second bins)

against time. From the figure it is clear that the response of TCP-DCR to sudden

fluctuations in traffic is similar to that of TCP-SACK.

Fig. 19. Throughput vs Time for Sudden Changes in Traffic

In order to quantify the reaction time to sudden changes in load, we computed

the time it takes for existing flows to drop down to 55% of the link capacity, thus

allowing the new flows to achieve 45% of the link capacity. The time to reach (55%,

45%) allocation for TCP-SACK was 5.89 seconds and for TCP-DCR, it was 3.80

seconds. This shows that TCP-DCR is not worse than TCP-SACK in responding to

sudden increases in traffic load.

c. Interaction with Web-like Traffic

In this section we evaluate the performance of TCP-DCR and TCP-SACK when

competing with a traffic mix of several short-term flows simulating web-transfers.

The network consists of 8 long-term ftp flows(TCP-SACK or TCP-DCR) and 500

web-like flows(TCP-SACK). The transfers are started at around 0 seconds with a

staggering of 1ms to avoid synchronization. Each short-term flow sends N packets
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after T seconds from the start of its previous transfer. N is drawn from a uniform

distribution between 10 and 20 and T is drawn from a pareto distribution with

mean 15 seconds, simulating the different request sizes and user think-times. The

random variable generators for the short-term flows are seeded with the flow id, so

that any given flow has a fixed pseudo random sequence. This ensures that when

the simulation is first run with TCP-SACK ftp transfers and then repeated with

TCP-DCR ftp transfers, the random variables used in simulating the web transfers,

have the same value. The average link drop rate over the period of the simulation is

3%. Fig. 20 shows the aggregate throughput of the long term flows and the traffic

(computed with 1 second bins) against time.

Fig. 20. Interaction with Web-like Traffic

In the case of TCP-SACK, the aggregate throughput of TCP-SACK flows over

the simulation period is 4.76Mbps, and that for the web traffic is 4.84Mbps. The

aggregate throughput of TCP-DCR flows is 4.73Mbps and that for the web traffic is

4.82Mbps. This indicates that the interaction of the TCP-DCR flows with short-term

web traffic is similar to that of TCP-SACK.
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d. Packet Delivery Time

In this section and the next we take a look at some of the protocol level dynamics.

Since the TCP-DCR protocol delays the triggering of the congestion recovery algo-

rithms by one RTT, it is possible that the packet delivery time during congestion

is increased by up to one RTT. When there is no congestion in the network, the

packet delivery time is unaffected. In this section we present the results of simula-

tions verifying the packet delivery time for the TCP-DCR flows in comparison to the

TCP-SACK flows. Three separate simulations are considered - in the first, all 24 flows

are TCP-SACK, in the second all 24 flows are TCP-DCR and in the third, half the

flows (i.e.,, 12 flows) are TCP-SACK and the other half are TCP-DCR. This allows

us to compare the packet delivery time for TCP-DCR with that of TCP-SACK, and

also examine the effect of TCP-DCR flows on the packet delivery time of TCP-SACK

flows when the workflows consists of a mix of the two flavors. The average congestion

drop rate at the bottleneck link is maintained at about 3.3% by using a buffer size of

70 packets at the bottleneck link. Fig. 21 shows the plot of packet delivery times for

a randomly chosen TCP-DCR/TCP-SACK flow against the packet sequence number.

The plots show that the packet delivery times are scattered in two regions. The

dense population of points around 60-100ms represent the packets that are delivered

normally. The points with larger delay represents packets delayed due to larger in-

stantaneous queue lengths and the packets that are recovered through retransmission.

In the first simulation where all the flows are TCP-DCR the average packet delivery

time for packets of the sample flow recovered via retransmission is 398ms. In the

second simulation where all the flows are TCP-SACK flows, it is 302ms. In the third

simulation where 50% flows are TCP-DCR and the other 50% are TCP-SACK, the
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Fig. 21. Packet Delivery Time

average packet delivery time for retransmitted packets of the sample TCP-DCR flow

is 356ms and for TCP-SACK, it is 296ms. We notice from these observations that

the recovery time for a retransmitted packet in case of the sample TCP-DCR flow is

about one RTT more than that of the sample TCP-SACK flow. Also, we notice that

when the workload consists of a mix of TCP-DCR and TCP-SACK flows, the time to

recover a packet through retransmissions for TCP-SACK is not affected, compared

to the simulation with all TCP-SACK flows.

e. RTT Estimates

As explained in the above section, delaying the congestion response of TCP by one

RTT can increase the packet recovery time of lost packets. The packet delivery time

for the rest of the packets is similar to that in any standard implementation of TCP.

According to Karn’s algorithm used by most standard implementations of TCP, a
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retransmitted packet is not used in estimating the round trip time. Thus the delayed

congestion response of TCP-DCR does not affect the RTT estimation of TCP. Fig.

22 shows the plot of instantaneous RTT, smoothed RTT and RTT variance for a

randomly chosen TCP-DCR/TCP-SACK flow against the packet sequence number.

The results agree with the discussion presented here.

Fig. 22. RTT Estimation

f. Effect on Network Queue Lengths

In this section, we evaluate the effect of TCP-DCR flows on the bottleneck link

queue length. The network topology is similar to that in the above section. The

average bottleneck link drop rate is about 3.3 - 3.4%. Fig. 23 shows the plot of the

instantaneous and the average queue length at the bottleneck link.

With 24 flows in the network, the DropTail queue at the bottleneck link is almost

full all the time irrespective of whether the flows are TCP-DCR or TCP-SACK. Thus
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Fig. 23. Bottleneck Link Queue Length with DropTail Queue Management

it is hard to evaluate the impact of TCP-DCR on the queue lengths. The average

queue length varies slightly (51 packets when all flows are TCP-DCR, 50 packets

when all the flows are TCP-SACK and 52 packets for the mixed workload), but the

difference is negligible.

To further investigate this matter, we replaced the queue management scheme at

the bottleneck link router with RED. The minthresh and maxthresh parameters are

set to 25% and 75% of the total buffer size. Fig. 24 shows the plot of the instantaneous

and the average queue length at the bottleneck link.

It can be seen from this graph, that the queue length does not change much.

The average queue lengths are 36, 34 and 35 packets, when all flows are TCP-DCR,

TCP-SACK or a mixture of the two respectively.
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Fig. 24. Bottleneck Link Queue Length with RED Queue Management

g. Effect on Bottleneck Link Congestion Loss Rate

One of the primary concerns when protocol characteristics are modified is the effect

the modifications have on the network. TCP-DCR delays the response to loss noti-

fication. Hence, it is interesting to study how an increase in the offered load effects

the congestion drop rate on the bottleneck link. For this simulation, we keep all the

other parameters constant and vary the number of flows in the network and study

the congestion drop rate at the bottleneck link. Note that the receiver window is

adjusted such that the per-flow throughput is always less than the capacity of the

wireless link and hence the congestion occurs only at the bottleneck link. The buffer

size at the bottleneck link between the router and the base station is fixed at 50

packets to ensure that a wide range of congestion drop rates may be observed, as the

number of flows is varied. The simulations were conducted across the three traffic

workloads considered in the earlier sections. The first graph in Fig. 25 shows the
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results. TCP-SACK (100,0), TCP-DCR (0,100) represent the average link drop rate

when all the flows in the network are TCP-SACK and TCP-DCR respectively. TCP-

SACK (50,50) and TCP-DCR (50,50) represent the average drop rates observed by

TCP-SACK flows and TCP-DCR flows respectively when the workload consists of a

mix of both the flows. It can be seen from the graph that the average congestion loss

rate observed for TCP-DCR is similar to that of TCP-SACK.

Fig. 25. Bottleneck Link Congestion Loss Rate vs Number of Flows

Again, in the interest of being comprehensive, we repeated this experiment with

RED queue management scheme at the bottleneck link. The second graph in Fig. 25

shows the results. In the previous section we noticed that the average queue length is

slightly different in the three cases. In an RED queue, the drop probability depends

on the average queue length and hence the average drop probability varies slightly

for the three cases, but the difference is fairly negligible.

E. Conclusions

In this chapter, we proposed TCP-DCR that employs delayed congestion response and

local recovery to recover from non-congestion events. We have provided an analysis

to show that TCP-DCR achieves similar throughput as regular TCP in steady state

conditions. We studied TCP-DCR’s handling of non-congestion events in two specific
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cases, namely, packet reordering and wireless channel errors. In both cases, results

indicate that TCP-DCR offers significantly better performance by simply delaying

congestion response for one RTT. We then studied the impact of employing TCP-

DCR in networks with zero non-congestion events. Our evaluation at multiple levels

- individual flows, TCP characteristics and network characteristics - has shown that

TCP-DCR does not significantly impact other flows or the network even when all the

packet losses are due to congestion alone. Based on these results, TCP-DCR seems

to offer a simple, unified solution to handle non-congestion events safely.
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CHAPTER III

TCP ON HIGH BDP LINKS WITH LOW LEVELS OF MULTIPLEXING

Over the past few decades, the traffic on the Internet has increased by several orders of

magnitude. However, the Internet still remains a stable medium for communication.

This stability has been attributed primarily to the wide-spread use of congestion

control algorithms of TCP [39]. The congestion control algorithms are designed such

that bandwidth is shared fairly among flows with similar RTTs. However, these same

congestion control algorithms hold TCP back from scaling to future networks with

high-bandwidth links of the order of several Gbps.

The TCP congestion control algorithms use additive increase multiplicative de-

crease(AIMD) for moderating the congestion window. When there are no losses in

the network, the window is increased by one for each RTT. Upon a loss of packet,

the window is reduced by half. In other words, the AIMD parameter for increase is

chosen such that the available bandwidth is probed conservatively, but the parame-

ter for decrease upon a packet loss, is chosen to give up the bandwidth aggressively.

While this has worked well for the networks in the past, for future networks that have

capacity of the order of several hundreds of Mbps or Gbps and are shared by few

flows, this could lead to highly degraded performance.

To illustrate the problem effectively, consider the following popular example -

The throughput of a TCP connection is given by T ' 1.2∗S
R
√
p
, where S is the packet

size, R is the round trip time for the connection and p is the packet loss rate [13].

This means that for a standard TCP connection using a packet size of 1500 bytes over

a connection with round trip delay of 200ms and packet loss rate of 1.0X10−5, the

maximum throughput that can be achieved is 23.2Mbps. If the packet loss rate were

reduced to 1.0X10−7 the maximum throughput could be increased to 232.4Mbps.
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Conversely, to achieve a throughput of 1Gbps, the packet loss rate required should

be 5.4X10−9 or lower and for 10Gbps it should be 5.4X10−11. These loss rates are

unreasonable. For a 10Gbps link, the loss rate translates to a loss of at most one

packet in 1.85X1010 packets or at most one loss for every six hours ! Clearly, the

standard TCP connections do not scale in high capacity networks.

In this chapter, we present a simple layering technique for the existing congestion

response algorithms to make it scale in high-bandwidth networks. The idea of layering

to probe and utilize the available bandwidth has been researched earlier in the context

of video transmission on the Internet and in multicasting[40, 41]. The contribution of

this paper is to extend this idea to the congestion control algorithms in TCP so that

scalability can be achieved at the cost of minimal implementation overhead, while

retaining many of the desirable characteristics that have made TCP the protocol of

choice.

A. LTCP : Using Layered Congestion Control for Improving TCP Performance in

High BDP Networks with Low Multiplexing

The conservative AIMD algorithm used in the traditional flavors of TCP have worked

remarkably well in the the past, because very high capacity links (greater than several

hundreds of Mbps or Gbps) were available only at the core of the network where

several thousands of flows got multiplexed. But in the recent past, there has been

an increase in the use of high capacity links for connecting research labs end-to-end

for fast exchange of large amounts of data. The availability of inexpensive gigabit

NICs and fast computers indicate that an average end user could have access to high

capacity networks, in the not-too-distant future. In such an environment, where the

density of flows is low and the available per-flow capacity is high, the TCP mechanism
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of increasing by just one packet per RTT tends to be too conservative, while at the

same time the window reduction by a factor of half tends to be too drastic. This

results in inefficient link utilization.

1. Related Work

Over the past few years, several solutions have been put forth for solving the problem

of performance degradation on high-speed networks due to the use of TCP. These

solution can be classified into four main categories - a) Tuning the network stack

b) Opening parallel TCP connections between the end hosts c) Modifications to the

TCP congestion control and d) Modifications to the network infrastructure or use of

non-TCP transport protocol.

The traditional solution to improve the performance of TCP on high-capacity

networks has been to tune some of the TCP parameters. Several auto-tuning schemes

have been proposed such as [42], [43], [44] and [45]. [46] presents a comparison of

some of these auto-tuning schemes. Tuning the stack improves the performance of

TCP in high-speed networks significantly and could be used in conjunction with other

schemes to achieve the best possible performance.

A number of other proposals have employed network striping, where the appli-

cation is network-aware and tries to optimize the network performance by opening

parallel TCP connections. Some of the applications that use this approach or allow it

as an option are XFTP [47], GridFTP [48], storage resource broker [49] and [50]. In

[51] the authors provide a library called PSockets (Parallel Sockets) to make it easier

to develop applications that use network striping. While most of this work has been

at the application level, in the MulTCP scheme[52] the authors present a mechanism

where a single TCP flow behaves as a collection of several virtual flows. In [53], the

authors describe a scheme for using virtual round trip time for choosing a tradeoff
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between fairness and the effectiveness of network usage. In [54] the authors describe

a scheme for managing the striped TCP connections that could take different net-

work paths. However, all the above mentioned schemes use a fixed number of parallel

connections and choosing the optimal number of flows to maximize the performance

without effecting the fairness properties is a significant challenge.

The third category of research for improving the performance of TCP in high-

speed networks has been to modify the congestion response function of TCP itself.

High-Speed TCP [55] uses a congestion window response function that has a higher

slope than TCP. Scalable TCP [56], uses multiplicative increase/multiplicative de-

crease response, to ensure that the congestion window can be doubled in a fixed

number of RTTs. FAST TCP [57] relies on the delay-based bandwidth estimation

of TCP Vegas [58] and is optimized for Gbps links. Bic-TCP [59] focuses on the

RTT fairness properties by modifying the congestion response function using binary

search with additive increase and multiplicative decrease. H-TCP [60] aims to iden-

tify whether the congestion window is operating in the low speed mode or high-speed

mode and uses two different values for the increase/decrease parameters accordingly.

Several other schemes that go beyond modifications only to TCP have also been

proposed. In the XCP[61] scheme, the authors propose changes to the TCP congestion

response function as well as the network infrastructure. In schemes like Tsunami[62],

RBUDP[63] and SABUL/UDT [64] reliable data transfer is achieved by using UDP

for data and TCP for control information. GTP[65] is also a rate based protocol, but

focuses on max-min fair rate allocation across multiple flows to support multipoint-

to-point data movement.

In this chapter, we propose the Layered TCP scheme which modifies the conges-

tion response function of TCP at the sender-side and requires no additional support

from the network infrastructure or the receivers. In a sense, this scheme can be
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thought of as an emulation of multiple flows at the transport level, with the key con-

tribution that the number of virtual flows adapt to the dynamic network conditions.

Layering schemes for probing the available bandwidth have been studied earlier in

the context of multicast and video transfer, for example [40, 41]. LTCP, in contrast

to this earlier body of work, uses layering within the congestion control algorithm of

TCP with per-ACK window adaptation to provide efficient bandwidth probing in high

bandwidth links while retaining fairness between multiple flows with similar RTTS.

2. Layered TCP: The Framework

LTCP is based on the very simple concept of virtual layers or virtual flows. To start

out with, every LTCP flow has only one layer. If the sending rate of the flow increases,

without observing any losses, then based on some criteria, it increases the number of

layers and continues to do so until a loss event is observed. When operating at any

given layer K, the flow behaves as if it were a collection of K virtual flows, increasing

the aggressiveness of probing for bandwidth. Just like the standard implementations

of TCP, the LTCP protocol is ACK-clocked and the congestion window of an LTCP

flow changes with each incoming ACK. However, since the LTCP flow operating at

layer K emulates K virtual flows, it increases the congestion window by K packets

per RTT. This is similar to the increase behavior explored in [52].

For determining the number of layers that a flow should operate at, the following

scheme is used. Suppose, each layer K is associated with a step-size δK . When the

current congestion window exceeds the window corresponding to the last addition of

a layer (WK) by the step-size δK , a new layer is added. Thus,

W1 = 0

W2 = W1 + δ1
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. . .

WK = WK−1 + δK−1 (3.1)

and the number of layers = K, when WK ≤ W < WK+1. Fig. 26 shows this

graphically.

Fig. 26. Graphical Perspective of Layers in LTCP

The step size δK associated with the layer K should be chosen such that conver-

gence is possible when several flows share the bandwidth. Consider the simple case

when the link is to be shared by two LTCP flows. Say, the flow that started earlier

operates at a higher layer K1 (with a larger window) compared to the later-starting

flow operating at a smaller layer K2 (with the smaller window). In the absence of

network congestion, the first flow increases the congestion window by K1 packets per

RTT, whereas the second flow increases by K2 packets per RTT. In order to ensure

that the first flow does not continue to increase at a rate faster than the second flow, it

is essential that the first flow adds layers at a rate slower than the second flow. Thus,

if δK1
is the step-size associated with layer K1 and δK2

is the step-size associated with

layer K2, then
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δK1

K1

>
δK2

K2

(3.2)

when K1 > K2, for all values of K1, K2 ≥ 2.

The design of the decrease behavior is guided by a rather similar reasoning -

in order for two flows starting at different times to converge, the time taken by the

larger flow to regain the bandwidth it gave up after a congestion event should be

larger than the time it takes the smaller flow to regain the bandwidth it gave up.

Suppose the two flows are operating at layers K1 and K2 (K1 > K2), and ω1 and

ω2 is the window reduction of each flow upon a packet loss. After the packet drop,

suppose the flows operate at layers K
′

1 and K
′

2 respectively. Then, the flows take
ω1

K
′

1

and ω2

K
′

2

RTTs respectively to regain the lost bandwidth. From the above reasoning,

this gives us -

ω1

K
′

1

>
ω2

K
′

2

(3.3)

The window reduction can be chosen proportional to the current window size or

be based on the layer at which the flow operates. If the latter is chosen, then care

must be taken to ensure convergence when two flows operate at the same layer but

at different window sizes.

Eq. 3.2 and 3.3 provide a simple framework for the congestion response function

of TCP for the congestion avoidance phase in high-speed networks. The congestion

window response in slow start is not modified, allowing the protocol to evolve with

experimental slowstart algorithms such as [66]. At the end of slowstart the number

of layers to operate at can easily be determined based on the window size.

Asymptotic convergence to fairness among flows of similar RTT can be assured

for competing flows if they satisfy the constraints in Eq. 3.2 and 3.3. It must be noted
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however, that when the flows have different RTTs, the above scheme could make the

RTT unfairness worse than that of TCP. Since LTCP is ACK-clocked similar to TCP,

the window of an LTCP flow with shorter RTT grows faster than that of an LTCP

flow with larger RTT. In addition, since each layer K is associated with a step size

δK , it takes exactly δK/K RTTs for a flow to increase the number of layers to (K+1).

When two flows with different RTTs share a bottleneck link, the flow with the short

RTT will be able to add layers faster than the flow with the larger RTT making the

RTT unfairness worse. In order to compensate for this dependence of aggressiveness

on RTT, we introduce the RTT compensation factor KR and modify the per-ACK

behavior such that, an LTCP flow at layer K will increase the congestion window at

the rate of KR ∗K for the successful receipt of one window of acknowledgments. The

RTT compensation factor is made proportional to the RTT. In order to ensure that

the flows do not become aggressive as queues build up, we make KR dependent only

on the propagation delay of the link. In our experiments we use the lowest measured

RTT sample for choosing the value of KR. This uniformly scales up the rate at which

a flow increase its window, with respect to RTT. Since the RTT compensation factor

KR is constant for a given RTT and multiplicative in nature, it does not alter the

Eq. 3.2 and 3.3 for the flows operating at same RTT.

In order to develop a protocol that can use the above framework, the key is

to determine the appropriate relationships for the step size δ (or equivalently, the

window size Wk at which the layer transitions occur) and the window reduction that

satisfy the conditions in Eq. 3.2 and 3.3. Several different design choices are possible.

We evaluate in this work one particular design that lets us retain the AIMD nature

of TCP.



63

3. Design Choice

In order to evaluate the effectiveness of the LTCP protocol, we present the following

design option. We support this design with extensive analysis to understand the

protocol behavior. However, this is by no means the only possible or the best possible

design for the LTCP scheme. The scheme presented here is a means for illustrating

the effectiveness of the LTCP framework for efficiently claiming available bandwidth,

without sacrificing the convergence and fairness properties.

First we determine appropriate values for the step size δ (or equivalently, the

window size Wk at which the layer transitions occur) and the window reduction that

satisfy the conditions in Eq. 3.2 and 3.3. Based on this choice, the RTT compensation

factor KR can be determined to provide RTT fairness to satisfy a given requirement

(e.g.. similar to TCP or similar to rate based flow etc.).

For determining the parameters, we start with the decrease behavior and analyze

behavior for flows with similar RTTs. Since, the key requirement we have is to retain

the AIMD properties of TCP, the decrease behavior is chosen to be multiplicative.

The window reduction is based on a factor of β such that -

ω = β ∗W (3.4)

Based on this choice for the decrease behavior we determine the appropriate increase

behavior such that the conditions in Eq. 3.2 and 3.3 are satisfied. To provide an

intuition for choice of the increase behavior, consider Eq. 3.3

ω1

K
′

1

>
ω2

K
′

2

(3.5)

In order to allow smooth layer transitions, we stipulate that after a window

reduction due to a packet loss, at most one layer can be dropped i.e., a flow operating



64

at layer K before the packet loss should operate at either layer K or (K − 1) after

the window reduction. Based on this stipulation, there are four possible cases -

1. K
′

1 = K1, K
′

2 = K2

2. K
′

1 = (K1 − 1), K ′

2 = K2

3. K
′

1 = K1, K
′

2 = (K2 − 1) and

4. K
′

1 = (K1 − 1), K ′

2 = (K2 − 1).

It is most difficult to maintain the convergence properties, when the larger flow does

not reduce a layer but the smaller flow does, i.e.,, K
′

1 = K1, K
′

2 = (K2 − 1).

With this worst case situation, Eq. 3.3 can be written as -

ω1

K1

>
ω2

(K2 − 1)
(3.6)

If this inequality is maintained for adjacent layers, we can show by simple exten-

sion, that it can be maintained for all other layers. So considerK1 = K,K2 = (K−1).

Then, the above inequality is

ω1

K
>

ω2

K − 2 (3.7)

Suppose, the window for flow 1 isW
′

when the packet loss occurs and the window

of flow 2 is W
′′

then, substituting Eq. 3.4 in the above equation, we have,

W
′

K
>

W
′′

K − 2
⇒ W

′

>
K

K − 2W
′′

(3.8)

In order for the worst case behavior (K
′

1 = K,K
′

2 = (K − 2)) to occur, the

window W
′

could be close to the transition to the layer (K + 1) and the window W
′′

could have recently transitioned into layer (K − 1). In order to get the estimate of
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the worst case we substitute these values in the above equation to get -

WK+1 >
K

K − 2WK−1 (3.9)

Based on this, we conservatively choose the increase behavior to be

WK =
K + 1

K − 2WK−1 (3.10)

Note that alternate choices are possible. This is essentially a tradeoff between

efficiently utilizing the bandwidth and ensuring convergence between multiple flows

sharing the same link. While it is essential to choose the relationship between WK

and WK−1 such that the condition in Eq. 3.34 is satisfied to ensure convergence, a

very conservative choice would make the protocol slow in increasing the layers and

hence less efficient in utilizing the bandwidth.

Now suppose we choose to add the second layer at threshold W2 = WT . Then,

by recursively substituting, we have

WK =
K(K + 1)(K − 1)

6
WT (3.11)

By definition, δK = WK+1 −WK and hence we have,

δK =
K(K + 1)

2
WT (3.12)

By simple substitution, we can show that the inequality in Eq. 3.2 is satisfied.

Also, since this scheme was designed with the worst case for the inequality in Eq. 3.3,

that condition is satisfied as well, when two competing flows are at adjacent layers.

The result for adjacent layers can then be easily extrapolated for non-adjacent layers.

It can also be shown that when two flows operate at the same layer, the inequality in

Eq. 3.3 is satisfied.
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a. Choice of WT and β

The choice of the threshold WT , the window size at which the LTCP flows starts to

increase the number of layers, determines the region where the increase of LTCP has

similar increase behavior as TCP. We choose a value of 50 packets forWT . This value

is motivated by the fact that when the window scale option [67] is not turned on,

the maximum window size allowed is 64Kb which is about 44 packets (of size 1500

bytes). The window scale option is used in high-speed networks, to allow the receiver

to advertise large window size. In slower networks, when the window scale option is

not turned on, the actual sending rate is capped by this window value. We choose to

begin the aggressive bandwidth probing of LTCP beyond this threshold.

The relationship between WK and K has been derived based on the stipulation

that after a window reduction due to packet drop, at most one layer is dropped. In

order to ensure this, we have to choose the parameter β carefully. The worst case

for this situation occurs when the flow has just added the layer K and the window

W = WK + ∆, when the packet drop occurs. In order to ensure that the flow does

not go from layer K to (K − 2) after the packet drop, we need to ensure that

βWK < δK−1

(3.13)

(Ignoring the reduction due to ∆ since we are computing the worst case behavior.)

On simple substitution, this yields,

β <
3

K + 1
(3.14)

Thus, β should be chosen such that the above equation is satisfied. The first two

columns in Table I shows the number of layers corresponding to the window size at
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layer transitions (WK) with WT = 50. For a 2.4Gbps link with an RTT of 150ms

and packet size of 1500 bytes, the window size can grow to 30,000. The number of

layers required to maintain full link utilization is therefore K = 15. Based on this,

we conservatively choose β = 0.15 (corresponding to K = 19).

With this design choice, LTCP retains AIMD behavior. At each layer K, LTCP

increases the window additively by K, and when a packet drop occurs, the congestion

window is reduced multiplicatively by a factor of β.

b. Time to Claim Bandwidth and Packet Recovery Time

The primary goal for designing the LTCP protocol is to be able to utilize available

link bandwidth aggressively in high-speed networks. Here, we provide quantitative

analysis for time taken by an LTCP flow (in terms of RTTs) for claiming available

bandwidth and the packet loss recovery time. For this analysis, we consider the case

where the RTT compensation factor KR = 1.

Suppose the maximum window size corresponding to the available throughput is

WK . Then, time to increase the window to WK can be obtained as the sum of the

time to transition from layer 1 to 2, 2 to 3 and so on until layer K. In other words,

the time to increase the window to WK is -

T (δ1) + T (δ2) + ....+ T (δK−2) + T (δK−1)

where T (δK) is the time (in RTTs) for increasing the window from layer K to (K+1).

When the flow operates at layer K, to reach to the next layer, it has to increase the

window by δK and the rate of increase is K per RTT. Thus T (δK) is given by
δK
K
.

Substituting this in the above equation and doing the summation we find that the
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time to reach a window size of WK is

T (δ1) +
(K − 2)(K + 3)

4
WT (3.15)

Note that the above analysis assumes that slowstart is terminated before layering

starts. The third column in Table I shows the speedup in claiming bandwidth com-

pared to TCP, for an LTCP flow with WT = 50, with the assumption that slowstart

is terminated when window = WT .

Table I. Comparison of LTCP (with WT = 50 and β = 0.15) to TCP

An LTCP flow with window size W will reduce the congestion window by βW .

It then starts to increase the congestion window at the rate of at least (K−1) packets

per RTT (since we stipulate that a packet drop results in the reduction of at most one

layer). The packet loss recovery time then, for LTCP is βW
(K−1)

. In case of TCP, upon

a packet drop, the window is reduced by half, and after the drop the rate of increase

is 1 per RTT. Thus, the packet recovery time is W/2. The last column of Table I
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shows the speed up in packet recovery time for LTCP with β = 0.15 compared to

TCP. Based on the conservative estimate that a layer reduction occurs after a packet

drop, the speed up in the packet recovery time of LTCP compared to TCP is a factor

of 3.33 ∗ (K − 1).

c. Response Function

In order to understand the relationship between throughput of an LTCP flow and

the drop probability p of the link, and provide the basis for determining the value of

KR, we present the following analysis. Fig. 27 shows the steady state behavior of the

congestion window of an LTCP flow with a uniform loss probability model. Suppose

the number of layers at steady state is K and the link drop probability is p. Let

W
′′

and W
′

represent the congestion window just before and just after a packet drop

respectively. On a packet loss the congestion window is reduced by βW
′′

. Suppose

the flow operates at layer K
′

after the packet drop. Then, for each RTT after the

loss, the congestion window is increased at the rate of K
′

until the window reaches

the value W ′′, when the next packet drop occurs. Since we stipulate that at most

one layer can be dropped after the window reduction due to packet loss, the window

behavior of the LTCP flow, in general, will look like Fig. 27 at steady state.

With this model, the time between two successive losses, say TD, will be
βW

′′

KRK
′

RTTs or βW
′′

KRK
′ ∗ RTT seconds. The number of packets sent between two successive

losses, say ND, is given by the area of the shaded region in Fig. 27. This can be

shown to be -

ND '
β(W

′′

)2

KRK
′
(1− β

2
) (3.16)

The throughput of such an LTCP flow can be computed as ND

TD
. That is,

BW =
W ′′

RTT
(1− β

2
) (3.17)
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Fig. 27. Analysis of Steady State Behavior

The expected number of packets sent between two losses ND is
1
p
. By substituting

this in Eq. 3.16, and solving for W
′′

we have,

W
′′

=
√ KRK

′

β(1− β
2
)p

(3.18)

K
′

is a discrete integer value, based on the Eq. 3.11. Hence it can be approxi-

mated by b(6W
′′

WT
)

1
3 c. Substituting this in Eq. 3.18, we have,

W
′′

= (
KR(

6
WT
)

1
3

β(1− β
2
)p
)

3
5 (3.19)

Substituting in Eq. 3.17 we have

BW =
C.K

3
5

R

RTT.p
3
5

(3.20)

where C =
( 6
WT
)

1
5 (1− β

2
)

[β(1− β)]
3
5

Fig. 28 shows the response function of LTCP when KR is equal to 1. Response

function of other high-speed proposals as well as that of unmodified TCP are shown

for comparison. [60] states that the response function of H-TCP is similar to that of
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HS-TCP. From the figure, it can been seen that the slope of the response function

of only LTCP is similar to that of regular TCP indicating that LTCP behaves in

the AIMD fashion similar to TCP. At the same time, the curve is shifted along the

Y-axis, indicating better scalability in high-speed networks, compared to TCP.

Fig. 28. Response Function of Different High-speed Protocols

d. RTT Unfairness and Choice of KR

In this section we assess the RTT unfairness of LTCP under the assumptions of

random loss model as well as synchronized loss models. Based on the discussion for

the synchronized loss model, we derive the relationship between KR and RTT to

achieve RTT unfairness similar to that of TCP.

In [68], for a random loss model the probability of the packet loss λ is shown to

be -

λ ∝ A(w,RTT )

A(w,RTT ) +B(w,RTT )
(3.21)

where A(w,RTT ) and B(w,RTT ) are the window increase and decrease functions

respectively.
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For LTCP A(w,RTT ) = K/w and B(w,RTT ) = βW , when RTT compensation

is not used. Substituting these values in the above equation and approximating

K ∝ W 1/3, we can calculate the loss rate λ as -

λ ∝ 1

(1 + βW
5/3
s )

(3.22)

where Ws is the statistical equilibrium window.

It is clear from the above equation that the two LTCP flows experiencing the

same loss probability, will have the same equilibrium window size, regardless of the

round trip time. However, throughput at the equilibrium point becomes inversely

proportional to its round trip time since the average transmission rate rs and is given

by Ws/RTT .

The loss probability for TCP with similar assumptions is given by:

λ ∝ 1

(1 + 0.5Ws)
(3.23)

The equilibrium window size of the TCP flow does not depend on the RTT either.

Therefore, for random losses the RTT dependence of window of an LTCP flow is

same as TCP. Thus LTCP has window-oriented fairness similar to TCP and will not

perform worse than TCP in case of random losses.

Because of the nature of current deployment of high bandwidth networks, it is

likely that the degree of multiplexing will be small and as such, an assumption of

synchronized loss model may be more appropriate. So we present here the details of

the analysis with the synchronized loss model as well.

Following a similar analysis in [59], for synchronized losses, suppose the time

between two drops is t. For a flow i with round trip time RTTi and probability of
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loss pi, the average window size is

Wi =
1
pi
t

RTTi

=
RTTi

tpi
(3.24)

since the flow will send 1
pi
packets between two consecutive drop events and the

number of RTTs between the two consecutive loss events t
RTTi

.

From Eq. 3.20, we have the bandwidth of an LTCP flow to be

BW =
Wi

RTTi

=
C.K

3
5

Ri

RTTi.p
3
5

⇒ pi =
C

5
3KRi

W
5
3
i

(3.25)

where C is a constant.

By substituting the above in Eq. 3.24 and simplifying we get,

Wi = (
tKRi

RTTi

)
3
2 .C

5
2 (3.26)

When the RTT unfairness is defined as the throughput ratio of two flows in terms

of their RTT ratios, the RTT unfairness for LTCP is -

( W1

RTT1
)(1− p1)

( W2

RTT2
)(1− p2)

'
W1

RTT1

W2

RTT2

= (
RTT2

RTT1

)
5
2 (
KR1

KR2

)
3
2 (3.27)

(since p << 1).

The above equation shows that by choosing KR appropriately, the RTT unfair-

ness of LTCP flows can be controlled. For instance, choosing KR ∝ RTT
1
3 , the RTT

unfairness of the LTCP protocol will be similar to the AIMD scheme used in TCP. By

choosing KR ∝ RTT , the effect of RTT on the scheme can be entirely eliminated and

the LTCP protocol behaves like a rate controlled scheme independent of the RTT.

By choosing an intermediate value such as, KR ∝ RTT
1
2 , we can reduce the RTT

unfairness of LTCP in comparison to TCP.
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In general, suppose we choose, KR proportional to RTT
α, where α is a constant.

After a window reduction ω, suppose a flow operates at layer K
′

. When RTT com-

pensation is used it takes ω
KR∗K

′ RTTs or ω∗RTT
KR∗K

′ secs to regain the lost bandwidth.

Suppose two flows with different RTTs are competing for the available bandwidth,

Eq. 3.3 can be re-written as

ω1 ∗RTT1

KR1 ∗K ′

1

>
ω2 ∗RTT2

KR2 ∗K ′

2

Substituting the value of ω and further solving it, we have,

⇒ (
RTT1

RTT2

)α−1 <
(K

′

+ 1)

K ′

⇒ (α− 1) < log(1 +
1

K ′
) ⇒ α <= 1 (3.28)

The above equation has been derived by assuming a worst case RTT ratio of

10 while taking the logarithm. It shows that when the RTT compensation factor is

chosen based on the relationship KR ∝ RTT α the value of α should be less that or

equal to 1, to ensure asymptotic convergence. Since we aim to keep the behavior of

LTCP similar to that of TCP we choose KR ∝ RTT
1
3 .

e. Router Buffer Requirements

It has been conventional wisdom to set the router buffer size based on the classical

rule of thumb of delay-bandwidth product of the link. For links with high bandwidth

and high delays, this choice makes the required router buffer size very large. Research

on sizing the router buffers [2] have shown that the classical rule of thumb is based

on the desire to maintain high link utilization on the link, when a single flow tries

to saturate the link. Since LTCP uses a less drastic decrease rule compared to TCP,
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the buffer size required by a single LTCP flow for keeping the link fully utilized all

the time, is lower than that of TCP. Based on analysis similar to that in [2] it can

be shown that the buffer size requirements for a single LTCP flow is β
(1−β)

(C ∗ 2Tp)

where C is the link capacity and Tp is the propagation delay of the link. Since we

choose the value of β to be 0.15, the minimum buffer size required is 0.176 ∗C ∗ 2Tp,

an 82% reduction compared to that of TCP.

f. Implementation Details

The LTCP protocol requires simple sender-side changes to the congestion window

response function of TCP. For the chosen design, it uses two additional parameters -

WT and β. In our implementation, WT and β are set to 50 and 0.15 respectively. The

window thresholdsWK , computed using the parameterWT , may be saved in an array

for quick lookup. When a new connection is established, the protocol is started with

K = 1 and the slowstart algorithm of standard TCP. When slowstart is exited, the

number of layers K is obtained based on the current cwnd by looking up the table

containing the values of WK .

Both the framework and the design use discrete values for layers. However, in

the implementation, K can be made continuously variable by linearly increasing it

over δK . The pseudocode for the LTCP algorithm is given below.

if(srtt < min rtt)
{

min rtt = srtt
recompute KR

}
if(newack)
{

Kfract = (cwnd−WK)/deltaK
cwnd = cwnd+ (KR ∗ (K +Kfract))/cwnd
if(cwnd >= WK+1)

K ++
}
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if(packet loss)
{

cwnd = cwnd(1− β)
if(cwnd < WK)

K −−
}

The rest of the algorithms used in the traditional implementation of TCP - for

instance the algorithms for RTT calculations, SACK processing, timer management

etc, are not modified.

4. NS-2 Simulation Results

To evaluate the LTCP protocol, we conducted experiments based on both simulations

on the ns-2 simulator and emulations on a Linux test-bed. The ns-2 simulations help

us evaluate the behavior of LTCP under diverse network conditions. The emulations,

on the other hand, help us evaluate a real implementation of LTCP on the Linux

network stack. Third party evaluation of LTCP in comparison with other advanced

TCP stacks such as High-Speed TCP [55], Scalable TCP [56], FAST TCP [57], Bic-

TCP [59] and H-TCP [60] and UDP based scheme UDT [64] is currently underway

at the SLAC lab at Stanford. In this section we focus on the simulation results.

Fig. 29 shows the network topology used in the simulations. The topology is

a simple dumbbell network. The bottleneck link bandwidth is set to 1 Gbps unless

otherwise specified. The links that connect the senders and the receivers to the router

have a bandwidth of 2.4Gbps. The end-to-end RTT is set to 120ms. The routers have

the default queue-size of 5000 packets unless specified otherwise. DropTail queue

management is used at the routers. The LTCP protocol is implemented by modifying

the TCP/Sack1 agent. The unmodified TCP/Sack1 agent is used for TCP. The

receiver advertised window is set to a large value to ensure that it does not interfere

with the simulations. For the LTCP flows, the parameter WT is set to 50 packets and
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the parameter β was set to 0.15. The traffic constitute of FTP transfer between the

senders and receivers.

Fig. 29. Simulation Topology

a. Basic Comparison with TCP

Since LTCP uses adaptive layering, it is capable of increasing its window size to the

optimal value much faster than TCP. Also, when a packet loss occurs, the window

reduction of LTCP is not as drastic as TCP. As a result the window adaptation of

LTCP is much more efficient in utilizing the link bandwidth in high-speed networks.

Fig. 30 shows congestion window of LTCP in comparison with that of TCP, when

the network consists of only one flow. As seen from the figure, the congestion window

of LTCP reaches the optimal value several orders of magnitude faster than the TCP

flow. The comparison of windows for HTCP and BIC with TCP are included for

reference. Since HTCP chooses the window reduction dynamically in the range (0.5,

0.8), the overall fluctuation in the HTCP window is slightly worse than that of LTCP

and BIC.
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Table II shows the comparison between the goodput and average packet loss

rates for different protocols at different bottleneck link bandwidths. The throughput

is calculated over a period of 2000 seconds after the flow reaches steady state. Due

to the large period for averaging the throughput and the buffer size of 5000 packets,

TCP flow seems to be able to obtain reasonably high throughput. As seen from Fig.

30, due to the large width of the TCP window cycle, using a smaller duration for

measuring throughput would yield lower TCP throughput, depending on the window

size during the measurement period. Since the high speed protocols operate close

to the optimal value most of the time, the link utilization will be high even if the

measurement duration is reduced. However, due to operating close to the optimal

value, the congestion loss rate observed by high-speed flows is larger than that of TCP

which due to under-utilization of the link sees lower congestion losses. Among the

different high-speed protocols, LTCP and BIC have lower self-induced losses compared

to HTCP while achieving similar goodput.

Table II. Goodput and Packet Loss Rate for Different High-speed Protocols

b. Intra-protocol Fairness

In this experiment, we evaluate the fairness of LTCP flows to each other. Different

number of LTCP flows are started at the same time (with random staggering to avoid

synchronization) and the average per-flow bandwidth of each flow is noted. Table III

shows that when the number of flows is varied, the maximum and the minimum per-
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flow throughput remain close to the average, indicating that the per-flow throughput

of each flow is close to the fair proportional share. This is verified by calculating the

Fairness Index proposed by Jain et. al., in [69]. The Fairness Index being close to 1

shows that the LTCP flows share the available network bandwidth equitably. Similar

behavior was observed with BIC and HTCP.

Table III. Fairness Among LTCP Flows

c. Dynamic Link Sharing

In the previous experiment with multiple flows, all the flows were started at about the

same time and all different protocol flavors showed very good intra-protocol fairness.

In this section, we evaluate the convergence properties when flows start and stop at

different times, dynamically changing the available link bandwidth. The first flow is

started at time 0, and allowed to reach steady state. A new flow is then added every

300 seconds. The flows last for 2100, 1500, 900 and 300 seconds respectively. Fig.

31 shows the throughput of each flow. From the graph we see that, the BIC flows

take much longer to converge to fair share compared to LTCP and HTCP. When

bandwidth becomes available because of the completion of a flow, all three protocols

are capable of quickly increasing their sending rates and hence ensuring the link is

fully utilized.
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d. Effect of Random Losses

Fig. 28 shows the response curve of the different high-speed proposals. [60] states that

the response function of H-TCP is similar to that of HS-TCP. In this simulation, we

show the effect of the different response curves. We fix the capacity of the bottleneck

link at 1Gbps and induce random losses on the link using a uniform loss model. Fig.

32 plots the throughput against the random loss rate. Note that the loss rate on

the x-axis does not include the self-induced congestion losses. Packet loss rate of

10−7 due to channel errors is comparable to the error rate in long haul fiber links

[56]. As the random loss rate increases, the link utilization of the different protocols

starts to deteriorate. The deterioration of LTCP and BIC are similar, whereas the

deterioration of HTCP is slightly more drastic.

Fig. 32. Effect of Random Losses on Different High-speed Protocols

e. Impact of Bottleneck Link Buffer Size

In this experiment we study the impact of the bottleneck link buffer size on the perfor-

mance of the different high-speed protocols. For the given topology, the bandwidth-

delay product(BDP) is 15000 packets. We vary the bottleneck link buffer size from
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1 times to 0.1 times the BDP. Fig. 33 shows the results. As seen from the graph,

when the bottleneck link buffer size is at least 0.5 times the BDP, all the high-speed

protocols maintain high link utilization. When the bottleneck link buffer size reduces

below this, the throughput starts to degrade a little, with the degradation for HTCP

being slightly worse than that of BIC or LTCP. As indicated in Section e, even when

the buffer size at the bottleneck link router is low, LTCP can maintain high link

utilization.

Fig. 33. Impact of Bottleneck Link Buffer Size

f. Interaction with TCP

In this section, we verify the effect of LTCP on regular TCP flows. It must be noted

that the window response function of LTCP, BIC and HTCP are designed to be more

aggressive than TCP in high speed networks. So a single flow of TCP cannot compete

with a single flow of these high-speed protocols. We present these results here to show

that the high-speed protocols do not starve the TCP flows for bandwidth. Table IV

shows the results with one TCP flow sharing the bottleneck link with a high-speed

flow. With an increase in the available bottleneck link capacity, the throughput

achieved by the TCP flow slightly increases. The throughput obtained by the TCP
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flow is similar when competing with the different high-speed flows.

Table IV. Interaction of LTCP with TCP

g. RTT Unfairness

In our analyses we have showed that the RTT unfairness of LTCP can be tuned based

on different requirements by modifying KR. We choose KR so that LTCP displays

RTT unfairness similar to that of TCP, that is, the ratio of the throughput of two

LTCP flows with different RTTs is proportional to the inverse square of the ratio of

the RTTs. While, the choice of KR can easily be modified to offer different levels of

fairness, we present in this section the results with the chosen design. Each simulation

consists of two flows with different RTTs competing for bandwidth on the bottleneck

link. The RTT of the shorter link is fixed at 40ms, while varying the RTT of the

larger link such that the RTTs have ratio 2, 3 and 4. The bottleneck link capacity is

fixed at 1Gbps. Table V shows the results in comparison with HTCP and BIC. Since

the scaling factor for HTCP is chosen to provide linear unfairness (as opposed to the

square unfairness of TCP), HTCP shows better performance. According to [59], the

RTT unfairness of BIC is the same as that of TCP for high bandwidth, and the low

RTT flows may starve the high RTT flows at low bandwidth. In this experiment,

the RTT unfairness of BIC was observed to be a little worse than that of the inverse

square unfairness of TCP.
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Table V. RTT Unfairness

h. Interaction with Non-responsive Traffic

In order to evaluate how LTCP responds to the presence of traffic that does not

respond to congestion, we conducted the following simulation. In this simulation,

non-responsive on-off traffic was simulated using CBR/UDP source that sends data

at half the bottleneck link capacity (500Mbps) for 150 seconds and then remains

inactive for the next 150 seconds. Fig. 34 shows the throughput of the two flows

computed over 5 second intervals. Results of similar experiments with BIC and

HTCP are included for comparison. As seen from the graph, the response of all the

three protocols is similar. In the presence of non-responsive traffic all of them reduce

their sending rate. When the non-responsive flows are not present, all of them quickly

ramp up the sending rate.

5. Emulation Results

We have implemented LTCP in the network stack of the Linux 2.4.25 kernel. The

network stack in the 2.4.x kernel is quite sophisticated and supports several standards

from the RFCs as well as features beyond those published in RFCs or IETF Drafts

aimed to provide good network performance [70].

Our test-bed consists of two off-the shelf Dell Optiplex GX260 workstations with

Pentium 4 3.06GHz CPU, 512MB of RAM, Intel PRO/1000 MT gigabit NICs on to a

33MHz/32bit PCI bus. The two computers are connected using a copper Cat 6 cable.

The 33MHz PCI bus limits the achievable throughput to around 750-800 Mbps. The
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Fig. 34. Interaction with UDP Traffic

netem network emulator available as part of the tc tools is used to generate uniform

delay for all packets, so that larger RTTs can be emulated. This patch modifies

the FIFO queue such that every packet queued is delayed for a fixed amount. This

setup was used instead of the conventional sender-router-receiver setup, due to the

limitation imposed by the PCI bus which in the router configuration would further

reduce the bottleneck link capacity as it is shared by both incoming and outgoing

interfaces. iperf [71] was used for generating traffic. We increased the socket buffers

to allow maximum link utilization. The txqueuelen for the NIC was set to the default

value of 1000. The backlog queue was modified to have a size of 1000.

In all experiments we show results for three RTT values - 25ms, 70ms and

150ms - which are representative of links across close by cities, across the country

and transatlantic links. These values are chosen based on the pingER measurement

history tables at SLAC [72].
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a. Basic Performance Tests

We present here the results of the experiment comparing the performance of the

standard Linux TCP (TCP-SACK) with that of LTCP at different RTTs for a 900

second transfer. The socket buffer size at both the sender and receiver is set to 32MB

to ensure that a single flow can utilize all the available bandwidth. The experiment

is run for 15 minutes (900 seconds) and is repeated four times. The table in Table VI

shows the average number of bytes transferred and the average transfer rate. At low

RTTs, both the TCP and LTCP flows manage to keep the link almost fully utilized

and transfer about 75 GBytes of data. As the RTT increases, TCP takes longer to

recover from packet losses and its performance starts to deteriorate. For an RTT

of 120ms, which is comparable to that of the transatlantic links, the performance

deterioration is significant and in 900 seconds, the TCP flow manages to transfer

only about 22 GBytes. In contrast, a single LTCP flow transfers an average of about

65 GBytes.

Table VI. Linux Performance Test

b. Performance with Fixed Transfer Size

The above experiment illustrates the effectiveness of the LTCP protocol in main-

taining higher link utilization than TCP. It is based on the assumption that the

application has an infinite amount of data to send and hence only one connection
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establishment is required for the entire 15 minute period. This assumption may not

always be true. In this experiment, we find the time it takes to transfer 100 GBytes

of data in chunks of 2 GBytes each. A new transfer is started after the completion

of the previous transfer. This experiment captures the slowstart and connection tear

down dynamics. Table VII shows the results. Again at low RTT values, the difference

is not noticeable. However, at larger RTTs, the LTCP protocol can transfer the data

in less than half the time of TCP. Table VIII shows the statistics for the individual

transfers of 2 GByte size. From the table it is clear that the standard deviation of

both the time to transfer and the rate of transfer is larger for the LTCP flows. Recol-

lect that LTCP does not modify the behavior during the slowstart period. However,

when a flow comes out of slowstart, the number of layers (K) is updated according

to the congestion window size. Hence, depending on when the slow start terminates,

the different flows would operate at different layers. Since each transfer is short and

slow start controls a large part of the transfer, sufficient time is not available for the

LTCP flows to reach the stable operating point. Hence the increased variance in the

time and the rate of transfer.

Table VII. Time for Transferring 100 GBytes of Data in Units of 2 GBytes

c. Fairness Among Multiple Flows

In order to evaluate the inter-protocol fairness among multiple flows of LTCP w e

conducted the experiment with multiple flows starting at the same time and calculated

the Jain Fairness Index [69]. Table IX shows the results. The Jain Fairness Index for
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Table VIII. Statistics for Individual 2 GByte Transfers

LTCP is high across different RTTs and different number of flows. Also, the standard

deviation in the per-flow throughput of the LTCP flow is fairly low. This indicates

that multiple flows of LTCP protocol share the available bandwidth equitably. Results

for TCP are included to aid the comparison.

Table IX. Fairness Among Multiple Flows

d. Interaction of LTCP with UDP-based Traffic

In order to evaluate how LTCP responds to the presence of dynamically changing

traffic that does not respond to congestion, we conducted the following experiment.

In this experiment, an iperf stream of UDP sending at 350Mbps (about half the

available link capacity) at intervals of 5 minutes was used as the source of non-

responsive on-off traffic. UDP traffic consumes a lot of resources on the machines.
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In order to offset this, the txqueuelen and the backlog queue were set to 5000 in

this experiment. Fig. 35 shows the results. It is clear from the graphs, that when

the UDP stream is sending packets, the LTCP source reduces its congestion window

so that the link is shared between the LTCP and the UDP traffic. When the UDP

source, stops sending packets, the LTCP flow increases its sending rate close to the

full link capacity. We verified this at different RTTs, but have included the results

here for the medium RTT case.
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Fig. 35. Interaction of LTCP with Non-responsive Traffic
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B. LTCP with Variable β

The LTCP variant discussed in the previous section used a fixed window decrease

factor (β) of 0.15, which imposed an upper limit of 19 on the number of layers (K).

In this section we remove this restriction by making β adaptive, such that the window

decrease at any given layer is βK . The value for βK is chosen such that conditions in

Eq. 3.2 and 3.3 are satisfied and the fairness properties are retained.

1. Analysis

For determining the appropriate value for βK , we start with the decrease behavior

and analyze the behavior for flows with similar RTTs, similar to Eq. 3.4. The

decrease behavior is again chosen to be multiplicative - however, the decrease factor

now depends on the layer at which the flow operates. As a result, we have -

ω = βK ∗W (3.29)

Similar to the discussion before, based on this choice for the decrease behavior, we

determine the appropriate increase behavior such that the conditions in Eq. 3.2 and

3.3 are satisfied.

Consider Eq. 3.3

ω1

K
′

1

>
ω2

K
′

2

(3.30)

If we continue to have the same stipulation as before that at most one layer can

be dropped after a packet loss, then it is most difficult to maintain the convergence

properties, when the larger flow does not reduce a layer but the smaller flow does,

i.e.,, K
′

1 = K1, K
′

2 = (K2− 1). With this worst case situation, Eq. 3.3 can be written
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as -

ω1

K1

>
ω2

(K2 − 1)
(3.31)

If this inequality is maintained for adjacent layers, we can show by simple exten-

sion, that it can be maintained for all other layers. So considerK1 = K,K2 = (K−1).

Then, the above inequality is

ω1

K
>

ω2

K − 2 (3.32)

Suppose, the window for flow 1 isW
′

when the packet loss occurs and the window

of flow 2 is W
′′

then, substituting Eq. 3.29 in the above equation, we have,

βK ∗W ′

K
>
βK−1 ∗W ′′

K − 2
⇒ W

′

>
K

K − 2
βK−1

βK

W
′′

(3.33)

In order for the worst case behavior (K
′

1 = K,K
′

2 = (K − 2)) to occur, the

window W
′

could be close to the transition to the layer (K + 1) and the window W
′′

could have recently transitioned into layer (K − 1). In order to get the estimate of

the worst case, we substitute these values in the above equation to get

WK+1 >
K

K − 2
βK−1

βK

WK−1 (3.34)

Based on this, we choose the increase behavior to be

WK =
K

K − 2
βK−1

βK

WK−1 (3.35)

With this choice the equations for WK and δK remain similar to those in Eq.

3.11 and 3.12 as shown below.

Consider first the choice of βK . Based on our stipulation that at most one layer
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may be dropped after a window reduction, we have (similar to Eq. 3.13)

βKWK < δK−1

(3.36)

Suppose we choose βK = α δK−1

WK
where α < 1. Substituting this in Eq. 3.35 we have,

WK =
K

K − 2

αδK−2

WK−1

αδK−1

WK

WK−1

⇒ δK−1

δK−2

=
K

K − 2

⇒ δK
δK−1

=
K + 1

K − 1
(3.37)

Suppose, just as before, we start adding layers when window is equal toWT . The

we have δ1 = WT . By recursive substitution in the above equation we have,

δK =
K(K + 1)

2
WT (3.38)

which is similar to the earlier design with fixed β.

Now consider WK . Since we have layer threshold W2 at WT and a new layer is

added when window increases by δK we have,

WK = δ1 + δ2 + . . .+ δK−1

(3.39)

By simple summation of the above equation, we get

WK =
K(K + 1)(K − 1)

6
WT (3.40)

which is again similar to the earlier design with fixed β.
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Hence, we now have a design for LTCP with variable β while maintaining basic

equations for WK and δK similar to the earlier design with fixed K. Note that these

equations are not effected by the exact value of βK , as long as it is chosen based on

the constraint that βK = α δK−1

WK
where α < 1. In order to determine the appropriate

value for α consider the following :

βK = α
δK−1

WK

⇒ βK = α
(K−1)K

2
WT

K(K+1)(K−1)
6

WT

= α
3

K + 1
(3.41)

When K = 1, we would prefer to maintain the behavior of LTCP similar to that

of standard TCP and so we choose β1 = 0.5. This gives us the value of α to be
1
3
.

Note that, even though the analysis above has been conducted with discrete values

for beta, in the implementation, we use a continuous linearly scaled value similar to

the scaling used for increase parameter K in Section III.A.3.f.

Since WK and δK with the new design is similar to that of the previous design,

the time to claim bandwidth remains similar to that in Table I. However, since the

window reduction βK is now a variable, time to recover from packet loss is different.

Fig. X shows the relationship of layers K to the window thresholds WK and window

reduction factors βK and also the difference in the speedup in packet loss recovery

time compared to Table I.

Note that with the choice of variable β, there is no longer a restriction on number

of layers that a flow can grow up to and LTCP is scalable with increasing bandwidth.

Also, with the new design, the speedup in packet loss recovery time is smaller at

smaller layers, but higher in larger layers.
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Table X. Comparison of LTCP (with WT = 50 and variable β) to TCP
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2. NS-2 Simulation Results

In order to demonstrate that using variable β does not modify the basic behavior

of LTCP, we have repeated some of the experiments whose results were presented

earlier. We show the results below.

a. Window Behavior, Link Utilization and Packet Loss Rates

Fig. 36 shows congestion window of the LTCP protocol with variable β. The op-

erating window size is around 19000 packets, which corresponds to layer number 13

and the βK value is 0.071 as seen from Table X. Thus, the window decrease after a

packet loss is slightly lower than the fixed β version and hence the oscillation of the

congestion window about the optimal point is slightly smaller.

Fig. 36. Congestion Window Behavior of LTCP with Variable β

Table XI shows the throughput and drop rates of for LTCP with variable β.

The results for LTCP with fixed β are included for comparison. As seen from the

table, the link utilization remains similar, but the drop rates are slightly higher when

variable β is used, especially at higher bottleneck link capacities where the window

can get large. At larger windows, the value of βK gets smaller and hence the window
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oscillates close to the optimal operating point. Since each oscillation results in a

congestion event, the congestion droprate is slightly higher.

Table XI. Goodput and Packet Loss Rate Comparison for LTCP with Fixed and Vari-

able β

b. Intra-protocol Fairness

Next we verify that using variable β does not negatively impact the fairness behavior

of LTCP. Similar to the experiment before, several LTCP flows share the bottleneck

link capacity. Table XII shows the results. With variable β, the standard deviation

amongst the average throughput of the individual flows increases slightly. However,

the Jain Fairness Index remains high, indicating that the the flows remain fair to each

other.

Table XII. Fairness Among LTCP Flows with Variable β
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c. Interaction with TCP

As discussed earlier, the high-speed protocols are by design more aggressive than

TCP and as such cannot be expected to co-exist with TCP. In this experiment, we

verify that, while LTCP with variable β gains higher throughput than TCP, it does

not starve TCP in the process. The experiment is similar to the experiment before.

The bottleneck link is shared by two flows, one using LTCP with variable β and the

using TCP-SACK. Table XIII shows the results. The results for LTCP with fixed

β are included for comparison. From the figure we see that the throughput of the

TCP flow is slightly higher when competing with LTCP using variable β. This is

because, at lower layers the value of variable β is higher than the fixed value used

before, allowing TCP to grab some additional bandwidth after a packet loss.

Table XIII. Interaction of LTCP (using variable β) with TCP

d. RTT Unfairness

Lastly, we repeat the RTT unfairness experiment from earlier where two flows with

different RTTs using LTCP share the bottleneck link. The RTT of the smaller RTT

flow is 40ms. The other flow has RTTs of 80ms, 120ms and 160ms in different runs

of the experiment, resulting in the RTT ratios of 2, 3 and 4. For the LTCP protocol

using variable β we use the same RTT compensation factor KR as we used with LTCP

with fixed β. Table XIV shows the results. From the table, we see that for LTCP
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with variable β the inverse throughput ratio is similar to the RTT ratio rather than

the square or the RTT ratio displayed by TCP and LTCP with fixed β.

Table XIV. RTT Unfairness of LTCP Flows with Variable β

More experimental evaluation of the LTCP protocol using variable β is presented

in Section V.C.

C. Conclusions

In this chapter, we proposed LTCP, a layered approach for modifying TCP for high-

speed links. LTCP employs two dimensional control for adapting to available band-

width. At the macroscopic level, LTCP uses the concept of layering to increase the

congestion window when congestion is not observed over an extended period of time.

Within a layer K, LTCP uses modified additive increase (by K per RTT) and remains

ACK-clocked. The layered architecture provides flexibility in choosing the sizes of the

layers for achieving different goals. In this chapter we have considered one possible

design and presented two options for the window decrease function - fixed decrease

and adaptive decrease.

We have shown through analysis, simulations and emulations that a single LTCP

flow can adapt to nearly fully utilizing the link bandwidth. Other significant features

of the chosen design are - (a) it provides a significant speedup in claiming bandwidth

and in packet loss recovery times (b) multiple flows share the available link capacity

equitably (c) it could potentially alleviate the RTT unfairness inherent to TCP (d)

requires simple modifications to TCP’s congestion response mechanisms.
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CHAPTER IV

USING TCP FOR CONGESTION AVOIDANCE INSTEAD OF CONGESTION

CONTROL

The basic mechanism used in TCP recognizes two states - “congestion” or “no con-

gestion”. A packet loss is implicitly assumed to indicate “congestion”. Lack of packet

loss within a window is implicitly assumed to indicate “no congestion”. As a result,

even when the bottleneck link is saturated and the router buffers start to fill up, as

long as there are no packet losses, TCP continues to increase its congestion window

(and hence the resulting sending rate). This inability of TCP to recognize the onset

of congestion results in it contributing to an increase in the congestion buildup.

The need for early response to the onset of congestion in the Internet - i.e., to

have the flows back off from the active probing mode when the queues start to fill up

- has long been recognized and has been an area of active research for several years.

Two rivaling approaches have been suggested for addressing the problem. One school

of thought has been that the routers at the bottleneck link know when the buffers

are getting full and so are in the best position to judge the onset of congestion.

Once congestion is detected, they inform the end-host implicitly by either a binary

signal (e.g., RED[73], REM[74], PI[75], AVQ[76], BLUE[77], etc.) or a non-binary

signal which informs the senders of what their sending rate should be (e.g., XCP[61],

RCP[78], VCP[79] and JetMax[80], etc). This is the area broadly known as Active

Queue Management.

The other school of thought treats the network as a black box and tries to detect

network congestion at end-hosts. In these schemes, the sender tries to determine the

level of congestion in the network based on information contained in the round trip

time or the observed throughput and responds to it in an effort to prevent packet
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losses. In this approach, the senders do not expect any support from routers. We refer

to the work in this area as end-host delay-based congestion avoidance. Some of the

representative schemes in this area are CARD[81], TRI-S[82], DUAL[83], Vegas[58]

and CIM[84] among others.

Both the mechanisms have their advantages and disadvantages. While it is true

that the routers are in the best position to detect congestion in the network, deploying

experimental AQM mechanisms in the core routers has not been easy. Overcoming

the technical challenges related to the implementation of these schemes in the routers,

while retaining the speed and efficiency at which they operate, is probably an easier

task compared to convincing the operators of ISP’s to replace or add these experi-

mental routers to production networks. Comparatively, updating TCP in the network

stack at end-hosts is a relatively easier task. But end-host delay based schemes have

been assailed by doubts about the accuracy and effectiveness of the congestion pre-

diction at end-hosts [84, 85, 86].

In this chapter, we focus on evaluating and improving end-host based conges-

tion prediction. We show that end-host based congestion prediction is more accurate

than characterized by studies in [84, 86]. While it is possible to further improve the

prediction ability of the end-host based congestion estimators, it may not be possible

to entirely eliminate the noise/uncertainty in the signal. We show that this uncer-

tainty can be offset by choosing an appropriate response function. By emulating the

probabilistic marking mechanism of the router-based AQM schemes in the response

function of the end-hosts, performance and benefits similar to router-based AQM can

be obtained without actually requiring any modifications to the routers. We support

our claim via extensive simulations on the ns-2 simulator. While we have chosen

to illustrate the benefits of the scheme by emulating RED/ECN [73], it is possible

to emulate other router based schemes as well. To illustrate this, we present some
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preliminary results for the emulation of REM/ECN [74], as well.

The rest of the chapter is organized as follows. Section A inspects the existing

end-host based congestion prediction signals and some of the studies that cast doubts

about their accuracy. We show why some of the claims made by these measurement

studies may be inaccurate. We then proceed to determine how to further improve the

prediction efficiency of end-host based estimators, and based on our observations, we

determine the appropriate signal that we will use in our proposed scheme. In Section

B we design the response function that emulates RED/ECN behavior. Section C

presents an extensive evaluation using ns-2 simulations over a wide range of network

conditions. Here, we also examine the flexibility of the scheme to show that other

AQM techniques can also be emulated, by providing some preliminary results of the

emulation of REM/ECN. In Section D we offer a critical discussion of the issues that

are still open and the possible directions for future work in this area. We conclude

the paper in Section E.

A. Congestion Detection at End-hosts

Over the years, as TCP evolved, the line between the definition of the terms congestion

avoidance and congestion control has blurred. The Additive Increase/Multiplicative

Decrease algorithms of TCP, together with fast retransmit/recovery are commonly

referred as the congestion avoidance algorithms. It must be noted however, that these

algorithms are not designed to proactively avoid congestion and the current dominant

versions of TCP, say TCP-SACK or TCP-Newreno, are strictly congestion control

schemes. These schemes reduce the congestion window and hence the prevailing

congestion only after the fact that a packet loss has occurred. Parallel to these

algorithms, proactive schemes which focus on congestion avoidance have also evolved.



103

These schemes use information contained in the round trip time or the observed

throughput of the flow to predict congestion in the network. Based on this prediction,

they aim to reduce the congestion window even before a packet loss can occur, with

an intent to reduce (and possibly avoid) the packet losses.

In 1989, Raj Jain [81] first proposed enhancing the congestion control algorithm

of TCP by adding a delay-based congestion avoidance mechanism. The main observa-

tion is that, as the sending rate of a flow is increased so does its achieved throughput,

until the knee where link is nearly saturated. During this time, the delay observed

by the flow will be low. Beyond the knee point, the throughput stabilizes and the

delay increases sharply. The author proposed monitoring the normalized delay gra-

dient of a flow at the sender for determining the knee point and making the flow

operate at this point. Ever since this proposal, several different schemes have ap-

peared. In TRI-S [82] the authors propose using the normalized throughput gradient

instead of the normalized delay gradient to foresee when the bottleneck link reaches

saturation. In DUAL [83] the authors compare the current sample of RTT to the

average of the minimum and maximum RTT to determine that the bottleneck link

queues are more than half full and it is time to respond. In Vegas [58] the authors

propose comparing the achieved throughput to the expected throughput based on

minimum observed RTT for predicting congestion. In CIM [84] the authors propose

comparing the moving average of a small number of RTT samples to the moving

average of a large number of RTT samples for determining if there is any congestion.

In TCP-BFA [87] the authors propose monitoring the variance of RTT for avoiding

the bottleneck link from filling up. In Sync-TCP [88] the authors use the trend of

one-way delays combined with four different levels of window increase/decrease to

improve on delay-based congestion avoidance.

Several other studies [85, 84, 86, 89] have focused on understanding whether
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delay-based congestion prediction can reliably work in the real Internet. While some

of the issues raised by these studies are unique to end-host based mechanisms, some of

the issues have received similar attention in the router based schemes. For instance, it

has been pointed that it is hard to measure queuing delays accurately when they are

very small compared to the end-to-end RTT [85, 84, 86]. However, this is a limitation

of not just end-host based schemes but also router-based schemes, since a large RTT

compared to the queue length implies a large feedback loop. In such cases, the router

queue may fill up and result in a loss before the sender receives and responds to

this congestion feedback. End-host based measurements of the state of the queue

essentially entails sampling the queue at certain times and the fundamental limits of

such measurements have been recently highlighted [90, 86]. Problems of oversampling

the queue lengths in router based RED mechanisms have been studied in [75]. It has

been suggested that on highly aggregated paths, the impact of the response of a

single flow may be limited [89, 84]. But if several flows respond, then the combined

effect may be sufficient to relieve the congestion and reduce the queue lengths. It

must be noted that the aim of the congestion avoidance schemes is not to replace the

congestion control mechanism based on packet losses but to enhance it by providing

an additional mechanism for detecting congestion.

The focus of this study, is to understand the issues specific to end-host based

schemes. In [84] the authors have measured the correlation between the observed loss

rate of the flow and the observed round trip time samples just before the loss for

data collected using tcpdump on seven Internet paths. Their observation is (a)the

losses are preceded by a significant increase in RTT in very few cases (b)responding

to a wrong prediction can result in severe degradation of performance. Based on their

observations the authors conclude that although the RTT samples may contain useful

information, it cannot be reliably used. Another study [86] shows similar results but
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over a larger dataset and considers several of the different delay-based prediction

metrics mentioned at the beginning of this section.

In order to understand these claims better, consider a very simple scheme that

directly monitors the observed round trip delay. Fig. 37 shows a simple state diagram

of the different states and transitions associated with end-host congestion control.

State A represents the “low delay” or “low congestion” state. The flow transitions

from state A to B, The first state transition marked “1” will take the flow from state

A to state B, when higher delay is observed, or the bottleneck queue is starting to

get filled. If no action is taken, then state transition marked “2” will occur taking

the flow to state C or the “packet loss” state. In response to the packet loss, when

the flow reduces its congestion window, the bottleneck queue starts to empty out and

the flow will eventually return to State A via transition “3”. Now consider the other

possible state transitions “4”, “5” and “6”.

Fig. 37. State Diagram Showing the Transition between Different Congestion States

in Standard TCP Flows

If the flow does not use an accurate method for determining the states, or if the
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flow shares the bottleneck link with a lot of cross traffic, then the duration of state

B may be too short and the flow may not be able to detect it at all. As a result,

before the flow can detect that the delay has increased, it may observe a packet loss.

This is transition “4” from state A, directly into state C. Alternately, the transitions

are governed by how the protocol defines the state A and state B and what criteria

is used for transition “1” from state A to state B. If the protocol is very aggressive,

then it may determine the onset of congestion too early and make the transition “1”

from state A to state B, only to find out later that it was a false alarm and return

from state B to state A using transition “5”. Transition “6” from state C back into

state B occurs if the flow does not respond enough after a packet loss.

Both transitions “4” and “5” are harmful to a proactive scheme. Transition

“4”, may mean that short term congestion has occurred and the flow is not able to

predict it and hence is incapable of avoiding the resulting loss or that the protocol is

simply not aggressive enough in predicting congestion. This transition indicates the

presence of “false negatives”. Transition “5”, on the other hand, which we will refer

to as “false positive”, will mean that the protocol is too aggressive or unreliable in

predicting congestion, and as a result may unnecessarily reduce its sending rate and

face performance degradation.

The claim made in [84, 86] is that for the congestion predictor used in existing

schemes, transition “5” happens more often than transition “2” hence limiting the

effectiveness of congestion prediction. The authors arrive at this conclusion by looking

at a large dataset of tcpdump data of standard TCP flows on the Internet. They then

run the algorithms used by the different congestion predictors to determine states A

and B. The limitation of these studies, however, is that state C, or losses, is observed

within a single flow. When several different flows share a bottleneck link, the flow

under observation may not necessarily be the one to face losses when the bottleneck
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link is full. Hence observing high RTT that is not followed by a loss (at a single

flow) does not necessarily mean that there is no congestion. It just means that

the observed flow does not suffer a packet loss (possibly because other flows have

responded to losses and reduced the congestion). In order to evaluate the usefulness

of a congestion prediction metric, we should consider the correlation between the

round trip time and losses at the bottleneck link.

In order to illustrate this, we present here the results of a very simple ns-2

simulation. The topology consists of two routers connected by a link of capacity

100Mbps and delay 20ms. Several nodes are connected to both the routers with links

of capacity 500Mbps and varying delay, resulting in different flows having different

RTTs. The capacity of the queue at the routers is set to 750 packets. We use

six test case loads denoted as case1 through case6 corresponding to the six possible

combinations of [50,100] long term flows (in both directions) and [100, 500, 1000]

web sessions. One of the long-term flows is tagged and referred as “observed” flow.

For this flow, we collect the RTT samples for every packet over a period of 1000

seconds. The end-to-end delay of this flow is 60ms. Using a simple threshold of

65ms to indicate a state of high-RTT, we measure the fraction of transitions from the

high-RTT state into the loss state, with losses measured at both the flow level and

the queue level. Fig. 38 shows the comparison for the six different cases mentioned

above.

While this study is not exhaustive, it clearly indicates that the correlation be-

tween RTT and losses observed at the queue are significantly higher than the correla-

tion between RTT and losses observed by a single flow. In other words, delay-based

indicators may be a lot more effective in predicting congestion than what is reported

in [84, 86].

In order to understand the reliability of the congestion predictors used in different
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Fig. 38. Comparison of the Fraction of Transitions from “High RTT” to “Loss” When

the Losses Are Measured (a) within a Flow and (b) at the Bottleneck Queue.

end-host based schemes, we applied the algorithms used by these schemes for predict-

ing congestion on the data obtained for the six traffic cases above and evaluated the

efficiency of predicting losses (at the bottleneck link queue), and the fraction of the

false positives and false negatives. We measure the efficiency of loss prediction by the

fraction (number of “2” transitions)/(“2” transitions + “5” transitions). We measure

the false positives as (number of “5” transitions)/(“2” transitions + “5” transitions).

Finally, we measure false negatives as (number of “4” transitions)/(“2” transition +

“4” transitions). Fig. 39 shows the results.

From the figure we see that among the existing schemes for end-host congestion

prediction, Vegas has the highest prediction efficiency (which implicitly implies the

lowest false positives) and the lowest false negatives. Note that these results are not

meant to be an exhaustive evaluation of the merits of the different metrics. Rather,

it is meant to guide us in our choice for a predictor. From the results, we notice

that while the accuracy of congestion prediction may be higher than characterized by

earlier measurement studies, it still leaves room for further improvement.

Note that, Vegas, CARD, TRI-S and DUAL, obtain RTT samples once per RTT
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Fig. 39. Prediction Efficiency, False Positives and False Negatives for Different Predic-

tors

which could result in under-sampling. In order to evaluate the impact of higher

sampling, we computed the instantaneous RTT1 upon the receipt of each acknowl-

edgment and used a simple fixed threshold for determining that the flow is in high

congestion state. Taking RTT samples on each packet addresses some of the concerns

raised about end-host measurements [90] and reduces sampling errors. Surprisingly,

as shown in the graph, the prediction efficiency of this signal was higher than that of

Vegas for the six test cases of the traffic that we have considered.

While the instantaneous RTT signal is more aggressive in predicting losses, it can

be quite noisy due to the fluctuations in the instantaneous queuing delays observed

by the packets, and hence false positives are still quite high. In order to eliminate

the noise, we smoothed the RTT signal obtained from each acknowledgment. Since

1Current versions of the Linux operating systems (2.4.x and above) do this for
RTO calculation anyway[70].
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the aim of the prediction signal is to track changes in the bottleneck queue, we used

a moving average of 750 packets (the size of the buffer) for smoothing the signal.

This signal was very effective in predicting losses while avoiding false positives and

false negatives. However, it is difficult for a flow to estimate the number of buffers

in the bottleneck link. So we investigated the effectiveness of using Exponentially

Weighted Moving Average (EWMA) of the instantaneous RTT signal, similar to that

used by TCP for determining the retransmission timeout with a weight of 7/8 for the

history sample. As seen from the graph, while this reduces the noise (false positives)

compared to the instantaneous RTT signal, it still is not as good as the moving

average signal. We repeated the EWMA with a higher weight of 0.99 for the history

and the signal was able to obtain high prediction efficiency while maintaining low

false positives and low false negatives.

We use the smoothed RTT signal with the weight of 0.99 for the history sample,

as the congestion predictor in our scheme. In order to differentiate the srtt signal

that we use from that used by TCP for timeout calculations, we refer to our signal

as srtt0.99. Even though the weights used for smoothing are different, note that this

signal achieves similar behavior to that in RED routers where average queue lengths

are monitored to infer congestion, while accommodating bursty traffic by allowing

fluctuations in the instantaneous queue length.

With the srtt0.99 signal, while the false positives are low, they are still non-zero

- for the six test cases we considered, the false positives were in the range 0.7− 1.5%.

This number may vary for other traffic cases. The throughput of a TCP flow is

proportional to 1√
p
(p here will be the probability of response). Responding to even

the small fraction of false positives may result in severely degrading the performance

as shown in [84]. In this paper, we take a two-step approach: (1) first, we have shown

how to improve the accuracy of prediction by using more frequent samples and history
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information, and (2) we accept that end-host prediction cannot be perfect and devise

mechanisms to counter/mitigate this inaccuracy. In the next section, we discuss the

design of the response function.

B. Response to Congestion Prediction at End-hosts

Before we discuss mitigating the impact of false positives, we take a step back and

look at the state diagram in Fig. 37 again. Fig. 40 shows the new state diagram

incorporating the end-host response. When the flow is in state B (or high congestion

state), based on some criteria it moves to state B1 or the response state with the

transition marked “7”. If the response is sufficient, then the flow may make transition

“5” to state A. If the response is insufficient, the flow may get back into state B using

the transition “8”. Note that these transitions happen, irrespective of whether the

flow is in state B due to a false positive or not.

One possible mechanism for reducing the impact of false positives would be to

keep the amount of response small. If it actually is congestion, then this will result

in several transitions between states B and B1, before the congestion is relieved and

the flow eventually makes the transition to state A. If on the other hand, this is a

false positive, then due to the small amount of response, the flow does not lose much

throughput.

This is the approach used in Vegas. Vegas uses additive decrease (by one packet)

for early congestion response. However, note that this trades off the fairness properties

of TCP in favor of maintaining high link utilization, since it has been shown in [69]

that Additive Increase/Additive Decrease does not result in fair allocation between

competing flows. In steady-state, if congestion avoidance is successful, then state C

is eliminated and hence the flow spends most of its time transitioning between the
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Fig. 40. State Diagram Showing the Transition between Different Congestion States

in Flows with Early Response

states A and B - using AIAD for these transitions will result in compromising the

fairness behavior of TCP.

Additionally, since the response is small, the buildup of the bottleneck queue will

not be cleared out quickly. Hence, compared to a flow starting earlier, a flow that

starts later may have a different idea of the minimum RTT on the path (in this case

over-estimate it). This variable is used extensively in most end-host based schemes

(including Vegas) to estimate what component of the RTT is due to the propagation

delay and what component is due to queuing delay. Not clearing out the bottleneck

queue completely, can hence result in offering an unfair advantage to a later starting

flows, and hence result in getting more than its fair share of bandwidth.

An alternate mechanism for reducing the impact of false positives, is to respond

probabilistically. When the probability of false positives is large, the probability that
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a flow responds to the early congestion signal should be low and vice versa. Due

to the probabilistic response, the protocol can retain the multiplicative decrease for

early congestion response.

So, next we study the relationship between the false positives and the queue

length at the bottleneck router. Fig. 41 shows the probability distribution of the

normalized queue length when false positives are detected for the six cases of traffic

loads discussed earlier, when the prediction signal is srtt0.99. From the figure, we

notice that false positives are more likely to occur when the queue length is smaller.

Note that the traffic load for the six different cases consists of a mix of long term

flows in both forward and reverse directions with different RTTs and also web traffic.

For these cases of traffic load studied here, the false positives occur mostly when

the queue length is less than 50% of the total queue size. While we may not be

able to generalize the results for all possible types of traffic mix, it provides us an

important insight: the uncertainties in congestion prediction are more likely to occur

at lower queue lengths than at higher queue lengths, at least when smoothed RTT

measurements are used as congestion predictors.

Fig. 41. Probability Distribution Function of Normalized Queue Length When False

Positives Occur
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Since the aim is to reduce the impact of false positives by designing an appropriate

response function we argue that, when the queue size is small the response by a

proactive scheme should be small and when the queue size is larger, the response

should be larger. Note that this is conceptually similar to the probabilistic response

function used in the AQM mechanism RED. Hence, for the response function, we

emulate the probabilistic response function of RED. Due to the probabilistic nature

of early response we call our scheme Probabilistic Early Response TCP (or PERT).

The probabilistic response of PERT is designed to be similar to that of “gentle”

RED. Fig. 42 shows the probability of response against the congestion detection

signal srtt0.99. Similar to RED, we define two thresholds minthresh and maxthresh

and the maximum probability of response maxP . When the value of srtt0.99 is below

the minthresh the probability of response is 0. As the value of srtt0.99 increases

beyond minthresh , the probability of reducing a window in response to each ACK

linearly increases until it reaches the value maxP at maxthresh . Between maxthresh

and (2 * maxthresh ), the probability increases between maxP and 1. Beyond (2 *

maxthresh ), the probability remains constant at 1 2. For the parameters minthresh ,

maxthresh and maxP we use fixed values of (P+5ms, P+10ms and 0.05) respectively,

where P is the propagation delay estimated by the minimum RTT observed by the

flow. It is possible to choose these values adaptively based on network conditions

similar to the mechanisms suggested in [91] - we are looking into this as part of our

future work.

Our earlier results have shown the usefulness of making RTT measurements on

every packet or ACK. Potentially, when queue lengths are observed to be above

thresholds, every ACK arrival indicates congestion until the queue lengths fall below

2Different response functions can be chosen. “Gentle” RED is used here as a
representative function.
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Fig. 42. Probabilistic Response Curve Used by PERT

the thresholds. It is not necessary for the flow to respond to each of these indications.

The impact of response may not be seen until after an RTT. Hence, the early response

to congestion is limited to once per RTT (even when random probability may pick

multiple packets in one RTT).

For the early response, we use multiplicative decrease. When the proactive con-

gestion response is successful, the queue lengths are expected to be maintained low.

As a result, it is not necessary to respond with a 50% window reduction in case of

early response. In [2] the authors show that the router buffers are set to the delay-

bandwidth product of the link since the TCP flow reduces its window by 50%. If

the TCP flow were to use a factor f instead for window reduction, then the rela-

tionship between the buffers and the window reduction factor can be re-written as

B > f
1−f
∗BDP . Based on this, for a conservative value that the queue length doesn’t

exceed half its capacity and that the capacity of the buffer is set to one BDP accord-

ing to the rule of thumb, we choose the window decrease factor to be 35%. When a

flow responds early due to the congestion perdition signal, it decreases its congestion
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window by 0.35 ∗W 3.

Note that the choice of the amount of response is a trade off. Since the flows

respond before the bottleneck queue is full, a large multiplicative decrease can result

in lower link utilization. On the other hand, decreasing the amount of response could

result in the bottleneck link buffers not getting entirely cleared, resulting in unfairness

among flows starting at different times, as discussed earlier.

While it has been a natural choice based on our observations to emulate the

probabilistic marking of RED, it is possible to replace the probabilistic response

curve with the algorithms used in other AQM schemes as well. In the next section,

we present extensive evaluation of PERT that emulates RED/ECN. Following this

evaluation, we present some preliminary results of the emulation of an alternate AQM

mechanism, REM[74]. As part of our future work in this area, we will continue to

investigate the possibility of emulating other AQM mechanisms as well.

C. Experimental Evaluation

We have conducted extensive ns-2 based simulations to evaluate PERT. Difficulties

in simulating the Internet have been discussed in [92]. We attempt to make our eval-

uation realistic by simulating a wide range of network parameters. We first present

the results for a single bottleneck topology with bottleneck link bandwidth in the

range of [1Mbps, 1Gbps], RTT in the range of [10ms, 1s], the number of long-term

background flows in the range of [1, 1000] and the number of web sessions in the

range of [10, 1000]. We then evaluate the impact of multiple bottleneck links and

flows of different RTTs. All simulations are run for 400 seconds and reported re-

sults are measured during the stable period between 100 and 300 seconds to show

3If a packet loss occurs, then the response will be similar to that of standard TCP
variants and the fast retransmit/recovery algorithms are triggered.
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the steady state behavior. Next we evaluate the dynamic behavior due to transient

changes in traffic load where sudden changes in available bandwidth are caused due

to the arrival and departure of flows. For all experiments, the bottleneck buffer size

is set to the bandwidth-delay product with the minimum number of packets being

equal to at least twice the number of flows. When multiple flows share a link, their

start times are chosen randomly in the range (0,50) seconds to illustrate the impact

of flows starting at different times on the fairness as discussed in the previous section.

We present all results in comparison to (a) Sack, when Droptail routers are used, de-

noted as Sack/Droptail (b) ECN-enabled Sack, when RED routers are used, denoted

as Sack/RED-ECN and (c) TCP-Vegas, denoted as Vegas. For experiments with

TCP-Vegas and PERT, the bottleneck link routers use the default Droptail buffer

management.

1. Impact of Bottleneck Link Bandwidth

In this experiment, the bottleneck link bandwidth is varied from 1Mbps to 1Gps. The

end-to-end RTT of the flows is set to 60ms and the number of flows is varied such

that the link is efficiently utilized even at large bandwidth. Fig. 43 shows the average

bottleneck link queue length, the bottleneck link drop rate, the link utilization and the

Jain Fairness Index [69] of the competing flows. From the graph, we see that PERT’s

average queue length is similar (and in some cases better) than Sack/RED-ECN.

As expected, the average queue length with Sack/Droptail remains high across most

experiments. A surprising result is that TCP-Vegas has higher average queue length

than Sack/Droptail in some cases. Higher drop rates observed with Sack/Droptail

relieve the congestion while Vegas’s maintenance of 1-3 packets in the buffer (based

on the α and β parameters) could lead to high queue lengths, while avoiding packet

losses.
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All the proactive mechanisms (Sack/RED-ECN, PERT and TCP-Vegas) main-

tain zero losses in most cases. The link utilization of PERT is lower than TCP-Sack

in the cases where the bottleneck link bandwidth is small resulting in short buffers,

but in the other cases, it is similar. TCP-Vegas maintain high link utilization, but

it comes at the cost of fairness among competing flows. The fairness among PERT

flows is similar to that of standard TCP, with the Jain Fairness Index being close to

1.

Fig. 43. Impact of Bottleneck Link Bandwidth (Note: X-axis is in Log-scale)

2. Impact of Round Trip Delays

In this experiment, the bottleneck link bandwidth is 150Mbps and the number of flows

is 50. The end-to-end delay is varied in the range of 10ms to 1 second. Fig. 44 shows

the results. From the figure, we see that the average bottleneck link queue length and

the drop rate are similar in case of PERT and SACK/RED-ECN. Sack/RED-ECN
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itself has lower link utilization, but it is slightly better than that of PERT, since we

have used the adaptive RED version for the routers that tunes the parameters ac-

cording to the network conditions and PERT uses fixed thresholds. The Jain Fairness

Index remains high indicating that the throughput is shared in a fair manner among

the 50 flows.

Fig. 44. Impact of End-to-End RTT (Note: X-axis is in Log-scale)

3. Impact of Varying Number of Long-term Flows

In this experiment, the bottleneck link bandwidth is set to 500Mbps and the number

of long-term flows is varied from 1 to 1000. The end-to-end delay is 60ms. Fig. 45

shows the results. Again the average bottleneck link queue length and the bottleneck

link drop rate of PERT are similar to that of SACK/RED-ECN. The Jain Index

remains high even when the number of flows is large. Link utilization of Sack/RED-

ECN is slightly higher than PERT. Vegas tries to maintain a fixed number of packets
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in the queue and as a result, as the number of flows increases, so does the average

queue length and the drop rates. Vegas’s link utilization remains high, while the Jain

Fairness Index remains low.

Fig. 45. Impact of Varying the Number of Long-term Flows (Note: X-axis is in

Log-scale)

4. Impact of Web Traffic

We now consider simulations with web traffic to understand the impact of bursty

traffic. The bottleneck link bandwidth is set to 150Mbps, the end-to-end delay is

60ms and the number of long term flows is 50. The number of web sessions that

share the bottleneck link with these long-term flows is increased from 10 to 1000. For

the web traffic, the parameters are chosen based on the guidelines in [93]. As seen

from Fig. 46, as the load offered by the web traffic increases, the average link queue

length remains low and as a result no packet losses are observed in case of PERT,
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similar to that of Sack/RED-ECN. The link utilization of PERT is slightly lower than

that of SACK/RED-ECN. The Jain Fairness Index of the long-term flows remains

high.

Fig. 46. Impact of Varying the Number of Web Session (Note: X-axis is in Log-scale)

5. Impact of Different RTTs

In the following experiment, a bottleneck link with 150Mbps capacity is shared by 10

flows with end-to-end delays being 12ms, 24ms, 36ms and so on, to 120ms. Hence the

ratio of the RTTs of the smallest RTT flow to the largest RTT flow is 10. 100 web

sessions are run in the background. Fig. 47 shows the throughput achieved by each

flow. From the graph we see that PERT and Vegas may reduce the RTT unfairness

inherent to TCP. From the table below the graph, we see that the link utilization

of PERT is similar to SACK with either Droptail or RED/ECN, while the average

queue length and drop rate are lower. Because of the improved sharing of bottleneck
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link bandwidth, the Jain Fairness Index also shows an improvement.

Fig. 47. RTT Unfairness

6. Multiple Bottlenecks

The congestion signal in PERT measures the end-to-end RTT, and hence conveys

information about the combined queue lengths along the path. Router based AQM

schemes, on the other hand, estimate the queue length locally, then use ECN to convey

the information end-to-end. In this experiment we investigate the impact of multiple

bottleneck links. The topology, shown in Fig. 48, consists of six routers labeled R1

to R6. The links between routers have a capacity of 150Mbps and a delay of 5ms.

Each router is connected to a cloud of 20 nodes with a link of capacity 1Gbps and

delay 5ms. The nodes in each cloud send data to the nodes in the cloud connected

to the adjacent router. Also, all the nodes in the cloud connected to router R1 also

send data to the nodes in the cloud connected to R6.

Fig. 49 shows the average queue length, drop rate and utilization of the link
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Fig. 48. Topology Used for Understanding the Impact of Multiple Bottleneck Links

between each pair of routers as well as the Jain fairness Index of all the flows between

each pair of routers. From the figure we see that PERT maintains low queue length

and zero drop rates across all the bottleneck link queues. The link utilization is

similar to that of Sack/RED-ECN and the fairness among flows passing through the

common set of routers is maintained.

Fig. 49. Impact of Multiple Bottleneck Links
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7. Dynamic Protocol Behavior

In this experiment, we study the dynamic protocol behavior of the different schemes.

Unlike previous experiments which focused on steady state behavior, the results of

the first few seconds of simulation time are not discarded to illustrate the impact of

transients. These experiments investigate the responsiveness of the different schemes

to sudden changes in traffic.

In this experiment, 25 PERT flows are started at time 0 seconds. Starting at

100 seconds, for the next 300 seconds 25 new flows are added at 100 second intervals,

causing severe contention for available bandwidth. Starting at 400 seconds, 25 flows

leave the network at 100 second intervals creating a sudden availability of bandwidth.

We repeat the experiment with Sack/Droptail, Sack/RED-ECN and Vegas. Fig. 50

shows the the aggregate throughput of the set of flows that start together. From the

figure it is clear that the PERT flows respond quickly to dynamic changes in network

bandwidth, similar to Sack/Droptail and Sack/RED-ECN. Vegas exhibits previously

observed unfairness among competing flows.

In the above experiment, the sudden changes were created by the joining and

leaving of flows that are responsive to congestion indications. In the next experiment

we used UDP source to create a “square wave” traffic load, that is not responsive

to congestion. The UDP source was started at 50 seconds with the sending rate set

to half the link capacity (75Mbps). It stayed “on” for 50 seconds and was “off” for

the next 50 seconds. This was repeated constantly to generate the “square wave”

traffic pattern. Fig. 51 shows the aggregate throughput of the PERT flows and the

UDP flow. From the figure, we see that when the available bandwidth is suddenly

reduced by half, PERT flows quickly stabilize to the new operating point and when

the bandwidth becomes suddenly available PERT flows can quickly use it up. Similar
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Fig. 50. Response to Sudden Changes in Responsive Traffic

results were observed with Sack/Droptail, Sack/RED-ECN and Vegas and so have

not been included here. For this simulation, the link utilization over the entire period

of the simulation was 91.76%, the average queue length was 9.69% and the drop rate

was 0.

8. Emulating Other AQM Algorithms

In this section, we present the preliminary results of emulating REM [74] with packet

marking. In REM two different components are used for determining the ‘congestion

price’, based on which, the marking probability is determined. The two components

that determine the congestion price are (a) mismatch in the incoming rate and the

service rate of the link and (b) mismatch in the queue length compared to some

predefined threshold. Note that the second component is similar to that used in RED.

The first component on the other hand ensures that as the number of flows increases
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Fig. 51. Response to Sudden Changes in Non-responsive Traffic

(i.e., the arrival rate at the link increases), so does the price and consequently, the

marking probability. This ensures that, at larger number of flows, large queue length

is not required for higher marking probability.

Specifically, the equations used by REM for computing the congestion price and

marking probability are

pl(t+ 1) = [pl(t) + γ(αl(bl(t)− b∗l ) + xl(t)− cl(t))]
+ (4.1)

ml(t) = 1− φ−pl(t) (4.2)

where γ > 0, φ > 0 and αl > 0 are small constants, [z]
+ = max{z, 0}, bl(t) is the

aggregate buffer occupancy of queue at link l in the period t, b∗l ≥ 0 is the target

queue length, xl(t) is the aggregate input rate at the queue at link l in period t, cl(t)

is the available bandwidth at the queue at link l in period t and ml(t) is the marking

probability at the queue at link l in period t.

We can detect the queue mismatch from the end-host similar to before, by com-

paring the delay with a predefined threshold. In order to detect rate mismatch,

consider the following: when the arrival rate at a link is larger than the link capacity,

the extra packets will be saved in the bottleneck link buffer. In this case, the rate
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mismatch can be detected by measuring the change in buffer length or in the case

of end-hosts, by monitoring the change in delay. However, when the arrival rate at

a link is less than the link capacity, and the buffers are empty, the rate mismatch is

negative. End-hosts will not be able to measure this since the buffers are empty and

RTT will be equal to the propagation delay on the link. This negative rate mismatch

will help decrease the price in case of REM and hence the marking probability. We

emulate this by allowing the price to decay, when the price is non-zero and remains

unchanged over subsequent measurements.

We use a logarithmic decay function for reducing the price. For each packet that

yields a zero change in price, when the price is positive, a counter ctr is incremented

and the price is decayed using price = price ∗ 0.999ctr. This form of function ensures

that when the value of ctr is small, the change in price is negligible, but when the

value of ctr increases, the price decays rapidly. Note that the choice of this function is

a trade-off. If the price decays too rapidly, then it gives the queues at the bottleneck

link a chance to build up and as a result the average queue length will be higher. On

the other hand, if the price decays too slowly, then the flow continues to have window

reductions even when the arrival rate at the bottleneck link is lower than the service

rate, resulting in reduced link utilization. Preliminary results presented here show

that the logarithmic decay function performs relatively well, under a wide range of

network conditions. Under some network condition, this may however result in the

end-host based solution having slightly different behavior than router-based REM.

Router-based REM uses several different parameters. We tuned the parameters

of the end-host based solution, using the experiment similar to that in Section IV.C.3,

to obtain performance similar to router-based scheme. In this experiment, the impact

of varying the number of flows sharing the bottleneck link is studied. Fig. 52 shows

the results. The curve marked SACK/REM-ECN shows the performance of Sack
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flows when the bottleneck link router uses REM with ECN marking. The curve

marked PERT-REM shows the end-host emulation. For the end-host emulation the

REM parameters in Eq.4.1, (γ, α and φ) were chosen to be (0.02, 0.8 and 1.001).

The target queue length is measured using target delay, which was chosen to be

twice the resolution of the RTT measurement at the sender. The reason for choosing

traget delay based on resolution of RTT is that, unlike the emulation of RED where

the queue mismatch determines the probability directly, the emulation of REM uses

the queue mismatch for determining the price. If the target delay is chosen to be

less than the resolution of RTT changes, then the error accumulates in the value of

of price, resulting in continuous increase in the response probability and eventually,

unnecessary proactive window reductions. The resolution in RTT is computed by

measuring the most likely value of the positive changes in the observed round trip

time. Similar to the emulation of RED/ECN discussed in the previous section, the

window reduction for early response was chosen to be 0.35.

As seen from the graph, the average bottleneck link queue length, the bottleneck

link drop rate, the link utilization and the fairness among competing flows is similar

with the end-host based emulation of REM to that of using Sack with REM routers

using ECN marking.

Next we investigate the impact of the bottleneck link bandwidth. This exper-

iment is similar to that in Section IV.C.1. Fig. 53 shows the results. From the

figure we see that, at higher bottleneck link bandwidth the performance of the end-

host emulation is similar to using REM at the routers. However, at lower bottleneck

bandwidth, the end-host emulation maintains lower average queue length and lower

bottleneck link droprate than the router-based scheme. This comes at the cost of

slightly lower link utilization at lower bandwidth. Also, at lower bandwidth, the

delay for transmitting each packet is high. This results in very coarse resolution of
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Fig. 52. Preliminary Results of Emulating REM at End-hosts as the Number of Flows

is Varied (Note: X-axis is in Log-scale)

the RTT measured at the end-host. Because target delay is chosen based on this

resolution, the link utilization remains above 80%, but the fairness among competing

flows at is slightly reduced.

Next we study the impact of the end-to-end propagation delay. This experiment

is similar to that in Section IV.C.2. Fig. 54 shows the results. From the figure we

see that, the link utilization of end-host emulation remains similar to that of the

router-based scheme. When the RTT is low, the average link queue length, the drop

rate and the fairness of the end-host emulation is slightly worse than the router-based

scheme. At higher RTTs the performance is similar.

The results presented here illustrate that it is possible to emulate other router

based schemes in the end-host response function of PERT, so that sender-based

schemes may maintain low bottleneck link queue length and droprates, without re-
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Fig. 53. Preliminary Results of Emulating REM at End-hosts as the Bottleneck Link

Bandwidth is Varied (Note: X-axis is in Log-scale)

Fig. 54. Preliminary Results of Emulating REM at End-hosts as the End-to-end RTT

is Varied (Note: X-axis is in Log-scale)
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quiring any router support. The work here is preliminary and more study is required.

D. Discussion

While the results presented in Section C are highly encouraging we have identified

some open issues, which require further study. Here, we discuss the open issues and

some of the possible solutions for addressing them.

Impact of Reverse Traffic: Similar to earlier schemes using delay-based con-

gestion avoidance, we use the round trip time to predict the build-up of bottleneck

queues. However, since round trip time is the sum of delays in both the forward

and reverse direction, congestion in the reverse path can trigger an early response.

Whether congestion response should be only for forward path congestion, like the cur-

rent versions of TCP or for congestion in both directions is debatable. For instance,

when the reverse path is severely congested TCP-SACK sees much lower utilization

due to loss of ACKs resulting in timeouts.

Fig. 55 shows the link utilization when 50 SACK flows share a bottleneck link

of capacity of 150Mbps when (a) there is no reverse traffic and (b) when the reverse

direction has 50 SACK flows as well. From the figure we see a significant drop in

link utilization of the flows in the forward direction (95% to 72%), when reverse path

is also congested. The fraction of timeouts has significantly increased (two orders

of magnitude) for the simulation with reverse traffic compared to the one without.

Since timeouts are significantly more expensive than triggering congestion avoidance,

responding to reverse path congestion may be justified in this case. In this study, we

do not address this issue. It must be noted however, that if responding to reverse

path congestion is not acceptable, then PERT can be used with one-way delays to

achieve similar benefits. Methods for computing one-way delays have been studied in
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[88, 94].

Fig. 55. Impact of Reverse Traffic on SACK Flows

Co-existence with Non-proactive Flows: Another issue with end-host so-

lutions is that of co-existence with non-proactive flows. When several flows share a

bottleneck link, if some of them proactively respond to congestion, while others don’t,

then the flows that respond early will see degraded performance. This problem can be

addressed relatively easily in router-based schemes, by dropping the packets instead

of marking them when the queue length exceeds a certain threshold (like RED does

when queue length exceeds 2*maxthresh in case of “gentle” version, maxthresh oth-

erwise). This forces the non-proactive schemes to also back off before the bottleneck

link queue fills up. Note that, the tradeoff here is a slightly increased packet drop

rate, to maintain low queuing delay. With an end-host based scheme, each flow only

has control over its own congestion window and hence emulating something similar

is not possible. However, it is possible for a flow to reduce its pro-activeness, when

it notices that the queue length continues to increase in spite of its repeated early

window reductions.
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We are currently investigating mechanisms for making the pro-activeness adap-

tive based on the flow’s perception of how effective early response has been. A num-

ber of possibilities exist: increasing the time for next response progressively if queue

lengths persist, making the probability of response a function of the time since the

last response, limiting the probabilistic early response to once when the probability

exceeds some threshold (say 0.75) etc. Alternately, as suggested in Sync-TCP[88], the

increase function can be made more aggressive than TCP in the absence of congestion

to compensate for the loss in throughput in the presence of congestion.

Emulating Other AQM Algorithms: The preliminary results for the emu-

lation of REM brings up some interesting issues. First, when the rate mismatch is

positive, it can be predicted from the sender by observing the change in rtt, and the

sending rate can be reduced appropriately. However, when the rate mismatch is neg-

ative, a case where the flow should continue to increase its sending rate, a sender has

no means of measuring the rate mismatch. In this study we have used a logarithmic

decay function to ensure that the flow does not continue to respond proactively when

this happens. But, future work in this area will need to investigate how to emulate

this to reflect the actual changes at the bottleneck link. Rate mismatch is used in

several different router-based schemes, and solving this problem will allow several

different rotuer-based schemes to be emulated more accurately, from the end-hosts.

Secondly, the resolution of the changes in RTT observed at end-hosts imposes

some limitations on the performance of the end-host emulation. When the bandwidth

is low, the packet delay will be large, resulting in coarse resolution of the changes in

end-to-end RTT. When the end-to-end delay is low, the resolution of changes in RTT

may be large, relative to the end-to-end delay. In these cases, the performance of

end-host emulation may not be as good as using the actual router-based scheme,

which can have better resolution by monitoring the queue size or the rate mismatch
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in packets.

Other Key Differences between Router-based AQM and End-host Em-

ulation: In case of router-based AQM, the centralized bottleneck link router deter-

mines the marking probability and the signal is sent only to the flow(s) that needs to

respond. In the end-host based emulation, each flow estimates the network congestion

independently and at any point, potentially all the flows have the congestion signal.

Hence, even though the long term average probability of response is similar for the

two approaches, distributions of probabilities at individual flows could be different.

These differences may lead to slightly different choice of parameters at end-hosts than

at the routers. We are currently looking at mechanisms for translating the centralized

probability distribution used in a router-based scheme to the distributed probability

distribution used by the end-host to generalize the approach.

In case of router-based AQM, the end-hosts receive congestion information only

when the marking algorithm used by the AQM scheme marks the packets of its flow.

With end-host AQM, potentially all the end-hosts will be able to identify the onset

of congestion at the same time. This could lead to more options in designing the

response function.

Some of the algorithms used in the AQM schemes need an estimation of the

round tip time of the flow to determine the feedback [61, 79] to the end-host. The

routers use an average value for this purpose. With an end-host based emulation, the

flow knows its RTT, providing options for different new designs.

End-host based emulation uses end-to-end delay as a congestion measure and

hence can ensure that delays have a tighter bound end-to-end, compared to the router-

based AQM where each router can offer bounds only locally.
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E. Conclusions

In this chapter, we showed that congestion prediction at end hosts is more accurate

than characterized by previous studies based on flow level measurements. We show

that while it is necessary to improve further the accuracy of end-host delay-based

congestion predictors, the impact of any inaccuracies can be mitigated by the choice

of an appropriate response function. We have presented here a scheme called PERT,

which emulates RED/ECN like behavior in the response function. PERT is shown to

offer benefits similar to using RED at the routers with ECN marking, but without the

router support. Our results, based on a wide array of network conditions, indicate

that PERT can efficiently maintain low queue lengths and almost zero losses, while

retaining high degree of fairness. The link utilization is slightly lower, but in most

cases, similar to that of ECN-enabled SACK in the presence of RED routers with

packet marking. The proposed scheme is flexible in that, other AQM schemes can be

potentially emulated at the end-host. We illustrate this by presenting the preliminary

results for the emulation of REM/ECN in the response function of PERT.
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CHAPTER V

CONCLUSION: PUTTING IT ALL TOGETHER

In this chapter, we investigate how the different proposed modifications to TCP inter-

act with each other. We first investigate the impact of packet reordering in high-speed

networks and show that using delayed congestion response proposed in Chapter II

with LTCP proposed in Chapter III can significantly improve TCP performance in

high-speed networks with packet reordering. We refer to this new flavor as LTCP-

DCR. Next, we investigate the impact of high-speed protocols on the bottleneck link

buffers and the packet losses occurring at the bottleneck link. We show that when

LTCP is combined with PERT proposed in Chapter IV, (referred to as LTCP-PERT),

the packet losses at the bottleneck router can be eliminated and the average queue

length at the router can be maintained low. Finally we combine LTCP-DCR with

PERT (the new flavor is referred as TCP-LDP) to obtain the benefits of delay-based

congestion avoidance of PERT, while maintaining high link utilization even on high

BDP links with high levels of packet reordering.

A. LTCP-DCR : Dealing with Packet Reordering in High-speed Networks

In Section II.B.2, we have shown that packet reordering can result in significant

degradation of TCP throughput. This problem is magnified in high-speed networks

with low levels of multiplexing, where the window size needs to grow to large value to

be able to fully utilize the link. Responding to packet reordering events as if they were

packet losses, causes the window to remain small, thus resulting in drastic reduction in

link utilization. In this section, we investigate the use of delayed congestion response

with LTCP to fully utilize a high BDP link in the presence of packet reordering.
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1. Impact of Packet Reordering

Fig. 56 shows the throughput of the different flavors of TCP as the percentage of

packets reordered is increased. The simulation consists of one flow over a bottleneck

link of capacity 1Gbps and end-to-end RTT of 50ms. Packet reordering is simulated

by randomly choosing packets based on a uniform distribution and delaying them.

The packet delay is chosen from a normal distribution with mean 25ms and variance

8ms. The high-speed TCP protocol flavors such as LTCP, BIC and HTCP suffer

dramatic degradation in performance with the throughput remaining similar to that

of TCP-SACK, since the packets that are delayed enough to cause three dupacks will

result in window reduction. This is in agreement with the response curve in Fig. 28

showing that at large loss rates, the behavior of the high-speed protocols is similar

to that of TCP-SACK. Since there is no way to distinguish packet reordering from

packet losses, the behavior of high-speed protocols is similar to that under high packet

loss rates.

Fig. 56. Throughput in the Presence of Packet Reordering in High-speed Networks

We refer to the TCP-SACK flavor enhanced with DCR as TCP-SACK-DCR.

With TCP-SACK-DCR, the performance is slightly improved. However, since the
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packet delay is chosen randomly from a normal distribution, a small percentage of

packets may be delayed by more than one RTT. Since the delay in response is chosen

to be one RTT, these packets will trigger window reduction. TCP-SACK uses additive

increase of one packet per round trip time, and hence takes long time to recover from

window reduction resulting in low link utilization. Fig. 57 shows the number of times

fast retransmit algorithm is triggered as a fraction of total packets sent. It can be

seen that TCP-SACK-DCR reduces the number of times fast retransmit is triggered

compared to TCP-SACK. However, since it cannot increase the window size quickly

after a window reduction, the fraction of false retransmits compared to the total

packets is still relatively high and hence the throughput achieved remains low.

Fig. 57. Fraction of Packets That Trigger the Fast Retransmit/Recovery Algorithms

On the other hand, when a high-speed protocol such as LTCP is enhanced with

DCR (LTCP-DCR), due to the combined ability of DCR to avoid responding to most

packet reordering events and the ability of LTCP to quickly increase the window

after a false response, the throughput is maintained high. Note that, for the same

percentage of packets delayed, the fraction of false retransmits to total packets is much

lower in case of LTCP-DCR compared to TCP-SACK-DCR due to the aggressive

increase algorithm employed.
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Note that, in order to successfully achieve high link utilization, it is important

to have both the components - delayed congestion response and quick recovery from

window reduction for packets delayed by more than one RTT. It is possible that

packets are delayed by more than one RTT during the beginning of a flow, in which

case the congestion control algorithm may not have a chance to reach an aggressive

mode. In such a case, the achieved link utilization may be lower than optimal. One

such case is shown in our results when the percentage of packets delayed is 1%. Fig.

58 shows the evolution of window when 1% and 2% of packets are delayed. Due to the

random nature of the delays, in case of 1% packets getting delayed, several packets

are reordered by unrecoverable delays during the early stages of the flow’s window

evolution. This slows how quickly the layers are increased in LTCP and hence it

operates at suboptimal layers. As a result, the link utilization is suboptimal. Note

however, that in spite of this, the throughput achieved by LTCP-DCR is about 2

orders of magnitude more than LTCP, when 1% of packets are delayed.

Fig. 58. Window Evolution of LTCP-DCR under Different Conditions of Packet Delays
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2. Behavior of LTCP-DCR in the Absence of Packet Reordering

In order to ensure that the use of delayed response with LTCP does not alter the

fairness characteristics in the absence of packet reordering, we conducted the following

simulations. In the first set of simulations the total number of flows in the network

was increased from 10 to 100, resulting in congestion loss rates ranging from 0.03% to

0.6%. In each case, half of the flows use LTCP and the other half used LTCP-DCR.

Fig. 59 shows that the fairness index remains high in most cases, indicating that

using delayed congestion response with LTCP does not make it unfriendly to LTCP

flows that do not use delayed response.

Fig. 59. Fairness between LTCP-DCR and LTCP Flows

Next we study the impact of delaying congestion response on bottleneck link

drop-rate. First we run 50 flows of LTCP with the bottleneck link buffer-size varied

from 0.1BDP to 2BDP and note down the bottleneck link drop-rate. Next we repeat

the experiment with 50 LTCP-DCR flows. Fig. 60 shows the results. From the

graph we see that, the drop-rate is slightly higher in case of LTCP-DCR compared to

LTCP. However, the difference is not significantly high and the link utilization remains

similar in both the cases ( 96.1% when larger buffers are available and 95.5% at lower
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buffers).

Fig. 60. Comparison of Drop-rates for LTCP-DCR and LTCP Flows at Different Buffer

Sizes

3. Behavior of LTCP-DCR in the Presence of Both Packet Reordering and

Congestion

Finally, we investigate the behavior when both packet reordering and congestion is

present in the network. This experiment is similar to the earlier experiment with

only packet reordering - however, the bottleneck link is now shared by 50 flows. Fig.

61 shows the results. From the figure we see that the aggregate link utilization by

LTCP, BIC and HTCP is slightly improved compared to Fig. 56 because of using 50

flows. However, when packet reordering in non-zero, the aggregate link utilization is

still drastically lower than when there is no packet reordering. In case of LTCP-DCR,

high link utilization is maintained even when 10% of the packets are delayed.

The sum of the number of times fast retransmit is triggered as a fraction of total

number of packets, is shown in Fig. 62. Again, since we have a larger number of flows,

the values in this graph are higher than in Fig. 57, but we see that with LTCP-DCR,

the fraction is significantly lower than other flavors of high-speed TCP.
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Fig. 61. Throughput in the Presence of Both Packet Reordering and Congestion in

High-speed Networks

Fig. 62. Fraction of Packets That Trigger the Fast Retransmit/Recovery Algorithms
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B. LTCP-PERT: Dealing with the Impact of High-speed Protocols on Buffer Size

and Bottleneck Link Drop-rates

LTCP and the other proposed high-speed modifications to TCP [55]-[60] improve

the capability of a single application to fully utilize the higher BDP networks. In

this section, we investigate the effect of these high-speed protocols on the bottleneck

link buffer usage and the packet loss rates. Our study shows the need for further

refining these protocols. In general, these high-speed protocols make the probing for

available bandwidth more aggressive than TCP’s one-per-RTT rule in the absence

of packet losses and decrease window reduction factor from TCP’s cut-window-by-

half rule. While this aggressiveness is useful in improving the performance in high-

speed networks, if unchecked, it can result in the bottleneck buffers filling up quickly

and resulting in the loss of several packets. In this section, we demonstrate that

when PERT is used in conjunction with LTCP, most of the benefits of LTCP can be

retained, while maintaining average link queue size low and almost eliminating packet

drops due to the overflow of bottleneck link buffers.

1. Effect of High-speed Protocols on Bottleneck Buffer Usage

First, we illustrate the effect of the probing mechanisms used by the three schemes

- LTCP, BIC and HTCP respectively - on the bottleneck link buffer usage through

ns-2 simulations. All the three schemes are based on the loss-based TCP variants

(e.g., TCP-Newreno or TCP-SACK). While the standard TCP flows increase the

congestion window at the rate of one per RTT, these schemes increase the window

more aggressively. Upon a packet loss, standard TCP decreases the cwnd by half,

whereas these schemes propose to make the decrease less drastic. This could result

in filling up the bottleneck link faster than standard TCP.
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In addition, due to the nature of probing used, both LTCP and HTCP are most

aggressive just before a packet loss. As a result, each packet loss event could result in

the loss of several packets. BIC uses binary probing and hence its aggressiveness may

be reduced while it nears the target value. However, once this value is reached, it

starts to increase the window using modified slowstart. Hence, even BIC may increase

its cwnd by several packets in the RTT prior to a loss, and hence may lose several

packets in each loss event.

We illustrate the effects of high-speed protocols on bottleneck link buffer usage

through simulations on the ns2 simulator. A simple dumb-bell topology as shown in

Fig. 63 was used. The n sources (S1 to Sn) are connected to the n receivers (R1 to Rn)

via the two routers Router1 and and Router2. The links connecting the sources to the

router Router1 and the receivers to the router Router2 all have a capacity of 2.4Gbps

and a delay of 10ms. The bottleneck link between the two routers has a capacity of

1Gbps and a delay of 40ms. Thus, the end-to-end RTT is 120ms. Conventionally,

the bottleneck buffers are set to the delay-bandwidth product of the link. [2, 95, 96]

have proposed using smaller size buffers at the routers. So, we show results with

buffers equal to the delay bandwidth product (15000 packets) as well as 1/3 the delay

bandwidth product (5000 packets). For simulations with more than one flow, in order

to avoid phase effects and synchronization of flows, the overhead parameter was set

to 8µs. This setting allows the source to add a random delay in the range of (0,8)µs

to each outgoing packet, thus creating some randomness.

Initially, we consider a single source sending FTP traffic using LTCP, BIC or

HTCP as the transport protocol to a single receiver. Since there is no cross-traffic

in either direction, all packet losses are self induced due to the aggressive probing

mechanism. Fig. 64 shows the instantaneous fluctuations of the queue length when

the buffer size is 1/3 BDP when LTCP, BIC and HTCP are used, respectively. The
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Fig. 63. Simulation Topology

buffer occupancy displays similar fluctuations when the buffer size is 1 BDP. Each

oscillation resulting in the queue being full causes a ‘congestion loss event’ responsible

for the dropping of several packets. Table XV shows a summary of the number of

loss events and the corresponding packet loss rates for different protocols at different

buffersizes. The measurements were recorded over 1000 seconds between 200 and

1200 seconds of each simulation. The packet loss rate for a TCP flow under similar

circumstances is included for comparison.

As seen from the table, the packet loss rate in case of the high-speed protocols is

significantly higher (over 3 orders of magnitude) compared to TCP. While it may be

argued that this difference is due to the inability of TCP to utilize the link efficiently,

we show in later sections, that using PERT with LTCP, loss rates close to 0 can be

achieved, without sacrificing the other characteristics of the high-speed protocols.

Designing an aggressive probing mechanism for TCP is a challenging task. The

new probing mechanism should not only ensure that the efficiency of link utilization

is improved, it should also ensure that competing flows converge to fairness. Addi-

tionally, it was shown in [59] that unless carefully designed, the aggressive probing
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Fig. 64. Instantaneous Queue Length with Buffer Size = 5000 packets

Table XV. Summary of Congestion Loss Events and Packet Loss Rates at Different

Buffer Sizes
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could make the RTT unfairness significantly worse than that of TCP. In LTCP, BIC

[59] and HTCP[60] the authors have taken into consideration these conflicting needs

and designed protocols that improve link utilization, while maintaining reasonable

properties of convergence to fairness and RTT-unfairness. However, as shown by the

results above, these schemes can cause significant amount of undesirable oscillations

and self-induced packet losses at the bottleneck link buffers. When delayed congestion

response is added to LTCP, it can further increase the loss rates by a small amount as

shown in Fig. 60. In the next section, we show how PERT can be used in conjunction

with LTCP for reducing the loss rates, while maintaining high link utilization and

fairness among competing flows, even on high BDP links with high levels of packet

reordering.

2. Offsetting the Effect of High-speed Protocols on Bottleneck Buffer Usage

In Chapter IV, we discussed how enhancing TCP with congestion prediction measure

and a probabilistic response (PERT) can be used to reduce the bottleneck link drop-

rates. In this section, we add PERT to the high-speed protocol LTCP to obtain a new

flavor called LTCP-PERT. We show through simulations below, that LTCP-PERT

can offer significant reduction in average bottleneck link queue lengths and bottleneck

link drop-rates, while maintaining high link utilization in high-speed networks. For

the LTCP component, we use the variable β design discussed in Section III.B. For

the PERT component, the proactive window reduction is set to the same value as β

used by LTCP.

The topology consists of a bottleneck link with capacity 1Gbps and delay 28ms.

The number of flows sharing the link is varied from 2 to 1000 to generate different

levels of congestion. The source and destination nodes are connected to the routers

with links of capacity 1Gbps and delay 1ms. The bottleneck link buffersize is set to
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the delay bandwidth product. Fig. 65 shows the results.

Fig. 65. Using PERT with LTCP to Reduce the Impact on Bottleneck Link Buffer

Usage and Packet Drops

The figure shows four different graphs. The first graph shows the link utilization

of LTCP-PERT in comparison to the other high-speed protocols. Note that, due

to the use of proactive congestion avoidance, the link utilization of LTCP-PERT is

slightly lower than the other protocols. However, this reduction in link utilization

is very small and the trade off offers significant benefits in terms of bottleneck link

usage and bottleneck link drop-rate as shown in the next two graphs. As seen from the

figure, the average queue length with LTCP-PERT is significantly lower than the other

protocols. While HTCP maintains lower average queue length due to variable window

decrease factor, the bottleneck link drop-rates remain high and in the same ballpark

as the other high-speed protocols. FAST being the only other delay-based protocol,

maintains low average queue length and zero packet losses at lower number of flows.
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However as the number of flows increases, since each of these flows tries to maintain

a fixed number of packets in the bottleneck link queue, the average bottleneck link

queue length as well as the average packet loss rate increases dramatically. In case

of LTCP-PERT, the average bottleneck link queue length is maintained low even at

larger number of flows. The bottleneck link packet droprates remain zero until a large

number flows as well.

The benefits of using proactive congestion avoidance should not come at the

cost of fairness among competing flows. The last graph in the figure shows the

Jain Fairness Index with the different protocols. LTCP-PERT shows very high Jain

Fairness Index (> 0.999) even for very large number of flows. Among the high-speed

protocols, BIC and FAST display degradation in Jain Fairness Index, indicating that

the competing flows may not always converge to fairness.

C. TCP-LDP: Putting It All Together

Finally, we investigate the benefits of putting all the components together, in the

form of TCP-LDP. In order to make all the three components, LTCP, DCR and

PERT perform optimally, we fine tuned each of these components. First we list the

implementation details and the changes and then we look at the simulation results.

1. Implementation Details

For LTCP, we used the LTCP flavor with variable β design discussed in Section

III.B. For the DCR component, we choose the window-based delay variant, where

the threshold for window response is modified from 3 dupacks (used by standard

LTCP) to one congestion window dupacks. For PERT, the window reduction factor

was set to the same value of βK used by LTCP instead of the fixed value of 0.35 used
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in Chapter IV. A conservative metric for triggering early response was chosen. This

metric is similar to the srtt0.99 metric used in Chapter IV, with the minor difference

that, whenever the instantaneous RTT falls below srtt0.99, srtt0.99 is reset to the value

seen by the instantaneous RTT. Thus by using a large weight for the history sample,

we ensure that when the RTT increases we do not respond to sporadic increases. At

the same time, when the RTT decreases, we avoid unnecessary window reductions by

allowing the smoothed estimate to catch up with the decreased value quickly.

Finally, using delayed response when window size is very large, may result in very

bursty behavior when the reordered packet is received at the receiver and generates a

cumulative ACK. In order to avoid this bursty behavior, which can be self defeating

when PERT is used, we use simple packet pacing while sending the packets such that

the inter-packet interval is RTT/cwnd seconds.

2. Simulation Results

In this section we show the results of simulations conducted on ns-2 simulator. Note

that, LTCP-DCR and TCP-LDP both try to improve the performance of the high-

speed protocol LTCP in the presence of packet reordering events. The main difference

between the two is that, while LTCP-DCR is a strictly loss-based protocol, TCP-

LDP enhances it with the delay-based congestion avoidance to reduce the impact on

bottleneck link buffer usage and the packet losses. Thus, we show in the results, the

comparison of the behavior of the high-speed protocols LTCP, BIC and HTCP to that

of both LTCP-DCR and TCP-LDP. The LTCP-DCR used in these simulations uses

the variable β variant of LTCP discussed in Section III.B and the DCR algorithm

implements the adaptive delthresh algorithm discussed in [97]. The results show the

link utilization as well as the average bottleneck link queue length and packet loss

rate, and the fairness among competing flows (when simulation consists of more than
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one flow). Extensive results show behavior for (a) reordering only (percentage of

packets delayed varied from 1e-6 to 0.1) (b) congestion only (number of flows varied

from 2 to 1000) and (c) both congestion and packet reordering (similar to reordering

only, but with 50 competing flows).

a. Packet Reordering Only

We first consider networks with only packet reordering. As in the previous section,

packet reordering is simulated by randomly choosing packets based on a uniform

distribution and delaying them. The packet delay is chosen from a normal distribution

with mean 25ms and variance 8ms. The flow RTT is set to 50ms, so that the packet

reordering in most cases is less than one RTT, but there in a non-zero probability

that packets may be delayed by more than one RTT. The bottleneck link capacity is

1Gbps. In this simulation, since we consider the case where there is no congestion, the

topology consists of only one flow. Fig. 66 shows the results as the fraction of packets

delayed is varied from 1E-6 to 1E-1 resulting in potential reordering of 0.0001% to

10% of the packets.

As seen from the graph, all the high-speed TCP variants ranging from LTCP to

Scalable TCP suffer severe degradation in link utilization as the fraction of packets

delayed increases. In Section II.B.1, we reviewed several measurement studies that

looked at the prevalence of packet reordering in the Internet. These studies indicate

that the packet reordering may vary from being negligible to more than 2%. In such

cases, as seen from the above graph, none of the high-speed TCP protocols will be

capable of maintaining their benefits of high link utilization.

LTCP-DCR on the other hand offers very good performance. The link utiliza-

tion is consistently maintained above 93% even when 10% of the packets are delayed.

TCP-LDP however, does not maintain such high link utilization. The reason for this
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Fig. 66. Throughput in the Presence of Packet Reordering in High-speed Networks

is, when delayed congestion response is used, instead of responding with a window

reduction for the receipt of three dupacks, the flow waits for the receipt of one conges-

tion window equivalent number of dupacks. In cases of high levels of packet reordering

and at large window size, this could result in a very large number of dupacks. The

dupacks do not generate any valid RTT samples and hence the metric based on the

smoothed RTT used by the PERT component gets stale. Proactive response based

on this stale value of the smoothed RTT estimate reduces the improvement that can

be obtained by using DCR.

In order to overcome this we experimented with a variant to TCP-LDP, where a

proactive window reduction may not be followed by another unless at least X samples

of valid RTT estimates are obtained. We used two values of X - one and 100 - and

the results are presented below in Fig. 67. These protocols are notated as LDP-

1Sample and LDP-100Sample respectively. As seen from the figure, waiting for at

least 100 samples of valid RTT estimates before responding results in LDP behavior

close to that of LTCP-DCR. However, we show in later sections where we consider
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both reordering and congestion, that this may result in divergent behavior between

flows. As a results, we do not recommend the use of these LDP variants.

Fig. 67. Throughput of Different Variants of TCP-LDP in the Presence of Packet

Reordering in High-speed Networks

b. Congestion Only

Both LTCP-DCR and TCP-LDP provide significant improvement in throughput com-

pared to the other high-speed protocol in the presence of packet reordering. For

widespread deployment, it is essential that these benefits do not come at the cost of

degradation in behavior in the absence of packet reordering. In order to verify this,

we conducted this experiment with only congestion in the network and no packet re-

ordering. The bottleneck link capacity is still 1Gbps, but the number of flows sharing

the link is increased from 2 to 1000 to generate different levels of congestion. Fig. 68

shows the results.

The figure shows four different graphs. In the first graph, we show the link uti-

lization. From this graph, we see that the link utilization of LTCP-DCR remains

high. However, the link utilization of TCP-LDP is slightly less than the other pro-

tocols. Next, we observe the average bottleneck link queue length. Most high-speed
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Fig. 68. Throughput in the Presence of No Packet Reordering in High-speed Networks

as Congestion Is Increased

protocols, with the exception of HTCP, maintain very high average bottleneck link

queue length. With LTCP-DCR, the bottleneck queue length remains similar to

LTCP. With TCP-LDP, due to the use of proactive window reduction, the average

bottleneck link queue usage remains very low.

Next, we examine the drop rate at the bottleneck link. The loss rate of most

high-speed protocols is quite high. The loss rate with LTCP-DCR remains similar

to that of LTCP, indicating that delaying congestion response by one RTT may not

have any drastic impact on the bottleneck link queue usage. Among flows that use

proactive response, FAST maintains zero packet losses at low number of flows. As the

number of flows is increased, the packet loss rate increases drastically and is almost

an order of magnitude worse than the other loss-based high-speed TCP variants.

TCP-LDP on the other hand maintains zero packet losses until very large number of
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flows.

Finally, we observe the fairness among the different flows sharing the bottleneck

link. TCP-LDP exhibits very good fairness behavior with the Jain Fairness Index

consistently remaining more than 0.999. LTCP-DCR exhibits reasonably good fair-

ness behavior with the Jain Fairness Index remaining greater than 0.95 in most cases

and the worst behavior observed still had Jain Fairness Index of 0.9.

c. Both Packet Reordering and Congestion

Next, we examine how the different protocols behave when the network consists of

both packet reordering and packet losses due to congestion. This experiment is similar

to the experiment with only packet reordering, except that the bottleneck link is now

shared by 50 flows. Fig. 69 shows the results.

Fig. 69. Throughput in the Presence of Both Packet Reordering and Losses due to

Congestion
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Since 50 flows share the bottleneck link, the aggregate link utilization is improved.

However, at high levels of packet reordering, the degradation, is still very drastic. In

case of LTCP-DCR, the link utilization is maintained high even for high levels of

packet reordering. In case of TCP-LDP, the link utilization is around 90% when

packet reordering is less than 5%. Beyond that, the link utilization decreases, but the

degradation is not as drastic as in the case of other high-speed flows.

As discussed earlier, only TCP-LDP can maintain low average bottleneck link

queue and bottleneck link drop-rates, when the link is not under utilized. The average

bottleneck link queue length and drop-rate of LTCP-DCR is similar to that of LTCP

when LTCP it is capable of fully utilizing the link. The Jain Fairness Index of all the

protocols remains high.

We now revisit the two new variants of TCP-LDP namely, LDP-1Sample and

LDP-100Sample that we discussed during the simulations with packet reordering only.

Fig. 70 shows the results with these new flavors for the above experiment.

As expected, both the variants improve the link utilization of TCP-LDP. How-

ever, the results for average bottleneck link queue length, loss rates and Jain Fairness

Index are not as favorable. Further inspection of these cases revealed the following.

Consider two flows, one operating at very high congestion window and the other op-

erating at low congestion window. The flow at higher congestion window sees more

packet reordering events. Subsequently, due to the receipt of many dupacks which do

not provide a usable RTT estimate, the proactive response is temporarily suspended.

The congestion window thus has a chance to grow to a larger value, where it has a

possibility of seeing higher packet reordering events (for the same percentage of pack-

ets delayed) and so on. On the other hand, for the flow with smaller window, for the

same given rate at which packets are reordered, the number of events observed by the

flow is smaller, compared to the larger flow. So most of the acknowledgments received



157

Fig. 70. Throughput in the Presence of Both Packet Reordering and Congestion for

Different Variants of TCP-LDP

result in useful RTT estimates. This will cause the proactive response to remain ON,

and hence window may get decreased, if the bottleneck link queue length increases.

Thus the two flows that started at different window sizes continue to diverge and

result in unfavorable fairness characteristics. As a result, we do not recommend the

use of these TCP-LDP variants. The basic TCP-LDP variant discussed in Section 1

does not have this problem and as a result displays excellent fairness characteristics.

d. Simulation with More Complex Topologies

In this experiment we verify that the benefits of LTCP-DCR and LDP are available in

complex topologies as well. The network in this simulation consists of four bottleneck

links between five routers. Each router is connected to a cloud of nodes. Traffic goes

from one cloud to the other in the directions as shown in Fig. 71. The traffic consists

of a mix of 20 long-term flows and 100 web-sessions. The router R3 simulates a mis-
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configured router and results in reordering 1% of the packets passing through it. The

delay used for reordering the packets uses the same model as before.

Fig. 71. Topology with Multiple Bottleneck Links, Forward as Well as Reverse Traffic,

and Long-term as Well as Short Web-like Flows

Fig. 72 shows the link utilization, drop-rates on each of the bottleneck links,

normalized average bottleneck link queue length and the Jain Fairness Index of the

long-term flows passing through each set of routers. From the figure we see that the

utilization of LTCP, BIC and HTCP see drastic degradation on the links associated

with the ’mis-configured’ router R3. While the utilization for FAST is not as dras-

tically reduced, it is still quite low. Both LTCP-DCR and LDP, however manage to

maintain the link utilization high.

The drop-rate on the links R1-R2 and R5-R4, which do not see degradation due

to packet reordering, is similar for LTCP and LTCP-DCR. On links R3-R2 and R3-R4

that suffer underutilization, LTCP sees no packet losses. But since LTCP-DCR flows

do not underutilize these links they result in packet losses due to congestion. Note

that the packet reordering model is probabilistic and not all reordering events can be

avoided - as a result the packet drop-rate on these links is lower than those that do

not have any reordering. With FAST and LDP, the bottleneck link drop rate is 0,
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since the proactive delay-based mechanism reduces the congestion window before a

packet drop can occur.

On the routers associated with links that are not underutilized, the normalized

average queue length LTCP, BIC and LTCP-DCR is very high, indicating that these

queues remain close to full most of the time. In case of HTCP, the normalized queue

length is slightly lower even though the drop-rates are similar to BIC. This is because,

HTCP uses variable window reduction in the range (0.5, 0.8), allowing the queue to

flush out every time a packet drop occurs. With FAST, the average link queue length

is around 50%. However, LDP maintains the average queue length less than 5%,

without significantly impacting the link utilization.

Finally, we look at the Jain Fairness Index of all the the long-term flows between

each sets of source/destination. From the table, we see that the Jain Fairness Index

for both LTCP-DCR and LDP remains high.

D. Conclusion

In this chapter, we evaluated the different schemes proposed in this dissertation, when

then are combined with each other. We first inspected the combination of LTCP and

DCR, called LTCP-DCR, to showed that it offers significant performance improve-

ments in high-speed networks in the presence of packet reordering. We then added

the delay based component PERT to this to obtain TCP-LDP. While TCP-LDP can

reduce the average queue length of the bottleneck link drop-rates and almost entirely

eliminate the bottleneck link drops, the improvement in link utilization is not as high

as LTCP-DCR. This can be attributed to the fact that the PERT component re-

quires RTT samples at relatively high frequency whereas the DCR component results

in a large number of dupacks which do not generate any RTT samples. Due to the
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Fig. 72. Link Utilization, Link Drop-rate and Jain Fairness Index for Flows on a Multi-

ple Bottleneck Link Router with a Mis-configured Router That Causes Packet

Reordering
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delay based component (PERT) used in TCP-LDP, it will not be able to compete

with purely loss-based schemes and hence it may not be suitable for wide spread

deployment. It is a good candidate for networks where all the traffic uses some for

of proactive congestion avoidance scheme. In such an environment, TCP-LDP offers

relatively high link utilization in the presence of packet reordering, while keeping the

bottleneck link queues and the loss due to bottleneck link buffer overflows low.

LTCP-DCR on the other hand is a purely loss-based scheme. We have conducted

extensive simulations with it and noted that it increases the link utilization signifi-

cantly in the presence of packet reordering, while having minimal impact on fairness

characteristics in the presence of congestion. As a result, we believe that it may be

safe for widespread deployment in high-speed networks.
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