

STEINER NETWORK CONSTRUCTION FOR SIGNAL NET ROUTING WITH

DOUBLE-SIDED TIMING CONSTRAINTS

A Thesis

by

QIUYANG LI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2006

Major Subject: Computer Engineering

STEINER NETWORK CONSTRUCTION FOR SIGNAL NET ROUTING WITH

DOUBLE-SIDED TIMING CONSTRAINTS

A Thesis

by

QIUYANG LI

 Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Jiang Hu
Committee Members, Gwan Choi

Donald K. Friesen
Head of Department, Costas N. Georghiades

August 2006

Major Subject: Computer Engineering

iii

ABSTRACT

Steiner Network Construction for Signal Net Routing with

Double-sided Timing Constraints.

 (August 2006)

Qiuyang Li, B.S., Nankai University;

M.S., Nankai University

Chair of Advisory Committee: Dr. Jiang Hu

 Compared to conventional Steiner tree signal net routing, non-tree topology is often

superior in many aspects including timing performance, tolerance to open faults and

variations. In nano-scale VLSI designs, interconnect delay is a performance bottleneck and

variation effects are increasingly problematic. Therefore the advantages of non-tree

topology are particularly appealing for timing critical net routings in nano-scale VLSI

designs. We propose Steiner network construction heuristics which can generate either tree

or non-tree of signal net with different slack wirelength tradeoffs, and handle both long

path and short path constraints. Extensive experiments in different scenarios show that our

heuristics usually improve timing slack by hundreds of pico seconds compared to

traditional tree approaches while increasing only slightly in wirelength. These results show

that our algorithm is a very promising approach for timing critical net routings.

iv

 ACKNOWLEDGEMENTS

This thesis represents about one and a half years of work at Texas A&M University.

This work would not have been possible without the boundless assistance of mentors,

colleagues, and friends.

It is with the deepest of gratitude that I would like to thank my advisor, Jiang Hu, who

always gave me great directions. I would also like to express my heartfelt thanks to the

other professors, who have always kept their doors open, ready to discuss and encourage

new ideas. Particular thanks go to Gwan Choi and Donald K. Friesen who could always

find time, despite any other responsibilities or deadlines they may have had.

In my time at Texas A&M University, I have had the opportunity to collaborate with a

number of different people without whose help this thesis could not have been completed. I

would like to thank Weiping Shi, Sunil P. Khatri, Di Wu, Wei Zhuang, Mankang Mai, and

Chin-Ngai Sze (Cliff) for their time and their efforts. While not a collaborator as such, I

would also like to thank Tammy Carda and Linda Currin for their regular guidance and

tireless assistance.

Finally, I would like to express my sincere thanks to friends and family whose

unwavering support has been indispensable to me over the last years. Thank you to my

family: Dad, Mom, my elder brother and sister. And thank you to the friends that I have

made along the way: Mankang, Wei Zhuang, Dawen, Xiaomin, Ying Li, Jiong Yan and

Shengquan.

v

TABLE OF CONTENTS

Page

ABSTRACT..iii

ACKNOWLEDGEMENTS………………………………………………………………iv

TABLE OF CONTENTS……………………………………………………...…………….v

LIST OF FIGURES……………………………………………………………….……….vi

LIST OF TABLES………....………………………….……….…………………..….…vii

CHAPTER…..……………………………………………………………………………1

 I INTRODUCTION……………………………………………………………1

 1.1 Previous Work….……….……………………………………1
 1.2 Outline……………………………………………………………..3

 I I P R E L I M I N A R Y … … … … … … … … … … … … … … … … … … … . . 4

 I I I A L G O R I T H M … … … … … … … … … … … … … … … … … … … . . 7

3.1 Discussion on Topology……………..……………………………….10
 3.2 Constructive Steiner Network Heuristic.…………………………….11

IV EXPERIMENTAL RESULTS………………………………..….16

4.1 Cases with Single Critical Sink……..……………………………….17
 4.2 Cases with Multiple Critical Sinks.…………………………….23

V CONCLUSIONS AND FUTURE WORK………………………………..….24

REFERENCES………………………………………………………………………….25

VITA ...………………………………………………………………………………….26

vi

LIST OF FIGURES

FIGURE Page

1 Insert a link in an RC network……………………………………………………4

2 Chain-like topology and star-like topology……………………………...…..11

3 Root-root merging and shortest merging……………………….……………..14

4 Slack (AHHK+link vs Steiner network)………………………………….….19

5 Wirelength (AHHK+link vs Steiner network)……………………………………..19

6 2-connected wire (AHHK+link vs Steiner network)………….....………….….20

7 Monte Carlo: standard deviation of slack (AHHK+link vs Steiner network)…..22

vii

LIST OF TABLES

 TABLE Page

I Cases with 1 critical sink, comparison between AHHK and AHHK+link..……….17

II Cases with 1 critical sink, comparison between AHHK+link and Steiner network.18

III Monte Carlo results corresponding to table I ……..………….………………..21

IV Monte Carlo results corresponding to table II……….…………………………..22

V Cases with multiple critical sinks……………….…………………………..23

1

CHAPTER I

INTRODUCTION

The interconnect delay is a well-known performance bottleneck in VLSI circuit

designs. Therefore for timing optimization, the optimization of interconnect topology, say

singal net routing, is very important for the circuit design.

In practice, because Steiner tree [1] is cost-effective and its delay is relatively easy

to compute, people almost always use it for signal net routing. However, non-tree topology

has some remarkable advantages compared to trees. Non-tree routing can significantly

improve signal propagation delay, reduce signal skew, and afford increased reliability with

respect to open faults that may be caused by manufacturing defects and electro-migration

[3]. That is, the redundant paths in a non-tree network provide certain tolerance to open

faults and therefore can improve manufacturing yield and reliability [2]. Moreover, non-

tree topology sometimes can reduce delay variations [2]. Although non-tree delay

computation is more expensive than that of trees, the computation overhead of non-tree can

usually be alleviated by the advancement on computation techniques and facilities. And the

design needs often eventually outweigh computation overhead if the overhead is not

prohibitively large.

1.1 Previous Work

Perhaps the first non-tree routing work is [3]. It starts with a Steiner tree topology.

Then it iteratively searches for a new edge to add, so that the maximum source-sink delay

in the resulting routing graph will be minimized. It keeps on doing this until no further

delay improvement is possible. The later work of [4] inserts links sequentially between the

This thesis follows the style of IEEE Transactions on Microwave Theory and Techniques.

2

source and the sink with the maximum delay in the topology with shortest feasible length.

The recent work of [2] is focused on the reliability and manufacturing yield of non-tree

routing. It augments extra edges to an existing tree to increase the percentage of 2-

connected wires, which implies tolerance to open faults. The works of [3, 4] on timing

driven non-tree routing have two main weaknesses. Since they start from an existing tree,

and then add wires on it, the performance of the resulting non-trees depends on the initial

trees. The arbitrary starting tree cannot guarantee a good non-tree solution. The other

weakness is that they [3, 4] optimize only delay without considering timing constraints. In

reality, maximizing slack or minimizing wire cost subject to timing constraints is a more

common and useful problem formulation [5].

 The timing constraints in previous works [5] almost always consider only the

upper bounds for sink delays. In fact, there are delay lower bounds due to the short path

(hold time) constraints in synchronous circuits. Some gate sizing works [6] consider both

delay upper bound and lower bound at the same time. To the best of our knowledge, there

is no signal net routing work considering the double-sided timing constraints yet. This is

perhaps due to the reason that delay lower bound can be easily satisfied by padding extra

delay. The delay padding can be implemented by wire detour, adding dummy capacitors or

inserting redundant buffers. The former two approaches may increase the delay along the

long path. The later approach of redundant buffers may intensify the leakage power

problem. They all can increase the unnecessary complexity. Thus, we need to handle the

short path constraints in a more careful manner.

3

1.2 Outline

In this thesis, we propose Steiner network construction heuristics which consider

delay upper bound and lower bound simultaneously for timing critical nets. We will show

that sometimes a link insertion can simultaneously reduce long path delay and increase

short path delay. One heuristic is a greedy link insertion in an existing tree or non-tree,

which is similar to [3] but the solution search is trimmed for the double-sided timing

constraints. The other is a dynamic programming based constructive algorithm which can

generate a set of solutions with different slack-wirelength tradeoff and can reach either tree

or non-tree topology.

By comparing to the traditional AHHK tree results, our extensive experimental

results show that this Steiner network construction usually improves slack by hundreds of

pico seconds. The non-tree approach may bring some wirelength and runtime overhead, but

from the experimental results, this overhead is in a relatively small range. And moreover,

because it is applied to only a small number of timing critical nets, the impact of overhead

to overall chip design is very limited. Beside this, we also do the Monte Carlo simulation

with process variations considered. The results show that our method can improve timing

yield greatly with both nominal slack improvement and delay variability (standard

deviation) reduction.

The rest of this thesis is organized as following. Chapter II discusses a lemma of

link insertion and then gives our problem formulation. Chapter III addresses our algorithm.

In Chapter IV, we show our experiment results. And then we conclude in Chapter V.

4

CHAPTER II

PRELIMINARY

In this chapter, we will show that proper link insertion in an existing tree or nontree

can reduce long path delay and increase short path delay simultaneously. That is, link

insertion may reduce the difference of the maximum path delay and the minimum path

delay.

Considering insert a link between two nodes i and j in an network (Fig.1),

which can be either a tree or a nontree. Let the link resistance be

RC

R and link capacitance be

. According to the ∏ -model, this link insertion is equivalent to adding capacitance

at node i and

C / 2C

j , respectively, and inserting resistance R between i and j .

 i

j
2
CR

2
C

Fig.1 Insert a link in an network. RC

The link capacitance always increases the delay by , ,()
2i lc i i i j
Ct R R= + , and

, ,()
2j lc i j j j
Ct R R= + ,). Here is the path resistance from the source to node . And , ,(i i j jR R ()i j

,i jR is the transfer resistance which equals the voltage at node i when 1A current is

5

injected into node j and all the other node capacitances are set to zero [4]. After the link

insertion, the delay to i and j are changed from and it jt to and it jt according to the

following equations [7]:

(1)() (),t t t t ti i i lc j j, lcα α= − + + + (1)

,(1)() (),j j j lc i i lct t t t tβ β= − + + + (2)

Where i

i j

r
R r r

α =
+ −

 and j

i j

r
R r r

β =
+ −

. In general, and ir jr are equal to the

Elmore delay at i and j , respectively, when node capacitance 1, 1i jC C= = − and the other

node capacitances are set to zero [4].

The above equations show that the link capacitance always increases signal delay

while the link resistance attempts to average the delay between i and j . It is

strightforward to derive the following condition on the simultaneous improvement for both

long path and short path delay.

Lemma: If a link with resistance R and capacitance C is inserted between a node i

on a long path and a node j on a short path in a Steiner network, the necessary and

sufficient condition of simultaneously reducing delay to node i and increasing delay to

node j is , ,
1(1)i i lc j j lct t t
α

≥ − + + t .

When considering double sided timing constraints, each sink has a delay upper

bound

iv

iq and a delay lower bound iq . The delay upper bound is the same as the required

arrival time (RAT) in traditional methods. We define the late slack of a sink as iv

6

i is q t= − i where is the delay. Similarly, the early slack of a sink is defined as it iv

i i i
s t q= − . The slack of a sink is iv min(,)ii is s s= . The late slack, early slack and slack of

a network (or subnetwork) are the minimum late slack, early slack and slack among all

sinks in the network, respectively. For a network (or subnetwork), the sink having the

minimum late (early) slack is called late (early) critical sink. Here is our problem

formulation:

Timing Driven Steiner Network Construction:

Given a source node , a set of sink nodes with each sink having

load capacitance , lower delay bound

0v 1 2{ , ,..., }nv v v iv

ic
i

q and upper delay bound iq , construct a rectlinear

Steiner network spanning the source and the sinks such that the slack of the network is

maximized.

7

CHAPTER III

ALGORITHM

Before we dive into the details of the algorithm, let’s review our problem

formulation.

Given a source node , a set of sink nodes with each sink having

load capacitance , lower delay bound

0v 1 2{ , ,..., }nv v v iv

ic
i

q and upper delay bound iq , construct a rectlinear

Steiner network spanning the source and the sinks such that the slack of the network is

maximized.

Then comes the procedure of our algorithm, constructive Steiner network heuristic.

Step 1. Initialization: A set of subnetworks are initialized with the sink nodes. It is

the first candidate solution.

n = number of sinks

0O = new empty solution

for to 1i = n

 = new empty subnetwork iG

 add sink node to iv iG

 add to iG 0O

add to solution set 0O O

Step 2. Merging selection: In a candidate solution , select two subnetworks to

merge.

iO

For two different scenarios: (1) If long path constraints and short path constraints

are almost equally tight, we first choose the subnetwork with the maximum () / 2q q t′+ + ,

8

and then merge it with its nearest neighboring subnetwork. (2) If long path constraints

dominate, we choose a pair of subnetworks whose merging root is farthest from the source

among all pairs.

for every subnetwork in G kO

 Choose with maximum iG () / 2q q t′+ +

 for every other subnetwork G in kO

 Choose jG with minimum j i j ix x y y− + −

call Step 3 to merge and iG jG

kn = the number of subnetworks in kO

max =i = j = 0

for i = 1 to kn

 for j = to i kn

 if j i j ix x y y− + − > max then m=i; n = j

call Step 3 to merge and mG nG

Step 3. Merging: Merge these two subnetworks.

Use two different method to merge two selected subnetwoks and iG jG of solution

. One is root-root merging. And the other method is shortest merging where two nodes

from the two subnetworks with the minimum distance are connected directly. By doing this,

we get two candidate solutions.

kO

mO = new empty solution

mO = kO

mG = new empty subnetwork

node set of = { node set of } { node set of mG iG ∪ jG }

edge set of = { edge set of }∪{ edge set of mG iG jG }

mv = new node with coordinate { , } (, ,)i j omedian x x x (, ,)i j omedian y y y

9

add to and it is the new root mv mG

add edges { , and { ,}i mv v }j mv v to mG

delete and iG jG in mO

call Step 4 to insert link in mG

nO = new empty solution

nO = kO

nG = new empty subnetwork in nO

node set of = { node set of } { node set of nG iG ∪ jG }

edge set of = { edge set of } { edge set of nG iG ∪ jG }

min = ∞

for every node in iv iG

 for every node jv in jG

 if j i j ix x y y− + − < min then p=i; q = j

nv = new node with coordinate { (, ,)p q omedian x x x , (, ,)p q omedian y y y }

add to and it is the new root nv nG

add edges { , and { ,}i nv v }j nv v to nG

delete and iG jG in nO

call Step 4 to insert link in nG

delete old solution kO

Step 4. Link insertion: Insert link into the result subnetwork G of solution . kO

For the two subnetworks obtained from mergings, we insert a link in each of them.

Then we get two new candidate solutions.

mO = // the following operations are taken in this new solution kO mO

ev is the early critical sink of G

lv is the late critical sink of G

10

use dijkstra’s algorithm to find the shortest path ,e lp G∈ which connects and . ev lv
for each node , ,i ev p∈ l

for each edge ,j e le p∈ // je :{ (,)j jx y , (,)k kx y }
tentatively insert link between and { , }.

for all temporarily inserted link
iv (, ,)i j kmedian x x x (, ,)i j kmedian y y y

we finally insert the one with the maximum slack improvement.

Step 5. Candidate solution pruning: For a new candidate solution, compare it with

previous generated candidate solution for pruning.

If candidate solution has the exactly same sink set as , ,i kO ,i kO
If , , ,i j i kC C≤

,i j i k
q q≤

,
 and , ,i j i kq q≥ ,

prune ,i kO

Step 6. Solutions at the source: Choose the best solution at the source.

for every solution in the solution set O iO

choose the one with maximum slack or minimum capacitance without negative
slack.

Each step will be explained in detail later.

3.1 Discussion on Topology

The effect of link insertion depends on the initial tree topology. There is area-radius

tradeoff among different tree topologies. The area refers to the total wirelength and the

radius is the maximum source-sink path length in a tree. The two extreme cases of this

trade-off are: (1) chain-like topology (Fig. 2(a)), which has small area and large radius, and

is usually derived from minimum spanning tree algorithms; (2) star-like topology (Fig. 2(b))

with relatively large area and small radius, and can be obtained from the shortest path tree

or Rectilinear Steiner Aborescence (RSA) algorithms [1].

11

(a) Chain-like topology (b) Star-like topology
Fig. 2 Chain-like topology and star-like topology.

The major weakness of a tree with chain-like topology is that the delay of some

sinks may suffer from the long path length. For example, if in Fig. 2(a) is the late critical

sink with tight delay upper bound, the long detour may cause large delay constraint

violation. If we include non-tree topology into consideration, we may reach different

conclusions. If a link (dashed line) is inserted in the chain-like topology as in Fig. 2(a), the

long detour problem is eliminated and the small wirelength is still enjoyed. However, if the

late critical sink is instead, perhaps the star-like topology in Fig. 2(b) is still better. Thus,

it is not clear which tree topology can facilitate a good non-tree solution in general. Our

constructive algorithm probes different topologies so that the chance of capturing good

non-tree solutions can be increased.

1v

2v

3.2 Constructive Steiner Network Heuristic

If we treat a network as a tree plus links, the problem of network construction can

be accordingly decomposed into finding a proper tree topology and link insertions. We

combine these two concerns into a dynamic programming based heuristic. This heuristic is

a bottom-up merging procedure where multiple candidate solutions are generated to probe

good topologies and link insertions. At the beginning, a set of subnetworks are initialized

with the sink nodes. In each iteration, a pair of subnetworks is selected to be merged.

12

Different merging solutions are generated. For each new subnetwork resulting from a

merging, another candidate solution is generated by inserting a link in it. These candidate

solutions are propagated toward the source.

Solution characterization. A candidate solution is a set of subnetwork . It

can be characterized by the total load capacitance , delay lower bound

iO ,i jG

,i jC
,i j

q and delay

upper bound ,i jq at each root jv . It is easy to derive that the delay upper bound ,i jq is same

as the late slack of . Similarly, the delay lower bound ,i jG
,i j

q is equal to the negative of

early slack.

Solution pruning. If there is another candidate solution with the subnetwork set

have the exactly same sink sets as candidate solution , the two solutions can be

compared for pruning. If for each corresponding subnetwork

kO

iO

j has , , ,i j k jC C≤
, ,i j k j

q q≤

and ,i j k jq q≥ , , solution is inferior and can be pruned. kO

Merging selection. We propose two merging selection criteria for two different

scenarios: (1) long path constraints and short path constraints are almost equally tight, and

(2) long path constraints dominate.

For the first scenario, we use a merging scheme similar to prescribed skew clock

tree routing [9]. In fact, when the delay upper bound of each sink is equal to its delay lower

bound, i.e., the delay constraints degenerate to a single value target, this problem is

equivalent to prescribed skew clock routing. In prescribed skew clock routing, the subtree

with the maximum delay target is merged first to reduce the chance of wire detour [9].

Since we have delay upper and lower bound instead of a single delay target, we use the

average () / 2q q t′+ + as the criterion. The t′ is the anticipated wire delay from the source

13

node to the root of the subnetwork. This is to encourage subnetworks with roots far away

from the source to be merged early. In each iteration, we first choose the subnetwork with

the maximum () / 2q q t′+ + , and then merge it with its nearest neighboring subnetwork.

The second scenario is more like traditional signal routing [1]. Therefore, we adopt

a merging criterion similar as that of Rectilinear Steiner Aborescence (RSA) [10]. That is,

we choose a pair of subnetworks whose merging root is farthest from the source among all

pairs. If we consider merging subnetworks rooted at ,(i i)x y and ,()j jx y , then the merging

root is at ((0 0, ,), (, ,))m i j m i jmedian x x x y median y y y= = 0 0(,) where xx y is the location of

the source node. Then, the pair with the maximum value 0m m 0x x y y− + − is selected for

a merging. Our method is different from the well-known RSA algorithm [10] which

restricts all sinks in one quadrant if the source is at (0,0). Our merging selection can handle

the cases that sinks are distributed in multiple quadrants.

Merging. After a pair of subnetworks is selected, we consider two types of

mergings between them. One is the root-root merging as in Fig. 3(a) where subnetwork

and are merged at node . The other is the shortest merging where two nodes from the

two subnetworks with the minimum distance are coneected directly. After the merging, the

node closest to the source is selected as the root for the merged network. For example, in

Fig. 3(b), the merging between and is obtained by connecting and where

reroot occurs. Then is chosen as the root.

5G

6G 7v

5G 6G 2v 3v

5v

14

v4

v3

v1

v2

v6

v5

v7

v0

v3

v4

v1
v2

v6

v5

v0

 (a) root-root merging (b) Shortest merging
Fig. 3 Root-root merging and shortest merging.

The root-root merging is very similar as the RSA [10] heuristic which leads to star-

like topology. The shortest merging is more likely to result in chain-like topology. By

having these two different types of merging, various topologies can be generated to

compete for the best slack solution.

Link insertion. For the two subnetworks obtained from merging, we insert a link in

each of them such that the slack is maximized considering the double-sided timing

constraints.

For the given subnetwork G , which can be either tree or non-tree, we first identify

its early critical sink and late critical sink (both defined in Chapter II). Next we find

the shortest path which connects the two critical sinks. For each node , we

tentatively insert a link between and each edge

ev lv

,e lp ∈G l,i ev p∈

iv ,j e le p∈ with the shortest connection. If

node is at coordinate iv (,)iix y , and the two ending nodes of je are at (,)j jx y and

(,)k kx y , respectively, the link is inserted between node and location iv (,)c cx y where

(, ,)c i j kx median x x x= and . For each link insertion result, we

evaluate the slack S of the network. For all temporarily inserted link we finally insert the

one that gives the maximum slack improvement.

(, ,)c iy median y y y= j k

15

Solutions at the source. At the source, there are a set of solutions with different

capacitance and slack trade-off. We can choose either the maximum slack solution or the

minimum capacitance solution without negative slack.

16

CHAPTER IV

EXPERIMENTAL RESULTS

All algorithms are implemented in C++ and the experiments are performed on a PC

computer with 3.2GHz processor and 1G memory. We generated different testcases with

the number of sinks ranging from 5 to 25. Without loss of generality, we let the source be at

coordinates (0,0). In some cases, all of the sinks are in one quadrant while some other cases

have sinks distributed in four quadrants. For example, in the data tables, the notation of

“15s, 2Q” means there are 15 sinks and they are distributed in two quadrants. The 70nm

technology parameters reported in [12] are employed. We compare the following methods

in the experiments:

AHHK. This is a Steiner tree heuristic [1] which can achieve different area-radius

tradeoff by varying a parameter [0,1]α ∈ . When the value of α is shifted from 0 to 1, the

resulting tree gradually changes from chain-like to star-like topology [1]. Although it is not

directly timing driven, we can achieve very good timing performance by trying different α

and choosing the result with the best slack. We tested AHHK trees with α = 0, 0.5, 1 in the

experiments.

AHHK+detour. If there is short path violation, the edge incident to the early

critical sink is elongated to increase the delay till the early slack is close to the late slack, so

that the overall slack is maximized.

AHHK+link. Inserting links greedily similar as described in our algorithm step 4

link insertion. The only difference is that here we try to insert links greedily until there isn’t

timing performing improvement anymore. This method is similar to [3].

Steiner network. The dynamic programming based Steiner network construction

17

proposed in Chapter IV.

4.1 Cases with Single Critical Sink

For the testcases, we generated 15 nets with 5, 10, 15, 20, 25 sinks and sinks in 1

quadrant, 2 quadrants and 4 quadrants, respectively. Each net has a single critical sink

which is often on the long path. Therefore, wire detour is rarely necessary here.

TABLE I
CASES WITH 1 CRITICAL SINK, COMPARISON BETWEEN AHHK AND

AHHK+LINK

AHHK AHHK+link
Case α S W S W #L 2-C

15s,1Q
15s,2Q
15s,4Q
20s,1Q
20s,2Q
20s,4Q
25s,1Q
25s,2Q
25s,4Q

0
0.5

0
0
0

0.5
0
1
0

-494
-56

-709
-704

-2137
-243
-746

-49
-3106

8751
9055

15333
9887

12453
17519
9596

18183
19954

-196
-4

-455
-248

-1377
77

-442
-1

-1749

10700
11004
17799
11963
14415
19491
11290
20411
21612

1 44%
1 42%
1 57%
1 41%
1 35%
1 24%
1 39%
1 33%
1 20%

Average -916 13415 -488 15409 1 37%

Notes: Comparison on slack S(), total wirelength W(ps mμ), the number of inserted links
#L and percentage of 2-connected wires 2-C.

In Table I above, we compare AHHK and AHHK+link on 9 cases among the 15 nets

where links are indeed inserted. The average results in the last row show that link insertion

can improve slack by about 428ps with about 15% increase on wirelength. The link

insertion can also achieve about 37% 2-connected wires, which means about 37% of the

wires are tolerant to open faults.

18

TABLE II
CASES WITH 1 CRITICAL SINK, COMPARISON BETWEEN AHHK+LINK AND

STEINER NETWORK

AHHK+link Steiner network

Case α S ()ps W ()mμ #L 2-C CPU ()s S ()ps W ()mμ #L 2-C CPU ()s

5s,1Q
5s,2Q
5s,4Q
10s,1Q
10s,2Q
10s,4Q
15s,1Q
15s,2Q
15s,4Q
20s,1Q
20s,2Q
20s,4Q
25s,1Q
25s,2Q
25s,4Q

0
1
0
1
1

0.5
1
1
1
1

0.5
0.5

1
1
1

-3
-15
14
26
54

112
102
-13
-12

7
-3
77
-5
-1

-18

5122
7442
9804
7409

12831
10120
9566

12135
18345
12372
14214
19491
13869
20411
23144

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 24%
0 0
1 33%
0 0

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.02
0.02
0.02
0.02
0.02

120
82

123
124
188
199
320
283
130
177
177
242
534
308
211

7544
8641

11184
7743

14763
13468
8892

13195
18836
12429
17355
18639
14493
17019
24128

1 58%
1 30%
1 25%
1 15%
1 42%
3 53%
0 0
1 20%
1 22%
1 19%
2 39%
1 19%
2 34%
1 18%
1 17%

0.01
0.01
0.02
0.05
0.09
0.49
0.25
0.38
0.72
2.28
4.95
0.53
1.41

10.48
0.66

Average 21 13085 3.8% 0.01 215 13889 27.4% 1.49

Notes: Comparison on slack S(), total wirelength W(ps mμ), the number of inserted links
#L, percentage of 2-connected wires 2-C and running time CPU(s).

In Table II, we compare our constructive Steiner network heuristic and AHHK+link

for the entire 15 nets. For AHHK+link, we pick the results of α with the best timing slack.

Among multiple solutions generated by the constructive heuristic, we report the solution

with best slack and largest wirelength. According to the last row of Table II, it can improve

the slack from 21ps to 215ps on average. The wirelength increase of our Steiner network

heuristic is only 6% over the AHHK+link results. The following figures (Fig.4, Fig.5 and

Fig.6) show these results.

19

Fig.4 Slack (AHHK+link vs Steiner network).

Notes: With our constructive Steiner network heuristic, we can get better slack result.

Fig.5 Wirelength (AHHK+link vs Steiner network).

Notes: Comparing with AHHK+link, our Steiner network heuristic has only a little
wirelength increase.

20

Fig.6 2-connected wire (AHHK+link vs Steiner network).

Notes: In some of our testcases, we didn’t insert links in AHHK, therefore there isn’t 2-
connected wire. While for our constructive Steiner network heuristic, we get more 2-
connected wires which can be more tolerant to open faults.

The dynamic programming based Steiner network construction can generate a set of

solutions with different slack-wirelength tradeoff.

We also do Monte Carlo simulations (5000 runs for each result) to observe the

behaviors of these algorithms under process variations. We consider wire width, sink

capacitance and driver resistance variations which are assumed to follow Gaussian

distribution with standard deviation equal to 5% of nominal value.

21

TABLE III
MONTE CARLO RESULTS CORRESPONDING TO TABLE I

AHHK AHHK+link

Case α sμ sσ Y sμ sσ Y

15s,1Q
15s,2Q
15s,4Q
20s,1Q
20s,2Q
20s,4Q
25s,1Q
25s,2Q
25s,4Q

0
0.5

0
0
0

0.5
0
1
0

-497
-57

-711
-707

-2144
-245
-751

-51
-3117

34
27
50
35
69
42
40
43
91

0
2
0
0
0
0
0

12
0

-197
-4

-456
-249

-1382
 77

-447
-1

-1754

27
27
45
29
58
42
41
44
69

0
44

0
0
0

97
0

49
0

Average -920 47.9 1.6% -490 42.4 21.1%

Notes: mean slack sμ (), standard deviation of slack ps sσ () and timing yield Y (the
probability of non-negative slack).

ps

The comparison between AHHK trees and AHHK+link results is in Table III above.

Comparing with the deterministic results in Table I, we can see that the mean values sμ of

the slacks are about the same. On average, AHHK+link can reduce the standard deviation

sσ of slack by about 10% and increase timing yield from 1.6% to 21.2%.

As in Table IV, the data indicate that our constructive method can reduce the

standard deviation further by about 10% (Fig.7) and improve the timing yield from about

61% to 100% compared to AHHK+link.

22

TABLE IV
MONTE CARLO RESULTS CORRESPONDING TO TABLE II

AHHK AHHK+link

Case α sμ sσ Y sμ sσ Y

5s,1Q
5s,2Q
5s,4Q
10s,1Q
10s,2Q
10s,4Q
15s,1Q
15s,2Q
15s,4Q
20s,1Q
20s,2Q
20s,4Q
25s,1Q
25s,2Q
25s,4Q

0
1
0
1
1

0.5
1
1
1
1

0.5
0.5

1
1
1

-4
-15
14
24
52

111
102
-14
-12

7
-5
77
-8
-1

-20

20
23
27
23
41
26
26
36
44
29
37
42
38
44
54

43%
25%
70%
86%
89%

100%
100%
35%
39%
60%
44%
97%
42%
49%
35%

119
82

123
125
189
199
318
283
130
176
176
241
534
308
210

17
19
26
22
34
29
22
28
40
27
39
39
32
36
50

100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%

Average 21 34.0 60.9% 214 30.7 100%

Notes: mean slack sμ (), standard deviation of slack ps sσ () and timing yield Y. ps

Fig.7 Monte Carlo: standard deviation of slack (AHHK+link vs Steiner network).

Notes: Comparing with the AHHK+link results, our Steiner network heuristic can reduce
the standard deviation of slack.

23

4.2 Cases with Multiple Critical Sinks

We also tested the algorithms in cases with multiple critical sinks. That is, there

may be several sinks with similar timing criticality in each net. In order to see the effect on

fixing short path delay constraint violations, these testcases usually have tighter constraints

on short path than on long path.

The wire detour method can increase the delay to the early critical sink but at the

cost of increasing long path delay, while our approach can increase short path delay and

reduce long path delay simultaneously. Moreover, wire detour cannot lead to any tolerance

to open faults as in non-tree.

The average results in Table V show that our Steiner network heuristic can improve

the slack by about 80ps on average when compared to performing wire detour on existing

trees. The wirelength increase due to our method is about 4% with respect to the wire

detour results.

TABLE V
CASES WITH MU RITICAL SINKS

AHHK AHHK+detour AHHK+link Steiner network

LTIPLE C

S W S W S W S W
-74 14 3 2 7 7 2 1 44 18 1667 43 1564 97 1729

otes: Comparison on average results (10 nets with 5-25 sinks) of slack S(), total N ps

wirelength W(mμ).

24

CHAPTER V

CONCLUSIONS AND FUTURE WORK

This work investigates timing driven routing by using non-tree topology. We

propose a constructive Steiner network heuristic algorithm to do the signal net routing,

which can improve the timing performance greatly. Our constructive Steiner network

heuristic method considers the double-sided timing constraints, adopts dynamic

programming to construct the non-tree solution, and uses greedy link insertion to insert

links in subnetwork. And it can handle those cases whose sinks are distributed in multiple

quadrants. Experimental results show that this is a very promising approach even when

both long path and short path constraints are considered. In future, we can find non-tree

routing method using more accurate delay model and study buffered non-tree routings.

25

REFERENCES

[1] A. B. Kahng and G. Robins. On Optimal Interconnections for VLSI. Kluwer Academic
Publishers, Boston, MA, 1995.

[2] A. B. Kahng, B. Liu, and I. I. Mandoiu. “Non-tree routing for reliability and yield
improvement”. International Conference on Computer Aided Design, pp. 260-266, 2002.

[3] B. A. McCoy and G. Robins. “Non-tree routing”. Design Automation and Test in
Europe, pp. 430-434, 1994.

[4] T. Xue and E. S. Kuh. “Post routing performance optimization via tapered link insertion
and wiresizing”. Design Automation and Test in Europe, pp. 74-79, 1995.

[5] J. Lillis, C. K. Cheng, T. T. Lin, and C. Y. Ho. “New performance driven routing
techniques with explicit area/delay tradeoff and simultaneous wire sizing”. Design
Automation Conference, pp. 395–400, 1996.

[6] W. Chuang, S. S. Sapatnekar, and I. N. Hajj. “Delay and area optimization for discrete
gate sizes under double-sided timing constraints”. Custom Integrated Circuits Conference,
pp. 9.4.1-9.4.4, 1993.

[7] P. K. Chan and K. Karplus. “Computing signal delay in general RC networks by
tree/link partitioning”. Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 9, pp. 898-902, August 1990.

[8] D. Lam, C.-K. Koh, Y. Chen, J. Jain, and V. Balakrishnan. “Statistical based link
insertion for robust clock network design”. International Conference on Computer Aided
Design, pp. 588-591, 2005.

[9] R. Chaturvedi and J. Hu. “An efficient merging scheme for prescribed skew clock
routing”. Transactions on Very Large Scale Integration Systems, vol. 13, pp. 750-754, June
2005.

[10] S. K. Rao, P. Sadayappan, F. K. Hwang, and P. W. Shor. “The rectilinear Steiner
arborescence problem”. Algorithmica, vol. 7, pp. 277-288, 1992.

[11] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University
Press, Baltimore, MD, 1996.

[12] A. B. Kahng and B. Liu. “Q-Tree: a new iterative improvement approach for buffered
interconnect optimization”. in Proc. IEEE Computer Society Annual Symposium on VLSI,
pp. 183-188, 2003.

26

VITA

Name: Qiuyang Li

Address: Department of Electrical and Computer Engineering

C/O Dr. Jiang Hu

Texas A&M University

College Station, TX 77843-3259

Email Address: qiuyang@tamu.edu, qiuyang.li@gmail.com

Education: B.S., Computer Science, Nankai University, 1999

 M.S., Computer Science, Nankai University, 2002

M.S., Computer Engineering, Texas A&M University, 2006

	Thesis preface - Qiuyang Li.pdf
	 ACKNOWLEDGEMENTS
	LIST OF TABLES
	 TABLE Page

	Thesis Body - Qiuyang Li.pdf

