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ABSTRACT

Lorentz -Violating Dark Matter. (May 2007)

Antonio R. Mondragon, B.S., Northwestern State University of Louisiana;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Roland E. Allen

Observations from the 1930s until the present have established the existence of

dark matter with an abundance that is much larger than that of luminous matter.

Because none of the known particles of nature have the correct properties to be

identified as the dark matter, various exotic candidates have been proposed. The

neutralino of supersymmetric theories is the most promising example. Such cold dark

matter candidates, however, lead to a conflict between the standard simulations of

the evolution of cosmic structure and observations. Simulations predict excessive

structure formation on small scales, including density cusps at the centers of galaxies,

that is not observed. This conflict still persists in early 2007, and it has not

yet been convincingly resolved by attempted explanations that invoke astrophysical

phenomena, which would destroy or broaden all small scale structure. We have

investigated another candidate that is perhaps more exotic: Lorentz-violating dark

matter, which was originally motivated by an unconventional fundamental theory, but

which in this dissertation is defined as matter which has a nonzero minimum velocity.

Furthermore, the present investigation evolved into the broader goal of exploring

the properties of Lorentz-violating matter and the astrophysical consequences – a

subject which to our knowledge has not been previously studied. Our preliminary

investigations indicated that this form of matter might have less tendency to form

small-scale structure. These preliminary calculations certainly established that
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Lorentz-violating matter which always moves at an appreciable fraction of the speed

of light will bind less strongly. However, the much more thorough set of studies

reported here lead to the conclusion that, although the binding energy is reduced,

the small-scale structure problem is not solved by Lorentz-violating dark matter. On

the other hand, when we compare the predictions of Lorentz-violating dynamics with

those of classical special relativity and general relativity, we find that differences might

be observable in the orbital motions of galaxies in a cluster. For example, galaxies –

which are composed almost entirely of dark matter – observed to have enlarged orbits

about the cluster center of mass may be an indication of Lorentz violation.
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CHAPTER I

INTRODUCTION: OBSERVATIONAL COSMOLOGY

A. Historical Development of Modern Cosmology

The twentieth century marked a transformation in our understanding of the universe

comparable in magnitude to the transformation inspired by Nicolaus Copernicus,

Johannes Kepler, Gallileo Galilei, and Isaac Newton during and following the

Renaissance. Because of improvements in astrometry, the vast scale of the universe

was revealed during the first quarter century. The discovery of the Cepheid variable

period-luminosity relation by Henrietta Leavitt [1] (1907) and subsequent (although

erroneous) calibration using statistical parallax by Harlow Shapley [2] (1924) provided

a rough determination of the distance to the Large Magellanic Cloud – increasing the

known size of the universe to be at least hundreds of kiloparsecs. This step out of

the Milky Way galaxy was to become known as the first rung of the extragalactic

distance scale. The Great Debate (1920) concerning the proximity of the Andromeda

and Triangulum “nebulae” was put to rest in 1925 when faint Cepheid variables

in Andromeda were resolved using the Mt. Wilson 100-inch telescope. Edwin

Hubble [3, 4] confirmed that the “spiral nebulae” were actually “island universes”

much like our own Milky Way – increasing the size of the known universe further to

millions of kiloparsecs, and extending the extragalactic distance scale. Albert Einstein

considered the cosmological implications of his radical new theory of gravity [5],

first adjusting the theory with a cosmological constant to achieve a static universe,

and then yielding to the more natural prediction of an expanding universe, in

agreement with the unexpected observation of the recession of distant galaxies by

The journal model is Nuclear Physics B.
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Edwin Hubble [6, 7]. The Hubble expansion, together with accurate calculations of

the relative abundances of the light elements in an expanding universe [8] by Ralph

Alpher, Hans Bethe, and George Gamow (1948), and discovery of the microwave

background radiation [9] by Arno Penzias and Robert Wilson (1965) firmly established

a new paradigm and standard cosmological model.

The Hubble expansion, primordial nucleosynthesis, and cosmic background ra-

diation served as a stable tripod for later observational programs to understand the

history and nature of the universe. The four decades following Allan Sandage’s opti-

mistic announcement, “The Ability of the 200-inch [Hale] Telescope to Discriminate

Between Selected World Models” [10] (1961), were dedicated to the exhaustive task

of determining the extragalactic distance scale – the primary source of errors in all

measurements of cosmological parameters. In 1965, due to limitations in ground-

based astrometry, the Space Science Board of the U.S. National Academy of Sciences

recommended that the National Aeronautics and Space Administration build a large

space-based telescope. The first of these Great Telescopes – the Hubble Space Tele-

scope –was not launched until 1990, with design flaws that were corrected a few years

later. Lacking a precise measurement of the distance to the Large Magellanic Cloud,

which contains the closest large group of Cepheids, and consequently lacking an ac-

curate calibration of the period-luminosity relation, observational cosmology waited

until the final decade of the twentieth century for precision space-based instruments

to provide confidence in cosmological models.

At the same time, the fast-paced revolution in quantum devices during the last

four decades of the twentieth century provided charged-coupled devices, expanding

the capabilities of ground-based telescopes, as well as computers capable of simulating

star clusters, galaxies, and even the large-scale structure of the universe. Larger

telescopes enabled the observation of large numbers of star clusters, galaxies, and
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galaxy clusters at great distances, inspiring new relationships and novel methods

of distance determination. Infrared and radio astronomy led to the development

of the Tully-Fisher relation [11] between rotational velocity and total luminosity of

spiral galaxies. A simple relationship between the luminosity of elliptical galaxies

and constituent stellar velocity dispersions was also discovered [12–14]. This was the

era of painstaking refinement of distance indicators, during which the fundamental

tools of observational cosmology were developed, and many new questions arose.

Lengthy optical time exposures of nearby galaxy clusters were used to determine

mass-to-light ratios, which were much higher than expected. Computer simulations

and precision spectroscopy suggested that the oldest stars are older than the age of

the universe as inferred from the Hubble constant, and that spiral galaxy formation

required much more mass than is visible. The rotation curves of nearby galaxies

confirmed that more matter (dark matter) must reside in the outer regions (halos) of

galaxies. Distance indicators depend heavily on large samples, so that distances to

nearby galaxies, due to their limited numbers, remained plagued with uncertainties.

Although telescopes were bringing large-redshift objects into view, resolution was

still limited by atmospheric effects. Trigonometric parallaxes for even the nearest

extragalactic objects could not be measured. Accurate calibration of the distance

indicators would have to wait for space-based instruments.

The successes of the Cosmic Background Explorer (1989), Hubble Space Tele-

scope (1990), and Hipparcos (1989), however, instilled a new optimism in the ability

to discriminate between cosmological models [15–19]. The space-based instruments

produced accurate measurements of distances to high-redshift objects, providing con-

fidence in determinations of cosmological parameters, and challenging the aesthet-

ically pleasing and long enduring (1932–1990) Einstein-de Sitter model [20]. The

age and mass density of the universe, as predicted by the Einstein-de Sitter model,
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could not be reconciled with observations. Specifically, the ages of globular cluster

stars disagreed with the Hubble age; and galaxy cluster masses – even including dark

matter – did not add up to the critical mass. In addition, the assumptions of homo-

geneity, isotropy, and flatness were reinforced by data from the Cosmic Background

Explorer – reviving interest in the cosmological constant. The unexpected discovery

and independent verification of an accelerating expansion by the High-Z Supernova

Search Team [21] and Supernovae Cosmology Project [22] in 1998 definitely demon-

strated the need for a cosmological constant or some other form of “dark energy”,

and spawned the modern era of precision cosmology.

B. Conventional Cosmologies

Conventional cosmologies are based on the Einstein-Hilbert action –which yields Ein-

stein’s field equations – together with an inflationary scenario [23]. The general-

ization of the Einstein-de Sitter model [20, 24] to include an inflationary scenario

(Ωm ' 1, Λ = 0) can be regarded as an extension of the old standard cosmology [25].

Further generalizations are a variety of cold dark matter (CDM) models, including

ΛCDM (Ωm < 1, Λ 6= 0) [26, 27].

Central to all cosmological measurements is the extragalactic distance scale.

All distance determinations beyond the galaxy are model dependent. The most

fundamental assumptions are those of homogeneity and isotropy of the universe, of

which a direct consequence is the Robertson-Walker metric:

ds2 = −dt2 + a(t)2

(
dr2

1− kr2
+ r2dΩ

)
(1.1)

where dΩ = dθ2 + sin2 θ dφ2, a(t) is the cosmic scale factor, and the geometry is

specified by k = 1 (spherical), 0 (flat), or −1 (hyperbolic). This metric, together
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with the dynamics of the cosmic scale factor as determined from the Einstein field

equations, provides the canonical model for determining distances beyond our galaxy.

The Hubble parameter, deceleration parameter, and redshift are defined in terms of

the cosmic scale factor:

H0 ≡
ȧ0

a0

, (1.2)

q0 ≡ −
ä0

ȧ2
0

a0, (1.3)

1 + z ≡ λ0

λ
=

a0

a
, (1.4)

where a0 ≡ a (t0) is the present value of the cosmic scale factor, λ0 is the detected

wavelength, and λ is the emitted wavelength of light from extragalactic sources. The

equality of the ratio of wavelengths to the ratio of cosmic scale factors assumes that

the sources participate strictly in the Hubble flow.

C. Luminosity Distance

An essential bridge between theory and observation is the relation between redshift

and luminosity distance. The luminosity distance, measured by comparison of

apparent with absolute luminosity [25], is given by dL = rza0(1 + z), where rz is the

comoving radial coordinate at redshift z. Within the framework of conventional

cosmologies the comoving radial coordinate satisfies [24, 28]

rz∫
0

dr√
1− kr

=
H−1

0

a0

z∫
0

dz′

(1 + z′)
√

Ωm(1 + z′) + ΩΛ(1 + z′)−2 + 1− (Ωm + ΩΛ)
, (1.5)

resulting in a redshift-distance relation sensitive to the energy density of the universe.

The integral can be evaluated for the standard cosmology (ΩΛ = 0) giving [23]

dL =
H−1

0

Ω2
m

[2Ωmz + (2Ωm − 4)(
√

Ωmz + 1− 1)], (1.6)
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or in terms of the deceleration parameter, q0 = 1
2
Ωm,

dL =
H−1

0

q2
0

[q0z + (q0 − 1)(
√

2q0z + 1− 1)]. (1.7)

For the case ΩΛ = 2/3 and Ωm = 1/3, corresponding to q0 = −1/2, one obtains an

elliptic integral for the comoving radial coordinate (1.5) so that

dL = H−1
0 (1 + z)

√
3

2

1+z∫
1

du√
1 + u3/2

. (1.8)

The luminosity distance as a function of redshift for the standard and ΛCDM models

is plotted in Fig. 1. As redshift surveys push toward and beyond z = 1, it is becoming

possible to accurately discriminate between models like these [29, 30].

10.80.60.40.20

1.5

1.25

1

0.75

0.5

0.25

0

q0 = 1/2
q0 = −1/2

z

H
0
d
L

Fig. 1. The luminosity distance is shown as a function of redshift for two different

models. The solid curve corresponds to an accelerating universe as predicted

by ΛCDM Cosmology (1.8). The dashed curve corresponds to a decelerating

universe with Λ = 0 (1.7).
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D. Hubble Age

The Hubble age relation can be easily calculated from the definition of the Hubble

parameter in the case of the standard cosmology. Integration of the Friedmann

equation [23] gives the Hubble age relation for ΛCDM. For a flat universe (with k = 0

so that Ωm = 1− ΩΛ) the integration results in a Hubble age relation parameterized

by the vacuum density parameter ΩΛ, as shown in Fig. 2:

H0t0 =
2

3
Ω
− 1

2
Λ ln

[
1 + Ω

1
2
Λ

(1− ΩΛ)
1
2

]
≥ 2

3
(1.9)

0 1/3 2/3 1
1/3

2/3

1

4/3

10Gyr

14Gyr

ΩΛ

H
0
t
0

Fig. 2. Hubble age (1.9) is plotted as a function of vacuum energy density (solid curve)

for a flat universe, with the specific times corresponding to H−1
0 = 15 Gyr. The

lower horizontal line (short dashes) marks the Hubble age, t0 = 10Gyr, as

predicted by the Standard Cosmology. The upper horizontal line (long dashes)

marks a Hubble age, t0 = 14Gyr, characteristic of ΛCDM.
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and the equality holds in the limit ΩΛ → 0. Table I summarizes the Hubble age

relations and the Hubble age of the universe for a reasonable value of H0 (h = 0.65).

Table I. Hubble age

Cosmological Hubble Age Hubble Age
Model Relation (h = 0.65)

Standard Cosmology H0t0 = 2/3 t0 ' 10 Gyr

ΛCDM Cosmology H0t0 > 2/3 (See Fig. 2)

1. Observations: Hubble Parameter

The early history of the Hubble parameter (1925–1975) was perhaps best expressed

by Trimble in her review [31]: “...The Incredible Shrinking Constant...”. Most

notably, this period is marked by an order of magnitude drop in the measured

value of the Hubble parameter (H0 ' 500 km s−1Mpc−1 −→ H0 ' 50 km s−1Mpc−1)

due to improvements in cosmography and telescope technology. The following decade

(1975–1985) saw the division of measurements into the long scale (H0 ' 50) or the

short scale (H0 ' 100); most published values of H0 fell in the ranges 50–60 or

90–110 km s−1Mpc−1. This discrepancy between the long and short scales evolved

into the persistent “factor of two” uncertainty during the next decade (1985–1995):

As of 1995, the published values of H0 covered a nearly continuous range of 45–

90 km s−1Mpc−1. Several reviews are available recounting the early (1925–1975)

improvements in cosmography [32]; sorting out the long and short scale division [33]

in the following two decades (1975–1995); and describing the published values of H0

over its entire history [33–35].
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Table II. Hubble parameter as determined from SNe Ia,

in some analyses of 1996-1998.

Method H0 (km s−1Mpc−1) (Year)

Cepheid calibrated 65± 7 (1998) [21]

Hubble diagram 60± 6 (1998) [36]

67± 8 (1997) [37]

59± 3, 62± 4 (1997) [38]

58+7
−8 (1997) [39]

60± 5 (1997) [40]

57± 4 (1996) [41]

63± 7 (1996) [42]

64± 6 (1996) [43]

55± 3 (1996) [44]

Physical 56± 5 (1998) [45]

considerations 67± 9 (1996) [46]

Presently, the determination of the Hubble parameter through Cepheid-calibrated

blue type Ia Supernovae (SNe Ia) and their Hubble diagram has the highest weight [47].

These determinations as well as physical determinations from SNe Ia have been re-

viewed by Branch [45]. Table II is largely due to this review. The Key Project [37, 48]

reported a weighted mean of H0 = 73± 10 km s−1Mpc−1 resulting from several meth-

ods, a value which has been consistent for nearly a decade now. More recent obser-

vations and analyses, principally by Freedman and coworkers [49–51] give a value of

about 70-72 km s−1Mpc−1, and this approximate value is confirmed by the analysis of

the Wilkinson Microwave Anisotropy Probe (WMAP) team [52, 53].

Gravitational lensing of quasars provides a geometric distance independent of
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the standard extragalactic distance scale [54]. The possibility of testing cosmological

theories using the difference in the travel time of light from multiply-imaged distant

quasars by nearby galaxies was first proposed in 1964 by Sjur Refsdal [55, 56].

Specifically, Refsdal pointed out the connection between the delay in arrival time of

multiple images of variable background sources (quasars) due to foreground galaxies,

and the Hubble parameter. D. Walsh, R. F. Carswell, and R. J. Weymann announced

the detection of Q0957+561 – the first gravitational lens (GL) system– in 1979 [57],

stirring much excitement and establishing a new field of research.

To date, robust time delays for at least eleven lens systems have been measured,

from which ten reliable estimates of the Hubble parameter are derived. A sample of

determinations of H0 from gravitational lensing are compiled in Table III. Distance

determinations are strongly dependent on the astrophysical model of the GL as well as

the cosmological model. Despite these model dependencies, however, determinations

of the Hubble parameter from gravitational lensing are consistent with those from

well established methods. GL system Q0957+561 is the most studied lens system to

date, but recent findings render all measurements prior to 2000 inadmissible [58] due

to the unique nature of the lens geometry. Kochaneck & Schechter [59] combine the

GL systems PG1115+080, SBS1520+530, B1600+434, and HE2149-2745 to arrive

at H0 = 48± 3 km s−1Mpc−1 for the isothermal (flat rotation curve) lens model, and

H0 = 71± 3 km s−1Mpc−1 for the constant mass-to-light (no dark matter halo) lens

model; Both models assume a flat universe with Ωm = 0.3 and ΩΛ = 0.7. In general,

recent determinations of the Hubble parameter from a single lens system usually fall

into two categories: A low value corresponding to an isothermal lens model, and a high

value corresponding to a lens model with constant mass-to-light (M/L) ratio. Also

using (Ωm, ΩΛ) = (0.3, 0.7), Cardone et al. [60] determine H0 = 58+26
−22 km s−1Mpc−1

using a new method which makes only the most general assumptions concerning the
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Table III. Hubble parameter as determined from gravitational

lensing of quasars

Lens System H0 (km s−1Mpc−1) Ωm ΩΛ Year

Q0957+561 64± 13 1.0 0.0 1997 [61]

64+17
−13 0.25 0.75 1997 [61]

77+29
−24 1.0 0.0 1999 [62]

51+14
−10 1.0 0.0 1999 [63]

55+14
−10 0.3 0.0 1999 [63]

PG1115+080 52± 14 1.0 0.0 1997 [64]

42± 12 1.0 0.0 1997 [65]

51+14
−13 1.0 0.0 1997 [66]

51+21
−13 0.2 0.8 1997 [66]

68+25
−32 0.3 0.7 2002 [60]

B0218+357 62+20
−10 1.0 0.0 1996 [67]

61± 7 0.3 0.7 2004 [68]

70± 5 0.3 0.7 2004 [68]

B1422+231 47+31
−22 0.3 0.7 2002 [60]

RXJ0911+0551 71± 4 0.3 0.7 2002 [69]

49± 5 0.3 0.7 2003 [70]

67± 5 0.3 0.7 2003 [70]

B1608+656 63± 15 0.3 0.7 2002 [71]

FBQ0951+2635 60+11
−9 0.3 0.7 2004 [72]

63+10
−8 0.3 0.7 2004 [72]
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lens model. York et al. [68] have obtained deep optical images of the lens system

B0218+357 using the Advanced Camera for Surveys (ACS) installed on the Hubble

Space Telescope (HST) in 2002, enabling the determination of the position of the lens

galaxy accurately. They find high and low values for H0 (see Table III) corresponding

to the inclusion and exclusion, respectively, of the spiral arms in the lens model.

Currently, there are approximately seventy known cases of gravitational lensing

by galaxies [73] of which only fifteen are candidates for time-delay monitoring, but the

ability to bypass the standard piecewise extragalactic distance scale and associated

uncertainties is a strong motivation. The recently formed group COSMOGRAIL

(COSmological MOnitoring of GRAvitational Lenses) has embarked on a mission to

help design future monitoring campaigns of lensed quasars, constructing and testing

two hundred lens models for each of the fifteen GL candidates – for a total of three

thousand lens models [74, 75]. Furthermore, Kochanek et al. [76] and others [77] have

pointed out that it is possible to derive constraints on the rotation curve of the lens

galaxy by assuming a reasonable value for the Hubble parameter.

2. Observations: Age of the Universe

A consistent model is one in which the expansion age, as inferred by measuring H0

(and Ω0), agrees with an independently estimated age of the universe. The most

readily available independent estimate comes from the age of the oldest stars, as

found in globular clusters. Another estimate may be made by making use of nuclear

cosmochronometers based on the decay of long-lived radioactive elements. Recently,

white dwarf cooling theory has also gained recognition as an indicator of the minimum

age of the universe. Of course, all of these determinations depend on models of stellar

and galactic evolution. The ages of the Sun and galaxy determined by various methods

are compiled in Table IV. The recent results from WMAP [52] provide a very accurate
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Table IV. Lower bounds on the age of the universe as indicated by the ages of the

Sun and Milky Way galaxy. A recent accurate age determination using

WMAP measurements is included.

Method of Determination Age (Gyr) Year

Sun Meteoritic Dating 4.53± 0.04 1997 [78]

Helioseismology 4.5± 0.1 1997 [78]

Galaxy White Dwarfs 8± 1.5 1998 [79]

White Dwarfs 10.5+2.5
−1.5 1996 [80]

Globular Clusters 11.5± 1.3 1997 [81]

Globular Clusters 11.8+2.1
−2.5 1997 [82]

Globular Clusters 12± 1.5 1998 [83]

Nucleocosmochronology (232Th/238U) 12.8± 3 1997 [84]

Nucleocosmochronology (Th/Eu) 15.2± 3.7 1997 [85]

Cosmography Cosmic Background Radiation 13.7+0.1
−0.2 2006 [52]

determination of the age of the universe, 13.7+0.1
−0.2 Gyr (flat universe).

E. Deceleration Parameter

Conventional cosmologies relate the deceleration parameter to the energy content of

the universe according to q0 = 1
2
(Ω0 + 3

∑
i wiΩi), where the Ωi represent the variety

of non-luminous matter and the wi are from the equations of state, pi = wiρi, of

the ‘cosmic fluid’. Therefore, q0 = 1
2

and q0 = −1
2
(3ΩΛ − 1) ∼ −1

2
for standard and

ΛCDM cosmologies, respectively, since wi = 0 for cold matter and wi = −1 for the

cosmological constant, with Ω0 = 1 corresponding to a flat universe, and ΩΛ ∼ 3
4

indicated by the observations.

The predictions for the deceleration parameter set the two models completely
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apart from each other (Table V). The old standard cosmology predicts a decelerating

universe, and ΛCDM predicts an accelerating universe, as indicated by the more

recent observations described below.

Table V. Deceleration parameter.

Cosmological Model Deceleration Parameter

Standard Cosmology q0 = +1/2

ΛCDM Cosmology q0 ∼ −1/2

1. Observations

The main methods of determining cosmological deceleration fall into three groups.

The first group determines q0 by evaluating the mean mass density of the universe,

whereas methods in groups two and three do so directly from the apparent magnitude-

redshift (m− z) and angular diameter-redshift (θ − z) relations. These methods, as

well as the history of early attempts to measure the deceleration parameter, are

reviewed by Fang et al. [86]

Table VI. Measurements of the deceleration parameter.

Method q0 (Year)

Supernovae Ia −1.0± 0.4 ≤ q0 ≤ 0 (1998) [21]

q0 = 0.7± 0.5 (1996) [46]

q0 ≥ 0 (1996) [18]

q0 = 0.1± 0.85 (1995) [87]

Redshift-Volume Test q0 ≤ 0.10 (1998) [88]

Gravitational Lensing q0 > −2.0 (1997) [89]

Angular Diameter Distances q0 = 0.85± 0.29 (1997) [90]
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Some attempts to determine the deceleration parameter are tabulated in

Table VI. Most remarkable is the observation of an accelerating universe in 1998

[21, 22]. This finding has drastically changed the understanding of the present state

and future of cosmic expansion.

F. Energy Density

It is generally agreed that the total energy density of the universe (Ω0) is dominated

by baryonic matter (Ωb), at least one non-luminous matter component (Ωnl) such

as cold dark matter, and some form of dark energy which is perhaps most likely a

cosmological constant (Λ). Conventional cosmologies (k = 0) account for the energy

densities as follows:

Ωb + Ωnl︸ ︷︷ ︸
Ωm

+ ΩΛ ' Ω0 (1.10)

with ΩΛ ≡ 1
3
H−2

0 Λ. Table VII characterizes the different models in terms of the energy

densities. Both the old standard and the ΛCDM cosmologies with an inflationary

scenario require that Ωm+ ΩΛ = 1 to insure flatness [91].

Table VII. Energy density.

Cosmological Vacuum Matter Total

Model Density Density Density

Standard Cosmology ΩΛ = 0 Ωm ' Ω0 Ω0 = 1

ΛCDM Cosmology ΩΛ > 0 Ωm ' 1− ΩΛ Ω0 = 1
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1. Observations

The Supernova Cosmology Project reported [22] Ωm = 0.28+0.09
−0.08 for a flat universe

(ΩΛ ' 0.7) and Ωm = 0.2± 0.4 for ΩΛ ' 0. There is good agreement between this

group and the High-Z Supernova Search Team, who obtained [21] Ωm = 0.32± 0.10,

ΩΛ = 0.68± 0.10 or Ωm = 0.16± 0.09, ΩΛ = 0.84± 0.09 depending upon methodol-

ogy. Both teams employ the redshift-distance relation together with multi-color

light curve shapes and sophisticated statistical techniques to account for system-

atic uncertainties. The Canadian Network for Observational Cosmology (CNOC)

report [92] Ωm = 0.19± 0.06 for ΩΛ ' 0 using mass-to-light ratios of galaxy clusters.

Efstathiou et al. [93] combine the results of Perlmutter et al. [22] with cosmic mi-

crowave background data to find Ωm = 0.25+0.18
−0.12 and ΩΛ = 0.63+0.17

−0.23 (2σ). The 2dF

collaboration [94] apply a power spectrum analysis based on nearly a quarter million

galaxies, resulting in Ωm = 0.231± 0.021.

Upper bounds have also been placed on the vacuum energy density. The CNOC

find [92] ΩΛ < 1.5. Independent upper bounds have been determined by gravitational

lensing statistics. Chiba and Yoshi report [95] ΩΛ . 0.9. Kochanek reports [96] the

further constraint ΩΛ . 0.66. Virtually all recent observations, including those from

the WMAP collaboration [52], the SDSS collaboration [97], the High-Z Supernova

Search Team [21], and the Supernova Cosmology Project [22], are consistent with

Ωm ≈ 0.3 and ΩΛ ≈ 0.7. Independent estimates of galaxy cluster masses using velocity

dispersion (virial mass), X-ray emission temperature, and gravitational lensing are

in agreement with each other and provide firm evidence of a large dark matter

component of the total energy density of the universe [98].
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G. Discussion

It is already evident that the old standard cosmology will come to be known as

an idealized historical model. ΛCDM holds great promise, as it is a well-founded

conventional cosmological model that is consistent with observations. If correct,

the implications of this new paradigm are dramatic: The present state of cosmic

acceleration is reversed; the age of the universe is significantly larger; and Einstein

gravity in the traditional sense (involving only matter), is weak and becoming

negligible. Although the matter density Ωm ≈ 0.3 is measured to be much lower than

the preferred Ωm = 1 of the old standard cosmology, it remains in disagreement with

the observed luminous matter, yet general relativity continues to pass the strictest

tests [99]. This discrepancy defines – in the broadest sense – the dark matter problem.

The details of this discrepancy are discussed in the following chapter.

Observations in the forseeable future should introduce yet more precision into

cosmological modelling. New satellite experiments are planned to map the relic

cosmic microwave background radiation with an angular resolution of 0.01◦: These

measurements will provide an independent determination of a number of cosmological

parameters [15, 100] including the total energy density (Ω0), the fraction of the critical

density contributed by matter (Ωm), the vacuum energy density (ΩΛ), the neutrino

density (Ων), and the baryon density (Ωb), as well as the Hubble parameter (H0).
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CHAPTER II

THE NATURE OF GALACTIC DARK MATTER

A. Galaxy Clusters

The first indications of some form of missing mass date to 1933 with the suggestion

by Fritz Zwicky [101, 102] that additional (dark) matter could explain the anomalous

line-of-sight velocity dispersions in the Coma cluster. This cluster was determined

anomalously to be two orders of magnitude larger than the accepted value.

Es ist natürlich möglich, dass leuchtende plus dunkle (kalte) Materie

zusammengenommen eine bedeutend höhere Dichte ergeben, und der Wert

ρ̄ ∼ 10−28 gr/cm3 erscheint daher nicht unvernünftig.

Translation: It is, of course, possible that luminous plus dark (cold)

matter, taken together, result in a significatly greater density, and the

value ρ̄ ∼ 10−28 gr/cm3 seems therefore unsatisfactory.

Zwicky also suggested that this problem extends to other rich clusters. Three years

later (1936) Sinclair Smith [103] used similar methods to determine an anomalously

high mass for the Virgo cluster. Smith derived a mass for this cluster which was

also two orders of magnitude larger than the accepted value. Referring to the masses

derived for Coma and Virgo, Smith suggested:

It is also possible that both values are essentially correct, the difference

representing internebular material, either uniformly distributed or in

the form of great clouds of low luminosity surrounding the nebulae, as

suggested by the recent great extension of M31. Whatever the correct

answer, it cannot be given with certainty at this time.
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It should be noted that the large estimates of the total mass of the Coma and Virgo

clusters by Zwicky and Smith were partly due to the overestimate of the Hubble

constant [7, 104], then thought to be H0 ≈ 558 km s−1Mpc−1. The Hubble constant

was later measured to be an order of magnitude smaller [31], the effect of which was to

decrease the discrepancy between luminous and total matter in the Coma and Virgo

clusters to a single order of magnitude.

B. Galactic Rotation Curves

Observations of the nearby Andromeda galaxy by Babcock [105, 106] indicated the

necessity for additional mass within individual galaxies as early as 1939. Babcock was

the first to interpret the optical rotation curve of the outer regions of the Andromeda

galaxy as an indication of the presence of non-luminous matter within a galaxy.

The period of the outer arms, on the other hand, is about 9.2× 107 years,

and the obvious interpretation of the nearly constant angular velocity from

a radius of 20minutes of arc outward is that a very great proportion of

the mass of the nebula [Andromeda galaxy] must lie in the outer regions.

Jan Oort [107, 108] derived the distribution of luminous matter in the edge-on

Spindle galaxy (NGC 3115) by measuring peculiar velocities and compared this to the

distribution of matter derived using Humason’s unpublished rotational velocites. He

states that cleary: the distribution of matter is very different than that of light; the

additional matter is not absorbing light; a program to measure rotational velocities

at greater distances from the center of spiral galaxies is needed.

It may be concluded that the distribution of mass in the system must be

considerably different from that of light. A study of the light-distribution
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does not, therefore, enable us to draw conclusions regarding such problems

as stability or the total mass of the system.

The strongly condensed luminous system appears imbedded in a large and

more or less homogeneous mass of great density.

For, if the great density in the nebula [NGC 3115] were due to such

absorbing matter, the transparency would be so low that we could not

penetrate more than a very few parsecs into the system.

There cannot be any doubt that an extension of the measures of rotation

to greater distances from the nucleus would be of exceptional interest.

Precise measurements of the optical (Hα) rotation curve of Andromeda galaxy

by Ruben and Ford [109] in 1970 extended Babcock’s curve to a radial distance of

24 kpc, well beyond the luminous disk.

Beyond R = 4kpc the total mass of the galaxy increases approximately

linearly to R = 14 kpc, and more slowly thereafter. The total mass is

M = (1.85± 0.1)× 1011 M�; one-half of it is located in the disk interior

to R = 9kpc.

Roberts and Whitehurst [110] made a detailed study of the geometry of Andromeda

galaxy and further extended the rotation curve to 30 kpc using 21-cm observations

in 1975. They constructed a rotation curve for Andromeda galaxy using their 21-cm

observations combined with the optical observations of Ruben and Ford, and stated

decisively:

New 21-cm observations of the southern end of M31 indicate (1) that the

plane of Hi is bent away from the conventional plane by up to ∼ 5 kpc

and (2) that the rotational velocity is essentially constant over the outer
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10 kpc, i.e., from 20 to 30 kpc radius. The latter implies a mass that

increases linearly with R over this range and a mass-to-luminosity ratio

of & 200 for this outer region.

They also mention that they had found similar results in six other galaxies. It was

evident that the usual Keplerian prediction of declining rotational velocity had to

be abandoned. An Hi region in the galactic halo is expected to have circular orbits

described by (adopting the notation of the authors under discussion [109, 110])

GM(R)

R2
=

V 2(R)

R
=⇒


V (R) ∼ R for R −→ 0,

V (R) ∼ 1√
R

for R −→∞,

(2.1)

where M(R) is the mass interior to R. It was observed that velocities in the inner

region of a galaxy increase linearly, as expected. In the outer regions, however,

the velocities were observed to increase to a maximum value and remain constant,

independent of the radial coordinate. This latter observation suggests that the mass

increases linearly with galactic radial coordinate. That is,

V (R) = Vmax =⇒ M(R) ∼ R or ρ(R) ∼ 1

R2
for large R. (2.2)

It was inferred from this simple dynamical argument that large amounts of non-

luminous matter exist in galactic halos.

By 1980 Ruben, Ford, and Thonnard [111] had made precise measurements of

the rotation curves of 21 spiral (Sc) galaxies of varying size, including velocities at

radial distances 4 kpc ≤ R ≤ 84 kpc. It was observed in the outer regions of every

galaxy in the sample that rotational velocities either increased or remained constant

with increasing R. The authors were undoubtedly surprised by this result and the

degree of universality:
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Beyond the nucleus, all galaxies, big and small alike, share a surprisingly

similar pattern of velocity variation with R (R on a linear scale). Velocities

rise rapidly within about 5 kpc, and more slowly thereafter; rotation curves

are flat only at very large R.

The conclusion is inescapable that non-luminous matter exists beyond the

optical galaxy.

The results were rigorous and without exception. The authors included the image

tube spectra for all 21 galaxies as well as photographs for 17 of the 21 galaxies,

perhaps to emphasize the astonishing results. (Also included was a point-by-point

identification of the problems inherent in virtually all previous works that resulted in

rotation curves deviating significantly from their findings.) They reported the same

characteristic flat rotation curves for 60 Sa, Sb, and Sc galaxies of varying Hubble

type and luminosity in 1985 [112, 113].

These observations suggest that the forms of the distributions of mass

within the more extended halos are similar except for radial and/or density

scale factors, independent of the morphology of the optical galaxy.

The form of mass distribution is not strongly dependent on either Hubble

type or intrinsic luminosity, so the ‘average’ form of rotation curve should

be of similar shape for all galaxies, Sa through Sc.

Some mechanism unrelated to the global property of a galaxy determines

the form of mass distribution; we suggest that this mechanism is the intital

environment of the protogalaxy.
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C. Cosmological Structure and Dark Matter

Arno Penzias and Robert Wilson of Bell Labs discovered the cosmic microwave

background (CMB) radiation in 1964, measuring the temperature to be 3.5±1.0K [9]:

This excess temperature is, within the limits of our observations, isotropic,

unpolarized, and free from seasonal variation (July, 1964 - April, 1965).

A possible explanation for the observed excess noise temperature is the

one given by Dicke, Peebles, Roll, and Wilkinson (1965) in a companion

letter in this issue.

The companion letter by Dicke, Peebles, Roll, and Wilkinson [114], appropriately

titled “Cosmic Black-Body Radiation”, and previous predictions of this radiation in

the context of an expanding universe model by Gamow [115] and by Alpher and

Herman [116, 117], correctly identified this radiation as a relic from the thermal

decoupling of matter and radiation at large redshift. Other cosmological models

could not provide a satisfying explanation for the observed isotropic, near-perfect

blackbody spectrum, which could only have been produced in a universe described by

extreme homogeneity – the early universe. By 1967 the CMB blackbody temperature

had accurately been measured to be 2.7± 0.2K [118–120].

An immediate test of the consistency of the interpretation of the CMB was

considered in a brilliant paper by Wagoner, Fowler, and Hoyle [121], also in 1967.

Following up on earlier attempts [8, 115, 122, 123] to calculate the primordial

abundances of the light elements, precise calculations of the relative abundances of

D, He3, He4, and Li7 formed in the early universe were found to be in agreement with

observed abundances and with the recently measured CMB blackbody temperature.

It is ironic that this paper is the source of the precise convergence of primordial

nucleosynthesis and CMB physics. Indeed, the authors were not advocating the
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expanding universe model as is stated clearly in their original paper, uncommittingly

titled “On the Synthesis of Elements at Very High Temperatures”:

A detailed calculation of element production in the early stages of

a homogeneous and isotropic expanding universe as well as within

imploding-exploding supermassive stars has been made. If the recently

measured microwave background radiation is due to primeval photons,

then significant quantities of D, He3, He4, and Li7 can be produced in the

universal fireball. Reasonable agreement with solar-system abundances

for these nuclei is obtained if the present temperature is 3K and if the

present density is ∼ 2× 10−31 gmcm−3, ...

We conclude that D, He3, He4, and Li7 in solor-system abundances could

well have been produced during some early stage of a universe with

h ≈ 7× 10−6 and with q0 ≈ 5×10−3, T0 ≈ 3 K, and ρb ≈ 2×10−31 gmcm−3

at the present time. However, there are a number of attractive alternative

explanations for the solar-system abundances of the light nuclei.

The “attractive alternative explanations” referred to models involving stellar pro-

duction of the entire observable abundance of helium, later found to be insufficient.

Nonetheless, this work provided the solution to the ‘mass gap’ problem, definitively

proving that Big Bang nucleosythesis (BBN) can account for the abundances of

the light elements. Having successfully incorporated the newly discovered muon-

neutrino [124] into the nuclear reactions which governed the primordial element pro-

duction, this was also a success for the emerging Standard Model of particle interac-

tions. (The electron and muon neutrinos had only recently been detected: in 1956

and 1962, respectively.) In modern times the discrepancy between the upper limit

on baryonic matter density derived from BBN [15], Ωb . 0.05, and the lower limit
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on total matter density found from observations, Ωm ≈ 0.3, is the most compelling

evidence for the nonbaryonic nature of dark matter. This discrepancy is reinforced

by the extremely accurate measurements of the CMB [52]: Ωb ≈ 0.04 and Ωm ≈ 0.24.

Also motivated by the discovery of the CMB (and also in 1967) was the work by

Sachs and Wolfe describing the general relativistic mechanism for the production of

large scale structure in an expanding universe model and the predicted signature in

the CMB [125]:

The models are used to estimate the anisotropy of the microwave

radiation, assuming the radiation is cosmological. It is estimated that

density fluctuations now of order 10 per cent with characteristic lengths

now of order 1000Mpc would cause anisotropies of order 1 per cent in

the observed microwave temperature due to the gravitational redshift and

other general-relativistic effects.

Matter overdensities and underdensities present at the time that electrons and

protons formed neutral hydrogen (epoch of last scattering) caused inhomogeneities

in the intensity of radiation through their gravitational perturbations (Sachs-Wolfe

effect [125, 126]), and are observed as small temperature fluctuations (anisotropies)

in the CMB in the present epoch. The small temperature fluctuations in the CMB

revealed the distribution and density of matter in the early universe, before any

complex structures were formed. It was immediately recognized that observations of

structure in the form of galaxies, clusters, and superclusters in the present epoch

could be compared to the distribution and density of matter derived from these

small temperature fluctuations to gain an understanding of cosmological structure

formation and evolution.
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In 1978, a two-stage bottom-up view of structure formation was proposed by

White and Rees [127]:

We suggest that this material constitutes the so-called ‘missing mass’ in

clusters and the extensive halos of isolated galaxies; we further suggest

that all the luminous matter seen in galaxies formed from residual gas

that settled within the potential wells provided by the dark material at

each stage of the clustering process and then collapsed to form stars.

D. Dark Matter Candidates

1. Hot Dark Matter

Hot dark matter was inspired by the premature claim of a measurment for the electron

neutrino mass [128]. The 30 eV rest mass was attractive in that it could possibly make

up for the missing mass and solve the small-scale structure problem [129]. In a “top-

down” fragmentation theory of structure formation superclusters would form first,

and then fragment into clusters and then galaxies. The temperature variations in

the CMB in the present epoch would have to be large unless they were washed out

by free-streaming. It was later found that the mass measurment turned out to be

incorrect. The unnatural top-down theory was later replaced by the “bottom-up”

hierarchical model. Computer simulation proved that neutrinos did not form enough

small-scale structure.

2. Warm Dark Matter

Warm dark matter particles are simply cold dark matter particles with initial

(relativistic) velocities and have been described as fast CDM or cooled-down

HDM [130]. Indeed, WDM models appear to be the “best of both worlds” by
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design. Initial velocities have been attributed to the particles having decoupled as

thermal relics, or having been formed via non-equilibrium decay; these processes have

been studied in detail [130]. N-body simulations [131] indicate that WDM behaves

as expected and, in many respects, similar to CDM. Despite their large velocities

(relative to CDM), WDM particles bind to form sub-galactic-scale structure due to

their large masses ∼ 1 keV (relative to HDM). In fact, the large velocities result

in lower halo concentrations and core densities, and increased core radii (relative

to CDM). Accordingly, large-scale structure also emerges, but with fewer low-mass

satellites. It is easy to overstate the success of WDM models. For example, structure

on the smallest scales is lost due to free streaming, so that dwarf spheroidal galaxies

would be under-represented. Recent indications from WMAP combine temperature-

temperature “TT” and temperature-polarization “TE” data indicating early re-

ionization [132]. This implies that structure formation began at large redshifts,

contrary to warm dark matter models which suppress structure formation until much

later times [133].

3. Cold Dark Matter

High resolution N-body simulations have ruled out hot dark matter (HDM) and have

shown cold dark matter (CDM) models to be most consistent with observations [134,

135]. The simulations indicate that HDM fails to form small-scale structure, while

CDM forms too much small-scale structure, as well as central cusps in the density

profile. It is possible that complex astrophysical processes are responsible for the

smoothing out of this small-scale structure [136], and that existing cosmological

simulations do not represent the extreme environments at the centers of galaxies

accurately. The lightest supersymmetric particle of the supersymmetric extension of

the Standard Model is currently the most likely candidate [137–139].
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Modern high resolution N-body simulations have achieved successful recreation

of small-scale and large-scale structure over cosmological distances and times.

Sophisticated particle-mesh, hierarchical-tree, and particle-particle routines [140–

142] prove the ability of CDM to form galactic and sub-galactic scale structures

in approximate agreement with the structure observed through galaxy counts and

microlensing. Problems with the CDM model at both scales are also revealed: CDM

simulations predict overdensities on both scales, and cusps in the density profiles at

galactic centers [143–145]. A systematic study of halo density profiles for a wide

range of halo masses and cosmologies was carried out by Navarro, Frenk, and White

(NFW) [134, 135], who argue that an analytical profile of the form

ρ(r) ∝
1

(r/rs)(1 + r/rs)2
∝ r−1 as r → 0 (2.3)

provides a good description of all CDM halos within the current limits of resolution.
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CHAPTER III

LORENTZ VIOLATION

We begin this section with a brief review of Lorentz violation that follows the

introductory material in a paper by Allen and Yokoo [146]: During the past few

years there has been increasingly widespread interest in possible violations of Lorentz

invariance [146–185]. There are several motivations for this interest.

Theoretical: Every current candidate for a superunified theory contains some

potential for Lorentz violation, and the same is true for more restricted theories which

attempt to treat quantum gravity alone. (By a “superunified theory” we mean one

which includes all known physical phenomena, and which is valid up to the Planck

energy.) Theories with potential for Lorentz violation include superstring/M/brane

theories, canonical and loop quantum gravity, noncommutative spacetime geometry,

nontrivial spacetime topology, discrete spacetime structure at the Planck length, a

variable speed of light or variable physical constants, various other ad hoc theories,

including one that specifically addresses the GZK cutoff [148], and a fundamental

theory which is described elsewhere [147]. Even in a theory which has Lorentz

invariance at the most fundamental level, this symmetry can be spontaneously

broken if some field acquires a vacuum expectation value which breaks rotational

invariance or invariance under a boost. (It should be mentioned that cosmology

already provides a preferred frame of reference – namely a comoving frame, in which

the cosmic background radiation does not have a dipole anisotropy – but this is not

considered to be a breaking of Lorentz symmetry.) A second mechanism for Lorentz

violation is the “quantum foam” of Hawking and Wheeler, originally envisioned in

the context of canonical or path-integral quantization of Einstein gravity, but now

generalized to other theories with quantum gravity. A third possibility is a theory
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in which Lorentz invariance is not postulated to be an exact fundamental symmetry,

but instead emerges as a low-energy symmetry [147].

Experimental: Both terrestrial [148–159] and space-based [160–165] experi-

ments have been designed with exquisite precision which would permit detection of

even tiny deviations from certain aspects of Lorentz invariance. The systems in-

clude atoms, charged particles in traps, masers, cavity-stabilized oscillators, muons,

neutrons, kaons, and other neutral mesons.

Observational: Particles traveling over cosmological distances from bright

sources (including pulsars, supernovae, blazars, and gamma ray bursters) allow long-

baseline tests which are again sensitive to even tiny deviations from standard physics

resulting from particular forms of Lorentz violation [166–171].

Recall that Lorentz invariance in the context of general relativity means local

Lorentz invariance, or an invariance of the action under rotations and boosts involving

locally inertial frames of reference. There is clearly a connection with the equivalence

principle, which can also be tested in, e.g., space-based experiments. There is a close

connection with CPT invariance as well: According to the CPT theorem, Lorentz

invariance implies CPT invariance (with the supplementary assumptions of unitarity

and locality). It follows that CPT violation implies Lorentz violation, although the

reverse is not necessarily true [172]. Finally, there is a connection to the spin-statistics

theorem, which follows from Lorentz invariance and microcausality.

We know that P (in the 1950s) and CP (in the 1960s) have previously been

found not to be inviolate symmetries, for reasons that are now understood in terms

of the standard electroweak theory and the CKM matrix. Perhaps CPT and Lorentz

symmetry are also not inviolate.

The most extensive theoretical program for systematizing potential forms

of Lorentz violation and their experimental signals is that of Kostelecký and
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coworkers [148, 149, 154–163, 165, 171]. Their philosophy is to add small

phenomenological Lorentz-violating terms to the Lagrangian of the Standard Model,

and then interact with a wide variety of experiments that can detect such deviations

from exact Lorentz or CPT invariance. The point of view of this group is rather

conservative: The fundamental theory (e.g., string theory) is pictured as Lorentz-

invariant, with Lorentz or CPT violation arising from some form of symmetry-

breaking – for example, with a vector field or more general tensor field acquiring a

vacuum expectation value. Their work has stimulated a considerable amount of

experimental activity, with further experiments planned for both terrestrial and space-

based laboratories.

So far there is no undisputed evidence for Lorentz violation, and the only solid

results from both experiment and observation are strong constraints on particular

ways in which this symmetry might be broken. As an example of an astrophysical

constraint, we mention a recent paper by Stecker and Glashow [169], in which they

conclude

We use the recent reanalysis of multi-TeV [up to ∼ 20TeV] gamma-ray

observations of [the blazar] Mrk 501 to constrain the Lorentz invariance

breaking parameter involving the maximum electron velocity. Our limit

is two orders of magnitude better than that obtained from the maximum

observed cosmic-ray electron energy.

Their analysis involves the processes

γ + γinfrared → e+ + e− if ce > cγ, (3.1)

which can lead to inconsistency with the observation of 20TeV photons, and

γ → e+ + e− if ce < cγ, (3.2)
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which can lead to inconsistency with the observation of 50TeV photons.

Another example of astrophysical constraints is the series of analyses by Jacobson

et al. [166–169]. In Ref. [167], Jacobson, Liberati, Mattingly, and Stecker state

We strengthen the constraints on possible Lorentz symmetry violation

(LV) of order E/MPlanck for electrons and photons in the framework of

effective field theory (EFT). The new constraints use (i) the absence

of vacuum birefringence in the recently observed polarization of MeV

emission from a gamma ray burst and (ii) the absence of vacuum Čerenkov

radiation from the synchrotron electrons in the Crab nebula, improving

the previous bounds by eleven and four orders of magnitude respectively.

Jacobson, Liberati, and Mattingly [167] have obtained a very strong constraint

on a dispersion relation with a cubic term in the expression for E2:

E2 = p2 + p3/M. (3.3)

However, the constraint is less stringent for what may be the more natural form with

a quartic term:

E2 = p2 + p4/M2. (3.4)

Coleman and Glashow [148] proposed that the limiting velocity of protons,

electrons, etc. may be very slightly different from the speed of light. (See also

Ref. [169].) This is an ad hoc proposal, motivated by the apparent absence of

a Greisen-Zatsepin-Kuz’min (GZK) cutoff: Ultrahigh energy cosmic ray protons

colliding with the cosmic microwave background radiation should produce pions,

p + γcmb → p + π0. (3.5)

There should consequently be a cutoff in the spectrum of observed protons at about
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50EeV (or 5× 107 TeV), if they were created in processes at distances of more than

about 100Mpc. But up to 300EeV cosmic rays (presumably protons) appear to be

observed, although this is not entirely certain [183], and there are also theoretical

ideas for a closer origin [185].

We conclude by mentioning some reviews of terrestrial and space-based experi-

ments.

Two reviews of atomic experiments to test both Lorentz and CPT symmetries, by

Bluhm [160], describe the following: (1) Penning trap experiments with electrons and

positrons, and with protons and antiprotons, which look for differences in frequencies

or sidereal time variations; (2) clock comparison experiments, with clock frequencies

typically those of hyperfine or Zeeman transitions; (3) hydrogen and antihydrogen

experiments involving ground-state Zeeman hyperfine transitions (at Harvard) or 1S-

2S transitions (proposed at CERN); (4) a spin-polarized torsion pendulum experiment

(at the University of Washington); (5) muon and muonium experiments.

Two reviews by Russell [164] discuss clock-based experiments to test Lorentz

and CPT invariance in space. Such experiments will probe the effects of variations in

both orientation and velocity. Among the systems are H masers, laser-cooled Cs and

Rb clocks, and superconducting microwave cavity oscillators. A number of specific

space missions have been planned or proposed.

Finally, a review by Kostelecký [173] contains a discussion of experiments

involving neutral meson (e.g. kaon) oscillations, a dual nuclear Zeeman He-Xe maser,

and cosmological birefringence, in addition to the systems mentioned above.
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CHAPTER IV

LORENTZ -VIOLATING DARK MATTER

An alternative to more conventional dark matter candidates might conceivably be

particles that violate Lorentz invariance [147, 148, 150, 175, 186]. Here we present

arguments indicating that Lorentz-violating dark matter (LVDM) particles with a

minimum velocity experience weaker gravitational binding [187, 188] and, perhaps,

less tendency to form small-scale structure as compared to CDM. It is worthwhile to

ask if these particles will bind at all on the galactic scale.

A modified description of dark matter particles is a natural consequence of a new

fundamental theory [147, 175] which is founded on a new form of supersymmetry and

in which Lorentz invariance does not hold in general: This dark matter candidate is a

supersymmetric, weakly-interacting massive particle, equivalent in all respects to the

neutralino of standard supersymmetry aside from its equation of motion, which does

not obey Lorentz invariance. Although we have suggested that the particles emerging

from this fundamental theory have weaker gravitational binding than that of CDM

candidates, it is enlightening to approach the problem from a purely phenomenological

viewpoint including a large class of Lorentz-violating candidates [187, 188].

A. Gravitational Binding

Since the dark matter almost certainly consists of particles of a new kind, let us

allow for the possibility that v0 6= 0, where v0 is the limiting value of the particle

velocity v(p) as the 3-momentum p goes to zero. Suppose that the particle energy ε

is expanded as a Taylor series in the magnitude p of the 3-momentum:

ε = ε(p) = ε0 + pv0 + p2/2m̃ + · · ·. (4.1)
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(For conventional nonrelativistic particles, m̃ is the particle mass, ε0 is the rest mass

energy, and v0 = 0.) The particle velocity is then

v = dε/dp = v0 + p/m̃ + · · · (4.2)

and the kinetic energy is

T =

∫
v dp = ε(p)− ε0 = pv0 + p2/2m̃ + · · ·. (4.3)

The virial theorem implies that

〈pv〉 = 〈p · v〉 = −〈F · r〉 = 〈rdU/dr〉 = −〈U〉, (4.4)

where it has been assumed that U = −GMm/r with M constant. Since (4.3) can

also be written as

T = pv −
∫

p dv, (4.5)

the binding energy −E of a particle with 3-momentum p is given by

−E = −〈T + U〉 =

〈∫
p dv

〉
= 〈p2〉/2m̃ + · · · ≈ 〈p2〉/2m̃. (4.6)

If v0 = 0 (as for a conventional nonrelativistic particle), the momentum is determined

by

−〈U〉 = 〈pv〉 = 〈pv0 + p2/m̃ + · · ·〉 ≈ 〈p2〉/m̃ or 〈p2〉 ≈ 〈GMmm̃/r〉 (4.7)

and the energy has the familiar form

E ≈ 〈U〉/2. (4.8)

On the other hand, if v0 6= 0, the momentum is determined by

−〈U〉 = 〈pv〉 = 〈pv0 + p2/m̃ + · · ·〉 ≈ 〈p〉v0 or 〈p〉 ≈ 〈GMm/v0r〉 (4.9)
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and the binding energy is much smaller:

E ∼ − 1

2m̃v2
0

〈U〉2. (4.10)

It is interesting that a general model with v0 6= 0 leads to the weaker binding (4.10),

suggesting a weaker tendency to form both small-scale structure and cusps within

galactic halos.

The specific form of ε(p) in the fundamental theory of Refs. [147, 175, 187] yields

v(p) = dε/dp =

[
1 +

( p

m
+ b−1

)−2
]−1/2

, (4.11)

where b = 2m/m, m is the mass of the particle, and m is taken to be a parameter.

(Here we have taken c = 1.) The usual expression (4.5) for the kinetic energy may

be integrated by parts,

T =

∫ p

0

v(p′) dp′ = vp−
∫ v

v0

p(v′) dv′, (4.12)

where v0 ≡ v(p = 0) = 1/
√

1 + b2 and p(v) = γmv − γ0mv0 are found from (4.11)

with the definitions: γ ≡ 1/
√

1− v2 and γ0 ≡ γ(v0) = 1/
√

1− v2
0. The result of the

integration is

T = vp + γ0mv0(v − v0) + m(γ−1 − γ−1
0 ). (4.13)

For a circular orbit,

pv

r
=

GMm

r2
or

r̄s

r
= v

( p

m

)
, (4.14)

where r̄s = GM . Then vp = −U , and the total energy is

E = T + U = γ0mv0(v − v0) + m(γ−1 − γ−1
0 ). (4.15)

The total energy may be expressed as a function of momentum with v(p) given by
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(4.11) and

γ−1 =

[
1 +

( p

m
+ b−1

)2
]−1/2

. (4.16)

We may expand the velocity (4.11) in powers of momentum to get

v(p) ≈ v0 + v3
0b

3
( p

m

)
− 3

2
v5

0b
4
( p

m

)2

(4.17)

so that (4.14) becomes

r̄s

r
≈ v0

( p

m

)
+ v3

0b
3
( p

m

)2

− 3

2
v5

0b
4
( p

m

)3

. (4.18)

This result may be inverted to find the momentum in terms of radius. If we let

p

m
≈ a1

( r̄s

r

)
+ a2

( r̄s

r

)2

+ a3

( r̄s

r

)3

, (4.19)

then the coefficients are found to be a1 = v−1
0 , a2 = b3, and a3 = 3

2
v0b

4(1 + 4
3
b2).

Substituting this into the expression for the total energy (4.15) and expanding in

r̄s/r results in

E

m
≈ −1

2
v0b

3
( r̄s

r

)2

+ b4
( r̄s

r

)3

. (4.20)

The first term on the right-hand side is immediately verified by instead expressing the

total energy (4.15) as a function of v, expanding about v0, and recursively substituting

the first order terms from the expansions for v (4.17) and p/m (4.19):

E

m
≈ −1

2
γ3

0(v − v0)
2

v − v0 ≈ v2
0b

3
( p

m

)
p

m
≈ v−1

0

( r̄s

r

)


=⇒ E

m
≈ −1

2
v0b

3
( r̄s

r

)2
(γ0v0b)

3 = −1

2
v0b

3
( r̄s

r

)2
, (4.21)

where γ0v0b = 1 (with c = 1) was used in the last step. This inverse-square binding



38

energy is the same as that of (4.10) with m̃ = γ3
0m. (Note: v−2

0 γ−3
0 = v−2

0 v3
0b

3 = v0b
3.)

It appears that an orbiting LVDM particle would be less bound than an ordinary CDM

particle having the standard 1/r-dependent binding energy.

B. Constraints on Orbital Velocities

The kinetic energy (4.3) may be calculated by direct integration of (4.11):

T =

∫ p

0

v(p′) dp′ = mc2(γ − γ0), (4.22)

where γ ≡ 1/
√

1− (v/c)2 and γ0 = γ(v0). Consider a model in which the total energy

of a LVDM particle in orbit about a central mass is given by

E = mc2 (γ − γ0)−GMm/r. (4.23)

A condition for bound states is that the total energy must be negative so that

−rs/r ≤ (mc2)−1E < 0, (4.24)

where rs ≡ GM/c2 is half the Schwarzschild radius. The maximum momentum pmax

and velocity umax = vmax/c may be calculated by setting the total energy (4.23) equal

to zero, resulting in

(mc)−1pmax =
[
(γ0 + rs/r)

2 − 1
]1/2 − γ0u0, (4.25)

umax =
{[

(γ0 + rs/r)
2 − 1

]−1
+ 1
}−1/2

. (4.26)
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Expanding in rs/r, the ranges of the maximum momentum and velocity may be

expressed as

0 ≤ pmax

mc
< γ0b

(rs

r

)
− 1

2
b3
(rs

r

)2
, (4.27)

u0 ≤ umax < u0 + u2
0b

3
(rs

r

)
. (4.28)

For example, consider a LVDM particle with b = 1 in the halo of the Milky Way

galaxy, for which σs ≡ rs/r ∼ 10−5 kpc/10 kpc = 10−6. The maximum velocity

corresponding to negative total energy (4.26) for this choice of parameters is plotted

in Fig. 3. Notice that u0 = 1/
√

2 and γ0 =
√

2 so that (4.27) and (4.28) may be

expressed simply as (with σs ≈ 5× 10−6)

0 ≤ (mc2)−1pmax <
√

2σs − σ2
s , (4.29)

1/
√

2 ≤ umax < 1/
√

2 + σs/2, (4.30)

over an entire reasonably chosen range of orbital radius: 10 kpc ≤ r ≤ 100 kpc. For

this choice of parameters the LVDM particle is constrained to a very narrow range

of velocities if it is to remain bound. For any choice of parameters the particle is

constrained from below due to the minimum velocity imposed by Lorentz-violation,

v0, and from above due to the finite mass of the galaxy. The range of allowed velocities

may be increased by choosing a larger value for b (smaller value for v0).

In the limit that b → ∞ (v0 → 0 and γ0 → 1) a similar model for relativistic

particles is recovered. Consider standard relativistic dark matter (SRDM) in orbit

about a central mass to be described by:

E = mc2(γ − 1)−GMm/r. (4.31)
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Fig. 3. Maximum velocity corresponding to negative total energy as a function of

radial coordinate (4.26). (σs = 5 × 10−6.) The lower horizontal line (short

dashes) marks the minimum velocity allowed for the example LVDM model

in which b = 2m/m = 1, corresponding to u0 = 1/
√

2 and γ0 =
√

2. The

upper horizontal line (long dashes) corresponds to r = 10 kpc. The particle

is assumed to be orbiting a central mass equivalent to that of the Milky Way

galaxy, for which rs ≈ 5 × 10−5 kpc. In this case, the particle is constrained

to a very narrow range of velocities if it is to remain bound. For any choice of

parameters the LVDM particle is constrained from below due to the minimum

velocity imposed by Lorentz-violation, v0, and from above due to the finite mass

of the galaxy. The range of allowed velocities may be increased by choosing a

smaller value for v0 (larger value for b).

For bound states, the total energy must be negative:

−rs/r ≤ (mc2)−1E < 0, (4.32)

as in (4.24). The maximum velocity usrdm
max = vsrdm

max /c may be calculated by setting
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the total energy (4.31) equal to zero, resulting in

usrdm
max =

[
1− (1 + rs/r)

−2]1/2
. (4.33)

Expanding in rs/r, the range of the maximum velocity may be expressed as

0≤usrdm
max < 2

( rs

2r

)1/2

− 3
( rs

2r

)3/2

. (4.34)

For a SRDM particle orbiting the Milky Way galaxy, this may be expressed as

0 ≤ usrdm
max . σ1/2

s − σ3/2
s , (4.35)

where σs is defined in the example leading to (4.30). (The result for nonrelativistic

cold dark matter is recovered if the σ
3/2
s ∼ 10−10 term is ignored.) When compared

to the example LVDM model, the constraint on the particle velocity from below is

removed, and the constraint from above is relaxed, thereby widening the range of

maximum velocities by three orders of magnitude. This emphasizes the narrow range

of allowed velocities for the example LVDM model.

C. Effective Potential

A Lagrangian may be defined as L = T − U :

L = mc2(γ − γ0) + GMm/r, (4.36)

where the kinetic energy is given by (4.22) and the gravitational potential energy is

that of a central mass. The conserved angular momentum is found from Lagrange’s

equation,

d

dt

(
∂L
∂ϕ̇

)
− ∂L

∂ϕ
= 0 =⇒ d

dt

(
γ3mr2ϕ̇

)
= 0. (4.37)
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Then ` ≡ γ3mr2ϕ̇ may be used to eliminate ϕ̇ in the effective force: Fe ≡ Fr + pϕϕ̇.

Due to the nonstandard momentum-velocity relation of LVDM,

p/p = ṙ/v =⇒ pϕϕ̇ =
rϕ̇

v
p(v; v0)ϕ̇, (4.38)

where p(v; v0) = γmv − γ0mv0, or, after eliminating ϕ̇:

pϕϕ̇ =
`2

mr3

(
γ−6m−1v−1p

)
. (4.39)

As described in the example in the previous section ((4.28), (4.30), and Fig. 3),

LVDM is constrained to move with velocity very near the minimum velocity (v ≈ v0),

so that we may expand about v0: γ−6m−1v−1p ≈ γ−4
0 v−1

0 (v − v0). Assuming rϕ̇ � ṙ,

we may use the first-order approximations summarized in (4.21) to eliminate v − v0:

v − v0 ≈ γ−3
0 v−2

0 c3r−1
c rs, where rc is a characteristic galactic distance (kiloparsecs),

so that γ−6m−1v−1p ≈ γ−7
0 u−3

0 r−1
c rs. (Recall: u0 ≡ v0/c.) Because v ≈ v0, we

may take γ ≈ γ0 so that ` ≈ γ3
0rcv0, where we have assumed rϕ̇ � ṙ in this

definition of the angular momentum. The effective force may now be expressed as

(with Fr = −GMm/r2)

Fe ≈ −mc2 · rs

r2
+ mc2 · rsrc

r3
· γ−1

0 u−1
0 . (4.40)

The effective potential V ≡ (mc2)−1Ue follows immediately:

V ≈ −rs

r
+

rsrc

2r2
· γ−1

0 u−1
0 . (4.41)

If the scaling V = γ−1
0 u−1

0 (rc/rs)V is applied, then

V = −1

r̄
+

1

2r̄2
, (4.42)

where r̄ ≡ γ0u0r
−1
c r, and it becomes apparent that LVDM would reside in a larger

volume than CDM. A similar treatment for CDM again results in (4.42), but with
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the scalings: Vcdm = (rc/rs)Vcdm and r̄cdm ≡ r−1
c r.

The natural scalings for LVDM suggest both a suppressed effective potential and

enlarged radial coordinate, when compared to a similar treatment for CDM. Notice

that V /V ∼ γ−1
0 , so that the LVDM scaled effective potential is small due to the

limiting behavior: γ−1
0 → 0 as u0 → 1. Also, r̄/r ∼ γ0, so that the LVDM scaled

radial coordinate is large due to the limiting behavior: γ0 →∞ as u0 → 1. Indeed,

the effects are enormous as u0 → 1.

D. Discussion

This initial inspection of the problem results in a clear prediction of reduced binding,

as expressed in (4.10), (4.20), and (4.21). On the other hand, the constraints on orbital

velocites expressed in (4.28), (4.30), and in Fig. 3, and the scaled effective potential

(4.42) indicate that LVDM may not be stable on galactic scales. In all of these initial

calculations approximations are made assuming b ∼ 1 (v0/c . 1 and γ0 & 1) because

it is a convenient choice – allowing for an initial impression as to the nature of LVDM.

The fact that many of these initial results do not reduce to those of CDM in the

appropriate limit is a hint that the chosen parameter space results in a LVDM which

is very different than CDM. However, these initial calculations indicate that LVDM is

likely to be less bound and occupy a larger volume than CDM, suggesting a possible

solution to the overdensity and cusp problems outlined in the previous chapter.

A detailed analysis revealing the relevant parameter space was carried out in the

context of two different models: (1) an empirical model density profile as reported in

Chapter V, and (2) a central-mass model as reported in Chapter VI. In Chapter VII,

it is then understood that the relevant parameter space has already been established,

and a Lagrangian formulation of LVDM dynamics is developed.
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It should be mentioned that the Lagrangian defined in (4.36) is not as broadly

useful as the effective Lagrangian which will be defined in Chapter VII. This effective

Lagrangian results in more precise, and in principle observable, predictions concerning

the dynamics of LVDM.
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CHAPTER V

MODEL DENSITY PROFILE

A model density profile will now be constructed, resulting in scalable galactic rotation

curves for both cold dark matter and Lorentz-violating dark matter. Consider four

regions with boundaries 0 ≤ rc ≤ rd ≤ rh, where rc = 1 kpc is an inner cutoff radius,

rd = 10 kpc is the radius of the disk component, and rh = 100 kpc is the radius of the

halo component. Consider the matter density to be a superposition of baryonic and

nonbaryonic matter densities. The baryonic matter density is taken to be constant.

This baryonic matter is restricted to the disk:

ρb(r) =
mb

4
3
πr3

d

, 0 ≤ r ≤ rd, (5.1)

where mb is the total baryonic matter in the disk. The nonbaryonic matter density is

taken to reach well within the baryonic disk, but with no nonbaryonic matter inside

the cutoff radius, rc. This cutoff radius is defined to ensure a finite gravitational

potential, and represents the maximum resolution of the model near the galactic

center. This nonbaryonic matter is taken to be confined to the region rc ≤ r ≤ rh:

mnb(r) = λ(r − rc), and ρnb(r) =
1

4πr2

dmnb

dr
=

λ

4πr2
. (5.2)

The total nonbaryonic matter is Mnb = λ(rh − rc), so that

λ =
Mnb

rh

(
1− rc

rh

)−1

. (5.3)
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The total matter density is thus given over four regions by:

ρ(r) =



ρb, 0 ≤ r ≤ rc,

λ

4πr2
+ ρb, rc ≤ r ≤ rd,

λ

4πr2
, rd ≤ r ≤ rh,

0, r > rh.

(5.4)

Figure 4 illustrates the superposition (top) of nonbaryonic and baryonic matter.

The nonbaryonic (bottom left) and baryonic (bottom right) components are also

displayed. The nonbaryonic matter is confined to the interval rc ≤ r ≤ rd, where rc is

a cutoff radius, and has a density which declines like ρnb ∼ r−2. The baryonic matter

is confined to the interval 0 ≤ r ≤ rd, and has constant density. Superposition of

(green) nonbaryonic and (white) baryonic components results in four distinct regions

(top): (1) The gray circle in the center has radius rc = 1kpc and represents the

(black) absence of matter superposed with low-density baryonic matter. (2) The low-

density baryonic matter extends outward to rd = 10 kpc with constant density, ρb,

and represents the galactic disk. Nonbaryonic and baryonic matter are superposed in

the (light-green) region rc ≤ r ≤ rd, wherein the nonbaryonic matter density declines

like ρnb ∼ r−2. (3) Though the nonbaryonic matter density continues to decline,

Mnb ≈ 100 mb so that dark matter extends well beyond the disk to the halo radius,

rh = 100 kpc, (4), beyond which no matter exists. (As noted in the figure, distances

are not to scale.)
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Fig. 4. Graphical representation of the model density profile in which the galactic

matter density (top) is the superposition of nonbaryonic (bottom left) and

baryonic (bottom right) matter densities. In the colored version of this figure,

green and white represent nonbaryonic and baryonic matter, respectively. The

baryonic matter density is taken to be ρb ∼ mb/r
3
d over the interval 0 ≤ r ≤ rd,

and zero thereafter. The nonbaryonic matter density varies as ρnb ∼ r−2 over

the interval rc ≤ r ≤ rh, where rc = 1kpc is an inner cutoff radius, and is

zero elsewhere. (Distances are not to scale. The correct scale corresponds

to rh/rc & 102 and rh/rd & 10.)
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A. Gravitational Field and Rotation Curves

The gravitational field is found using Gauss’ law,

∮
g · dA = −4πG

∫
ρ dV :

g(r) =



−
(

Gmb

r3
d

)
r, 0 ≤ r ≤ rc,

−Gλ

r

(
1− rc

r

)
−
(

Gmb

r3
d

)
r, rc ≤ r ≤ rd,

−Gλ

r

(
1− rc

r

)
− Gmb

r2
, rd ≤ r ≤ rh,

−GMg

r2
, r > rh,

(5.5)

where Mg = Mnb + mb is the mass of the galaxy. The ratio of baryonic matter

to nonbaryonic matter is fixed using observed galactic rotation curves of neutral

hydrogen clouds near the edge of the disk. Consider a hydrogen cloud in a circular

orbit of radius equal to the radius of the disk. Then phvh/rd = mhg(rd), so that

together with (5.3) we have

v2
h

G
=

Mnb

rh

(
1− rc

rh

)−1(
1− rc

rd

)
+

mb

rd

. (5.6)

Observations indicate that speeds of hydrogen clouds orbiting beyond the edge of the

galactic disk remain constant for orbital radii extending up to and beyond 100 kpc.

Then, phvh/rh ≈ mhg(rh), so that

v2
h

G
≈ Mnb

rh

+
mb

rh

. (5.7)

Equations (5.6) and (5.7) may be solved simultaneously for Mnb and mb. Neglecting

rc/rh when compared to rc/rd and rd/rh, and neglecting mb/rh when compared to
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mb/rd and Mnb/rh, we find

Mnb ≈
(

v2
h

G

)
rh ≈ 1012m� and

mb

Mnb

≈ rc

rh

= 10−2, (5.8)

where vh = 225 km/s is the speed of hydrogen clouds in the halo of the Milky Way

galaxy and m� = 1.99× 1030 kg is the mass of the Sun. The mass parameter, λ, is

estimated to be

λ =
Mnb

rh

(
1− rc

rh

)−1

≈ v2
h

G
≈ 1010 m�/kpc. (5.9)

The resulting rotation curves for hydrogen clouds or CDM particles are derived

using (5.5). Then, pv/r = mg(r) so that

v(r) =



(
Gmb

r3
d

)1/2

r, 0 ≤ r ≤ rc,[
Gλ
(
1− rc

r

)
+

(
Gmb

r3
d

)
r2

]1/2

, rc ≤ r ≤ rd,[
Gλ
(
1− rc

r

)
+

Gmb

r

]1/2

, rd ≤ r ≤ rh.

(5.10)

Using (5.8) and (5.9), (5.10) may be expressed as

v(r) ≈


vh (rc/rd)

3/2(r/rc) , 0 ≤ r ≤ rc,

vh

√
rg2(r), rc ≤ r ≤ rd,

vh, rd ≤ r ≤ rh,

(5.11)

where vh = 225 km/s, and

rg2(r) ≡ 1− rc/r + (rc/rd)
3(r/rc)

2. (5.12)

The orbital speed is plotted for the region rc ≤ r ≤ rd in Fig. 5. The resulting rotation

curve has, by construction, general characteristics similar to those measured from
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21 cm lines of neutral hydrogen in the galactic halo. That is, v(r) ∼ r for small radii,

and v(r) ≈ vh for large radii. Notice that (5.8) together with an appropriate choice

of rc/rd results in a scalable model described by (5.11) and (5.12).

CDM

r [kpc]

v
(r

)
[k

m
/s

]

10987654321

250

200

150

100

50

0

Fig. 5. Orbital speed of hydrogen cloud or CDM particle in circular orbit of radius r,

as predicted by the model density profile and resulting gravitational field. See

(5.11), with rc ≤ r ≤ rd, for which the parameters are taken to be rd = 10 kpc,

rc = 1kpc, and vh = 225 km/s.

Rotation curves can also be derived for LVDM under the influence of an identical

gravitational field (5.5). Recall that p(v) = γmv − γ0mv0 for LVDM particles. Then

pv/r = mg(r), so that

(
γ(v)v − γ(v0)v0

)
v = Gλ

(
1− rc

r

)
−
(

Gmb

r3
d

)
r2, rc ≤ r ≤ rd, (5.13)

which is quartic in v(r). For purposes of numerical computation, this may be

expressed as

φ(u, u0) ≈ u2
hrg2(r), (5.14)
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where u = v/c, uh = vh/c, and

φ(u, u0) ≡
(
γ(u)u− γ(u0)u0

)
u. (5.15)

Numerical solutions to (5.14) are provided in Fig. 6 for several large values of m/m,

which result in LVDM rotation curves of about the same magnitude as those for CDM.

The minimum velocity, u0 = 1/
√

1 + (2m/m)2, may be considered a small perturba-

tion to CDM for m/m & 104. Larger values of m/m result in rotation curves that are

almost indistinguishable from those of CDM. A curve representing the orbital speed

of a CDM particle would be indistinguishable from the bottom (red) curve, for which

m/m = 106. For m/m . 103, rotational velocities are very large. The relative error
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0
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m
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Fig. 6. Orbital speed of LVDM particle in circular orbit of radius r, as predicted by the

model density profile and resulting gravitational field. Numerical solutions to

(5.14) are presented for values of m/m which result in LVDM rotation curves

comparable in magnitude to those of CDM. A curve representing the orbital

speed of a CDM particle would be indistinguishable (on this scale) from the

bottom (red) curve, for which m/m = 106.
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in the numerical solution of (5.14) may be expressed as:

δφ̄

φ̄r

≡ φ̄r − φ̄u

φ̄r

, (5.16)

where φ̄r ≡ rg2(r) and φ̄u ≡ φ(u)/u2
h are the exact and approximate values of φ/u2

h

at galactic radius rc ≤ r ≤ rd, respectively. Then,

δφ̄

φ̄r

= 2
δu

u

[
1 +

u

2φ̄r

(
γ0u0 + γ3u3

)]
, (5.17)

so that

δu

u
=

1

2

δφ̄

φ̄r

(1 + ε)−1, (5.18)

where ε ≡ u

2φ̄r

(γ0u0 + γ3u3) is a small correction: u2
0 ≤ ε ≤ uhu0 (rc/rd)

−3. The

relative error for each curve in Fig. 6 is δu/u ∼ δφ̄/φ̄r ∼ 10−6. The relative error

(5.18) for the case in which m/m = 104 is plotted in Fig. 7. The radius r corresponding

to each value of u is included along the top border of the figure.

Approximate analytical solutions to (5.14) are found to be just as accurate. For

LVDM particles bound on galactic scales, u is small when compared to unity, and

u0 ≤ u, so that u0 is also small when compared to unity. Then (5.15) may be expressed

as:

φ(u, u0) = u
∞∑

n=0

(−1)n

(
-1
2

n

)(
u2n+1 − u2n+1

0

)
, (5.19)

= u
[
(u− u0) + 1

2
(u3 − u3

0) + 3
8
(u5 − u5

0) + · · ·
]
, (5.20)

≈ u(u− u0), (5.21)

where
(
m
n

)
is the binomial coefficient. It is a reasonable approximation to keep only
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the first order term in this expansion (5.21), which may then be rewritten as:

φ(u, u0) ≈ u(u− u0) = u0(u− u0) + (u− u0)
2. (5.22)
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/m

=
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4
}

Fig. 7. Relative error in the rotation curve of Fig. 6 corresponding to m/m = 104. The

radius, r, corresponding to each value of u is included along the top border.

This curve is representative of the relative error for each rotation curve in

Fig. 6: δu/u ∼ δφ̄/φ̄r ∼ 10−6 for m/m = 103, 104, 105, 106.

Alternatively, because LVDM particles are constrained to move with speeds very

near the minimum speed ((4.28), (4.30), and Fig. 3), (5.22) may be thought of as

arising from further expanding (5.20) in powers of u− u0:

φ(u, u0) ≈ u0 (u− u0) + (u− u0)
2 + 2u0 (u− u0)

3 + 1
2
(u− u0)

4 + · · ·

≈ u0 (u− u0)
[
1 + 2 (u− u0)

2 +O(u− u0)
4
]

+ (u− u0)
2 [1 + 1

2
(u− u0)

2 +O(u− u0)
4
]
,

≈ u0 (u− u0) + (u− u0)
2,

(5.23)

where u0 and u − u0 are taken to be of equal order. Formally, φ(u, u0), as given in
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(5.14), is expanded to second order about the point (0, 0), resulting in:

φ(u, u0) ≈
1

2

[
φuu(0, 0)u2 + 2φuu0(0, 0)uu0

]
(5.24)

≈ 1

2

[
2u2 + 2(−1)uu0

]
, (5.25)

again leading to (5.22). This approximation is accurate in all regions centered on

(u− u0) ∼ u0 so that (5.14) may be approximated as

φ1(u, u0) + φ2(u, u0) ≈ u2
hrg2(r), (5.26)

where φ1(u, u0) ≡ u0(u − u0) and φ2(u, u0) ≡ (u − u0)
2. The accuracy of this

approximation is displayed in Fig. 8, in which φ̄1 = φ1/u
2
h and φ̄2 = φ2/u

2
h are plotted

separately against u0, subject to φ̄1 + φ̄2 = rg2(r) for r = 1 kpc and r = 10 kpc.

The intersecting magenta and blue curves correspond to r = 10 kpc, for which

φ̄1 + φ̄2 = 1. The intersecting green and red curves correspond to r = 1 kpc, for

which φ̄1 + φ̄2 = 10−3. The black curve displays the points of intersection, for

which φ̄1 = φ̄2 = rg2(r)/2, over the entire range 1 ≤ r/rc ≤ 10. This intersection

curve corresponds to u∗0 = u − u∗0, or u = 2u∗0, so that φ̄1 = φ̄2 = (u∗0/uh)
2.

Then, for a given radial distance, u∗0 = uh

√
rg2(r)/2 defines a crossover point. For

example, u∗0 = (rc/rd)
3/2uh/

√
2 ≈ 2 × 10−5 (m/m ≈ 3 × 104) for r/rc = 1, and

u∗0 = uh/
√

2 ≈ 5× 10−4 (m/m ≈ 103) for r/rc = 10. In the region u0 � u∗0, φ̄1 � φ̄2,

and in the region u0 � u∗0, φ̄2 � φ̄1.

Equivalently, the regions divided by u∗0 may be described in terms of the relative

magnitudes of v0 and v − v0. In the region defined by v0 � v − v0, (5.26) may be

expressed as (v − v0)
2 ≈ v2

hrg2(r), so that

v(r) ≈ vh

√
rg2(r) + v0, v0 � v − v0, (5.27)
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Fig. 8. The accuracy of (5.26) is displayed by plotting φ̄1 = φ1/u
2
h and φ̄2 = φ2/u

2
h

separately against u0, subject to φ̄1 + φ̄2 = rg2(r) for r = 10 kpc (upper,

intersecting magenta and blue curves) and r = 1 kpc (lower, intersecting green

and red curves). The points of intersection, for which φ̄1 = φ̄2 = rg2(r)/2, are

plotted (black curve) for the entire range 1 ≤ r/rc ≤ 10, and serve as points of

reference – to the left of which φ̄2 is dominant (magenta and green, horizontal

curves), and to the right of which φ̄1 is dominant (blue and red, horizontal

curves). From these results, in conjunction with detailed analysis given in the

text, it is evident that (5.26) is an accurate, approximate analytical solution to

(5.14). In addition, further simplifications may be made in regions for which

either φ̄1 or φ̄2 is dominant.

or vlvdm = vcdm + v0, where vcdm = vh

√
rg2(r). (Recall (5.11), rc ≤ r ≤ rd.) Then,

vlvdm(r)
v0→0−−−−−→

m/m→∞
vcdm(r), (5.28)

as expected; CDM rotation curves represent the lower limit of LVDM rotation

curves. In the region defined by v0 � v − v0, (5.26) may instead be expressed as

v0 (v − v0) ≈ v2
hrg2(r), so that
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v(r) ≈ v0 + v2
hrg2(r)/v0, v0 � v − v0, (5.29)

or vlvdm = v0 + v2
cdm/v0. Then,

vlvdm(r)
v0→c−−−−→

m/m→0
v0 (5.30)

represents the upper limit of LVDM rotation curves. In the crossover region,

wherein v0 ∼ v − v0, (5.26) must be solved without further approximation, resulting

in (v − v0)
2 + v0(v − v0) ≈ v2

hrg2(r). Then,

v(r) ≈ v0 +
1

2

(√
v2

0 + 4v2
hrg2(r)− v0

)
, v0 ∼ v − v0. (5.31)

This approximation is plotted in Fig. 9 along with numerical solutions to (5.14).

In summary, (5.14) is accurately approximated as:

v2
hrg2(r) ≈


v0 (v − v0) , v − v0 � v0,

v0 (v − v0) + (v − v0)
2, v − v0 ∼ v0,

(v − v0)
2, v − v0 � v0.

(5.32)

and the solutions are:

v(r) ≈


v0 + v2

hrg2(r)/v0, v − v0 � v0,

v0 +
1

2

(√
v2

0 + 4v2
hrg2(r)− v0

)
, v − v0 ∼ v0,

vh

√
rg2(r) + v0, v − v0 � v0.

(5.33)
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Fig. 9. Orbital speed of LVDM particle in circular orbit of radius r, as predicted

by the model density profile and resulting gravitational field. Data points

from the numerical solution to (5.14) are represented by points and labeled

according to m/m (inset key). The analytical solution (5.31) is superimposed

using corresponding line colors. A curve representing the orbital speed of a

CDM particle would be indistinguishable (on this scale) from the bottom (red)

curve, for which m/m = 106. The case m/m = 105 lies properly between the

m/m = 104 and m/m = 106 curves and has been omitted for legibility.
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B. Model Potential and Binding Energy

The potential corresponding to the gravitational field (5.5) is calculated to be:

Φ=



−1

2

(
Gmb

rd

)[
3−

(
r

rd

)2
]
−Gλ

(
ln

rh

rc

− 1 +
rc

rh

)
− GMnb

rh

, 0≤r≤rc,

−1

2

(
Gmb

rd

)[
3−

(
r

rd

)2
]
−Gλ

(
ln

rh

r
− rc

r
+

rc

rh

)
− GMnb

rh

, rc≤r≤rd,

−Gλ

(
ln

rh

r
− rc

r
+

rc

rh

)
− Gmb

r
− GMnb

rh

, rd≤r≤rh,

−GMg

r
, r ≥ rh,

(5.34)

where Mg = Mnb + mb is the mass of the galaxy. It is convenient to recast the

approximations of (5.7)–(5.9) as:

Gλ ≈ GMg

rh

≈ Gmb

rc

≈ v2
h, (5.35)

so that the potential in the region rc ≤ r ≤ rd is approximately

Φ2(r)≈−
1

2
v2
h

(
rc

rd

)[
3−

(
rc

rd

)2(
r

rc

)2
]
− v2

h

(
ln

rh/rc

r/rc

− 1

r/rc

+ 1

)
, rc≤r≤rd. (5.36)

The binding energy for CDM is given by

εcdm = 1
2
u2

cdm(r) + c−2Φ2(r), (5.37)

where εcdm ≡ (mc2)−1Ecdm represents the total energy of a CDM particle in a circular

orbit in the model potential (5.34), u2
cdm(r) ≈ u2

hrg2(r), and rg2(r) is given by (5.12).

The binding energy for the LVDM candidate is given by:

εlvdm = γ(r)− γ0 + c−2Φ2(r), (5.38)
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Fig. 10. Binding energy for LVDM particles in circular orbits of radius r (5.38)

as predicted by the model potential (5.34) corresponding to the model

density profile (5.4). A curve representing CDM binding energy would be

indistinguishable from the m/m = 106 (bottom, red) curve. Smaller values of

m/m result in less binding, with the m/m = 102 (top, cyan) curve representing

a limiting value: Curves representing m/m . 102 would be indistinguishable

from this (top) curve. In effect, the entire range 0 ≤ m/m ≤ ∞ is represented.

where εlvdm = (mc2)−1Elvdm represents the total energy of a LVDM particle in a

circular orbit in the model potential (5.34),

γ(r)− γ0 =
∞∑

n=0

(−1)n

(
-1
2

n

)(
u2n(r)− u2n

0

)
, (5.39)

≈ 1
2

(
u2(r)− u2

0

)
, (5.40)

and u(r) = v(r)/c is given by (5.33). This binding energy is plotted in Fig. 10

for several values of m/m. The m/m = 106 (bottom, red) curve would be

indistinguishable from a plot of the binding energy for a CDM particle in the model

potential (5.34). The m/m = 102 (top, cyan) curve represents an upper limit to the

LVDM binding energy. This limit corresponds to an LVDM particle with exactly
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twice the kinetic energy of a CDM particle in an identical orbit, occurring when

v ≈ v0 ≈ c, as shown below.

In the regime for which v − v0 � v0, vlvdm differs only slightly from v0. The

LVDM binding energy is compared to that of CDM using the relative difference

∆ε

|εcdm|
=

τcdm

|εcdm|

[
1 +

(
vcdm

v0

)2
]

v0→c−−−−→
m/m→0

τcdm

|εcdm|
, v − v0 � v0, (5.41)

where ∆ε ≡ εlvdm − εcdm, and τcdm ≡ (mc2)−1Tcdm = 1
2
u2

cdm represents the kinetic

energy of a CDM particle in the model potential (5.34). (See also (5.37).) The ratio of

kinetic energy to total energy for CDM particles (5.41) in the model potential (5.34),

as a function of radial coordinate, is given by

τcdm

|εcdm|
=

1− 1/(r/rc) + (rc/rd)
3(r/rc)

2

1− 1/(r/rc) + 3(rc/rd)− 2(rc/rd)3(r/rc)2 + 2 ln [(rh/rc)/(r/rc)]
. (5.42)

The kinetic energy of a LVDM particle in the model potential (5.34) is represented

by τlvdm ≡ (mc2)−1Tlvdm = γ−γ0 ≈ 1
2
(u2−u2

0). (See (5.38) and (5.40).) Substituting

u ≈ u0 + u2
cdm/u0 ((5.29) and (5.33)) into the expression for kinetic energy results in

relationships among energies of very high-speed LVDM and ordinary CDM particles,

in identical orbits:

τlvdm ≈ 2τcdm and
τlvdm

|εlvdm|
≈ 2τcdm

|εcdm|

(
1 +

τcdm

|εcdm|

)
, v − v0 � v0. (5.43)

In the regime for which v − v0 � v0, vlvdm differs only slightly from vcdm. (See

(5.27) and (5.28).) The LVDM binding energy is again compared to that of CDM

using the relative difference:

∆ε

|εcdm|
=

τcdm

|εcdm|

(
2v0

vcdm

)
v0→0−−−−−→

m/m→∞
0, v − v0 � v0. (5.44)

This represents what we will call the classical limit, wherein the dynamics of LVDM

is expected to be nearly identical to that of CDM. Substituting u = ucdm + u0
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Fig. 11. Ratio of LVDM to CDM binding energies (5.46) for particles in circular orbits

of radius r, as predicted by the model potential (5.34). Curves representing

m/m > 105 would be indistinguishable from the straight line εlvdm/εcdm = 1,

over the entire domain 1 kpc ≤ r ≤ 10 kpc. All values of m/m < 101 result

in curves which are indistinguishable from the m/m = 101 (bottom, black)

curve on this scale. A curve representing m/m = 102 would lie above and

be almost coincident with the m/m = 101 curve, and has been omitted for

legibility.

((5.27) and (5.33) with u = v/c) into the expression for kinetic energy results in

relationships among energies of LVDM particles in the classical limit and ordinary

CDM particles (in identical orbits):

τlvdm ≈ τcdm + u0ucdm and
τlvdm

|εlvdm|
≈ τcdm

|εcdm|

(
1 +

2u0

ucdm

)
, v − v0 � v0. (5.45)

In the regime for which v−v0 ∼ v0 it is convenient to compare the LVDM binding
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energy to that of CDM, by taking the ratio

εlvdm

εcdm

= 1−
1
4
u0

(√
u2

0 + 4u2
cdm − u0

)
|εcdm|

, v − v0 ∼ v0. (5.46)

This binding energy ratio is plotted in Fig. 11 for several values of m/m, and is

valid for all values of u0 consistent with the approximations of (5.21) and (5.40).

A curve representing m/m = 106 would be indistinguishable on this scale from the

straight line εlvdm/εcdm = 1 over the entire domain 1 kpc ≤ r ≤ 10 kpc, and can thus

be regarded as representing the classical limit. Also, values of m/m < 10 result in

curves which are indistinguishable from the m/m = 10 curve. In this limit

εlvdm

εcdm

→ 1− τcdm

|εcdm|
, m/m ≤ 10, (5.47)
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Fig. 12. Ratio of kinetic energy to total energy for both CDM (5.42) and LVDM (5.48)

particles in identical circular orbits of radius r in the model potential (5.34).

Curves representing m/m > 105 would be indistinguishable from the CDM

(bottom, red) curve over the entire domain 1 kpc ≤ r ≤ 10 kpc. Values of

m/m < 101 result in curves which are indistinguishable from the m/m = 101

(top, black) curve on this scale.
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where τcdm/|εcdm| is given by (5.42) and is plotted in Fig. 12. The ratio of kinetic

energy to total energy for LVDM particles may be expressed as

τlvdm

|εlvdm|
=

τcdm + 1
4
u0

√
u2

0 + 8τcdm − 1
4
u2

0

|εcdm| − 1
4
u0

√
u2

0 + 8τcdm + 1
4
u2

0

, v − v0 ∼ v0, (5.48)

and is shown in Fig. 12 for several values of m/m. This expression is valid for all

values of u0 consistent with the approximations of (5.21) and (5.40), and correctly

reduces to (5.43) and (5.45) in the appropriate limits. The ratio of kinetic energy to

total energy for CDM particles (5.42) in the model potential (5.34) is very nearly zero

near r = 1 kpc, as shown in Fig. 12, so that εlvdm/εcdm → 1 as r → 1 kpc. (See (5.47).)

This is illustrated in Fig. 11. (Recall that we have taken rc = 1 kpc in the model

density profile (5.4).) More precisely, τcdm/|εcdm| = 1/(298 + 103 ln 104) ≈ 10−4 when

r = 1 kpc so that, for values m/m < 102, εlvdm/εcdm ≈ 1− 10−4. Figure 13 includes a

closeup of εlvdm/εcdm near r = 1 kpc, illustrating, precisely, the maximum reduction

of LVDM binding compared to that of CDM near r = 1 kpc over the entire relevant

parameter space m/m � 1 (u0 � 1). On larger scales LVDM binding is much more

reduced. Near r = 10 kpc, τcdm/|εcdm| = 1/(1 + 2 ln 10) ≈ 0.18 as r → 10 kpc so

that for values m/m < 102, εlvdm/εcdm ≈ 0.82. Figure 13 also includes a close-up

of εlvdm/εcdm near r = 10 kpc. The LVDM binding energy is significantly smaller

than that of CDM near r = 10 kpc. The preceding analysis emphasizes that, when

compared to CDM, LVDM (1) is slighlty less bound on small scales, (2) is much less

bound on large scales, and (3) has a well-defined limit as to how much weaker its

binding is on large and small scales.
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Fig. 13. Closeup of Fig. 11; Ratio of LVDM to CDM binding energies (5.46) for

particles in circular orbits of radius r near r = 1 kpc (top) and r = 10 kpc

(bottom). Top (r = 1 kpc): LVDM binding is not identical to that of CDM on

the smallest scales; LVDM binding is smaller, but has a lower limit expressed

as εlvdm/εcdm ≥ 1− 10−4, over the entire relevant parameter space m/m � 1.

Bottom (r = 10 kpc): LVDM binding is significantly smaller on larger scales,

but has a well defined lower limit of εlvdm/εcdm ≥ 0.82, over the entire relevant

parameter space m/m � 1.
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CHAPTER VI

CENTRAL MASS MODEL

For a central-mass model, it will be shown below that one can find approximate

analytical solutions for the gravitational binding energy of the LVDM candidate,

which can then be compared to that for CDM. Under reasonable circumstances

the binding energy and equation of motion may each be approximated, and then

solved simultaneously. The resulting expressions indicate the deviation of LVDM

gravitational binding from that of standard CDM. In addition, simple arguments are

given below to determine the effective potential for LVDM and compare it to that for

CDM.

A. Binding Energy Velocity Dependence

Consider a LVDM particle under the gravitational influence of a central mass. The

binding energy, with εlvdm ≡ (mc2)
−1

Elvdm, and the equation governing the motion

are given respectively by

εlvdm = γ − γ0 −
rs

r
(6.1)

rs

r
= (γu− γ0u0) u, (6.2)

where τlvdm ≡ (mc2)
−1

Tlvdm = γ − γ0 represents the kinetic energy, −rs/r = c−2Φ is

the gravitational potential, u = v/c is the orbital speed, and rs ≡ GMg/c
2 ≈ 10−5 kpc

is half the Schwarzschild radius for a galaxy of 1011 m�. Direct elimination of the

radial coordinate is then trivial, yielding

εlvdm = γ − γ0 − (γu− γ0u0) u. (6.3)
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Fig. 14. Binding energy for LVDM particles as a function of orbital speed (6.3) in the

central-mass model. The u0 = 0 curve (red, leftmost) represents the lower

limit, for which εlvdm(u, u0 = 0) = εcdm(u). A curve representing u0 = 10−5

lies to the right of, and is nearly coincident with, the u0 = 0 curve, and has

been omitted for legibility. Values of u0 � 10−4 result in binding energies

differing only slightly from those of CDM. Values of u0 � 10−3 indicate

behavior substantially different from that of CDM. Values of u < u0 are

nonphysical and are not included, so that the curves are truncated along the

top of the figure, at their maxima: εlvdm(u0, u0) = 0.

This binding energy is plotted as a function of orbital speed in Fig. 14 for several

values of u0. The curve for u0 = 0 represents CDM with the same orbital speeds,

and is plotted (red, leftmost) for comparison: εlvdm(u, u0 = 0) = εcdm(u). A point of

reference is the CDM binding energy for a particle in orbit with radius r ≈ 50 kpc, for

which εcdm ≡ (mc2)
−1

Ecdm = −1
2
u2 ≈ −10−7. Recall that u0 ≡ 1/

√
1 + (2m/m)2, so

that u0 ≈ 1/(2m/m) for m/m � 1. Values of u0 � 10−4 result in binding energies

differing only slightly from those of CDM. Values of u0 � 10−3 indicate behavior

substantially different from that of CDM. Values of u < u0 are nonphysical, and

are not included, so that the curves are truncated along the top of the figure, at



67

their maxima: εlvdm(u0, u0) = 0. A detailed comparison of LVDM and CDM binding

energies is possible using approximate analytical solutions.

Recall that LVDM orbital speeds are constrained both (1) from above, due

to the finite mass distribution of the galaxy, so that u, and therefore u0, must be

nonrelativistic; and (2) from below, due to the minimum speed set by m/m, so that u

must be greater than or equal to u0. The result is that u is always very nearly equal

to u0. (E.g., see (4.28), (4.30) and Fig. 3.) Under these circumstances it was found

that (see (5.22)–(5.26))

(γu− γ0u0) u ≈ φ1 + φ2, (6.4)

where {φ1, φ2} ≡
{
u0 (u− u0) , (u− u0)

2}. Similarly, the kinetic energy may be

expanded in powers of u and u0 (5.40), and then expressed in terms of φ1 and φ2,

resulting in

γ − γ0 ≈ 1
2

(
u2 − u2

0

)
(6.5)

≈ u0 (u− u0) + 1
2
(u− u0)

2 (6.6)

≈ φ1 + 1
2
φ2. (6.7)

Applying the approximations of (6.4) and (6.7) to the binding energy and equation

of motion ((6.1), and (6.2)), a simple expression for the binding energy is found:

εlvdm +
rs

r
≈ φ1 + 1

2
φ2

rs

r
≈ φ1 + φ2

 =⇒ εlvdm ≈ −1
2
φ2 = −1

2
(u− u0)

2. (6.8)

This expression is valid for all regions centered on u0 ∼ u − u0. The same result

is obtained if φ1 is neglected altogether. This corresponds to the region for which

u0 � u− u0 (large m/m), in which the LVDM binding energy is expected to be very
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Fig. 15. Binding energy for LVDM particles as a function of orbital speed in the

central-mass model (6.3). Binding energies for LVDM are similar to those

of CDM for small values of u0 (upper panel). Although binding energies

comparable to those of CDM are possible for larger values of u0 (lower panel),

such Lorentz-violating particles are unstable to the smallest change in speed.

It is unlikely that a large system of particles, unstable to such small changes

in speed, would remain bound on galactic scales. I.e., small perturbations

would cause such particles to become unbound. This Lorentz-violating model

is thus unviable unless u0 is small, and m/m is therefore � 1, for the same

reason that ordinary hot matter like neutrinos is not a viable candidate for

the dark matter distributions in galaxies.
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nearly the same as that of CDM. In this region we have φ2 � φ1, so that φ1 may

be neglected. The binding energy (6.8) reduces to the CDM result for vanishing u0;

that is, εlvdm → −1
2
u2 as u0 → 0, as expected. The binding energy is plotted against

orbital speeds for several values of u0 in Fig. 15.

Consider the region defined by u − u0 � u0 (small m/m), in which the LVDM

binding energy is expected to show large deviations from that of CDM. In this region

φ1 � φ2 so that φ2 may be neglected, resulting in:

εlvdm +
rs

r
≈ φ1

rs

r
≈ φ1

 =⇒ εlvdm ≈ 0. (6.9)

In this region the LVDM particles are effectively unbound. This is also the result

obtained from the more general expression for the binding energy (6.8) in the limit

u− u0 � u0.

B. Binding Energy Radial Dependence

The binding energy may alternatively be expressed in terms of the radial coordinate

and compared to that of CDM. The desired result is obtained by eliminating u from

the following system of equations:

εlvdm ≈ −1
2
φ2 (6.10)

rs

r
≈ φ1 + φ2. (6.11)

If φ1 is neglected, the binding energy can be expressed in terms of the radial

coordinate:

εlvdm ≈ −1
2
φ2

rs

r
≈ φ2

 =⇒ εlvdm ≈ −
rs

2r
. (6.12)
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Again, the binding energy is the same as that for CDM. Instead neglect φ2 in

the equation of motion (6.11) to derive the binding energy in terms of the radial

coordinate:

εlvdm ≈ −1
2
φ2

rs

r
≈ φ1

 =⇒ εlvdm ≈ −2u−2
0

( rs

2r

)2
. (6.13)

This is the same result as that obtained in (4.21) and earlier in (4.10), which provided

much of the original motivation for this investigation. Although this binding energy

has a 1/r2-dependence, rather than the usual 1/r-dependence for standard CDM

particles, it is not immediately obvious that this represents reduced binding compared

to CDM. Recall that rs ≈ 10−5 kpc, and assume that LVDM particles have radial

coordinates with 1 kpc ≤ r ≤ 100 kpc, so that 105 . r/rs . 107. Correspondingly,

10−7 . rs/r . 10−5, which is a measure of CDM binding energy. Choosing u0 ≈ 10−3

it is found that 10−8 . u−2
0 (rs/r)

2 . 10−4, which is a measure of LVDM binding

energy. Compared to CDM binding, the LVDM binding is reduced by a factor of

10 on large (100 kpc) scales and increased by a factor of 10 on small (1 kpc) scales.

Choosing u0 = 2 × 10−3 it is found that 10−9 . u−2
0 (rs/r)

2 . 10−5; The LVDM

binding energy is smaller than that of CDM by a factor of 100 on large (100 kpc)

scales, and the same as that of CDM on small (1 kpc) scales. Choosing u0 ≈ 10−2 it

is found that 10−10 . u−2
0 (rs/r)

2 . 10−6; the LVDM binding is reduced by a factor of

103 on large (100 kpc) scales and reduced by a factor of 10 on small (1 kpc) scales. It

is shown below that the approximation leading to this inverse-square binding energy

depends critically on the value of u0; In order that the approximation (6.13) be valid

over the entire domain, 1 kpc ≤ r ≤ 100 kpc, it is necessary that u0 � 10−3. However,

as shown in the preceding analysis, LVDM particles with u0 � 10−3 are unlikely to

be bound on galactic scales. (See Figs. 14 and 15.)
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A careful characterization of the three regions defined by (1) u0 � u − u0,

(2) u0 ∼ u− u0, and (3) u0 � u − u0, was carried out in the context of the

model density profile (following (5.26)) and is repeated here in the context of the

central-mass model for completeness. The three regions are defined for purposes of

further approximating the equation determining the motion, φ1 + φ2 = rs/r, and

are distinguished by a crossover point defined by 2φ1(u
∗
0) = 2φ2(u

∗
0) = rs/r. Thus,

u = 2u∗0, so that 2 (u∗0)
2 = rs/r. Then, for a given radial distance, a crossover point

is defined by u∗0 =
√

rs/ (2r). For example, u∗0 ≈ 2 × 10−3 (m/m ≈ 3 × 102) for

r = 1 kpc, and u∗0 ≈ 2 × 10−4 (m/m ≈ 3 × 103) for r = 100 kpc. Let us choose

a single crossover point that is consistent with an entire reasonably-chosen domain,

1 kpc ≤ r ≤ 100 kpc. Then the three regions may be characterized as follows: (1) For

the region in which u0 � u−u0, u0 � 10−4, and φ1 � φ2; (2) For the region in which

u0 � u− u0, u0 � 10−3, and φ1 � φ2; and (3) For the region in which u0 ∼ u− u0,

10−4 ≤ u0 ≤ 10−3, and φ1 ∼ φ2. It is interesting to note that the crossover-point

minimum velocity has the same order of magnitude as the radius-dependent velocity

of a CDM particle: u∗0 ∼ ucdm(r) =
√

rs/r. LVDM particles are less likely to be

bound if the minimum velocity is set much higher than CDM particle velocities, and

more likely to be bound if set much lower.

The solution for all regions centered on u0 ∼ u−u0 is found by solving the system

of equations, (6.10) and (6.11), without further approximation. The solution is

εlvdm ≈ −
rs

2r
+

u0

4

(
u2

0 +
4rs

r

)1/2

− u2
0

4
, (6.14)

Figure 16 displays this binding energy for several values of u0. A curve representing

CDM binding energies (top, red) is included for reference. Small values of u0 again

result in binding energies similar to those of CDM, and a curve representing u0 = 10−6

would be indistinguishable from the CDM binding energy curve. Binding energies
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Fig. 16. Binding energy as a function of radial coordinate for LVDM particles in

circular orbits (6.14) in the central-mass model. The u0 = 0 curve (top,

red) is the binding energy for CDM particles in an identical potential. Small

values of u0 result in binding similar to that of CDM. Large values of u0

produce weak binding on all but the smallest scales. For the full range of r

values, the binding is similar to that of CDM on small scales and weaker on

large scales.

are similar on small scales, independent of u0. Large values of u0 result in much

weaker binding, except on the smallest scales. Taking u0 to be small, and expanding

the root in (6.14), results in

εlvdm ≈ −
rs

2r
+

u0√
2

( rs

2r

)1/2

− u2
0

4
, u0 � 10−4. (6.15)

This approximation is subject to the condition: u2
0 < 4rs/r, where rs ≈ 10−5 kpc.

Assume LVDM particles have radial coordinates 1 kpc < r < 100 kpc, so that

105 < r/rs < 107. The condition is satisfied as long as u0 . 10−4, or m/m & 103.

This result reduces to that for CDM as u0 → 0, as expected. Taking u0 to be large,
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and expanding the root in (6.14) to second order, the inverse-square binding energy

(6.13) is recovered:

εlvdm ≈ −2u−2
0

( rs

2r

)2
, u0 � 10−3. (6.16)

This result – an original motivation for this investigation – is valid only for u0 � 10−3,

but LVDM is not likely to be bound for such values. A more realistic prediction for

the decreased binding is given by (6.15), for which u0 � 10−4. Although the validity

of the small-scale behavior within the central-mass model is questionable, the result

is similar to that using the more detailed model density profile of (5.4) and (5.34):

When compared to CDM, LVDM is much less bound on large (100 kpc) scales, and

slightly less bound on small (1 kpc) scales, for values of u0 � 10−4.

C. Effective Potential and Orbital Stability

An approximate effective potential for LVDM particles in the presence of a central

mass will now be derived and compared to that for CDM. First considering the radial

force equation, Fr = ṗr − pϕϕ̇, where Fr = mc2rs/r
2, and rs = 10−5 kpc is half the

Schwarzschild radius of the central mass. Then, an effective force can be defined as

Fe ≡ ṗr = Fr + pϕϕ̇, (6.17)

and is expected to be different than that of CDM due to a non-standard momentum-

velocity relation. The linear momentum is related to the velocity by

p =
ṙ/c

u
p(u, u0) ⇒ pϕϕ̇ =

rϕ̇/c

u
p(u, u0)ϕ̇, (6.18)

where p(u, u0) = mc(γu− γ0u0) is the linear momentum-velocity relation for LVDM

particles. The conserved angular momentum is given by `ϕ ≡ γ3r2ϕ̇/c, so that ϕ̇ may
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be eliminated in favor of r and u(r)

pϕϕ̇ =
` 2
ϕ

r3
γ−6u−1pc, (6.19)

as in (4.36)–(4.39). Substitution of the equation of motion (6.2) results in

pϕϕ̇ =
` 2
ϕrs

r4
γ−6u−2mc2. (6.20)

If we were to take γ = 1 and u2 = rs/r we would be back to the standard centrifugal

force equation in Newtonian dynamics,

pϕϕ̇ =
` 2
ϕrs

r3
mc2. (6.21)

Taking u0 to be small (large m/m), we have rs/r ≈ (u − u0)
2, as in (6.12), so

that the orbital speed as a function of radius may be approximated as

u−2 ≈ r

rs

(
1 + u0

√
r

rs

)−2

. (6.22)

Substituting this into (6.20), and taking γ−6 ≈ 1, then yields

pϕϕ̇ ≈
` 2
ϕ

r3

(
1 + u0

√
r

rs

)−2

mc2. (6.23)

The effective force, Fe = Fr + pϕϕ̇, follows immediately:

(mc2)−1Fe ≈ −
rs

r2
+

` 2
ϕ

r3

(
1 + u0

√
r

rs

)−2

(6.24)

≈ − rs

r2
+

` 2
ϕ

r3
− u0

2` 2
ϕ

r
1/2
s r5/2

+ u2
0

3` 2
ϕ

rsr2
(6.25)

The first two terms of (6.25) are identical to the effective force in classical dynamics

(CDM), while the last two terms are corrections arising from the non-standard
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dynamics of LVDM. The effective potential corresponding to (6.25) is:

(mc2)−1Ue ≈ −
rs

r
+

` 2
ϕ

2r2
− u0

4` 2
ϕ

3r
1/2
s r3/2

+ u2
0

3` 2
ϕ

rsr
, (6.26)

Again, the first two terms of (6.26) are identical to the effective potential in

standard dynamics (CDM), while the last two terms are corrections arising from the

nonstandard dynamics of LVDM. The effective force (6.25) and effective potential

(6.26) are plotted in Fig. 17 for small values of u0. The angular momentum is chosen

to be given by ` 2
ϕ = rsr0 = 4× 10−5 kpc2, corresponding to a circular orbit of radius

r0 = 4 kpc. The curves representing u0 = 10−6 would be indistinguishable from

those representing CDM on these scales. The radius of a circular orbit is found from

Fe(r0) = −∂Ue/∂r|r0 = 0, and is shown to first decrease, and then increase, as u0 is

increased. The predicted radius is found to be less than that of CDM for u0 < 9×10−4.

The radius of a circular orbit is found explicitly by setting (6.25) to zero, resulting

in

(
1− 3u2

0π
2
ϕ

) r0

` 2
ϕ/rs

+ 2u0πϕ

(
r0

` 2
ϕ/rs

)1/2

− 1 = 0, (6.27)

where πϕ ≡ `ϕ/rs so that π2
ϕ ≈ 4 × 105 is a dimensionless quantity. Notice that

r0 → ` 2
ϕ/rs ≈ 4 kpc as u0 → 0 is the result obtained for CDM for the chosen values

of `ϕ and rs. In the region for which 1 − 3u2
0π

2
ϕ > 0, we have u0 < 9.1 × 10−4, and

a single solution exists. For very small values of u0, the solution to (6.27) may be

expressed as

r0

` 2
ϕ/rs

≈ 1

1− 3u2
0π

2
ϕ

− 2u0πϕ(
1− 3u2

0π
2
ϕ

)3/2
, u2

0 �
1

3π2
ϕ

. (6.28)

Orbital stability is determined by checking the sign of the negative of the derivative
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Fig. 17. Effective force (6.25) and effective potential (6.26) are plotted for small

values of u0. The values of u0 are chosen so that adjacent curves are easily

distinguishable. The curves representing u0 = 10−6 would be indistinguishable

from those of CDM on these scales. As u0 is increased, the radius r0

corresponding to a circular orbit (Fe(r0) = −∂Ue/∂r|r0 = 0) first decreases,

and then increases, but is always smaller than that of CDM.
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of the effective force (6.25) evaluated at r0. This leads directly to the condition

− ∂Fe

∂r

∣∣∣∣
r0

> 0 ⇒ −2

(
r0

` 2
ϕ/rs

)
+ 3− 5u0πϕ

(
r0

` 2
ϕ/rs

)1/2

+ 6u2
0π

2
ϕ

(
r0

` 2
ϕ/rs

)
> 0. (6.29)

Substitution of (6.28) into the above stability condition results in:

1− 5u0πϕ(
1− 3u2

0π
2
ϕ

)1/2
+

4u0πϕ(
1− 3u2

0π
2
ϕ

)3/2
> 0, u2

0 �
1

3π2
ϕ

, (6.30)

which holds true over the specified parameter space: u0 < 9.1× 10−4. The parameter

space is extended using the exact solution to (6.27):

r0

` 2
ϕ/rs

=
1

1− 3u2
0π

2
ϕ

− 2

(
u0πϕ

1− 3u2
0π

2
ϕ

)2
[(

1 +
1− 3u2

0π
2
ϕ

u2
0π

2
ϕ

)1/2

− 1

]
, u2

0 <
1

3π2
ϕ

. (6.31)

The radius of a circular orbit (6.31) is plotted for small values of u0 in Fig. 18

(top, red). The stability condition (6.29) is evaluated at each value of r0 obtained

from (6.31) and is also plotted in Fig. 18 (bottom, red). The curves end abruptly

at u0 = 1/
√

3π2
ϕ ≈ 9.1 × 10−4, beyond which the solutions are no longer valid.

(See Appendix C for a discussion of the parameter space u0 > 9.1 × 10−4 in

this approximation.) The green (crisscrossed) curves are plots of orbital radius

(6.28) and corresponding stability condition (6.30) for very small values of u0; these

approximations are valid for u0 < 10−4. Circular orbits are stable for small values of

u0.

A more accurate description of the effective potential for u0 > 10−4 can be

achieved by taking rs/r ≈ (u − u0)
2 + u0(u − u0), as in (6.11), so that the orbital

speed as a function of radius may be approximated as

u−2 ≈ r

rs

[(
1 + u2

0

r

4rs

)1/2

+ u0
r1/2

2r
1/2
s

]−2

. (6.32)

If we substitute this into (6.20), and take γ−6 ≈ γ−6
0 , the effective force follows
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Fig. 18. The radius of a circular orbit and the stability condition are plotted for

small values of u0. The top red curve is a plot of the radius given by

(6.31), and the bottom red curve the corresponding stability condition (6.29)

evaluated at each value of r0 obtained from (6.31). The curves end abruptly

at u0 = 1/
√

3π2
ϕ ≈ 9.1 × 10−4, beyond which the solutions are no longer

valid. The green (crisscrossed) curves are plots of the orbital radius (6.28)

and corresponding stability condition (6.30) for very small values of u0; these

approximations are valid for u0 < 10−4. Circular orbits are always stable for

the values of u0 shown, as indicated by the red lines.

immediately via the same argument that led to (6.24) earlier:

(mc2)−1Fe ≈ −
rs

r2
+

` 2
ϕγ−6

0

r3

[(
1 + u2

0

r

4rs

)1/2

+ u0
r1/2

2r
1/2
s

]−2

. (6.33)

The effective potential is then given by

(mc2)−1Ue ≈
(

1
2
u2

0π
2
ϕγ−6

0 − 1
) rs

r
+ π2

ϕγ−6
0

r2
s

2r2

− u0π
2
ϕγ−6

0

2r
3/2
s

3r3/2

(
1 + u2

0

r

2rs

)3/2

+ (mc2)−1U0,

(6.34)
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where (mc2)−1U0 ≡ 1
12

u4
0π

2
ϕγ−6

0 is added so that Ue(∞) = 0. This effective potential

is valid over the entire range 0 ≤ u0 ≤ 10−1, and is plotted for a large range of u0

values in Fig. 19. The effect of increasing u0 is to push the centrifugal barrier inward

toward smaller values of r, and to deepen the potential wells. For a given binding

energy, LVDM particles have larger kinetic energies than CDM particles. Orbits are

predicted to be stable with larger values of u0 forcing particles into tighter orbits.

Taking u0 to be large (small m/m), we have rs/r ≈ u0(u − u0), as in (6.12) so

that the orbital speed as a function of radius may be approximated as

u−2 ≈ u2
0

r2
s

r2

(
1 + u2

0

rs

r

)−2

. (6.35)

Substituting this into (6.20) and taking γ−6 ≈ γ−6
0 yields

pϕϕ̇ = u2
0

` 2
ϕγ−6

0

rsr2

(
1 + u2

0

r

rs

)−2

mc2. (6.36)

The effective force and potential then follow immediately:

(mc2)−1Fe ≈ −
rs

r2
+ u2

0

` 2
ϕγ−6

0

rsr2

(
1 + u2

0

r

rs

)−2

(6.37)

(mc2)−1Ue ≈
(
u2

0π
2
ϕγ−6

0 − 1
) rs

r
,

+ u4
0π

2
ϕγ−6

0

[(
1 + u2

0

r

rs

)−1

+ 2 ln
r

rs

(
1 + u2

0

r

rs

)−1
]

+
(
mc2

)−1
U0,

(6.38)

where (mc2)−1U0 ≡ −2u4
0π

2
ϕγ−6

0 ln u−2
0 is added so that Ue(∞) = 0. This effective

potential (6.38) is plotted for large values of u0 in Fig. 20. As u0 is increased to

very large values, the radius of a stable circular orbit, r0, continues to decrease,

approaching the Schwarzschild radius, rs ≈ 10−5. The solution certainly is not valid

for r0 < rs; The value of u0 corresponding to a circular orbit in this limiting case can
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Fig. 19. LVDM effective potential (6.34) for a large range of u0. The effect of increasing

u0 is to push the centrifugal barrier inward toward smaller values of r, and to

deepen the potential wells. For a given binding energy, LVDM particles have

larger kinetic energies than CDM particles. Orbits are predicted to be stable,

with larger values of u0 forcing particles into tighter orbits.

be calculated from Fe(rs) = 0, resulting in us
0 ≈

√
1− (π2

ϕ/2)−1/3 ≈ 0.991.

However, the solution is already clearly invalid when Ue(rs) = 0, which yields
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umax
0 ≈

√
1− [(3− 4 ln 2)π2

ϕ/2]−1/3 ≈ 0.986. Therefore, the approximate effective

force (6.37) and potential (6.38) are valid for u0 < 0.986 and u0 � 10−3.
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Fig. 20. The effective potential (6.38) is plotted for very large values of u0. As u0

is increased to very large values, the radius of a stable circular orbit, r0,

continues to decrease, approaching the Schwarzschild radius, rs ≈ 10−5.
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CHAPTER VII

LAGRANGIAN FORMULATION

The Lagrangian for a standard relativistic (SR) particle under the influence of a

central force is [189]

Lsr = −γ−1mc2 − U(r). (7.1)

The total energy is given by the Hamiltonian, H = pv − L, with p = ∂L/∂v (where

γ−1 =
√

1− (v/c)2) so that

Hsr = γmc2 + U(r) (7.2)

= Tsr + U(r) + mc2, (7.3)

where Tsr = (γ − 1)mc2 is the kinetic energy.

The Lagrangian for a LV particle (again under the influence of a central force) is

Llv = −γ−1mc2 − γ0mv0v − U(r). (7.4)

The Hamiltonian H = pv − L, with p = ∂L/∂v = γmv − γ0mv0, is then

Hlv = γmc2 + U(r) (7.5)

= Tlv + U(r) + γ0mc2, (7.6)

where Tlv = (γ−γ0)mc2 is the kinetic energy of a LV particle, subject to the constraint

γ ≥ γ0 > 1.

This procedure can be generalized to a large class of Lorentz-violating systems,

for which p = k(v, m)v, by choosing

T ∗ ≡
∫ v

v0

k(v′, m)v′ dv′ − E0, (7.7)
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where E0 = E0(m) and v0 = v0(m) are the zero-momentum energy and velocity,

respectively. The usual expression for the kinetic energy may be obtained by

integrating by parts,

T =

∫ p

0

v(p′) dp′ = v2k(v, m)−
∫ v

v0

k(v′, m)v′ dv′, (7.8)

so that the Lagrangian may be expressed as L = v2k(v, m)−T−E0−U(r). Therefore,

the Hamiltonian is H = T + U(r) + E0. Furthermore, the form of the resulting

Hamiltonian is the same as that for standard relativity, with the implied constraint

of a minimum velocity. (Compare (7.2) and (7.5).) Standard physics is, of course,

recovered in the limit v0 → 0. It appears that this formalism may be applied to a

large class of Lorentz-violating systems which reduce to standard relativity in the

limit v0 → 0.

A. Angular Momentum and Effective Potential

The conserved angular momentum is found from the Lagrangian (7.4) to be

˜̀
ϕ ≡ (k/m)r2ϕ̇/c, (7.9)

where k is given by

k(v, m) = (γmv − γ0mv0)/v (7.10)

Then ϕ̇/c = ˜̀
ϕ(k/m)−1r−2 so that

(mc2)−1pϕϕ̇ = (k/m)rϕ̇2/c2 (7.11)

=
˜̀2
ϕ

(k/m)r3
. (7.12)
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(See (6.17).) The results for a standard relativistic particle are recovered in the

appropriate limit: ˜̀
ϕ → γr2ϕ̇/c and (mc2)−1pϕϕ̇ → ˜̀2

ϕ/(γr3), as v0 → 0. More

generally, it is reasonable to take v/c to be small if v0/c is small and particles are

confined to galactic dimensions, so that (7.10) becomes

k/m = 1− v0

v
+

1

2

(v

c

)2
− 1

2

v0

v

(v0

c

)2
+ · · · (7.13)

≈ 1− v0

v
, (7.14)

wherein it is also assumed that (v/c)2 � v0/v � 1, or equivalently, (v/c)3 � v0/c.

Typical galactic speeds are (v/c)3 ∼ 10−9, allowing for a large parameter space:

10−4 < v0/c < 10−8. In this approximation (7.9) and (7.12) may be expressed as

˜̀
ϕ ≈

(
1− v0

v

)
r2ϕ̇/c (7.15)

(mc2)−1pϕϕ̇ ≈
˜̀2
ϕ

r3

(
1− v0

v

)−1

. (7.16)

The results for a standard particle are recovered in the appropriate limit: ˜̀
ϕ → r2ϕ̇/c

and (mc2)−1pϕϕ̇ → ˜̀2
ϕ/r3 as v0 → 0. On galactic scales it is possible to compare

the Lorentz-violating particles to standard particles. A standard CDM particle

represents the limit in which both relativistic and Lorentz-violating corrections are

neglected. The angular momentum and centrifugal force are derived above, and

may be interpreted as corrections to the standard particle description due to a small

violation of Lorentz invariance. As v0 is increased, the angular momentum is reduced,

and the centrifugal force is thus also reduced. Particles are likely to occupy a smaller

volume than standard particles. This is the obvious result that faster moving particles

must have tighter orbits to remain bound. Alternatively, LVDM may be compared to

CDM with the same value of angular momentum. As v0 is increased, LVDM particles

are likely to have larger orbits and experience a larger centrifugal force. (See (7.15)
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and (7.16).)

An effective potential can also be derived. Equation (7.11) may be re-expressed,

without approximation, as

(mc2)−1pϕϕ̇ =
˜̀
ϕ

r
(ϕ̇/c). (7.17)

Assuming r2ϕ̇2 � ṙ2, we can solve (7.15) for ϕ̇:

ϕ̇/c ≈
¯̀
ϕ

r2
+

v0/c

r
, (7.18)

where ¯̀
ϕ ≡ `ϕ(1−u0`ϕ/rs) is the conserved angular momentum in this approximation.

(Recall that `ϕ is the angular momentum of a standard particle.) It is assumed that

u0 < rs/`ϕ so that ˜̀
ϕ ≈ ¯̀

ϕ > 0. Substituting this expression into (7.17) results in

(mc2)−1pϕϕ̇ ≈
˜̀2
ϕ

r3

(
1 + u0

r
˜̀
ϕ

)
, (7.19)

wherein it is assumed that ˜̀
ϕ
¯̀
ϕ ≈ ˜̀2

ϕ. The effective force (6.17) and corresponding

effective potential follow immediately:

(mc2)−1Fe = − rs

r2

(
1− u0

˜̀
ϕ

rs

)
+

˜̀2
ϕ

r3
, (7.20)

(mc2)−1Ue = −rs

r

(
1− u0

˜̀
ϕ

rs

)
+

˜̀2
ϕ

2r2
. (7.21)

The effective potential (7.21) is plotted in Fig. 21, for small values of u0. The

values ` 2
ϕ = 4× 10−5 kpc2 and rs = 10−5 kpc have been chosen (as in Fig. 17). Then

the angular momentum is positive for u0 < 1.58× 10−3.
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Fig. 21. The effective potential (7.21) is plotted for small values of u0. The top panel

displays curves which are similar to those for CDM. As u0 is increased, the

radius of a stable circular orbit, r0, decreases. The bottom panel includes

larger values of u0 and emphasizes that the radius of a circular orbit decreases

by several orders of magnitude, and that the potential well deepens by several

orders of magnitude. The corresponding kinetic energy may be increased by

several orders of magnitude.
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B. Precession and other Orbital Features

1. Schwarzschild Geometry

Relativistic corrections to the central-mass problem are correctly described by the

Schwarzschild geometry, which yields [25, 190–196]

d2

dϕ2

(α

r

)
+

α

r
= 1 + 3ε2

(α

r

)2
, (7.22)

where α ≡ L2/(GMm2) and L ≡ mr2ϕ̇ as in the Newtonian description, and ε ≡ vα/c,

where vα ≡
√

GM/α is the speed that a particle in a circular orbit of radius α would

have in the Newtonian description. The conic-sections of the Newtonian description

are recovered in the limit ε → 0 (c →∞):

α

r
= 1 + e cos ϕ, (7.23)

where e ≡ [1 + E/(1
2
mv2

α)]1/2 is the eccentricity of the orbit, so that the term

proportional to ε2 in (7.22) may be treated as a small correction to the Newtonian

description. The solution is usually found perturbatively, and limited to determining

the apsidal precession per revolution of bound orbits:

δϕ ≈ 3ε2(2π). (7.24)

Another common approach to the general relativistic problem is to define an

equivalent effective potential using the Schwarzschild solution [190, 191, 197]:

Ũeff ≡ mc2
(
1− rs

r

)1/2(
1 +

αrs

2r2

)1/2

, (7.25)

where rs ≡ 2GM/c2 is now the Schwarzschild radius. It is then determined that the

radius of a stable circular orbit is smaller than that derived from the Newtonian
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description: rc = 1
2
α + 1

2
α(1− 12ε2)1/2 < α. Define δr ≡ rc − α so that

δr ≈ −3ε2α. (7.26)

(This result also holds if the equivalent effective potential is, instead, defined as

Ueff ≡ (Ũ2
eff −m2c4)/(2mc2), which results in an effective potential that is more easily

compared to that derived from a Newtonian description.) Equations (7.24) and (7.26)

serve as points for comparison to an alternative solution to the relativistic central-

mass problem that follows.

Applying the change of variable 1/ρ ≡ α/r − 1 to (7.22) results in

d2

dϕ2

(
1

ρ

)
+

1

ρ
= 3ε2

(
1 +

1

ρ

)2

. (7.27)

Assume that 1/ρ � 1 so that (1 + 1/ρ)2 ≈ 1 + 2/ρ; This is equivalent to restricting

the solutions to nearly circular orbits. Then

d2

dϕ2

(
1

ρ

)
+ κ2

(
1

ρ

)
≈ 3ε2, (7.28)

where κ2 ≡ 1− 6ε2. Applying another change of variable 1/ρ̄ ≡ κ2(1/ρ)− 3ε2 results

in

d2

dϕ2

(
1

ρ̄

)
+ κ2

(
1

ρ̄

)
≈ 0, (7.29)

the solution of which is a precessing ellipse:

α

r
≈ 1 + 3ε2 + (1 + 6ε2)e cos (1− 3ε2)ϕ, (7.30)

where e is defined after (7.23). Corrections to the total energy are of order (v/c)4 so

that, for small speeds, e is approximately the same as that for a classical orbit. The

approximation preceding (7.28) is now seen to be equivalent to the assumption of small

eccentricity: e � 1. The solution (7.30) is verified by direct substitution into (7.22),
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keeping terms only up to orders ε2, e, and ε2e. This closed-form solution lends itself

to easy comparison with the orbital equation derived from the Newtonian description

(7.23) and is similar to perturbative solutions in the following respects: The predicted

rate of precession is identical to that derived using perturbative solutions (7.24); and

circular orbits are predicted to be smaller than those derived from a Newtonian

description by a measure identical to that derived from the equivalent effective

potential (7.26). In addition, nearly circular relativistic orbits are predicted to be

more eccentric than Keplerian orbits: δe ≈ 6ε2e. The success of this solution (7.30)

in correctly describing general relativistic effects provides incentive for the application

of this approximation scheme to the problem defined by the classical relativistic

Lagrangian, which results in a similar equation of motion, and describes corrections

due only to special relativity.

2. Classical Relativistic Lagrangian

As already discussed above in more general context, a classical relativistic particle

under the influence of a central gravitational force is described by the Lagrangian [189,

198, 199]

L = −γ−1mc2 − U(r), (7.31)

where γ−1 ≡
√

1− (v/c)2 and U(r) = −GMm/r. The resulting equation of motion

is

−∂U

∂r
= γmr̈ + γ̇mṙ − γmrϕ̇2 (7.32)

L = γmr2ϕ̇, (7.33)
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where L is the conserved angular momentum. In the interest of deriving an equation

for the orbit, r(ϕ), the following quantities are calculated:

d2

dϕ2

(
1

r

)
= −m

L2
γr2 (γmr̈ + γ̇mṙ) , (7.34)

L2

m
γ−1r−3 = γmrϕ̇2, (7.35)

wherein (7.33) is used repeatedly. The right-hand sides of these expressions are

recognized as parts of the equation of motion (7.32) which may now be expressed

as

d2

dϕ2

(α

r

)
+

α

r
≈ 1 +

1

2

(v

c

)2

, (7.36)

in the limit of small velocities so that γ ≈ 1 + 1
2
(v/c)2. (This is reminiscent of velocity-

dependent forces [200, 201] that were introduced immediately after the inception of

special relativity in 1905.) The conic sections of the Newtonian description (7.23)

are recovered in the limit c →∞, so that the term 1
2
(v/c)2 may be treated as a

small correction to the Newtonian description. With nearly circular orbits in mind, a

zeroth-order correction to the Newtonian description is to determine (v/c)2 from the

classical virial theorem: −1
2
U ≈ T , where T ≡ (γ − 1)mc2. Then

GMm/c2

2r
= 1

2
mv2/c2 + O(1/c4), (7.37)

or(vα

c

)2 α

r
≈
(v

c

)2

. (7.38)

(Recall the definitions of α and vα after (7.22).) The orbital equation (7.36) may now

be expressed as

d2

dϕ2

(α

r

)
+ κ̄2

(α

r

)
≈ 1, (7.39)
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where κ̄2 ≡ 1− 1
2
(vα/c)2. Apply the change of variable 1/ρ ≡ κ̄2(α/r)− 1 so that

d2

dϕ2

(
1

ρ

)
+ κ̄2

(
1

ρ

)
≈ 0, (7.40)

the solution of which is a precessing ellipse:

α

r
≈ 1 + 1

2
ε2 + (1 + 1

2
ε2)e cos (1− 1

4
ε2)ϕ, (7.41)

where ε ≡ vα/c is the same parameter defined in the general relativistic solution

(7.30) and e is defined after (7.23). Corrections to the total energy are of order

(v/c)4 so that, for small speeds, e is approximately the same as for a classical

orbit. Although the assumption of small eccentricty is not explicit in this solution,

the assumption of small speeds, γ ≈ 1 + 1
2
(v/c)2, and the approximate virial

theorem (7.38) may not hold at the periapsis of a highly eccentric orbit. The

solution (7.41) is verified by direct substitution into (7.39), keeping only terms up

to orders ε2 and ε2e. This closed-form solution lends itself to easy comparison with

the orbital equation derived from the Newtonian description (7.23), and has the

same general features as that derived from the general relativistic description (7.30).

Relativistic orbits are predicted to exhibit forward precession; (7.41) predicts the

forward apsidal precession per revolution to be δϕ ≈ 1
4
ε2(2π). The standard approach

to incorporating special relativity predicts twice this value [189, 202–204], which

is still in error by a factor of one-sixth when compared to the general relativistic

result (7.24). (As much as two-thirds of the correct rate of precession may be

calculated using special relativity together with the equivalence principle [205, 206].

This approach is avoided here in order to have a model to compare with Lorentz

violation, for which it is not clear at present how to incorporate the equivalence

principle.) The radius of a circular orbit is predicted to be smaller than that derived

from a Newtonian description; (7.41) predicts a difference in radius of δr ≈ −1
2
ε2α,
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Fig. 22. Orbit of a relativistic particle (7.41) compared to that of a classical particle

(7.23) (with relativistic corrections ignored). Relativistic corrections result in

orbits which are reduced in size and more eccentric when compared to classical

orbits. A single period is displayed in order to isolate the effect of reduction of

the orbit. The effect is exaggerated by the choice of parameters (for purposes

of illustration). Relativistic corrections also result in precession, which is not

featured in this figure.

which is one-sixth of that derived from the general relativistic description [191, 194]

(7.26). In addition, nearly circular orbits are predicted to be more eccentric than

Keplerian orbits; (7.41) predicts a difference of δe ≈ 1
2
ε2e, which is one-third of

that derived from the general relativistic description (7.30). The relativistic effect of

reduction in the overall size of the orbit is illustrated in Fig. 22. It should be noted

that, although the angular momentum is defined differently in the description which

considers effects due only to special relativity, it is taken to be a parameter in the
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resulting orbital equation (7.41), so that comparisons with the Newtonian and general

relativistic descriptions may be made for a fixed value of angular momentum. This

approximation scheme yields a closed-form solution that exhibits several features of

relativistic orbits at once. The resulting equation of orbit (7.41) serves as a point for

comparison to that derived for a Lorentz-violating particle in the next section.

3. Lorentz Violation

As discussed earlier, a classical Lorentz-violating particle under the influence of a

central gravitational force is described by the Lagrangian,

L = −γ−1mc2 − γ0mv0v − U(r). (7.42)

The resulting equation of motion is

−∂U

∂r
= kmr̈ + k̇mṙ − krϕ̇2 (7.43)

L = kmr2ϕ̇, (7.44)

where k ≡ (γv − γ0v0)/v. In order to derive an equation for the orbit, r(ϕ), the

following quantities are calculated:

d2

dϕ2

(
1

r

)
= −m

L2
kr2(mr̈ + k̇mṙ) (7.45)

L2

m
k−1r−3 = kmrϕ̇2, (7.46)

wherein (7.44) is used repeatedly. The right-hand sides of these expressions are

recognized as parts of the equation of motion (7.43), which may now be expressed as

d2

dϕ2

(α

r

)
+

α

r
= k. (7.47)
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In the limit that both v/c � 1 and v0/v � 1, k may be expressed as a Taylor series:

k = 1 +
1

2

(v

c

)2
− v0

v
+

1

8

(v

c

)4
− 1

2

(v

c

)2 (v0

v

)3
+ · · · . (7.48)

The effects of Lorentz violation are isolated by taking

k ≈ 1− v0

v
(7.49)

so that:

d2

dϕ2

(α

r

)
+

α

r
≈ 1− v0

v
. (7.50)

The conic sections of the Newtonian description (7.23) are recovered in the limit

v0 → 0, so that the term v0/v may be treated as a small correction to the Newtonian

description. (Recall that v ≥ v0 so that (7.50) is well-behaved.) Having near-circular

orbits in mind, a zeroth-order correction to the Newtonian description is to determine

v0/v from the classical virial theorem: −1
2
U ≈ T , where T ≡ (γ − γ0)mc2. Then,

GMm/c2

2r
= 1

2
mv2/c2 − 1

2
mv2

0/c
2 + · · · , (7.51)

or

v0

vα

(α

r

)−1/2

≈ v0

v
. (7.52)

(Recall the definitions of α and vα after (7.22).) The orbital equation (7.43) may now

be expressed as

d2

dϕ2

(α

r

)
+

α

r
≈ 1− v0

vα

(α

r

)−1/2

, (7.53)

Apply the change of variable 1/ρ ≡ α/r − 1 so that (7.53) may be expressed as

d2

dϕ2

(
1

ρ

)
+

1

ρ
≈ − v0

vα

(
1 +

1

ρ

)−1/2

. (7.54)
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Assume that 1/ρ � 1 so that (1 + 1/ρ)−1/2 ≈ 1 − 1
2
(1/ρ); This is equivalent to

restricting the solutions to near-circular orbits. Then

d2

dϕ2

(
1

ρ

)
+ κ2

0

(
1

ρ

)
≈ − v0

vα

, (7.55)

where κ2
0 ≡ 1− 1

2
(v0/vα). The solution is a precessing ellipse:

α

r
≈ 1− ε0 + (1 + 1

2
ε0)e cos (1− 1

4
ε0)ϕ, (7.56)

where ε0 ≡ v0/vα and e is defined after (7.23). Corrections to the total energy are of

order (v0/c)
2 so that e is approximately the same as that for a classical orbit. The

approximation preceding (7.55) is now seen to be equivalent to the assumption of very

small eccentricity: e � 1. The solution (7.56) can be verified by direct substitution

into (7.53), keeping only terms up to orders ε0, e, and ε0e. The resulting orbit (7.56)

is predicted to be larger in size and more eccentric than classical Keplerian orbits. In

addition, forward apsidal precession per revolution is predicted to be δϕ ≈ 1
4
ε0(2π).

The combined effects due to Lorentz violation and relativistic speeds are

accounted for by keeping the first three terms of the Taylor series (7.48):

k ≈ 1 +
1

2

(v

c

)2
− v0

v
. (7.57)

Then (7.47) becomes

d2

dϕ2

(α

r

)
+

α

r
≈ 1 +

1

2

(v

c

)2
− v0

v
. (7.58)

The velocity dependence is removed using both (7.38) and (7.52), so that the orbital

equation (7.58) may now be expressed as

d2

dϕ2

(α

r

)
+ κ̄2

(α

r

)
≈ 1− ε0

(α

r

)−1/2

, (7.59)

where κ̄2 ≡ 1 − 1
2
ε2, ε ≡ vα/c, and ε0 ≡ v0/vα. (Recall the definitions of α and
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vα after (7.22).) The orbital equation describing near-circular, classical relativistic

orbits (7.39) is recovered in the limit ε0 → 0 (v0 → 0). Apply the change of variable

1/ρ ≡ κ̄2(α/r)− 1 and assume that (1 + 1/ρ)−1/2 ≈ 1− 1
2
(1/ρ). Then

d2

dϕ2

(
1

ρ

)
+ κ̄2

0

(
1

ρ

)
≈ −ε0, (7.60)

where κ̄2
0 ≡ κ̄2 − 1

2
ε0 = 1− 1

2
ε2 − 1

2
ε0. The solution is a precessing ellipse:

α

r
≈ 1 + 1

2
ε2 − ε0 + (1 + ε2 + 1

2
ε0)e cos (1− 1

4
ε2 − 1

4
ε0)ϕ. (7.61)

The approximation preceding (7.60) is now seen to be equivalent to the assumption

of very small eccentricity: e � 1. The solution (7.61) can be verified by direct

substitution into (7.59), keeping only terms up to orders ε2, ε0, e, ε2e, and ε0e.

The combined effects of Lorentz violation and relativistic speeds (at fixed angular

momentum) may be summarized as follows: (1) The reduction in the overall size of

the orbit predicted by relativity is offset by an enlargement of the orbit predicted by

Lorentz violation. (2) The increased eccentricity predicted by relativity is augmented

by a contribution due to Lorentz violation. (3) The rate of precession predicted by

relativity is augmented by a contribution due to Lorentz violation.

C. Observational Tests of Lorentz -Violation

It is interesting to consider a circular orbit for a LVDM particle in order to quantify

the effects of Lorentz violation. A nonrelativisitic Lorentz-violating particle in circular

orbit is described by (7.56) with e = 0 so that

r

α
≈ 1 +

v0

vα

. (7.62)
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Fig. 23. Orbit of a Lorentz-violating particle (7.56) compared to that of a classical

particle (7.23). Small violations of Lorentz invariance result in orbits which are

enlarged and more eccentric when compared to classical orbits. A single period

is displayed in order to isolate the effect of enlargement of the orbit. The

effect is exaggerated by the choice of parameters, for purposes of illustration.

Lorentz violation also results in precession, which is not featured in this figure.

A particle orbiting a galaxy of 1011M� at radius 100 kpc corresponds to vα/c ≈ 10−4

so that effects of Lorentz violation would be dramatic on this scale unless v0/c � 10−4.

Although this is consistent with constraints derived in Chaps. V and VI, it is unlikely

that the these orbital features are observable on this scale via gravitational dynamics.

The effect of enlargement of near-circular orbits – due to Lorentz-violation – is

illustrated in Fig. 23, where (7.56) is plotted for a single period. The exaggerated

values e = 0.2 and v0/vα = 10−1 are chosen for purposes of illustration. Lorentz

violation also results in precession, which is not featured in this figure (since only

one period is displayed). These effects might be observable in galactic clusters. For
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example, a cluster of galaxies may be considered (as a reasonable approximation)

to be composed entirely of dark matter, and each galaxy treated as a dark matter

particle. The properties of the orbits of single galaxies in a cluster may be observed

and compared to the predictions for Lorentz-violating particles. The effect of enlarged

orbits is of order δr ∼ ε0α = GMv0/v
3
α and may be observable near a massive

galaxy cluster. A cluster consisting of 100 giant spiral galaxies may be described

by M ∼ 100× 1012M� ∼ 1044 kg and vα/c ∼ 10−2, so that δr ≈ 1 Mpc× v0/c. An

outlying cluster member galaxy with a larger orbital radius than that predicted by

standard classical dynamics could be an indication of a small violation of Lorentz

invariance. Equivalently, an outlying cluster member galaxy may have an orbital

speed larger than that predicted by classical dynamics. The effect of large eccentricity

may also be observed. For example, Bosch et al. [207] find galaxy and cluster

substructure eccentricity distributions to be strongly skewed toward high eccentricity.

Additionally, the properties of the orbits of field (isolated) binary galaxies may be

observed. A binary system with larger separation than predicted by standard classical

dynamics could be an indication of a small violation of Lorentz invariance. The total

mass of an isolated binary galaxy system is known to be a function of eccentricity [208].

In principle, cluster galaxies are relativistic so that (7.61) applies. It is expected

that ε0 < ε, but it is not obvious that ε0 < ε2. It is possible that effects of Lorentz

violation are responsible for an equal part of an observed precession, and that orbits

are not as small as those predicted by relativity alone due to the canceling effect

of Lorentz violation. For example, taking ε0 ∼ ε2, the combined effects of Lorentz

violation and relativistic speeds are orbits that differ in size by δr ∼ 1
2
ε0α ∼ 1

2
ε2α,

and with twice the rate of precession, when compared to classical Keplerian orbits.

This correction is equal in magnitude to that predicted by relativity alone, but the
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Fig. 24. Orbit of a particle including only relativistic corrections (7.41) (top) compared

to that including corrections due to both relativity and Lorentz violation

(7.61) (bottom). (The nonprecessing orbit of a classical particle is also

included in each figure for reference.) Lorentz violation results in an enlarged,

more eccentric orbit when compared to an orbit with relativistic corrections

alone. Lorentz violation also results in an orbit with a larger rate of precession

than that predicted using relativistic corrections alone. The effects are

exaggerated by the choice of parameters, for purposes of illustration.
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orbit is predicted to be larger instead of smaller. The correction to the eccentricity

is three times that predicted by relativity alone.

Corrections due to both relativity and Lorentz violation are illustrated in Fig. 24.

The parameters are chosen to be ε0 = ε2 = 0.5 and e = 0.2. (These parameters are

again exaggerated for purposes of illustration.) The top figure displays relativistic

corrections alone (7.41), and the bottom figure displays corrections due to both

relativity and Lorentz violation (7.61). Corrections due to both relativity and Lorentz

violation result in an orbit that is larger and more eccentric, as well as having a

larger rate of precession, than that due to relativistic corrections alone. Relativistic

corrections alone result in an orbit which is reduced when compared to a classical

orbit. The parameters are chosen so that corrections due to relativity and Lorentz

violation result in an orbit which is enlarged when compared to a classical orbit.
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CHAPTER VIII

CONCLUSIONS

Lorentz-violating dark matter (LVDM), as defined in the present thesis, is dark matter

which has a lower limit on its velocity, as indicated in (4.1) and (4.2). As this lower

limit v0 goes to zero, one recovers standard relativistic dynamics. But if v0 is an

appreciable fraction of the speed of light, the binding energy of such a particle in a

galaxy becomes substantially smaller than that of standard cold dark matter (CDM).

In the limit v0 → c, where c is the speed of light, the binding energy is zero, and the

dynamics is in fact the same as that for a massless particle in standard relativistic

dynamics. In this sense, LVDM can thus be regarded as interpolating between CDM

and hot dark matter.

However, the detailed studies presented here lead to the conclusion that LVDM

does not lead to a solution of the conflict between CDM simulations, which predict

a great deal of structure on sub-galactic scales, and the observations, which do not

exhibit such structure. The basic reason is that LVDM particles would not be bound

in a galaxy unless v0/c � 10−4, and for such low values of v0 the results for LVDM are

not much different from those of CDM. These results were determined from a detailed

analysis of the binding energy and by constructing an effective potential, which leads

to the conclusion that stable orbits are possible only for small values of v0/c.

On the other hand, the present calculations have provided a substantial amount

of insight into the consequences of Lorentz-violating dynamics, as one can see

by perusing the results of the preceding chapter. These results were obtained

by constructing an effective classical Lagrangian, and they include the following

qualitative conclusions:

(1) The effect of Lorentz violation (LV) is to increase the size of the orbit, when
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compared to an orbit in standard dynamics. The contribution of LV is thus opposite

to that produced by relativistic corrections.

(2) Another effect of Lorentz violation is to increase the eccentricity of the orbit,

again when compared to an orbit in standard dynamics. This contribution is in

addition to that produced by relativistic corrections.

(3) Still another effect of Lorentz violation is precession of the orbit, which is

again in addition to that produced by relativistic corrections.

These effects are discussed quantitatively and in detail in the preceding chapter,

and are exhibited in the figures. As discussed near the end of this chapter, the effects

would in principle be observable in galactic clusters. For example, if such matter

were present in galaxies in large proportions, it would lead to galactic motion that is

different from that predicted for standard relativistic matter.
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[162] V. A. Kostelecký and M. Mewes, Phys. Rev. D 66 (2002) 056005, hep-

ph/0205211.



118
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[166] V. A. Kostelecký and M. Mewes, Phys. Rev. Lett. 87 (2001) 251304, hep-

ph/0111026.

[167] T. Jacobson, S. Liberati, and D. Mattingly, Phys. Rev. D 67 (2003) 124011,

hep-ph/0209264; Nature 424 (2003) 1019, astro-ph/0212190.

[168] T. Jacobson, S. Liberati, D. Mattingly, and F. W. Stecker, New limits on Planck

scale Lorentz violation in QED, astro-ph/0309681.

[169] F. W. Stecker and S. L. Glashow, Astropart. Phys. 16 (2001) 97, astro-

ph/0102226.

[170] F. W. Stecker, Probing Supersymmetry with Neutral Current Scattering

Experiments, astro-ph/0309027.

[171] G. Amelino-Camelia, J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, and S.

Sarkar, Nature 393 (1998) 763.

[172] B. Altschul, Phys. Rev. Lett. 98 (2007) 041603, hep-th/0609030.
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APPENDIX A

EXACT NUMERICAL SOLUTIONS TO LVDM ROTATION CURVES

program exact_LVDM_rotation_curves

implicit none

INTEGER, PARAMETER :: r8=SELECTED_REAL_KIND(15, 307)

REAL(r8), PARAMETER :: one=1.0E0_r8, two=2.0E0_r8
REAL(r8), PARAMETER :: three=3.0E0_r8, four=4.0E0_r8
REAL(r8), PARAMETER :: five=5.0E0_r8, six=6.0E0_r8
REAL(r8), PARAMETER :: seven=7.0E0_r8, eight=8.0E0_r8
REAL(r8), PARAMETER :: nine=9.0E0_r8, ten=1.0E1_r8
REAL(r8), PARAMETER :: eleven=11.0E0_r8, twelve=12.0E0_r8
REAL(r8), PARAMETER :: thirteen=13.0E0_r8

REAL(r8), PARAMETER :: b=2000_r8 ! b = 2m/mbar
REAL(r8), PARAMETER :: vh=2.25E5_r8, c=3.0E8_r8

REAL(r8) :: uh2, u0, k, r, rg, u, du, tol, dr
REAL(r8) :: gamma, gamma0, phibar, d_phi, err_u

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

uh2 = (vh/c)**two
u0 = one/(one + b**two)**(one/two)
k = (one/ten)**three
tol = one/(ten**two)
du = u0/(ten**nine) ! u-step
dr = r + one/ten**three ! r-step

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

r = one
OPEN(unit = 10, file = ’b2E3v2.d’, status = "new")

u = u0
do while (r <= ten)

rg = one - one/r + k*(r**two)

gamma0 = one/sqrt(one-(u0**two))
gamma = one/sqrt(one-(u**two))
phibar = (gamma*u-gamma0*u0)*u/uh2
d_phi = abs(rg - phibar) ! error
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err_u = d_phi/(u*(two*u-u0))

do while (err_u > tol)

u = u + du

gamma0 = one/sqrt(one-(u0**two))
gamma = one/sqrt(one-(u**two))
phibar = (gamma*u-gamma0*u0)*u/uh2
d_phi = abs(rg - phibar) ! error
err_u = d_phi/(u*(two*u-u0))

end do

write(10, 120) r, u0, u, rg, phibar, d_phi, err_u
r = r + dr

end do

close(10)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

120 format(7E17.8)

end program exact_LVDM_rotation_curves
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APPENDIX B

APPROXIMATE ANALYTICAL SOLUTIONS TO LVDM ROTATION CURVES

program approx_LVDM_rotation_curves

implicit none

INTEGER, PARAMETER :: r8=SELECTED_REAL_KIND(15, 307)

REAL(r8), PARAMETER :: one=1.0E0_r8, two=2.0E0_r8
REAL(r8), PARAMETER :: three=3.0E0_r8, four=4.0E0_r8
REAL(r8), PARAMETER :: five=5.0E0_r8, six=6.0E0_r8
REAL(r8), PARAMETER :: seven=7.0E0_r8, eight=8.0E0_r8
REAL(r8), PARAMETER :: nine=9.0E0_r8, ten=1.0E1_r8
REAL(r8), PARAMETER :: eleven=11.0E0_r8, twelve=12.0E0_r8
REAL(r8), PARAMETER :: thirteen=13.0E0_r8

REAL(r8), PARAMETER :: b=20000_r8 ! b = 2m/mbar
REAL(r8), PARAMETER :: vh=2.25E5_r8, c=3.0E8_r8

REAL(r8) :: uh2, u0, k, r, rg, u, du, er, tol
REAL(r8) :: phi, phi1, phi2

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

uh2 = (vh/c)**two
u0 = one/(one + b**two)**(one/two)
k = (one/ten)**three
tol = one/(ten**four)
du = u0/(ten**four) ! u-step

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

r = ten
rg = one - one/r + k*(r**two)
u = u0
phi1 = u0*(u - u0)/uh2
phi2 = ((u - u0)**two)/uh2
phi = phi1 + phi2
er = abs((rg - phi)/rg) ! error

do while (er > tol)

u = u + du
phi1 = u0*(u - u0)/uh2
phi2 = ((u - u0)**two)/uh2
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phi = phi1 + phi2
er = abs((rg - phi)/rg) ! error

end do

print 120, u, u0, phi1, phi2, er

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

120 format(5E20.11)

end program approx_LVDM_rotation_curves
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APPENDIX C

EFFECTIVE POTENTIAL IN CENTRAL MASS MODEL: REMAINING

PARAMETER SPACE

Here we investigate the effective potential (6.26) and orbital stability condition

(6.29) for the remaining parameter space, defined by taking 1− 3u2
0π

2
ϕ < 0 in (6.27),

corresponding to u0 > 9.1× 10−4.

In the region for which 1−3u2
0π

2
ϕ < 0, we have u0 > 9.1×10−4, and the condition

for a circular orbit (6.27) may be written as

(
3u2

0π
2
ϕ − 1

) r0

` 2
ϕ/rs

− 2u0πϕ

(
r0

` 2
ϕ/rs

)1/2

+ 1 = 0, (C.1)

for which there are two solutions,

r±0
` 2
ϕ/rs

=

(
u0πϕ

3u2
0π

2
ϕ − 1

)2
[
1±

(
1−

3u2
0π

2
ϕ − 1

u2
0π

2
ϕ

)1/2
]2

. (C.2)

The solutions are limited to a narrow parameter space defined by 1/3 < u2
0π

2
ϕ < 1/2,

corresponding to 9.13× 10−4 < u0 < 1.12× 10−3, beyond which the argument of the

root in (C.2) becomes negative. The radii of circular orbits, r+
0 and r−0 , described

by (C.2) are plotted in Fig. 25 for values of u2
0π

2
ϕ within this narrow range. The

stability condition (6.29) is evaluated at each value of r±0 obtained from (C.2), and

is also plotted in Fig. 25. The solutions r+
0 (top, red) are found to describe unstable

(bottom, red) circular orbits over the entire parameter space. The solutions r−0

(top, blue) are stable (bottom, blue) over the entire parameter space, and describe

circular orbits having radii of the same order of magnitude as that predicted for CDM:

rcdm
0 ≈ 4 kpc. For example, r−0 (1/3) = 3 kpc, and r−0 (1/2) = 8 kpc. (See (C.1) and
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(C.2), respectively.) An interesting value of u0 is that for which r−0 = rcdm
0 , and is

found from (C.1), assuming r0 = ` 2
ϕ/rs, to be given by u2

0π
2
ϕ = 4/9, or u0 = 1.05×10−3.

102
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∂
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1
`−

2
ϕ

r4 0
]

Fig. 25. The radius of a circular orbit (top panel) and the corresponding stabil-

ity condition (bottom panel) are plotted for values in the narrow range

1/3 < u2
0π

2
ϕ < 1/2, corresponding to 9.13 × 10−4 < u0 < 1.12 × 10−3. There

are two solutions r+
0 and r−0 described by (C.2). The stability condition (6.29)

is evaluated for each. The solution r+
0 describes unstable orbits (red). The

solutions r−0 describe stable circular orbits having radii of the same order of

magnitude as those predicted for CDM: rcdm
0 ≈ 4 kpc.

We may express the effective potential (6.26) in terms of the parameter u2
0π

2
ϕ:

(mc2)−1Ue ≈
(
3u2

0π
2
ϕ − 1

) rs

r
+ π2

ϕ

r2
s

2r2
− u0π

2
ϕ

4r
3/2
s

3r3/2
(C.3)

This effective potential is plotted in Fig. 26 for values of u0 in the narrow range
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Fig. 26. The LVDM effective potential (C.3) is plotted for several values of

u0 in the narrow range 1/3 < u2
0π

2
ϕ < 1/2, again corresponding to

9.13 × 10−4 < u0 < 1.12 × 10−3. Values of u2
0π

2
ϕ > 1/3 result in two cir-

cular orbits; one stable, and one unstable. These curves suggest the existence

of stable, circular orbits with positive total energy, calling into question the

validity of the approximation (6.25), for u2
0π

2
ϕ > 1/3.
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1/3 < u2
0π

2
ϕ < 1/2, again corresponding to 9.13 × 10−4 < u0 < 1.12 × 10−3. Values

of u2
0π

2
ϕ > 1/3 result in two circular orbits, r−0 = 3kpc (stable) and r+

0 = ∞ kpc

(unstable). As u2
0π

2
ϕ is increased, the two solutions approach each other until

r−0 = r+
0 = 8kpc, when u2

0π
2
ϕ = 1/2. Curves corresponding to u2

0π
2
ϕ > 1/3 suggest

the existence of stable, circular orbits with positive total energy, calling into question

the validity of the approximation (6.25) for u2
0π

2
ϕ > 1/3. In this approximation closed

orbits do not exist for u2
0π

2
ϕ > 1/2.
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