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 ABSTRACT 

 

Geometric Representation of Neuroanatomical Data Observed 

in Mouse Brain at Cellular and Gross Levels. (May 2007) 

Wonryull Koh, B.S., The University of Texas at Austin; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Bruce H. McCormick 

 

This dissertation studies two problems related to geometric representation of 

neuroanatomical data: (i) spatial representation and organization of individual neurons, 

and (ii) reconstruction of three-dimensional neuroanatomical regions from sparse two-

dimensional drawings.  This work has been motivated by nearby development of new 

technology, Knife-Edge Scanning Microscopy (KESM), that images a whole mouse 

brain at cellular level in less than a month.   

  

A method is introduced to represent neuronal data observed in the mammalian brain at 

the cellular level using geometric primitives and spatial indexing. A data representation 

scheme is defined that captures the geometry of individual neurons using traditional 

geometric primitives, points and cross-sectional areas along a trajectory.  This 

representation captures inferred synapses as directed links between primitives and 

spatially indexes observed neurons based on the locations of their cell bodies.  This 

method provides a set of rules for acquisition, representation, and indexing of KESM-

generated data. 

 

Neuroanatomical data observed at the gross level provides the underlying regional 

framework for neuronal circuits.  Accumulated expert knowledge on neuroanatomical 
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organization is usually given as a series of sparse two-dimensional contours.   A data 

structure and an algorithm are described to reconstruct separating surfaces among 

multiple regions from these sparse cross-sectional contours. A topology graph is defined 

for each region that describes the topological skeleton of the region’s boundary surface 

and that shows between which contours the surface patches should be generated.  A 

graph-directed triangulation algorithm is provided to reconstruct surface patches 

between contours.  This graph-directed triangulation algorithm combined together with 

a piecewise parametric curve fitting technique ensures that abutting or shared surface 

patches are precisely coincident.  This method overcomes limitations in i) traditional 

surfaces-from-contours algorithms that assume binary, not multiple, regionalization of 

space, and in ii) few existing separating surfaces algorithms that assume conversion of 

input into a regular volumetric grid, which is not possible with sparse inter-planar 

resolution. 
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CHAPTER I 

INTRODUCTION 

 

This dissertation studies two problems in the field of neuroscience that involve the 

representation of data having an intrinsic geometric structure.  These problems are: (i) 

representation and spatial organization of neuronal geometry observed in histological 

sections at cellular resolution, and (ii) boundary surface approximation of 

neuroanatomical structures described by a series of their cross-sectional diagrams.  Both 

problems arise in the study of brain due to the brain’s unique structural complexity; the 

first problem emerges from the need to extract relevant geometric information from a 

massive cellular-level data set, whereas the second problem emerges from the need to 

interpolate missing geometric information from a sparse data set.  Our solutions to both 

problems describe how to convert complex data into visual forms so that we can discern 

patterns and trends and to facilitate further analysis.  

 

A.  Motivation  

In 1950, Alan Turing [1], credited with inventing modern computer science, postulated 

that machines could be created that would closely mimic the cognitive processes of the 

human brain.  In 1966, participants in an NIH-sponsored workshop on image processing 

in biological science first proposed that computers could be used to display, manipulate, 

and manage three-dimensional images of the brain.  In 1985, some of the participants  

from the NIH workshop (Clark, McCormick, Vastola, Waxman) convened another 

 

_____________ 
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workshop at Texas A&M University, and “the conversations and presentations in that 

later workshop stirred imaginations to dream of things to come of the power of 

computers in neuroscience” [2].  In 1995, Larry Swanson noted that the future of brain 

mapping lies in computer science [3].  In 2000, Nature reported that neuroscientists 

worldwide, studying everything from individual molecules to complex behaviors in 

species from nematode worms to humans, have created one of the largest, most 

unwieldy datasets in science and that they are turning to computers for help [4]. 

 

Since 1950, computers have become an important tool to study the brain, but not 

without initial skepticism from the neuroscience community.  Critics considered the 

initial idea of using computational tools to study the structure and function of brain 

technically absurd and went on to say that even if imaging the whole brain were 

possible, the cost of equipment to do so would be excessive and impossible to justify.  

In the mid-1960s it was “only the most immoderate visionary who could imagine the 

exponential growth in computer power and the precipitous fall in the cost of 

computation and storage” to even consider the role of computers in the study of brain 

and its functions, recalls Jerome Cox in his forward to Neuroinformatics: An Overview 

of the Human Brain Project [2].   

 

This dissertation has been motivated by one such “immoderate visionary” and his 

invention to image the whole brain, Knife-Edge Scanning Microscopy, that have since 

proven the critics wrong.  The Knife-Edge Scanning Microscope (KESM) enables for 

the first time modeling of fundamental cellular network organization in mammalian 

brains by generating aligned stacks of histological sections at cellular resolution (see 

Section III.A).  The problems studied in this dissertation originated to support 

acquisition, representation, organization, and understanding of neurons and their 

circuitry observed in KESM-generated data of a mouse brain. 
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B.  Neuronal Geometry 

Neurons, the basic functional units of our nervous system, are shaped such that each has 

a central cell body and a number of thin tube-like projections (called axons and 

dendrites) extending from the cell body.  There are about 100 billion neurons in the 

human brain, and neuronal cell bodies together with axonal/dendritic projections make a 

tangled mess in human and other mammalian brains. For example, each cubic 

millimeter volume of mouse cortex packs on average 92,000 neuronal cell bodies, 4 

kilometers of axons, 450 meters of dendrites, and 700 million synapses (connections 

between two neurons via axons and dendrites) [5]. The complex spatial characteristics 

of neuronal data pose an interesting problem in computer graphics and database design, 

particularly because inter-neuronal connections are commonly non-local. 

 

To understand the brain activity, Santiago Ramon y Cajal noted in 1899, it is necessary 

to understand the molecular and connectional changes of neurons, not to mention the 

exact histology of each cortical area and all of their pathways [6].  Although the 302 

neuron nervous system of the nematode worm, C. elegans, and its wiring data were 

mapped in 1987 [7], [8], there has not been a study of the complete structure of 

individual neurons and their interconnections in a mammalian brain.   

 

In this dissertation, we present a data representation method that captures geometry of 

individual neurons using traditional geometric primitives—points and cross-sectional 

areas along a trajectory—and that captures observed synapses as directed links between 

the primitives. To improve storage and querying efficiency, we also present a spatial 

indexing method based on the location of individual neuron’s cell body. Traditional 

spatial indexing methods—such as k-d trees [9], quad/oct-trees [10], [11], R-trees [12], 

and their variants [13], [14]—result in inefficiencies in querying and storage when there 

are large overlaps among data objects or among their bounding boxes/volumes. With 
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these traditional methods, a neuron’s bounding volume, filled with cell bodies, axons, 

and dendrites of many other neurons, does not provide efficient data access. 

 

C.  Surface Approximation of Neuroanatomical Structures 

Although it might seem that one could simply connect neurons together by means of 

synapses and make networks that mediate behavior, a general principle of biology is 

that any given behavior of an organism depends on a hierarchy of levels of organization, 

with spatial and temporal scales spanning many orders of magnitude.  This is nowhere 

more apparent than in the construction of the brain.  As applied to neuronal circuits, it 

means that one needs to identify the main levels of neuroanatomical organization in 

order to provide a framework for understanding the principles underlying their 

construction and function [15].    

 

The neuroanatomical organization of brain has been studied for more than a thousand 

years, and more than a thousand neuroanatomical structures have been identified for 

humans and rodents alike.  This accumulated knowledge is usually given in book form 

as a series of cross-sectional diagrams showing graphical outlines of standard structures 

and their nomenclature [16]-[18].  We introduce a surface approximation method to 

reconstruct the unknown object surfaces of neuroanatomical structures from a series of 

their cross-sectional contours.  Recovering an unknown shape from a series of two-

dimensional contours is an ill-posed, NP-hard problem [19], but many acceptable 

approximations have been proposed [20]-[31].  What warrants our new approach to this 

problem is that neuroanatomical structures are tightly packaged in a small space; they 

abut each other and tend to share the surfaces separating them.  This leads to multiple 

regionalization [32] of space with non-manifold surfaces, distinct from the binary 

regionalization that traditional surfaces-from-contours algorithms expect as input. 
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D. Overview of Dissertation and Contribution 

This dissertation makes the following contributions: 

 

Neuronal geometry representation 

This portion of the dissertation shows how to represent geometry of individual neurons 

using traditional geometric primitives, how to represent observed synapses as directed 

links between the primitives, and how to index neuronal geometry data based on the 

location of individual neuron’s cell body. 

 

Surface approximation of neuroanatomical structures 

This portion of the dissertation shows how to reconstruct precisely coincident, 

geometrically consistent surfaces, from sparse cross-sectional diagrams, that separate 

multiple neuroanatomical regions in space. 

 

The dissertation has three major parts: 

(1) Chapter II provides a brief survey of existing whole brain imaging methods, 

three-dimensional models of neuroanatomical structures, and anatomically-

oriented neuroscience databases. 

(2) Chapter III and Chapter IV describe methods developed to support KESM in the 

acquisition of cellular-level data.  Chapter III prescribes the KESM data 

acquisition protocol, and establishes a three-dimensional coordinate system for 

data organization and indexing.  Chapter IV defines a set of terminology and 

rules needed to model neuronal geometry, and shows how to apply this set to 

represent cellular-level data observed using different stains.   

(3) Chapter V and Chapter VI address neuroanatomical data at a more gross 

anatomical level. Chapter V introduces a topology-based data structure for 

neuroanatomical regions and an algorithm to reconstruct their separating 

surfaces from cross-sectional contours using parametric curve-fitting technique 
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and triangulation.  Using these methods, Chapter VI presents experimental 

results for the boundary surface approximation of anatomical structures in 

mouse brain olfactory bulb, and application of our results to align a KESM-

generated histological volume. 

 

Chapter VII gives a summary and discussion of future work. 
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CHAPTER II  

SURVEY OF THREE-DIMENSIONAL HISTOLOGY, NEUROSCIENCE 

DATABASES, AND THREE-DIMENSIONAL MODELS OF NEUROANATOMY 

 

In this chapter, we present a brief survey of three-dimensional histology, neuroscience 

databases, and three-dimensional models of neuroanatomy.  The survey reflects our 

attempt to find available neuroscience resources to efficiently manage KESM-generated 

data sets of a whole brain.  Instead, we found a wealth of resources that tend to focus on 

studying individual or small ensembles of neurons in great detail.  Thus, they are not yet 

directly applicable to our problem related to KESM, but are nevertheless related 

because we need to rely on their domain expert knowledge in order to gain insight from 

KESM-generated data sets. 

 

Our survey is not meant to be a comprehensive review.  It is also largely independent of 

the remaining chapters in this dissertation although some of the materials surveyed here 

appear as prior work in later chapters. 

 

A.  Three-Dimensional Histology 

Traditionally, postmortem histological analysis of a thick tissue specimen requires 

sectioning the tissue, examining the cut sections under the microscope, and 

extrapolating meaningful three-dimensional information from the 2D sections.  An 

alternative is cryoplaning with digital image capture, that produces an aligned series of 

cryosectioned specimen surface images at approximately 200 µm spatial and axial 

resolution [33].  Imaging the newly planed blockface was soon extended to the 

construction of 3D mouse maps, typically at 10-20 µm resolution.  The invention of 

confocal microscopy [34] introduced three-dimensional imaging capability, the ability 
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to form a three-dimensional image of an object by producing a series of optical sections.  

The main drawback of confocal microscopy has been its wasteful use of excitation, 

which is particularly problematic in fluorescence microscopy due to photobleaching and 

photodamage of the tissue being examined [35].  This problem has been solved by 2-

photon laser scanning microscopy [36], that limits the fluorescence excitation to the 

focal slice.  Using confocal and multi-photon laser scanning microscopy, tissue sections 

that are more than 100 µm thick [37] can be imaged at submicron spatial and axial 

resolution [38].  Presently, electron microscopy provides the highest spatial resolution 

at less than 5 nm, and when combined with electron tomography, produces a single or 

double axis tilt series of tomograms from a 0.5-4 µm thick section [39], [40]. 

 

Although electron tomography and confocal and multiphoton laser scanning 

microscopy provide three-dimensional imaging capability, when studying a whole 

mouse brain, their relatively thin imaging depth—approximately 4 µm for electron 

tomography and 25-100 µm for confocal and multiphoton laser scanning microscopy, 

respectively—requires sectioning and registration of cut sections.  Currently, there are 

two techniques that enable imaging an entire mouse brain in three dimensions and 

obviate the need to register the cut sections—knife-edge scanning [41] and all-optical 

histology using ultrashort laser pulses [42].   

 

A brief introduction to Knife-Edge Scanning Microscopy is given in Section III.A.   

 

The all-optical histology technique provides diffraction-limited volumetric data that are 

used to reconstruct the architectonics of labeled cells of microvasculature.  It makes use 

of successive iterations of imaging with two-photon laser scanning microscope 

(TPLSM) and tissue ablation with ultrashort pulses of infrared laser light.  The sequence 

repeats serially until the desired volume of tissue has been analyzed.  This leads to a 

digitized block of optical sections from the labeled tissue.   
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B.  Neuroscience Databases 

The success of experimental neuroscience has brought with it a problem that the 

quantity and complexity of relevant data, and their dispersion through an extensive 

literature, make it very difficult to derive reliable conclusions about the information 

they collectively bear about the nervous system.  These complex and numerous data 

require extensive analysis in order to develop and substantiate hypotheses about the 

organization and possible structure-function relationships in the brain.   Before analysis 

can begin, however, relevant data must be brought together into an empirically faithful 

but tractable form. Hence, computer-based collation, management, and analysis of 

neurobiological data—an approach known as ‘neuroinformatics’ by direct analogy to 

‘bioinformatics’—is a necessary step to make the complex data more tractable, leading 

to the development and appropriate testing of better-informed hypotheses [43]. 

 

The current scope of neuroscience databases ranges from data inventories for personal 

use and specialized data collations by a sub-community to large-scale database projects 

of general interest [44].  The neuroscience databases reviewed in this section are 

divided into five classes: (1) collections of structural and functional data, (2) image 

databases, (3) ontologies of neuroscientific objects, (4) morphology databases, and (5) 

databases of computational models and their components.  Each class of neuroscience 

databases is briefly reviewed below. 

 

1. Collections of structural and functional data 

A first generation of connectivity databases has been constructed in the last fifteen years 

for the macaque monkey [45], [46], cat [47], [48] and rat [49].  In describing possible 

structure-function relationships in the brain, there are two fundamentally different 

approaches to describing the localization of brain data [44].  The first approach 

references neuroanatomical entities such as neuronal cell types, columns, layers, or 
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areas.  The alternative approach specifies a three-dimensional reference system.  These 

two concurrent approaches are exemplified by the connectivity databases CoCoMac 

[50] and XANAT [51], respectively.   

 

Two of the attempts in human brain mapping are BrainMap [52], [53]—a software 

environment for meta-analysis of the human functional brain-mapping literature, and 

the European Computerised Human Brain Database (ECHBD) [54]—a 3D 

computerized database for relating function to microstructure of the cerebral cortex of 

humans.  For examining volumes of brain tissue at nanometer resolutions, the Cell 

Centered Database (CCDB) [40], [55] houses high resolution 3D light and electron 

microscopic reconstructions spanning the dimensional range from 5nm3 to 50um3; the 

SynapseWeb [56], [57] provides an interface for interactively examining volumes of 

brain tissue to study synaptic connections and supporting structures in the gray matter 

that can be fully visualized only through 3D electron microscopy.  The Biomedical 

Informatics Research Network (BIRN) is a distributed information technology 

infrastructure initiative to enable researchers to collaborate on large-scale studies of 

human disease with multi-resolution tools [58] 

 

2. Image databases 

The fMRI Data Center serves as a repository for imaging data which underlies peer-

reviewed, published fMRI studies [59].  The Mouse Brain Library (MBL) consists of 

uniformly processed section images (3060 x 2036 pixels, 25 µm per pixel) and 

databases of brains from many genetically characterized strains of mice [60].   

 

3. Ontologies of neuroscientific objects 

Three active projects for ontologies of neuroscientific objects include NeuroML [61]—a 

markup language effort for neurosciences, BrainML [62]—an open and non-formal 
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functional ontology for neuroscience for interoperability among neuroscience resources, 

and  Common Data Model [63] for neuroscience and biophysical data archiving and 

exchange.   

 

4. Morphology databases  

Two types of morphology databases are available: biologically observed and virtually 

generated.  An on-line archive of neuronal geometry [64] houses full three-dimensional 

representations of 87 neurons from the rat hippocampus, obtained following 

intracellular staining with biocytin and reconstruction using Neurolucida [65].  Ascoli et 

al [66] have virtually generated anatomically plausible neurons for several 

morphological classes, including cerebellar Purkinje cells, hippocampal pyramidal cells 

and interneurons, and spinal cord motor neurons. 

 

5. Databases of computational models and their components 

There are two widely used neural simulation packages: GENESIS and NEURON.  

GENESIS (GEneral NEural SImulation System) and its reimplementation in C++, 

MOOSE (Messaging Object Oriented Simulation Environment), [67] are a general 

purpose simulation platform that supports the simulation of neural systems ranging 

from complex models of single neurons to simulations of large networks made up of 

more abstract neuronal components.  NEURON [68] is also a simulation environment 

for neurons and networks of neurons. It is particularly well-suited to problems where 

cable properties of cells play an important role, and where cell membrane properties are 

complex, involving many ion-specific channels, ion accumulation, and second 

messengers. 
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C.  Cartography of Brain in Three-Dimensions 

The use of atlases within experimental neuroscience provides an essential global 

neuroanatomical framework where data from different experiments may be brought into 

register [69].  One of the earliest of digital brain atlases was BRAIN BROWSER [70] 

for the rat brain, that was distributed as a Macintosh HyperCard stack acting as a non-

centralized desktop application.  Digital atlases of brain have since been developed for 

several species.  In this section, digital atlases are divided into three classes: (1) surface 

based atlases, (2) volumetric atlases of mouse brain, and (3) multimodal atlases.   

 

1. Surface-based atlases 

Surface Management System (SuMS) [71] provides surface-based atlases for cerebral 

and cerebellar cortex of human, macaque, rat, and mouse.  The atlas data sets include a 

variety of partitioning schemes for macaque and human cortex, fMRI activation patterns, 

and Talairach stereotaxic foci.  SuMS also includes CARET (Computerized Anatomical 

Reconstruction and Editing Toolkit) [72] for viewing, manipulating, and analyzing 

surface reconstructions of the cerebral and cerebellar cortex. 

 

2. Volumetric atlases of mouse brain  

In volumetric atlases, each voxel is assigned a unique label usually by color- or 

intensity-encoding; segmented anatomical structures are represented as a set of color-

coded voxels.   The High Resolution Mouse Brain Atlas [73] is based on The Atlas of 

the Mouse Brain and Spinal Cord [74], and groups segmented anatomic structures by 

color-encoded voxels.  Kovacevic et al [75]’s minimal deformation atlas was produced 

by averaging MRM images of nine mouse brains.  Ma et al [76] constructed a database 

based on the MRM images of 10 mouse brains, that offer three types of digital atlases—

individualized, minimal deformation, and probabilistic.  The mouse brain atlas from 
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Allen Institute for Brain Science [77] is also a color-coded digital brain atlas 

constructed to map gene expression. 

 

3. Multimodal atlases 

Multimodal atlases combine data acquired from different imaging modalities.   

The International Consortium for Brain Mapping (ICBM) [78]’s probabilistic atlas of 

human brain combines multi-spectral MRI studies from its 5800 subjects, and 

functional imaging studies employing functional MRI, PET and event-related potentials 

from a subset of subjects. Mackenzie-Graham et al [79] report their group’s 

development of a multi-modal imaging brain atlas [80] that co-registers histologically 

processed and annotated sections with magnetic resonance microscopy (MRM) images 

of the same mouse brain both in vivo and post-mortem. 
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CHAPTER III  

A PROTOCOL FOR KESM DATA ACQUISITION AND ORGANIZATION 

 

In this chapter, we present a data acquisition and organization protocol for the capture 

of aligned image stacks from a specimen using KESM [41], a new technology that 

allows imaging of a large volume of tissue, e.g., a whole mouse brain, at cellular 

resolution.  Imaging a whole mouse brain at cellular resolution has been difficult due to 

two reasons.  First, the Nyquist sampling theorem [81] states that to be able to resolve a 

region of interest (ROI) in a sampled image, the sampling resolution must be half of 

ROI size or less.  Second, the size of the field of view (FoV) of a microscope objective 

at a magnification necessary to obtain images at cellular resolution is only a small 

fraction of the dimension of the whole mouse brain.  Thus, multiple images need to be 

collected from a brain specimen and then put back together to produce a histological 

volume corresponding to the specimen.  KESM generates multiple, aligned images at 

submicron resolution with 0.625 mm effective FoV across a brain specimen that has 15 

mm x 9 mm x 6 mm dimensions.  Our protocol relies on the translated coordinates from 

the high precision positioning stage of KESM, and prescribes how to collect and 

organize adjacent images to form a corresponding composite mosaic volume of an 

imaged specimen. 

 

A.  Knife-Edge Scanning Microscopy  

The Knife-Edge Scanning Microscope (KESM) [41], [82]-[84] consists of three 

components: precision positioning stage, microscope/microtome assembly, and imaging 

system.   
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The precision positioning stage has 20 nm encoder resolution for X- and Y-axes and 25 

nm encoder resolution for Z-axis.  It provides accurate translation of a mounted 

specimen and thus ensures alignment of sectioned images.   

 

The microscope/microtome assembly consists of a custom-made diamond knife, a white 

light source, and a microscope objective.   As the diamond knife sections a thin strip of 

tissue, the white light source illuminates the tissue at the diamond knife tip.  The 

microscope objective, aligned perpendicular to the top facet of the knife, images the 

light reflection from the knife-edge, as illustrated in Figure 1.   

 

 

 

 

  

 
 

 

ILLUMINATION 

To LINE-
SCAN 
CAMERA OBJECTIVE 

 

Fig.  1.  Specimen undergoing knife-edge scanning. 

Newly cut tissue is imaged with the microscope objective (the thickness of thin section 
is exaggerated). Tissue is illuminated using diamond knife as collimator for illumination 
from the white light source. 
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The imaging system consists of a high-sensitivity line camera operating at 45kHz that 

captures the image of the newly-cut section just beyond the knife-edge, prior to its 

subsequent deformation.  

 

B.  Data Acquisition and Organization 

A specimen to be imaged by KESM is en bloc stained [85] and then embedded in 

plastic prior to sectioning.  The effective FoV of the microscope objective determines 

the width of thin sections that are concurrently cut and imaged.  KESM uses repeated 

knife-edge scanning to create a sequence of nested ascending or descending stair steps 

in specimen (see Figure 2) so as not to damage adjacent tissue lying on the same 

sectioning plane but not covered by the current FoV.  

 

Our method collects and organizes adjacent images as a set of image stacks.  Image 

stacks are indexed by their relative X, Y, Z positions within the specimen, and images 

in each image stack are in turn indexed by their relative depth within the image stack.   

We record the relative X, Y, Z positions during data acquisition from the translation 

coordinates of the positioning stage.  Our protocol consists of a set of terminology, 

coordinate systems for stage and specimen, scanning conventions, and image naming 

and indexing rules.   
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Fig.  2. Stair-step cutting. 

(a) Ascending staircase constructed by removal of planks; (b) Sequence for plank 
cutting and scanning for ascending staircase; (c) Descending staircase constructed by 
removal of planks; (d) Sequence for plank cutting and scanning for descending staircase. 
 

 

 

1. Terminology 

Specimen 

Specimen refers to a whole or part of en bloc stained and then plastic-embedded tissue 

molded on a specimen mount.  Current specimen size is limited to 15 mm in length (X-

axis), 9 mm in width (Y-axis) and 6 mm in height (Z-axis).  A specimen fits within the 

well of a mold that binds the specimen to a detachable specimen ring, which keys the 
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mount to the specimen tray atop the positioning stage of KESM.  This arrangement 

allows removal and replacement of the mount without loss of registration.  

 

Plank, plank width, plank depth 

Plank is a stack of images cut as one stair step during the stair-step cutting process (see 

Figure 3).  

 

Physically, plank width is determined by an effective FoV of the microscope objective.  

With the current 40X objective, the plank width is approximately 0.625 mm; with the 

10X objective, approximately 2.5 mm.  Plank depth is physically computed by 

multiplying the number of consecutive sections forming the plank by their uniform 

section thickness.  With the current 40X objective, sections are cut at approximately 

0.5µm thickness; with the 10X objective, at 1µm thickness.  

 

 

 

 

 Diamond knife Plank

   Tissue block 

 

Fig.  3. A plank during stair-step cutting. 

A plank with plank width of half knife-width being cut during stair-step cutting is 
shown in gray. 
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As a stack of sampled images, the plank width is determined by the resolution of line-

scan camera.  In the current KESM configuration, with monochrome camera, plank 

width is 4096 pixels; with color camera, 2048 pixels.  All images of a plank start and 

stop at the same X- and Y-positions within the positioning stage, and have equal length, 

the full length of the specimen.   

 

Block 

Block is a stack of square images created by uniformly dividing the length of each plank 

by the plank width.  For example, a plank that is 15mm long and 0.625mm wide is 

partitioned into 24 blocks.   

 

When the plank depth matches plank width, a block forms a nearly cubical histological 

volume.  A conceptual illustration of blocks covering a specimen is shown in Figure 4. 

 

A 15mm x 9mm x 6mm specimen imaged by the current color camera with 0.625 mm 

effective FoV and 0.625 mm plank depth can be partitioned into 3600 (24 x 15 x 10) 

blocks.  Each block, a (0.625mm)3 cubical volume, can contain up to 15.7 GB of data 

(1250 of 2048 x 2048 RGB images)—some blocks may not contain meaningful 

information as they fall outside the range of tissue within the specimen.  The total data 

size of a composite volume of all blocks corresponding to a specimen, then, can in 

theory be as large as 57 TB.  Our protocol described in this chapter guides this massive 

data set to be organized into manageable units. 

 



    20

 

Fig.  4.  Blocks covering a specimen. 

 

 

 

2. Stage coordinate system 

The precision stage conventions for home positions and directions of travel were set at 

the time of manufacture.  The conventions (see Figure 5) are: 

• Xs-axis stage: Xs-axis homes to the left end of the stage and positive motion is to 
the right. 

• Ys-axis stage: Ys-axis homes to the front and positive motion is toward the rear. 
• Zs-axis stage: Zs-axis homes at the bottom and positive motion is upward.   
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Xs 

Ys 

Zs 

 
Fig.  5.  Stage coordinates. 

 

 

 

3. Specimen coordinate system 

Computer graphics conventions are used to set the world coordinates for the specimen 

(see Figure 6): the three-dimensional workpiece is viewed as if by a camera positioned 

above the workspace, looking downward along the stage Zs-axis.  The world coordinate 

system is right-handed and the object (workpiece) is considered to reside in the 

negative-Z half-space. We use Xw, Yw, and Zw for the coordinates of the volume data 

set generated from the workpiece:  

• Xw-axis: home is at workpiece right, increasing to workpiece left 

• Yw-axis: home is at workpiece rear, increasing toward the workpiece front 

• Zw-axis: home is at workpiece top, increasing upward  (workpiece is in negative 

Z half-space) 
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Xw 

Zw 

Yw 

 

Fig.  6. Specimen coordinates. 

 

 

 

 

4. Scanning conventions 

A specimen is scanned along the positive Xw-axis as the air-bearing Xs-axis stage 

moves left-to-right.  Scanning conventions for mapping stage coordinates to specimen 

coordinates are: 

• X-axis scanning: increment Xs-axis position of stage. Map Xs-coordinate to Xw by 

translation 

• Y-axis scanning: increment Ys-axis position of stage. Map Ys-coordinate to Yw by 

translation 

• Z-axis scanning: increment Zs-axis position of stage.  Map Zs-coordinate to Zw by 

inversion and translation. 

Figures 7 and 8 show the mouse brain orientations for coronal and sagittal sectioning.   
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Key of the 
specimen ring 

Left Lateral

Anterior 

Ventral 

 Specimen 
ring 

 Direction of 
scanning along the 
M-L axis  

 

Fig.  7. Mouse brain orientation for coronal sectioning.  

Drawn as seen from standing in front of the positioning stage, and not drawn to scale. 

 

 

 

 

 

Anterior 

 Right     
 Lateral

Ventral 

Direction of 
scanning along the 
A-P axis 

 

 

Fig.  8. Mouse brain orientation for sagittal sectioning.  

Drawn as seen from standing in front of the positioning stage, and not drawn to scale. 
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5.  Naming rules 

We partition a specimen into P x Q x R blocks where  

specimen length
plank width

P = ,  

specimen width
plank width

Q = ,  and 

specimen depth
plank depth

R =  

 

A block within a specimen is uniquely identified by a three-dimensional (p, q, r)-index, 

where Pp <≤0 , Qq <≤0 , Rr <≤0 , and p, q, and r increase along the directions 

shown in Figure 9.   The X-index increases from right to left along the positive Xw-axis, 

and the Z-index increases from top to bottom along the negative Zw-axis.  The Y-index 

increases from front to back along the negative Yw-axis for ascending stair-step cutting, 

and from back to front along the positive Yw-axis for descending stair-step cutting. 

 

Each image in a block is also uniquely identified according to its Z-position, z, within 

the specimen by a (p, q, r, n)-index where  

icknesssection th
depthplank %

icknesssection th
|| zn =  

 

We name each image from a specimen I-p-q-r-n.xxx where I is an identifier referring to 

the specimen and xxx is a placeholder for image file format suffix.  We also prescribe 

that images sharing same I-p-q-r prefixes be stored together within a same image 

directory to facilitate later parallel processing of images and block-based spatial queries.   
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(a)                                                        (b) 

             Zw 
  Xw 
 

             Yw 

 

Fig.  9. Indexing directions for a specimen. 

(a) shows the directions for ascending stair-step cutting, and (b) for descending stair-
step cutting. 

 

 

 

 



    26

CHAPTER IV 

REPRESENTATION OF NEURONAL GEOMETRY 
 

A.  Introduction 

Neurons, the basic units of our nervous system, are shaped such that each has a central 

cell body and a number of thin tube-like projections (called axons and dendrites) 

extending from the cell body.  Neurons receive and integrate a diverse array of 

incoming information, mostly from other neurons, via chemical receptors located 

mostly on their soma and small protrusions of their dendritic surfaces, called spines.   

Dendrites rarely extend more than a few millimeters from the cell body [86].     

 

Information flows from the tertiary and secondary dendrites into the main dendrites and 

then to the cell body in a neuron.  When activated, the cell body relays this information 

to other neurons via the axon by firing of an action potential.  The action potential 

traveling on the axon enables the neuron to communicate rapidly with other neurons 

over sizable distances, sometimes more than a meter away depending on the size of the 

individual [86].  The axon branches into a series of terminals that form connections, 

called synapses, with the dendrites and cell bodies of other neurons, and occasionally 

with other axons.   

 

A cubic millimeter volume of mouse cortex contains on average 92,000 neuronal cell 

bodies, 4 kilometers of axons, 450 meters of dendrites, and 700 million synapses; each 

neuron in mouse cortex is pre-synaptic to 7,000–8,000 neurons and postsynaptic to 

6,000–10,000 neurons, and multiple synapses between the same two neurons are rare 

[5].  Although there is consensus about these numbers among neuroscientists, the 

numbers come from sparse statistical estimates.  KESM enables cellular-level 

observation and exploration of such complex data.   
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In this chapter, we study the representation of neuronal geometry observed in KESM-

generated histological sections of a brain specimen.  We first define a set of 

terminology and then show how to apply this set to represent neuronal geometry data 

observed using different stains. 

 

B.  Terminology 

We assume that histological sections are obtained following the data acquisition and 

organization protocol given in Chapter III.  We also use terminology defined in the 

Chapter III without reintroducing it here. 

 

Point 

A point represents a cross-section of a neuronal segment (described below) sampled 

along its trajectory.  A point is represented by 
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where  

• C is the x-, y-, and z-coordinates of its center,  

• nr  is its unit normal vector, 

• mr  is its unit semi-major axis vector, 

• ir  is the radius of its cross-sectional extent in the direction of mR in
r

r ⋅)(θ  where 

)( inR θr  represents a rotation about nr  by a positive angle iθ ,  mi ,...,1= , and  

iθ < 1+iθ . 

• B is the index of the block it is sampled from.  
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Segment 

A segment is part of a traced neuron entirely within a block.  A segment can be a 

neuronal cell body, or a part of a neuronal cell body or a neuronal process.  We 

represent a segment by 
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where 

• P is the set of two or more sampled points, },...,,{ 21 nppp , ordered from one end 

of the segment to the other end, 

• T is the segment’s morphological type, 

• n_sb is the number of observed dendritic spines (if the segment’s type is dendrite), 

or the number of observed boutons (if the segment’s type is axon). 

• )},,{( iii zyx  is the set of (x,y,z)-locations of observed spines if the segment’s type 

is dendrite, and the set of (x,y,z)-locations of observed boutons if the segment’s 

type is axon. 

 

Vertex 

A vertex is a point that is also an endpoint of a segment.  We represent a vertex by 









flagboundary
Seg

p

_
  

where  

• p is a pointer to its point representation, 

• Seg is a pointer to the segment whose one endpoint is the vertex, and 

• boundary_flag is a Boolean flag indicating whether the vertex lies at the boundary 

of a block.   
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Near-collision 

A near-collision refers to a probable synapse between two segments based on their 

proximity.  A near-collision is represented by 
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T
SegSeg

SSSS zyx
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where 

• S is the x-, y-, and z-coordinates of its observed location,  

• 1Seg  and 2Seg  are the two segments participating in the near-collision, and 

• T is the type of synapse, e.g., axo-dendritic, axo-axonic, dendro-dendritic, etc., 

determined by w and also by the morphological types of 1Seg  and 2Seg . 

 

Inter-block processing 

During inter-block processing, the vertices from two neighboring blocks, lying on or 

close to block’s bounding faces are matched to discover connected segments between 

the blocks.    

 

C. Representation of Neuronal Geometry 

Freshly prepared brain tissue has a uniform appearance under a microscope yielding no 

differences in pigmentation to enable an observer to resolve different cellular structures.  

Thus, neuroscientists stain brain tissue to selectively color some, but not all, parts of the 

cells.  Two widely used stains are Nissl stain and Golgi stain.  The Nissl stain, 

introduced by Franz Nissl in the late nineteenth century, stains the DNA in nuclei of all 

cells and clumps of RNA surrounding the nuclei of neurons [87].  The Golgi stain, 

introduced by Camillo Golgi also in the late nineteenth century, stains a small 

percentage of neurons in their entirety [87].  In this section, we show how to represent 

neuronal geometry observed in Nissl-stained and Golgi-stained brains using our 

terminology defined in the previous section.   
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A Nissl-stained specimen data set yields the full morphology of neuronal cell bodies, 

but not their processes.  We represent the geometry of a Nissl-stained neuron as a set of 

points, segments, and vertices representing the cell body.  This representation also 

provides the index of the block within which a cell body resides, and thus the location 

of neuron within the brain volume (see Figure 10). 

 

A Golgi-stained specimen data set yields selective neurons in their full morphology.  

We represent the geometry of a Golgi-stained neuron as a set of points, segments, 

vertices, and near-collisions.  This representation provides neuronal morphology 

information, location of neuron’s cell body if ascertained, and location of observed 

synapses (see Figure 10).   

 

Inter-block processing applies to Nissl-stained and Golgi-stained data sets to discover 

connected components of neuronal geometry (see Figure 10).   
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Fig.  10. Conceptual illustration of neuronal geometry representation. 

The geometry of a Nissl-stained neuron can be represented as {{P1, P2, P3}, {S1}, {P1, 
P3}} where the segment S1 = {{P1, P2, P3}, soma, 0, φ }. 
The geometry of a partial Golgi-stained neuron shown on bottom right can be 
represented as {{P4, P5, … , P10}, {S2, S3, S4}, {P4, P6, P7, P8, P9, P10}, {N-C}} 
where S2 = {{P4, P5, P6}, dendrite, 0, φ }, S3 = {{P7, P8}, dendrite, 0, φ }, and  S4 = 
{{P9, P10}, dendrite, 0, φ }. 
An observed near-collision N-C can be represented as {(N-Cx, N-Cy, N-Cz), S2, S5, 
axo-dendritic} where S5 = {{P11, P12, P13}, axon, 0, φ }. 
During the inter-block processing between block (i,j,k) and block (i,j,k+1), two vertices, 
P3 and P4 can be matched to determine that S1 and S2 are connected components of a 
same neuron, yielding a ‘merged’ geometry of a partial Golgi-stained neuron 
represented by {{P1, P2, … , P10}, {S1, S2, S3, S4}, {P1, P3, P4, P6, P7, P8, P9, P10}, 
{N-C}}. 
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CHAPTER V 

APPROXIMATION OF SEPARATING SURFACES FROM CROSS-

SECTIONAL CONTOURS 

A.  Introduction 

The problem of reconstructing object surfaces from cross-sectional contours has been 

studied for more than thirty years, and has many well established solutions (see Section 

V.B).  These solutions, however, place strong assumptions on the input.  These 

solutions assume that each contour from a cross-section is simple and closed, and that 

the contour divides a two-dimensional cross-section into two regions: inside and outside 

of the contour.  The reconstructed surface, by tiling the contours on successive planes, 

forms a boundary of a manifold that divides a three-dimensional volume into two 

regions: inside and outside of the manifold.   

 

The problem addressed in this chapter is reconstruction of separating surfaces from 

sparse cross-sectional line drawings or diagrams depicting multiple regions.  Our 

solution places no assumptions on the input.  We assume that the curves that make up 

each cross-sectional diagram can be i) simple and open, ii)  not-simple and closed, or 

iii) not-simple and open as well as iv) simple and closed (see Figure 11).  Our solution 

consists of four steps: 

(1) break the input curves into simple contours such that each simple contour lies 

on a boundary between exactly two regions. 

(2) construct a topology graph from the contours obtained after step (1). 

(3) apply a curve fitting algorithm to convert the contours into parametric B-splines. 

(4) generate triangulated surfaces based on our topology graph and on the evaluated 

points of the B-spline contours. 
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Steps (1) and (2) are user-guided manual processes; steps (3) and (4) are automated 

processes. 

 

 

 

 

Fig.  11. Acceptable input curves. 

Our solution can handle (a) open simple curves, (b) closed non-simple curves, (c) open 
non-simple curves, as well as closed simple curves. 

 

 

 

The advantage of our solution is that it results in geometrically consistent separating 

surfaces between regions because our topology graph maintains a consistent number of 

geometric points used during triangulation as well as directing which contours are to be 

triangulated together.  This is not possible with traditional surfaces-from-contours 

algorithms because traditional algorithms produce independent triangulations for each 

closed region and thereby result in interpenetrating surfaces that are not precisely 

coincident when the boundary surfaces of two or more regions abut.  A disadvantage of 

our solution is that our topology graph has to be constructed manually.  However, it has 

been shown that no fully automatic conversion from a graphical sketch to a polyhedral 

model can exist [88], and also that in dealing with complicated input, it requires very 

little extra effort from an expert to specify the continuation of objects from one section 
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to next [89].  A strategy for possible automation of topology graph construction process 

is discussed in Chapter VII.   

 

We describe a data structure and an algorithm for computing triangulated surfaces 

which separate regions of different types.  We assume that we have a collection of 

contours ijC ,  ni ,...,1= , incj ,...,1=  where n is the number of cross-sections and nci is 

the number of contours in the i-th cross-section.  Our goal is to produce triangulated 

surfaces that separate the components of different regions kR , Mk ,...,1= .  We assume 

that each contour has been classified to one or more of several classes kB , Mk ,...,1=  

denoting the boundary of kR .   

 

These separating surfaces can be viewed as a generalization of the polyhedral surfaces 

often associated with the surfaces-from-contours algorithm (see [23]-[30]).  In the 

context of the surfaces-from-contours algorithm the closed simple contours on each 

cross-section represent the boundaries between two possible classes: inside or outside of 

a structure.  The reconstructed polyhedral surface then distinguishes these two regions.  

In the more general situation where there are several possible classes for internally 

partitioned structures or substructures, the separating surface is defined as S = 

U
jiMji

ji RR
≠=

∩
,,...,1,

)( .  This more general separating surface is fundamentally different from 

a polyhedral surface from a surfaces-from-contours algorithm in that it may contain 

regions where three or more surface segments join (see [90]).  This means that the data 

structure used for the representation of surface segments must allow for three or more 

surface segments to share a common contour.  This is not necessary for the results of a 

valid surfaces-from-contours type algorithm, which can be represented with a 

concatenation of two polyhedral surfaces joined at one common simple closed contour.   
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B.  Previous Work 

The problem of reconstructing a surface from a set of scattered sample points arises in a 

variety of applications in the fields of reverse engineering, computer graphics, computer 

vision, and medical image segmentation.  Surface reconstruction from scattered samples 

is an ill-posed problem in that there is no unique solution [91].  Although a number of 

surface reconstruction techniques have been proposed, most existing algorithms make 

certain strong assumptions on the original surface and its sample points. For example, 

many algorithms necessitate a dense sampling to be able to capture drastic topological 

or geometric change in a small region; some approaches need additional knowledge 

such as surface normal or interior/exterior information; some algorithms are not tolerant 

of noise and corrupted data.   

 

The problem of reconstructing separating surfaces arises in a variety of biomedical 

applications and in multi-fluid dynamics calculations.  This problem, an extension of 

the problem of reconstructing a manifold surface from a set of scattered points, is also 

an ill-posed problem.  Moreover, the multiple regionalization [32] posed in this problem 

leads to reconstruction of non-manifold surfaces that are difficult to model in 

conventional solid modeling [90].  Although a small number of separating surfaces 

reconstruction techniques have been proposed, all algorithms necessitate a conversion 

of input data into a regular volumetric grid.  These algorithms require that intra-planar 

and inter-planar resolutions be sufficiently similar in their input. 

 

1. Surface reconstruction from unorganized points 

Boissonnat [92] describes a method for Delaunay triangulation of a set of points in 3-

space, that progressively eliminates tetrahedra from the Delaunay triangulation based on 

their circumspheres.  Edelsbrunner and Mucke [93] use α -shapes to build a polyhedral 

shape with an unorganized set of points.  Hoppe et al [94] generate a signed distance 
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function from the input points, and then polygonalize its zero-set by the marching cubes 

algorithm [95].  Curless and Levoy [96] derive a continuous volumetric function from 

the sample points and store it on a voxel grid.  Amenta et al [97] produce a 

topologically correct output mesh that interpolates the input points based on the three-

dimensional Voronoi diagram and Delaunay triangulation.  Adamson and Alexa [98], 

[99] Aelxa et al [100], Amenta and Kil [101], Fleishman et al [102] , Levin [103], Xie 

et al [91], and Zwicker et al [104] use the MLS surface or its variants for point-set 

modeling and rendering. Edelsbrunner and Harer [105] describe how to extract Jacobi 

surfaces from Morse functions.   

 

A major advantage of the unorganized points algorithms is that they do not make any 

prior assumptions about connectivity of points.  In the absence of range images or 

contours to provide connectivity cues, these algorithms are the only recourse [96].  

However, although these algorithms behave well in smooth regions of surfaces, they are 

not robust in regions of high curvature unless some sampling density criteria are met 

[96], [97].  They often require dense sampling of points, or additional data such as 

surface normals or interior/exterior information of the sample points [91].   

 

2. Surface reconstruction from contours 

The problem of reconstructing surfaces from contours is generally broken into three 

subproblems: correspondence, tiling, and branching [20], [29].  The correspondence 

problem deals with determining the topological adjacency relationships between the 

contours.  To determine the correspondence, Meyers et al [29] first approximate the 

contours by ellipses and assemble them into cylinders. Soroka [106] uses the concept of 

generalized cylinders.  Jones and Chen [27] use contour overlap.  Bajaj et al [20] 

require that, given a fine enough inner-slice spacing, the reconstructed surface between 

adjacent slices can have at most one intersection with any line orthogonal to the slices.  

The tiling problem is concerned with generating the “best” topological adjacency 
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relationships between the points on pairs of contours by constructing a triangular mesh 

from their points.  Keppel [28] first reduces this problem to a graph search problem, and 

tries to maximize the volume enclosed by convex polygons to find an optimal 

triangulation.  Fuchs et al [25] find an optimal triangulation by minimizing the surface 

area using a divide-and-conquer approach in an Euler tour of a toroidal graph in O(n2) 

time where n is the number of data points in each contour.   Christiansen and Sederberg 

[24] use the selection of shortest slice chords as their optimization criterion.  The 

branching problem arises when an object is represented by a different number of 

contours in adjacent sections.  Christiansen and Sederberg [24], and Jones and Chen 

[27] rely on user interaction to guide the solution.  Boissonnat [92] adds extra vertices 

before Delaunay triangulation and builds a branched structure from the two Delaunay 

triangulations.  Geiger [26] combines the external Voronoi skeleton and the Delaunay 

triangulation, splits the merging contour into several regions corresponding to each of 

the branching contours, and constructs a tetrahedron between these corresponding 

regions. 

 

3. Separating surfaces 

The first algorithm specifically designed for separating surface extraction was 

developed by Nielson and Franke [107], and also independently by Muller [108].  Their 

algorithm assumes that it is given a collection of three-dimensional rectilinear grid 

points each of which has been classified into one of several possible classes.  Their 

marching cubes type [95] algorithm first transforms voxels into tetrahedra, and then 

marches through each tetrahedron, building triangles for the separating surfaces by 

evaluating the classifications of the tetrahedron’s nodes against a mask and a case table.  

Using this method, Weinstein [109] generates separating surfaces from cross-sectional 

contours that partition each cross-section into multiple materials by first voxelizing each 

cross-section onto a uniform grid and then contouring the regular voxel grid.  Similarly, 

Ju et al [110] first projects the contours from two planes orthogonally onto a common 
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plane, creates a volume graph based on the intersection points formed on the common 

plane, transforms the volume graph into a volumetric grid, and finally generates 

separating surfaces using a multimaterial contouring method.  Bonnell et al [111], [112]  

generate separating surfaces by constructing material interfaces for a grid where each 

grid vertex has an associated barycentric coordinate representing the fractional parts of 

each material at the vertex.   

 

C.  Data Structure: Topology Graph 

Traditionally, solid modeling systems based on boundary representations have 

employed the winged edge data structure or its variants for storing topology.  The 

disadvantage of the winged-edge-based data structure is that it is simply unable to 

represent many of the non-manifold conditions that arise in the construction of complex 

shapes [113].   

 

We introduce a data structure to represent the topological skeleton of an object surface 

and to direct separating surface generation between contours.  The idea of using a 

topological object description to direct the process of reconstructing 3D surfaces from a 

stack of sections is not new.  Kaneda et al [114], Giersten et al [89], Shinagawa and 

Kunii [115], and Biasotti [116] proposed a topological graph structure based on the 

Reeb graph for this purpose.  However, the Reeb graph is also defined on a manifold.  

Although our data structure can be considered as an extension of the Reeb graph and its 

variants, it is specifically designed to represent the topology and geometry of 

reconstructed separating surfaces that are non-manifold.  Furthermore, what is novel in 

our approach is that we use a topological skeleton to build an unknown shape from 

insufficient data.  Previous approaches have used a topological skeleton (i.e., the Reeb 

graph) to extract a simplified shape description from huge data sets representing a 

digital model of three-dimensional object [116]. 
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1. Reeb graph and Morse theory 

Morse theory can be thought of as a generalization of the classical theory of critical 

points (maxima, minima and saddle points) of smooth functions on Euclidean spaces.  

Morse theory states that for a generic function defined on a closed compact manifold 

the nature of its critical points determines the topology of the manifold.  Morse 

functions are generic functions for which all the critical points are non-degenerate, that 

is, the Hessian matrix of the function at a critical point is non-singular [117].  For a 

Morse function, the critical points determine the homology groups—a set of points for 

which the function is less than a given value—of the manifold, and these sets fully 

describe the topology of the manifold.  The way the manifold is embedded in the three-

dimensional space can be coded using the Reeb graph, which is a skeleton graph that 

encodes the evolution and the arrangement of the homology groups.  A Reeb graph 

represents the configuration of critical points and their relationship, and provides a way 

to understand the intrinsic topological structure of a shape [117]. 

 

Formally, the Reeb graph is defined as follows [115]: 

Let RMf →:  be a real valued function on a compact manifold M.  The Reeb graph of 

f  is the quotient space of the graph of f  in RM ×  by the equivalence relation ~ given 

below: 

))(,(~))(,( 2211 XfXXfX   

if and only if  

)()( 21 XfXf =   

and  

X1, X2 are in the same connected component of ))(( 1
1 Xff − .   

 

The Reeb graph of the height function on an object surface is the quotient space of the 

graph in R3.  This quotient space identifies (x1, y1, z1) and (x2, y2, z2) if z1=z2=z, and if 

these two points are in the same connected component on the cross section of the 



    40

surface at the height z.  The Reeb graph represents the contours on each plane as nodes, 

and shows the topological relations between contours in two successive cross sections 

(Figure 12).     

 

 

 

 
  (a)     (b)  (c) 

 

Fig.  12. Reeb graph of a torus.  

(a) shows a torus with its cross sections. (b) shows its Reeb graph.  (c) shows the 
direction of the height function.  

 

 

 

Given a shape represented as a triangle mesh, its Reeb graph under the height map can 

be efficiently extracted by cutting the mesh into parallel slices, orthogonal to the 

considered height direction, and by studying the properties of the resulting mesh strips 
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delimited by two adjacent levels [118], [119].  The topological connectivity of critical 

points can be reconstructed using edge-based adjacency among contours.  The Reeb 

graph structure has been applied to model representation [120], shape understanding 

[118], [121], similarity estimation [122], and database retrieval [123]. 

 

2. Topology graph 

Recall that our goal is to reconstruct separating surfaces from sparse cross-sectional line 

drawings or diagrams depicting multiple regions, and that the input curves that make up 

each cross-sectional diagram can be open and not-simple.  Our input, a series of cross-

sectional line-drawings gives us visual information, but not topological information that 

we need to recover surfaces between them.  Our solution consists of four steps (see 

Section V.A).  In this section, we describe steps (1) and (2) to convert our input curves 

to a topology graph that represents the topological skeleton of each region’s boundary 

surface and that shows between which contours the surface patches should be generated.   

 

Step (1) Break the input curves into simple contours such that each simple contour lies 

on a boundary between exactly two regions, and merge any connected contours that 

have identical class sets 

A cross-sectional diagram gives visual information on the boundaries of multiple 

regions present in the cross-section.  For example, Figure 13(a) shows a cross-sectional 

diagram with six regions which are labeled in Figure 13(b).  Our goal in this step is, 

given such a diagram, to break the curves into simple contours as shown in Figure 13(c) 

so that we can describe the boundary of a region using these contours.  The curves are 

manually broken into simple contours to satisfy the condition that a simple contour lies 

between (i) exactly two regions, or (ii) one region and the background.  After all the 

simple contours are determined, each contour is manually assigned (i) two classes 

denoting the boundaries of two regions or (ii) one class denoting the boundary of one 

region.  If two contours are connected, and have identical class sets, they are merged.  
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Fig.  13. From a diagram to a collection of simple contours. 

(a) shows a cross-sectional diagram.  (b) shows six regions; each region is labeled as 
“R#”.  (c) shows simple contours, labeled with lower case characters, broken up from 
the curves in the diagram. 
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For example in Figure 13(c), the contours, b, d, e, f, g, h, and k, lie between exactly two 

regions, whereas the contours, a, c, i, j, m, and n, lie between one region and the 

background.  The contour, a, is assigned one class, {B1}, denoting that a lies between 

region1 (R1) and the background, the contour, b, is assigned two classes {B1, B2}, 

denoting that b lies between region1 (R1) and region2 (R2).   

 

Step (2) Construct a topology graph from the contours obtained from step (1) 

For this step, our goal is to construct a topology graph to produce triangulated surfaces 

in later steps (3) and (4), that separate the surface components of different regions, kR , 

Mk ,...1= .  We are given, after step (1) described above, a collection of simple 

contours ijC ,  ni ,...,1= , incj ,...,1=  where each contour has been classified to one or 

more of several classes kB , Mk ,...1= , denoting the boundary of kR .  Similar to the 

Reeb graph, we define for each region kR  a topology graph that represents the 

topological skeleton of the region’s boundary surface and that shows between which 

contours the surface patches should be generated.  Each contour, ijC , is a vertex in our 

topology graph.  The connectivity relations between the contours are specified first 

within a cross-section and then between two successive sections (see Figure 14).  The 

topology of the objects to be reconstructed is then defined as a set of such relations 

throughout the complete stack of sections.     

 

We assume that ijC  = },...,,{ 21 ijnppp , i.e., a simple contour ijC  is defined by an 

ordered sequence of ijn  three-dimensional points. 

 

For each kR , Mk ,...1= , we manually construct its topology graph ),( kkk EVG  by 

constructing two subgraphs, first  ),( kkk EpVGp  for the topology of contours within 

cross-sectional planes and second ),( kkk EsVGs for the topology of contours between 

successive cross-sections as follows: 



    44

 

for i = 1…n  (where n is the number of cross-sections) 

1. insert ijC  to kV  if kB ∈ )( ijCclass  where incj ,...,1= , and nci is the number of 
contours in the i-th cross-section.  

2. insert ( ijC , ilC ) to kEp  if kij VC ∈ , kil VC ∈ , and ijC  and ilC  are connected. 
 

for i = 1…n-1 

1. insert ( jiC )1( + , ilC ) to kEs  if ),( )1( ilji CCsurface +  ∈  kR where 11 +≤≤ incj , 

incl ≤≤1 , and ),( )1( ilji CCsurface +  is a user-determined surface between two 
contours jiC )1( +  and ilC  .   

 

),( kkk EVG  is then union of its two subgraphs, ),(),( kkkkkk EsVGsEpVGp ∪ .   

 

 

 
Fig.  14. Topology graph for a region within and between two cross-sections. 
(a) shows two cross-sectional diagrams.  (b) illustrates (shown on next page) a topology 
graph construction for region R1 within and between two sections. 
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Fig. 14. Continued. 
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The edges kEs  of topology graph  kG  describe the object surface of region kR .  

U
Mk

kkk EVG
,...,1

)),((
=

 describes the boundary surface representation and cross-sectional 

boundaries for all regions kR .   An edge, ( jiC )1( + , ilC ) where 11 −≤≤ ni , 11 +≤≤ incj , 

and incl ≤≤1 , that is shared among two or more topology graphs describes a surface 

patch that separates two or more abutting regions. 

 

Figure 15(a) and (b) illustrate ),( kkk EVG , 6,...,1=k , and U
6,...,1

)),((
=k

kkk EVG , respectively, 

corresponding to the six regions depicted in two diagrams shown in Figure 14(a).  In 

Figure 15, the boundary classification information for each contour, as assigned in step 

(1) and shown in (a), is not shown in (b).  Using the boundary class information, we can 

recover individual ),( kkk EVG , 6,...,1=k  shown in Figure 15(a) from U
6,...,1

)),((
=k

kkk EVG  

shown in Figure 15(b).  
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Fig.  15. Topology graphs. 

(a) shows  ),( kkk EVG , 6,...,1=k , corresponding to regions 1-6 shown in Figure 14(a).  
(b) shows U

6,...,1

)),((
=k

kkk EVG . 
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D.  Algorithm: Curve Fitting and Graph-Directed Triangulation 

The contours ijC  define the intersections of the object surfaces at successive cross-

sections.  Our goal is to utilize these cross-sectional contours to recover the three-

dimensional surfaces of the objects for visualization as well as geometric analysis.   

Shape from cross sections is an important problem in diverse fields of science, and it 

has been studied extensively [19], [20], [23], [25]-[31], [124], [125].  Most of these 

methods, however, suffer from correspondence, tiling, and branching problems.   

 

The advantage of having a topology graph is that it allows reconstruction of three-

dimensional surfaces automatically independent of shape complexity, i.e., branching, 

objects contained within objects, and objects abutting other objects.  Another advantage 

is that it automatically solves the correspondence problem and the branching problem 

since topological descriptions are used to avoid ambiguities.   We describe a new 

method to define and triangulate surfaces that are non-manifold or manifold with 

boundary.  Our method, based on piecewise parametric curve-fitting technique and 

graph-directed triangulation, differs from conventional polygonalization methods in that 

it permits multiple, rather than binary, regions of space.   

 

1. Correspondence, tiling, and branching problems 

The correspondence problem (Figure 16) arises when there are multiple contours in a 

section because the contours must be organized into groups representing individual 

objects. Due to the underconstrained nature of the problem, automatic solution of the 

correspondence problem is difficult.  Therefore, assumptions about the nature of the 

objects to be reconstructed are often used to help constrain the problem, allowing a 

reasonable solution [29].  To help reduce the exponential complexity of the problem, 

Bresler et al [126] advocated the use of domain knowledge to group contours into 

feasible objects. 
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Fig.  16. Correspondence problem.   

(a) shows two cross-sections each of which has two contours.  (b) and (c) show two 
possible groupings between the same contours.  

 

 

 

The tiling problem (Figure 17) is concerned with generating the “best” topological 

adjacency relationships between the points on pairs of contours by constructing a 
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triangular mesh from their points.  The tiling problem has been the subject of most of 

the previous work on reconstructing surfaces from contours.  Keppel [28] has shown 

that between two contour lines consisting of n and m points respectively, there are 

T(m,n) possible triangle arrangements where  ( )!
( , )

( 1)!( 1)!
m n

T m n
m n

+
=

− −
.  For example, 

when n = m = 12, there are about 107 triangle combinations, and this combinatorial 

aspect precludes an exhaustive search for the optimal triangulation.  Keppel [28] first 

reduced the problem of matching points in successive contours to a search problem on a 

toroidal graph. Fuchs et al [25] provided an extensive analysis of the search problem 

and developed an efficient search method. Sloan and Painter [30], [31] addressed the 

choice of metric for the graph cost function and described several improvements to the 

divide-and-conquer algorithm.   The tiling problem is underconstrained, and many 

surfaces could give rise to the observed contours in cross-sections.  In choosing one 

“correct” surface, the chosen surface should capture some notion of what a good surface 

is and should be easy to compute [29]. 

 

 

 

 

Fig.  17. Tiling problem.   

Two possible acceptable tilings between two contours are shown. 
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A branching problem (Figure 18) exists when an object represented by m contours in 

one section is represented by n contours in an adjacent section, and m and n are distinct.  

Previous approaches to the branching problem have tried to form composite contours, 

adding fabricated vertices between the adjacent contours to model the saddle surface 

implied by the contours [24], [92].  In most cases however, these approaches resort to 

user interaction to guide a solution [20], [24].   

 

 

 

 

Fig.  18. Branching problem.  
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2. Curve fitting 

We state our curve-fitting problem as follows:  Given a set of data points ( rx , ry ), r = 

1,… ,m, that describes an arbitrary curve in a cross-section, determine a spline )(us  on 

[a, b] of degree k (k=3), with knots a= 0λ , 1λ , …, gλ , 1g+λ =b, as the solution of a 

constrained optimization problem.  Our goal is to find )(us  with parametric 

representation  





≤≤
=
=

= bua
usy
usx

us
y

x

),(
),(

)(   

that satisfies  

( xs ( ru ), ys ( ru )) ≅  ( rx , ry ), r = 1,…,m.   

Thus, our objective is to select the knots and to determine the B-spline coefficients to 

satisfy two criteria: the least squares criterion and the smoothing criterion.  The least 

squares criterion determines the closeness of fit whereas the smoothing criterion 

determines the smoothness of fit (see Figure 19). 
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Fig.  19.  Curve fitting.   

A blue curve is fit to red points.  (a) illustrates closeness of fit; (b) illustrates 
smoothness of fit.  

 

 

B-spline representation 

With every point ( rx , ry ), we associate a ru -value such that ru  ≤  1ru + .  We then 

determine for an interval [a, b] two cubic spline functions xs (u) and ys (u) with 

common knots, iλ ,  i = 0, 1,…, g, g+1 ( 0λ =a, 1+gλ =b), where  

xs (u) = ∑
−=

+

g

ki
kixi uNc )(1,  and ys (u) = ∑

−=
+

g

ki
kiyi uNc )(1, . 
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The coefficients, xic  and yic , are called B-spline coefficients of xs (u) and ys (u), 

respectively, and )(1, uN ki +  are B-spline basis functions defined as 

k
kii

k
tikiki utuN +++
+

+++ −∆−= ))(,...,()()( 1
1

11, λλλλ   

where 




<
≥−

=− + xt
xtut

ut
k

k

 if 
 if 

,0
,)(

)( . 

 

The least-squares criterion 

The least-squares criterion determines the desired spline by minimizing  

 ( )∑
=

−+−=
m

r
ryrrxrr usyusxw

1

222 ))(())((δ ,   

where rw , which are called weights, allow account to be taken of differing accuracies of 

how closely xs (u) and ys (u) fit the data points.   

 

The smoothing criterion 

The smoothing criterion minimizes η  defined as 

( ) ( )∑
=

−−++−−+
g

i
i

k
yi

k
yi

k
xi

k
x ssss

1

2)()(2)()( )()()()( λλλλ   

subject to the constraint  such that  

( )∑
=

−+−=
m

r
ryrrxrr usyusxw

1

222 ))(())((δ  < S.    

The smoothing factor S is a user-specified, positive number that controls the extent of 

smoothing.   
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Solution to curve fitting 

Following the approach taken by Dierckx [127] and de Boor [128], we treat our curve 

fitting problem as a minimization problem.  Given a set of contour points, 

},...,{ 21 mcpcpcp , we obtain the B-spline coefficients and the knots as the solution of the 

following problem: 

 Minimize  

  ∑
=

−−+=
g

q
q

k
q

k ss
1

2)()( )()( λλη  

 subject to constraint  

  Suscpw
m

r
rrr ≤−= ∑

=1

22 ))((δ . 

 

We compute the B-spline coefficients lic ,  of n splines )(, us pl , defined for positive 

values of p and nl ,...,1=  as the least-squares solution of the n systems of equations , 

lrr

g

ki
rkilir cpwuNcw ,1,, )( =∑

−=
+ ,    r = 1, …, m, 

01
,, =∑

−=

g

ki
qili ac

p
,  q = 1, …, g, 

where p is given the value of the positive root of F(p) = S,  
2

1
))(()( ∑

=

−=
m

r
rprr uscpwpF ,  

and  

 








≤≤−−
−

−−
>−−<

=

∏ ++

≠=
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+

qikq
k

qikqi
a

ki

qjij jq

iki
k

qi  1 if
)(

)(!)1(
 or   1 if,0

1

,

1
1

,

λλ

λλ . 

 

We select the knots 

 a= 0λ , 1λ , …, gλ , 1g+λ =b 
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first by determining the weighted least-squares polynomial which is simply the 

weighted least-squares spline )(0 uS .  If SF ≤)0( , this is a solution to our problem.  If  

SF >)0( , then we determine successive least-squares splines )(uS
jg  with an 

increasing number of knots jg , until the condition  

 )0()( FSFg <≤∞  

is satisfied.  At each iteration we increase the number of knots jg  by jg∆  where 

 




=∆∆∆∆
=

=∆
,...2,1}},,1max{,min{

0,1

21,34 j
j

g j , 












∆

∞−∞

−∞
=∆ −

−

11 )()(

)(

1

j
gg

g g
FF

SF

jj

j , 








∆
=∆ −

2
1

2
jg

, 

13 2 −∆=∆ jg , and 

jgkm −−−=∆ 14 . 

The additional knots are then located inside the intervals ],[ 1+ii λλ  with the largest  iδ .  

As previously mentioned, our solution to the curve fitting problem is based on two 

books, by Dierckx [127] and de Boor [128], and they provide detailed explanations and 

proofs which are not repeated here. 

 

3. Graph-directed triangulation 

Recall that our goal is to produce triangulated surfaces that separate the components of 

different regions iR , Mi ,...,1= , given a set of topology graphs U
Mi

iii EVG
,...,1

)),((
=

 as 

defined in Section V.C.2.  Our manual construction of topology graphs solves the 

correspondence problem by prescribing which contours are to be grouped together 
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between two sections; it also solves the branching problem because each grouping of 

two contours from adjacent sections is one-to-one, not m-to-n where m and n are 

distinct (see Section V.D.1). Similar to the traditional methods, we generate surfaces by 

tiling two contours from two adjacent cross-sections, given by edges ( jkC )1( + , klC ) in 

U
Mi

iii EsVGs
,...,1

)),((
=

 where 11 −≤≤ nk , 11 +≤≤ kncj , and kncl ≤≤1 .  The novelty in 

our method is that our method generates consistent triangulations across boundaries of 

multiple objects.   This consistency is not possible with traditional methods since they 

reconstruct each object surface independently and thus result in different tilings for 

different objects, leading to interpenetrations or gaps between the surfaces shared by 

abutting objects.   

 

To generate a tiled surface corresponding to an edge ( jkC )1( + , klC ) in U
Mi

iii EsVGs
,...,1

)),((
=

, 

we first fit each contour with a piecewise parametic B-spline function as described in 

the previous section.  We then evaluate each piecewise B-spline function, that satisfies 

both the least-squares and the smoothing criteria, at a fixed number P of intervals, and 

use these evaluated points to produce a triangulation.  We assign P such that the spline 

functions corresponding to contours that are topologically connected in 

U
Mi

iii EsVGs
,...,1

)),((
=

 are evaluated at the same number of points, and our method is 

independent of similarities in shapes or parameterizations between two contours. 

 

Given U
Mi

iii EsVGsEsVGs
,...,1

)),((),(
=

=  and an arbitrary vertex ijC  ∈  V , where ni ,...,1= ; 

incj ,...,1= , we build a breadth-first-tree from source ijC , )( ijCBFT  = 

))(),(( ijij CEsCVGs ππ .  )( ijCBFT  is a subgraph of ),( EsVGs  consisting of vertices and 

edges reachable from ijC  during a breadth-first-search on ),( EsVGs  from ijC  (see  
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Figure 20).  Therefore, )( ijCBFT  describes a complete set of contours (vertices) and 

surface patches (edges) that are topologically connected to ijC  in ),( EsVGs ; we 

evaluate spline functions for contours in )( ijCVπ  at the same number of points before 

triangulation.  We then repeat the process from source stC  ∈  )( ijCVV π− , and so on 

until the union of all breadth-first trees constructed is equivalent to ),( EsVGs . 

 

(a)  
Fig.  20. Breadth-first trees of a topology graph.   

(a) shows input contours (named a, b, …z, and A) and regions (R1, R2, and R3) in three 
consecutive cross-sections.  (b) shows Gs. (c) shows all breadth-first trees  (shaded in 
gray) found in Gs.  (b) and (c) are shown on next page. 
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Fig. 20. Continued. 
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In addition to directing which contours are to be tiled together, our topology graph also 

maintains the number of geometric points used during triangulation to be consistent.   

This, in turn, ensures that our abutting or shared surface patches are precisely coincident.  

Thus, our topology graph directed triangulation results in separating surfaces that are 

geometrically consistent.   
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CHAPTER VI 

BOUNDARY SURFACE APPROXIMATION OF ANATOMICAL 

STRUCTURES IN MOUSE BRAIN OLFACTORY BULB  
 

A. Introduction 

Reconstruction of three-dimensional objects from serial two-dimensional images can 

contribute to the understanding of many biological structures.  In this chapter, we apply 

our method for the reconstruction of separating surfaces, as described in the previous 

chapter, to approximate the boundary surfaces of the anatomical structures in mouse 

brain olfactory bulb.  We then apply our surface approximations to direct image 

alignment.  

 

Given a stack of sparse contours denoting abutting and shared boundaries of multiple 

anatomical regions in mouse brain olfactory bulb, our problem is to approximate the 

topology and geometry of the reconstructed surfaces of these regions.   This problem 

arises from an unknown three-dimensional object that has to be reconstructed from a 

sequence of two-dimensional images.  The only information about the object consists of 

the intersections of its surface with a finite number of specified parallel planes.  These 

intersections are assumed to be curved contours; each contour is defined by a finite 

number of points.  Thus, the input to the problem is a set of finite sequences of points 

encountered while traversing each of the contours.  The desired output is a piecewise 

planar approximation to the original object surface constructed in such a way that its 

intersections with the parallel planes are assured to be nearly identical to the original 

curves lying on them.  A negative result by Gitlin et al [19] has shown that, in general, 

two polygonal curves cannot be joined by a non-self-intersecting surface with only 

those vertices, and even deciding its possibility is NP-hard [129].  Our solution to the 
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problem tries to find a “good” separating surface reconstruction based on a topology 

graph, piecewise parametric curve-fitting, and piecewise triangulation.   

 

Our solution is fully applicable to reconstruction of separating surfaces of other 

anatomical regions in mouse brain or of multiple regions in other entities.  Our current 

bottleneck is the manual construction of topology graphs.  As mentioned in Chapter V, 

after the topology graphs are constructed, our method solves the curve-fitting and 

graph-directed triangulation automatically.   

 

B.  Boundary Surface Approximation of Anatomical Structures in Mouse Brain 

Olfactory Bulb 

1. Previous work on three-dimensional reconstruction of anatomical structures in 

mouse brain 

Traditional atlases for adult mouse brain, consisting of a series of two-dimensional 

images of stained sections together with nomenclature and graphical outlines of 

standard anatomical structures, are provided in book form or as printed manuscripts 

[16]-[18].  Three-dimensional models try to overcome the limitations of traditional 

atlases by being able to navigate and computationally section the brain structures at 

arbitrary angles, or to view a structure independently or in conjunction with other 

structures to understand better their relationships with one another [130].  Although in 

high demand, digital three-dimensional mouse brain models are still sparsely available 

[76].  Sidman et al [73], [74] are developing a voxel-based atlas where segmented 

anatomical structures are grouped by color-encoded voxels.  Similarly, the Allen 

Institute for Brain Science developed a voxel-based atlas for their database of gene 

expression patterns [77].  Mackenzie-Graham et al [79] report their group’s 

development of a multi-modal imaging brain atlas [80] that co-registers histologically 

processed and annotated sections with magnetic resonance microscopy (MRM) images 
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of the same mouse brain, both in vivo and post-mortem.  Kovacevic et al [75]’s minimal 

deformation atlas is produced by averaging MRM images of nine mouse brains.  Ju 

[131] developed a polygonal atlas based on 350 histological tissue sections, which 

serves as a spatial database of gene expressions over the mouse brain.  Ma et al [76] 

constructed a database based on the MRM images of 10 mouse brains, that offer three 

types of digital atlases—individualized, minimal deformation, and probabilistic. 

 

Current three-dimensional models can be grouped into two categories based on how 

they represent the segmented anatomical structures: volumetric and surface-modeling.  

In the volumetric atlases [73], [75], [79], [80], after segmentation, each voxel of the 

atlas volume is assigned a unique anatomical label, usually by color- or intensity-

encoding.  Each segmented anatomical structure is visualized and manipulated as a set 

of color-coded voxels.  The surface-modeling [76], [131] atlases model the boundaries 

of anatomical structures as reconstructed polygonal surfaces.  The reconstructed 

surfaces of these two atlases are extracted from a volumetric grid after in-house 

segmentation. 

 

Our work presented in this chapter is distinct from previous and ongoing bodies of work 

on three-dimensional reconstruction of mouse brain anatomical structures in three ways.  

First, compared with the volumetric atlases, our reconstructions represent anatomical 

structures using boundary surfaces, not as a collection of voxels.  Second, our work 

focuses on approximating the boundary surfaces of anatomical structures in the 

olfactory bulb.   The surface-modeling atlases by Ju [131]  and Ma et al [76] contain 17 

and 20 segmented and reconstructed anatomical structures, respectively, of a whole 

mouse brain.  Although they both include a reconstructed olfactory bulb, the anatomical 

structures inside the olfactory bulb are not reconstructed.  Third, our work further 

differs from Ju [131] and Ma et al [76] in that we approximate the boundary surfaces of 

anatomical structures based on a surface-based, not a volume-based, approach to the 

problem of reconstructing a three-dimensional separating surface from a collection of 
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planar contours.   Our boundary surfaces are reconstructed from a data set that defines 

the intersection of a surface and a plane of sectioning, whereas the volume-based 

approaches reconstruct surfaces from data that are available as a three-dimensional grid.   

 

2. Topology graph construction 

The ability to measure and understand the rich complexity and variability of brain 

structure and function often requires comparison against some index, standard or 

alternative representation.  This anatomical framework may be in the form of a map to 

relate the name and location of structures within a coordinate system or a template with 

complete shape descriptions of structures [132].  Our reconstruction extends an existing 

two-dimensional anatomical framework, a stereotaxic mouse brain atlas by Paxinos and 

Franklin [18], whose anatomical delineation and nomenclature serve as a reference atlas 

in the neuroscience community,  into three-dimensional surface approximations.  Their 

anatomical delineations shown in curved line drawings are contours in our topology 

graph.  The nomenclature attached to each delineated region is its class.  Given this 

collection of contours and the set of classes, we construct a topology graph for each 

delineated region.  An example of a topology graph constructed following the algorithm 

given in the previous chapter is shown in Figure 21. 

 

Although our topology graph shows the topological skeleton of each structure’s 

boundary surface, the task of visualizing and following the intrinsically three-

dimensional anatomical structures is left to the user’s imagination, and can be difficult.  

From the topology graph, we generate triangulated surfaces between contours from 

adjacent sections to demonstrate structural details and relationships that are otherwise 

difficult to discern or may be obscured in two-dimensional sections.   
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Fig.  21.  Topology graph example. 
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Mathematically, a contour is an intersection of an arbitrary surface and a plane.  

Contour lines of irregular and abutting structures do not easily lend themselves to exact 

polynomial representation, or other attempts at precise mathematical description [24].  

In such cases, a convenient numerical description of a contour line can be approximated 

by a sequence of straight line segments.  This description of a digitized contour line 

provides two pieces of information:  point coordinates and connectivity of points 

implied by the sequence in which the points are listed.   From this inherent connectivity 

in contour data, we can extract a surface definition between pairs of adjacent contour 

lines using triangulation.  There are two obvious rules in triangulation for obtaining an 

acceptable surface [25] that reduce the number of triangle combinations: (1) If two 

points of the same contour are to be defined as points of the same triangle, they must 

neighbor each other on their contour line, and (2) no more than two vertices of any 

triangle may be recruited from the same contour [24].  Using these rules, we triangulate 

between the evaluated points of two curve-fit contours.  Figure 22 shows the 

triangulated surfaces corresponding to the topology graph shown in Figure 21. 

 

Figure 23 shows our reconstructed surfaces for anatomical structures in mouse brain 

olfactory bulb as delineated by Paxinos and Franklin [18].  The contours from sparse 

coronal sections are not equally spaced, and many contours are shared by multiple 

abutting structures. 
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Fig.  22. Graph-directed triangulation. 

(a) shows the triangulated surfaces corresponding to the topology graph from Figure 21.  
(b) shows a magnified view of two surfaces, (r,A) and (q,A) in Figure 21, around the 
blue arrow shown in (a).  (c) illustrates the coincident triangulations around a shared 
contour between the two surfaces.     
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Fig.  23. Approximated surfaces of mouse brain olfactory bulb structures from coronal 
diagrams. 

(a) and (b) show overlaid coronal diagrams and their approximated surfaces.  (c) and (d) 
show overlaid contours and approximated surfaces of lateral olfactory tract.  (d) The 
outer boundaries of the glomerular layer of the olfactory bulb are shown on left; 
contours for the olfactory nerve layer are shown on right. (e) is a ventral view of the 
same contours shown in (d).  (f) shows surface approximations of contours shown in (e).  
(g) is an overlaid view of two structures shown in (f). 

 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
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Fig. 23. Continued 
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Fig. 23. Continued 
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3. Interpolated sections 

Standard sections in traditional two-dimensional atlases are sparse with gaps between 

them.  Thus, it is difficult to find a match when an experimental section falls between 

these gaps.  To determine a histological slice’s position and orientation, neuroscientists 

use its visible anatomical structures as landmarks, and compare an image of a given 

slice with a corresponding standard section, such as those provided in the stereotaxic 

atlas by Paxinos and Franklin [18]: first, a standard section that seems closest to the 

experimental section is located, and then two sections are superimposed to discern a 

number of anatomical structures.  We use our surface reconstructions to interactively 

generate and visualize interpolated sections that are implied but missing in the set of 

two-dimensional standard sections (see Figure 24). 

 

4. Image alignment 

Between two consecutive histological slices, two problems in morphological shape 

differences arise: there may be anatomical changes from section to section, and there 

may be shape changes due to distortions induced by the sectioning process.  To 

minimize tissue distortions, a high-precision motorized stage can be used during 

sectioning process, care can be taken during the data collection steps to reduce 

histological imperfections, and sections can be cut in a stereotaxic fashion by using 

appropriate orientation devices [133].  When a stack of experimental sections have 

comparable X-, Y-, and Z-resolutions, they are often formed into a three-dimensional 

histological block so that morphological and anatomical structures can be visualized in 

three-dimensions based on intensity variations.  As with the individual two-dimensional 

slices, a histological volume can be superimposed with one or more standard two-

dimensional sections to determine its position, orientation, and discernable anatomical 

structures.   
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Fig.  24. Interpolated sections. 

From our surface reconstructions shown in (a), we can interactively generate 
interpolated sections at arbitrary planes as shown in (b) and (c). 
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One of the first steps required in successful fusion of histology and standard sections in 

three-dimensions is the alignment of histological slices in a stereotaxic coordinate 

system.  We use our surface reconstructions to guide alignment in a stack of histological 

slices, in which inter-slice resolution closely matches intra-slice resolution and is 

uniform.  When the gap between two consecutive histological sections is small, it is 

assumed that shape differences in anatomy and morphology from one slice to the next 

differ only slightly [134].  In such cases, rigid transformations [135], [136] are 

recommended over elastic transformations [137]-[140] until anatomical and 

morphological changes from section to section can be clearly distinguished from local 

distortions due to the histological processing.  Although elastic deformations may 

correct some of the observed morphological changes, they may also introduce false 

deformations that can compromise the overall data fusion [133].  We use translation, 

rotation, and non-uniform scale transformations.  For the experimental results shown in 

Figure 25, we apply our transformations to our surface approximations rather than to the 

stack of images to improve efficiency, but we can easily apply an inverse transform to 

the stack of images to achieve the same results.  For results shown Figure 25, we 

applied our surface approximations from the previous section to align 800 KESM-

generated coronal histological sections of a mouse brain olfactory bulb specimen.  The 

800 images amount to a 1.5 mm x 2.2 mm x 0.8 mm volume of tissue and were scanned 

at 0.6 mµ  x 0.6 mµ  x 1 mµ  resolution.   
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Fig.  25.  Image alignment. 

(a) The first of 800 images is aligned with our surface approximation via translation.  
(b) The same translation, applied to the last of the 800 images, indicates that the images 
are not in stereotaxic alignment.  In (c) and (d), we apply a scale and rotation to our 
surface approximations to correct the misalignment detected between (a) and (b).  (e) 
and (f) show the 400th image overlaid with the surface approximations before and after 
the scale and rotation, respectively.  The images from KESM were acquired by David 
Mayerich and Jaerock Kwon. 
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Fig. 25. Continued. 
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Fig. 25. Continued 

.
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CHAPTER VII 

CONCLUSION AND FUTURE WORK 

 

In this dissertation, we have investigated problems related to the geometric 

representation of neuronal and neuroanatomical data.  In Chapters III and IV we studied 

the problem of the spatial representation and organization of neuronal geometry, as 

extracted from dense histological sections.  In Chapters V and VI we studied the 

problem of reconstructing separating surfaces interpolated from sparse two-dimensional 

contours and its application to approximating surfaces of neuroanatomical structures.     

 

A.  Neuronal Geometry 

The morphological complexity of neurons in mammalian brains has long been observed 

although mostly by focusing on a small group of neurons within an isolated brain area.  

Adding to the difficulty of describing neuronal geometry in the whole brain is that the 

cell bodies of interconnected neurons may not be bounded by a common small volume 

of interest, but bounded only by the extent of the entire brain.  In this dissertation, we 

have presented a neuronal geometry representation method based on geometric 

primitives, and described how to organize spatial data across a brain specimen into an 

indexed composite volume.  Representing observed synapses as directed links between 

geometric primitives captures the tangled and linked web-like structure of the neuronal 

interconnection data in literal fashion: as mapped from local or micro scale to 

potentially global scale.   

 

The initial objective of our work on neuronal geometry was to design a schema for a 

Mouse Brain Web that archives the morphologies of individual neurons and putative 

synapses between the observed neurons of a mouse brain from a data set generated by 

KESM.  After initial prototype design [141]-[143], we decided to focus on representing 
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neuronal geometry because it forms the basis for describing neuronal morphology and 

for inferring synapses based on geometric proximity.  Figure 26 shows a conceptual 

sketch of how a Mouse Brain Web from KESM-generated data set can lead to 

anatomically correct modeling of mouse brain networks, and to subsequently allow the 

mapping of anatomically correct networks to physiologically correct network 

simulation.   

 

 

 

 

Fig.  26. The Mouse Brain Web and its anatomical and functional use. 

 

 

Data generation, compression, segmentation, reconstruction, editing, visualization, and 

storage are some of the myriad issues we face before a Mouse Brain Web can be 

realized.  KESM’s unique ability to provide data for modeling fundamental network 
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organization in mammalian brains is revolutionary, but the sheer volume and unique 

nature of brain’s structural data necessitate development of new computational tools to 

manage and gain insights from this complex information.    Since anatomically correct 

modeling relies on geometric models of individual neurons, our work forms a common 

denominator for each stage of anatomical and functional simulation shown in Figure 26.  

Our representation can facilitate navigating across a composite volume, and is also 

extensible to incorporate and provide links to supplementary physiological data related 

to neuronal morphology, such as ion channel densities.  As a Mouse Brain Web 

develops, our work will need to be adapted and extended to accommodate new 

technological developments.  

 

B.  Reconstruction of Neuroanatomical Structures 

Surface approximation of neuroanatomical structures from sparse cross-sectional 

contours has proven to be difficult due to the presence of abutting, shared boundary 

surfaces that are not handled by traditional boundary-representation (B-rep) data 

structures and surfaces-from-contours algorithms (see Section V.B).  We presented a 

topology-based data structure, the topology graph, and an algorithm based on 

parametric curve fitting and triangulation to model surfaces separating multiple regions 

in space.  We also applied our algorithm to approximate the boundary surfaces of 

anatomical surfaces in mouse brain olfactory bulb.  Improved knowledge of central 

olfactory circuit anatomy and physiology is essential to understand olfactory coding, 

and may provide fundamental insights about the underlying computational features that 

have driven the selective expansion of cortical structures in the evolution of the 

mammalian brain [144].   Our work currently provides recovery and visualization of 

geometric data in three-dimensions that are missing in a series of two-dimensional maps 

of mouse brain olfactory bulb.   
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The advantage of having a topology graph is that it allows reconstruction of three-

dimensional surfaces automatically, independent of shape complexity and that it avoids 

ambiguities by solving the correspondence problem.  Another advantage of our method 

is that by combining parametric curve fitting and graph-directed triangulation, it ensures 

that our abutting or shared surface patches are precisely coincident, resulting in 

separating surfaces that are geometrically consistent.  The disadvantage is that our 

topology graph has to be built manually relying on domain expert knowledge present in 

two-dimensional cross-sectional diagrams.  This manual process is similar to what early 

CAD package designers faced, namely that they had to focus their efforts on “the most 

tedious, time-consuming, and unrewarding aspect of conventional design: the process of 

converting a designer’s sketches and notes into finished engineering drawings—the 

drafting process” [113].  However, this drafting process has proven to be necessary and 

justified because, although only modest gains in efficiency were possible in creating the 

first version of a design, tremendous gains were realized when design modifications 

were needed [113].   

 

Our proposed future work on the reconstruction of neuroanatomical structures falls into 

three broad categories.  First is to apply our method to model various anatomical 

regions in mouse and other mammalian brains, that is, to continue on with the ‘drafting 

process’ of converting standard two-dimensional brain maps into digital models.  The 

bulk of this work lies in construction of topology graphs, as our current solution 

provides a fully automated, geometrically consistent reconstruction of separating 

surfaces once a topology graph is given.   Thus, second is to semi-automate the 

topology graph construction process while maintaining its two purposes: representing 

the topological skeleton of object surfaces, and directing separating surface generation 

between contours.  Different anatomical structures exhibit distinct textures in 

histological cross-sections, and a texture-based region classification scheme may 

partially automate the construction of topology graphs.  Given regions classified by 

texture, if a fully labeled set of boundary contours is available in digital form, the intra-
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cross-sectional topology graphs for those regions can be automatically constructed.  

When such a set is not available, the boundary classification of contours may still 

require manual intervention, based on the similarity or near-symmetry of shape and 

texture information.  However, constructing the inter-cross-sectional topology graphs 

may still need domain expert consultation, visual validation, and manual intervention 

since to our knowledge, there is no known method to automatically solve the 

correspondence problem between cross-sectional contours that depict multiple regions, 

and to generate precisely coincident, geometrically consistent surfaces separating 

different regions.  Third is to apply our digital reconstructions to reap similar benefits 

gained by early CAD designers when design modifications were needed after the initial 

drafting process.  Our benefits will come not from modifying a design but from 

providing a flexible new template to aid the map-making process for individual brains 

and to perform brain-to-brain comparisons.  Performing brain-to-brain comparisons, or 

warping one brain to the other, has been extensively studied [145].  Most existing 

approaches are based on intensity patterns or anatomical landmarks placed on two- or 

three-dimensional grids.  Several approaches based on elastic deformations have been 

proposed [137]-[139], [146], [147], but are mostly limited to a one-to-one 

transformation that deforms one source curve to one target curve.  We foresee a need 

for new approaches which transform surfaces separating multiple neuroanatomical 

regions to comparable brain data from different imaging modalities.   
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